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Abstract

Pathology plays an important role in disease diagnosis, treatment decision-making
and drug development. Previous works on interpretability for machine learning
models on pathology images have revolved around methods such as attention value
visualization and deriving human-interpretable features from model heatmaps.
Mechanistic interpretability in an emerging area of model interpretability that
focuses on reverse-engineering neural networks. Sparse Autoencoders (SAEs) have
emerged as a promising direction in terms of extracting monosemantic features
from model activations. In this work, we train a Sparse Autoencoder on the embed-
dings of a pathology pretrained foundation model. We discover an interpretable
sparse representation of biological concepts within the model embedding space.
We perform an investigation into how these representations are associated with
quantitative human-interpretable features. Our work paves the way for further
exploration around interpretable feature dimensions and their utility for medical
and clinical applications.

1 Introduction

1.1 Mechanistic Interpretability

Artificial Intelligence (AI) has made significant strides in various domains, including healthcare and
pathology. As these systems become more complex and widely adopted, understanding their internal
mechanisms becomes crucial for ensuring reliability, addressing biases, and fostering trust. This
paper focuses on the application of mechanistic interpretability (MI) techniques, particularly sparse
autoencoders, to neural networks used in pathology.

Mechanistic interpretability aims to study neural networks by reverse-engineering them, providing
insights into their internal workings Olah [2022], Cammarata et al. [2020a], Elhage et al. [2021],
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Bereska and Gavves [2024]. This approach is particularly relevant in pathology, where understanding
the decision-making process of AI systems can have significant implications for patient care and
diagnostic accuracy. In the MI paradigm, “features” are defined as the fundamental units of neural
networks, and “circuits” are formed by connecting features via weights Cammarata et al. [2020a].
This conceptualization allows researchers to dissect complex neural networks and understand how
they process and represent information.

According to the Superposition Hypothesis Elhage et al. [2022], Olah et al. [2020], a neuron can
be polysemantic, i.e., it can store multiple unrelated concepts. Consequently, a neural network can
encode more features than its number of neurons. This concept is particularly intriguing in the context
of pathology, where complex visual patterns and subtle tissue variations must be recognized and
interpreted.

Bricken et al. Bricken et al. [2023] use Sparse Autoencoders – a form of dictionary learning – to
decompose multilayer perceptron (MLP) activations into a number of features greater than the number
of neurons. The aim is to associate features with individual neurons that represent disentangled
concepts in these sparse networks. This approach holds promise for improving the interpretability of
AI systems in pathology, potentially allowing for more precise identification of diagnostic features.

Nanda et al. Nanda et al. [2023b] provide evidence that these features are linear combinations of
neurons for OthelloGPT, in line with the linear representation hypothesis proposed by Mikolov et al.
[2013]. This finding suggests that complex concepts in neural networks, including those used in
pathology applications, may be represented as linear combinations of simpler features.

In Large Language Models (LLMs), MI has been used to understand phenomena such as in-context
learning Olsson et al. [2022], grokking Nanda et al. [2023a], and uncovering biases and deceptive
behavior Templeton et al. [2024]. While these studies primarily focus on language models, their
insights may have implications for image-based AI systems used in pathology. The Universality
Hypothesis Olah et al. [2020] posits that similar features and circuits are learned across different
models and tasks. However, other studies Chughtai et al. [2023] have found mixed evidence for this
claim. Understanding the extent of universality in neural networks could have significant implications
for the transferability and generalizability of AI systems in pathology across different types of
analyses or tissue samples.

Sparse autoencoders have emerged as an important tool for extracting monosemantic features from the
embeddings of complex models Bricken et al. [2023], Cunningham et al. [2023], Rajamanoharan et al.
[2024a], Makhzani and Frey [2014]. This paper aims to explore the application of sparse autoencoders
in disentangling neural representations in pathology-focused self-supervised models, investigate the
presence and implications of polysemantic neurons in these systems, and examine the potential of
mechanistic interpretability techniques to improve the transparency and reliability of AI-assisted
pathology diagnostics. By advancing our understanding of these areas, we seek to contribute to the
development of more interpretable and trustworthy AI systems in pathology, ultimately enhancing
their utility and acceptance in clinical practice.

1.2 Interpretability in Pathology

Histopathology, often used interchangeably with pathology, is the diagnosis and study of diseases
through microscopic examination of cells and tissues. It plays a critical role in disease diagnosis
and grading, treatment decision-making, and drug development Walk [2009], Madabhushi and Lee
[2016]. Digitized whole-slide images (WSIs) of pathology samples can be gigapixel-sized, containing
millions of areas of interest and biologically relevant entities across a wide range of characteristic
length scales.

Machine learning (ML) has been applied to pathology images for tasks such as segmentation of
biological entities, classification of these entities, and end-to-end weakly supervised prediction at a
WSI level Bulten et al. [2020], Campanella et al. [2019], Wang et al. [2016]. Work on interpretability
in pathology has focused on assigning spatial credit to WSI-level predictions Javed et al. [2022], Lu
et al. [2020], computing human-interpretable features from model output heatmaps Diao et al. [2021],
and visualization of multi-head self-attention values on image patches Chen et al. [2024].

Foundation Models (FMs) are promising for pathology as they can take advantage of large amounts
of unlabeled data to build rich representations which can be easily adapted for downstream tasks in a
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data-efficient manner Kang et al. [2023], Dippel et al. [2024], Vorontsov et al. [2023], Filiot et al.
[2023], Chen et al. [2024]. The diversity of pre-training data powers these models to generate robust
representations, enabling them to generalize better than individual task-specific models trained on
smaller datasets. Additionally, these models can be used as a universal backbone across different
tasks, reducing the development and maintenance overhead associated with bespoke task-specific
models.

We believe that histopathology data is a promising area for Mechanistic Interpretability (MI)-based
analysis, for the following reasons:

• Rich and Complex Data: Unlike object-centric image datasets, a single pathology image
patch can contain up to 106 regions of interest (e.g., cell nuclei). The number of active
concepts is bounded by underlying biological structures, and identifying every concept can
be critical for downstream applications.

• Addressing Batch Effects: Pathology images are susceptible to “batch effects,” where
models may learn spurious features instead of relevant morphology-related features. This
issue arises from high-frequency artifacts and systematic confounders in image acquisition
Howard et al. [2020]. MI can help disentangle biological content from incidental attributes,
leading to more robust models for real-world applications.

• Enabling Precise Interventions: A bottom-up understanding of feature contributions to
predictions can enable modeling of useful interventions at increasing levels of complexity.
This ranges from activation-based methods Vig et al. [2020], Chan et al. [2022] to text-based
interventions, such as predicting tissue changes in response to drug administration.

• Multimodal Integration: Medicine is inherently multimodal Topol [2023]. Recent ad-
vances in spatial biology provide opportunities to draw connections and learn shared patterns
across modalities like histopathology, genomics, and transcriptomics Bressan et al. [2023].
MI can help in understanding these cross-modal relationships.

• Enhancing Model Transparency: MI can provide insights into the decision-making process
of AI systems in pathology, potentially improving their interpretability and trustworthiness
in clinical settings.

• Facilitating Novel Discoveries: By uncovering the internal mechanisms of AI models
trained on pathology data, MI may lead to new biological insights or hypotheses that were
not apparent through traditional analysis methods.

These factors highlight the potential of MI to significantly advance our understanding and application
of AI in pathology, ultimately improving diagnostic accuracy and treatment decisions in healthcare.

1.3 Summary of Contributions

This work presents an interpretability analysis of the embedding dimensions derived from a vision
foundation model trained on histopathology images. Our study provides the first detailed charac-
terization of the image attributes represented within specific embedding dimensions of a pathology
foundation model. To move towards monosemantic representations, we employ sparse autoencoders
(SAEs) on the embedding outputs, aiming to identify interpretable features within the SAE’s hidden
dimensions. Further interpretability analysis of these hidden dimensions revealed clusters of related
histopathology concepts, and correlation between single SAE dimensions with human-interpretable
features characterizing cell densities.

The main contributions of our work are as follows:

• We demonstrate that individual dimensions in the embedding space encapsulate complex,
higher-order concepts through polysemantic combinations of fundamental characteristics
like cell appearance and nuclear morphology.

• We train a sparse autoencoder to enable the disentanglement of polysemantic embedding
dimensions, revealing a sparse dictionary of interpretable features that represent cell and
tissue characteristics, geometric structures, and image artifacts.

• We examine the effect of training SAEs on complex datasets consisting of multiple stain
types, uncovering lower fraction of dead neurons and ultra-sparse features, and identifying
features that generalize across multiple staining techniques.
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• We perform a clustering analysis on the SAE dimensions, identify groups of related features
that encode for related histopathology concepts.

• We conduct quantitative comparisons between human-interpretable features and distinct
SAE dimensions, finding varying degrees of correlation across different cell types.

2 Polysemanticity in pathology foundation model embeddings

2.1 Datasets and embedding extraction

We use 2 datasets for experimentation, which we term as dataset A and B. For dataset A, we used
three publicly available TCGA (The Cancer Genome Atlas) Weinstein et al. [2013] datasets consisting
of H & E (haematoxylin & eosin)-stained histology images from three organs: breast (TCGA-BRCA),
lung (TCGA-LUAD), and prostate (TCGA-PRAD). We selected 951, 493 and 488 WSIs from these
datasets respectively for the analysis. A machine-learning model, PathExplore (PathExplore is for
research use only. Not for use in diagnostic procedures.) Markey et al. [2023], Abel et al. [2024],
was deployed on these images to detect and classify cell types from the WSIs. On each slide, we
sampled 100 cells from each cell type (cancer cells, lymphocytes, macrophages, fibroblasts, plasma
cells, and indication-specific cell types). Image patches (224 x 224 pixels at a high resolution, 0.25
microns per pixel) were created centered on the selected cells.

For dataset B, we used 1.1 million image patches, including both H & E and IHC (immunohisto-
chemistry) stains, sampled from the train set of ‘PLUTO’ - a pathology pretrained foundation model
Juyal et al. [2024], covering oncology, IBD (inflammatory bowel disease) and MASH (metabolic
dysfunction-associated steatohepatitis). All the images for dataset A and B were passed through
a frozen ViT-Small encoder taken from ‘PLUTO’. Each image patch outputs a 384-dimensional
embedding vector corresponding to the CLS token.

2.2 Interpretability analysis of PLUTO embeddings

We first manually inspected each of the 384 dimensions of the PLUTO embedding space to determine
if they represent singular features of the images. For each dimension, we randomly sampled 5 patches
that have the lowest 5% and the highest 5% activation values across the TCGA-BRCA dataset (Figure
1).

The embedding dimensions tended to encode multiple image characteristics. For example, dimension
27 was more active for larger cells (than smaller cells), purple background (compared to red back-
ground), and non-elongated cell shapes. Dimension 118 tended to be active for mucinuous and round
structure and less activated for fibrous structures.

By visual inspection, most embedding dimensions similarly encode a combination of these cellular,
tissue and background-stain related characteristics, suggesting a polysemantic representation of these
atomic properties. Certain combinations of the atomic properties correspond to complex concepts
that are relevant to pathology, such as the distinction between cancer epithelium and stroma tissue
(captured in dimension 27 and 147), or the presence of red blood cells (captured in dimension 239).
However, the multiple features represented in these dimensions prevented interpretability analysis of
these dimensions.

3 Training a sparse autoencoder on PLUTO embeddings reveals
interpretable features

Sparse autoencoders (SAEs) have been used in NLP Bricken et al. [2023], Cunningham et al. [2023]
to achieve a more monosemantic unit of analysis compared to the model neurons. In vision datasets,
SAEs trained on layers of convolutional neural nets have uncovered interpretable features such as
curve detectors Gorton [2024], Cammarata et al. [2020b]. Various improvements to SAEs have been
suggested, including k-sparse Makhzani and Frey [2014] and gated sparse Rajamanoharan et al.
[2024a] autoencoders, and using JumpReLU Rajamanoharan et al. [2024b] instead of ReLU as the
activation function. Inspired by previous work, we investigate training SAEs on top of PLUTO’s
embeddings and analyzing the sparse features for interpretable dimensions.
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Figure 1: Visualization of features activating each embedding dimension. In each dimension, 5
example patches in the lowest 5% and highest 5% respectively of that dimension’s activation are
visualized. Inspection of each these patches reveals that multiple atomic features vary within each
embedding dimension, including background stain color, cell size, shapes or morphologies. Some
dimensions correspond to complex concepts that are relevant to pathology.

Two sparse autoencoder models were fit separately to the CLS token embedding of datasets A and B.
Our hypothesis is that training SAEs on a more diverse dataset (including multiple organs, stains and
cell types) leads to more generalizable representation of useful features in the embedding dimensions
of the model. For simplicity, we will refer the first model as "model A" and the second model as
"model B".

The two SAEs use an expansion factor of 8 and a loss function given by 1
k (
∑k

i=1 ||xi − x̂i||2 +

λ
∑k

i=1 ||fi||1), where k is the batch size, xi and x̂i are the raw and reconstructed embeddings, and fi
are the learned features of image i Bricken et al. [2023], Foundation [2024]. Dead neuron resampling
was implemented to reduce the fraction of dead neurons Bricken et al. [2023], Foundation [2024]. We
tried Adam optimizer with a learning rate of 0.001, expansion factors of 1, 8, 16, 32; and L1-penalty
weight in 0.001, 0.004, 0.006, 0.008, 0.01. A single training run took approximately 30 minutes on a
Quadro RTX 8000 GPU. The fraction of dead neurons remains lower than 4% for different values of
hyperparameters.

3.1 Visualization of learned SAE features

We visualized the images that have the highest activation value for a given SAE dimension. This
revealed highly interpretable features, as shown in Figure 2. These include cell and tissue features
such as poorly differentiated carcinoma, geometric structures such as vertical fibers, and staining and
artifact features.

With the incorporation of diverse training data in model B, SAE dimensions of model B exhibited
multimodal representations, where single SAE dimensions represent the same features regardless of
stain type. Consistent with this, 247/3072 dimensions (8.0%) had representations of both H & E and
IHC stains in the top 100 activating patches, and some of these dimensions represent interpretable
concepts across stain types (Figure 2, rightmost column). 374/3072 dimensions (12.2%) were H &
E-specific while 1451/3072 dimensions (47.2%) were IHC-specific. This result shows that when
trained with diverse datasets, SAE dimensions can represent both stain-specific features and exhibit
cross-stain generalization.

Training on the diverse dataset (dataset B) reduced the fraction of dead neurons in the SAE intermedi-
ate layer. Similar to previous work for natural language Bricken et al. [2023], we identified a cluster
of "ultra-sparse" features that activated for very few images (<0.1 % of the dataset). The fraction of
these ultra-sparse features are reduced with the incorporation of more diverse training data for model
B (20%) compared to model A (88%).
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Figure 2: Feature visualization of SAE hidden dimensions reveals interpretable dictionary of pathol-
ogy features. For each SAE hidden dimension of model A and model B, 4 out of the top 16 images
that activated that dimension are visualized. Manual examination revealed interpretable features
represented by these dimensions. For model A, these include cell and tissue features specific to H
& E stain (top row: poorly differentiated carcinoma with distinct cell separation, red blood cells,
mucin); geometric features (middle row: edge of tissue, clefting between cancer and stroma, diagonal
fibers); staining and artifact features (bottom row: blur, sectioning artifact, red stain). For model
B, some SAE dimensions are specific to H & E stain (first column: collagen-enriched fibroblasts,
circular clusters of tumor cells, surgical ink), some are specific to IHC stain (second column: stained
lymphocytes, edge of tissue, blur), and others generalize across stains (third column: large cancer
cells, vertical structures, tissue folds).

3.2 Unsupervised clustering of SAE dimensions reveal distinct clusters of histological
concepts

Pathology domain presents continuous, quantifiable and clinically relevant features, such as cell type
density and area of tissue regions. We perform experiments to determine whether these features can
be captured within single SAE dimensions.

Using dataset A as a held-out set for model B, we performed unsupervised clustering on the UMAP
representations of the SAE dimensions using HDBSCAN, following the analysis strategy of Bricken
et al. [2023] (Figure 3). To understand the meanings of some of the clusters, we manually examined
image patches activating the SAE dimensions within each cluster.

Of the 139 clusters obtained using HDBSCAN, we found clusters, shown in Figure 4, containing SAE
features correlated with unique histogical concepts such as immune cell presence (Cluster 27), cancer
stroma (Cluster 33), fibroblast cells (Cluster 37) and circular cancer cells (Cluster 41) (Table 1).
Notably, cluster 0 features were associated with abnormal pigmentation, such as carbon accumulating
black anthracotic macrophages (SAE-1745) as well as artifactual pigmentations from residual brown
stain (SAE-2034) and from marker ink (SAE-2842) (Figure 4).

3.3 Biological interpretability of SAE dimensions

In order to further understand individual SAE dimensions, we calculated the Pearson’s correlation
(ρ) of the activation values with human-interpretable features (HIFs) Diao et al. [2021] quantifying
tumor microenvironment characteristics such as counts of cancer cells, plasma cells, lymphocytes,
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Figure 3: UMAP of 3072 SAE features from model B. Several clusters clearly associated with
histological concepts are highlighted.

Figure 4: Visualization of features within key clusters identified by the UMAP analysis. For each
cluster, each row represents an SAE dimension from that cluster, and shows 3 patches that maximally
activate that dimension.
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Cluster ID Cluster name Histological concepts represented in cluster
0 Abnormal pigmentation Carbon accumulating black anthracotic macrophages, artifactual

pigmentations from residual brown stain, and from marker inks.
27 Immune cells Immune cells such as lymphocytes, plasma cells and

macrophages.
33 Cancer stroma Cancer-associated stroma
37 Fibroblast cells Fibroblast cells
41 Cancer cells Circular cancer cells

Table 1: Characterization of SAE feature clusters identified by the UMAP analysis. Feature clusters
were identified by HDBSCAN and were interpreted by manual inspection.

Figure 5: SAE-1736 captures plasma cell histology. Top-10 images with the highest SAE-1736
activation values and the corresponding plasma cell counts are shown.

macrophages and fibroblasts. These cell types possess distinct morphological characteristics, that
may be captured by monosemantic SAE dimensions. To that end, we identified the following
dimensions with the highest correlation with each cell count HIF: SAE-1736 with plasma cells (ρ
= 0.7), SAE-1355 with lymphocytes (ρ = 0.63), SAE-1341 with cancer cells (ρ = 0.37), SAE-293
with macrophages (ρ = 0.31), and SAE-825 with fibroblasts (ρ = 0.21). The immune cell Cluster 27,
identified in the previous section, contained SAE-1355, SAE-1736 and SAE-293 and the cancer cell
Cluster 41 contained SAE-1341. SAE-825, although unclustered, was very close to other fibroblast
features in Cluster 37 in the UMAP embeddings space.

Notably, SAE-1736, which exhibited a strong correlation with plasma cell counts, showed minimal
correlation (ρ < 0.1) with other cell types. Images with the highest activation values for SAE-1736
consistently demonstrated a high presence of plasma cells and captured specific histological features,
such as eccentric nuclei surrounded by pale blue cytoplasm, as shown in Figure 5. The linear
relationship between SAE-1736 activation and plasma cell counts is further illustrated in Figure 6.
As the average SAE-1736 activation increases, plasma cell counts rise steeply and linearly, while the
counts of other cell types remain constant or decrease.

In contrast, a similar monosemantic feature was not found in the PLUTO embedding space. The
strongest plasma cell-associated PLUTO dimension, 148, exhibited only a moderate correlation with
plasma cell counts (ρ = 0.29) and was also correlated with the presence of other cell types, as shown
in Figure 6. This highlights the unique monosemantic nature of the SAE-1736 dimension, which
encodes plasma cell-specific characteristics that were not captured by the PLUTO embeddings.

3.4 Feature universality of SAE dimensions

We then examine the feature universality of the SAE dimensions by comparing the SAE activations
from model A to those from model B. We found that models trained on different datasets are able to
uncover SAE dimensions that capture the same histological concepts. For example, SAE-1736 from
model B and SAE-2541 from model A are highly correlated (ρ = 0.96) and both represent abundance
of plasma cells; SAE-1745 from model B and SAE-1667 from model A both represent abundance of
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Figure 6: SAE-1736 monosemantically encodes plasma cell-specific information. The left plot
shows average cell counts across bins of SAE-1736 activation values, while the right plot shows the
same across bins of PLUTO dimension 148. Average plasma cell counts (shown in yellow) increase
linearly with increasing SAE-1736 activation values, while counts of other cell types decrease or
remain constant. In contrast, counts of lymphocytes, macrophages, and plasma cells all increase
monotonically with increasing PLUTO-148 feature values.

Figure 7: A) Anthracotic macrophage SAE feature comparison between model A and B. B) Plasma
cell SAE feature comparison between model A and B. The high correlation values demonstrate
that models trained on different datasets are able to uncover SAE dimensions that capture the same
histological concepts

anthracotic macrophages (ρ = 0.91) (Figure 7). These findings demonstrate the universality of the
learned SAE features and suggests generalizability of the SAEs.

4 Conclusion

We performed a preliminary investigation of the features represented in the embedding space of
a pathology foundation model. Single embedding dimensions were found to demonstrate polyse-
manticity in terms of representing higher-order pathology-related concepts composed of atomic
characteristics of cellular and tissue properties. Training a sparse autoencoder enables the extraction
of relatively monosemantic and interpretable features corresponding to distinct biological characteris-
tics, geometric features and image acquisition artifacts. These features demonstrate generalization
across multiple stains.
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Analysis with human-interpretable features reveals correlations of SAE activations with counts of
different cell types. Clustering of SAE dimensions reveals distinct groups corresponding to related
and interpretable concepts such as anomalous pigmentation, malignant regions and inflammation.

Our work is one of the first investigations of sparse features of pathology foundation models. To
address some limitations of this study, future directions will include comparative analysis using other
interpretability techniques and baseline models, and investigating the generalizability of the results
using diverse datasets. Overall, investigation of sparse features is a promising direction and motivates
further work in discovering explainable, generalizable features of pathology foundation models.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The experiments in the main body of the paper support the claims in the
abstract and the introduction.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed limitations in the Conclusion section and future directions to
address the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We do not have any novel theoretical result.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss the dataset composition and SAE training hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While we cannot share the code, we cite the open-source SparseAutoencoder
library we use in the main text.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are shared in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: While we do not report error bars, results are presented as descriptive statistics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have discussed training time and compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This is a preliminary investigation, we leave a thorough assessment of societal
impact to future work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Asset creators are credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing is used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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