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Abstract

We demonstrate that L2 normalization over feature space can produce capable performance
for Out-of-Distribution (OoD) detection for some models and datasets. Although it does
not demonstrate outright state-of-the-art performance, this method is notable for its ex-
treme simplicity: it requires only two addition lines of code, and does not need specialized
loss functions, image augmentations, outlier exposure or extra parameter tuning. We also
observe that training may be more efficient for some datasets and architectures. Notably,
only 60 epochs with ResNet18 on CIFAR10 (or 100 epochs with ResNet50) can produce
performance within two percentage points (AUROC) of several state-of-the-art methods for
some near and far OoD datasets. We provide theoretical and empirical support for this
method, and demonstrate viability across five architectures and three In-Distribution (ID)
datasets.

1 Introduction

Neural networks give unreliable confidence scores when processing images outside their training distributions,
hindering applications in real-world settings where reliable failure modes are critical (Rabanser et al., 2018;
Chen et al., 2020; Henne et al., 2020). Much work has been done to address this shortcoming. Although
Monte-Carlo Dropout (MCD) and model ensembles were initially popular (Gal and Ghahramani, 2016;
Lakshminarayanan et al., 2017), they have quickly become obsolete. A large, diverse landscape of approaches
has replaced these simpler and well-studied methods, and has improved OoD detection substantially (see
Section 2.2). While recent improvements in detection performance have been remarkable, the complexity
of many methods can be intimidating, and it is not always clear whether leaderboard improvements are
due to external factors such as introducing new or enlarging existing models, hyperparameters, training
schedules or augmentation schemes. This difficulty in assessing real progress is not unique to the OoD
research community, and has already emerged as a concern within the metric learning community (Musgrave
et al., 2020). Our motivation is therefore to provide a method that 1) is simple, 2) shows promise as a
effective and efficient baseline and 3) has theoretical (as well as empirical support) that provides insight that
could be useful for further development.

L2 normalization over feature space has been utilized in the facial recognition literature for several years
but has only recently been explored more generally with respect to OoD detection (Regmi et al., 2023; Park
et al., 2023; Yu et al., 2020) and training efficiency (Haas et al., 2023; Yaras et al., 2023). We build upon this
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Algorithm 1: L2 Normalization of Features

def forward(self, x):
z = self.encoder(x)
featurenorm = torch.norm(z).detach().clone()
z = torch.Functional.normalize(z, p=2, dim=1)
y = self.fc(z)
return y, featurenorm

Figure 1: A Pytorch code snippet illustrating the proposed method, which only requires the addition of two
lines of code to a standard forward function. When training is complete, pre-normalized feature norms can
be sampled along with model predictions in the usual manner. These norms are the OoD score: smaller
norms are more likely to be OoD.

previous work, demonstrating that this method (which requires only two lines of PyTorch code, see Figure 1),
can result in information-rich feature vector norms usable as an OoD scoring method for some architectures
and datasets. We observe that feature magnitudes trained without L2 normalization may be not useful in
this regard, and provide evidence that this is because cross-entropy (CE) loss under Neural Collapse (NC)
promotes equal sized feature norms for all inputs. L2 normalization resolves this by decoupling the magnitude
and direction of feature vectors during training. This satisfies optimal NC equinormality conditions while
allowing feature norms to be highly variable in size. Borrowing insight from Wang et al. (2017a), we show
that norms can grow large due to weight updates during backpropagation. This results in a greater degree
of information encoded in feature norms: intuitively, larger norms for a given image during a forward pass
at test time indicate that the network is more familiar with that input.

A summary of our contributions is as follows:

• A method for OoD detection on small datasets that requires no additional parameters and works as
a simple modification to standard architectures

• A method that is more training efficient for some architectures, most notably ResNet18 and
ResNet50, in which cases far less training is required than other recent methods, some of which
report several hundred more epochs of training than used for our baseline

• A theoretical rationale for the connection between L2 normalization of features, Neural Collapse and
feature magnitudes that we hope can inspire future work in improving how feature information can
be used for OoD detection

2 Background

2.1 Problem Setup

A standard classification model maps images to classes f : x → ŷ, where x = (x1, ..., xn) ∈ XN is the
set of N images, and y = {1, ..., k} ∈ Y N is the set of labels from k classes for these images. The model
is composed of a feature extractor (or encoder) H : x → Rd which maps images to feature space vectors
z = (z1, ..., zn) ∈ ZN , with d being the dimension of the vector. Along with a decision layer W d×k and a
bias term b, this becomes an optimization problem of the form:

min
W,b,z

1
N

∑
N

LCE(Wz + b, yk) (1)

where yk is the label of the correct class, and LCE is the Cross Entropy loss function. Note that the logits
Wz + b are transformed by the softmax function for the entropy computation. For analysis, we consider the
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Method Network SVHN CIFAR100 Accuracy

Mahalanobis (Lee et al.) ResNet34 99.1 90.5 N/A
LogitNorm+ (Wei et al.) ResNet18 97.1 91.0 94.4
FeatureNorm (Yu et al.) ResNet18 97.8 74.5 N/A
KNN+ (Sun et al.) ResNet18 99.5 N/A 95.1
SSD+ (Sehwag et al.) ResNet50 99.9 93.4 94.4
CSI (Tack et al.) ResNet18 99.8 89.2 95.1
Gram (Sastry and Oore) ResNet34 99.5 79.0 N/A
Contrastive Training (Winkens et al.) WideResNet50_4 99.5 92.9 N/A
ERD++ (Tifrea et al.) 3x ResNet20 1.00 95.0 N/A
Transformer + Mahalanobis (Fort et al.) R50+ViT-B_16 99.9 98.5 98.7

L2 Norm 60 ResNet18 97.4 88.7 92.6
L2 Norm 100 ResNet50 98.6 90.4 94.1

Table 1: AUROC scores for baselines trained on CIFAR10 and tested on far OoD (SVHN) and near OoD
(CIFAR100) data sets. Note that ERD++ requires ensembling, the transformer is a far larger model, and
contrastive loss methods require additional training, which places these in a different computation class.
We include them to show that our method compares favourably when considering efficiency. ID accuracy
scores are often not reported for OoD methods. Mahalanobis, FeatureNorm and Gram methods are post-hoc
(independent of training) and accuracy would be as expected for the indicated models. ERD++, KNN+,
CSI and Contrastive Training all employ contrastive loss which would generally improve accuracy.

encoder H as a black box that produces features z which collapse to a Simplex Equiangular Tight Frame
(ETF), as in the Unconstrained Features Model (UFM) (Mixon et al., 2022; Ji et al., 2021). We use VGG16,
ResNet18 and ResNet50, ConvNeXt, and Compact Vision Transformers as encoders (See Section A.1 for
more details) (Hassani et al., 2021; Liu et al., 2022).

To evaluate models, we merge ID and OoD images into a single test set. OoD performance is then a binary
classification task, where we measure how well OoD images can be separated from ID images using a score
derived from our model. Our score in this case is the L2 norm of each image’s unnormalized feature vector
z, which is input to AUROC and FPR95 scoring functions (see Figure 1).

2.2 Related Work

A large number of OoD methods have been published in recent years, and no standard taxonomy for these
exists. We situate our work within this rapidly evolving and expanding landscape of research, which includes
several categories:

• Bayesian - Concerned with approximations of Bayesian statistics to deep learning, such as Monte
Carlo Dropout, Probabilistic Back-Propagation, mean-field approximations, variational inference
methods

• Outlier exposure - Requiring real or synthetic OoD samples during training or tuning of metrics

• Density/Distance methods - Analysis of feature space using density estimation (e.g. normalizing
flows, Gaussian Mixture Models (Mahalanobis distance), or using non-parametric methods such as
euclidean distance or KNNs

• Generative models - Use of a learned implicit (e.g. GANs) or explicit (e.g. normalizing flows)
distribution over the data set, and exploiting this to evaluate the probability of samples

• Augmentation - Changes to input data before model ingestion during training or inference

• Hyperparameters - Use of training regimes, loss functions, optimizers etc.
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• Measurement - Use of parts of the network other than softmax outputs to obtain a confidence
score, or making alterations to softmax outputs to obtain a confidence score

• Architectural - Changes to standard architectures, such as ResNet or Transformers, to affect how
confidence scores are obtained

Several papers falling under multiple of the above categories have explored concepts related to L2 normal-
ization and OoD detection. The face verification community has used L2 normalization over feature space,
noting that it can improve accuracy and face-matching quality during training. Ranjan et al. (2017) use
a scaled L2 normalization layer over features, but provide no insight as to why this improves performance.
Wang et al. (2017b) produce a similar idea, and note that L2 normalization over features can produce arbi-
trarily large gradients without weight decay (an idea which we borrow), but view this more as a side-effect
that needs to be mitigated than a feature. Yu et al. (2020) use L2 norms of features as a score to detect
non-face OoD samples, but implements a modified softmax loss with an "uncertainty branch" and offers no
insight into why the method works.

Haas et al. (2023) study improvements to the Deep Deterministic Uncertainty benchmark Mukhoti et al.
(2021) using L2 normalization of features. They also report an increase in the speed of training and suggest
a connection to Neural Collapse, although the connection is not clear. This analysis is limited to a study of
density estimation over L2-normed feature space using Gaussian Mixture Models applied to ResNet18 and
ResNet50, and does not investigate the utility of feature magnitudes themselves. Their method requires L2
normalization at test time as well as at training time.

Yu et al. (2023) show that using the norm of intermediate network layer outputs (after training) can provide
good far-OoD separability (the method does not work well with near-OoD data), and use pixel-wise shuffled
training data to assess which layer in a particular network may be most suitable. Wei et al. (2022) achieve
good results by L2-normalizing logits during training, in conjunction with a temperature parameter. Finally,
Regmi et al. (2023) concurrently proposed the same method as ours, and provides results for additional
datasets. However, we note that none of these three papers give explanations of why their methods provide
improved OoD separability.

Vaze et al. (2022) briefly offer intuition of why feature norms grow larger for ID examples (larger norms lower
CE loss values; smaller norms hedge against incorrect predictions in hard or uncertain examples). However,
this is is an afterthought in their appendix. Their main contribution is exploiting extreme over-training (600
epochs), augmentation strategies, and learning rate schedules for open-set recognition. We also note that
feature norms do grow larger for ID examples. However, this effect is subtle and not competitive as a scoring
rule on its own, and we explain why theoretically and demonstrate this experimentally.

Park et al. (2023) provide some theoretical analysis as to why feature norms are useful as OoD detectors.
Their two main arguments are that feature norms of layers are equivalent to confidence scores, and that
feature norms tend to be larger for ID examples, regardless of class. However, their analysis again depends
on extreme over training with a cosine annealing schedule (800 epochs for ResNet18 under CE loss), requires
the addition of a multi-layer perceptron (MLP) head (with a much larger output size) to the encoder,
requires a temperature parameter, and does not connect L2 normalization with neural collapse and feature
norm behaviour. We note that adding L2 normalization to the output of an MLP head placed on top of
the encoder is a fundamentally different analysis from encoder output that immediately precedes a decision
layer (for more details, see Ji et al. (2021), Papyan et al. (2020) and Mixon et al. (2022)).

3 Methodology

3.1 Cross Entropy Loss and Neural Collapse

Papyan et al. (2020) demonstrated that Neural Collapse occurs for multiple architecture types and datasets.
We are concerned with the first two properties of NC:
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NC1: Variability collapse: the within-class covariance of each class in feature space approaches zero. In
other words, the longer a model is trained, the more it will collapse each input class to a single point
in feature space. This measurement is defined as:

NC1 = Tr{ΣW Σ†
B\C} (2)

where ΣW is the variance within each class, ΣB is the variance between all classes, Tr is the matrix
trace operator, [·]† indicates the Moore-Penrose pseudoinverse, and C is the number of classes (Figure
2).

NC2: Convergence to a Simplex Equiangular Tight Frame (Simplex ETF): the angles between each pair
of (collapsed) class means are maximized and equal (equiangularity) and the distances of each class
mean from the global mean of classes are equal (equinormality). In other words, class centroids are
placed at maximally equiangular locations on a hypersphere.
The equinormality of class means is given by the coefficient of variation of their norms,

ENmeans = stdc(∥ uc − uG ∥2)
avgc(∥ uc − uG ∥2) (3)

where uc, uG in Rd are the class means and global mean of classes, std and avg are standard deviation
and average operators, and ∥ · ∥2 is the L2-norm operator.
Maximum equiangularity between classes in feature space is measured as:

EAmeans = ∥ G + Ccos − diag{G + Cmax} ∥1

C ∗ (C − 1) (4)

where G is the Gram matrix of normalized class means, Ccos is a matrix with elements −1/(C − 1),
diag returns matrix diagonal, and ∥·∥1 is the L1 norm (Figure 2).

Lu and Steinerberger (2020) and Graf et al. (2021) showed that the lower bound on CE loss is directly tied to
neural collapse. Equality is possible if and only if features collapse to k equal length, maximally equiangular
class vectors and the k decision layer columns in W form a dual space with class vectors up to a scalar:

LCE(Wz + b, yk) ≥ log

(
1 + (k − 1) exp(−ρz

√
k

k − 1 ||W ||F )
)

(5)

where ||W ||F is the Frobenius norm over decision layer weights, ρz ≥ 0, and ||z||2 is less than ρz.

Ji et al. (2021) showed that cross-entropy, without constraints or regularization, is sufficient for convergence
to neural collapse under stochastic gradient descent, but this has also been shown under weight decay and
LP norm constraints (E and Wojtowytsch, 2020; Zhu et al., 2021; Yaras et al., 2023). Note that model
convergence and total neural collapse are not the same. Models approach complete neural collapse through
training, but in some cases training well beyond convergence is required Papyan et al. (2020).

Theoretically, encoders optimized under CE loss will produce feature vectors of equal length and direction
for each class. This means that feature norms will tend to contain class information at the expense of image
information (i.e. information about specific features within each image regardless of its class). Intuitively,
this is unsurprising given that the classification task optimized under CE loss is simply to categorize images
and not to articulate intra-class differences. Still, for some architectures and datasets, it is possible that
equinormality constraints may be relaxed while still allowing good generalization. Loss may not reach its
absolute minimum due to increases in intra-class variability (NC1) or the relative positions of class means
(NC2). This could occur for a number of reasons, including model capacity, dataset complexity, class
imbalances, or a high numbers of classes encoded into a relatively low dimensional feature space (Graf
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Figure 2: Progression of Neural Collapse during training (left to right). Under Cross Entropy loss, features
converge to equinormal and equiangular vectors. Small blue spheres represent extracted features (classes are
different shades of blue), blue ball-and-sticks are class-means, red ball-and-sticks are linear classifiers. The
simplex ETF pictured is on the 2D plane in 3D space, such that each arm is equidistant at 120 degrees.
Image from (Papyan et al., 2020).

et al., 2021). Under these conditions, we speculate that feature norms could be more useful without L2
normalization.

We study cases where feature norms, as a direct measure of input familiarity, can become more useful with
L2 normalization. We show that this is at least the case for several architectures trained on CIFAR10,
CIFAR100 and TinyImageNet datasets. We note that neural collapse is not necessary for our method to
work. Rather, our method allows feature norms to be useful as OoD measures despite the presence of strong
equinormality, when it prevents useful image information from being encoded in feature vectors.

3.2 L2 Normalization: Decoupling Feature Vectors from Equinormality

L2 normalization over features is defined as:

znorm = z

max(∥z∥2, ϵ) (6)

where ϵ is an error term for numerical stability and z is the output of the encoder.

When L2 normalization is applied (during training), the hyper-sphere constraint that exists at optimal CE
loss is already met – there is no need for the model to adjust weights in such a manner as to promote
equinormality. This allows for much greater variability in feature norms.

Wang et al. (2017b) pointed out that L2 normalization during training had the potentially problematic
side-effect of allowing feature magnitudes to grow arbitrarily large in the absence of weight decay. That is,
when features are normalized, the gradient of the loss w.r.t. features is orthogonal to the features:

∂L

∂z
= ∂L

∂znorm

∂znorm

∂z
,

〈
∂L

∂z
, z

〉
= 0 (7)

where L is any loss function and ⟨⟩ denotes an inner product.

The proof of Equation 7 can be found in (Wang et al., 2017a). As a result, all changes to features caused
by gradient adjustments to weights during the backward pass push features along their tangent line to the
hypersphere. This makes features larger (the hypotenuse grows larger with side length, as per Pythagorean
theorem, see Figure 3). During the subsequent forward pass features are normalized, preventing the vari-
ability in feature norms from leading to a sub-optimal loss (i.e. the hypersphere condition is still met). At
the same time, any change to the direction of feature vectors is preserved.

This means that feature vectors are now "decoupled" from the usual optimization dynamics. Feature vectors
(as output from the encoder, upstream from L2 normalization) are not restricted to equinormality and
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Figure 3: (Left) As a result of the orthogonality of the loss w.r.t. features (when L2 normalization is used),
any weight updates that result in changes to features push features along their tangent line to the hypersphere.
This means each backward pass makes features slightly larger, and this trend continues indefinitely in the
absence of weight decay (Image adapted from (Wang et al., 2017a)). (Center) We separate converged features
of the CIFAR10 test set into four groups, based on feature norms. As predicted, features that had the highest
magnitudes at the end of training change the most during training. (Right) Variability of norms decreases
during training to minimize CE loss without L2 normalization (the equinormality condition of NC), however,
it increases during training with L2 normalization.

become correlated with total change due to backpropagation, as per Equation 7. Thus for our use case,
contra Wang et al. (2017b), norm growth is a feature, not a bug. Intuitively, features that grow large
become a measure of how much the network has had to adjust weights that affect the feature representation
of an image. The theory of Coherent Gradient proposed by Chatterjee (2020) argues specifically that weight
updates consistently benefit the broadest number of images: average gradient directions (from batches) are
strongest where the most per-example correspondences occur, and weights are then updated proportionally
to these gradient directions. This means that weight updates are biased toward handling images with the
most common features (See also Chatterjee and Zielinski (2022)). This "common feature" information is then
encoded in norms through L2 normalization, making norms a proxy of how familiar a given input is. Without
L2 normalization, this information is largely discarded from norms due to the neural collapse that occurs
during optimization under CE loss. The strength of this link between common features, weight updates
and feature norm size could depend on several factors, and is not guaranteed for all models or datasets.
These may include model capacity and dataset complexity, as well as anything that would affect gradient
coherence, such as batch size, class imbalances or gradient accumulation in distributed training settings.

Finally, we note that L2 normalization requires no hyperparameter tuning and can benefit training efficiency.
We confirm that model convergence occurs faster in some architectures (We observe this for ResNet18 and
ResNet50), which is in line with findings from Yaras et al. (2023) and Haas et al. (2023). Yaras et al. (2023)
and E and Wojtowytsch (2020) provide theoretical rationale for why norm constraints promote convergence.

4 Experiments

Our results in Table 1 demonstrate that L2 normalization over feature space during training produces
results that compare well with state-of-the-art methods. Notably, L2 normalization results not only in large
performance gains over non-normalized baselines, but these gains happen much faster (Table 4). Training
details for all experiments can be found in A.1.

4.1 Equinormality Under Cross Entropy Loss

The neural collapse behaviour that occurs under cross-entropy training predicts that feature norms should
decrease in variability during the course of training in order to meet the equinormality conditions of optimal
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Figure 4: Plots of feature norms vs softmax scores for all CIFAR10 (blue) and SVHN (orange) test images.
(Left) Allowing feature magnitudes to grow saturates the softmax function, and decreases the headroom
available for separability. This occurs in both L2 and NoL2 models, although saturation is greater in L2
models. (Center) Scaled down features from the NoL2 ResNet18 350 model. (Right) Scaled down features
from the L2 ResNet18 60 model. The nearly linear correlation of feature norm to softmax, in addition to
the more isolated cluster of OoD images, is evidence that more image-level information is retained on a
per-image basis than in NoL2 models.

loss. We observe that the variability of feature norms indeed decreases throughout training in NoL2 models
(Figure 3, Right). However, in the L2 case variability increases as training progresses, since equinormality
is already optimal due to normalized features and features are free to grow as described in Section 3.2.

Even though there is a clear mechanism that makes feature norms larger and more variable during training
under L2 normalization, the question remains as to why OoD detection works much more poorly without it in
some models and datasets. Specifically, one might speculate that even though CE loss has an equinormality
condition, OoD features would still activate convolutions to a smaller degree, and thus generally result in
smaller feature norms. The results in Table 4 show that this is somewhat the case: separability is above
random chance still but performs poorly. We hypothesize that equinormality is achieved largely through
norm invariance to inputs: the network develops convolutions in such a manner as to generate similar sized
feature norms under a variety of ID and OoD inputs.

To test this, we compare feature norms from CIFAR10, SVHN, pixel-scrambled CIFAR10, and Gaussian
noise. The results are shown in Figure 5. In NoL2 models, norms are almost the same average size across
all datasets and variability within datasets is limited. This changes markedly in L2 models, where ID
images have substantial variation amongst norms, but also much larger norms (on average) for ID data.
As expected, models attempt to produce invariant norms as predicted by neural collapse. Most notably,
this behaviour encourages these models to produce the same sized norms regardless of input, limiting the
information encoded in features.

4.2 Norm Growth During Training

We first test whether Equation 7 holds empirically. In an L2 model, we expect that pre-normalized feature
norms taken from a converged model would be largest when features for those images changed the most
during training, due to orthogonal gradient updates.

To test this, we use a converged L2 60 model. CIFAR10 training images were separated by their converged
feature norms into four categories: low in [0,10), low-mid in [10,20), high-mid in [20,30) and high in [40,
...]. These images were then run through saved model checkpoints at each epoch and the respective total
changes of each group were calculated from one epoch to the next. Total change ∆m per norm group m was
then calculated as the mean of the squared difference of features at consecutive epochs during training:

∆m =
∑

i

1
Nm

(Zm,i − Zm,i−1)2 (8)
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Figure 5: Comparison of norms under NoL2 ResNet18 350 (left) and L2 ResNet 60(right) models, four
datasets (CIFAR10 Test, SVHN, Gaussian noise and pixel-wise scrambled CIFAR10 Test). We hypothesize
that models without L2 normalization generate norms that are invariant to inputs in order to meet the
equinormality condition of CE loss. Our results support this claim: all datasets have roughly equivalently
sized norms on average with very little variation amongst them. When L2 normalization is used during
training, ID norms (measured prior to normalization) grow large and have high variability, while OoD norms
are much smaller. The sensitivity of convolutions to features is not being conditioned/suppressed to produce
equinormality in the latter case, which results in richer feature-level information and better OoD detection.

where i is the epoch of the model checkpoint and Zm,i is the matrix of N feature vectors in norm group m
at epoch i.

As predicted, features with more change during training have larger magnitudes (Figure 3). We observe
that this behaviour is not present when training without L2 normalization. Instead, although feature change
differs slightly earlier in training, features experience roughly equal amounts of change if measured through
to model convergence (Figure 6).

4.3 Image Information Encoded in Features

We hypothesized in Section 3 that what we call image information (i.e. information about the particular
characteristics of an image, as opposed to information that is simply which class an image belongs to) is
discarded for some architectures and datasets due to the optimization behaviour of cross-entropy loss. To
assess this, we measure the relationships between feature norms and model confidence as well as feature
norms and model accuracy.

To examine this in L2 models, we measure the pre-normalized features. Here, we first need to reduce the
softmax saturation caused by these larger norms. This saturation arises because logits are the dot-product
of features and decision layer weights – if features increase in size, logits increase correspondingly, and
this results softmax scores being compressed at the high end (See (Figure 4, Left). Reducing saturation is
therefore a simple, uniform downscaling of feature vectors. Note that noL2 models require no downscaling,
as features were not normalized to begin with, and are thus measured in the regular state.

Plotting feature norms versus per-image maximum softmax scores, we observe that feature norms from L2
models provide a wider range of softmax scores than their counterparts without L2. Moreover, the correlation
is nearly perfectly linear in the L2 case (Figure 4). This wider, more uniform softmax score coverage in the
L2 case is evidence that image information is being collapsed into class information to a much smaller degree.
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Figure 6: Feature change during training for four categories of norms in NoL2 models: low in [0,5), low-mid
in [5,7), high-mid in [7,9) and high in [9, ...] (Note that these ranges differ from the L2 models as those norms
are much larger). (Left) results from a NoL2 ResNet18 60 model, (Right) results from a NoL2 ResNet18 350
model. Unlike the L2 models, a larger change in features during training does not result in larger feature
norms. In the first 60 epochs of training this trend is slightly reversed compared to the L2 model, but over
training to full convergence (350 epochs) all norm size categories become roughly equal in the total amounts
of change measured. Much more neural collapse occurs from 60 to 350 epochs, so it is likely that this equality
is a because of the equinormality constraint of CE loss.

We also note improved OoD detection performance between noL2 and L2 models when using softmax scores,
although these don’t work quite as well as norms (Table 4, create a table with noL2 softmax baselines).

Comparisons of feature norms with prediction accuracy provide further evidence of our hypothesis. In this
case, we take feature norms and group them into 125 evenly sized bins, and then calculate the average
accuracy per bin (Figure 7. Accuracy tends to improve with norm size for the NoL2 350 model but the trend
is very noisy, particularly with smaller norms. For the L2 case, there is a nearly monotonic relationship
between norm size and accuracy. This is further evidence that feature norms contain more image information
in the L2 case.

The question remains as to why exactly the amount of change to features over training correlates so strongly
with both model confidence and accuracy for L2 models. We speculate some combination of 1) features that
have moved around more are more likely to be closer to decision points because more effort has been invested
in placing them there and 2) "common" features exist (i.e. features that provide strong class signals across
many images) that have their respective weights updated more often because of their presence across so
many batches. This view is supported by the Coherent Gradient theory, as noted above (Chatterjee, 2020).
Intuitively, it is possible that images with low confidence also have rare and/or noisy features, and updates
to the respective weights simply participate in backpropagation less often and in a less prominent manner.
A causal analysis of the exact mechanism is left for future work.

5 Conclusion

Our results in Table 1 demonstrate that L2 normalization over feature space during training can produce
OoD detection results that perform well for some architectures and datasets. We provide a theoretical
rationale for this behaviour, and observe that this is due to the inclusion of more image information in
feature norms than is afforded in standard CE loss training regimes. Notably, this method requires nominal
additional computation, no complex architecture changes or loss functions, no extra parameter tuning and
no augmentation schemes. We believe that further study into the relationships between neural collapse and
normalization could lead to substantial improvements in OoD methods that employ feature vectors for OoD
detection.
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Figure 7: Feature norm vs. prediction accuracy for ResNet18 models with and without L2 normalization
on CIFAR10 test data. Test images are grouped into 125 equal sized bins, and the accuracy of each bin is
calculated. (Left) accuracy tends to improve with norm size for the NoL2 350 model but the trend is noisy,
particularly with smaller norms. (Right) There is a nearly monotonic relationship between norm size and
accuracy.
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A Appendix

A.1 Training Details

All CIFAR 10 ResNet and VGG experiments use fifteen randomly initialized models trained with Cross
Entropy (CE) loss unless otherwise noted. Training employed an SGD optimizer initialized to a learning
rate of 1e-1 with gamma=0.1, and with stepdowns at 40 and 50 epochs for 60 epoch models, 75 and 90
epochs for 100 epoch models, and at 150 and 250 epochs for 350 epoch models. All ResNet models use
spectral normalization, global average pooling, and Leaky ReLUs, as these have shown to produce strong
baseline performance (Mukhoti et al., 2021; Haas et al., 2023). We apply these strategies to LogitNorm,
and demonstrate a small improvement, so we report the stronger baseline for that method which we call
LogitNorm+ (Table 1). A batch size of 1024 was used wherever permitted by GPU RAM, but LogitNorm
models were trained with a batch size of 128 as per the original paper’s recommendations (Wei et al., 2022).
ResNet50 used a batch size of 768 for CIFAR10 and 512 for TinyImageNet.

The Compact Convolutional Transformers were trained from five random initializations with cosine annealing
for 300 epochs, in distributed mode parallel with batch sizes of 128. The code for these models and the
training regime can be found at https://github.com/SHI-Labs/Compact-Transformers.

ConvNeXt(Tiny) was modified from its default PyTorch implementation so that it would converge better on
CIFAR10. The kernel size of the first layer was lowered from 4 to 3, the stride was lowered from 4 to 2. All
other kernel sizes were lowered from 7 to 3. It was trained using a single cosine annealing schedule with the
AdamW optimizer.

All other baselines are reported as per their respective papers.

A.2 Measuring Decoupled Feature Norms

SVHN CIFAR100 TinyImageNet
Method Norm SM Norm SM Norm SM
VGG16 95.8 / 28.5 94.8 / 36.4 88.4 / 59.1 87.9 / 60.8 89.9 / 50.9 89.3 / 53.6
ResNet18 97.4 / 14.8 96.8 / 18.8 88.7 / 55.4 88.7 / 55.9 91.1 / 44.6 90.7 / 47.1
ResNet50 98.6 / 7.80 98.5 / 9.10 90.4 / 49.3 90.5 / 49.5 91.9 / 43.8 91.9 / 43.4

Table 2: Comparison of L2 models with AUROC/FPR95 scores, using feature norms and softmax as scoring
rules. VGG16 and L2 ResNet18 are trained for 60 epochs, and ResNet50 is trained for 100 epochs. Scaled
softmax performs comparably, but is slightly worse in general. Note that for the softmax case, norms must
be scaled down to mitigate saturation, and this requires tuning the scaling parameter on test data.

SVHN CIFAR100
Method Norm - Feature Norm - Logits MaxLogit Norm - Feature Norm - Logits MaxLogit
Min 96.3 / 6.93 95.9 / 7.51 95.6 / 9.12 88.2 / 52.1 88.5 / 51.0 88.3 / 52.6
Max 98.6 / 23.5 98.4 / 24.3 98.1 / 27.9 89.4 / 57.6 89.5 / 56.3 89.4 / 57.9
Mean 97.4 / 14.8 97.2 / 15.9 96.9 / 18.7 88.7 / 55.4 88.9 / 53.9 88.8 / 55.8

Table 3: Comparison of feature norm, logit norm and MaxLogit measurements over 15 ResNet18 L2 60
model seeds, for AUROC / FPR95 metrics. Using logit norms or MaxLogit provides no benefits over feature
norms for near or far-OoD data.

The question of how best to measure this increased, feature-level information remains. Several papers,
beginning with Hendrycks et al. (2019), report strategies based on taking the maximum logit (MaxLogit)
(Vaze et al., 2022; Jung et al., 2021; Zhang and Xiang, 2023). Measuring the norm of the logits or the
maximum softmax score are also options.
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Softmax measurements are problematic for two reasons. First, the model is incentivized to increase weight
size in the decision layer to reduce loss, as per Equation 5. This increases saturation of softmax outputs
(see Figure 4), since logits are a dot product of feature vectors with the columns of decision layer weights.
Secondly, in order to maximize the benefits of feature magnitudes, normalization must be turned off at test
time. Substantially larger features easily saturate the softmax, removing much of the dynamic range needed
to separate OoD examples. A few options exist for mitigating softmax saturation, including normalization
of decision layer weights, weight decay and feature scaling.

Scaling these features down (which requires a post-hoc estimate of the optimal scaling value) produces
a nearly linear correlation between softmax scores and feature magnitudes. This greatly improves OoD
separation with softmax scores, but measuring magnitudes directly still gives a very small advantage (Table
2). While interesting, we don’t see any practical use for this approach, and it does not improve accuracy.
We also experimented with using L2 normalization over decision weights and larger weight decay values for
the optimizer with the hope of mitigating saturation, but these required more training time and resulted in
worse performance. In our estimation, the best approach is to measure the feature norms directly. This is
the most direct source of information about the inputs. Neural collapse stipulates that the decision layer
will form a dual space (up to a scalar) of the simplex ETF in feature space (Papyan et al., 2020): taking
measurements from the decision layer and lower should add no substantial information, as is supported by
our experimental results. Furthermore, we see no benefit to the additional complexity added by adjusting
features or logits with scaling or softmax temperature terms.

A.3 Additional Results

SVHN CIFAR100 TinyImageNet Accuracy
Method No L2 L2 No L2 L2 No L2 L2 No L2 L2
VGG16 82.4 / 72.2 95.8 / 28.5 84.4 / 63.1 88.4 / 59.1 86.4 / 57.0 89.9 / 50.9 92.4 92.0
ResNet18 (60) 77.8 / 76.6 97.4 / 14.8 81.0 / 66.5 88.7 / 55.4 80.5 / 67.3 91.1 / 44.6 93.7 92.6
ResNet50 (100) 85.8 / 51.7 98.6 / 7.80 77.7 / 66.1 90.4 / 49.3 77.8 / 64.3 91.9 / 43.8 93.8 94.1
ResNet18 (350) 77.8 / 76.6 96.0 / 25.2 81.0 / 66.5 89.7 / 53.4 80.5 / 67.3 90.4 / 46.9 93.7 93.4
ResNet50 (350) 85.8 / 51.7 96.1 / 24.8 77.7 / 66.1 88.9 / 54.6 77.8 / 64.3 89.3 / 50.4 93.8 94.6
CCT_7_3x1 62.2 / 85.7 92.0 / 62.9 70.9 / 75.9 89.7 / 53.1 76.3 / 65.0 91.1 / 44.0 96.4 96.4
ConvNeXt_Tiny* 82.1 / 81.3 88.4 / 68.9 82.2 / 74.0 85.5 / 68.2 83.3 / 70.3 85.5 / 64.2 88.2 89.2

Table 4: Comparison of models under L2 intervention for AUROC (higher is better) / FPR95 (lower is
better) scores, using feature norms as the scoring rule. L2 models produce substantially better OoD results
in most cases. Bracketd numbers indicate training epochs used for the L2 case.

SVHN CIFAR100 TinyImageNet Accuracy
Model No L2 L2 No L2 L2 No L2 L2 No L2 L2
ResNet18 50.5 / 93.3 95.6 / 20.5 45.7 / 91.2 93.6 / 19.9 49.4 / 88.5 94.8 / 17.4 84.7 82.8

Table 5: Comparison of L2 vs NoL2 ResNet18 models, when both are trained on the German Traffic Sign
Recognition Benchmark (GTSRB) for 60 epochs. AUROC (higher is better) / FPR95 (lower is better) scores
are shown, using feature norms as the scoring rule.

SVHN CIFAR100 Accuracy
Model No L2 L2 No L2 L2 No L2 L2
ResNet18 65.7 / 90.2 85.4 / 51.3 63.5 / 88.8 62.0 / 91.3 46.5 39.9
ResNet50 68.5 / 79.9 85.9 / 45.3 66.2 / 86.5 64.8 / 91.3 52.5 49.1

Table 6: Comparison of L2 vs NoL2 ResNet18 models, when both are trained on TinyImageNet for 60
epochs. AUROC (higher is better) / FPR95 (lower is better) scores are shown, using feature norms as the
scoring rule.
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SVHN CIFAR10 TinyImageNet Accuracy
Model No L2 L2 No L2 L2 No L2 L2 No L2 L2
ResNet50 83.0 / 63.9 91.1 / 52.6 73.2 / 84.5 77.1 / 80.9 73.4 / 82.8 84.2 / 66.6 74.2 74.7

Table 7: AUROC (higher is better) / FPR95 (lower is better) results for CIFAR100 on NoL2 ResNet50 350
and L2 ResNet50 150 models.

SVHN CIFAR100 TinyImageNet Accuracy
Model NoL2 L2 NoL2 L2 NoL2 L2 NoL2 L2
ResNet18 65.6 / 92.9 97.4 / 14.8 77.1 / 80.6 88.7 / 55.4 80.4 / 75.4 91.1 / 44.6 89.8 92.6

Table 8: Comparison of L2 vs NoL2 ResNet18 models, when both are trained for only 60 epochs. AU-
ROC/FPR95 scores are shown, using feature norms as the scoring rule. L2 normalization substantially
speeds up feature learning, and also improves OoD performance. After only 60 epochs, OoD performance is
better than NoL2 models trained for the full 350 epochs, and accuracy is nearly as good (see Table 4).
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