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ABSTRACT

Dynamic Graph Neural Networks (DGNNs) are advanced methods for processing
evolving graph data, capturing both structural and temporal dependencies effi-
ciently. However, existing distributed DGNN training methods face challenges in
achieving load balance across GPUs and minimizing communication overhead,
which limits their efficiency. In this paper, we introduce DYGNEX, a distributed
training system designed to address this issue. DYGNEX utilizes a cross-time-
window snapshot group scheduling algorithm that balances computational loads
across GPUs without introducing additional cross-GPU feature aggregation or
hidden state communication. Based on the specific scenario, the scheduling al-
gorithm is applied using greedy or Integer Linear Programming (ILP) methods,
referred to as DYGNEX-G and DYGNEX-L, respectively. DYGNEX-L and
DYGNEX-G achieve average reductions of 28% and 24% in per-epoch train-
ing time compared to state-of-the-art methods, maintaining load imbalance across
GPUs at approximately 4% and 8%, while preserving model convergence across
various DGNN models and datasets. In simulation experiments, as the number of
GPUs increases, DYGNEX-G shows good scalability, efficiently handling clus-
ters with up to 512 GPUs while maintaining 95% efficiency.

1 INTRODUCTION

Dynamic graphs are graphs whose structures and attributes change over time. Dynamic Graph Neu-
ral Networks (DGNNs) have emerged as state-of-the-art methods for processing dynamic graphs,
exhibiting strong ability to capture both structural and temporal dependencies (Zhu et al., 2016;
Zhou et al., 2018; Wu et al., 2018; Trivedi et al., 2019; Pareja et al., 2020; Manessi et al., 2020;
Chen et al., 2020; Xu et al., 2020; Goyal et al., 2020; Sankar et al., 2020; Wang et al., 2021a;b;
Bai et al., 2022; You et al., 2022; Wang et al., 2022; Tian et al., 2023; Li et al., 2024; Zhang et al.,
2024). Depending on the event model, dynamic graphs are categorized into Discrete Time Dynamic
Graphs (DTDGs) and Continuous Time Dynamic Graphs (CTDGs). DGNNs are categorized simi-
larly according to the dynamic graphs they process. In this work, we focus on DGNNs designed for
DTDGs, which process temporal dynamics in discrete snapshots.

Significant efforts have been made to improve the efficiency of DGNN training. Some works fo-
cus on efficient training on a single GPU (Li & Chen, 2021; Guan et al., 2022; Qin et al., 2023;
Wang et al., 2023; Gao et al., 2024a;b; Su et al., 2024), addressing various factors such as memory
footprint and data access overhead. Others consider distributed training on multiple GPUs (Chakar-
avarthy et al., 2021; Fu et al., 2023; Chen et al., 2023). ESDG (Chakaravarthy et al., 2021) dis-
tributes temporally adjacent snapshots across different GPUs and requires hidden state transfers
between GPUs for temporal processing, which incurs a significant overhead when the hidden states
are large. BLAD (Fu et al., 2023) avoids such overhead by processing each group of temporally
adjacent snapshots on the same GPU while assigning different groups across GPUs. As we will
show later in Figure 1, both ESDG and BLAD experience load imbalance across different GPUs,
which results in inefficient resource utilization and hinders training efficiency. While DGC (Chen
et al., 2023) attempts to balance the load, it relies on graph partitioning, which introduces additional
communication overhead. Therefore, it requires further research to achieve load balance across
GPUs while minimizing inter-GPU communication in distributed training of DGNNs.
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To address this problem, we develop a distributed DGNN training system called DYGNEX, which
uses a novel cross-time-window snapshot group scheduling algorithm for load balancing. DYGNEX
takes advantage of the fact that snapshot groups from different time windows are treated as inde-
pendent samples in DGNN training. This allows for the flexibility of combining and scheduling
them in any order. We formulate an optimal scheduling problem to minimize the per-epoch training
time. Depending on the scenario, DYGNEX solves the problem using Integer Linear Programming
(ILP) or a greedy algorithm, and the resulting scheduling algorithms are denoted by DYGNEX-L
and DYGNEX-G, respectively. Through real-world experiments and simulations, we demonstrate
that DYGNEX-L and DYGNEX-G achieve average reductions of 28% and 24% in per-epoch train-
ing time compared to state-of-the-art methods. DYGNEX-L and DYGNEX-G reduce the average
load imbalance ratio by 22% and 18% compared to the partition-by-snapshot-group (PSG) method.
In simulation experiments, as the number of GPUs increases, DYGNEX-G shows good scalability,
efficiently handling clusters with up to 512 GPUs while maintaining 95% efficiency.

2 PRELIMINARIES

Dynamic Graph Neural Networks. Dynamic Graph Neural Networks (DGNNs) are composed of
multiple blocks that integrate both structural and temporal encoding mechanisms. Each block typi-
cally includes a structure encoder, which aggregates information from a node’s immediate neighbors
to capture its structural context, and a time encoder, which accumulates information over time to re-
flect temporal changes in the graph. The specific implementations of these encoders vary across
different DGNN models. For example, EvolveGCN (Pareja et al., 2020) dynamically adjusts its
graph convolutional network (GCN) parameters over time to accommodate the evolving nature
of the graph. WD-GCN (Manessi et al., 2020) combines a GCN with a long short-term memory
(LSTM) network to capture both spatial and temporal features in dynamic graphs. TGCN (Chen
et al., 2020) integrates a GCN with a gated recurrent unit (GRU) to effectively capture spatial and
temporal dynamics in dynamic graphs. GAT-LSTM (Wu et al., 2018) leverages a Graph Attention
Network (GAT) for capturing structural information while using an LSTM to model temporal depen-
dencies. Each of these models showcases unique approaches to integrating structural and temporal
information, thereby enhancing the model’s ability to learn from dynamic graph data. These four
models are representative typical GNN and RNN models in DGNNs. Many subsequent models can
be considered variants of these, including structural-specific models like TTGCN (Li et al., 2024)
and DRAIN (Bai et al., 2022), temporal-specific models like SGNN-GR (Wang et al., 2022) and
ROLAND (You et al., 2022), and comprehensive models such as Dyngraph2vec (Goyal et al., 2020)
and DySAT (Sankar et al., 2020).

Workflow of distributed training for DGNNs. Training a DGNN on multiple GPUs requires care-
ful management of graph data across devices. In distributed settings, the dynamic graph dataset
G = (G1, G2, . . . , GT ) is typically partitioned across GPUs, introducing additional inter-GPU
communication tasks required for accurate feature aggregation and temporal modeling. At each
time step t, for each node v in graph Gt, the aggregation function Aggregatev combines the node’s
feature Xt(v) with those of its neighbors {Xt(u)|u ∈ N(v)}, producing a structural representation
as shown in Equation 1.

Ht(v) = Aggregatev(Wgnn, {Xt(u)|u ∈ N(v)}, Xt(v)) (1)

When a neighboring node u is located on a different GPU, inter-GPU communication becomes nec-
essary to retrieve the neighbor’s feature, introducing additional neighbor feature communication.
This communication overhead can be significant, especially for large or densely connected graphs.
On a global scale, the graph embedding Ht at time t aggregates information from both the node
feature matrix Xt and the graph structure Gt, as defined in Equation 2, with t = i, . . . , i + w for
each time window.

Ht = Aggregate(Wgnn, Xt, Gt), t = i, . . . , i+ w (2)
This graph embedding is subsequently passed to a temporal model, such as an RNN, to capture time-
dependent dynamics. As shown in Equation 3, the temporal update function combines the current
graph embedding Ht with the hidden state ht−1 from the previous time step. When ht−1 resides on
a different GPU, additional hidden state communication is required to transfer ht−1 across devices
to maintain temporal dependency.

ht = TemporalUpdate(Wrnn, Ht, ht−1), t = i, . . . , i+ w (3)
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Aligraph ESDG DGC BLAD DYGNEX
(Zhu et al., 2019) (Chakaravarthy et al., 2021) (Chen et al., 2023) (Fu et al., 2023)

No Neighbor Feature Comm ✗ ✓ ✗ ✓ ✓
No Hidden State Comm ✓ ✗ ✗ ✓ ✓
Load Balance ✗ ✗ ✓ ✗ ✓

Table 1: Comparison of existing distributed DGNN training methods across three key dimensions:
neighbor feature communication, hidden state communication and load balance. Aligraph (Zhu
et al., 2019) and DGC (Chen et al., 2023) use vertex-based partitioning, ESDG (Chakaravarthy et al.,
2021) applies snapshot-based partitioning, and BLAD (Fu et al., 2023) employs snapshot group-
based partitioning. DYGNEX achieve load balance without introducing communication overhead
for large dynamic graphs.

Efficient training in this setting requires minimizing communication overhead and maintaining load
balance across GPUs, as imbalances can result in performance bottlenecks. A detailed explanation
of this workflow is provided in Appendix A, with Figure 6 illustrating the process.

Dataset Partition Strategy. In distributed training of dynamic graphs, the mainstream dataset par-
titioning methods include vertex-based partitioning, represented by Aligraph (Zhu et al., 2019), and
snapshot-based partitioning, represented by ESDG (Chakaravarthy et al., 2021). The latest work,
BLAD (Fu et al., 2023), proposes a snapshot group-based partitioning method, which effectively
reduces the overall communication volume. Specifically, in one iteration, each GPU trains a com-
plete snapshot group. Since each snapshot contains all the node information, it avoids neighbor
feature communication. Additionally, because each snapshot group includes all prior information of
the target snapshot, it eliminates hidden state communication. A detailed workflow of three dataset
partition strategies is provided in Appendix B, with Figure 7, 8, and 9 illustrating the differences
among them.

Dilemma in Distributed Training of DGNNs. Achieving efficient distributed training of DGNNs
requires a data partitioning strategy that ensures load balancing across all nodes while minimizing
inter-node communication. Existing approaches exhibit a range of strengths and weaknesses, as
shown in Table 1, none of them effectively balance inter-node communication with load distribu-
tion. In different partitioning strategies, vertex-based partitioning can fine-tune the load distribution
at the node level, but it typically introduces significant communication overhead. Snapshot-based
and snapshot group-based partitioning use snapshots and snapshot groups as scheduling units, re-
spectively, but both face load imbalance due to differences between snapshots. Therefore, we focus
on the load imbalance issues in ESDG and BLAD. We measured task allocation across 4 GPUs dur-
ing training with ESDG and BLAD on four popular datasets, using the number of nodes and edges
as workload indicators. As shown in Figure 1, where the nodes and edges processed by GPU0 are
used as the baseline for comparison, ESDG exhibited differences of up to 19% in node distribution
and 26% in edge distribution, while BLAD showed up to 16% difference. The uneven task distribu-
tion caused GPU idling, prolonging training time and reducing efficiency, highlighting the need for
better load balancing.

3 SYSTEM OVERVIEW

In this section, we provide an overview of the DYGNEX design by outlining our primary design
objectives. Our goal is to achieve load balancing while minimizing communication overhead.

Figure 2 illustrates the comprehensive design and execution process of the DYGNEX system, which
adopts a snapshot group-based dataset partitioning approach. DYGNEX first assigns each task to
GPUs for training time measurement. Then, DYGNEX profiler collects and analyzes the timing
data for each task, providing a fine-grained view of system performance over time. To minimize the
impact of random variations in single-sample measurements, DYGNEX sampler measure the train-
ing time for each task multiple times, ensuring a more accurate and reliable performance profile.
Building on the training time data of each task, we then implement a task grouping strategy using
a cross-time-window group combination algorithm. This algorithm combines tasks across different
time windows, achieving effective load balancing across nodes, which is critical for improving sys-
tem efficiency and scalability. In the final phase, DYGNEX deploys the newly combined tasks to
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Figure 1: Load imbalance among GPUs across different datasets.
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Figure 2: System Overview.

each node for training, executing the combined snapshot groups sequentially. This approach bal-
ances the training processes, maximizes node utilization, and leads to overall system performance
improvements and faster convergence times.

4 METHOD

In this section, we introduce the two implementations of our cross-time-window task grouping al-
gorithm: DYGNEX-L, which uses Integer Linear Programming (ILP), and DYGNEX-G, which
adopts a greedy approach to reduce computational complexity. Both implementations are designed
to optimize the objectives of DYGNEX by addressing the key challenges of load balancing and
inter-GPU communication, ultimately improving the efficiency of distributed DGNN training. The
commonly used notation in this section is summarized in Table 2.

Table 2: Frequently Used Notations

T Total training time for one epoch ai Iteration assigned to snapshot group i
Ti Time for the i-th iteration α Time for gradient allreduce across GPUs
m Number of iterations per epoch Wi Waste time for the i-th iteration
G Number of GPUs gi GPU assigned to snapshot group i
n Number of snapshot groups ti Execution time of snapshot group i

4
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4.1 OPTIMIZATION OBJECTIVES

The primary optimization goal of DYGNEX is to minimize the total training time for one epoch, de-
noted as T . This is particularly important in distributed environments where inefficient task schedul-
ing and uneven load distribution can result in substantial delays. The objective is mathematically
formulated as:

minimize T =

m∑
i=0

Ti, (4)

where m represents the number of iterations per epoch, and Ti denotes the time for the i-th iteration.
The duration Ti of each iteration is given by:

Ti = max
1≤j≤G

(
n∑

k=1

Iak=i · Igk=j · tk

)
+ α, (5)

where G is the number of GPUs, n is the number of snapshot groups, gk is the GPU assigned to
snapshot group k, and tk is its execution time of snapshot group k. ak represents the iteration
assigned to snapshot group k, and α is the time for gradient allreduce, which synchronizes gradient
updates across GPUs. The indicator function Icondition is 1 if the condition is true, and 0 otherwise.
This formulation ensures that the total execution time accounts for both task scheduling and inter-
GPU communication.

Since different snapshot groups can be executed independently, determining the optimal task
scheduling strategy Strategy = [(a1, g1), (a2, g2), . . . , (an, gn)] that minimizes T is an NP-hard
problem. This is because it generalizes the classical makespan minimization problem on parallel
machines, which is a well-known NP-hard problem. For a single iteration (m = 1) and without gra-
dient allreduce (α = 0), the problem reduces to assigning tasks to GPUs to minimize the maximum
completion time, which is NP-hard for two or more machines. To ensure system convergence while
making the solution more tractable, we impose a constraint that limits each GPU to handle at most
two tasks per iteration. Then, we propose DYGNEX-L, an ILP-based approach, and DYGNEX-G,
a greedy algorithm, to efficiently address this scheduling problem.

4.2 DYGNEX-L

To globally optimize the total training time T , we first propose an ILP model, DYGNEX-L. The
binary decision variable xk,i,j indicates whether snapshot group k is assigned to iteration i on GPU
j. The objective function is to minimize the total iteration time Ti, calculated as:

Ti = max
1≤j≤G

(
n∑

k=1

xk,i,j · tk

)
+ α, (6)

The key constraints in DYGNEX-L are expressed mathematically as follows. The assignment con-
straint ensures that each snapshot group is assigned to exactly one GPU in one iteration:

m∑
i=1

G∑
j=1

xk,i,j = 1, ∀k ∈ {1, 2, . . . , n}. (7)

The GPU capacity constraint ensures that no GPU can process more than L snapshot groups in any
iteration:

n∑
k=1

xk,i,j ≤ L, ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , G}. (8)

To solve this ILP problem (Equation 6), we use standard linearization techniques and off-the-shelf
solvers like Gurobi (Gurobi Optimization, LLC, 2022). However, as the problem is still NP-hard,
we implement a strategy that outputs the solution once it is within a specified distance (e.g., 2%)
from the optimal. For further details, see Appendix C.
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4.3 DYGNEX-G

To mitigate the computational complexity of solving the global optimization problem, we also pro-
pose DYGNEX-G, a greedy algorithm. Greedy approaches are heuristics that can efficiently solve
NP-hard problems, though they often produce suboptimal solutions. DYGNEX-G attempts to re-
duce resource waste and balance GPU workloads by iteratively optimizing the execution sequence
of snapshot groups.

The algorithm follows three main steps: (1) Generate candidate target training times Ttarget by
combining the longest remaining execution time with other remaining times. (2) For each Ttarget,
select G− 1 tasks that minimize the deviation from Ttarget using a two-pointer search strategy. (3)
Compute the waste time Wi for each Ttarget, selecting the one that minimizes Wi. Algorithm 1
provides an overview of the DYGNEX-G process.

Algorithm 1: DYGNEX-G Overview
Input: G, res = n, snapshot groups = [t1, t2, . . . , tn], iteration = 1
Output: Strategy
Add zero group to snapshot groups and sort it.
while res > G do

Create target list from the longest remaining time and other remaining times;
for Ttarget in target list do

Find G− 1 pairs closest to Ttarget;
Compute Witeration;
Update Wmin if necessary;

Update res, snapshot groups, iteration, and record the best combination in Strategy;
Record remaining group in Strategy;
return Strategy;

Group preprocessing. Initially, the algorithm preprocesses the task list, adding a zero group (with
execution time t0 = 0) to the list to preserve flexibility in task combinations. All groups are then
sorted by execution time ti to allow for efficient pairing and combination in later steps.

Target training time selection. Rather than directly determining the optimal Ttarget, the algo-
rithm considers a range of candidate target times, starting with the group with the longest remaining
time and all possible pairwise combinations. This ensures a comprehensive search without being
computationally prohibitive.

Group selection and waste time calculation. For each candidate Ttarget, a two-pointer search
identifies group combinations that best match Ttarget, minimizing the need for exhaustive searches.
The waste time Wi, defined as:

Wi = (Ti − α) ·G−
G∑

j=1

n∑
k=1

Iak=i · Igk=j · tk, (9)

is used to evaluate the quality of each scheduling strategy. The algorithm selects the Ttarget that
results in the lowest Wi, ensuring efficient task scheduling.

Complexity analysis. The overall time complexity of DYGNEX-G is O(n3), making it computa-
tionally feasible for large-scale scenarios. For more details about DYGNEX-G, see Appendix D.

5 EVALUATION

In this section, we first introduce our experimental testbed, along with the models, datasets, and
baselines employed in our evaluations. We then evaluate the performance of DYGNEX by examin-
ing its improvements in training throughput and ensuring that it does not degrade training accuracy,
as well as the results from the simulation and end-to-end time analysis.

6
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Table 3: Attributes of the Four Datasets. The symbols |V | and |E| denote the total number of nodes
and edges. |V | and |E| represent the average number of nodes and edges per snapshot. The term dv
represents the dimension of the node features. The parameters β and γ indicate the average degree
and the number of snapshots, respectively.

Dataset |V | |E| |V | |E| dv β γ

Arxiv (Hu et al., 2020) 169,343 2,409,625 169,340 1,317,917 128 7.8 30
Products (Hu et al., 2020) 286,010 16,567,128 167,570 7,268,265 100 43.4 30
Reddit (Reddit, n.d.) 80,125 47,804,919 62,590 22,183,258 602 354.4 30
Stackoverflow (Stack-Overflow, 2023) 2,601,977 63,497,050 160,877 1,269,941 50 7.9 50

5.1 METHODOLOGY

Testbed. We conduct our experiments using four A100 80GB SXM4 GPUs, connected via PCIe
with a peak bandwidth of 32GB. The experiments are carried out within the DGL NGC Container
(version 24.07-py3), which includes DGL v2.4 (Wang, 2019) for scalable graph processing, PyTorch
v2.4.0 (Paszke et al., 2019) as the deep learning framework, and CUDA 12.5 for GPU acceleration,
providing an optimized environment for our distributed graph training tasks.

Datasets. We use four dynamic graph datasets to evaluate the performance of DYGNEX. The
Stackoverflow (Stack-Overflow, 2023) dataset is a real-life temporal network of interactions on the
Stack Exchange website Stack Overflow. Additionally, we use three large-scale static graph datasets:
Arxiv, Products (Hu et al., 2020), and Reddit (Reddit, n.d.). To simulate dynamics in these static
datasets, we follow Fu et al. (2023) to create snapshots by randomly deleting some of the edges
from the static graph. The time window size for all datasets is set to 4. The evolution pattern of the
number of nodes or edges in these snapshots mirrors the trend observed in the Stackoverflow dataset,
with specific details on the changes in nodes and edges provided in Figure 10 of the Appendix E.

Benchmark DGNN models. Four representative DGNNs are employed: EvolveGCN (Pareja
et al., 2020), WD-GCN (Manessi et al., 2020), TGCN (Chen et al., 2020), and GAT-LSTM (Wu
et al., 2018), as they are typical GNN and RNN models in DGNNs. The first three models are GCN-
based DGNNs, while GAT-LSTM is a GAT-based model. These models are widely used due to
their effectiveness in dynamic graph learning. Each DGNN model features a two-layer architecture,
comprising a feature update operation and a graph aggregation operation. In EvolveGCN, the RNN
updates the GNN parameters across snapshots, whereas in the other models, the RNN processes
intermediate node features within the snapshots.

Baselines. We compare DYGNEX-G and DYGNEX-L with ESDG (Chakaravarthy et al., 2021),
partition-by-snapshot-group (PSG) method and BLAD (Fu et al., 2023). ESDG is a widely used
baseline for distributed DGNN training, while BLAD represents the current state-of-the-art (SOTA)
approach. In ESDG, snapshots within a snapshot group are evenly distributed across GPUs based
on their temporal intervals, as illustrated in Figure 8. In PSG, each GPU training a single snap-
shot group, as illustrated in Figure 9. BLAD utilizes a two-stage pipeline to collaboratively train
two consecutive snapshot groups. In contrast, DyGNeX-G and DyGNeX-L execute two scheduled
groups sequentially.

5.2 EXPERIMENTAL RESULTS

Overall Performance. We first compared the epoch training time, defined as the time required to
train one epoch. The experimental results in Table 4 show that DYGNEX-L significantly reduces
the epoch training time compared to other methods. Specifically, DYGNEX-L reduces the epoch
training time by 49.5% to 91.1% over ESDG, 7.9% to 61.6% over BLAD, 3.9% to 29.7% over
PSG, and 1.9% to 13.6% over DYGNEX-G. DYGNEX-L optimizes load balancing across GPUs
from a global view without introducing additional communication overhead, resulting in the high-
est throughput performance. ESDG, on the other hand, suffers from reduced throughput due to the
frequent transfer of hidden states between GPUs. While this impact is minimal for EvolveGCN,
which has relatively small hidden states, the performance drops significantly for WD-GCN, TGCN,
and GAT-LSTM, where the hidden states are larger. BLAD suffers in large dynamic graph sce-
narios primarily due to its lack of fine-grained load balancing across GPUs, which significantly

7
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Table 4: Epoch Training Time (Seconds) for Different Methods Across Various Models and Datasets

Arxiv Products

EvolveGCN WD-GCN TGCN GAT-LSTM EvolveGCN WD-GCN TGCN GAT-LSTM

ESDG 1.03 12.44 9.70 13.57 2.41 23.23 19.18 24.04
BLAD 1.10 1.13 1.31 N/A 2.71 3.20 3.28 N/A
PSG 0.62 1.19 1.08 1.35 1.48 3.98 3.95 4.66

DYGNEX-G 0.55 1.12 1.06 1.26 1.09 3.04 3.31 3.95
DYGNEX-L 0.52 1.04 1.02 1.21 1.04 2.92 3.17 3.85

Reddit Stackoverflow

EvolveGCN WD-GCN TGCN GAT-LSTM EvolveGCN WD-GCN TGCN GAT-LSTM

ESDG 8.41 24.92 26.11 29.56 1.71 28.96 23.84 29.27
BLAD 7.81 6.59 6.01 N/A 1.99 4.03 3.83 N/A
PSG 3.88 7.02 7.22 7.33 0.55 4.02 3.91 4.51

DYGNEX-G 3.10 6.01 5.34 6.10 0.53 3.94 3.79 4.19
DYGNEX-L 2.78 5.58 5.33 5.27 0.52 3.86 3.44 3.77

impacts its overall performance. Moreover, in cases where a single snapshot group can fully utilize
the computational resources, BLAD’s strategy of processing multiple snapshot groups in parallel
fails to achieve speedup, with performance even falling behind PSG. It is also worth noting that
BLAD’s current implementation is specifically optimized for models like EvolveGCN, WD-GCN,
and TGCN. This requires a customized design for each DGNN model to fit within BLAD’s training
framework, making it unable to achieve out-of-the-box high performance for other models such as
GAT-LSTM. As a result, the throughput for GAT-LSTM is not meaningful for comparison.

Test Accuracy. In DYGNEX-L and DYGNEX-G, the number of snapshot groups trained in a
single iteration is up to twice that of PSG, which is equivalent to increasing the training batch size.
To ensure that this does not lead to any accuracy degradation, we compared the test accuracy and loss
over 100 epochs between DYGNEX-L, DYGNEX-G, and the PSG method on the Arxiv, Products,
and Reddit datasets. The StackOverflow dataset, lacking labels, is not included in the accuracy
comparison. As shown in Figure 3, the test accuracy differences among DYGNEX-L, DYGNEX-
G, and PSG are within 3%, demonstrating that DYGNEX-L and DYGNEX-G have minimal impact
on model accuracy. While slight differences may appear in the early stages of training, the accuracy
of both methods converges over time, ultimately yielding very similar results. We also present the
training loss and training accuracy in Appendix F.

Imbalance ratio. To validate DYGNEX’s improvement in imbalance ratio, we measured the im-
balance ratio performance of both DYGNEX-L and DYGNEX-G compared to the baselines.We
define the imbalance ratio as the training time of the most heavily loaded GPU divided by that of
the least loaded GPU. To more accurately reflect the impact of load imbalance, the training time
measured excludes the synchronization waiting time for each GPU, such as the time spent waiting
for the hidden state to be passed from the previous GPU in ESDG. Figure 4 presents the imbalance
ratio results, revealing that ESDG, BLAD, and PSG suffer from noticeable load imbalances, with
average ratios of 1.20, 1.44, and 1.26, respectively. In contrast, both DYGNEX-G and DYGNEX-L
achieved much lower imbalance ratios, averaging 1.08 and 1.04, respectively, highlighting the effec-
tiveness of our scheduling strategy in distributing the workload more evenly and improving overall
system performance.

5.3 PROFILING AND ALGORITHM SOLVING COST

The system workflow consists of three stages: profiling, algorithm solving, and training. In the
profiling stage, 2-5 epochs are typically run to filter out outliers, balancing accuracy and over-
head. Experiments, shown in Figure 13 in the Appendix G, demonstrate that using one profiling
epochs can result in unstable data and suboptimal combinations, while profiling more than one
epoch leads to more consistent throughput. The algorithm solving stage is fast, taking less than
10ms for DYGNEX-G when the number of snapshots is in the tens. DYGNEX-L can also obtain
a solution within a few seconds, with a gap of less than 2% from the optimal solution. We present
the solving times of DYGNEX-G and DYGNEX-L under different numbers of snapshots and gap
constraints in Table 5 and Table 6. Based on extensive experimental experience, we use DYGNEX-
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Figure 3: Test accuracy.
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Figure 4: Imbalance ratio.

L for solving when the number of snapshots is less than 100, and DYGNEX-G when the number of
snapshots exceeds 100. Finally, the training stage requires over 100 epochs for convergence, making
the overhead from profiling and algorithm solving less than 3% of the total time.
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5.4 SCALABILITY

Due to hardware limitations, we extend the evaluation to larger clusters through simulation. In this
simulation, we model the dynamic graph’s evolution by generating 10,000 snapshots using Dyna-
Graph(Guan et al., 2022), and use a linear regression model to predict the execution time for each
snapshot. The justification for the linear regression model is provided in the Appendix H. In this sce-
nario, solving with DYGNEX-L is time-consuming, so we opt to use DYGNEX-G, which provides
a faster solution, typically solving within seconds while still maintaining good performance. These
predicted times are subsequently fed into DYGNEX-G for time simulation. Figure 5a shows the
per-node throughput, normalized by the single-node throughput. The PSG method shows a steady
drop in throughput as the number of GPUs increases, with performance degrading sharply beyond
128 GPUs. In contrast, our method scales effectively, retaining 95% efficiency at 512 GPUs and
maintaining over 85% efficiency with 1024 GPUs. As shown in Figure 5b, the throughput decline
is caused by the rising imbalance ratio as the number of GPUs increases. DYGNEX-G consistently
maintains a lower imbalance ratio than the PSG method, which slows the performance drop.
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Figure 5: Simulated per-node training throughput and imbalance ratio on clusters with 4 to 1024
nodes. Results are normalized to the throughput of training with a single node.

6 LIMITATIONS

Large Snapshot Group. In DYGNEX, each snapshot group must fit on a single GPU for training.
While current GPU memory (e.g., 80GB, 40GB) suffices for most datasets, larger datasets may
exceed this limit, making DYGNEX infeasible. A potential solution is to partition the graph and
use full-neighbor sampling on target nodes, enabling training until all nodes are processed. The
trade-offs between the overhead of partitioning and sampling and the advantages of DYGNEX over
vertex-based methods (eg., DGC(Chen et al., 2023)) merit further exploration.

Limited Number of Snapshot Groups. The benefits of DYGNEX depend on the flexible combi-
nation of snapshot groups for load balancing. With very few groups, the limited combination space
reduces potential gains.

7 CONCLUSION

In this paper, we introduced DYGNEX, an efficient distributed training system for DGNNs.
DYGNEX addresses the challenges of load balancing and communication overhead in large-scale
dynamic graph training. By utilizing a novel cross-time-window snapshot group scheduling algo-
rithm, DYGNEX balances computational loads across GPUs without incurring additional cross-
GPU communication. We implemented two variants of the system: DYGNEX-L, which uses ILP
to globally optimize training efficiency, and DYGNEX-G, a greedy approach. In extensive real-
world and simulated experiments, DYGNEX-L and DYGNEX-G outperform ESDG and BLAD in
per-epoch training time. Both DYGNEX-L and DYGNEX-G preserve model convergence, main-
taining training accuracy while improving throughput and reducing load imbalance across GPUs.
DYGNEX-G further demonstrates superior scalability, efficiently handling large numbers of GPUs
with minimal performance degradation.
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A WORKFLOW OF DISTRIBUTED TRAINING FOR DGNNS.

The entire workflow of training a DGNN model across multiple GPUs is shown in Figure 6. When
graph data is partitioned across GPUs, each GPU manages a specific section of the graph, allow-
ing for localized computations. However, since graphs are inherently interconnected, nodes often
have neighbors in other partitions. This necessitates inter-GPU communication to aggregate features
from neighboring nodes in different partitions, thus ensuring that each node’s features include rele-
vant information from its neighbors. This communication step, while essential for accurate feature
aggregation, introduces overhead, particularly for large-scale or densely connected graphs. Com-
munication overhead can become a significant bottleneck in the training process, as more data needs
to be exchanged among GPUs, potentially slowing down the entire training pipeline. An alternative
approach to mitigate this challenge is to store a complete copy of the graph on each GPU. By doing
so, each GPU has access to the entire graph structure, eliminating the need for inter-GPU communi-
cation during the feature aggregation stage. This approach, however, comes with increased memory
requirements, as each GPU must have enough capacity to store the full graph. For scenarios where
memory is abundant and communication latency is a critical factor, this method can provide a more
efficient solution. Once features are aggregated, the next phase involves processing these features
through a GNN layer to generate hidden states that capture spatial dependencies within the graph
structure. These hidden states are then passed to temporal models, such as RNNs or LSTMs, which
capture the time-dependent dynamics inherent to dynamic graphs. The temporal model processes
the sequentially evolving states to enable learning from both spatial and temporal patterns within the
data.

B DATASET PARTITION STRATEGY

The main dataset partition strategies currently include three types. First, the vertex-based method,
as shown in Fig. 7, where each GPU’s input consists of parts of multiple snapshots within a time
window. Due to some nodes having neighbors on other GPUs, neighbor feature communication
is required. Second, the snapshot-based method, shown in Fig. 8, where each GPU’s input is a
complete snapshot. However, since there are dependencies between snapshots within a time window,
hidden state communication is needed. Finally, the snapshot-group-based method, shown in Fig. 9,
provides each GPU with a complete snapshot group, eliminating the need for both hidden state and
neighbor feature communication, making it the current state-of-the-art method.

C INTEGER LINEAR PROGRAMMING FORMULATION

To solve the optimization problem outlined in Equation equation 4 and Equation equation 5, we
develop an ILP model. This model aims to minimize the total training time T for one epoch by
optimally assigning snapshot groups to GPUs across iterations.
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Figure 6: Workflow of distributed training for DGNNs.
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Figure 9: Workflow of snapshot-group-based partition method.

C.1 DECISION VARIABLES

We introduce a binary decision variable xk,i,j :

xk,i,j =

{
1, if snapshot group k is assigned to iteration i on GPU j,

0, otherwise.
(10)

Here,

• k ∈ {1, 2, . . . , n} indexes the snapshot groups,

• i ∈ {1, 2, . . . ,m} indexes the iterations, and

• j ∈ {1, 2, . . . , G} indexes the GPUs.

The maximum number of iterations m is calculated as:

m =
⌈ n
G

⌉
. (11)
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C.2 OBJECTIVE FUNCTION

The objective is to minimize the total training time T :

minT =

m∑
i=1

Ti, (12)

where Ti is the duration of iteration i:

Ti = max
1≤j≤G

(
n∑

k=1

xk,i,j · tk

)
+ α. (13)

Here,

• tk is the execution time of snapshot group k,

• α is the time required for gradient allreduce.

C.3 CONSTRAINTS

Assignment Constraint. Each snapshot group must be assigned to exactly one GPU in one iteration:

m∑
i=1

G∑
j=1

xk,i,j = 1, ∀k ∈ {1, 2, . . . , n}. (14)

GPU Capacity Constraint. The number of snapshot groups assigned to a GPU in any iteration
must not exceed a specified limit L (e.g., L = 2):

n∑
k=1

xk,i,j ≤ L, ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , G}. (15)

Linearization of the Max Function. To linearize the max function in the objective, we introduce
auxiliary variables. Let zi,j be a continuous variable representing the cumulative execution time on
GPU j in iteration i:

zi,j =

n∑
k=1

xk,i,j · tk. (16)

We introduce binary variables ui,j to assist in the linearization process. The following constraints
ensure that zi,G captures the maximum execution time across all GPUs for iteration i:

zi,j ≥ zi,j−1, ∀i,∀j ≥ 2, (17)

zi,j ≥
n∑

k=1

xk,i,j · tk, ∀i,∀j, (18)

zi,j ≤ zi,j−1 +M · (1− ui,j), ∀i,∀j ≥ 2, (19)

zi,j ≤
n∑

k=1

xk,i,j · tk +M · ui,j , ∀i,∀j, (20)

where M is a sufficiently large constant (e.g., M =
∑n

k=1 tk).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.4 COMPLETE ILP MODEL

The complete ILP formulation is as follows:

min T =

m∑
i=1

zi,G +m · α, (21)

s.t.
m∑
i=1

G∑
j=1

xk,i,j = 1, ∀k, (22)

n∑
k=1

xk,i,j ≤ L, ∀i,∀j, (23)

zi,j ≥ zi,j−1, ∀i,∀j ≥ 2, (24)

zi,j ≥
n∑

k=1

xk,i,j · tk, ∀i,∀j, (25)

zi,j ≤ zi,j−1 +M · (1− ui,j), ∀i,∀j ≥ 2, (26)

zi,j ≤
n∑

k=1

xk,i,j · tk +M · ui,j , ∀i,∀j, (27)

xk,i,j ∈ {0, 1}, ∀k, ∀i,∀j, (28)
ui,j ∈ {0, 1}, ∀i, ∀j, (29)
zi,j ≥ 0, ∀i,∀j. (30)

D DYGNEX-G ALGORITHM ANALYSIS

The complexity of Algorithm 2 is primarily determined by the main while loop. The preprocessing
step operates in O(n log n), which involves sorting the groups by their execution times. The GET-
TARGETLIST function, which generates the list of candidate Ttarget values, runs in O(n), and the
GETGROUPPAIR function, responsible for finding the best group combination for a given Ttarget,
operates in O(Gn). Given that the while loop executes O(n/G) times, with each iteration costing
O(Gn2), the overall time complexity of the algorithm is O(n3). This complexity is manageable,
making the algorithm suitable for real-world applications where scalability and efficiency are cru-
cial.

E GROWTH TRENDS OF NODES AND EDGES IN THE DATASETS

The growth trends of nodes and edges in the different datasets are illustrated in Figure 10. In the
Stackoverflow dataset, both the number of nodes and edges grow steadily over time across snap-
shots. This reflects the dynamic nature of the dataset, where new nodes (representing users, posts,
or other entities) and edges (representing interactions or relationships) are continuously added. The
trend shows a relatively consistent increase in both nodes and edges, with occasional fluctuations,
indicating periods of more rapid growth in interactions compared to the addition of new entities.For
the Products and Reddit datasets, the growth patterns of nodes and edges follow a similar trajec-
tory to that of Stackoverflow, with both increasing gradually as the snapshots progress.In the Arxiv
dataset, while the edge growth trend mirrors that of Stackoverflow, the number of nodes remains
largely constant across snapshots. This is due to the relatively small number of nodes and edges in
each snapshot, and in order to maximize the utilization of GPU resources, we avoid deleting nodes
during the snapshot creation process.

F TRAINING ACCURACY AND LOSS

Figures 11 and 12 show the training accuracy and loss curves over 100 epochs for four different
DGNN models: EvolveGCN, WD-GCN, TGCN, and GAT-LSTM. The results compare the perfor-
mance of PSG, DYGNEX-G, and DYGNEX-L across all models.
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Algorithm 2: DYGNEX-G
Input: G, n, t = [t1, t2, . . . , tn], i = 1
Output: S
t = GroupPreProcess(t)
while n > G do

target list = GetTargetList(t, n)
Initialize Wi ←∞;
for Ttarget in target list do

pair list = GetGroupPair(Ttarget[0], G, t, n)

Wi = max(maxG−1
j=1 pair list[j][0], Ttarget[0]) ·G−

∑G−1
j=1 pair list[j][0]−Ttarget[0]

if Wi < Wmin then
Wmin ←Wi;

update n, t, i ;
Record corresponding group combination in S;

Record rest group in S;
return S;
Function GroupPreProcess(t):

Add zero group t0 = 0 to t;
Sort t in ascending order;
return t;

Function GetTargetList(t, n):
Initialize target list← ∅;
Add t[n] to target list;
for i← 0 to n− 1 do

Tpair ← [t[n] + t[i], n, i];
Add Tpair to target list;

return target list;
Function GetGroupPair(Ttarget, G, t, n):

Initialize pair list← ∅;
while |pair list| < G− 1 do

Initialize head← 0, tail← n;
Initialize closest←∞, best pair ← ∅;
while head < tail do

Tsum ← t[head] + t[tail];
if |Tsum − Ttarget| < |closest− Ttarget| then

closest← Tsum;
best pair ← [Tsum, head, tail];

if Tsum < Ttarget then
head← head+ 1;

else
tail← tail − 1;

Add best pair to pair list;
return pair list;
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(a) Arxiv (b) Products

(c) Reddit (d) Stackoverflow

Figure 10: Growth trends of nodes and edges in the datasets

From Figure 11, it can be observed that DYGNEX-G and DYGNEX-L achieve similar accuracy to
PSG throughout the entire training process. There is no significant divergence in the accuracy curves
across the three methods, indicating that both DYGNEX-G and DYGNEX-L maintain comparable
model performance without compromising training accuracy. This demonstrates that the scheduling
techniques employed in DYGNEX-G and DYGNEX-L do not negatively affect the quality of the
learned representations.Similarly, Figure 12 illustrates the training loss over time. The loss curves
for DYGNEX-G and DYGNEX-L closely follow that of PSG, converging at nearly identical rates.
This indicates that the optimization process is not hindered by the use of our scheduling approaches,
and both DYGNEX-G and DYGNEX-L allow the models to reach the same level of loss as PSG.

G END-TO-END TIME ANALYSIS

The system workflow consists of three main stages: profiling, algorithm solving, and training. Typi-
cally, 3-5 epochs are run during the profiling stage to exclude outliers, and this range is chosen based
on the trade-off between accuracy and overhead. We conducted experiments to analyze the impact
of different profiling epoch counts on throughput, as shown in Figure 13. We found that when the
profiling epoch is set to 1, the data from the first epoch is often unstable, leading to suboptimal com-
binations and lower throughput. When the profiling epoch exceeds 3, the profiling data becomes
more stable, resulting in more consistent throughput.

The second stage is algorithm solving. When the number of snapshots is in the tens, the time
consumed in the algorithm solving stage is generally less than 10ms, making it negligible.We present
the solving times of DYGNEX-G and DYGNEX-L under different numbers of snapshots and gap
constraints in Table 5 and Table 6. Based on extensive experimental experience, we use DYGNEX-
L for solving when the number of snapshots is less than 100, and DYGNEX-G when the number of
snapshots exceeds 100. Finally, the training stage requires over 100 epochs to achieve convergence.
As a result, the overhead introduced by profiling and algorithm solving accounts for less than 3% of
the total time. Moreover, the total time for the entire workflow in DYGNEX is significantly lower
than the training time alone in both BLAD and ESDG, further highlighting the efficiency of our
approach.
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Figure 11: Training accuracy.
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Figure 12: Training loss.

H SIMULATION OF SCALABILITY

In this section, we describe the logic behind our snapshot generation and time prediction. Following
the approach in Dygraph(McCrabb et al., 2022), we generated 10,000 snapshots to simulate the
dynamic graph evolution.
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Figure 13: Throughput variation with different profiling epoch counts.

Table 5: Time cost of DYGNEX-G solving under different snapshot numbers.

Time Cost of DYGNEX-G Solving (s)
Number of Snapshots

10 20 30 40 50 60 70 80 90 100 150 300 500 1000 3000 7000 10000
<0.001 <0.001 <0.001 <0.001 <0.001 0.0011 0.0022 0.0026 0.0021 0.0041 0.0045 0.0183 0.0395 0.162 1.297 6.989 13.880

Table 6: Time cost of DYGNEX-L solving under different snapshot numbers and gap constraints.

Time Cost of DYGNEX-L Solving (s)
Number of Snapshots

Constraint 10 20 30 40 50 60 70 80 90 100 150 300
1% 0.51 >30 >30 >30 9.22 11.56 >30 >30 >30 >30 >30 >30
2% 0.51 0.60 1.93 2.63 3.47 5.36 4.86 11.16 18.62 23.02 >30 >30
3% 0.48 0.49 1.09 1.69 3.07 5.18 2.68 4.51 7.92 9.42 22.08 >30
5% 0.46 0.06 0.22 0.36 0.71 0.84 1.02 1.35 3.63 1.99 5.00 25.19
6% 0.43 0.06 0.19 0.23 0.19 0.81 1.02 1.05 2.71 1.98 3.83 24.73
8% 0.43 0.04 0.14 0.23 0.19 0.81 0.40 1.04 1.53 1.98 3.82 17.07

10% 0.01 0.03 0.10 0.23 0.14 0.35 0.37 1.05 1.53 1.96 3.82 17.05

For snapshot execution time prediction, we collected extensive data and profiled a subset of these
snapshots on A100 GPUs, observing that the training time for a snapshot exhibits an almost linear
relationship with the number of nodes and edges in the graph. We modeled the snapshot training
time using the following linear equation:

tsnapshot = α1 ·Nnode + α2 ·Nedge + α3 (31)

Using another set of data for extrapolation, we found that the prediction error was less than 5%, as
illustrated in Figure 14. This model was then used to simulate the execution time of each snapshot
in our evaluation.

I MEMORY CONSUMPTION

We use torch.cuda.max memory allocated() to analyze the memory consumption during
training. As shown in Table 7, we observed that DYGNEX consistently requires less GPU memory
compared to BLAD across all datasets and models. The primary reason for this difference is that
BLAD simultaneously launches two processes on a single GPU for data loading and training, which
increases the memory requirements.
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Figure 14: Comparison between predicted and measured snapshot training time.

Table 7: Memory Consumption Comparison between DYGNEX and BLAD (in GB)

Model Method Arxiv Products Reddit Stackoverflow

EvolveGCN BLAD 1.14 3.52 9.11 0.67
DYGNEX 0.79 3.10 8.74 0.63

WDGCN BLAD 4.29 14.2 36.07 5.42
DYGNEX 0.76 3.09 8.68 0.63

TGCN BLAD 1.13 3.47 9.02 0.70
DYGNEX 0.77 2.93 8.68 0.63

GAT-LSTM BLAD N/A N/A N/A N/A
DYGNEX 0.79 2.93 8.68 0.63
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