
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYGNEX: EFFICIENT DISTRIBUTED TRAINING OF
DYNAMIC GRAPH NEURAL NETWORKS WITH CROSS-
TIME-WINDOW SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Dynamic Graph Neural Networks (DGNNs) are advanced methods for processing
evolving graph data, capturing both structural and temporal dependencies effi-
ciently. However, existing distributed DGNN training methods face challenges in
achieving load balance across GPUs and minimizing communication overhead,
which limits their efficiency. In this paper, we introduce DYGNEX, a distributed
training system designed to address this issue. DYGNEX utilizes a cross-time-
window snapshot group scheduling algorithm that balances computational loads
across GPUs without introducing additional cross-GPU feature aggregation or
hidden state communication. Based on the specific scenario, the scheduling al-
gorithm is applied using greedy or Integer Linear Programming (ILP) methods,
referred to as DYGNEX-G and DYGNEX-L, respectively. DYGNEX-L and
DYGNEX-G achieve average reductions of 28% and 24% in per-epoch train-
ing time compared to state-of-the-art methods, maintaining load imbalance across
GPUs at approximately 4% and 8%, while preserving model convergence across
various DGNN models and datasets. In simulation experiments, as the number of
GPUs increases, DYGNEX-G shows good scalability, efficiently handling clus-
ters with up to 512 GPUs while maintaining 95% efficiency.

1 INTRODUCTION

Dynamic graphs are graphs whose structures and attributes change over time. Dynamic Graph Neu-
ral Networks (DGNNs) have emerged as state-of-the-art methods for processing dynamic graphs,
exhibiting strong ability to capture both structural and temporal dependencies (Zhu et al., 2016;
Zhou et al., 2018; Wu et al., 2018; Trivedi et al., 2019; Pareja et al., 2020; Manessi et al., 2020;
Chen et al., 2020; Xu et al., 2020; Goyal et al., 2020; Sankar et al., 2020; Wang et al., 2021a;b;
Bai et al., 2022; You et al., 2022; Wang et al., 2022; Tian et al., 2023; Li et al., 2024; Zhang et al.,
2024). Depending on the event model, dynamic graphs are categorized into Discrete Time Dynamic
Graphs (DTDGs) and Continuous Time Dynamic Graphs (CTDGs). DGNNs are categorized simi-
larly according to the dynamic graphs they process. In this work, we focus on DGNNs designed for
DTDGs, which process temporal dynamics in discrete snapshots.

Significant efforts have been made to improve the efficiency of DGNN training. Some works fo-
cus on efficient training on a single GPU (Li & Chen, 2021; Guan et al., 2022; Qin et al., 2023;
Wang et al., 2023; Gao et al., 2024a;b; Su et al., 2024), addressing various factors such as memory
footprint and data access overhead. Others consider distributed training on multiple GPUs (Chakar-
avarthy et al., 2021; Fu et al., 2023; Chen et al., 2023). ESDG (Chakaravarthy et al., 2021) dis-
tributes temporally adjacent snapshots across different GPUs and requires hidden state transfers
between GPUs for temporal processing, which incurs a significant overhead when the hidden states
are large. BLAD (Fu et al., 2023) avoids such overhead by processing each group of temporally
adjacent snapshots on the same GPU while assigning different groups across GPUs. As we will
show later in Figure 1, both ESDG and BLAD experience load imbalance across different GPUs,
which results in inefficient resource utilization and hinders training efficiency. While DGC (Chen
et al., 2023) attempts to balance the load, it relies on graph partitioning, which introduces additional
communication overhead. Therefore, it requires further research to achieve load balance across
GPUs while minimizing inter-GPU communication in distributed training of DGNNs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address this problem, we develop a distributed DGNN training system called DYGNEX, which
uses a novel cross-time-window snapshot group scheduling algorithm for load balancing. DYGNEX
takes advantage of the fact that snapshot groups from different time windows are treated as inde-
pendent samples in DGNN training. This allows for the flexibility of combining and scheduling
them in any order. We formulate an optimal scheduling problem to minimize the per-epoch training
time. Depending on the scenario, DYGNEX solves the problem using Integer Linear Programming
(ILP) or a greedy algorithm, and the resulting scheduling algorithms are denoted by DYGNEX-L
and DYGNEX-G, respectively. Through real-world experiments and simulations, we demonstrate
that DYGNEX-L and DYGNEX-G achieve average reductions of 28% and 24% in per-epoch train-
ing time compared to state-of-the-art methods. DYGNEX-L and DYGNEX-G reduce the average
load imbalance ratio by 22% and 18% compared to the partition-by-snapshot-group (PSG) method.
In simulation experiments, as the number of GPUs increases, DYGNEX-G shows good scalability,
efficiently handling clusters with up to 512 GPUs while maintaining 95% efficiency.

2 PRELIMINARIES

Dynamic Graph Neural Networks. Dynamic Graph Neural Networks (DGNNs) are composed of
multiple blocks that integrate both structural and temporal encoding mechanisms. Each block typi-
cally includes a structure encoder, which aggregates information from a node’s immediate neighbors
to capture its structural context, and a time encoder, which accumulates information over time to re-
flect temporal changes in the graph. The specific implementations of these encoders vary across
different DGNN models. For example, EvolveGCN (Pareja et al., 2020) dynamically adjusts its
graph convolutional network (GCN) parameters over time to accommodate the evolving nature
of the graph. WD-GCN (Manessi et al., 2020) combines a GCN with a long short-term memory
(LSTM) network to capture both spatial and temporal features in dynamic graphs. TGCN (Chen
et al., 2020) integrates a GCN with a gated recurrent unit (GRU) to effectively capture spatial and
temporal dynamics in dynamic graphs. GAT-LSTM (Wu et al., 2018) leverages a Graph Attention
Network (GAT) for capturing structural information while using an LSTM to model temporal depen-
dencies. Each of these models showcases unique approaches to integrating structural and temporal
information, thereby enhancing the model’s ability to learn from dynamic graph data. These four
models are representative typical GNN and RNN models in DGNNs. Many subsequent models can
be considered variants of these, including structural-specific models like TTGCN (Li et al., 2024)
and DRAIN (Bai et al., 2022), temporal-specific models like SGNN-GR (Wang et al., 2022) and
ROLAND (You et al., 2022), and comprehensive models such as Dyngraph2vec (Goyal et al., 2020)
and DySAT (Sankar et al., 2020).

Workflow of distributed training for DGNNs. Training a DGNN on multiple GPUs requires care-
ful management of graph data across devices. In distributed settings, the dynamic graph dataset
G = (G1, G2, . . . , GT) is typically partitioned across GPUs, introducing additional inter-GPU
communication tasks required for accurate feature aggregation and temporal modeling. At each
time step t, for each node v in graph Gt, the aggregation function Aggregatev combines the node’s
feature Xt(v) with those of its neighbors {Xt(u)|u ∈ N(v)}, producing a structural representation
as shown in Equation 1.

Ht(v) = Aggregatev(Wgnn, {Xt(u)|u ∈ N(v)}, Xt(v)) (1)

When a neighboring node u is located on a different GPU, inter-GPU communication becomes nec-
essary to retrieve the neighbor’s feature, introducing additional neighbor feature communication.
This communication overhead can be significant, especially for large or densely connected graphs.
On a global scale, the graph embedding Ht at time t aggregates information from both the node
feature matrix Xt and the graph structure Gt, as defined in Equation 2, with t = i, . . . , i + w for
each time window.

Ht = Aggregate(Wgnn, Xt, Gt), t = i, . . . , i+ w (2)
This graph embedding is subsequently passed to a temporal model, such as an RNN, to capture time-
dependent dynamics. As shown in Equation 3, the temporal update function combines the current
graph embedding Ht with the hidden state ht−1 from the previous time step. When ht−1 resides on
a different GPU, additional hidden state communication is required to transfer ht−1 across devices
to maintain temporal dependency.

ht = TemporalUpdate(Wrnn, Ht, ht−1), t = i, . . . , i+ w (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Aligraph ESDG DGC BLAD DYGNEX
(Zhu et al., 2019) (Chakaravarthy et al., 2021) (Chen et al., 2023) (Fu et al., 2023)

No Neighbor Feature Comm ✗ ✓ ✗ ✓ ✓
No Hidden State Comm ✓ ✗ ✗ ✓ ✓
Load Balance ✗ ✗ ✓ ✗ ✓

Table 1: Comparison of existing distributed DGNN training methods across three key dimensions:
neighbor feature communication, hidden state communication and load balance. Aligraph (Zhu
et al., 2019) and DGC (Chen et al., 2023) use vertex-based partitioning, ESDG (Chakaravarthy et al.,
2021) applies snapshot-based partitioning, and BLAD (Fu et al., 2023) employs snapshot group-
based partitioning. DYGNEX achieve load balance without introducing communication overhead
for large dynamic graphs.

Efficient training in this setting requires minimizing communication overhead and maintaining load
balance across GPUs, as imbalances can result in performance bottlenecks. A detailed explanation
of this workflow is provided in Appendix A, with Figure 6 illustrating the process.

Dataset Partition Strategy. In distributed training of dynamic graphs, the mainstream dataset par-
titioning methods include vertex-based partitioning, represented by Aligraph (Zhu et al., 2019), and
snapshot-based partitioning, represented by ESDG (Chakaravarthy et al., 2021). The latest work,
BLAD (Fu et al., 2023), proposes a snapshot group-based partitioning method, which effectively
reduces the overall communication volume. Specifically, in one iteration, each GPU trains a com-
plete snapshot group. Since each snapshot contains all the node information, it avoids neighbor
feature communication. Additionally, because each snapshot group includes all prior information of
the target snapshot, it eliminates hidden state communication. A detailed workflow of three dataset
partition strategies is provided in Appendix B, with Figure 7, 8, and 9 illustrating the differences
among them.

Dilemma in Distributed Training of DGNNs. Achieving efficient distributed training of DGNNs
requires a data partitioning strategy that ensures load balancing across all nodes while minimizing
inter-node communication. Existing approaches exhibit a range of strengths and weaknesses, as
shown in Table 1, none of them effectively balance inter-node communication with load distribu-
tion. In different partitioning strategies, vertex-based partitioning can fine-tune the load distribution
at the node level, but it typically introduces significant communication overhead. Snapshot-based
and snapshot group-based partitioning use snapshots and snapshot groups as scheduling units, re-
spectively, but both face load imbalance due to differences between snapshots. Therefore, we focus
on the load imbalance issues in ESDG and BLAD. We measured task allocation across 4 GPUs dur-
ing training with ESDG and BLAD on four popular datasets, using the number of nodes and edges
as workload indicators. As shown in Figure 1, where the nodes and edges processed by GPU0 are
used as the baseline for comparison, ESDG exhibited differences of up to 19% in node distribution
and 26% in edge distribution, while BLAD showed up to 16% difference. The uneven task distribu-
tion caused GPU idling, prolonging training time and reducing efficiency, highlighting the need for
better load balancing.

3 SYSTEM OVERVIEW

In this section, we provide an overview of the DYGNEX design by outlining our primary design
objectives. Our goal is to achieve load balancing while minimizing communication overhead.

Figure 2 illustrates the comprehensive design and execution process of the DYGNEX system, which
adopts a snapshot group-based dataset partitioning approach. DYGNEX first assigns each task to
GPUs for training time measurement. Then, DYGNEX profiler collects and analyzes the timing
data for each task, providing a fine-grained view of system performance over time. To minimize the
impact of random variations in single-sample measurements, DYGNEX sampler measure the train-
ing time for each task multiple times, ensuring a more accurate and reliable performance profile.
Building on the training time data of each task, we then implement a task grouping strategy using
a cross-time-window group combination algorithm. This algorithm combines tasks across different
time windows, achieving effective load balancing across nodes, which is critical for improving sys-
tem efficiency and scalability. In the final phase, DYGNEX deploys the newly combined tasks to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

GPU0 GPU1 GPU2 GPU30.8

0.9

1.0

1.1

1.2

1.3 Arxiv
Nodes
Edges

GPU0 GPU1 GPU2 GPU30.8

0.9

1.0

1.1

1.2

1.3 Products
Nodes
Edges

GPU0 GPU1 GPU2 GPU30.8

0.9

1.0

1.1

1.2

1.3 Reddit
Nodes
Edges

GPU0 GPU1 GPU2 GPU30.8

0.9

1.0

1.1

1.2

1.3 Stackoverflow
Nodes
Edges

(a) ESDG

GPU0 GPU1 GPU2 GPU30.7

0.8

0.9

1.0

1.1

1.2 Arxiv
Nodes
Edges

GPU0 GPU1 GPU2 GPU30.7

0.8

0.9

1.0

1.1

1.2 Products
Nodes
Edges

GPU0 GPU1 GPU2 GPU30.7

0.8

0.9

1.0

1.1

1.2 Reddit
Nodes
Edges

GPU0 GPU1 GPU2 GPU30.7

0.8

0.9

1.0

1.1

1.2 Stackoverflow
Nodes
Edges

(b) BLAD

Figure 1: Load imbalance among GPUs across different datasets.

Local data flow

Communication flow
…

…

G
radient AllR

educe

CPU

Profiler

Sampler

Scheduler

Combination Simulator

Profiling data
Group strategy

Profiling data

Group strategy

GPU 1
Profiling Training

SG q

1

2

3

4
SG 2

1
2

3

4
SG n

1

2

3

4

GPU k
Profiling Training

SG 1

1
2

3

4
SG n-1

1

2

3

4
SG p

1

2

3

42

2

3

4

5

5
1

1 6

6

Figure 2: System Overview.

each node for training, executing the combined snapshot groups sequentially. This approach bal-
ances the training processes, maximizes node utilization, and leads to overall system performance
improvements and faster convergence times.

4 METHOD

In this section, we introduce the two implementations of our cross-time-window task grouping al-
gorithm: DYGNEX-L, which uses Integer Linear Programming (ILP), and DYGNEX-G, which
adopts a greedy approach to reduce computational complexity. Both implementations are designed
to optimize the objectives of DYGNEX by addressing the key challenges of load balancing and
inter-GPU communication, ultimately improving the efficiency of distributed DGNN training. The
commonly used notation in this section is summarized in Table 2.

Table 2: Frequently Used Notations

T Total training time for one epoch ai Iteration assigned to snapshot group i
Ti Time for the i-th iteration α Time for gradient allreduce across GPUs
m Number of iterations per epoch Wi Waste time for the i-th iteration
G Number of GPUs gi GPU assigned to snapshot group i
n Number of snapshot groups ti Execution time of snapshot group i

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 OPTIMIZATION OBJECTIVES

The primary optimization goal of DYGNEX is to minimize the total training time for one epoch, de-
noted as T . This is particularly important in distributed environments where inefficient task schedul-
ing and uneven load distribution can result in substantial delays. The objective is mathematically
formulated as:

minimize T =

m∑
i=0

Ti, (4)

where m represents the number of iterations per epoch, and Ti denotes the time for the i-th iteration.
The duration Ti of each iteration is given by:

Ti = max
1≤j≤G

(
n∑

k=1

Iak=i · Igk=j · tk

)
+ α, (5)

where G is the number of GPUs, n is the number of snapshot groups, gk is the GPU assigned to
snapshot group k, and tk is its execution time of snapshot group k. ak represents the iteration
assigned to snapshot group k, and α is the time for gradient allreduce, which synchronizes gradient
updates across GPUs. The indicator function Icondition is 1 if the condition is true, and 0 otherwise.
This formulation ensures that the total execution time accounts for both task scheduling and inter-
GPU communication.

Since different snapshot groups can be executed independently, determining the optimal task
scheduling strategy Strategy = [(a1, g1), (a2, g2), . . . , (an, gn)] that minimizes T is an NP-hard
problem. This is because it generalizes the classical makespan minimization problem on parallel
machines, which is a well-known NP-hard problem. For a single iteration (m = 1) and without gra-
dient allreduce (α = 0), the problem reduces to assigning tasks to GPUs to minimize the maximum
completion time, which is NP-hard for two or more machines. To ensure system convergence while
making the solution more tractable, we impose a constraint that limits each GPU to handle at most
two tasks per iteration. Then, we propose DYGNEX-L, an ILP-based approach, and DYGNEX-G,
a greedy algorithm, to efficiently address this scheduling problem.

4.2 DYGNEX-L

To globally optimize the total training time T , we first propose an ILP model, DYGNEX-L. The
binary decision variable xk,i,j indicates whether snapshot group k is assigned to iteration i on GPU
j. The objective function is to minimize the total iteration time Ti, calculated as:

Ti = max
1≤j≤G

(
n∑

k=1

xk,i,j · tk

)
+ α, (6)

The key constraints in DYGNEX-L are expressed mathematically as follows. The assignment con-
straint ensures that each snapshot group is assigned to exactly one GPU in one iteration:

m∑
i=1

G∑
j=1

xk,i,j = 1, ∀k ∈ {1, 2, . . . , n}. (7)

The GPU capacity constraint ensures that no GPU can process more than L snapshot groups in any
iteration:

n∑
k=1

xk,i,j ≤ L, ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , G}. (8)

To solve this ILP problem (Equation 6), we use standard linearization techniques and off-the-shelf
solvers like Gurobi (Gurobi Optimization, LLC, 2022). However, as the problem is still NP-hard,
we implement a strategy that outputs the solution once it is within a specified distance (e.g., 2%)
from the optimal. For further details, see Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 DYGNEX-G

To mitigate the computational complexity of solving the global optimization problem, we also pro-
pose DYGNEX-G, a greedy algorithm. Greedy approaches are heuristics that can efficiently solve
NP-hard problems, though they often produce suboptimal solutions. DYGNEX-G attempts to re-
duce resource waste and balance GPU workloads by iteratively optimizing the execution sequence
of snapshot groups.

The algorithm follows three main steps: (1) Generate candidate target training times Ttarget by
combining the longest remaining execution time with other remaining times. (2) For each Ttarget,
select G− 1 tasks that minimize the deviation from Ttarget using a two-pointer search strategy. (3)
Compute the waste time Wi for each Ttarget, selecting the one that minimizes Wi. Algorithm 1
provides an overview of the DYGNEX-G process.

Algorithm 1: DYGNEX-G Overview
Input: G, res = n, snapshot groups = [t1, t2, . . . , tn], iteration = 1
Output: Strategy
Add zero group to snapshot groups and sort it.
while res > G do

Create target list from the longest remaining time and other remaining times;
for Ttarget in target list do

Find G− 1 pairs closest to Ttarget;
Compute Witeration;
Update Wmin if necessary;

Update res, snapshot groups, iteration, and record the best combination in Strategy;
Record remaining group in Strategy;
return Strategy;

Group preprocessing. Initially, the algorithm preprocesses the task list, adding a zero group (with
execution time t0 = 0) to the list to preserve flexibility in task combinations. All groups are then
sorted by execution time ti to allow for efficient pairing and combination in later steps.

Target training time selection. Rather than directly determining the optimal Ttarget, the algo-
rithm considers a range of candidate target times, starting with the group with the longest remaining
time and all possible pairwise combinations. This ensures a comprehensive search without being
computationally prohibitive.

Group selection and waste time calculation. For each candidate Ttarget, a two-pointer search
identifies group combinations that best match Ttarget, minimizing the need for exhaustive searches.
The waste time Wi, defined as:

Wi = (Ti − α) ·G−
G∑

j=1

n∑
k=1

Iak=i · Igk=j · tk, (9)

is used to evaluate the quality of each scheduling strategy. The algorithm selects the Ttarget that
results in the lowest Wi, ensuring efficient task scheduling.

Complexity analysis. The overall time complexity of DYGNEX-G is O(n3), making it computa-
tionally feasible for large-scale scenarios. For more details about DYGNEX-G, see Appendix D.

5 EVALUATION

In this section, we first introduce our experimental testbed, along with the models, datasets, and
baselines employed in our evaluations. We then evaluate the performance of DYGNEX by examin-
ing its improvements in training throughput and ensuring that it does not degrade training accuracy,
as well as the results from the simulation and end-to-end time analysis.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Attributes of the Four Datasets. The symbols |V | and |E| denote the total number of nodes
and edges. |V | and |E| represent the average number of nodes and edges per snapshot. The term dv
represents the dimension of the node features. The parameters β and γ indicate the average degree
and the number of snapshots, respectively.

Dataset |V | |E| |V | |E| dv β γ

Arxiv (Hu et al., 2020) 169,343 2,409,625 169,340 1,317,917 128 7.8 30
Products (Hu et al., 2020) 286,010 16,567,128 167,570 7,268,265 100 43.4 30
Reddit (Reddit, n.d.) 80,125 47,804,919 62,590 22,183,258 602 354.4 30
Stackoverflow (Stack-Overflow, 2023) 2,601,977 63,497,050 160,877 1,269,941 50 7.9 50

5.1 METHODOLOGY

Testbed. We conduct our experiments using four A100 80GB SXM4 GPUs, connected via PCIe
with a peak bandwidth of 32GB. The experiments are carried out within the DGL NGC Container
(version 24.07-py3), which includes DGL v2.4 (Wang, 2019) for scalable graph processing, PyTorch
v2.4.0 (Paszke et al., 2019) as the deep learning framework, and CUDA 12.5 for GPU acceleration,
providing an optimized environment for our distributed graph training tasks.

Datasets. We use four dynamic graph datasets to evaluate the performance of DYGNEX. The
Stackoverflow (Stack-Overflow, 2023) dataset is a real-life temporal network of interactions on the
Stack Exchange website Stack Overflow. Additionally, we use three large-scale static graph datasets:
Arxiv, Products (Hu et al., 2020), and Reddit (Reddit, n.d.). To simulate dynamics in these static
datasets, we follow Fu et al. (2023) to create snapshots by randomly deleting some of the edges
from the static graph. The time window size for all datasets is set to 4. The evolution pattern of the
number of nodes or edges in these snapshots mirrors the trend observed in the Stackoverflow dataset,
with specific details on the changes in nodes and edges provided in Figure 10 of the Appendix E.

Benchmark DGNN models. Four representative DGNNs are employed: EvolveGCN (Pareja
et al., 2020), WD-GCN (Manessi et al., 2020), TGCN (Chen et al., 2020), and GAT-LSTM (Wu
et al., 2018), as they are typical GNN and RNN models in DGNNs. The first three models are GCN-
based DGNNs, while GAT-LSTM is a GAT-based model. These models are widely used due to
their effectiveness in dynamic graph learning. Each DGNN model features a two-layer architecture,
comprising a feature update operation and a graph aggregation operation. In EvolveGCN, the RNN
updates the GNN parameters across snapshots, whereas in the other models, the RNN processes
intermediate node features within the snapshots.

Baselines. We compare DYGNEX-G and DYGNEX-L with ESDG (Chakaravarthy et al., 2021),
partition-by-snapshot-group (PSG) method and BLAD (Fu et al., 2023). ESDG is a widely used
baseline for distributed DGNN training, while BLAD represents the current state-of-the-art (SOTA)
approach. In ESDG, snapshots within a snapshot group are evenly distributed across GPUs based
on their temporal intervals, as illustrated in Figure 8. In PSG, each GPU training a single snap-
shot group, as illustrated in Figure 9. BLAD utilizes a two-stage pipeline to collaboratively train
two consecutive snapshot groups. In contrast, DyGNeX-G and DyGNeX-L execute two scheduled
groups sequentially.

5.2 EXPERIMENTAL RESULTS

Overall Performance. We first compared the epoch training time, defined as the time required to
train one epoch. The experimental results in Table 4 show that DYGNEX-L significantly reduces
the epoch training time compared to other methods. Specifically, DYGNEX-L reduces the epoch
training time by 49.5% to 91.1% over ESDG, 7.9% to 61.6% over BLAD, 3.9% to 29.7% over
PSG, and 1.9% to 13.6% over DYGNEX-G. DYGNEX-L optimizes load balancing across GPUs
from a global view without introducing additional communication overhead, resulting in the high-
est throughput performance. ESDG, on the other hand, suffers from reduced throughput due to the
frequent transfer of hidden states between GPUs. While this impact is minimal for EvolveGCN,
which has relatively small hidden states, the performance drops significantly for WD-GCN, TGCN,
and GAT-LSTM, where the hidden states are larger. BLAD suffers in large dynamic graph sce-
narios primarily due to its lack of fine-grained load balancing across GPUs, which significantly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Epoch Training Time (Seconds) for Different Methods Across Various Models and Datasets

Arxiv Products

EvolveGCN WD-GCN TGCN GAT-LSTM EvolveGCN WD-GCN TGCN GAT-LSTM

ESDG 1.03 12.44 9.70 13.57 2.41 23.23 19.18 24.04
BLAD 1.10 1.13 1.31 N/A 2.71 3.20 3.28 N/A
PSG 0.62 1.19 1.08 1.35 1.48 3.98 3.95 4.66

DYGNEX-G 0.55 1.12 1.06 1.26 1.09 3.04 3.31 3.95
DYGNEX-L 0.52 1.04 1.02 1.21 1.04 2.92 3.17 3.85

Reddit Stackoverflow

EvolveGCN WD-GCN TGCN GAT-LSTM EvolveGCN WD-GCN TGCN GAT-LSTM

ESDG 8.41 24.92 26.11 29.56 1.71 28.96 23.84 29.27
BLAD 7.81 6.59 6.01 N/A 1.99 4.03 3.83 N/A
PSG 3.88 7.02 7.22 7.33 0.55 4.02 3.91 4.51

DYGNEX-G 3.10 6.01 5.34 6.10 0.53 3.94 3.79 4.19
DYGNEX-L 2.78 5.58 5.33 5.27 0.52 3.86 3.44 3.77

impacts its overall performance. Moreover, in cases where a single snapshot group can fully utilize
the computational resources, BLAD’s strategy of processing multiple snapshot groups in parallel
fails to achieve speedup, with performance even falling behind PSG. It is also worth noting that
BLAD’s current implementation is specifically optimized for models like EvolveGCN, WD-GCN,
and TGCN. This requires a customized design for each DGNN model to fit within BLAD’s training
framework, making it unable to achieve out-of-the-box high performance for other models such as
GAT-LSTM. As a result, the throughput for GAT-LSTM is not meaningful for comparison.

Test Accuracy. In DYGNEX-L and DYGNEX-G, the number of snapshot groups trained in a
single iteration is up to twice that of PSG, which is equivalent to increasing the training batch size.
To ensure that this does not lead to any accuracy degradation, we compared the test accuracy and loss
over 100 epochs between DYGNEX-L, DYGNEX-G, and the PSG method on the Arxiv, Products,
and Reddit datasets. The StackOverflow dataset, lacking labels, is not included in the accuracy
comparison. As shown in Figure 3, the test accuracy differences among DYGNEX-L, DYGNEX-
G, and PSG are within 3%, demonstrating that DYGNEX-L and DYGNEX-G have minimal impact
on model accuracy. While slight differences may appear in the early stages of training, the accuracy
of both methods converges over time, ultimately yielding very similar results. We also present the
training loss and training accuracy in Appendix F.

Imbalance ratio. To validate DYGNEX’s improvement in imbalance ratio, we measured the im-
balance ratio performance of both DYGNEX-L and DYGNEX-G compared to the baselines.We
define the imbalance ratio as the training time of the most heavily loaded GPU divided by that of
the least loaded GPU. To more accurately reflect the impact of load imbalance, the training time
measured excludes the synchronization waiting time for each GPU, such as the time spent waiting
for the hidden state to be passed from the previous GPU in ESDG. Figure 4 presents the imbalance
ratio results, revealing that ESDG, BLAD, and PSG suffer from noticeable load imbalances, with
average ratios of 1.20, 1.44, and 1.26, respectively. In contrast, both DYGNEX-G and DYGNEX-L
achieved much lower imbalance ratios, averaging 1.08 and 1.04, respectively, highlighting the effec-
tiveness of our scheduling strategy in distributing the workload more evenly and improving overall
system performance.

5.3 PROFILING AND ALGORITHM SOLVING COST

The system workflow consists of three stages: profiling, algorithm solving, and training. In the
profiling stage, 2-5 epochs are typically run to filter out outliers, balancing accuracy and over-
head. Experiments, shown in Figure 13 in the Appendix G, demonstrate that using one profiling
epochs can result in unstable data and suboptimal combinations, while profiling more than one
epoch leads to more consistent throughput. The algorithm solving stage is fast, taking less than
10ms for DYGNEX-G when the number of snapshots is in the tens. DYGNEX-L can also obtain
a solution within a few seconds, with a gap of less than 2% from the optimal solution. We present
the solving times of DYGNEX-G and DYGNEX-L under different numbers of snapshots and gap
constraints in Table 5 and Table 6. Based on extensive experimental experience, we use DYGNEX-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ar
xi

v

EvolveGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7
WD-GCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7
TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7
GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.5

0.6

0.7

0.8

0.9

Re
dd

it

EvolveGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
WD-GCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9
TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

Pr
od

uc
ts

EvolveGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8
WD-GCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

Figure 3: Test accuracy.

EvolveGCN WD-GCN TGCN GAT-LSTM0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Im
ba

la
nc

e
Ra

tio

ESDG
BLAD
PSG
DyGNeX-G
DyGNeX-L

(a) Arxiv

EvolveGCN WD-GCN TGCN GAT-LSTM0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Im
ba

la
nc

e
Ra

tio

ESDG
BLAD
PSG
DyGNeX-G
DyGNeX-L

(b) Products

EvolveGCN WD-GCN TGCN GAT-LSTM0.8

1.0

1.2

1.4

1.6

1.8

Im
ba

la
nc

e
Ra

tio

ESDG
BLAD
PSG
DyGNeX-G
DyGNeX-L

(c) Reddit

EvolveGCN WD-GCN TGCN GAT-LSTM0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Im
ba

la
nc

e
Ra

tio

ESDG
BLAD
PSG
DyGNeX-G
DyGNeX-L

(d) Stackoverflow

Figure 4: Imbalance ratio.

L for solving when the number of snapshots is less than 100, and DYGNEX-G when the number of
snapshots exceeds 100. Finally, the training stage requires over 100 epochs for convergence, making
the overhead from profiling and algorithm solving less than 3% of the total time.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.4 SCALABILITY

Due to hardware limitations, we extend the evaluation to larger clusters through simulation. In this
simulation, we model the dynamic graph’s evolution by generating 10,000 snapshots using Dyna-
Graph(Guan et al., 2022), and use a linear regression model to predict the execution time for each
snapshot. The justification for the linear regression model is provided in the Appendix H. In this sce-
nario, solving with DYGNEX-L is time-consuming, so we opt to use DYGNEX-G, which provides
a faster solution, typically solving within seconds while still maintaining good performance. These
predicted times are subsequently fed into DYGNEX-G for time simulation. Figure 5a shows the
per-node throughput, normalized by the single-node throughput. The PSG method shows a steady
drop in throughput as the number of GPUs increases, with performance degrading sharply beyond
128 GPUs. In contrast, our method scales effectively, retaining 95% efficiency at 512 GPUs and
maintaining over 85% efficiency with 1024 GPUs. As shown in Figure 5b, the throughput decline
is caused by the rising imbalance ratio as the number of GPUs increases. DYGNEX-G consistently
maintains a lower imbalance ratio than the PSG method, which slows the performance drop.

4 8 16 32 64 128 256 512 1024
Number of GPUs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Pe

r N
od

e
Th

ro
ug

hp
ut

PSG
DyGNeX-G

(a) Throughput

4 8 16 32 64 128 256 512 1024
Number of GPUs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Im
ba

la
nc

e
Ra

tio

PSG
DyGNeX-G

(b) Imbalance Ratio

Figure 5: Simulated per-node training throughput and imbalance ratio on clusters with 4 to 1024
nodes. Results are normalized to the throughput of training with a single node.

6 LIMITATIONS

Large Snapshot Group. In DYGNEX, each snapshot group must fit on a single GPU for training.
While current GPU memory (e.g., 80GB, 40GB) suffices for most datasets, larger datasets may
exceed this limit, making DYGNEX infeasible. A potential solution is to partition the graph and
use full-neighbor sampling on target nodes, enabling training until all nodes are processed. The
trade-offs between the overhead of partitioning and sampling and the advantages of DYGNEX over
vertex-based methods (eg., DGC(Chen et al., 2023)) merit further exploration.

Limited Number of Snapshot Groups. The benefits of DYGNEX depend on the flexible combi-
nation of snapshot groups for load balancing. With very few groups, the limited combination space
reduces potential gains.

7 CONCLUSION

In this paper, we introduced DYGNEX, an efficient distributed training system for DGNNs.
DYGNEX addresses the challenges of load balancing and communication overhead in large-scale
dynamic graph training. By utilizing a novel cross-time-window snapshot group scheduling algo-
rithm, DYGNEX balances computational loads across GPUs without incurring additional cross-
GPU communication. We implemented two variants of the system: DYGNEX-L, which uses ILP
to globally optimize training efficiency, and DYGNEX-G, a greedy approach. In extensive real-
world and simulated experiments, DYGNEX-L and DYGNEX-G outperform ESDG and BLAD in
per-epoch training time. Both DYGNEX-L and DYGNEX-G preserve model convergence, main-
taining training accuracy while improving throughput and reducing load imbalance across GPUs.
DYGNEX-G further demonstrates superior scalability, efficiently handling large numbers of GPUs
with minimal performance degradation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Guangji Bai, Chen Ling, and Liang Zhao. Temporal domain generalization with drift-aware dynamic
neural networks. arXiv preprint arXiv:2205.10664, 2022.

Venkatesan T. Chakaravarthy, Shivmaran S. Pandian, Saurabh Raje, Yogish Sabharwal, Toyotaro
Suzumura, and Shashanka Ubaru. Efficient scaling of dynamic graph neural networks. SC ’21,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421. doi:
10.1145/3458817.3480858. URL https://doi.org/10.1145/3458817.3480858.

Bo Chen, Wei Guo, Ruiming Tang, Xin Xin, Yue Ding, Xiuqiang He, and Dong Wang. Tgcn: Tag
graph convolutional network for tag-aware recommendation. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 155–164, 2020.

Fahao Chen, Peng Li, and Celimuge Wu. Dgc: Training dynamic graphs with spatio-temporal non-
uniformity using graph partitioning by chunks. Proc. ACM Manag. Data, 1(4), dec 2023. doi:
10.1145/3626724. URL https://doi.org/10.1145/3626724.

Kaihua Fu, Quan Chen, Yuzhuo Yang, Jiuchen Shi, Chao Li, and Minyi Guo. Blad: Adaptive
load balanced scheduling and operator overlap pipeline for accelerating the dynamic gnn train-
ing. In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’23, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400701092. doi: 10.1145/3581784.3607040. URL https:
//doi.org/10.1145/3581784.3607040.

Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. Etc: Efficient training of
temporal graph neural networks over large-scale dynamic graphs. Proceedings of the VLDB En-
dowment, 17(5):1060–1072, 2024a.

Shihong Gao, Yiming Li, Xin Zhang, Yanyan Shen, Yingxia Shao, and Lei Chen. Simple: Efficient
temporal graph neural network training at scale with dynamic data placement. Proceedings of the
ACM on Management of Data, 2(3):1–25, 2024b.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems, 187:104816,
2020.

Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. Dynagraph: dynamic graph neural net-
works at scale. In Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), pp.
1–10, 2022.

Gurobi Optimization, LLC. Gurobi - the fastest solver, 2022. URL https://www.gurobi.
com. Accessed: 2022-01-01.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Haoyang Li and Lei Chen. Cache-based gnn system for dynamic graphs. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pp. 937–946, 2021.

Hongxi Li, Zuxuan Zhang, Dengzhe Liang, and Yuncheng Jiang. K-truss based temporal graph
convolutional network for dynamic graphs. In Asian Conference on Machine Learning, pp. 739–
754. PMLR, 2024.

Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks.
Pattern Recognition, 97:107000, 2020.

Andrew McCrabb, Hellina Nigatu, Absalat Getachew, and Valeria Bertacco. Dygraph: a dy-
namic graph generator and benchmark suite. In Proceedings of the 5th ACM SIGMOD Joint
International Workshop on Graph Data Management Experiences & Systems (GRADES) and
Network Data Analytics (NDA), GRADES-NDA ’22, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450393843. doi: 10.1145/3534540.3534692. URL
https://doi.org/10.1145/3534540.3534692.

11

https://doi.org/10.1145/3458817.3480858
https://doi.org/10.1145/3626724
https://doi.org/10.1145/3581784.3607040
https://doi.org/10.1145/3581784.3607040
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/3534540.3534692

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5363–5370, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Xiao Qin, Nasrullah Sheikh, Chuan Lei, Berthold Reinwald, and Giacomo Domeniconi. Seign: A
simple and efficient graph neural network for large dynamic graphs. In 2023 IEEE 39th Interna-
tional Conference on Data Engineering (ICDE), pp. 2850–2863. IEEE, 2023.

Reddit. Reddit dataset. https://www.reddit.com/, n.d.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519–527, 2020.

Stack-Overflow. Stack-overflow dataset. https://snap.stanford.edu/data/
sx-stackoverflow.html, 2023. Accessed: [Insert the date you accessed the dataset].

Junwei Su, Difan Zou, and Chuan Wu. Pres: Toward scalable memory-based dynamic graph neural
networks. arXiv preprint arXiv:2402.04284, 2024.

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
model for link prediction. In The Twelfth International Conference on Learning Representations,
2023.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
resentations over dynamic graphs. In International conference on learning representations, 2019.

Chunyang Wang, Desen Sun, and Yuebin Bai. Pipad: pipelined and parallel dynamic gnn training on
gpus. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, pp. 405–418, 2023.

Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. Streaming graph neural networks with
generative replay. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1878–1888, 2022.

Minjie Yu Wang. Deep graph library: Towards efficient and scalable deep learning on graphs. In
ICLR workshop on representation learning on graphs and manifolds, 2019.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping
Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for
real-time temporal graph embedding. In Proceedings of the 2021 international conference on
management of data, pp. 2628–2638, 2021a.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In International Conference on
Learning Representations (ICLR), 2021b.

Tianlong Wu, Feng Chen, and Yun Wan. Graph attention lstm network: A new model for traffic flow
forecasting. In 2018 5th international conference on information science and control engineering
(ICISCE), pp. 241–245. IEEE, 2018.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining,
pp. 2358–2366, 2022.

12

https://www.reddit.com/
https://snap.stanford.edu/data/sx-stackoverflow.html
https://snap.stanford.edu/data/sx-stackoverflow.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zeyang Zhang, Xin Wang, Ziwei Zhang, Zhou Qin, Weigao Wen, Hui Xue, Haoyang Li, and Wenwu
Zhu. Spectral invariant learning for dynamic graphs under distribution shifts. Advances in Neural
Information Processing Systems, 36, 2024.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding by
modeling triadic closure process. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan. Scalable temporal
latent space inference for link prediction in dynamic social networks. IEEE Transactions on
Knowledge and Data Engineering, 28(10):2765–2777, 2016.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: A comprehensive graph neural network platform, 2019. URL https://arxiv.
org/abs/1902.08730.

A WORKFLOW OF DISTRIBUTED TRAINING FOR DGNNS.

The entire workflow of training a DGNN model across multiple GPUs is shown in Figure 6. When
graph data is partitioned across GPUs, each GPU manages a specific section of the graph, allow-
ing for localized computations. However, since graphs are inherently interconnected, nodes often
have neighbors in other partitions. This necessitates inter-GPU communication to aggregate features
from neighboring nodes in different partitions, thus ensuring that each node’s features include rele-
vant information from its neighbors. This communication step, while essential for accurate feature
aggregation, introduces overhead, particularly for large-scale or densely connected graphs. Com-
munication overhead can become a significant bottleneck in the training process, as more data needs
to be exchanged among GPUs, potentially slowing down the entire training pipeline. An alternative
approach to mitigate this challenge is to store a complete copy of the graph on each GPU. By doing
so, each GPU has access to the entire graph structure, eliminating the need for inter-GPU communi-
cation during the feature aggregation stage. This approach, however, comes with increased memory
requirements, as each GPU must have enough capacity to store the full graph. For scenarios where
memory is abundant and communication latency is a critical factor, this method can provide a more
efficient solution. Once features are aggregated, the next phase involves processing these features
through a GNN layer to generate hidden states that capture spatial dependencies within the graph
structure. These hidden states are then passed to temporal models, such as RNNs or LSTMs, which
capture the time-dependent dynamics inherent to dynamic graphs. The temporal model processes
the sequentially evolving states to enable learning from both spatial and temporal patterns within the
data.

B DATASET PARTITION STRATEGY

The main dataset partition strategies currently include three types. First, the vertex-based method,
as shown in Fig. 7, where each GPU’s input consists of parts of multiple snapshots within a time
window. Due to some nodes having neighbors on other GPUs, neighbor feature communication
is required. Second, the snapshot-based method, shown in Fig. 8, where each GPU’s input is a
complete snapshot. However, since there are dependencies between snapshots within a time window,
hidden state communication is needed. Finally, the snapshot-group-based method, shown in Fig. 9,
provides each GPU with a complete snapshot group, eliminating the need for both hidden state and
neighbor feature communication, making it the current state-of-the-art method.

C INTEGER LINEAR PROGRAMMING FORMULATION

To solve the optimization problem outlined in Equation equation 4 and Equation equation 5, we
develop an ILP model. This model aims to minimize the total training time T for one epoch by
optimally assigning snapshot groups to GPUs across iterations.

13

https://arxiv.org/abs/1902.08730
https://arxiv.org/abs/1902.08730

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

GPU 1 GPU 2 GPU 3 GPU 4

RNN

GNN

RNN

GNN

RNN

GNN

RNN

GNN

Partition iPartition i-2 Partition i-1Partition i-3

Node feature

Hidden state

Partition i-3 Partition i-2 Partition i-1 Partition i

Neighbor node

Local node Local data flow

Communication flow

Gradient AllReduce

Neighbor Feature Sampling

Figure 6: Workflow of distributed training for DGNNs.

GPU 1 GPU 2 GPU 3 GPU 4

GNN

RNN

GNN

RNN

GNN

RNN

GNN

Partition iPartition i-2 Partition i-1Partition i-3

Partition i-3 Partition i-2 Partition i-1 Partition i

1 1

1 1

22

2 2 3 3

3 3

4 4

4 4

1 2

1 2

1 3

1 3

2

2 31

41

2 4

2 43

3

3 42

4

3 4

3 21

1

4

43

3

4 3

42

2

2

RNN

Gradient AllReduce

Neighbor Feature Sampling

Node feature

Hidden state

Neighbor node

Local node Local data flow

Communication flow

Figure 7: Workflow of vertex-based partition method.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

RNN

GNN

RNN

GNN

RNN

GNN

RNN

GNN

Snapshot i-3 Snapshot i-2 Snapshot i-1 Snapshot i

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

GPU 1 GPU 2 GPU 3 GPU 4

Gradient AllReduce

Node feature

Hidden state

Neighbor node

Local node Local data flow

Communication flow

Figure 8: Workflow of snapshot-based partition method.

RNN

GNN

RNN

GNN

RNN

GNN

RNN

GNN

Snapshot i-3

1

2

3

4

Snapshot i-2

1

2

3

4

Snapshot i-1

1

2

3

4

Snapshot i

1

2

3

4

GPU 1 GPU 2 GPU 3 GPU 4

Gradient AllReduce

Node feature

Hidden state

Neighbor node

Local node Local data flow

Communication flow

Figure 9: Workflow of snapshot-group-based partition method.

C.1 DECISION VARIABLES

We introduce a binary decision variable xk,i,j :

xk,i,j =

{
1, if snapshot group k is assigned to iteration i on GPU j,

0, otherwise.
(10)

Here,

• k ∈ {1, 2, . . . , n} indexes the snapshot groups,

• i ∈ {1, 2, . . . ,m} indexes the iterations, and

• j ∈ {1, 2, . . . , G} indexes the GPUs.

The maximum number of iterations m is calculated as:

m =
⌈ n
G

⌉
. (11)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.2 OBJECTIVE FUNCTION

The objective is to minimize the total training time T :

minT =

m∑
i=1

Ti, (12)

where Ti is the duration of iteration i:

Ti = max
1≤j≤G

(
n∑

k=1

xk,i,j · tk

)
+ α. (13)

Here,

• tk is the execution time of snapshot group k,

• α is the time required for gradient allreduce.

C.3 CONSTRAINTS

Assignment Constraint. Each snapshot group must be assigned to exactly one GPU in one iteration:

m∑
i=1

G∑
j=1

xk,i,j = 1, ∀k ∈ {1, 2, . . . , n}. (14)

GPU Capacity Constraint. The number of snapshot groups assigned to a GPU in any iteration
must not exceed a specified limit L (e.g., L = 2):

n∑
k=1

xk,i,j ≤ L, ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , G}. (15)

Linearization of the Max Function. To linearize the max function in the objective, we introduce
auxiliary variables. Let zi,j be a continuous variable representing the cumulative execution time on
GPU j in iteration i:

zi,j =

n∑
k=1

xk,i,j · tk. (16)

We introduce binary variables ui,j to assist in the linearization process. The following constraints
ensure that zi,G captures the maximum execution time across all GPUs for iteration i:

zi,j ≥ zi,j−1, ∀i,∀j ≥ 2, (17)

zi,j ≥
n∑

k=1

xk,i,j · tk, ∀i,∀j, (18)

zi,j ≤ zi,j−1 +M · (1− ui,j), ∀i,∀j ≥ 2, (19)

zi,j ≤
n∑

k=1

xk,i,j · tk +M · ui,j , ∀i,∀j, (20)

where M is a sufficiently large constant (e.g., M =
∑n

k=1 tk).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.4 COMPLETE ILP MODEL

The complete ILP formulation is as follows:

min T =

m∑
i=1

zi,G +m · α, (21)

s.t.
m∑
i=1

G∑
j=1

xk,i,j = 1, ∀k, (22)

n∑
k=1

xk,i,j ≤ L, ∀i,∀j, (23)

zi,j ≥ zi,j−1, ∀i,∀j ≥ 2, (24)

zi,j ≥
n∑

k=1

xk,i,j · tk, ∀i,∀j, (25)

zi,j ≤ zi,j−1 +M · (1− ui,j), ∀i,∀j ≥ 2, (26)

zi,j ≤
n∑

k=1

xk,i,j · tk +M · ui,j , ∀i,∀j, (27)

xk,i,j ∈ {0, 1}, ∀k, ∀i,∀j, (28)
ui,j ∈ {0, 1}, ∀i, ∀j, (29)
zi,j ≥ 0, ∀i,∀j. (30)

D DYGNEX-G ALGORITHM ANALYSIS

The complexity of Algorithm 2 is primarily determined by the main while loop. The preprocessing
step operates in O(n log n), which involves sorting the groups by their execution times. The GET-
TARGETLIST function, which generates the list of candidate Ttarget values, runs in O(n), and the
GETGROUPPAIR function, responsible for finding the best group combination for a given Ttarget,
operates in O(Gn). Given that the while loop executes O(n/G) times, with each iteration costing
O(Gn2), the overall time complexity of the algorithm is O(n3). This complexity is manageable,
making the algorithm suitable for real-world applications where scalability and efficiency are cru-
cial.

E GROWTH TRENDS OF NODES AND EDGES IN THE DATASETS

The growth trends of nodes and edges in the different datasets are illustrated in Figure 10. In the
Stackoverflow dataset, both the number of nodes and edges grow steadily over time across snap-
shots. This reflects the dynamic nature of the dataset, where new nodes (representing users, posts,
or other entities) and edges (representing interactions or relationships) are continuously added. The
trend shows a relatively consistent increase in both nodes and edges, with occasional fluctuations,
indicating periods of more rapid growth in interactions compared to the addition of new entities.For
the Products and Reddit datasets, the growth patterns of nodes and edges follow a similar trajec-
tory to that of Stackoverflow, with both increasing gradually as the snapshots progress.In the Arxiv
dataset, while the edge growth trend mirrors that of Stackoverflow, the number of nodes remains
largely constant across snapshots. This is due to the relatively small number of nodes and edges in
each snapshot, and in order to maximize the utilization of GPU resources, we avoid deleting nodes
during the snapshot creation process.

F TRAINING ACCURACY AND LOSS

Figures 11 and 12 show the training accuracy and loss curves over 100 epochs for four different
DGNN models: EvolveGCN, WD-GCN, TGCN, and GAT-LSTM. The results compare the perfor-
mance of PSG, DYGNEX-G, and DYGNEX-L across all models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2: DYGNEX-G
Input: G, n, t = [t1, t2, . . . , tn], i = 1
Output: S
t = GroupPreProcess(t)
while n > G do

target list = GetTargetList(t, n)
Initialize Wi ←∞;
for Ttarget in target list do

pair list = GetGroupPair(Ttarget[0], G, t, n)

Wi = max(maxG−1
j=1 pair list[j][0], Ttarget[0]) ·G−

∑G−1
j=1 pair list[j][0]−Ttarget[0]

if Wi < Wmin then
Wmin ←Wi;

update n, t, i ;
Record corresponding group combination in S;

Record rest group in S;
return S;
Function GroupPreProcess(t):

Add zero group t0 = 0 to t;
Sort t in ascending order;
return t;

Function GetTargetList(t, n):
Initialize target list← ∅;
Add t[n] to target list;
for i← 0 to n− 1 do

Tpair ← [t[n] + t[i], n, i];
Add Tpair to target list;

return target list;
Function GetGroupPair(Ttarget, G, t, n):

Initialize pair list← ∅;
while |pair list| < G− 1 do

Initialize head← 0, tail← n;
Initialize closest←∞, best pair ← ∅;
while head < tail do

Tsum ← t[head] + t[tail];
if |Tsum − Ttarget| < |closest− Ttarget| then

closest← Tsum;
best pair ← [Tsum, head, tail];

if Tsum < Ttarget then
head← head+ 1;

else
tail← tail − 1;

Add best pair to pair list;
return pair list;

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Arxiv (b) Products

(c) Reddit (d) Stackoverflow

Figure 10: Growth trends of nodes and edges in the datasets

From Figure 11, it can be observed that DYGNEX-G and DYGNEX-L achieve similar accuracy to
PSG throughout the entire training process. There is no significant divergence in the accuracy curves
across the three methods, indicating that both DYGNEX-G and DYGNEX-L maintain comparable
model performance without compromising training accuracy. This demonstrates that the scheduling
techniques employed in DYGNEX-G and DYGNEX-L do not negatively affect the quality of the
learned representations.Similarly, Figure 12 illustrates the training loss over time. The loss curves
for DYGNEX-G and DYGNEX-L closely follow that of PSG, converging at nearly identical rates.
This indicates that the optimization process is not hindered by the use of our scheduling approaches,
and both DYGNEX-G and DYGNEX-L allow the models to reach the same level of loss as PSG.

G END-TO-END TIME ANALYSIS

The system workflow consists of three main stages: profiling, algorithm solving, and training. Typi-
cally, 3-5 epochs are run during the profiling stage to exclude outliers, and this range is chosen based
on the trade-off between accuracy and overhead. We conducted experiments to analyze the impact
of different profiling epoch counts on throughput, as shown in Figure 13. We found that when the
profiling epoch is set to 1, the data from the first epoch is often unstable, leading to suboptimal com-
binations and lower throughput. When the profiling epoch exceeds 3, the profiling data becomes
more stable, resulting in more consistent throughput.

The second stage is algorithm solving. When the number of snapshots is in the tens, the time
consumed in the algorithm solving stage is generally less than 10ms, making it negligible.We present
the solving times of DYGNEX-G and DYGNEX-L under different numbers of snapshots and gap
constraints in Table 5 and Table 6. Based on extensive experimental experience, we use DYGNEX-
L for solving when the number of snapshots is less than 100, and DYGNEX-G when the number of
snapshots exceeds 100. Finally, the training stage requires over 100 epochs to achieve convergence.
As a result, the overhead introduced by profiling and algorithm solving accounts for less than 3% of
the total time. Moreover, the total time for the entire workflow in DYGNEX is significantly lower
than the training time alone in both BLAD and ESDG, further highlighting the efficiency of our
approach.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ar
xi

v

EvolveGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

WD-GCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7
GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Re
dd

it

EvolveGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
WD-GCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9
GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

Pr
od

uc
ts

EvolveGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8
WD-GCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8
GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

Figure 11: Training accuracy.

0 20 40 60 80 100
Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ar
xi

v

EvolveGCN
PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

1.0

1.5

2.0

2.5

3.0

WD-GCN
PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

1.0

1.5

2.0

2.5

3.0
TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

1.0

1.5

2.0

2.5

3.0

3.5
GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Re
dd

it

EvolveGCN
PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

WD-GCN
PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5
TGCN

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5
GAT-LSTM

PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
od

uc
ts

EvolveGCN
PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

1.0

1.5

2.0

2.5

3.0

WD-GCN
PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

1.0

1.5

2.0

2.5

3.0

TGCN
PSG
DyGNeX-G
DyGNeX-L

0 20 40 60 80 100
Epoch

1.0

1.5

2.0

2.5

3.0

GAT-LSTM
PSG
DyGNeX-G
DyGNeX-L

Figure 12: Training loss.

H SIMULATION OF SCALABILITY

In this section, we describe the logic behind our snapshot generation and time prediction. Following
the approach in Dygraph(McCrabb et al., 2022), we generated 10,000 snapshots to simulate the
dynamic graph evolution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 20
Profiling Epoch

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
Th

ro
ug

hp
ut

Throughput vs. Profiling Epoch

Figure 13: Throughput variation with different profiling epoch counts.

Table 5: Time cost of DYGNEX-G solving under different snapshot numbers.

Time Cost of DYGNEX-G Solving (s)
Number of Snapshots

10 20 30 40 50 60 70 80 90 100 150 300 500 1000 3000 7000 10000
<0.001 <0.001 <0.001 <0.001 <0.001 0.0011 0.0022 0.0026 0.0021 0.0041 0.0045 0.0183 0.0395 0.162 1.297 6.989 13.880

Table 6: Time cost of DYGNEX-L solving under different snapshot numbers and gap constraints.

Time Cost of DYGNEX-L Solving (s)
Number of Snapshots

Constraint 10 20 30 40 50 60 70 80 90 100 150 300
1% 0.51 >30 >30 >30 9.22 11.56 >30 >30 >30 >30 >30 >30
2% 0.51 0.60 1.93 2.63 3.47 5.36 4.86 11.16 18.62 23.02 >30 >30
3% 0.48 0.49 1.09 1.69 3.07 5.18 2.68 4.51 7.92 9.42 22.08 >30
5% 0.46 0.06 0.22 0.36 0.71 0.84 1.02 1.35 3.63 1.99 5.00 25.19
6% 0.43 0.06 0.19 0.23 0.19 0.81 1.02 1.05 2.71 1.98 3.83 24.73
8% 0.43 0.04 0.14 0.23 0.19 0.81 0.40 1.04 1.53 1.98 3.82 17.07

10% 0.01 0.03 0.10 0.23 0.14 0.35 0.37 1.05 1.53 1.96 3.82 17.05

For snapshot execution time prediction, we collected extensive data and profiled a subset of these
snapshots on A100 GPUs, observing that the training time for a snapshot exhibits an almost linear
relationship with the number of nodes and edges in the graph. We modeled the snapshot training
time using the following linear equation:

tsnapshot = α1 ·Nnode + α2 ·Nedge + α3 (31)

Using another set of data for extrapolation, we found that the prediction error was less than 5%, as
illustrated in Figure 14. This model was then used to simulate the execution time of each snapshot
in our evaluation.

I MEMORY CONSUMPTION

We use torch.cuda.max memory allocated() to analyze the memory consumption during
training. As shown in Table 7, we observed that DYGNEX consistently requires less GPU memory
compared to BLAD across all datasets and models. The primary reason for this difference is that
BLAD simultaneously launches two processes on a single GPU for data loading and training, which
increases the memory requirements.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 14: Comparison between predicted and measured snapshot training time.

Table 7: Memory Consumption Comparison between DYGNEX and BLAD (in GB)

Model Method Arxiv Products Reddit Stackoverflow

EvolveGCN BLAD 1.14 3.52 9.11 0.67
DYGNEX 0.79 3.10 8.74 0.63

WDGCN BLAD 4.29 14.2 36.07 5.42
DYGNEX 0.76 3.09 8.68 0.63

TGCN BLAD 1.13 3.47 9.02 0.70
DYGNEX 0.77 2.93 8.68 0.63

GAT-LSTM BLAD N/A N/A N/A N/A
DYGNEX 0.79 2.93 8.68 0.63

22

	Introduction
	PRELIMINARIES
	SYSTEM OVERVIEW
	Method
	Optimization Objectives
	DyGNeX-L
	DyGNeX-G

	Evaluation
	Methodology
	Experimental results
	Profiling and algorithm solving cost
	scalability

	Limitations
	Conclusion
	Workflow of distributed training for DGNNs.
	Dataset Partition Strategy
	Integer Linear Programming Formulation
	Decision Variables
	Objective Function
	Constraints
	Complete ILP Model

	DyGNeX-G Algorithm Analysis
	Growth trends of nodes and edges in the datasets
	Training accuracy and loss
	End-to-End Time Analysis
	Simulation of scalability
	Memory consumption

