

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 FEDDOR: ORTHOGONAL INITIALIZATION AND DUAL REGULARIZATION FOR PROTOTYPE INTEGRITY IN HET- EROGENEOUS FEDERATED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Heterogeneous Federated Learning (HFL) has garnered significant attention for its potential to leverage decentralized data while preserving privacy. One fundamental challenge in HFL is how to drastically reduce the high communication cost of transmitting model parameters. Prototype-based HFL methods have recently emerged, which exchange only class-wise representations (prototypes) among heterogeneous clients to achieve model training. However, existing methods fail to maintain the semantic integrity of prototypes during the aggregation process, compromising the global model performance in HFL. To overcome the challenge of semantic degradation in prototype aggregation, we propose a novel HFL approach termed FedDOR, which leverages Dual Orthogonal Regularization (DOR) to learn consistent and discriminative prototypes. On the client-side, our key insight is orthogonally initializing prototype embeddings to impose a maximally separated and uniformly distributed prior geometry on the feature space, providing a consistent and optimal learning target. On the server-side, DOR enforces geometric constraints to explicitly minimize intra-class variance while enlarging inter-class separation. Extensive experiments demonstrate that FedDOR achieves superior accuracy over state-of-the-art methods by significant margins, while fully preserving the communication efficiency and privacy advantages of prototype-based federated learning.

1 INTRODUCTION

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models across decentralized data sources while preserving data privacy (Kairouz et al., 2021; McMahan et al., 2017). However, conventional FL methods like FedAvg (McMahan et al., 2017) assume homogeneous client models and data distributions (Zhang et al., 2023b; Ye et al., 2023a). This assumption is often violated in real-world scenarios due to system constraints and data collection processes (Yi et al., 2024; Tan et al., 2022b). Such heterogeneity, including both in data (non-IID) and model architectures, poses significant challenges to collaborative learning (Lu et al., 2024; Li et al., 2024; Zeng et al., 2023), leading to performance degradation and convergence issues (Li et al., 2020; Tan et al., 2022a).

To mitigate these challenges, Heterogeneous Federated Learning (HFL) has been proposed (Abdelmoniem et al., 2023), allowing clients to employ personalized FL methods without sharing raw data (T Dinh et al., 2020; Zhang et al., 2023a; Yang et al., 2023; Li et al., 2021; Collins et al., 2021). In particular, prototype-based methods (Tan et al., 2022b; Zhang et al., 2024b) have gained attention for their communication efficiency and privacy benefits (Cheng et al., 2023). These methods transfer exclusively class-specific prototypes (such as averaged feature representations) rather than full model updates, substantially reducing communication overhead and avoiding direct model leakage (Tan et al., 2022b; Zhu et al., 2021).

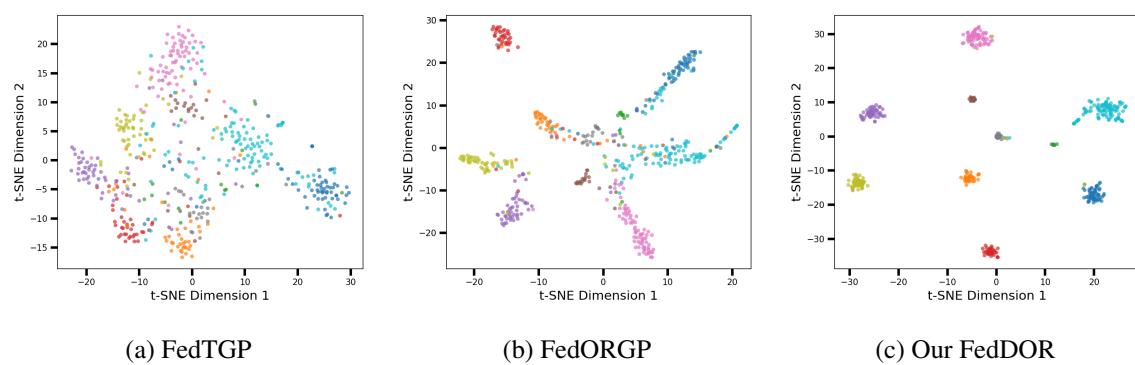


Figure 1: The CIFAR-100 dataset is used to train the model, and then t-SNE (T-distribution random neighborhood embedding) (Maaten & Hinton, 2008) is used to visualize the classification performance of the model for unknown test samples in the feature space. Different colors represent different categories in the scatter chart.(a) Although FedTGP enhances the distinctiveness by increasing the prototype interval between classes, it still lacks sufficient distinctiveness between classes in the feature space. (b) FedORGP has improved the distinguishing ability between categories in the feature space to a certain extent, but some categories still have the feature aliasing phenomenon. (3) Under the FedDOR framework proposed by us, the original indistinguishable categories in the feature space have been significantly improved.

However, naive server-side aggregation, such as weighted averaging, undermines prototype semantics and often causes representation collapse and inter-class overlap under high heterogeneity (Zhang et al., 2024b; Dai et al., 2023). Recent fixes are partial: FedTGP (Zhang et al., 2024b) uses contrastive learning to enlarge Euclidean margins but is misaligned with the angular nature of common classification losses and still fails to fully separate some categories (Fig. 1a). FedORGp (Guo et al., 2025) enforces orthogonality as a soft constraint to encourage angular separation, yet without an explicit geometric prior it still shows feature aliasing and remains sensitive to initialization under distribution shifts (Fig. 1b).

To address these limitations, we propose FedDOR, which generates class prototypes and applies Dual Orthogonal Regularization (DOR) on the server to preserve global semantic integrity. On the client side, we use orthogonal-initialized prototype embeddings and impose uniformly distributed geometric priors. In this process, features and prototypes are L2-normalized onto the unit hypersphere, and the classifier is initialized with orthogonal weights together with a learnable scaling factor to refine decision boundaries. Intra-class orthogonality aligns samples to their prototypes for compactness, while inter-class orthogonality suppresses similarity to mismatched prototypes. Together, these losses enlarge inter-class intervals and reduce initialization sensitivity and class overlap. Figure 1(c) visualizes clearer structural consistency and larger decision margins obtained by our FedDOR under heterogeneity.

We evaluate the proposed method against several state-of-the-art HFL approaches across multiple datasets under varying settings of data heterogeneity (including both practical and Dirichlet-based non-IID partitions) and model heterogeneity (with multiple architecture groups). Experimental results demonstrate that our approach outperforms the best baseline by a significant percentage margin in accuracy under combined statistical and model heterogeneity. Our contributions can be summarized as follows.

- We propose a novel HFL framework that introduces orthogonal initialization for prototype embeddings on the client side, enforcing a maximally separated and uniformly distributed geometric prior in the feature space. Coupled with a server-side category prototype generation and refinement module, it provides consistent and discriminative learning targets across heterogeneous clients.

- We design a dual orthogonal loss mechanism that combines intra-class compactness alignment and inter-class separation enhancement, supported by L2-normalized feature and prototype projection onto a unit hypersphere and a learnable scaling factor to optimize decision boundaries.
- Extensive experiments under various heterogeneous settings demonstrate the superiority of our method in accuracy, convergence stability, and robustness compared to existing prototype-based and aggregation-based HFL methods, effectively mitigating initialization sensitivity and class overlap issues.

2 RELATED WORKS

Heterogeneous Federated Learning. Heterogeneous Federated Learning (HFL) has emerged as a critical framework addressing the challenges of collaborative learning across clients with diverse model architectures and non-IID data distributions (Zhang et al., 2023b; Ye et al., 2023a; Miao et al., 2023; Chen et al., 2024). Research in this domain has evolved along several interconnected paths, each offering distinct approaches to handle system and statistical heterogeneity (Pei et al., 2024; Lu et al., 2024). Initial investigations explored partial model sharing techniques where clients maintain private components while sharing only specific parts of their models (Huang et al., 2024; Ji et al., 2024). FedGH (Yi et al., 2023) represents this direction by learning a generalized global header to facilitate knowledge transfer across heterogeneous clients (Wang et al., 2023). While useful, these methods assume some architectural alignment and can still suffer under high data heterogeneity (Yi et al., 2024; Liao et al., 2024).

The persistent pursuit of greater architectural flexibility has led to the development of various knowledge distillation frameworks (Zhang et al., 2024a; Ye et al., 2023b). FedKD (Wu et al., 2022) employs mutual distillation between clients and servers, creating a communication-efficient alternative that avoids the need for public datasets (Wang et al., 2024b). FedGen (Zhu et al., 2021) extends this direction by leveraging generative models to extract and distribute global knowledge, though its effectiveness depends substantially on the quality of the generated samples (Feng et al., 2025). More recently, prototype-based methods have gained prominence for their communication efficiency and flexibility (Huang et al., 2023; Wang et al., 2024a; Wan et al., 2024). FedProto (Tan et al., 2022b) aggregated local class-specific prototypes via weighted averaging (Wang et al., 2025; Liao et al., 2024), FedTGP (Zhang et al., 2024b) introduced trainable global prototypes with adaptive-margin contrastive learning to improve feature discrimination (Fu et al., 2025), and FedORGP (Guo et al., 2025) incorporated orthogonality regularization for better inter-class separation. Despite these advances, current methods generally overlook the critical role of initial prototype geometry in guiding federated optimization under heterogeneous conditions.

3 METHOD

3.1 PROBLEM STATEMENT AND MOTIVATION

We consider a typical heterogeneous federated learning (HFL) system with a central server and m clients, where each client k has a private dataset \mathcal{D}_k and a model divided into a feature extractor $f_k(\cdot; \phi_k)$ and classifier $h_k(\cdot; \theta_k)$. Following prototype-based HFL (Tan et al., 2022b), each client computes class prototypes as the mean of its features, $\mathbf{p}_k^c = \frac{1}{|\mathcal{D}_k^c|} \sum (x_i, y_i) \in \mathcal{D}_k^c f_k(x_i; \phi_k)$, and uploads them to the server.

The global prototype is commonly obtained by weighted averaging, $\bar{\mathbf{p}}^c = \sum k=1^m \frac{|\mathcal{D}_k^c|}{N^c} \mathbf{p}_k^c$, where N^c is the total number of class- c samples. This naive aggregation has two key drawbacks. It exposes private class distribution information and produces inconsistent prototype magnitudes and directions, which lead to “prototype collapse” and reduced inter-class separability. Motivated by these limitations, we propose a method that rethinks prototype initialization and learning to ensure global prototypes remain discriminative and semantically meaningful during federated training.

141 3.2 ORTHOGONAL INITIALIZATION OF PROTOTYPE EMBEDDINGS
142

143 To overcome the drawbacks of naive aggregation, we introduce a strategic orthogonal initialization for the
144 prototype embeddings on the client-side. Serving as a geometrically optimal prior, this initialization pro-
145 vides consistent and discriminative learning objectives for all heterogeneous clients, starting from the first
146 communication round.

147 Let $\mathbf{W} \in \mathbb{R}^{C \times d}$ represent the matrix of prototype embeddings, where C is the number of categories and
148 d is the feature dimension. Instead of initializing \mathbf{W} randomly or with zeros, we constrain it to be an
149 orthogonal matrix. Specifically, we solve the following optimization problem to maximize the minimum
150 pairwise angular separation among the prototype vectors:

$$151 \max_{\mathbf{W}} \min_{i \neq j} \arccos \left(\frac{\mathbf{w}_i \cdot \mathbf{w}_j}{\|\mathbf{w}_i\| \|\mathbf{w}_j\|} \right) \quad (1)$$

152 subject to $\|\mathbf{w}_e\|_2 = 1, \quad \forall e \in \{1, \dots, C\}$,

153 where \arccos denotes the inverse cosine operation. Specifically, we approximate Eq. 1 by generating points
154 on a unit hypersphere with maximal minimum separation. This yields a set of prototypes that are approxi-
155 mately uniformly distributed on the unit hypersphere, such that any two distinct prototypes \mathbf{w}_i and \mathbf{w}_j are
156 orthogonal or near orthogonal, satisfying $\mathbf{w}_i \cdot \mathbf{w}_j \approx 0$ for $i \neq j$.

160 3.3 LOCAL MODEL UPDATE WITH GLOBAL PROTOTYPE GUIDANCE
161

162 In each local training round, clients update their local models with both their private data and the global
163 prototypes received from the server-side. This procedure ensures that local feature representations remain
164 semantically aligned with the global class-wise prototypes while maintaining discriminative ability.

165 Let \mathcal{D}_k denote the local dataset of client k , $\mathcal{P} = \{\bar{\mathbf{p}}^c\}_{c=1}^C$ be the set of global prototypes. The k -th client's
166 training objective combines the standard cross-entropy loss with a prototype alignment loss, formulated as:

$$167 \mathcal{L}_{\text{local}} = \lambda_{\text{CE}} \cdot \mathcal{L}_{\text{CE}}(h_k(f_k(x; \phi_k); \theta_k), y) + \lambda_{\text{align}} \cdot \mathcal{L}_{\text{align}}(f_k(x; \phi_k), \bar{\mathbf{p}}^y), \quad (2)$$

168 where $(x, y) \in \mathcal{D}_k$, \mathcal{L}_{CE} as the cross-entropy loss, $\mathcal{L}_{\text{align}}$ as the global prototype alignment loss, λ_{CE} and
169 λ_{align} denote the loss balancing factors to control their relative contributions.

172 3.4 GLOBAL PROTOTYPE GENERATION
173

174 Although the standard objective in Eq. 2 can enhance compactness and separation, the global prototype
175 $\bar{\mathbf{p}}^y$ is insufficient to describe diverse semantic knowledge across clients. We further introduce a server-side
176 prototype generation mechanism that produces globally consistent and well-separated class-wise represen-
177 tations. Specifically, the global prototypes are generated collectively through a neural transformation module
178 by $\mathcal{P} = \mathcal{G}(\mathcal{E}; \Omega_{\mathcal{G}})$ where $\mathcal{E} = \{\mathbf{e}^c\}_{c=1}^C \in \mathbb{R}^{C \times d}$ represents a trainable embedding matrix containing ini-
179 tial prototype vectors for all C categories, and \mathcal{G} denotes a lightweight neural network parameterized by
180 $\Omega_{\mathcal{G}}$, comprising two fully connected layers with ReLU activation. \mathcal{G} transforms the initial embeddings into
181 refined global prototypes that better capture the underlying class-wise characteristics across heterogeneous
182 clients. Our proposed generation framework effectively addresses data and model heterogeneity by produc-
183 ing enhanced representations through neural transformation, mitigating prototype misalignment and margin
184 shrinkage.

185 To further leverage the generated global prototypes for promoting feature discriminability, we introduce a
186 dual orthogonal regularization mechanism during server-side training. Given the embedding $f(x) \in \mathbb{R}^d$ of
187 input x and refined global prototypes $\mathcal{E} = \{\mathbf{e}^c\}_{c=1}^C \in \mathbb{R}^{C \times d}$, we design the following two terms:

188 1. The intra-class alignment loss encourages feature representations to be tightly aligned with the re-
 189 fined global prototype of the same class. We maximize the cosine similarity between the normalized
 190 feature vector and the corresponding normalized prototype:

191
$$\mathcal{L}_{\text{intra}} = \frac{1}{B} \sum_{i=1}^B \left(1 - \frac{f(x_i) \cdot \mathbf{e}^{y_i}}{\|f(x_i)\|_2 \times \|\mathbf{e}^{y_i}\|_2} \right), \quad (3)$$

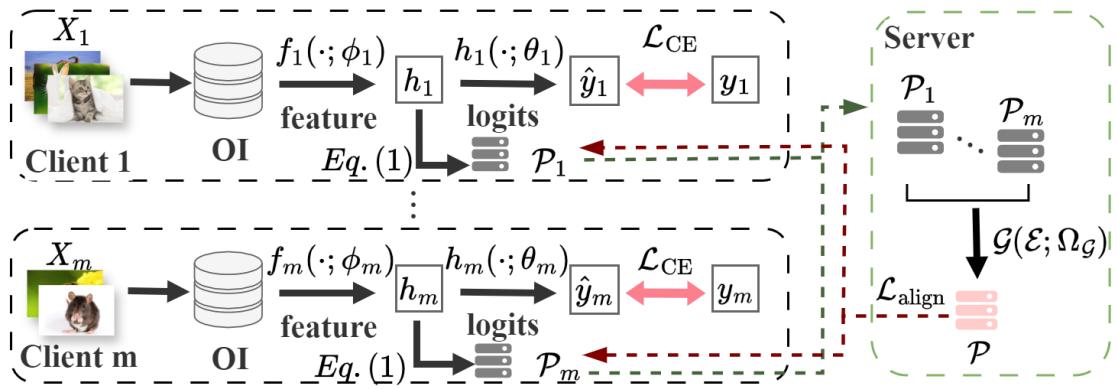
194 where B is the batch size and y_i is the label of x_i . By minimizing Eq. 3, the model is encouraged
 195 to produce feature representations that cluster closely around the corresponding prototypes.

196 2. The inter-class orthogonality loss discourages feature representations from aligning with prototypes
 197 of incorrect classes. Concretely, we enforce inter-class orthogonality by minimizing the absolute
 198 cosine similarity between each feature vector and all non-corresponding prototypes:

199
$$\mathcal{L}_{\text{inter}} = \frac{1}{B} \sum_{i=1}^B \frac{1}{C-1} \sum_{c \neq y_i} \left| \frac{f(x_i) \cdot \mathbf{e}^c}{\|f(x_i)\|_2 \times \|\mathbf{e}^c\|_2} \right|. \quad (4)$$

202 Based on Eq. 4, we foster directional independence across distinct classes, thereby effectively ex-
 203 panding the angular margin separating different classes in the feature space.

204 Finally, we carry out the following optimization objective in the global prototype generation as $\mathcal{L}_{\text{intra}} + \mathcal{L}_{\text{inter}}$.
 205 By combining alignment and orthogonality constraints, $\mathcal{L}_{\text{total}}$ ensures local models learn feature representa-
 206 tions that are semantically consistent and highly discriminative, thereby enhancing both generalization and
 207 personalization in heterogeneous federated learning.



222 Figure 2: This figure illustrates the overall architecture of FedDOR algorithm in heterogeneous environ-
 223 ment, which includes m clients, and each client undertakes different image recognition tasks. The local
 224 model initializes its embedded prototype by orthogonalization (OI), and iteratively updates the local proto-
 225 type set by jointly optimizing cross entropy loss \mathcal{L}_{CE} and consistency loss $\mathcal{L}_{\text{align}}$. Each client uploads the
 226 optimized local prototypes to the central server, and the central server uses orthogonal regularization losses
 227 $\mathcal{L}_{\text{intra}}$ and $\mathcal{L}_{\text{inter}}$ to aggregate them for generating global prototypes. Subsequently, the server broadcasts this
 228 global prototype to all clients, providing auxiliary constraints for subsequent local prototype iteration, and
 229 enhancing the consistency and generalization ability of local prototypes.

230 3.5 FEDDOR FRAMEWORK

231 Building upon the methodological components introduced above, we now present the integrated FedDOR
 232 framework. The framework employs orthogonal initialization for prototype embeddings and utilizes L2 nor-

235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 malization to project both features and prototypes onto a unit hypersphere, enhancing inter-class separation. A learnable scaling factor is incorporated to further optimize the decision boundaries. On the server side, global semantic integrity is ensured through a prototype generation module alongside intra-class and inter-class orthogonality losses, which jointly improve feature compactness and discrimination. The complete framework operates through coordinated server-client interactions as summarized in Algorithm 1 and illustrated in Figure 2.

Algorithm 1 The learning process of FedDOR

Input: Number of clients m , participation ratio γ , global prototypes \mathcal{P} on the server, communication rounds T , local epochs E , hyperparameters λ_{CE} , λ_{align} .
Output: Well-trained client models $\{\theta_k\}_{k=1}^m$.

- 1: Each client initializes prototype embeddings using orthogonal initialization, as formalized in Eq. 1.
- 2: **for** iteration $t = 1, \dots, T$ **do**
- 3: Sample client subset \mathcal{S}^t with $|\mathcal{S}^t| = \lceil \gamma m \rceil$.
- 4: Broadcast global prototypes \mathcal{P} to all clients in \mathcal{S}^t .
- 5: **for** Client $i \in \mathcal{S}^t$ in parallel **do**
- 6: Client i updates its model with Eq. 2.
- 7: Client i calculates prototypes \mathcal{P}_i by Eq. 5.
- 8: Client i sends \mathcal{P}_i to the server.
- 9: **end for**
- 10: Server obtains \mathcal{L}_{intra} and \mathcal{L}_{inter} through Eq. 3 and Eq. 4, respectively.
- 11: Server generates \mathcal{P} by $\mathcal{G}(\mathcal{E}; \Omega_{\mathcal{G}})$.
- 12: **end for**
- 13: **return** Client models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use four widely adopted image classification datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) Flowers102 (Nilsback & Zisserman, 2008), and Tiny-ImageNet (Chrzaszcz et al., 2017). These datasets vary in complexity and number of classes, allowing us to evaluate the robustness of our method across different tasks.

Baselines methods. To evaluate our proposed FedDOR, we compare it with six popular methods that are applicable in HtFL, including FedGen (Zhu et al., 2021), FedKD (Wu et al., 2022), FedProto (Tan et al., 2022b), FedGH(Yi et al., 2023), FedTGP (Zhang et al., 2024b), and FedORGp (Guo et al., 2025).

Model Heterogeneity. To assess the robustness of all methods under model heterogeneity, we construct multiple heterogeneous model groups (MHMG) covering a wide spectrum of architectures and complexities. These groups are designed to simulate realistic federated learning scenarios with diverse client capabilities. The model configurations include: MHMG₂ (FedAvgCNN (Jin et al., 2010), ResNet18 (He et al., 2016)), MHMG₃ (ResNet10 (Zhong et al., 2017), ResNet18, ResNet34), MHMG₄ (FedAvgCNN, GoogleNet, MobileNet_v2 (Sandler et al., 2018), ResNet18), MHMG₈ (FedAvgCNN, GoogleNet (Szegedy et al., 2015), MobileNet_v2, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152), and MHMG₉ (ResNet4, ResNet6, ResNet8, ResNet10, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152). This comprehensive setup

Our FedDOR framework maintains the same efficient communication protocol as FedProto, and only transmits lightweight and low-dimensional class prototypes between clients and the server, which contain basic class information. This design inherently ensures that strong privacy protection and high communication efficiency can be achieved with minimum overhead in the environment with limited bandwidth. In particular, the framework eliminates the need to share any model parameters or original data, and effectively isolates sensitive local information. In addition, the process of generating these highly compressed prototypes through nonlinear mapping is irreversible in nature, which mathematically preventing potential data leakage from inversion attacks.

enables thorough evaluation of each method’s capability to handle varying degrees of model heterogeneity, from lightweight CNNs to very deep residual networks.

Statistical Heterogeneity. To simulate realistic data distribution scenarios in federated learning, we evaluate all methods under two widely-adopted non-IID data partition settings. The first setting follows a pathological non-IID partition strategy, where each client is randomly assigned a fixed number of classes from the total class set. The second setting employs a practical non-IID partition strategy using Dirichlet distribution ($\text{Dir}(\alpha)$) to simulate more nuanced and realistic label imbalance across clients. The concentration parameter α is set to 0.1 to create a high degree of heterogeneity, reflecting challenging and varied data distributions often encountered in real-world federated systems. These configurations allow for a comprehensive assessment of each method’s robustness against statistical heterogeneity.

Training Details. All methods are implemented under a unified framework to ensure fair comparison. For both client and server training, we maintain a consistent batch size of 32 across all experiments. The feature dimension K is set to 512 by default. The federated learning process runs for 100 communication rounds. We employ the SGD optimizer with a learning rate of 0.01 for both client and server optimization. We set $\lambda_{\text{CE}} = 10$ (weight for the classification loss), $\lambda_{\text{align}} = 1$ (weight for the prototype alignment loss) for our FedDOR on all tasks. All experiments are repeated three times, and we report the mean and standard deviation of the best test accuracy.

4.2 PERFORMANCE COMPARISON

Table 1: The test accuracy (%) on four datasets in the pathological and practical settings using the MHMG_8 model group.

Settings	Pathological Setting				Practical Setting			
	Cifar10	Cifar100	Flowers102	Tiny-Imagenet	Cifar10	Cifar100	Flowers102	Tiny-Imagenet
FedGen	83.41 \pm 0.07	55.19 \pm 0.20	59.68 \pm 0.47	31.76 \pm 0.28	85.51 \pm 0.01	40.14 \pm 0.33	48.81 \pm 0.39	24.17 \pm 0.14
FedKD	82.92 \pm 0.66	52.42 \pm 1.24	53.18 \pm 1.21	30.92 \pm 0.91	84.86 \pm 1.11	39.25 \pm 1.43	44.71 \pm 0.96	24.66 \pm 0.64
FedProto	80.73 \pm 0.14	52.62 \pm 0.11	55.69 \pm 0.12	30.24 \pm 0.17	77.92 \pm 2.62	34.37 \pm 0.18	23.14 \pm 0.66	15.10 \pm 0.40
FedGH	83.84 \pm 0.13	54.81 \pm 0.12	58.56 \pm 0.23	31.50 \pm 0.27	85.76 \pm 0.18	39.74 \pm 0.22	47.23 \pm 0.71	23.88 \pm 0.01
FedTGP	85.07 \pm 0.19	53.37 \pm 0.31	58.40 \pm 0.57	29.00 \pm 0.30	85.20 \pm 0.16	38.99 \pm 0.27	49.61 \pm 0.41	22.14 \pm 0.09
FedORG	86.09 \pm 0.31	58.29 \pm 0.10	61.50 \pm 0.32	30.65 \pm 0.11	86.98\pm0.34	40.71 \pm 0.18	48.74 \pm 0.22	21.84 \pm 0.17
Ours	86.28\pm0.06	63.21\pm0.28	64.76\pm0.52	36.15\pm0.43	86.20 \pm 0.08	47.06\pm0.27	52.39\pm0.71	28.63\pm0.19

Table 1 reports the test accuracy of all methods under both pathological and Dirichlet settings. Our method achieves the best results on most datasets and settings. Although FedORG slightly surpasses ours on CIFAR-10 in the practical case, our approach shows clear gains on harder benchmarks. On CIFAR-100 with Dirichlet distribution ($\alpha = 0.1$) it reaches 47.06% accuracy, exceeding FedORG by 6.35%. The improvements are also evident on Flowers102 and Tiny-ImageNet where our method achieves 64.76% and 36.15%, outperforming the strongest baselines by 3.26% and 6.18%. These results verify the effectiveness of our prototype learning framework in handling heterogeneity.

Notably, while FedTGP (Zhang et al., 2024b) is competitive in some cases, it consistently lags behind FedDOR, suggesting that enlarging Euclidean margins alone is insufficient. By contrast, our method achieves better semantic preservation and prototype separation, leading to more stable gains under heterogeneity.

329 Table 2: The test accuracy (%) on Cifar100 in the practical setting using heterogeneous feature extractors,
 330 heterogeneous classifiers, or a large number of clients ($\rho = 0.5$) with the MHMG₈ model group. “Res” is
 331 short for ResNet.

333 Settings	334 Heterogeneous Feature Extractors				335 Heterogeneous Classifiers		336 Large Client Amount	
337	MHMG ₂	MHMG ₃	MHMG ₄	MHMG ₉	338 Res34-HtC ₄	MHMG ₈ -HtC ₄	339 50Clients	100Clients
FedGen	44.33 \pm 0.07	43.52 \pm 0.45	42.76 \pm 0.17	42.25 \pm 0.04	-	-	37.80 \pm 0.17	36.66 \pm 0.02
FedKD	45.24 \pm 0.67	46.00 \pm 0.55	44.15 \pm 0.42	40.92 \pm 1.55	37.78 \pm 0.49	38.21 \pm 1.13	34.65 \pm 1.33	32.01 \pm 0.10
FedProto	40.04 \pm 0.14	36.50 \pm 0.21	38.26 \pm 0.15	27.02 \pm 0.19	34.42 \pm 0.14	30.27 \pm 0.12	18.90 \pm 0.55	14.45 \pm 0.09
FedGH	44.09 \pm 0.10	43.02 \pm 0.13	42.74 \pm 0.20	42.05 \pm 0.18	38.45 \pm 0.06	37.61 \pm 0.14	37.39 \pm 0.33	36.55 \pm 0.17
FedTGP	46.45 \pm 0.18	45.03 \pm 0.25	43.46 \pm 0.44	38.45 \pm 0.09	37.22 \pm 0.27	38.39 \pm 0.24	36.12 \pm 0.23	34.72 \pm 0.05
FedORGP	45.73 \pm 0.17	44.13 \pm 0.32	44.21 \pm 0.29	41.97 \pm 0.33	40.62 \pm 0.46	39.91 \pm 0.35	38.10 \pm 0.18	36.67 \pm 0.29
Ours	50.86\pm0.26	50.32\pm0.07	48.35\pm0.21	43.20\pm0.26	49.51\pm0.10	47.12\pm0.11	41.89\pm0.37	37.93\pm0.44

344 4.3 ROBUSTNESS TO MODEL HETEROGENEITY

345 Table 2 evaluates the robustness of our method on CIFAR-100 under practical settings with different types of
 346 model heterogeneity. For heterogeneous feature extractors, our method achieves 50.86%, 50.32%, 48.35%,
 347 and 43.20% accuracy in MHMG₂, MHMG₃, MHMG₄, and MHMG₉, respectively. Compared with Fed-
 348 Proto, our method shows much smaller performance degradation (7.66% v.s. 17.53%) as the number of
 349 architectures increases, indicating stronger resilience to diverse client models.

350 We further consider classifier heterogeneity. In the Res34-HtC₄ setting, our method reaches 49.51% accu-
 351 racy, clearly outperforming all baselines. More importantly, in the challenging MHMG₈-HtC₄ setting, which
 352 combines eight heterogeneous feature extractors with four heterogeneous classifiers, FedDOR achieves
 353 47.12%, outperforming FedProto by 16.85%. These results confirm our method’s effectiveness in handling
 354 dual heterogeneity, a common challenge in real-world FL deployments.

356 4.4 IMPACT OF LARGE CLIENTS

357 Under large-scale settings with partial participation ($\rho = 0.5$), our method demonstrates excellent scalability
 358 and stability. With 50 clients, we achieve 41.89% accuracy, surpassing FedORGP by 3.79% and FedTGP
 359 by 5.77%. As the system scales to 100 clients, our method maintains 37.93% accuracy, showing only a
 360 3.96% performance decrease compared to the 50-client setting. This represents the smallest performance
 361 degradation among all compared methods, highlighting our approach’s particular suitability for real-world
 362 cross-device federated learning applications where partial participation and large client populations are the
 363 norm rather than the exception. Furthermore, the consistent margins over baselines suggest that our method
 364 effectively mitigates the adverse effects of client drift and stochastic participation. These findings underscore
 365 its robustness in highly dynamic federated environments.

367 4.5 ROBUSTNESS TO NON-IID DATA

368 To evaluate the robustness of our method under varying degrees of statistical heterogeneity among clients.
 369 As shown in Table 3, our method consistently achieves the best accuracy across all non-IID levels. In the
 370 most challenging case ($\alpha = 0.01$), it still reaches 72.17%, while competing methods fall notably behind.
 371 Moreover, even under moderate heterogeneity (e.g., $\alpha = 0.3$), our method outperforms the best baseline by
 372 more than 5%, indicating stable improvements across different scenarios. These results demonstrate that our
 373 orthogonality-constrained prototypes not only preserve class separability under severe distribution shifts but
 374 also enable more reliable knowledge transfer across clients.

376 Table 3: Test accuracy (%) on Cifar100 in the practical setting using the MHMG_8 model group with data
 377 distributions under various degrees of non-IID (α) and feature dimensions (K).
 378

379 Settings	380 Data Distribution Non-IID Degrees				381 Feature Dimension			
	382 $\alpha = 0.5$	383 $\alpha = 0.3$	384 $\alpha = 0.1$	385 $\alpha = 0.01$	386 $K = 128$	387 $K = 256$	388 $K = 512$	389 $K = 1024$
FedGen	21.92 \pm 0.10	27.76 \pm 0.17	40.14 \pm 0.33	65.89 \pm 0.07	39.23 \pm 0.14	39.51 \pm 0.16	40.14 \pm 0.33	40.34 \pm 0.17
FedKD	21.33 \pm 0.91	27.45 \pm 0.77	39.25 \pm 1.43	63.78 \pm 2.01	38.79 \pm 1.26	39.60 \pm 1.47	39.25 \pm 1.43	39.32 \pm 1.47
FedProto	17.44 \pm 0.26	21.95 \pm 0.26	34.37 \pm 0.18	56.84 \pm 0.35	30.25 \pm 0.07	33.16 \pm 0.08	34.37 \pm 0.18	33.88 \pm 0.23
FedGH	21.72 \pm 0.17	27.62 \pm 0.35	39.74 \pm 0.22	65.70 \pm 0.22	38.99 \pm 0.17	39.36 \pm 0.10	39.74 \pm 0.22	39.85 \pm 0.43
FedTGP	19.95 \pm 0.38	26.14 \pm 0.25	38.99 \pm 0.27	66.42 \pm 0.22	36.99 \pm 0.18	37.97 \pm 0.20	38.99 \pm 0.27	39.25 \pm 0.30
FedORG	21.76 \pm 0.09	27.27 \pm 0.26	40.71 \pm 0.18	68.45 \pm 0.32	39.90 \pm 0.19	40.94 \pm 0.39	40.71 \pm 0.18	40.63 \pm 0.14
Ours	25.89\pm0.24	32.86\pm0.14	47.06\pm0.27	72.17\pm0.27	45.43\pm0.48	46.52\pm0.44	47.06\pm0.27	47.00\pm0.14

390 4.6 IMPACT OF FEATURE DIMENSION

391 To evaluate the impact of feature space capacity on model performance, we conduct experiments with different
 392 feature dimensions ($K = 128$ to $K = 1024$) on Cifar100 using the MHMG_8 model group. As a result,
 393 as shown in Table 3, our method consistently outperforms six baseline approaches across all dimensions.
 394 Even under the most constrained setting ($K = 128$), it already surpasses FedORG and FedTGP by a clear
 395 margin. These results indicate that our method can efficiently learn discriminative representations even in
 396 limited feature spaces, maintaining stable performance as feature dimensions increase.
 397

398 4.7 ABLATION STUDY

400 Table 4: The test accuracy (%) in the practical setting using the MHMG_8 model group for ablation study.

	FedProto	w/o OI	w/o DOR	Ours
Cifar100	34.37 \pm 0.18	40.71 \pm 0.18	38.64 \pm 1.00	47.06\pm0.27
Flowers102	23.14 \pm 0.66	48.74 \pm 0.22	49.49 \pm 0.73	52.39\pm0.71
Tiny-Imagenet	15.10 \pm 0.40	21.84 \pm 0.17	22.01 \pm 0.57	28.63\pm0.19

407 Table 4 reports the ablation study on three datasets, verifying the necessity of orthogonal initialization (OI)
 408 and dual orthogonal regularization (DOR). Removing either component leads to substantial accuracy drops,
 409 with DOR having the stronger impact on prototype separability. Our complete method consistently achieves
 410 the best results across all datasets. The gains are more pronounced on complex datasets such as Flow-
 411 ers102 and Tiny-Imagenet, indicating that orthogonal constraints are particularly effective when semantic
 412 structures are diverse. These findings confirm that OI and DOR complement each other: OI provides stable
 413 initialization, while DOR enforces discriminative global prototypes, together enhancing robustness to client
 414 heterogeneity.
 415

416 5 CONCLUSION

418 In this work, we propose FedDOR, a novel HFL method that uses orthogonal initialization and dual orthog-
 419 onality regularization to learn maximally discriminative global prototypes. By enforcing both initial and
 420 ongoing geometric constraints, FedDOR achieves stronger inter-class separation and semantic consistency
 421 than prior prototype-based methods. Experiments show that FedDOR consistently outperforms all baselines
 422 across heterogeneous settings, demonstrating superior accuracy, robustness, and communication efficiency.

423 REFERENCES

425 Ahmed M Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini. A comprehensive empirical
426 study of heterogeneity in federated learning. *IEEE Internet of Things Journal*, 10(16):14071–14083,
427 2023.

428 John J Benedetto and Matthew Fickus. Finite normalized tight frames. *Advances in Computational Mathematics*,
429 18(2):357–385, 2003.

431 Haokun Chen, Yao Zhang, Denis Krompass, Jindong Gu, and Volker Tresp. Feddat: An approach for
432 foundation model finetuning in multi-modal heterogeneous federated learning. In *Proceedings of the
433 AAAI Conference on Artificial Intelligence*, volume 38, pp. 11285–11293, 2024.

434 Dongzhou Cheng, Lei Zhang, Can Bu, Xing Wang, Hao Wu, and Aiguo Song. Protohar: Prototype guided
435 personalized federated learning for human activity recognition. *IEEE Journal of Biomedical and Health
436 Informatics*, 27(8):3900–3911, 2023.

438 Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative
439 to the cifar datasets. *arXiv preprint arXiv:1707.08819*, 2017.

440 Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representations
441 for personalized federated learning. In *International conference on machine learning*, pp. 2089–2099.
442 PMLR, 2021.

444 Yutong Dai, Zeyuan Chen, Junnan Li, Shelby Heinecke, Lichao Sun, and Ran Xu. Tackling data hetero-
445 geneity in federated learning with class prototypes. In *Proceedings of the AAAI Conference on Artificial
446 Intelligence*, volume 37, pp. 7314–7322, 2023.

448 Yu Feng, Yangli-ao Geng, Yifan Zhu, Zongfu Han, Xie Yu, Kaiwen Xue, Haoran Luo, Mengyang Sun,
449 Guangwei Zhang, and Meina Song. Pm-moe: Mixture of experts on private model parameters for person-
450 alized federated learning. In *Proceedings of the ACM on Web Conference 2025*, pp. 134–146, 2025.

451 Lele Fu, Sheng Huang, Yanyi Lai, Tianchi Liao, Chuanfu Zhang, and Chuan Chen. Beyond federated
452 prototype learning: Learnable semantic anchors with hyperspherical contrast for domain-skewed data. In
453 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 16648–16656, 2025.

455 Fucheng Guo, Zeyu Luan, Qing Li, Dan Zhao, and Yong Jiang. Fedorgp: Guiding heterogeneous federated
456 learning with orthogonality regularization on global prototypes. *arXiv preprint arXiv:2502.16119*, 2025.

458 Munawar Hayat, Salman Khan, Syed Waqas Zamir, Jianbing Shen, and Ling Shao. Gaussian affinity for
459 max-margin class imbalanced learning. In *Proceedings of the IEEE/CVF international conference on
460 computer vision*, pp. 6469–6479, 2019.

461 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
462 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

463 Wenke Huang, Mang Ye, Zekun Shi, He Li, and Bo Du. Rethinking federated learning with domain shift:
464 A prototype view. In *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
465 pp. 16312–16322. IEEE, 2023.

467 Wenke Huang, Mang Ye, Zekun Shi, Guancheng Wan, He Li, Bo Du, and Qiang Yang. Federated learning
468 for generalization, robustness, fairness: A survey and benchmark. *IEEE Transactions on Pattern Analysis
469 and Machine Intelligence*, 46:9387–9406, 2024.

470 Shaoxiong Ji, Yue Tan, Teemu Saravirta, Zhiqin Yang, Yixin Liu, Lauri Vasankari, Shirui Pan, Guodong
 471 Long, and Anwar Walid. Emerging trends in federated learning: From model fusion to federated x
 472 learning. *International Journal of Machine Learning and Cybernetics*, 15:3769–3790, 2024.

473

474 Xiao-Bo Jin, Cheng-Lin Liu, and Xinwen Hou. Regularized margin-based conditional log-likelihood loss
 475 for prototype learning. *Pattern Recognition*, 43(7):2428–2438, 2010.

476

477 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
 478 Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
 479 problems in federated learning. *Foundations and trends® in machine learning*, 14(1–2):1–210, 2021.

480

481 Hassan K Khalil and Jessy W Grizzle. *Nonlinear systems*, volume 3. Prentice hall Upper Saddle River, NJ,
 482 2002.

483

484 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009), 2009.

485

486 Harold J Kushner and G George Yin. *Stochastic approximation and recursive algorithms and applications*.
 487 Springer, 2003.

488

489 Gihun Lee, Minchan Jeong, Sangmook Kim, Jaehoon Oh, and Se-Young Yun. Fedsol: Stabilized orthogonal
 490 learning with proximal restrictions in federated learning. In *Proceedings of the IEEE/CVF Conference on
 491 Computer Vision and Pattern Recognition*, pp. 12512–12522, 2024.

492

493 Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. *arXiv preprint
 arXiv:1910.03581*, 2019.

494

495 Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
 496 and future directions. *IEEE signal processing magazine*, 37(3):50–60, 2020.

497

498 Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
 499 through personalization. In *International conference on machine learning*, pp. 6357–6368. PMLR, 2021.

500

501 Xinyan Li, Huimin Zhao, and Wu Deng. Iofl: Intelligent-optimization-based federated learning for non-iid
 502 data. *IEEE Internet of Things Journal*, 11(9):16693–16699, 2024.

503

504 Tianchi Liao, Lele Fu, Jialong Chen, Zhen Wang, Zibin Zheng, and Chuan Chen. A swiss army knife for
 505 heterogeneous federated learning: Flexible coupling via trace norm. *Advances in Neural Information
 506 Processing Systems*, 37:139886–139911, 2024.

507

508 Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion
 509 in federated learning. *Advances in neural information processing systems*, 33:2351–2363, 2020.

510

511 Zili Lu, Heng Pan, Yueyue Dai, Xueming Si, and Yan Zhang. Federated learning with non-iid data: A
 512 survey. *IEEE Internet of Things Journal*, 11:19188–19209, 2024.

513

514 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning
 515 research*, 9(Nov):2579–2605, 2008.

516

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 517 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
 518 and statistics*, pp. 1273–1282. PMLR, 2017.

Jiaxu Miao, Zongxin Yang, Leilei Fan, and Yi Yang. Fedseg: Class-heterogeneous federated learning for
 519 semantic segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 520 recognition*, pp. 8042–8052, 2023.

517 Umberto Michieli and Mete Ozay. Prototype guided federated learning of visual feature representations.
 518 *arXiv preprint arXiv:2105.08982*, 2021.

519

520 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of
 521 classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp. 722–729.
 522 IEEE, 2008.

523 Jiaming Pei, Wenzuan Liu, Jinhai Li, Lukun Wang, and Chao Liu. A review of federated learning methods
 524 in heterogeneous scenarios. *IEEE Transactions on Consumer Electronics*, 70:5983–5999, 2024.

525

526 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, and
 527 Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. *Advances in Neural
 528 Information Processing Systems*, 36:79320–79362, 2023.

529

530 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Movenetv2:
 531 Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on computer vision and
 532 pattern recognition*, pp. 4510–4520, 2018.

533

534 Ronghua Shang, Jingyu Zhong, Weitong Zhang, Songhua Xu, and Yangyang Li. Multilabel feature selection
 535 via shared latent sublabel structure and simultaneous orthogonal basis clustering. *IEEE Transactions on
 536 Neural Networks and Learning Systems*, 36(3):5288–5303, 2024.

537

538 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances in
 539 neural information processing systems*, 30, 2017.

540

541 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Er-
 542 han, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In *Proceedings of
 543 the IEEE conference on computer vision and pattern recognition*, pp. 1–9, 2015.

544

545 Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
 546 *Advances in neural information processing systems*, 33:21394–21405, 2020.

547

548 Alysa Ziyang Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning. *IEEE
 549 transactions on neural networks and learning systems*, 34(12):9587–9603, 2022a.

550

551 Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
 552 Federated prototype learning across heterogeneous clients. In *Proceedings of the AAAI conference on
 553 artificial intelligence*, volume 36, pp. 8432–8440, 2022b.

554

555 Shayne FD Waldron. *An introduction to finite tight frames*. Springer, 2018.

556

557 Guancheng Wan, Wenke Huang, and Mang Ye. Federated graph learning under domain shift with gen-
 558 eralizable prototypes. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp.
 559 15429–15437, 2024.

560

561 Jiaqi Wang, Xingyi Yang, Suhan Cui, Liwei Che, Lingjuan Lyu, Dongkuan DK Xu, and Fenglong Ma.
 562 Towards personalized federated learning via heterogeneous model reassembly. *Advances in Neural Infor-
 563 mation Processing Systems*, 36:29515–29531, 2023.

564

565 Lei Wang, Jieming Bian, Letian Zhang, Chen Chen, and Jie Xu. Taming cross-domain representation vari-
 566 ance in federated prototype learning with heterogeneous data domains. *Advances in Neural Information
 567 Processing Systems*, 37:88348–88372, 2024a.

568

569 Yingchao Wang, Chen Yang, Shulin Lan, Liehuang Zhu, and Yan Zhang. End-edge-cloud collaborative
 570 computing for deep learning: A comprehensive survey. *IEEE Communications Surveys & Tutorials*, 26
 571 (4):2647–2683, 2024b.

564 Zheng Wang, Zihui Wang, Xiaoliang Fan, and Cheng Wang. Federated learning with domain shift eraser. In
 565 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 4978–4987, 2025.
 566

567 Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-efficient federated
 568 learning via knowledge distillation. *Nature communications*, 13(1):2032, 2022.

569 Xiyuan Yang, Wenke Huang, and Mang Ye. Dynamic personalized federated learning with adaptive differ-
 570 ential privacy. *Advances in Neural Information Processing Systems*, 36:72181–72192, 2023.

571 Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. Heterogeneous federated learning: State-
 572 of-the-art and research challenges. *ACM Computing Surveys*, 56(3):1–44, 2023a.

573 Rui Ye, Yaxin Du, Zhenyang Ni, Siheng Chen, and Yanfeng Wang. Fake it till make it: Federated learning
 574 with consensus-oriented generation. *arXiv preprint arXiv:2312.05966*, 2023b.

575 Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han Yu. Fedgh: Heterogeneous federated learning
 576 with generalized global header. In *Proceedings of the 31st ACM international conference on multimedia*,
 577 pp. 8686–8696, 2023.

578 Liping Yi, Han Yu, Chao Ren, Gang Wang, Xiaoxiao Li, et al. Federated model heterogeneous matryoshka
 579 representation learning. *Advances in Neural Information Processing Systems*, 37:66431–66454, 2024.

580 Yan Zeng, Yuankai Mu, Junfeng Yuan, Siyuan Teng, Jilin Zhang, Jian Wan, Yongjian Ren, and Yunquan
 581 Zhang. Adaptive federated learning with non-iid data. *The Computer Journal*, 66(11):2758–2772, 2023.

582 Jianqiao Zhang, Caifeng Shan, and Jungong Han. Fedgmkd: An efficient prototype federated learning frame-
 583 work through knowledge distillation and discrepancy-aware aggregation. *Advances in Neural Information
 584 Processing Systems*, 37:118326–118356, 2024a.

585 Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan. Fedcp:
 586 Separating feature information for personalized federated learning via conditional policy. In *Proceedings
 587 of the 29th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 3249–3261, 2023a.

588 Jianqing Zhang, Yang Liu, Yang Hua, and Jian Cao. Fedtgp: Trainable global prototypes with adaptive-
 589 margin-enhanced contrastive learning for data and model heterogeneity in federated learning. In *Proceed-
 590 ings of the AAAI conference on artificial intelligence*, volume 38, pp. 16768–16776, 2024b.

591 Jie Zhang, Song Guo, Jingcai Guo, Deze Zeng, Jingren Zhou, and Albert Y Zomaya. Towards data-
 592 independent knowledge transfer in model-heterogeneous federated learning. *IEEE Transactions on Com-
 593 puters*, 72(10):2888–2901, 2023b.

594 Zilong Zhong, Jonathan Li, Lingfei Ma, Han Jiang, and He Zhao. Deep residual networks for hyperspectral
 595 image classification. In *2017 IEEE international geoscience and remote sensing symposium (IGARSS)*,
 596 pp. 1824–1827. IEEE, 2017.

597 Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated
 598 learning. In *International conference on machine learning*, pp. 12878–12889. PMLR, 2021.

599

600

601

602

603

604

605 **A APPENDIX**

606

607 **A.1 THE USE OF LARGE LANGUAGE MODELS**

608

609 The language of this paper was polished using large language models (LLMs) to enhance clarity and read-
 610 ability. The final content and academic integrity remain the responsibility of the authors.

611 A.2 HETEROGENEOUS FEDERATED LEARNING
612

613 The landscape of Heterogeneous Federated Learning encompasses multiple methodological families, each
614 with unique characteristics and limitations. Early systematic approaches addressed hardware heterogeneity
615 through shared architectural designs. Among these, LG-FedAvg (McMahan et al., 2017) proposed keeping
616 local lower layers private while aggregating only higher-level layers across participating clients. This method
617 reduced computational overhead but still required maintaining a consistent architectural framework across
618 all devices, which presented practical limitations in fully heterogeneous environments and raised potential
619 privacy concerns regarding model structure exposure.

620 Knowledge distillation methods emerged as a promising alternative to overcome architectural constraints.
621 FedMD (Li & Wang, 2019) pioneered this approach by utilizing a public dataset to align model predictions
622 across heterogeneous clients through logit matching. FedDF (Lin et al., 2020) extended this concept by em-
623 ploying ensemble distillation on the server side to improve model generalization. While effective under ideal
624 conditions, these methods face significant practical limitations due to their dependence on public datasets,
625 which are often unavailable in real-world federated learning scenarios due to privacy regulations and data
626 accessibility constraints. The quality and representativeness of these public datasets substantially influence
627 the performance, making these methods unsuitable for many practical applications.

628 The evolution of HFL methods continues to address these challenges through innovative approaches that
629 balance performance, privacy, and practical applicability. Current research trends indicate growing interest
630 in personalized federated learning, self-supervised techniques, and more sophisticated aggregation mecha-
631 nisms that can better handle the complex interplay between statistical and system heterogeneity in real-world
632 deployment scenarios.

633 A.3 PROTOTYPE LEARNING.
634

635 Prototype learning has been widely adopted in both centralized and federated settings to learn representative
636 embeddings for each class. In conventional centralized learning, prototypes help improve the discriminabil-
637 ity of features through metric learning constraints (Dai et al., 2023; Snell et al., 2017; Michieli & Ozay,
638 2021). In federated learning, prototypes serve as efficient carriers of knowledge that can be aggregated
639 across clients without sharing raw data or model parameters(Tan et al., 2022b). FedProto (Tan et al., 2022b)
640 proposed to compute local prototypes by averaging features of each class and aggregate them on the server
641 via weighted averaging. Nonetheless, naive aggregation often fails to preserve semantic relationships, es-
642 pecially under highly non-IID data. FedTGP (Zhang et al., 2024b) improved prototype discrimination using
643 adaptive-margin-enhanced contrastive learning, which leverages contrastive loss to maximize inter-prototype
644 Euclidean margins(Hayat et al., 2019). Still, these methods do not fully exploit geometric properties such as
645 orthogonality to ensure inter-class separation and semantic consistency.

646 A.4 ORTHOGONAL PROTOTYPE GENERATION.
647

648 As an effective inductive deviation, orthogonality is widely used in machine learning models to reduce fea-
649 ture redundancy and enhance discriminant ability (Qiu et al., 2023). Under the setting of centralized deep
650 learning, it has been proved that applying orthogonal constraints to the weight matrix or feature representa-
651 tion can improve training stability and generalization performance
652 (Shang et al., 2024). Recent studies, such as FedSQL (Lee et al., 2024) and FedORGP (Guo et al., 2025),
653 further introduced the loss function based on orthogonality to promote greater angular boundary between
654 categories. However, these methods are obviously limited in the environment of orthogonal prototype gen-
655 eration. Its representation space lacks clear structural prior and is sensitive to parameter initialization, es-
656 pecially in highly heterogeneous scenes. In our FedDOR, the server integrates the prototype-like feature
657 generation and orthogonal constraint mechanism, and innovatively adopts orthogonal initialization strategy

658 to embed the prototype in the client, thus introducing the maximum separation degree and uniformly dis-
 659 tributed geometric priors into the feature space, effectively promoting clear semantic separation.
 660

661 662 A.5 CHALLENGES IN PROTOTYPE AGGREGATION FOR HETEROGENEOUS FEDERATED LEARNING

663 664 However, naive aggregation mechanisms, such as weighted averaging, compromise the semantic integrity
 665 of prototypes (Zhang et al., 2024b; Dai et al., 2023), often causing representation collapse and inter-class
 666 overlap in the feature space, especially under high heterogeneity (Tan et al., 2022b; Dai et al., 2023). While
 667 recent advances like FedTGP (Zhang et al., 2024b) have employed contrastive learning to improve proto-
 668 type discrimination through Euclidean margin maximization, such approaches remain limited in preserving
 669 semantic structure and are misaligned with the angular characteristics of standard classification losses. As
 670 illustrated in Fig. 1(a), although FedTGP enhances distinctiveness by increasing inter-class prototype mar-
 671 gins, it still fails to achieve sufficient separation between certain categories in the feature space. Another
 672 orthogonal strategy is introduced in FedORGP (Guo et al., 2025), which applies orthogonality regularization
 673 via a loss function to encourage angular separation among global prototypes on the server side. Although
 674 this method improves inter-class discriminability to some extent, it relies solely on soft constraints during
 675 training and does not enforce a geometric prior in the representation space. As shown in Fig. 1(b),
 676 FedORGP still exhibits feature aliasing between some classes, indicating limited generalization under
 677 distribution shifts. As a result, FedORGP remains sensitive to initialization and may converge to suboptimal
 678 prototype configurations, especially under highly heterogeneous settings.

679 680 In order to solve the limitations of existing prototype-based heterogeneous federated learning (HtFL) meth-
 681 682 ods, we propose a new method FedDOR based on class prototype feature generation. This method integrates
 683 684 class prototype generation module and Dual Orthogonal Regularization (DOR) function on the server side
 685 686 to ensure global semantic integrity. On the client side, we innovatively adopt orthogonal initialization proto-
 687 688 type embedding, and provide consistent and more discriminating optimization objectives for the local model
 689 690 by imposing maximum separation and uniformly distributed prior geometric constraints in the feature space.
 691 692 Specifically, this method projects features and prototypes onto the unit hypersphere by L2 normalization,
 693 694 and initializes the classifier by orthogonal weights, which explicitly promotes the feature separation be-
 695 696 tween classes. At the same time, the learnable scaling factor is introduced to further optimize the decision
 697 698 boundary. In addition, intra-class orthogonality loss enhances intra-class compactness by aligning samples
 699 700 with their prototypes, while inter-class orthogonality loss realizes explicit inter-class separation by suppress-
 701 702 ing the similarity with mismatched prototypes. With the cooperation of the above components, FedDOR
 703 704 effectively expands the inter-class interval of client features and overcomes the inherent problems such as
 705 706 initialization sensitivity and category overlap. As shown in Figure 1(c), the original indistinguishable cate-
 707 708 gories under FedDOR framework are effectively separated by significantly improved decision margins and
 709 710 clear structural consistency, thus showing superior and stable convergence performance in a highly hetero-
 711 712 geneous federal environment.

695 A.6 LIMITATIONS OF NAIVE PROTOTYPE AGGREGATION

700 701 We consider a typical Heterogeneous Federated Learning (HFL) system comprising a central server and m
 702 703 clients, where each client k holds a private dataset \mathcal{D}_k and employs a model with heterogeneous architecture.
 704 705 For the client k , the local model is typically divided into a feature extractor $f_k(\cdot; \phi_k)$ parameterized by
 706 707 ϕ_k and a classifier $h_k(\cdot; \theta_k)$ parameterized by θ_k . The objective of HFL is to collaboratively train these
 708 709 heterogeneous local models without exchanging private data or model parameters, while mitigating the
 710 711 performance degradation caused by both statistical and model heterogeneity.

712 713 Following the prototype-based HFL paradigm (Tan et al., 2022b), clients compute and upload class proto-
 714 715 types to the server as a form of knowledge exchange. The prototype for class c on client k is calculated as

705 the mean of feature representations:

706

$$707 \quad \mathbf{p}_k^c = \frac{1}{|\mathcal{D}_k^c|} \sum_{(x_i, y_i) \in \mathcal{D}_k^c} f_k(x_i; \phi_k), \quad (5)$$

708

709 where \mathcal{D}_k^c denotes the subset of data samples belonging to class c on client k .

710 On the server side, the global prototype of class c is commonly obtained by weighted averaging as
 711 $\bar{\mathbf{p}}^c = \sum_{k=1}^m \frac{|\mathcal{D}_k^c|}{N^c} \mathbf{p}_k^c$, where N^c is the total number of samples of class c across all clients. However,
 712 this naive aggregation suffers from two critical drawbacks. First, it requires clients to upload their pri-
 713 vate class distribution information ($|\mathcal{D}_k^c|$), raising privacy concerns. Second, averaging prototypes across
 714 heterogeneous models inevitably produces inconsistent magnitudes and directions, which result in “proto-
 715 type collapse”. Consequently, the global prototypes exhibit diminished inter-class separation and weakened
 716 semantic fidelity, ultimately providing suboptimal guidance for local training and degrading overall per-
 717 formance.

718 Motivated by these limitations, we propose a novel method that fundamentally rethinks the initialization and
 719 learning of prototypes, ensuring that the global prototypes remain maximally separable and semantically
 720 meaningful during the federated training process.

723 A.7 LOCAL MODEL UPDATE WITH GLOBAL PROTOTYPE GUIDANCE

725 To encourage the learned feature representations $f_k(x; \phi_k)$ to align tightly with the global prototype $\bar{\mathbf{p}}^y$ of its
 726 original annotation signal y , we further construct the prototype alignment loss $\mathcal{L}_{\text{align}}$ to optimize inter-class
 727 separation via cosine similarity:

728

$$729 \quad \mathcal{L}_{\text{align}} = \frac{1}{2B} \sum_{i=1}^B \left\| \frac{f_k(x_i; \phi_k)}{\|f_k(x_i; \phi_k)\|_2} - \frac{\bar{\mathbf{p}}^{y_i}}{\|\bar{\mathbf{p}}^{y_i}\|_2} \right\|_2^2, \quad (6)$$

730

731 where B means the training batch size. Based on Eq. 6, we effectively minimize the Euclidean distance be-
 732 tween the normalized feature vectors and their corresponding normalized prototypes. Mathematically, such
 733 an objective is equivalent to maximizing cosine similarity, offering an alternative perspective on alignment.

734 During local training, each client employs stochastic gradient descent to optimize its model parameters
 735 as $\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L}_{\text{local}}$ where η represents the learning rate that controls the step size of the local
 736 optimization. After local training, each prototype $\mathbf{p}_k^c \in \mathbb{R}^d$ is calculated by the mean vector of the features
 737 belonging to the same class. These updated prototypes are then sent to the server for aggregation in the next
 738 communication round.

739 This local update mechanism ensures that each client’s model not only fits its local data but also remains
 740 consistent with the global semantic structure represented by the prototypes, thereby improving both person-
 741 alization and generalization in the federated learning process.

744 A.8 TRAINING CONFIGURATION

745 All experiments are carried out on a Linux workstation based on the x86_64 architecture with Ubuntu as the
 746 operating system. The machine is equipped with an NVIDIA GeForce RTX 3090 GPU (24 GB VRAM)
 747 paired with CUDA 12.1, alongside 64 GB of system memory. This hardware configuration provides suffi-
 748 cient computational power and memory bandwidth to support large-scale federated learning tasks.

749 In our experimental setup, unless otherwise mentioned, we simulate 20 clients with a participation ratio of
 750 $\rho = 1$. Both the client-side models and the central server adopt the SGD optimizer with a fixed learning rate

752 of 0.01. Local updates are performed for a single epoch in each communication round, with a batch size
 753 of 32 applied to both client training (B) and server aggregation (B_p). By default, we employ the MHMG₈
 754 model group to introduce architectural diversity.

755 To study statistical heterogeneity, two data partitioning strategies are considered. In the pathological case,
 756 clients are assigned highly unbalanced label distributions (2/10/10/20 classes per client) drawn from Cifar-
 757 10, Cifar-100, Flowers102, and Tiny-ImageNet. In the practical case, client data are sampled according to
 758 a Dirichlet distribution with concentration parameter $\alpha = 0.1$, which better reflects non-IID conditions in
 759 the real world. Each client dataset is split into 75% for training and 25% for testing. For each algorithm,
 760 we repeat the training three times, each run lasting 100 communication rounds, and report the mean and
 761 variance of the highest test accuracy achieved.

762
 763 Table 5: Test accuracy (%) on Cifar100 in the practical setting using the MHMG₈ model group with different
 764 client training epochs (E).

Settings	Client Training Epochs			
	$E = 1$	$E = 5$	$E = 10$	$E = 20$
FedGen	40.14 \pm 0.33	40.27 \pm 0.22	40.43 \pm 0.23	40.87 \pm 0.13
FedKD	39.25 \pm 1.43	41.05 \pm 0.19	40.21 \pm 0.14	39.11 \pm 0.22
FedProto	34.37 \pm 0.18	37.57 \pm 0.42	37.91 \pm 0.09	37.25 \pm 0.46
FedGH	39.74 \pm 0.22	40.21 \pm 0.06	40.56 \pm 0.07	40.80 \pm 0.16
FedTGP	38.99 \pm 0.27	41.09 \pm 0.17	41.98 \pm 0.44	45.23 \pm 0.22
FedORG	40.71 \pm 0.18	41.28 \pm 0.18	41.60 \pm 0.53	41.69 \pm 0.38
Ours	47.06\pm0.27	47.11\pm0.27	46.99\pm0.10	47.19\pm0.31

778 A.9 IMPACT OF CLIENT TRAINING EPOCHS

779 To evaluate the impact of local computation on model performance, we analyze the effect of varying numbers
 780 of client training epochs (E) using the Cifar100 dataset under the practical setting with the MHMG₈ model
 781 group. As shown in the part of client training rounds in Table 5, we compare our method against six federated
 782 learning approaches with E ranging from 1 to 20, measuring their stability and robustness under extended
 783 local training.

784 Our method demonstrates exceptional stability across all epoch settings, maintaining consistently high ac-
 785 curacy with minimal fluctuation. We achieve 47.06%, 47.11%, 46.99%, and 47.19% accuracy at $E = 1, 5,$
 786 10, and 20 respectively, indicating remarkable resistance to client drift or overfitting despite increased local
 787 computation. In contrast, other methods exhibit varying degrees of performance instability: FedKD shows
 788 significant fluctuation between 39.25% and 41.05% accuracy, while FedTGP, despite showing consistent
 789 improvement from 38.99% to 45.23% with more epochs, still trails our method by 1.96% even at its peak
 790 performance ($E = 20$). FedProto also demonstrates sensitivity to epoch settings, with its accuracy varying
 791 between 34.37% and 37.91%.

793 A.10 HYPERPARAMETER SENSITIVITY

795 The purpose of this experiment is to examine how different weightings of the classification loss λ_{CE} and
 796 the alignment loss λ_{align} affect the overall performance of the model. As shown in Fig. 3, the results,
 797 averaged over three independent runs, indicate that maintaining a moderate balance between the two loss
 798 components consistently leads to better accuracy across all four datasets. The configuration with $\lambda_{CE} = 10$

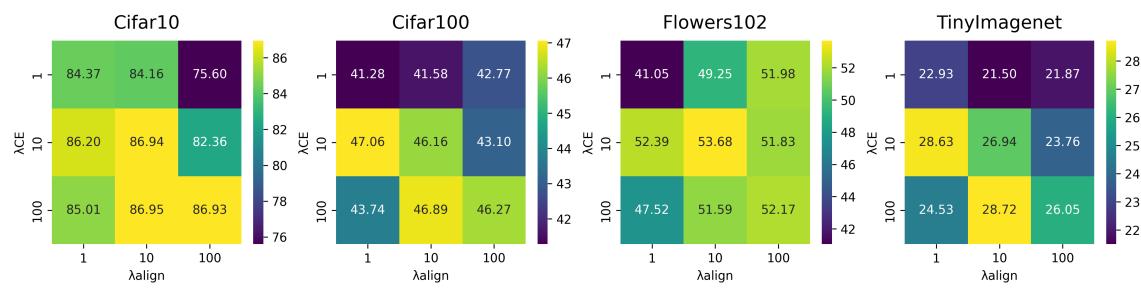


Figure 3: The test accuracy (%) across different datasets under the practical setting, using the MHMG8 model group with varying λ_{CE} or λ_{align} .

and $\lambda_{align} = 1$ achieves strong results, such as 86.20% on Cifar10 and 47.06% on Cifar100. In contrast, assigning excessively large weights to either loss term, for example $\lambda_{align} = 100$ or $\lambda_{CE} = 100$, generally reduces accuracy, suggesting that overemphasizing one objective disrupts the balance between discriminative learning and feature alignment. These observations highlight the importance of choosing well balanced hyperparameters to ensure stable and effective model training.

A.11 IMPACT OF EXTREME PATHOLOGICAL ENVIRONMENT

Table 6: Test accuracy (%) on Cifar100 in the extreme pathological environment with different numbers of classes per client.

Settings	Number of Classes per Client			
	5	10	15	20
FedGen	71.49 \pm 0.20	55.19 \pm 0.20	46.09 \pm 0.28	37.75 \pm 0.30
FedKD	69.17 \pm 1.43	52.42 \pm 1.24	44.90 \pm 0.83	33.90 \pm 1.07
FedProto	70.28 \pm 0.19	52.62 \pm 0.11	43.75 \pm 0.10	35.46 \pm 0.36
FedGH	71.48 \pm 0.15	54.81 \pm 0.12	46.17 \pm 0.22	37.66 \pm 0.27
FedTGP	69.83 \pm 0.20	53.37 \pm 0.31	45.04 \pm 0.35	35.09 \pm 0.29
FedORGP	74.84 \pm 0.33	58.29 \pm 0.10	48.43 \pm 0.56	39.50 \pm 0.23
Ours	77.35 \pm 0.26	63.21 \pm 0.28	53.56 \pm 0.40	46.48 \pm 0.28

To assess the robustness of different federated learning methods under extreme data heterogeneity, we evaluate their performance on CIFAR-100 with varying numbers of classes per client, as shown in Table 6. Specifically, the number of classes per client ranges from 5 to 20, representing increasingly balanced data distributions. As expected, all methods experience performance degradation as the data becomes more skewed. However, FedDOR consistently achieves the best accuracy across all settings, significantly outperforming six strong baselines. Notably, even in the most pathological case (5 classes per client), FedDOR maintains a clear performance margin, demonstrating its superior capability to learn robust and generalizable representations under highly non-IID conditions.

846 Table 7: Test accuracy (%) on Cifar100 in the practical setting using the MHMG₈ model group with different
 847 number of clients (M) and join ratio (ρ).
 848

849 Settings	850 Number of Clients (M) and Join Ratio (ρ)			
	851 $M = 40, \rho = 50\%$	852 $M = 50, \rho = 40\%$	853 $M = 80, \rho = 25\%$	854 $M = 100, \rho = 20\%$
FedGen	40.16 ± 0.16	37.87 ± 0.05	34.41 ± 0.43	35.18 ± 0.02
FedKD	37.06 ± 1.30	34.05 ± 0.73	32.84 ± 1.30	31.25 ± 0.04
FedProto	21.55 ± 0.13	15.06 ± 0.21	13.90 ± 0.84	13.16 ± 0.55
FedGH	39.67 ± 0.25	37.38 ± 0.30	34.12 ± 0.23	—
FedTGP	38.38 ± 0.32	36.01 ± 0.02	33.06 ± 0.09	34.19 ± 0.14
FedORGP	40.98 ± 0.16	38.08 ± 0.20	35.08 ± 0.08	36.49 ± 0.49
Ours(32)	45.46 ± 0.34	41.09 ± 0.60	38.90 ± 0.13	38.86 ± 0.12

859 860 A.12 IMPACT OF CLIENT SCALE AND PARTICIPATION RATIO

861 To evaluate the scalability and robustness of different federated learning methods under practical deployment
 862 conditions, we conduct experiments on CIFAR-100 using the MHMG₈ model group for 200 communication
 863 rounds, with varying numbers of clients (M) and client join ratios (ρ), as shown in Table 7. As the total
 864 number of clients increases and the participation ratio decreases, the overall performance of all methods
 865 tends to decline, reflecting the increasing difficulty in maintaining global model consistency with limited
 866 client participation. It is noteworthy that FedGH fails to converge under the most challenging configuration
 867 ($M = 100, \rho = 20\%$), indicating its instability in large-scale and sparsely participating environments. In
 868 contrast, FedDOR consistently outperforms all baselines across all settings and maintains a stable accuracy
 869 even in this extreme case, demonstrating strong scalability and resilience to partial participation in large-
 870 scale federated systems.

872 873 A.13 EFFECT ON SMALL-SCALE DATASETS

875 Table 8: Test accuracy (%) on MNIST and Fashion-MNIST under pathological setting and practical setting
 876 using the MHMG₈ model group.

877 Settings	878 Pathological Setting		879 Practical Setting	
	880 MNIST	881 Fashion-MNIST	882 MNIST	883 Fashion-MNIST
FedGen	99.44 ± 0.03	99.21 ± 0.02	98.55 ± 0.04	96.55 ± 0.06
FedKD	98.99 ± 0.29	98.92 ± 0.23	97.90 ± 0.47	96.45 ± 0.11
FedProto	99.33 ± 0.04	99.15 ± 0.01	99.34 ± 0.04	86.85 ± 0.28
FedGH	99.46 ± 0.02	99.19 ± 0.05	98.59 ± 0.03	96.44 ± 0.01
FedTGP	99.70 ± 0.02	99.31 ± 0.02	99.22 ± 0.05	96.78 ± 0.07
FedORGP	99.56 ± 0.05	99.30 ± 0.06	98.62 ± 0.08	96.64 ± 0.09
Ours	99.43 ± 0.01	99.05 ± 0.08	98.25 ± 0.10	96.01 ± 0.18

888 To evaluate the stability of the methods on small-scale datasets, we conduct additional evaluations on two
 889 small-scale datasets, MNIST and Fashion-MNIST, under both pathological and practical settings, as shown
 890 in Table 8. Overall, all methods achieve high accuracy on these datasets, reflecting the relative simplicity
 891 of the tasks. Our method, FedDOR, performs competitively with other baselines, and the performance
 892

893 differences among methods are minimal. These results indicate that while FedDOR demonstrates clear
 894 advantages on large-scale datasets, it also maintains reliable and comparable performance on smaller-scale
 895 tasks.

897 A.14 LIMITATIONS

898 While FedDOR demonstrates robust performance across various heterogeneous federated learning scenarios,
 899 we acknowledge specific limitations regarding the feature space capacity. Specifically, when the feature
 900 dimension d is significantly smaller than the number of categories C (i.e., $d < C$), strictly orthogonal proto-
 901 types cannot be constructed in the Euclidean space \mathbb{R}^d . In such "bottleneck" scenarios, the orthogonality
 902 constraints may lead to optimization difficulties or suboptimal equiangularity rather than true orthogonality,
 903 which limits the expressiveness of the learned representations. Future work may explore adaptive dimen-
 904 sion expansion strategies or relax the strict orthogonality to quasi-orthogonality (e.g., via Equiangular Tight
 905 Frames bounds) to mitigate this limitation in highly constrained resource environments.

907 A.15 LOCAL STABILITY OF ORTHOGONAL INITIALIZATION

908 A.15.1 PRELIMINARIES AND NOTATION

909 We adhere to the notation from the main paper. Key elements are summarized and supplemented as follows:

- 910 • Classification Setup: C is the number of classes. d is the feature dimension.
- 911 • Prototypes: $W = \{w_c\}_{c=1}^C \in \mathbb{R}^{C \times d}$ is the matrix of trainable prototype embeddings. Following
 912 the FedDOR algorithm, all prototypes w_c and feature vectors $f(x)$ are L2-normalized onto the unit
 913 sphere \mathbb{S}^{d-1} . We denote normalized vectors as $\hat{w}_c = w_c / \|w_c\|$.
- 914 • Features and Classifier: $R = \{r_j\}$ denotes a set of (normalized) feature vectors from a representa-
 915 tive data batch. Θ collectively represents the parameters of the client-side classifiers.
- 916 • Loss Components: The total training objective combines:

- 917 – Frame Potential (FP): $FP(W) = \sum_{i \neq j} \langle \hat{w}_i, \hat{w}_j \rangle^2$, which encourages an equiangular prototype
 918 configuration.
- 919 – Alignment Loss: $\mathcal{L}_{\text{align}} = \sum_j \left\| \frac{r_j}{\|r_j\|} - \hat{w}_{y_j} \right\|^2$, which pulls features towards their assigned
 920 prototypes.
- 921 – Cross-Entropy Loss: $\mathcal{L}_{\text{CE}}(R, \Theta)$ for classification.

- 922 • Total Energy Function: We analyze the dynamics of the following Lyapunov-like function:

$$923 E(W, R, \Theta) = FP(W) + \alpha \mathcal{L}_{\text{align}}(W, R) + \beta \mathcal{L}_{\text{CE}}(R, \Theta), \quad \alpha, \beta > 0.$$

- 924 • Equilibrium Point: (W^*, R^*, Θ^*) denotes the ideal equilibrium, where:

- 925 1. W^* is the OI configuration, approximating an equiangular tight frame (ETF).
- 926 2. R^* is perfectly aligned, meaning for any sample j from class c , $r_j^* = \hat{w}_c^*$.
- 927 3. Θ^* is an optimal classifier for the aligned features R^* .

- 928 • Tangent Space: $T_{\hat{w}_c} \mathbb{S}^{d-1}$ denotes the tangent space of the unit sphere at \hat{w}_c . Gradient flows for
 929 prototypes are considered as projections onto this manifold.

940 A.15.2 ASSUMPTIONS
941942 The analysis rests on the following standard assumptions:
943

- 944 • (A1) Smoothness: The function $E(W, R, \Theta)$ is twice continuously differentiable in a neighborhood
945 of the equilibrium (W^*, R^*, Θ^*) . Its gradients are Lipschitz continuous.
- 946 • (A2) Manifold Constraints: The dynamics respect the spherical constraints. Gradients w.r.t. w_c are
947 projected onto the tangent space $T_{\hat{w}_c} \mathbb{S}^{d-1}$.
- 948 • (A3) Stochastic Gradient Descent (SGD): The discrete SGD updates are unbiased estimators of the
949 full gradient with bounded variance. The learning rate η is sufficiently small to ensure the dynamics
950 approximate the continuous gradient flow.
- 951 • (A4) OI as Local FP Minimizer: The orthogonal initialization W^* is a strict local minimizer of the
952 Frame Potential $FP(W)$ on the product of spheres $\prod_{c=1}^C \mathbb{S}^{d-1}$. This is justified by the construction
953 of W^* as an approximate equiangular tight frame (Benedetto & Fickus, 2003).

954 A.15.3 SUPPORTING LEMMAS
955956 **Lemma 1 (Strict Local Minimality of FP at OI).**
957958 Under Assumption (A4), the Hessian of $FP(W)$ at W^* , when projected onto the product tangent space
959 $\prod_{c=1}^C T_{\hat{w}_c^*} \mathbb{S}^{d-1}$, is positive definite. Consequently, W^* is a strict local minimizer of $FP(W)$ on the manifold.
960961 The Frame Potential is a smooth function on the compact product manifold $\prod_{c=1}^C \mathbb{S}^{d-1}$. For an exact equiangular
962 tight frame, it is known that the Hessian is positive definite in directions orthogonal to the global isometry
963 group (Benedetto & Fickus, 2003; Waldron, 2018). Since W^* is a close approximation of an ETF by
964 construction (Assumption A4), and the property of positive definiteness is stable under small perturbations,
965 the Hessian at W^* remains positive definite on the tangent space.
966967 **Lemma 2 (Local Convexity of Alignment Loss).**
968969 For a fixed set of features R where each class c has at least d linearly independent samples, the alignment
970 loss $\mathcal{L}_{\text{align}}(W, R)$ is locally strongly convex in each prototype \hat{w}_c on the tangent space $T_{\hat{w}_c} \mathbb{S}^{d-1}$ near the
971 aligned state $R = W$.
972973 For a fixed r_j , the function $\hat{w} \mapsto \|\hat{w} - r_j\|^2$ is linear, hence convex. Its restriction to the sphere is a
974 geodesically convex function near the point r_j . Summing over multiple samples per class ensures that the
975 aggregate Hessian of $\mathcal{L}_{\text{align}}$ on the tangent space has full rank, implying strong convexity.
976977 **Lemma 3 (Feature Dynamics Contract Towards Alignment).**
978979 Consider the combined dynamics from the alignment and cross-entropy losses: $\dot{r}_j = -\nabla_{r_j}(\alpha \mathcal{L}_{\text{align}} + \beta \mathcal{L}_{\text{CE}})$.
980 In a neighborhood of the equilibrium (W^*, R^*, Θ^*) , the component of \dot{r}_j along the direction of $(\hat{w}_{y_j}^* - r_j)$
981 is strictly positive, driving r_j towards $\hat{w}_{y_j}^*$.
982983 The gradient of the alignment loss directly pulls r_j towards \hat{w}_{y_j} : $-\nabla_{r_j} \mathcal{L}_{\text{align}} \propto (\hat{w}_{y_j} - r_j)$. The gradient
984 of the cross-entropy loss, $-\nabla_{r_j} \mathcal{L}_{\text{CE}}$, encourages r_j to align with the classifier weight for the correct
985 class. At equilibrium, this classifier weight is aligned with $\hat{w}_{y_j}^*$. By smoothness (A1), in a neighborhood of
986 equilibrium, the CE gradient has a positive projection onto $(\hat{w}_{y_j}^* - r_j)$. Thus, the combined dynamics are
987 contracting.
988

987 A.15.4 MAIN THEOREM AND PROOF
988989 **Theorem 1 (Local Asymptotic Stability of OI).**990 Let (W^*, R^*, Θ^*) be the OI-induced equilibrium defined in Section A.15.1. Under Assumptions (A1)-(A4),
991 there exists a neighborhood U of this equilibrium such that for any initial condition $(W(0), R(0), \Theta(0)) \in$
992 U , the continuous-time gradient flow

993
$$\dot{W} = -\nabla_W E, \quad \dot{R} = -\nabla_R E, \quad \dot{\Theta} = -\nabla_\Theta E$$

994 converges asymptotically to (W^*, R^*, Θ^*) as $t \rightarrow \infty$. Furthermore, under Assumption (A3), the discrete-
995 time SGD iterations remain within the basin of attraction with high probability and the expected value of E
996 decreases monotonically for sufficiently small learning rates.997 *Proof:*

998 We proceed in four steps.

1000 **Step 1: (W^*, R^*, Θ^*) is a Stationary Point.**

1001 At equilibrium, the following conditions hold by definition:

1002 1. Features are aligned: $r_j^* = \hat{w}_{y_j}^*$ for all j , making $\nabla_R \mathcal{L}_{\text{align}} = 0$.
1003 2. The classifier is optimal: $\nabla_\Theta \mathcal{L}_{\text{CE}} = 0$.
1004 3. The gradient of $FP(W)$ vanishes at W^* (Lemma 1), and the alignment term $\nabla_W \mathcal{L}_{\text{align}}$ also van-
1005 ishes due to perfect alignment.1006 Thus, $\nabla E(W^*, R^*, \Theta^*) = 0$, confirming it is a stationary point.1007 **Step 2: Positive Definiteness of the Restricted Hessian at Equilibrium.**1008 Consider the Hessian $\nabla^2 E(W^*, R^*, \Theta^*)$. We analyze its structure in the combined variable space $Z =$
1009 (W, R, Θ) , projecting gradients for W and R onto their respective tangent spaces.1010 • **W -Block (\mathbf{H}_{WW}):** By Lemma 1, $\nabla_W^2 FP(W^*)$ is positive definite on the tangent space. The
1011 Hessian of $\mathcal{L}_{\text{align}}$ is also positive semidefinite (Lemma 2). Thus, $\mathbf{H}_{WW} = \nabla_W^2 FP + \alpha \nabla_W^2 \mathcal{L}_{\text{align}}$
1012 is positive definite.
• **R -Block (\mathbf{H}_{RR}):** The Hessian $\nabla_R^2 (\alpha \mathcal{L}_{\text{align}} + \beta \mathcal{L}_{\text{CE}})$ is positive definite due to the strong convexity
1013 of $\mathcal{L}_{\text{align}}$ (Lemma 2) and the positive contribution from \mathcal{L}_{CE} near the optimum.
• **Cross-Blocks ($\mathbf{H}_{WR}, \mathbf{H}_{RW}$, etc.):** These blocks are bounded due to smoothness (A1).1014
1015 Let $\mathbf{H} = \begin{bmatrix} \mathbf{H}_{WW} & \mathbf{H}_{WR} & \mathbf{H}_{W\Theta} \\ \mathbf{H}_{RW} & \mathbf{H}_{RR} & \mathbf{H}_{R\Theta} \\ \mathbf{H}_{\Theta W} & \mathbf{H}_{\Theta R} & \mathbf{H}_{\Theta\Theta} \end{bmatrix}$ be the full Hessian. Since the diagonal blocks \mathbf{H}_{WW} and \mathbf{H}_{RR} are
1016 positive definite, and the cross-terms are bounded, there exists a constant $\gamma > 0$ such that if the norms of
1017 the cross-term blocks are sufficiently small relative to the minimal eigenvalues of the diagonal blocks, then
1018 $\mathbf{H} + \mathbf{H}^\top$ is positive definite. This condition can be ensured by choosing the weights α and β appropriately
1019 or by the structure of the problem near equilibrium. Consequently, the Jacobian of the gradient flow, $-\mathbf{H}$, is
1020 negative definite.1021 **Step 3: Local Asymptotic Stability of the Nonlinear System.**1022 The gradient flow $\dot{Z} = -\nabla E(Z)$ is a C^1 vector field. Since its linearization at Z^* is $\delta \dot{Z} = -\mathbf{H} \delta Z$ and $-\mathbf{H}$
1023 is a negative definite matrix (from Step 2), all eigenvalues have negative real parts. By Lyapunov's indirect

1034 method (Khalil & Grizzle, 2002), the equilibrium Z^* is locally asymptotically stable for the nonlinear system. This means there exists a neighborhood U such that any trajectory starting in U converges to Z^* as $t \rightarrow \infty$.

1037 1038 Step 4: Stability under Discrete SGD.

1039 Under Assumption (A3), the discrete SGD updates form a stochastic approximation of the gradient flow. Standard results in stochastic approximation (Kushner & Yin, 2003) state that if the equilibrium is locally asymptotically stable for the flow, the noise is zero-mean with bounded variance, and the learning rate η is sufficiently small (or follows a Robbins-Monro schedule), then the iterates will converge to the equilibrium with high probability. More precisely, for small η , the expected energy satisfies $\mathbb{E}[E_{t+1}] \leq \mathbb{E}[E_t] - c\eta\mathbb{E}[\|\nabla E\|^2] + O(\eta^2)$, ensuring a decrease in expectation and confinement to the basin of attraction.

1046 1047 A.16 ANALYSIS OF ADDITIONAL COMPUTATIONAL COST

1048 This section provides a quantitative analysis of the computational overhead introduced by the two core 1049 components of FedDOR: the one-time client-side Orthogonal Initialization (OI) and the recurrent server- 1050 side prototype generation module $G(E; \Omega_G)$. The analysis confirms that these costs are negligible within a 1051 typical federated learning workload.

1052 1053 A.16.1 COMPUTATIONAL COST OF ORTHOGONAL INITIALIZATION (OI)

1054 The Orthogonal Initialization is a one-time, pre-training step performed by each client. A standard and 1055 computationally efficient method to generate the $C \times d$ orthogonal prototype matrix involves generating a 1056 random matrix from a Gaussian distribution and applying QR decomposition.

- 1057 • **Complexity:** The computational complexity of QR decomposition for a matrix of size $C \times d$ (assuming $d \geq C$) using Householder transformations is approximately $O(C^2d)$ floating-point operations (FLOPs).
- 1058 • **Concrete Example:** For a task like CIFAR-100, where the number of classes $C = 100$ and the 1059 feature dimension $d = 512$, the total FLOPs for OI are $100^2 \times 512 = 5.12 \times 10^6$ FLOPs (≈ 5.12 1060 MFLOPs).
- 1061 • **Comparison:** The cost of a single local training step for a ResNet-18 model (processing a batch of 1062 32 images) is approximately 1.15×10^{11} FLOPs (≈ 115 GFLOPs).
- 1063 • **Conclusion:** The one-time OI cost (≈ 5 MFLOPs) is over four orders of magnitude smaller than 1064 the cost of processing a single batch during local training ($\approx 115,000$ MFLOPs). Its contribution 1065 to the total computational budget is therefore insignificant.

1066 1067 A.16.2 COMPUTATIONAL COST OF THE SERVER-SIDE MODULE $G(E; \Omega_G)$

1068 The server-side module G is a lightweight neural network designed to refine the global prototypes in each 1069 communication round. It consists of two fully connected layers with a ReLU activation, modeled as $d \rightarrow d_{\text{hidden}} \rightarrow d$, and processes each of the C prototypes.

- 1070 • **Complexity:** The FLOPs for a forward pass through two fully connected layers for C vectors are 1071 approximately $C \times (2dd_{\text{hidden}} + 2d_{\text{hidden}}d) = 4Cdd_{\text{hidden}}$. Considering a backward pass cost factor 1072 of 3, the total cost for one update (forward + backward) is approximately $16Cdd_{\text{hidden}}$ FLOPs.
- 1073 • **Concrete Example:** Using $C = 100$, $d = 512$, and a hidden dimension $d_{\text{hidden}} = 512$, the total 1074 FLOPs for G per round are $16 \times 100 \times 512 \times 512 \approx 4.2 \times 10^8$ FLOPs (≈ 420 MFLOPs).

- **Comparison:** The total computation for a single client during one local epoch on CIFAR-100 (with ≈ 2000 images) is approximately 7.2×10^{12} FLOPs (≈ 7.2 TFLOPs).
- **Conclusion:** The server's computational work for module G (≈ 420 MFLOPs) is again four orders of magnitude smaller than the computational work of a single client per communication round ($\approx 7,200,000$ MFLOPs). This server-side step adds no meaningful latency to the overall federated learning process, which is dominated by client-side training and communication.

1088 A.17 CONVERGENCE ANALYSIS

1090 To analyze the convergence of FedDOR, we first introduce the necessary notations and assumptions. Unless
 1091 stated otherwise, we denote the client-side loss function as $\mathcal{L}_k(\mathcal{D}_k, \omega_k, \mathcal{P})$, abbreviated as \mathcal{L}_k , where $\omega_k =$
 1092 (ϕ_k, θ_k) represents the parameters of the feature extractor and classifier of client k , and \mathcal{P} denotes the global
 1093 prototypes.

1094 **Assumption 5 (L-Smoothness).**

1096 For any client k , the local loss function $L_k(w_k, P)$ is L_1 -smooth with respect to its local model parameters
 1097 w_k . That is, for a constant $L_1 > 0$, the following holds:

$$1098 \quad \|\nabla L_k(w_a, P) - \nabla L_k(w_b, P)\| \leq L_1 \|w_a - w_b\|$$

1100 **Assumption 6 (Unbiased Gradient and Bounded Variance).**

1102 The stochastic gradient $g_k(w_k, P)$ computed by client k is an unbiased estimator of the true gradient
 1103 $\nabla L_k(w_k, P)$, and its variance is bounded by a constant $\sigma^2 \geq 0$:

$$1104 \quad \mathbb{E}[g_k(w_k, P)] = \nabla L_k(w_k, P) \quad \text{and} \quad \mathbb{E}[\|g_k(w_k, P) - \nabla L_k(w_k, P)\|^2] \leq \sigma^2$$

1106 **Assumption 7 (Bounded Server-Side Gradient).**

1108 The expected squared norm of the stochastic gradient for the server-side prototype generator G is bounded
 1109 by a constant $G^2 > 0$:

$$1110 \quad \mathbb{E}[\|\nabla L_{\text{server}}(\Omega_g)\|^2] \leq G^2$$

1111 **Assumption 8 (Smoothness of Prototype Generator).**

1113 The server-side prototype generator $G(E; \Omega_g)$ is L_g -Lipschitz continuous with respect to its parameters Ω_g .
 1114 That is, for a constant $L_g > 0$:

$$1115 \quad \|G(E; \Omega_a) - G(E; \Omega_b)\| \leq L_g \|\Omega_a - \Omega_b\|$$

1117 **Lemma 4 (Progress in Local Client Training).**

1119 Under Assumptions 5 and 6, after one round of local training consisting of E epochs with a learning rate
 1120 $\eta < 1/L_1$, the expected local loss function for any client k satisfies:

$$1122 \quad \mathbb{E}[L_k(w_k^{t+1}, P^t)] \leq \mathbb{E}[L_k(w_k^t, P^t)] - C_1 \eta \sum_{e=0}^{E-1} \mathbb{E}[\|\nabla L_k(w_k^{t+e}, P^t)\|^2] + C_2 \eta^2$$

1124 where C_1 and C_2 are positive constants. This lemma shows that the local training procedure effectively
 1125 reduces the client's loss in proportion to the magnitude of its gradients.

1127 **Lemma 5 (Bounded Perturbation from Server Update).**

1128 Under Assumptions 7 and 8, the update of the global prototype from P^t to P^{t+1} introduces a bounded
 1129 change in the clients' objective functions:
 1130

$$1131 \quad \mathbb{E} [|L_k(w, P^{t+1}) - L_k(w, P^t)|] \leq \delta$$

1132 where δ is a small positive constant. This lemma is crucial as it ensures that the learning target for the clients
 1133 remains stable across communication rounds.
 1134

Theorem 2 (Global Convergence of FedDOR).

1136 Under Assumptions 5-8, by choosing a sufficiently small learning rate η , the FedDOR algorithm converges
 1137 to a stationary point. Specifically, the average of the expected squared gradient norms is bounded as follows:
 1138

$$1139 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} [\|\nabla F(w^t)\|^2] \leq \frac{F(w^0) - F^*}{\alpha T} + \beta$$

1141 where $F(w^t)$ is the global loss at round t , and α, β are positive constants.
 1142

1143 The proof follows by applying a telescoping sum to the single-round progress, which is derived from Lemma
 1144 4 and Lemma 5. As $T \rightarrow \infty$, the first term on the right-hand side vanishes, proving that the algorithm
 1145 converges to a neighborhood of a stationary point at a rate of $O(1/T)$.
 1146

1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174