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ABSTRACT

We propose the first method to adaptively modify the duration of a given speech
signal. Our approach uses a Bayesian framework to define a latent attention map
that links frames of the input and target utterances. We train a masked convolu-
tional encoder-decoder network to generate this attention map via a stochastic ver-
sion of the mean absolute error loss function. Our model also predicts the length
of the target speech signal using the encoder embeddings, which determines the
number of time steps for the decoding operation. During testing, we generate the
attention map as a proxy for the similarity matrix between the given input speech
and an unknown target speech signal. Using this similarity matrix, we compute a
warping path of alignment between the two signals. Our experiments demonstrate
that this adaptive framework produces similar results to dynamic time warping,
which relies on a known target signal, on both voice conversion and emotion con-
version tasks. We also show that the modified speech utterances achieve high user
quality ratings, thus highlighting the practical utility of our method.

1 INTRODUCTION

Human speech is a rich and varied mode of communication that encompasses both lan-
guage/semantic information and the mood/intent of the speaker. The latter is primarily conveyed
by prosodic features, such as pitch, energy, speaking rate, and voice quality. There are many appli-
cations where understanding and manipulating these prosodic features is required. Consider voice
conversion systems as an example. Pitch and energy modifications are used to passively inject emo-
tional cues into the neutral speech or to change the overall speaking style (A. Russell et al., 2003;
Schacter et al., 2011; Shankar et al., 2019a;b; Valle et al., 2019). Prosodic features are also used to
evaluate the quality/engagement in human machine dialog systems (Swerts & Krahmer, 2000), and
they play a significant role in speaker identification and recognition systems (Park et al., 2016).

While there are many approaches for automated pitch and energy modification (Toda et al., 2007; Ai-
hara et al., 2012; Kaneko & Kameoka, 2017; Shankar et al., 2020b;a), comparatively little progress
has been made in changing the duration/speaking rate of an utterance. In fact, the speaking rate
plays a crucial role in conveying emotions (Schmidt et al., 2016) and in diagnosing human speech
pathologies (Bayerl et al., 2020). The speaking rate is difficult to manipulate because, unlike pitch
or energy, there is no explicit coding for either the signal duration or speaking rhythm. Rather, these
features are implicitly defined by the cardinality of the set of frames over a particular interval of
interest. This cardinality is a global parameter that masks subtle variations in the speaker rate over
an utterance. As a result, duration modification algorithms are not adaptive. Instead, they either
require considerable user supervision or they are geared towards aligning to known speech signals.

Perhaps the earliest duration modification method is the time-domain pitch synchronous overlap
and add (TD-PSOLA) algorithm (Charpentier & Stella, 1986). TD-PSOLA modifies the pitch and
duration of a speech signal by replicating and interpolating between individual frames centered at
the peaks of auto-correlation signal. However, the user must manually specify both the portion of
speech to modify and the exact manner in which it should be altered. Hence, the method is nei-
ther automated nor adaptive. An alternative approach is dynamic time warping (DTW), which finds
the optimal time alignment between two parallel speech utterances (dtw, 2008). DTW constructs a
pairwise similarity matrix between all frames of the two utterances and estimates a warping path
between the starting (0, 0) and ending (Ts, Tt) points of the utterances based on a Viterbi-like de-
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Figure 1: Graphical model for duration modification. γ and θ are the model parameters inferred
during training. Attention At is conditionally independent of target length T given X and M

coding of the similarity matrix. While simple, DTW requires both the source and target utterances
to be known a priori. Hence, it cannot be used for on-the-fly modification of new signals.

Finally, recent advancements in deep learning have led to a new generation of neural vocoders
that disentangle the semantic content from the speaking style (Oord et al., 2016; Shen et al., 2017;
Wang et al., 2017). These vocoders can alter the speaking rate via the learned style embeddings.
While these models represent seminal contributions to speech synthesis, the latent representations
are learned in an unsupervised manner, which makes it difficult to control the output speaking style
in predictable manner. Another drawback of these methods is the large amount of data and compu-
tational resources required to train the models and generate new speech (Yasuda et al., 2020).

In this paper, we introduce the first fully-automated adaptive speech duration modification scheme.
Our approach combines the representation capabilities of deep neural networks with the structured
simplicity of dynamic decoding. Namely, we model the alignment between a source and target
utterance via a latent attention map; these maps are used as replacement of similarity matrix for
backtracking. We train a masked convolutional encoder-decoder network to estimate these atten-
tion maps using a stochastic mean absolute error (MAE) formulation. Unlike the conventional
DTW (dtw, 2008) algorithm, once trained our framework operates entirely on the source utterance
without needing to reference the target. We demonstrate our framework on a voice conversion task
using the CMU-Arctic dataset (Kominek & W Black, 2004) and on three multi-speaker emotion
conversion tasks using the VESUS dataset (Sager et al., 2019). Our experiments confirm that the
proposed model can perform open-loop duration modification and produces high-quality speech.

2 METHOD

Fig. 1 illustrates our underlying generative process. Given an utterance X , we first estimate the
length T of the (unknown) target utterance Y and subsequently use it to estimate a mask M for the
attention map. The mask restricts the domain of the attention vectors At at each frame t during the
inference stage to mitigate distortion of the output speech. We use paired data (Xtr, Ytr) to train
a convolutional encoder-decoder network to generate the attention vectors. During testing, we first
generate the attention map from the input X and use it to produce the target speech Y .

2.1 LOSS FUNCTION

Formally, let X ∈ RD×Ts denote the input speech. In this work, X corresponds to the Mel filter-
bank energies extracted from short-time moving window analysis, where D is the number of filter-
banks, and Ts is the number of temporal frames in the utterance. Similarly, we denote the target
speech as Y ∈ RD×T . Notice that the target utterance length T is usually different from Ts.
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Figure 2: Binary attention masks with 3 different slopes.

Our generative process for a single frame of the target speech is represented as follows:

T ∼ Laplace(T 0, bT ) and Yt ∼ Laplace(Y 0
t , by), (1)

where T is the estimated length of the target utterance, and Yt is the target Mel filter-bank energy
features at time t. The parameters {T 0, bT , Y

0
t , by} of the distributions are unknown and implicitly

estimated via a deep neural network. The neural network is parameterized by γ and θ (Fig. 1).

By treating the unknown parameters as functions of the input X , we obtain the following estimating
equations for the target sequence length and frame-wise Mel filter-bank energies:

T̂ = fγ(X) and Ŷt = X ·At + fθ(X, Ŷ0:t−1). (2)

The functions fγ(·) and fθ(·, ·) correspond to the length prediction and energy estimation component
of the same deep neural network. The variableAt ∈ RTs is an attention vector that combines frame-
wise features of the source utterance X to generate the target frame Ŷt. Our model differs from
standard sequence-to-sequence model by treating neural net predictions as residuals added to input
sequence itself. Notice that the residuals depend on input and the history of predictions Ŷ0:t−1 at
previous time steps. This autoregressive property allows the neural network to learn segmental and
supra-segmental variations that can potentially distinguish between the speakers or emotions.

During training, we use paired data (X,Y ) and maximize the likelihood of the target speech signal
with respect to the neural network weights {θ, γ}. This likelihood can be written as:

P (Ŷ , T̂ |X) = P (T̂ |X)

T̂∏
t=1

P (Ŷt|X, T̂ , Ŷ0:t−1), (3)

where, the second term in Eq. (3) can be obtained via marginalization over At as follows:

P (Ŷt|X, T̂ , Ŷ0:t−1) =
∑
At

P (Ŷt, At|X, T̂ , Ŷ0:t−1,M)

=
∑
At

P (Ŷt|X, T̂ , At, Ŷ0:t−1)P (At|X, Ŷ0:t−1,M) (4)

The variable M here denotes the attention mask. We introduce M for convenience, as it is a deter-
ministic function of the source length Ts and the estimated target length T̂ . We encode the attention
At as a one-hot vector across the Ts frames of the source speech. Thus, it follows a multinomial
distribution. For simplicity, we model At as conditionally independent of the target length T̂ given
the maskM and the inputX (see Fig. 1). Taking log(·) of Eq. (3) and combining with Eq. (4) yields:

L(θ, γ) = − log
(∑
At

P (Ŷt, At|X, T̂ , Ŷ0:t−1,M)
)
− log

(
P (T̂ |X)

)

= − log
(∑
At

qθ(At|X, Ŷ0:t−1,M)

qθ(At|X, Ŷ0:t−1,M)
P (Ŷt, At|X, T̂ , Ŷ0:t−1,M)

)
− log

(
P (T̂ |X)

)
≤ −

∑
At

qθ(At|X, Ŷ0:t−1,M) log
(
P (Ŷt|X,At, Ŷ0:t−1)

)
− log

(
P (T̂ |X)

)
+KL(qθ(At)||P (At))

= −
∑
At

qθ(At|X, Ŷ0:t−1,M) log
(
P (Ŷt|X,At, Ŷ0:t−1)

)
− log

(
P (T̂ |X)−H(qθ) + const.
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≤ −
∑
At

qθ(At|X, Ŷ0:t−1,M) log
(
P (Ŷt|X,At, Ŷ0:t−1)

)
− log

(
P (T̂ |X) + const. (5)

The distribution qθ(·) above is an approximating distribution for the attention vectors implemented
by a convolutional network. The first inequality uses the convexity of the − log function, and the
second inequality comes from the fact that entropy H(qθ) ≥ 0. Notice that we have implicitly as-
sumed P (At|X, Ŷ0:t−1,M) has a uniform distribution over the masked region. This is a reasonable
assumption given that the masking process reduces the attention domain to a small region (see Sec-
tion 2.3). However, qθ is not penalized for deviating from this uniform distribution during training.
This flexibility allows the network to learn realistic attention vectors during autoregressive decoding.
Eq. (5) can be easily translated into a neural network loss function which we minimize for {θ, γ}:

L(θ, γ) = λ1 × EAt∼qθ
[
log
(
P (Ŷt|X,At, Ŷ0:t−1)

)]
+ λ2 × log

(
P (T̂ |X)

)
= λ1 × EAt

[
‖Ŷt − Y 0

t ‖1
]
+ λ2 × ‖T̂ − T 0‖1, (6)

where λ1 and λ2 are the model hyperparameters that adjusts the trade-off between the two objectives
and implicitly contain the variances of the Laplace distributions in Eq. (1). Notice that the loss in
Eq. (6) computes an expectation over the attention maps. We use the Monte-Carlo estimate by
sampling from the attention map at each time-step. The training procedure is therefore stochastic in
nature due to this random sampling. We mix this stochastic version with the maximum aposteriori
estimate (MAP) of the attention vector with a probability of 0.2 during the start of training procedure.

Algorithm 1: Strategy for model training

1 function trainModelParameters (X,Y );
Input : filterbank energies (X ∈ RD×Ts , Y ∈ RD×Tt )
Output: model parameters (θ, γ)

2 if epoch < MaxEpochs then
3 Set t = 0, predict target length T̂ = fγ(X) and create the mask M ∈ RTs×Tt ;
4 Estimate A ∈ RTs×Tt using masked convolution and sample u ∼ U(0, 1);
5 if u < 0.2 then
6 Sample a ∈ RTs×Tt as 1-hot vectors from A;
7 Reconstruct using Ŷt = X · a+ fθ(X,Y0:t−1);
8 else
9 Reconstruct using Ŷt = X ·A+ fθ(X,Y0:t−1);

10 end
11 Compute prediction errors and update parameters θ, γ;
12 epoch← epoch + 1;
13 end
14 return θ and γ;

2.2 TRAINING AND TESTING ALGORITHM

Algorithm 1 describes our training strategy. First, we extract the filterbank energies from the paired
input-output utterances and define the ground truth for length prediction as the ratio of the input-
to-output sequence length. Next, we construct the attention mask (Sec. 2.3) for each input-output
sample pair in the mini-batch. The neural network then processes the input frames and generates an
embedding for the decoder operation and to predict the target sequence length. It further estimates
an attention vector as a multinomial distribution at each decoder step inside the specified masked
region. Finally, to compute the loss, we either sample from this multinomial distribution or directly
apply the maximum a posteriori attention estimate to the input sequence to get the target frames.

We use a Bernoulli sampling procedure with probability of 0.2 in line 5 (i.e., low contribution
of the stochastic loss) to prevent the model from diverging in sub-optimal directions. The MAP
estimate helps in this regard. Empirically, we found this to be extremely helpful in generating
monotonic attention that is also group sparse in nature. We fixed the slope of attention mask in
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Algorithm 2: Strategy for model testing (i.e., open-loop duration modification)

1 function modifyDuration (X);
Input : filter-bank energy (X ∈ RD×Ts and Y0)
Output: alignments ((x1, y1), (x2, y2), ...)

2 Predict length of target sequence T̂t = fγ(X);
3 Create attention mask M ∈ RTs×T̂t and Set t = 0;
4 if t < T̂t then
5 Using mask Mt, X , and Y0:t−1 estimate At;
6 Using X , Y0:t−1, and At, predict Yt;
7 t← t+ 1;
8 end
9 Run DTW backtracking on the attention matrix A;

10 return (alignments (x1, y1), (x2, y2), ...(xn, yn));
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Figure 3: Neural network architecture used for the sequence-to-sequence speech generation. The
encoder and decoder modules consist of 10 identical blocks. Projection layers are simple feed-
forward layers without any non-linearity to project input features in high dimension.

line 4 to 1.25 based on the relative difference in length observed from the training datasets. The
distribution qθ is the variational distribution which is approximated by a fully convolutional neural
network shown in Fig. 3. The testing procedure is shown in Alg. 2. Here, we do not sample from
the attention distribution at each time step t. Instead, the encoder-decoder model is allowed to run
autoregressively for the predicted number of time steps (T̂t). We use this attention map as a proxy
for DTW similarity matrix to run Viterbi decoding strategy and obtain a sequence of co-ordinates
representing the frame-wise correspondence between the input and estimated target speech.

The generative/testing procedure (Alg. 2) is similar to the training strategy except for some minor
differences. In the generative mode, we use the predicted target sequence’s length instead of the
ground truth. Second, we do not sample from the attention vector as the estimated target sequence
is no longer important. We use the attention map as a proxy for the DTW similarity/cost matrix for
Viterbi alignment. This alignment allows us to rearrange the input frames to give modified speech.

2.3 MASKING

The mask M is used to constrain the scope of the attention mechanism to be similar in time-scale
to the input. This procedure is important for two reasons. From a speech quality perspective, large
local swings in speaking rate may generate unintelligible speech. From an estimation perspective,
the speech utterances contains hundreds (sometimes thousands) of frames. It is difficult to robustly
train a deep network to generate such long attention vectors using smaller datasets.
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Figure 4: Comparing error in length prediction using encoder embeddings.

We use the masks derived from Itakura parallelogram (Itakura, 1975), as illustrated in Fig. 2. The
Itakura parallelogram is generally used to speedup the DTW algorithm when the speaking rates in
the source and target utterances are expected to lie in a certain interval. The slope of the Itakura
parallelogram specifies the minimum and maximum speaking rates that the reconstructed utterances
are allowed to possess in comparison to the input speech. In this paper, we fixed the minimum and
maximum variation in speaking rate to 0.8 and 1.25, respectively after observing the training data.

2.4 NEURAL NETWORK ARCHITECTURE

We adapt the neural network architecture from (Gehring et al., 2017) by adding residual/skip con-
nections to the last layer and reconfiguring the entire attention module. Fig. 3 shows the encoder, de-
coder and the modified attention module of the convolutional neural network used for experiments.
The encoder is responsible for generating feature embeddings for the decoder and for predicting
the relative length of target speech. The sample operation in Fig. 3 is responsible for generating a
sample from the attention distribution required for reconstruction and backpropagation.

We train our model using mini-batch gradient descent and Adam optimizer (Kingma & Ba, 2015)
with a fixed learning rate of 10−4. We fixed the batch size to 16. The inputX is 80-dimensional Mel-
filterbank energies spanning 0-8kHz. The projection layer expands this input to 256 dimensions.
Both the encoder and decoder consist of 10 convolutional layers, each followed by gated linear unit.
Given the small size of training data, we use data augmentation to properly estimate the network
parameters. Specifically, we reverse the input-output sequences and randomly extract intervals of
variable size (with probability 0.5) from the full speech utterance.

2.5 DTW BACK-TRACKING

Our final step uses the attention map produced by the encoder-decoder as a proxy for the DTW
similarity matrix between the source and target speech frames. This strategy allows us to train
the convolutional model on a relatively small dataset (e.g., 2-3 hours) and still generate intelligible
speech during open-loop modification of new utterances. Effectively, we apply a dynamic program-
ming operation to the attention maps produced by the neural network to get a path of alignment
from source to target, rather than rely on the noisy spectral reconstruction for resynthesis (see Al-
gorithm 2). To avoid skipping phonemes, we constrain the dynamic programming path to take at
most one horizontal or vertical at a time while backtracking. Once estimated, the path informs a
reorganization of the source utterance frames via local contraction dilation operations. Following
this reorganization, the target speech is synthesized via the WORLD vocoder (Morise et al., 2016).

3 EXPERIMENTAL RESULTS

We evaluate our model on two multi-speaker datasets: CMU-ARCTIC (Kominek & W Black, 2004)
and VESUS (Sager et al., 2019). We query various properties of the model on tasks described below.
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Figure 5: Comparing alignment similarity between attention map and DTW.

3.1 DATA AND VOICE MORPHING TASKS

CMU-ARCTIC database has 4 American English speakers (two male, two female), who we paired
according to their gender, for voice conversion. This gives us a total of 2264 sentence pairs. We train
our duration modification framework using 2164 utterances from the database and use the remaining
100 utterances (random 50-50 split) for validation and testing the open-loop modification properties.

VESUS is an emotional speech corpus containing 250 phrases read by 10 speakers in 4 emotion
classes: neutral, angry, happy, and sad. Each utterance in VESUS corpus contains 10 crowd-sourced
emotional annotation representing the saliency of intended emotion category. Given the variation in
quality, we use only utterances that are correctly annotated by at least half of the listeners.

Our task on VESUS is to inject emotion into a neutral/monotone utterance. Thus, we train three
duration models corresponding to the three neutral-emotional pairs, resulting in the following splits:

• Neutral to Angry: 2385 utterances for training, 72 for validation and, 61 for testing.
• Neutral to Happy: 2431 utterances for training, 43 for validation and, 43 for testing.
• Neutral to Sad: 2371 utterances for training, 75 for validation and, 63 for testing.

The utterances in VESUS corpus are short with an average signal duration ranging from 1.5 − 2
seconds. Given the small sample size due to shorter length sequences, we train the convolutional
neural network on CMU-ARCTIC from scratch and fine-tune it for each emotion conversion task.

3.2 LENGTH PREDICTION

As a sanity check, we compare the predicted utterance length by our framework with that of the
ground truth parallel utterance. As seen in Fig. 3, the utterance length is predicted by summing
the encoder embeddings across time and feeding the sum into a linear layer. At a high level, the
summation aggregates information across the entire utterance without the instabilities of a recurrent
architecture. Our baselines are two most commonly used sequence-to-sequence frameworks: (i)
Gated Recurrent Unit or GRU model (Cho et al., 2014), and (ii) Transformer model (Vaswani et al.,
2017). The architecture and training strategy of baseline models are described in more detail in the
appendix section. Fig. 4 shows the error in predicting the length ratio in a ms/sec format. Notice
that, our framework mispredicts the utterance lengths by only 40ms/sec and 65ms/sec (on average)
on CMU-ARCTIC and VESUS, respectively. Duration prediction is particularly challenging on
VESUS due to marked differences between neutral and emotional utterances. The median predic-
tion error for GRU model is in the range of 400 − 600ms per second of the input utterance. The
Transformer model fares relatively well in comparison to GRU because of their ability to establish
long-range dependency. However, our framework performs best in this challenging scenario, likely
due to our multi-task setup and the fusion of deep representation with Bayesian regularization.

3.3 ATTENTION ALIGNMENT

Next, we compare the open-loop alignment between the source and target speech frames estimated
via our attention map with the original DWT algorithm (where both utterances are known). To

7



Under review as a conference paper at ICLR 2022

(1.25, 1) (1.25, 3) (1.25, 5)

(1.5, 1) (1.5, 3) (1.5, 5)

(2.0, 1) (2.0, 3) (2.0, 5)
Ge

ne
ra

te
d 

Se
qu

en
ce

Source Sequence

Figure 6: Effect of slope and step constraint on the alignment. The tuple under each image is in
(slope, constraint) format. Red curves are the optimal path obtained via Viterbi back-tracking.
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Figure 7: Comparing the duration difference between source/target and source/converted pair of
utterances for vowels, consonants, and short pauses. Short pauses have large difference because our
method does not generate silence frames by itself if it does not exist in the input utterance.

compare the warping paths, we code the horizontal, diagonal, and vertical moves of the backtracking
procedure into three classes. We then compute the edit distance between the DTW alignment and the
attention map based alignment. Once again, we compare our method against two popular sequence-
to-sequence benchmarks. Fig. 5 illustrates the match ratio normalized by the average length of
sequences. As seen, the match ratio varies between 0.70 and 0.85, which suggests that our approach
is good at learning the general characteristics of duration modification. The GRU model performs
poorly in this task due to its inability to learn sequence transformations in the order of 100s of
frames. The Transformer model does relatively well on this task as they can handle long sequences.
The convolutional model however, performs best because of the Itakura masking constraint and
its ability to exploit the continuity of short-time Fourier representation of speech. Furthermore, our
method can be trained on limited data resources. In contrast, sequence-to-sequence models for voice
conversion require hundreds of hours of training data along with sophisticated noise removal models
to generate actual speech. Thus, our method can be used as a tool for manipulation of speaking rate
at both, local and global scale. To our knowledge, this is the first demonstration of its kind.

Fig. 6 shows the effect of modifying the slope of Itakura parallelogram and the horizontal/vertical
movement constraint imposed during the dynamic decoding stage. As expected, relaxing the slope
constraint and increasing the number of consecutive horizontal/vertical moves provide more flex-
ibility in adjusting to the speaking rate of generated speech. However, this flexibility can lead to
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missing or distorted phonemes, suggesting a trade-off between changing the speaking rhythm and
preserving naturalness. We allow the users to tune these knobs for their own end application.

3.4 COMPONENT-WISE DURATION ANALYSIS

To further probe into the behavior of our method, Fig. 7 compares the difference in duration between
our converted utterances and the ground truth target utterances for vowels, consonants and short
pauses (e.g., silence and unvoiced phonemes). We use Penn phonetic forced alignment tool (Yuan
& Liberman, 2008) to get the location and duration of each phoneme in a given utterance and group
them into the above three categories. The results indicate that our proposed method faithfully mod-
ifies the duration of vowels and consonants. However, it is less effective with short pauses, as seen
across all four tasks. This trend is intuitive, as we cannot create pauses if these frames do not exist
in the source utterances. One direction of future work is to add a branch to our deep network that
estimates the duration of short pauses intermittently within the utterance. Nonetheless, our model
consistently estimates the difference between vowel and consonant duration across multiple tasks,
which corroborates our claim of developing a general purpose speech rate manipulation framework.

3.5 SPEECH RECONSTRUCTION QUALITY

Finally, we use crowd sourcing to obtain a mean opinion score (MOS) for the re-synthesized speech
quality of the testing utterances. The crowd sourcing was performed using Amazon mechanical
turk (AMT). We collect 5 listener ratings for each converted utterance in the test set to leverage the
sample averaging effect for a reliable estimate of MOS. Further, we also add some noisy utterances
to the converted samples set to flag non-invested listeners and bots on AMT. As seen in Fig. 8, our
method achieves an average MOS between 3.7 − 4.0 across the four tasks. This performance is on
par with the speech quality produced by state-of-the-art neural vocoders such as Oord et al. (2016);
Shen et al. (2017); Kalchbrenner et al. (2018). We note that CMU-ARCTIC task has the lowest
MOS, perhaps due to the longer and more complex utterances. Interestingly, the MOS is unaffected
by errors in length prediction, as evidenced by the VESUS neutral-angry emotion conversion task.
This suggests that our approach of combining the neural network attention weights with a structured
DTW algorithm provides robustness to both the speech characteristics and estimation errors.

4 CONCLUSIONS

We have presented a novel deep-generative framework for adaptive speech duration modification.
Our model used a convolutional encoder-decoder architecture to estimate attention maps to associate
frames of the input speech with frames of the target speech. The attention maps are modeled as latent
variables, which lead to a stochastic formulation of the mean absolute error (MAE) loss for model
training. During testing, the attention map is directly used to approximate the similarity matrix for
a DTW-style backtracking procedure. We evaluated our framework on a voice conversion and three
separate emotion conversion tasks. Overall, our framework produced similar duration modification
as the vanilla DTW, but without requiring access to the target utterance. Further, we showed that
the re-synthesized speech had similar naturalness to most state-of-the-art neural vocoders.
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James A. Russell, Jo-Anne Bachorowski, and José-Miguel Fernandez-Dols. Facial and vocal expres-
sions of emotion. Annual Review of Psychology, 54:329–349, 11 2003. doi: 10.1146/annurev.
psych.54.101601.145102.

Ryo Aihara, Ryoichi Takashima, Tetsuya Takiguchi, and Yasuo Ariki. Gmm-based emotional voice
conversion using spectrum and prosody features. American Journal of Signal Processing, 2:134–
138, 12 2012. doi: 10.5923/j.ajsp.20120205.06.

Sebastian P. Bayerl, Florian Hönig, Joelle Reister, and Korbinian Riedhammer. Towards automated
assessment of stuttering and stuttering therapy, 2020.

F. Charpentier and M. Stella. Diphone synthesis using an overlap-add technique for speech wave-
forms concatenation. ICASSP ’86. IEEE International Conference on Acoustics, Speech, and
Signal Processing, 11:2015–2018, 1986.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning, 2017.

F. Itakura. Minimum prediction residual principle applied to speech recognition. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 23(1):67–72, 1975. doi: 10.1109/TASSP.1975.
1162641.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
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A APPENDIX

A.1 DESCRIPTION OF GATED RECURRENT UNIT (GRU) MODEL
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Figure 9: GRU model architecture.

We compare the performance of our method with existing state-of-the-art techniques for sequence-
to-sequence conversion. RNN-LSTM frameworks have been a benchmark for many natural lan-
guage processing tasks. They have only been sparingly used for speech conversion tasks due to
longer sequence length coupled with the inability of RNNs to remember distant past. For our base-
line, we choose GRU (gated recurrent unit) cells (Cho et al., 2014) based encoder-decoder model
due of their low computational footprint. Fig. 9 shows the architecture of the GRU model for length
prediction and approximating the DTW similarity matrix. The sum of encoder embeddings across
time-axis is fed into a linear layer for target length prediction. The encoder and decoder in the GRU
model consist of a single layer of 64 cells running in both, forward and backward directions. They
are further connected via an attention layer implemented by a single feed-forward layer. We train the
model using Adam optimizer with default parameters in PyTorch (Paszke et al., 2017) and a fixed
learning rate of 1e − 5. We follow the same data augmentation strategy as the proposed approach
but remove the masking constraint for the attention alignment to stay close to the vanilla model.

A.2 DESCRIPTION OF TRANSFORMER MODEL

We also train a vanilla Transformer model from scratch for the voice conversion task and then fine-
tune it for emotion conversion. The Transformer model has 6 layers of encoder and decoder and
each layer has 4 attention heads. We use the same data augmentation procedure as our proposed
technique and train it via Adam optimizer with default PyTorch settings. Similar to the GRU model,
there is no masking for the encoder-decoder attention module. We use the sum of encoder embed-
dings across time-axis to predict the target length sequence. Transformer models can handle longer
inputs due to their non-sequential nature and ability to form long-range dependencies between in-
put tokens. Therefore, they naturally perform well on estimating the length of target sequence by
learning appropriate encoder representation. The Transformer model however, fails to leverage the
continuity in the short-time representation of speech signal. An additional constraint we implicitly
imposed on the baselines and proposed neural network architecture is their ability to run on a single
NVIDIA K80 GPU. We are able to fit multiple layers of convolutional and Transformer model but
only single layer of GRU on this GPU. It allowed us to be more innovative with our approach.

A.3 ABLATION ANALYSIS: REMOVING ITAKURA MASKING

There are multiple components in the proposed model which work in synchronization to produce
naturally sounding speech. In addition to the generative modeling part, the two most important
augmentations we have made to the standard deep neural network pipeline are: (i) using Itakura
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Figure 10: Transformer model architecture.
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Figure 11: (a) Length prediction of target utterances and (b) measuring similarity of attention map to
DTW cost matrix. The model is trained without masking constraint imposed in the attention layer.

masking for attention scope and (ii) using an attention weighted residual connection in the final
layer. Therefore, we perform ablation experiments to understand the relative significance of each
of these augmentations. Our first experiment removes masking from the attention layers. Fig. 11
shows the model’s performance on target length prediction and approximating the DTW similarity
matrix. The results in Fig. 11(a) indicate that the length prediction performance is roughly similar
to the proposed model. This is expected because, we hypothesized that it is the multi-task setup
that allows the convolutional network to estimate length with a relatively small error (in ms/sec).
The match ratio metric however, (shown in Fig. 11(b)) is considerably worse. Itakura masking
procedure acts as a good inductive bias/prior on the attention map because the speech rate do not
fluctuate drastically in human conversations. Therefore, the attention map is localized in our model.
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Figure 12: (a) Length prediction of target utterances and (b) measuring similarity of attention map
to DTW cost matrix. The model is trained without residual connection in the final decoder layer.

A.4 ABLATION ANALYSIS: REMOVING RESIDUAL CONNECTION

Our second ablation experiment involves removing the attention weighted residual connection from
the final layer of decoder. Fig. 12(a) shows that the model is able to estimate the target sequence
lengths with a relatively low error rate. This is again due to multi-task training setup. The match
ratio (Fig. 12(b)) in this experiment is better than the no-masking results but, worse than the pro-
posed model. Therefore, we can confidently say that Itakura masking helps in approximating DTW
similarity matrix. Further, the presence of residual connection is extremely important as it provides
a good starting point for the convolutional network to start predicting the target frames. Since the
linguistic content of input and target utterances are same, the residual connection allows the neural
network to inherit input speech properties which is helpful in auto-regressive generation mode.

14



Under review as a conference paper at ICLR 2022

Figure 13: Examples of alignment path obtained using encoder-decoder attention map (left) and
ground truth DTW backtracking procedure (right). The source sequence lies on the x-axis and the
target/generated sequence lies on y-axis. Note that, unlike DTW, the convolutional neural network
does not use the ground truth target utterance. The attention map and the DTW similarity matrix
exhibits similar block structure arising due to the short-term stationarity of speech signals.
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Figure 14: Examples of alignment path obtained using encoder-decoder attention map (left) learned
without masking constraint and ground truth DTW backtracking procedure (right). The source
sequence lies on the x-axis and the target/generated sequence lies on y-axis. The attention map no
longer exhibits the block structure and is distributed uniformly across the frames of source sequence.
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Figure 15: Examples of alignment path obtained using encoder-decoder attention map (left) learned
without residual connection and ground truth DTW backtracking procedure (right). The source se-
quence lies on the x-axis and the target/generated sequence lies on y-axis. Once again, the attention
map no longer exhibits the block structure and is distributed uniformly on y-axis in most cases.
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