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Abstract

We study safe linear bandits (SLBs), where an agent selects actions from a convex
set to maximize an unknown linear objective subject to unknown linear constraints
in each round. Existing methods for SLBs provide strong regret guarantees, but
require solving expensive optimization problems. To address this, we propose
Constrained Linear Thompson Sampling (COLTS), a sampling-based framework
that selects actions by solving perturbed linear programs, which significantly
reduces computational costs while matching the regret and risk of prior methods.
We develop two main variants: S-COLTS, which ensures zero risk and Õ(

√
d3T )

regret given a safe action, and R-COLTS, which achieves Õ(
√
d3T ) regret and risk

with no instance information. In simulations, these methods match or outperform
state of the art SLB approaches while substantially improving scalability. On the
technical front, we introduce a novel coupled noise design that ensures frequent
‘local optimism’ about the true optimum, and a scaling-based analysis to handle
the per-round variability of constraints.

1 Introduction

Stochastic bandit problems are a fundamental model for optimising unknown objectives through
repeated trials. While single-objective bandit theory is well-developed, real-world learners must also
deal with unknown constraints at every round of interaction. For instance, in dose-finding [AKR21],
micro-grid control [FLZY22], and fair recommendation [Cho+24], a learner must choose actions that
maximise reward while never crossing unknown toxicity, voltage, or exposure limits (see §B).
The safe linear bandit (SLB) problem models these scenarios in a linear programming (LP) setting:
a learner selects actions {at} from a convex domain A to optimize an unknown objective vector
θ∗ ∈ Rd subject to unknown constraints of the form Φ∗a ≤ α, where Φ∗ ∈ Rm×d. After each action,
the learner observes noisy feedback of the objective θ⊤∗ a+ noise and the constraints Φ∗a+ noise,
thus acquiring information to guide future actions. Performance in SLBs is measured via the

regret, RT :=
∑
t≤T

(
θ⊤∗ (a∗ − at)

)
+
, and risk, ST :=

∑
t≤T

(
max

i

(
Φ∗at − α

)i)
+
, (1)

where a∗ is the optimal action under the true (but unknown) constraints, and (·)+ := max(·, 0).
There are two main notions of safety in SLBs:

• Hard constraint enforcement, which requires that with high probability, ST = 0 for all T . This
is only achievable if the learner has prior access to a known safe action asafe.

• Soft constraint enforcement, which requires ST = o(T ) with high probability (whp). This is a
weaker requirement, but does not need prior information.
A series of recent work [e.g. GCS24; PGB24; AAT19; MAAT21] offers OFUL-style algorithms for
SLBs with strong theoretical guarantees. However, these often require the solution of nontrivial
optimisation problems (second-order conic programs, and sometimes NP-hard problems) in each
round. Our motivation lies in improving this computational cost.
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Table 1: COMPARISON OF SLB METHODS. ‘Known asafe’ means that the method requires an action known
a priori to be safe. ∆(a) := θ⊤∗ (a∗ − a) is the reward gap of an action a, and Γ(a) := mini(α − Φ∗a)

i
+ is

its safety margin. R(a) := 1 + (∆(a)/Γ(a)) if Γ(a) > 0, and ∞ otherwise. LP is the computation needed to
optimize a linear objective with m linear constraints over A to constant approximation. SOCP is the same
with m second-order conic constraints. We write ‘NP-hard’ if implementing the method needs a solver for an
NP-hard problem. OPT-PESS refers to most frequentist hard enforcement methods discussed in §1.1, which have
similar costs and bounds; SAFE-LTS is due to [MAAT21]; DOSS and the lower bound are due to [GCS24].

Algorithm Assumptions Regret Risk Compute at t

OPT-PESS Known asafe R(asafe) · Õ(
√
d2T ) 0 NP-hard

Relaxed OPT-PESS Known asafe R(asafe) · Õ(
√
d3T ) 0 d · SOCP · log(t)

SAFE-LTS Known asafe R(asafe) · Õ(
√
d3T ) 0 SOCP · log(t)

S-COLTS Known asafe R(asafe) · Õ(
√
d3T ) 0 LP · log(t)

DOSS Feasibility Õ(
√
d2T ) Õ(

√
d2T ) NP-hard

R-COLTS Feasibility Õ(
√
d3T ) Õ(

√
d3T ) LP · log2(t)

LOWER-BOUND Feasibility max(RT ,ST ) = Ω(
√
T ), no matter the instance;

Contributions. We introduce a sampling-based approach, COnstrained Linear Thompson Sampling
(COLTS), which adds carefully chosen noise to estimates of both the objective and constraint parame-
ters, and selects actions according to this perturbed program. This allows us to maintain the same
order of regret and risk bounds as prior methods, while substantially reducing the complexity of each
round. However, just perturbing the program as above does not directly yield good actions, since
the perturbed program may be infeasible, or its optimum may be unsafe. We therefore develop two
augmentations of COLTS, which address the SLB problem under distinct regimes:

• S-COLTS assumes a given safe action asafe. Actions are picked by first solving a perturbed LP
(while ensuring that asafe is feasible), and then scaling its optimum towards asafe to ensure safety.
This yields zero risk, and regretR(asafe) · Õ(

√
d3T ) (see §2, or Table 1 for definition ofR(a)).

• R-COLTS requires only feasibility of the true problem, and operates by sampling O(log T )
perturbed programs, and setting at to be the optimiser of the one with largest value. This resampling
directly yields optimism, leading to instance-independent Õ(

√
d3T ) regret and risk bounds. We

additionally argue that under Slater’s condition, and with extra exploration, a similar regret and risk
guarantee follows without resampling, and so solving only one optimisation per round.
Table 1 summarizes our results in comparison to prior work. We highlight that our results match
previously attainable regret and risk bounds with only O(LP) computation per round. This yields the
first efficient method for soft enforcement, and significantly speeds up hard constraint enforcement.
A simulation study (§6,§J) further validates these claims. Contextual extensions are discussed in §E.
Technical Innovations. The random perturbations in our approach cause two challenges that break
existing analyses of linear TS: (i) the feasible region fluctuates at each round; and (ii) the true optimum
a∗ can become infeasible under perturbed constraints. We address these via two key innovations:

A) Coupled Noise Design. Independent perturbations of objectives and constraints are difficult
to analyze and yield undesirable exponential factors (eΩ(m)). We instead couple the perturbations
by adding a single random vector ψ to the objective estimate and −ψ to each row of the constraint
estimate. This coupling ensures a high local optimism rate: with constant probability, the perturbed
program is feasible at the true optimum a∗, achieving regret bounds scaling only with log(m).
Empirical studies (§6,J) confirm the advantages of coupled noise.

B) Scaling and Resampling. The fluctuating constraints disable both existing analysis frameworks
for linear TS: the ‘unsaturation’ approach of [AG13] and the ‘optimism’ approach of [AL17]. To
analyze S-COLTS, we adapt the unsaturation framework with a new scaling-based trick allowing
comparisons across distinct feasible regions. For R-COLTS, we instead use resampling to directly
generate optimistic and feasible actions, bypassing these analytic barriers entirely.

1.1 Related Work

Safe Bandits. Safe bandits have been studied under two main notions of constraint enforcement:
soft [CGS22; GCS24] and hard [AAT19; MAAT21; PGBJ21; PGB24; HTA23; HTA24]. Soft
enforcement achieves regret and risk bounds of Õ(

√
d2T ), with improved instance-specific guarantees

for polytopal domains. Hard enforcement achieves zero risk, and regret bounds of Õ(R(asafe)
√
d2T )

but given a safe action asafe. Efficient variants of these methods instead achieve weaker regret bounds
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of Õ(R(asafe)
√
d3T ). In contrast to safe bandits, bandits with knapsacks [BKS13; AD16] control

aggregate constraints, which is unsuitable for roundwise safety enforcement (see §C).
Computational Complexity. Existing efficient hard-enforcement methods rely on frequentists
confidence sets for constraints, which induce m expensive second-order conic (SOC) constraints
during action selection [PGBJ21; PGB24; AAT19; MAAT21]. Most variants require solving 2d such
problems per round. Our approach, S-COLTS, instead only optimises over linear constraints while
maintaining near-optimal guarantees. The scaling approach inherent to S-COLTS is related to the
prior ROFUL method [HTA24], although this uses the inefficient method DOSS as a subroutine.
Notably, no computationally efficient methods have previously been proposed for soft enforcement.
The main point of comparison, DOSS need to solve (2d)m+1 LPs each round [GCS24]. R-COLTS
resolves this gap by sampling O(log(t)) perturbed programs each round. Under mild conditions
(Slater’s condition), one can further reduce to a single LP per round. See §C for more details.
Thompson Sampling (TS). Frequentist bounds for linear TS were first established by Agrawal &
Goyal [AG13] through an ‘unsaturation’ approach, while Abeille & Lazaric [AL17] developed a
related ‘global optimism’ approach. Neither approach extends to SLBs due the per-round fluctuation
of the perturbed constraints, and the ensuing variability of the ‘feasible regions’ for each round (see
§C for more details). We overcome these challenges through our coupled noise design, ensuring
frequent optimism, and a novel scaling trick to compare solutions across distinct feasible regions.
The only existing sampling-based treatment of unknown constraints is due to Chen et al. [CGS22]
for multi-armed settings, who use posterior quantiles to enforce constraints. Although their method
does not scale to continuous action sets, our resampling approach can be interpreted as an efficient,
scalable analogue for simultaneously enforcing constraints and optimizing reward indices.

2 Problem Definition and Background

Notation. For a vector v, ∥v∥ denotes its ℓ2-norm. For a PSD matrix M, ∥v∥M := ∥M1/2v∥. Sd
is the unit sphere in Rd. For a matrix M , M i is the ith row of M . 1m is the all ones vector in Rm.
Also see §A for an extensive glossary of notation used in the paper.
Setup. An instance of a SLB problem is defined by an objective θ∗ ∈ Rd, a constraint matrix
Φ∗ ∈ Rm×d, constraint levels α ∈ Rm, a compact convex domain A ⊂ Rd, and δ ∈ (0, 1). A, α, δ
are known to the learner, but θ∗ and Φ∗ are not. The program of interest is max θ⊤∗ a s.t. Φ∗a ≤
α, a ∈ A, assumed to be feasible. a∗ denotes a(ny) maximiser of this program. The reward gap of
a ∈ A is ∆(a) := θ⊤∗ (a∗ − a), and its safety margin is Γ(a) = mini(α− Φ∗a)

i
+. For infeasible a,

Γ(a) = 0, and ∆ may be negative. We setR(a) = 1 + ∆(a)/Γ(a) if Γ(a) > 0, and∞ otherwise.
Play. We index rounds by t. At each t, the learner picks at ∈ A, and receives the feedback Rt =
θ⊤∗ at + wR

t , and St = Φ∗at + wS
t , where wR

t ∈ R and wS
t ∈ Rm are noise processes. Ct denotes

algorithmic randomness at round t. The historical filtration is Ht−1 := σ({(as, Rs, Ss, Cs)}s<t),
and Gt := σ(Ht−1 ∪ {(at, Ct)}). The action at must be adapted to σ(Ht−1 ∪ σ({Ct})).
The Soft Enforcement SLB problem demands algorithms that ensure, with high probability, that
both the metrics RT and ST (see (1) grow sublinearly with T.
The Hard Enforcement SLB problem demands algorithms that ensure, with high probability, that
ST = 0 and RT = o(T ). This is enabled by a safe starting point asafe such that Γ(asafe) > 0.

Standard Assumptions. We assume the following standard conditions [e.g. APS11] on the instance
(θ∗,Φ∗,A), and noise. All subsequent results only hold under these assumptions.

• Boundedness: ∥θ∗∥ ≤ 1, for each row i, ∥Φi
∗∥ ≤ 1, and A ⊂ {a : ∥a∥ ≤ 1}.

• SubGaussian noise: wt := (wR
t , (w

S
t )

⊤)⊤ is centred and 1-subGaussian given Gt, i.e.,
E[wt|Gt] = 0, and ∀λ ∈ Rm+1,E[exp(λ⊤wt)|Gt] ≤ exp(∥λ2∥/2).
To simplify the form of our bounds, we also assume that log(m/δ) = o(d) when stating theorems.
Background. The (1-)RLS estimates for θ∗,Φ∗ given the history Ht−1 are

θ̂t = argmin
θ̂

∑
s<t

(θ̂⊤as −Rs)
2 + ∥θ̂∥2, and Φ̂t = argmin

Φ̂

∑
s<t

∥Φ̂as − Ss∥2 +
∑
i

∥Φ̂i∥2.

The standard confidence sets [APS11] for (θ∗,Φ∗) are

Cθt (δ) = {θ̃ : ∥θ̃ − θ̂t∥Vt
≤ ωt(δ)}, and CΦt (δ) = {Φ̃ : ∀ rows i, ∥Φ̃i − Φ̂i

t∥Vt
≤ ωt(δ)},

where Vt := I +
∑

s<t asa
⊤
s , and ωt(δ) := 1 +

√
1/2 log((m+ 1)/δ) + 1/4 log(detVt). A key

standard result states that these confidence sets are consistent [APS11].
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Lemma 1. Let the consistency event at time t be Cont(δ) := {θ∗ ∈ Cθt (δ),Φ∗ ∈ CΦt (δ)}, and let
Con(δ) :=

⋂
t≥1 Cont(δ). Under the standard assumptions, for all δ ∈ (0, 1), P(Con(δ)) ≥ 1− δ.

3 The Constrained Linear Thompson Sampling Approach

We begin by describing the COLTS framework. In the frequentist viewpoint, TS is a randomised
method for bandits that, at each t, perturbs an estimate of the unknown objective, in a manner sensitive
to the historical information Ht−1, and then picks actions by optimising this perturbed objective.

Naturally, then, we will perturb the estimates θ̂t, Φ̂t, for which we use a law µ on R1×d ×Rm×d. For
(η,H) ∼ µ, independent of Ht−1, we define the perturbed parameters

θ̃(η, t)⊤ := θ̂⊤t + ωt(δ)ηV
−1/2
t and Φ̃(H, t) := Φ̂t + ωtHV

−1/2
t . (2)

Notice that these perturbations are aligned with Ht−1 only via the scaling by ωt(δ)V
−1/2
t . The

underlying thesis of the COLTS approach is that for well-chosen µ, the action

a(η,H, t) = argmax{θ̃(η, t)⊤a : Φ̃(H, t)a ≤ α, a ∈ A}, (3)

if it exists, is a good choice to play, in that it is either underexplored, or nearly safe and optimal (N.B.
we treat argmax as a point function that picks any one optimal solution). Two major issues arise
with this view. Firstly, the set A ∩ {Φ̃(H, t)a ≤ α} may be empty for certain H, meaning a(η,H, t)
need not exist. Secondly, in hard enforcement, a(η,H, t) need not actually be safe, and so cannot
directly be used. Thus, the main questions are 1) what µ we should use, 2) how we should augment
the COLTS principle to design effective algorithms, and 3) how we can analyse these algorithms to
prove effectiveness. These questions occupy the rest of this paper.

B-Concentration. Before proceeding, we note that very large η,H can wash out all of the signal in
θ̂t and Φ̂t. We introduce the following definition to quantifiably limit their size.
Definition 2. Let B : (0, 1]→ R≥0 be a nonincreasing map. A law µ on R1×d × Rm×d is said to
satisfy B-concentration if ∀ξ ∈ (0, 1], µ

({
max(∥η∥,maxi∈[1:m] ∥Hi∥) ≥ B(ξ)

})
≤ ξ.

As an example, if each η,Hi were normal, then B(ξ) =
√
d log((m+ 1)/ξ). Henceforth, we will

assume that µ satisfies B-concentration for some map B, and define quantities in terms of this B.
This condition has the following useful consequence (§F).
Lemma 3. Let δt := δ/t(t+1), and for B : (0, 1]→ R≥0, let Bt = 1 +max(1, B(δt)). Let

Mt(a) := Btωt(δ)∥at∥V −1
t
.

Let {(ηt, Ht)} be a sequence of perturbation noise such that at each t, (ηt, Ht) ∼ µ independently
of Ht−1. If µ satisfies B-concentration, then with probability at least 1− 2δ,

∀t, a,max
(
|(θ∗ − θ̃(ηt, t))⊤a|,max

i
|(Φ̃(Ht, t)

i − Φi
∗)a|

)
≤Mt(a).

Further,
∑

t≤T Mt(at) ≤ BTωT (δ) ·O(
√
dT ) ≤ BT Õ(

√
d2T ).

4 Hard Constraint Enforcement via Scaling-COLTS

Algorithm 1 Scaling-COLTS (S-COLTS(µ, δ))
1: Input: asafe,Γ0 ∈ [Γ(asafe)/2,Γ(asafe)].
2: for t = 1, 2, . . . do
3: Draw (ηt, Ht) ∼ µ
4: if Mt(asafe) > Γ0/3 OR a(ηt, Ht, t)

does not exist then
5: at ← asafe.
6: else
7: bt ← a(ηt, Ht, t)
8: Compute at as in (4).
9: Play at, observe Rt, St, update Ht.

We turn to the problem of hard constraint en-
forcement of minimising RT while ensuring that
w.h.p., ST = 0, using a safe action asafe such that
Γ(asafe) > 0. We will extend COLTS with a ‘scal-
ing heuristic,’ that was first proposed in the context
of SLBs by Hutchinson et al. [HTA24], who used
it to design a (inefficent) method ROFUL.
To begin, our method, S-COLTS, draws noise
(ηt, Ht) ∼ µ, and computes the preliminary ac-
tion bt := a(ηt, Ht, t), assuming for now that this
exists. As argued in §3, this action bt either has
low-regret, or is informative. Of course, this bt
need not be safe—we only know via Lemma 3 that Φ∗bt ≤ α+Mt(bt)1m—and so cannot be used
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for hard enforcement. However, the action asafe is safe, with a large slack of at least Γ(asafe) in each
constraint. Via linearity, and the convexity of A, this means we can scale back bt towards asafe to
find a safe action, i.e., play at of the form (1− ρt)asafe + ρtbt for some ρt ∈ [0, 1]. If ρt is not too
small, this maintains fidelity with respect to the informative direction bt, while retaining safety.
Ensuring that 1− ρt is small relies on the margin Γ(asafe) of asafe. Indeed, notice that

Φ∗(ρbt + (1− ρ)asafe) ≤ α+ (ρMt(bt)− (1− ρ)Γ(asafe))1m,

and so there is a safe ρ satisfying 1− ρ ≤Mt(bt)/Γ(asafe). Of course, we do not know Γ(asafe), and
so cannot directly set ρt this way. However, by repeatedly playing asafe (and using adaptive bounds),
we can find a value Γ0 such that Γ0 ∈ [Γ(asafe)/2,Γ(asafe)] using only Õ(Γ(asafe)

−2) rounds. We
give an account of this method in §H.1, and henceforth just assume that we know such a Γ0.

Define θ̃t = θ̃(ηt, t) and Φ̃t = Φ̃(Ht, t). We observe that if Mt(asafe) ≤ Γ0/3, then, whp,

Φ̃tasafe ≤ Φ∗asafe +Mt(asafe)1m ≤ α− (Γ(asafe)− Γ0/3)1m ≤ α− 2Γ(asafe)/31m.

Thus, the constraints induced by Φ̃t are feasible (since asafe meets them), and so, critically for
S-COLTS, the action bt = a(ηt, Ht, t) exists. To play a safe action, we set

at = at(ρt), where at(ρ) := (1− ρ)asafe + ρbt, and (4)

ρt := max{ρ ∈ [0, 1] : Φ̂tat(ρ) + ωt(δ)∥at(ρ)∥V −1
t

1m ≤ α}.

Importantly, Mt(asafe) ≤ Γ0/3 yields 1− ρt ≤ 3Mt(bt)/Γ(asafe) (§H), giving similar fidelity to bt
as if we knew Γ(asafe). If Mt(asafe) > Γ0/3, we simply play asafe.
The only design variable left undetermined is the perturbation law µ. In §4.1, we first describe an
unsaturation condition on µ that induces low regret. Then, in §4.2, we give a general construction of
unsaturated laws. This operationalises the S-COLTS design, with regret bounds described in §4.3.

4.1 Analysis of S-COLTS

Since safety of S-COLTS directly follows from (4), we main challenge is controlling regret. In this
section, we show that if µ satisfies an unsaturation condition, then S-COLTS incurs Õ(

√
T ) regret.

We will being by describing this unsaturation condition, and show how this is operationalised via a
novel look-back analysis of TS, which is first presented without unknown constraints for the sake
of clarity. Next we will discuss how this is augmented via a scaling strategy to handle the shifting
constraints in S-COLTS.
Unsaturation. Following [AG13], we say that an action a is unsaturated at time t if ∆(a) ≤Mt(a).
The core idea is that playing unsaturated actions is either informative (large Mt(a)), or low-regret
(small Mt(a)). Thus, with large ρt, every time the proposed bt is unsaturated, the learning process
should make progress. Of course, this bt will not always be unsaturated due to the perturbations in
θ̃t, Φ̃t, but it suffices for bt to be unsaturated often enough. This motivates the following definition.

Definition 4. Let µ be a B-concentrated law. Define the unsaturation event at time t as

Ut(δ) := {(η,H) : a(η,H, t) exists, and ∆(a(η,H, t)) ≤Mt(a(η,H, t)).

For χ ∈ (0, 1], we say that µ-satisfies χ-unsaturation if for all t such that δ/(t(t+ 1)) ≤ χ/2,
P[Ut(δ)|Ht−1]1Cont(δ) = E[µ(Ut(δ))|Ht−1]1Cont(δ) ≥ (χ/2)1Cont(δ).

In words, χ-unsaturation means that at all t, given the past, bt is unsaturated with chance at least χ/2.

4.1.1 Using Unsaturation: The Look-Back method without Unknown Constraints

For the sake of clarity, let us first consider how we can analyze TS without unknown constraints using
this unsaturation definition. We shall do so via a novel ‘look-back’ technique, which operationalises
commonly supplied intuition for how TS works [e.g. AL17], and thus offers a more intuitive argument
than the prior approach based upon studying the minimum-norm unsaturated action [AG13].

Without unknown constraints, S-COLTS collapses to standard TS by setting at = bt (and we will only
use at below). Now, suppose at were always unsaturated. Then observe that we get the bound

RT =
∑

∆(at) ≤
∑

Mt(at) = Õ(BT

√
d2T ).
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However, in reality, at is often not unsaturated. To handle this, we will ‘look back’ at the last time
s < t that as was unsaturated. Specifically, define

τ(t) := inf{s < t : ∆(as) ≤Ms(as)}, inf ∅ := 0.

This τ(t) is the last s with an unsaturated as, and so, per the unsaturation heuristic, is the last time the
learner made progress. The main idea of looking back is to control ∆(at) in terms of the information
available at τ(t) to exploit the ‘steady’ learning at such time steps. To this end, we will bound ∆(at)
in terms of aτ(t). To lower density of notation, we will write τ instead of τ(t) unless necessary.

Introducing aτ . Notice that since ∆(a) = θ⊤∗ (a∗ − a), we can introduce aτ into the control thus:

∆(at) = ∆(aτ ) + θ⊤∗ (aτ − at) ≤Mτ (aτ ) + θ⊤∗ (aτ − at),
where we used the unsaturation of aτ . Bounding this requires us to control the second term. For this,
we use the resource that at optimises θ̃t, and so θ̃⊤t (aτ − at) ≤ 0. Thus,

∆(at) ≤Mτ (aτ ) + (θ∗ − θ̃t)⊤(aτ − at) + θ̃⊤t (aτ − at),
where the third term can be dropped. Further note that the second term decomposes as two terms of
the form (θ∗ − θ̃t)⊤a, which is precisely the object controlled in Lemma 3. Using this gives

∆(at) ≤Mτ (aτ ) +Mt(aτ ) +Mt(at). (5)

Now, the final term accumulates to
∑
Mt(at), which by Lemma 3 is Õ(

√
T ). Thus, to control regret,

we only need to bound the accumulation of these look back terms
∑

tMτ(t)(aτ(t)) +Mt(aτ(t)).

Controlling Look-Back Accumulation. Our main resource for controlling this is χ-unsaturation.
Consider just the first term

∑
tMτ(t)(aτ(t)) (the second follows similarly), and let T1 ≤ T2 ≤ · · ·

denote the (stopping) times at which at was unsaturated. Then notice that∑
t≤T

Mτ(t)(aτ(t)) =

T1∑
t=1

Mτ(t)(aτ(t)) +

T2∑
t=T1+1

Mτ(t)(aτ(t)) + · · · =
∑
i≥1

(Ti − Ti−1)MTi−1
(aTi−1

),

where we set T0 = 0 and M0(·) = 1 for consistency. But notice that due to the frequency of
unsaturation, each Ti − Ti−1 is only O(log(T )/χ) with high probability. This suggests the bound∑

t

Mτ(t)(aτ(t)) ≤ Õ(χ−1)
∑
i

MTi
(aTi

) ≤ Õ(χ−1)
∑

all t≤T

Mt(at) = Õ(χ−1BT

√
d2T ),

where in the second inequality, we used the nonnegativity of Mt. Using a more refined martingale
analysis described in §H.3, this yields the following key structural tool for the look-back method.
Lemma 5. If µ satisfies χ-unsaturation, then with probability at least 1− δ, for all T ≥

√
2/χ,∑

t≤T

Mτ(t)(aτ(t)) +Mt(aτ(t)) ≤ 10BTωT (δT ) · χ−1 · (log(1/δ) +
∑
t≤T

∥at∥V −1
t

).

Since (Lemma 3) ωT

∑
∥at∥V −1

t
= Õ(d2

√
T ), this results in a proof that TS with a χ-unsaturated

perturbation law admits the bound RT = Õ(χ−1BT

√
d2T ) with no unknown constraints.

4.1.2 Looking Back with Unknown Constraints: The Analysis of S-COLTS

In the above analysis, we critically used the optimality of the action for the perturbed program, and
the frequency of unsaturation. Coming back to S-COLTS, let us recall that our action is the convex
combination at = ρtbt + (1− ρt)asafe ̸= bt, and that unsaturation means that ∆(bt) ≤Mt(bt).

Handling the Scaling. Our first course of action, then, is to observe via linearity that
∆(at) = ρt∆(bt) + (1− ρt)∆(asafe),

and regret control requires us to bound the sum of these across t. Notice that even if bt were always
unsaturated, we would only get the bound

∑
ρtMt(bt) +

∑
(1− ρt)∆(asafe), and nominally, neither

term is controlled by
∑
Mt(at). We handle this by the following, which relies on the largeness of ρt.

Lemma 6. At any t such that Mt(asafe) ≤ Γ0/3, it holds that
(1− ρt)Γ(asafe) ≤ 6Mt(at) and ρtMt(bt) ≤ 2Mt(at).

This follows from a more detailed result, Lemma 20 in §H.2. Observe as a consequence
that

∑
(1 − ρt)∆(asafe) ≤ O(∆(asafe)/Γ(asafe)) ·

∑
Mt(at) is well-controlled (and, of course,

∆(asafe)/Γ(asafe) = R(asafe)− 1). So, the main object of study is
∑
ρt∆(bt).
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Figure 1: A schematic of the analysis.
S̃s := {Φ̃sa ≤ α} are the perturbed
feasible regions. at (red box) is a mix-
ture of bt and asafe (black box). bτ(t)
is infeasibe for S̃t, and we instead mix
it with asafe to produce b̄τ(t)→t ∈ S̃t

(blue box).

Looking-Back with Unknown Constraints. We slightly adjust
the look-back time so that ρτMτ (bτ ) ≤ 2Mτ (aτ ) holds:

τ(t) := inf{s < t :Ms(asafe) ≤ Γ0/3,∆(bs) ≤Ms(bs)}.
Following §4.1.1 directly suggests that we should proceed via

ρt∆(bt) ≤ ρt(∆(bτ ) + (θ∗ − θ̃t)⊤(bτ − bt) + θ̃⊤t (bτ − bt)).
However, a major issue emerges here: notice that bt optimises
the constrained program max{θ̃⊤t a : Φ̃ta ≤ α}. However, the
look-back action bτ only satisfies the constraint {Φ̃τa ≤ α},
and so bτ may not be feasible for the perturbed constraints at
time t. This prevents us from simply dropping the final term
above, and breaks the analysis.

We address this by using essentially the same idea as that under-
lying S-COLTS itself: move bτ towards asafe to find a point that
is feasible for Φ̃t, but has regret similar to bτ . Concretely, we set

b̄τ→t := στ→tbτ + (1− στ→t)asafe, where στ→t := Γ0/(Γ0 + 3Mt(bτ ) + 3Mτ (bτ )).

Importantly, notice that στ→t essentially acts the same way as ρτ ! Indeed, part of our analysis in
§H.2 essentially shows that Lemma 6 holds with στ→tMτ (bτ ) and (1− στ→t) instead of ρτ .

In any case, the main point is thus: by two applications of Lemma 3, Φ̃τ bτ ≤ α =⇒ Φ̃tb̄τ→t ≤ α.
So, instead of bτ , our look-back analysis will focus on b̄τ→t. Applying this gives

ρt∆(bt) ≤ ρt∆(b̄τ→t) + ρt(θ∗ − θ̃t)⊤(b̄τ→t − bt) + ρtθ̃
⊤
t (b̄τ→t − bt),

where the final term is negative, and the middle term is bounded by Mt(b̄τ→t) + 2Mt(at). For the
first term, notice by linearity and unsaturation of bτ that

∆(b̄τ→t) = στ→t∆(bt) + (1− στ→t)∆(asafe) ≤ στ→tMτ (bτ ) + (1− στ→t)∆(asafe).

This leaves us with a bound in terms of στ→t and Mt(bτ ), the core resource for which is the
observation that στ→t acts essentially as ρτ , which lets us write, e.g., that στ→tMτ (bτ ) ≤ 2Mτ (aτ ).
For the sake of brevity, we leave this analysis to §H.2, and only state the main resulting bound.
Lemma 7. Let M0(a) := 1. If µ is B-concentrated, then with probability at least 1− 3δ,

∀t :Mt(asafe) ≤ Γ0/3,∆(at) ≤ 6R(asafe)(Mt(at) +Mt(aτ(t)) +Mτ(t)(aτ(t)).

Importantly notice that the bound is in terms of aτ(t), instead of bτ(t). Of course, this puts us in the
same situation as in (5) in §4.1.1, but with an extra 6R(asafe) factor in the bound. Via Lemma 5,
and an analysis of the number of times Mt(asafe) > Γ0/3 can hold, this yields a bound of the form
RT = Õ(χ−1R(asafe)BT

√
d2T ).

Novelty Relative to Prior Work. As previously mentioned, our look-back approach is a novel,
and more intuitive, modification of the seminal analysis of unconstrained TS by Agrawal and Goyal
[AG12; AG13]. More importantly, with unknown constraints, we had to handle fluctuating constraint
sets: our look-back analysis broke since bτ could be infeasible for Φ̃t, which we addressed by scaling
bτ . This issue would also break an analysis based directly on the approach of [AG12]. The novelty
relative to [HTA24] is similar: like bτ , a∗ may also be infeasible for Φ̃t, which breaks their analysis.

4.2 The Coupled Noise Design

§4.1 shows that χ-unsaturation yields control on the regret. To operationalise this, we need to design
well-concentrated laws with good unsaturation. In single-objective TS, unsaturation is enabled via
anticoncentration of the ηs, and a good balance is attained by, e.g., Unif(

√
3dSd) or N (0, Id).

A natural guess with unknown constraints is to sample both η and each row of H from such a law.
However, the unsaturation rate under such a design is difficult to control well. The main issue arises
from maintaining feasibility with respect to all m constraints under perturbation, since each such
perturbation gets an independent shot at shaving away some unsaturated actions, suggesting that χ
decays as e−Ω(m) and indeed, experimentally, increase in m may lead to at least a polynomial decay
in the unsaturated rate with such independent noise (see §J.3). We sidestep this issue by coupling the
perturbations of the reward and constraints, as encapsulated below.
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Lemma 8. Let B̄ ∈ {(0, 1]→ R≥0} be a map, and p ∈ (0, 1]. Let ν be a law on Rd×1 such that

∀u ∈ Rd, ν({ζ : ζ⊤u ≥ ∥u∥) ≥ p, and ∀ξ ∈ (0, 1], ν({ζ : ∥ζ∥ > B̄(ξ)}) ≤ ξ.
Let µ be the law of ζ 7→ (ζ⊤,−1mζ

⊤) for ζ ∼ ν. Then µ is p-unsaturated and B̄-concentrated.

Our proof of this lemma, executed in §G, is based upon analysing the local optimism event at a∗:

Lt(δ) := {(η,H) : θ̃(η, t)⊤a∗ ≥ θ⊤∗ a∗, Φ̃(H, t)a∗ ≤ α}. (6)
Notice that Lt demands that the perturbation is such that a∗ remains feasible with respect to Φ̃t, and its
value at θ̃t increases beyond θ⊤∗ a∗, in other words, the perturbed program is optimistic at a∗. Our proof
first directly analyses a∗ under the perturbations to show that P[Lt(δ)|Ht−1]1Cont(δ) ≥ p1Cont(δ),
i.e., frequent local optimism. This enables an argument due to [AG13]: since a∗ is unsaturated
(∆(a∗) = 0), and, w.h.p. the perturbed reward of any saturated action is dominated by that of a∗, it
follows that Lt(δ) ⊂ Ut(δ), yielding lower bounds on µ(Ut(δ)).
We note that the conditions of Lemma 8 are the same as those used for unconstrained linear TS in
prior work [AG13; AL17], and so this generic result extends this unconstrained guarantee to the
constrained setting. In our bounds, we will set µ to be the law induced by the coupled design with
ν = Unif(

√
3dSd), which is 0.14-unsaturated, and B-concentrated for B(ξ) =

√
3d (§G.1).

4.3 Regret Bounds for S-COLTS

With the pieces in place, we state and discuss our main result, which is formally proved in §H.
Theorem 9. Let µ be the law induced by Unif(

√
3dSd) under the coupled noise design. Then

S-COLTS(µ, δ/3) ensures that with probability at least 1− δ, for all T , it holds that

ST = 0 and RT = R(asafe) · Õ(
√
d3T + d2T log(m/δ)) + Õ(d2∆(asafe)Γ(asafe)

−2
).

Comparison of Regret Bounds to Prior Results. As noted in §1.1, prior inefficient hard en-
forcement SLB methods attain regret Õ(R(asafe)

√
d2T ), while efficient methods attain regret

Õ(R(asafe)
√
d3T ). Our results above recover the latter bounds. The loss of

√
d relative to in-

efficient methods is expected since it appears in all known efficient linear bandit methods (without
or without unknown constraints). The Ω(

√
T ) dependence is necessary (even with instance-specific

information) [GCS24] as is the additive ∆(asafe)/Γ(asafe)
2 term [PGBJ21]. Thus, S-COLTS recovers

previously known guarantees using sampling rather than frequentist bounds.
Computational Aspects. An advantage of S-COLTS is that it only optimises over linear constraints
(beyond those ofA), instead of SOC constraints of the form {∀i ∈ [1 : m], Φ̂i

ta+ωt(δ)∥a∥V −1
t
≤ αi}

imposed by prior methods. While convex, these m SOC constraints can have a palpable practical
slowdown on the time needed for optimisation, especially as m grows (over A = [0, 1/

√
d]d, with

the modest d = m = 9 we see a > 5× speedup, and with d = 2,m = 100, a 18× speedup, in §6).
In particular, when A is a polyhedron, S-COLTS can be implemented with just linear programming.
We explicitly note that S-COLTS is efficient for convex A. The dominating step is the computation of
bt, which can be carried out to an approximation of 1/t with no loss in Theorem 9. With, say, interior
point methods, this needs O(LP · log(t)) computation at round t, where LP is the computation needed
to optimise max{θ⊤a : Φa ≤ α, a ∈ A} to constant error [BV04].
Practical Choice of Noise. It has long been understood that while existing theoretical techniques
for analysing linear TS need large noise (with B(ξ) = Θ(

√
d)), in practice much smaller noise (e.g.,

Unif(Sd) with B(ξ) = Θ(1)) typically retains a large enough rate of unsaturation, and significantly
improve regret (although not in the worst-case [HB20]). Our practical recommendation is to indeed
use such a small noise, which we find to be effective in simulations (§6). We underscore that no
matter the noise used, the risk guarantee for S-COLTS is maintained.

5 Soft Constraint Enforcement with Resampling-COLTS

Given an action asafe with positive safety margin, S-COLTS ensures strong safety and good regret.
This section studies scenarios where we do not know such an asafe. In this case, it is impossible to
ensure that ST = 0, and we instead show Õ(

√
T ) bounds on ST , following prior work [GCS24].

S-COLTS uses forced exploration of asafe to ensure the feasibility of perturbed programs. However,
the local optimism underlying our proof of Lemma 8 gives a different way to achieve this. Indeed, the
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event Lt(δ) of (6) implies that a∗ is feasible, and so a(η,H, t) exists. Thus, if P[Lt(δ)|Ht−1] ≥ π,
then we can just resample the noise O(log(t)) times and end up with feasibility. In fact, even more is
true: since θ̃⊤a∗ ≥ θ⊤∗ a∗ under Lt, resampling π−1Θ(log(t)) times ensures not only feasibility, but
also optimism of the ‘best’ perturbed optimum. The R-COLTS method is based on this observation.
Concretely, given a resampling parameter r, at time t R-COLTS samples 1 + ⌈r log t(t+1)/δ⌉ indepen-
dent (η,H) from µ, optimises the perturbed program induced by each, and picks the optimum of the
one with largest value as at (and sets it = at−1 if all programs were infeasible). We let θ̃t denote the
objective of this ‘winning’ perturbed program: in the notation of Alg. 2, θ̃t = θ̃(ηi∗,t , t). The main
idea is captured in the following simple lemma.
Lemma 10. Let π ∈ (0, 1], and suppose µ satisfies 1Cont(δ)E[µ(Lt(δ))|Ht−1] ≥ π1Cont(δ) for every
t. If r ≥ π−1, then with probability at least 1− 2δ, at all t, the actions at and perturbed objective θ̃t
selected by R-COLTS(µ, r, δ) are optimistic, i.e., they satisfy that θ⊤∗ a∗ ≤ θ̃⊤t at.

Algorithm 2 Resampling-COLTS (R-COLTS(µ, r, δ))
1: Input: µ, δ, ‘resampling order’ r ∈ N
2: Initialise: It ← 1 + ⌈r log t(t+1)/δ⌉
3: for t = 1, 2, . . . do
4: for i = 1, 2, . . . , It do
5: Draw (ηi,t, Hi,t) ∼ µ.
6: if a(ηi,t, Hi,t, t) exists then
7: K(i, t)← θ̃(ηi,t, t)

⊤a(ηi,t, Hi,t, t)
8: else
9: K(i, t)← −∞

10: if maxK(i, t) = −∞ then
11: at ← at−1.
12: else
13: i∗,t ← argmaxiK(i, t),
14: at ← a(ηi∗,t,t, Hi∗,t,t, t).
15: θ̃t ← θ̃(ηi∗,t,t, t).
16: Play at, observe Rt, St, update Ht.

The ‘local optimism condition’ on µ above is
reminiscent of the global optimism condition
of Abeille & Lazaric [AL17], and indeed the
same result holds under a global optimism as-
sumption with unknown constraints. However,
the analysis in this prior work does not extend
to unknown constraints due to its reliance of
convexity (§1.1), and resampling bypasses this
issue. See §D for more details.
Lemma 10 enables the use of standard opti-
mism based regret analyses [e.g. APS11]. By
operationalising the condition on µ via the
coupled design in §4.2, we show
Theorem 11. If µ is the law induced by
Unif(

√
3dSd) under the coupled design of

Lemma 8, then with probability at least 1− δ,
R-COLTS(µ, 4, δ/2) ensures that for all T,

max(ST ,RT ) = Õ(
√
d3T + d2T log(m/δ)).

Instance-Independent Regret Bound. The above result limits both regret and risk to Õ(
√
d3T ),

with no instance-specific terms, unlikeR(asafe) in S-COLTS. In particular, this bound holds even if
maxa Γ(a) = 0, i.e., the problem is marginally feasible. This result is directly comparable to the
Õ(
√
d2T ) bound on both regret and risk under the DOSS method [GCS24], and loses a

√
d-factor

relative to this, a loss that appears in all known efficient linear bandit methods.

Computational Costs. R-COLTS with µ as above solves ∼ 4 log(t2/δ) optimisations of θ̃⊤t a over
{Φ̃ta ≤ α} ∩ A. Again, Theorem 11 is resilient to approximation of, say, 1/t, and so this takes
O(LP · log2 t) computation per round, a factor of log(t) slower than S-COLTS, but still efficient in the
practical regime of log(T/δ) = O(poly(d,m)). The main point of comparison, however, is DOSS,
which instead needs to solve (2d)m+1 such programs, and so uses (2d)m+1LP · log(t) computation
per round. R-COLTS is practically much faster even for small domains with long horizons—for
instance, with T = 1/δ = 1010, 4 log(t2/δ) ≤ (2d)m+1 for all d ≥ 4,m ≥ 2.
Relationship to Posterior Quantile Indices and Safe MABs. The resampling approach executed in
R-COLTS is closely related to the posterior-quantile approach of the BAYESUCB method [KCG12],
wherein it is proposed to use a quantile of the arm posteriors as a reward index instead of a frequentist
upper confidence bound. Indeed, we can compute such a quantile in a randomised way by taking
many samples from the posterior of each arm, and then picking the largest of the samples as the
reward index. Most pertinently, this approach was proposed for safe multi-armed bandits [CGS22],
wherein this posterior quantile index is used to decide on the ‘plausible safety’ of putative actions.
The same work further argued that the usual single-sample TS cannot obtain sublinear regret in safe
MABs. The R-COLTS approach can be viewed as an efficient extension of this principle to linear
bandits with continuum actions, and differs by directly optimising the indices under each draw, and
then picking the largest, instead of performing an untenable per-arm posterior quantile computation.
R-COLTS Without Resampling. Given the lack of a safe action to play, one cannot direct establish
the feasibility of the perturbed programs by contracting the confidence radius of a single action as in
S-COLTS. However, if we introduce a small amount of ‘flat’ exploration whenever Vt is ‘small’, then
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this ensures that any a with Γ(a) > 0 will eventually be strictly feasible under perturbations. If such
a exists, we only need a single noise draw to attain feasibility, and can bootstrap the scaling analysis
of S-COLTS to show bounds. We term this method ‘exploratory-COLTS’, or E-COLTS, and specify
and analyse it in §I.2. This results in the following soft-enforcement guarantee.
Theorem 12. If µ is the law induced by Unif(

√
3dSd) under the coupled noise design, then the

E-COLTS(µ, δ/3) method of Algorithm 3 ensures that with probability at least 1− δ, for all T ,

ST = Õ(
√
d3T ) + min

a
Õ
( d3∥a∥4
κ2Γ(a)4

)
, and RT = min

a:Γ(a)>0

{
R(a)Õ(

√
d3T ) + Õ

( d3∥a∥4
κ2Γ(a)4

)}
,

where κ is a constant depending on the geometry of A.
Relative to R-COLTS, the above guarantees are instance-dependent, and are only nontrivial if
maxa Γ(a) > 0, i.e., the Slater parameter of the optimisation problem induced by θ∗,Φ∗,A is
nonzero. The advantage of E-COLTS lies in its reduced computation. Comparing to S-COLTS, the
above loses the strong ST = 0 safety, but improves regret by adapting to the best possibleR(a).

6 Simulations
We give a brief summary of our simulations, leaving most details, and well as deeper investigation of
our methods to §J. In all cases, we utilise the coupled noise design, driven with the (uninflated) noise
ν = Unif(0.5 · Sd), in accordance with the discussion in §4. The same noise is used for SAFE-LTS.

Table 2: RT and ST at T = 5 ·104 for R-COLTS
with 1, 2, 3 samples per round (100 trials).

Samples RT ST

1 658± 170 2891± 171
2 397± 116 3126± 137
3 301± 102 3266± 172

Resampling tradeoff in R-COLTS. For d = 9, we
optimise θ∗ = 1d/

√
d over A = [0, 1/

√
d]d, with a

9 × 9 constraint matrix (i.e., m = 9). In this case,
the action 0 is feasible, and so R-COLTS without any
resampling is effective. Since a = 0 has a nontrivial
safety margin, R-COLTS, even without resampling, is
effective for this problem. This is borne out in Table 2,
which shows regret and risk at the terminal time T . We see that resampling slightly worsens risk, but
significantly improves regret (although with diminishing returns). Further, both regret and risk are far
below the

√
d2T scale expected from our bounds. We note that while a single iteration of R-COLTS

takes ∼ 1ms, since (2d)m+1 > 1012, this would take years for DOSS, and so we do not implement it.
In any case, note that the computational advantage of R-COLTS is extremely strong.
Significant Computational Advantage and Regret Parity/Improvement of S-COLTS. We compare
S-COLTS with the hard enforcement method SAFE-LTS [MAAT21], which has been shown to match
the performance of alternate such methods, while being faster. Both methods are run on the d = m =
9 instance above, with asafe = 0. As expected, both never play unsafe actions. Further (Fig. 2, left),
S-COLTS achieves an improvement in regret relative to SAFE-LTS, while reducing wall-clock time
by a 5.1×. To gain a deeper understanding of S-COLTS’s computational advantage, we investigate
the same with growing m ∈ {1, 10, 20, . . . , 100} constraints for a simple d = 2 setting (see §J.2.1
for the setup). In this problem, the benefit is even starker (Fig. 2, right). For m ≥ 10, the regret of
SAFE-LTS is 2− 4× larger than that of S-COLTS, i.e., the latter has much better regret (m = 1 has
wide confidence bands for the ratio, but mean ∼ 1.5) Further, the computational costs of SAFE-LTS
relative to S-COLTS grow roughly linearly, starting from ≈ 1.3× for m = 1 to > 18× at m = 100.

Figure 2: COMPUTATIONAL AND REGRET COMPARISONS OF S-COLTS AND SAFE-LTS. Left. Regret traces in
the d = 9 instance (dashed lines are one-sigma error bars); S-COLTS mildly improves regret, and is 5× faster.
Right. Relative performance as m is varied in the d = 2 instance. The speedup of S-COLTS grows linearly with
m from 1.3× to > 18×. Further, for m ≥ 10, the regret of S-COLTS is 2-3× smaller than that of SAFE-LTS

10



Acknowledgements

The authors would like to thank Aldo Pacchiano for helpful discussions. This research was supported
by the Army Research Office Grant W911NF2110246, AFRL Grant FA8650-22-C1039, and the
National Science Foundation grants CPS-2317079, CCF-2007350, and CCF-1955981.

References
[AAT19] Sanae Amani, Mahnoosh Alizadeh, and Christos Thrampoulidis. “Linear stochastic

bandits under safety constraints”. In: arXiv preprint arXiv:1908.05814 (2019) (cit. on
pp. 1–3, 22).

[AD14] Shipra Agrawal and Nikhil R Devanur. “Bandits with concave rewards and convex knap-
sacks”. In: Proceedings of the fifteenth ACM conference on Economics and computation.
2014, pp. 989–1006 (cit. on p. 21).

[AD16] Shipra Agrawal and Nikhil Devanur. “Linear contextual bandits with knapsacks”. In:
Advances in Neural Information Processing Systems 29 (2016), pp. 3450–3458 (cit. on
p. 3).

[AG12] Shipra Agrawal and Navin Goyal. “Thompson Sampling for Contextual Bandits with
Linear Payoffs”. In: arXiv preprint arXiv:1209.3352 version 4 (2012). Note: This
version of the preprint, dated to 2014, improves upon the version of the paper published
at ICML 2013, showing

√
d3T regret instead of

√
d4T . Most of the text cites the ICML

version, but attributes this stronger bound to it. This version is cited only to refer to
specific details in this paper. (cit. on p. 7).

[AG13] Shipra Agrawal and Navin Goyal. “Thompson sampling for contextual bandits with lin-
ear payoffs”. In: International conference on machine learning. PMLR. 2013, pp. 127–
135 (cit. on pp. 2, 3, 5, 7, 8, 22, 24).

[AK08] Baruch Awerbuch and Robert Kleinberg. “Online linear optimization and adaptive
routing”. In: Journal of Computer and System Sciences 74.1 (2008), pp. 97–114 (cit. on
p. 38).

[AKR21] Maryam Aziz, Emilie Kaufmann, and Marie-Karelle Riviere. “On multi-armed bandit
designs for dose-finding trials”. In: Journal of Machine Learning Research 22.14 (2021),
pp. 1–38 (cit. on pp. 1, 21).

[AL17] Marc Abeille and Alessandro Lazaric. “Linear Thompson sampling revisited”. In:
Electronic Journal of Statistics 11.2 (2017), pp. 5165–5197. DOI: 10.1214/17-
EJS1341SI. URL: https://doi.org/10.1214/17-EJS1341SI (cit. on pp. 2, 3, 5,
8, 9, 22–24, 47).

[AML24] Amirhossein Afsharrad, Ahmadreza Moradipari, and Sanjay Lall. “Convex methods
for constrained linear bandits”. In: 2024 European Control Conference (ECC). IEEE.
2024, pp. 2111–2118 (cit. on p. 22).

[APS11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. “Improved algorithms for
linear stochastic bandits”. In: Advances in neural information processing systems 24
(2011), pp. 2312–2320 (cit. on pp. 3, 9, 25).

[BGCG23] Debangshu Banerjee, Avishek Ghosh, Sayak Ray Chowdhury, and Aditya Gopalan.
“Exploration in linear bandits with rich action sets and its implications for inference”.
In: International Conference on Artificial Intelligence and Statistics. PMLR. 2023,
pp. 8233–8262 (cit. on p. 39).

[BKS13] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. “Bandits
with knapsacks”. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science. IEEE. 2013, pp. 207–216 (cit. on pp. 3, 21).

[Bot+22] Alessandro Bottero, Carlos Luis, Julia Vinogradska, Felix Berkenkamp, and Jan R
Peters. “Information-theoretic safe exploration with Gaussian processes”. In: Advances
in Neural Information Processing Systems 35 (2022), pp. 30707–30719 (cit. on p. 21).

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004 (cit. on p. 8).

[Cam+22] Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, and
Kevin Jamieson. “Active Learning with Safety Constraints”. In: arXiv preprint
arXiv:2206.11183 (2022) (cit. on p. 21).

11

https://doi.org/10.1214/17-EJS1341SI
https://doi.org/10.1214/17-EJS1341SI
https://doi.org/10.1214/17-EJS1341SI


[CGS22] Tianrui Chen, Aditya Gangrade, and Venkatesh Saligrama. “Strategies for safe multi-
armed bandits with logarithmic regret and risk”. In: International Conference on
Machine Learning. PMLR. 2022, pp. 3123–3148 (cit. on pp. 2, 3, 9).

[Cho+24] Alex Chohlas-Wood, Madison Coots, Henry Zhu, Emma Brunskill, and Sharad Goel.
“Learning to Be Fair: A Consequentialist Approach to Equitable Decision Making”. In:
Management Science (2024) (cit. on pp. 1, 21).

[CVA20] Alexandra Carpentier, Claire Vernade, and Yasin Abbasi-Yadkori. “The elliptical poten-
tial lemma revisited”. In: arXiv preprint arXiv:2010.10182 (2020) (cit. on p. 25).

[DHK08] Varsha Dani, Thomas P Hayes, and Sham M Kakade. “Stochastic linear optimization
under bandit feedback”. In: Conference on Learning Theory. 2008 (cit. on pp. 21, 22,
38).

[FLZY22] Liang Feng, Wei Liu, Zhenyu Zhang, and Haoyang Yu. “Stability-Constrained
Reinforcement Learning for Real-Time Voltage Control”. In: arXiv preprint
arXiv:2203.12345 (2022). URL: https://arxiv.org/abs/2203.12345 (cit.
on pp. 1, 21).

[GCS24] Aditya Gangrade, Tianrui Chen, and Venkatesh Saligrama. “Safe Linear Bandits over
Unknown Polytopes”. In: The Thirty Seventh Annual Conference on Learning Theory.
PMLR. 2024, pp. 1755–1795 (cit. on pp. 1–3, 8, 9, 22, 39, 43).

[GGSS24] Aditya Gangrade, Aditya Gopalan, Venkatesh Saligrama, and Clayton Scott. “Testing
the Feasibility of Linear Programs with Bandit Feedback”. In: Proceedings of the 41st
International Conference on Machine Learning. 2024 (cit. on p. 23).

[GPSS25] Aditya Gangrade, Aldo Pacchiano, Clayton Scott, and Venkatesh Saligrama. “Feasible
Action Search for Bandit Linear Programs via Thompson Sampling”. In: International
Conference on Machine Learning. 2025 (cit. on p. 23).

[HB20] Nima Hamidi and Mohsen Bayati. “On worst-case regret of linear thompson sampling”.
In: arXiv preprint arXiv:2006.06790 472 (2020) (cit. on p. 8).

[HRMS21] Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. “Time-uniform,
nonparametric, nonasymptotic confidence sequences”. In: The Annals of Statistics 49.2
(2021) (cit. on p. 28).

[HTA23] Spencer Hutchinson, Berkay Turan, and Mahnoosh Alizadeh. “The Impact of the
Geometric Properties of the Constraint Set in Safe Optimization with Bandit Feedback”.
In: Learning for Dynamics and Control Conference. PMLR. 2023, pp. 497–508 (cit. on
p. 2).

[HTA24] Spencer Hutchinson, Berkay Turan, and Mahnoosh Alizadeh. “Directional optimism
for safe linear bandits”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2024, pp. 658–666 (cit. on pp. 2–4, 7, 22).

[KCG12] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. “On Bayesian upper confi-
dence bounds for bandit problems”. In: Artificial intelligence and statistics. PMLR.
2012, pp. 592–600 (cit. on p. 9).

[KS19] Julian Katz-Samuels and Clayton Scott. “Top feasible arm identification”. In: The
22nd International Conference on Artificial Intelligence and Statistics. PMLR. 2019,
pp. 1593–1601 (cit. on p. 21).

[LM00] Beatrice Laurent and Pascal Massart. “Adaptive estimation of a quadratic functional by
model selection”. In: Annals of statistics (2000), pp. 1302–1338 (cit. on p. 27).

[MAAT21] Ahmadreza Moradipari, Sanae Amani, Mahnoosh Alizadeh, and Christos Thram-
poulidis. “Safe linear thompson sampling with side information”. In: IEEE Transactions
on Signal Processing (2021) (cit. on pp. 1–3, 10, 22, 43).

[PGB24] Aldo Pacchiano, Mohammad Ghavamzadeh, and Peter Bartlett. “Contextual Bandits
with Stage-wise Constraints”. In: arXiv preprint arXiv:2401.08016 (2024) (cit. on
pp. 1–3, 22, 24, 25).

[PGBJ21] Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett, and Heinrich Jiang.
“Stochastic bandits with linear constraints”. In: International Conference on Artifi-
cial Intelligence and Statistics. PMLR. 2021, pp. 2827–2835 (cit. on pp. 2, 3, 8, 22,
39).

[PV91] Panos M Pardalos and Stephen A Vavasis. “Quadratic programming with one negative
eigenvalue is NP-hard”. In: Journal of Global optimization 1.1 (1991), pp. 15–22
(cit. on p. 22).

12

https://arxiv.org/abs/2203.12345


[Sah74] Sartaj Sahni. “Computationally related problems”. In: SIAM Journal on computing 3.4
(1974), pp. 262–279 (cit. on p. 22).

[SGBK15] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. “Safe exploration for op-
timization with Gaussian processes”. In: International conference on machine learning.
PMLR. 2015, pp. 997–1005 (cit. on p. 21).

NeurIPS Paper Checklist

1. Claims
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are not attained by the paper.
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• The answer NA means that the paper has no limitation while the answer No means that
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a complete (and correct) proof?
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the dataset).
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versions (if applicable).
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results?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: one-sigma error bars are reported throughout, except for iteration time mea-
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: see §J
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No data drawn from human subjects was used in this research. The paper is
theoretical, and focuses on developing algorithms for safe linear bandits. As such, societal
impacts are related to downstream applications of this generic underlying method, and so
are associated with work applying ours as a subroutine, rather than directly stemming from
our contributions.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: as discussed in the answer to the previous point, potential social impacts
(positive or negative) would stem from downstream applications that use bandit linear
programming routines that we have designed. We decline to prognosticate such applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: no such data or models are released via this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: the code was entirely written bythe authors. The sole data used is the matrix
Φ∗ as specified in §J, which is accompanied by appropriate attribution in the same section.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: no new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: we did not do this.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: no research with human subjects or crowdsourcing were employed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and ference, workshop, or preprint repository) and already published
papers are allowed.
we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their
institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in any part of the preparation of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Glossary
Symbol Explanation Expression/Comments
(θ∗,Φ∗) True objective/constraints ∈ Rd×1 × Rm×d

α Constraint level ∈ Rm×1

A Action domain
a∗ Optimal action for (θ∗,Φ∗) argmax{θ⊤∗ a : a ∈ A,Φ∗a ≤ α}

K(θ,Φ) Value function sup{θ⊤a : a ∈ A,Φa ≤ α},
−∞ if {Φa ≤ α} ∩ A = ∅.

∆(a) Reward gap θ⊤∗ (a∗ − a)
Γ(a) Safety margin mini((α− Φ∗a)

i)+
R(a) Gap-margin ratio 1 + (∆(a)/Γ(a))

Estimation and Signal
Ht−1 Historical filtration See §2
θ̂t, Φ̂t RLS-estimates of parameters See §2
Vt Action second moment I +

∑
s<t asa

⊤
s

ωt(δ) Confidence radius See §2
Cθt , CΦt Confidence sets for θ∗,Φ∗
Cont(δ) Consistency event at time t {θ∗ ∈ Cθt (δ),Φ∗ ∈ CΦt (δ)}
Con(δ) Overall consistency

⋂
t≥1 Cont(δ)

COLTS in general
µ Perturbation law Distribution on R1×d × Rm×d

(η,H) Perturbation noise ∼ µ, independently of Ht−1

θ̃(η, t) Pertrubed objective θ̂t + ωt(δ)ηV
−1/2
t

Φ̃(H, t) Perturbed constraint Φ̂t + ωt(δ)HV
−1/2
t .

B(ξ) Tail bound on ∥η∥,maxi ∥Hi∥
Bt Noise radius bound max(1, B(δt)), where δt = δ/(t2+t).

Mt(a) Perturbation scale at a Btωt∥a∥V −1
t

a(η,H, t) Perturbed optimum See (3)
Ut(δ) Unsaturation event {(η,H) : ∆(a(η,H, t)) ≤Mt(a(η,H, t)}
χ Unsaturation rate

Lt(δ) Local optimism event {(η,H) : θ̃(η, t)⊤a∗ ≥ θ⊤∗ a∗, Φ̃(H, t)a∗ ≤ α}
π Local optimism rate

Coupled Noise Design
ν Baseline perturbation law Supported on Rd×1

ζ Generic draw from ν ζ ∼ ν, independent of Ht−1

B̄ Tail bound for ν ν(∥ζ∥ > B̄(ξ)) ≤ ξ
p Anticoncentration parameter for ν infu ν(ζ

⊤u > ∥u∥) ≥ p
(ζ⊤,−1mζ

⊤) Coupled noise induced by ν i.e., draw ζ, set η = ζ⊤ and H = −1mζ
⊤.

S-COLTS
asafe A priori given safe action Γ(asafe) > 0.
Γ0 Reference margin (see §H.1) for estimation) Γ0 ≥ Γ(asafe)/2 and Γ0 ≤ Γ(asafe)

(ηt, Ht) Perturbation noise at t
θ̃t, Φ̃t Perturbed parameters at t θ̃t = θ̃(ηt, t), Φ̃t = Φ̃(Ht, t)
bt Preliminary action at time t (if exists) bt = a(ηt, Ht, t)

a(ρ) ρ-mixture of bt and asafe a(ρ) = ρbt + (1− ρ)asafe
ρt Largest ρ with safe a(ρ) See (4); at = a(ρt).
τ(t) Look-back time §4.1.2Lemma 7

E-COLTS
(ηt, Ht) Perturbation noise draws at time t (ηt, Ht) ∼ t

κ Goodness factor of exploratory policy See §I.2
ut Number of exploration steps up to time t ut ≈ Btωt

√
dt

R-COLTS
r Resampling parameter
It Number of resamplings at time t It = ⌈r log(1/δt)⌉+ 1.

(ηi,t, Hi,t) ith draw of noise perturbation at time t ∼ µ independently
K(i, t) Value under perturbation K(θ̃(ηi,t, t), Φ̃(Hi,t, t))
i∗,t Best index at time t argmaxiK(i, t)
at Action picked at = a(ηi∗,t , Hi∗,t , t)

θ̃t Objective for i∗,t θ̃t = θ̃(ηi∗,t , t).
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B Examples of Real-World Domains where the Safe Linear Bandit Problem
Applies

Table 3: Mapping real domains to the bandit linear programming. In all three cases the reward
is linear in an unknown parameter vector θ∗, and the safety/fairness predicate is an unknown linear
inequality Φ∗a ≤ α. Feedback noise in both rewards and constraints arises through environmental or
individual fluctuations.

Domain ( ref. ) Action a∈A⊂Rd Reward θ⊤∗ a+ noise Constraints

Dose-finding
[AKR21]

One-hot vector for d
discrete dose levels

θi∗ = patient-level efficacy
probability at dose i

Φi
∗ = toxicity of dose i; constraint

so that P (toxic|dose) ≤ α
Voltage-constrained
micro-grid
[FLZY22]

Active/reactive power
set-point [P,Q]⊤

for each bus

θi∗ = locational marginal
price vector

Φ∗ = linearised network power-flow
imposing nodal-voltage constraints
under variable demand

Fair Reccommendation
in A/B testing
[Cho+24]

Distribution over d
items or policies θi∗ = revenue of item i

Φi
∗ = encoding group attributes

and costs; constraints demand fair
exposure for each group

C Further Discussion of Related Work

Distinction of Safe Bandits From BwK. BwK settings are concerned with aggregate cost metrics
of the form AT := maxi(

∑
α− Φ∗at)

i, without the (·)+ nonlinearity in ST [e.g. AD14; BKS13].
This simple change has a drastic effect, in that BwK algorithms can ‘bank’ violation by playing very
safe actions for some rounds, and then ‘spend’ it to gain high reward, without any net penalty in AT .
This is appropriate for modeling aggregate cost constraints (monetary/energy/et c.), but is evidently
inappropriate to model safety constraints where feasibility violation in any round cannot be offset
by acting safely in another round. Notice that such behaviour is precluded by the ramp nonlinearity
in RT ,ST : playing too-conservatively does not decrease ST , while any violation of constraints is
accumulated, and similarly, playing suboptimally causes RT to rise, but playing an over-aggressive
action with negative ∆(a) does not reduce RT .

Pure Exploration in Safe Bandits. While our paper focuses on controlling regret and risk, naturally
the safe bandit problem can be studied in the pure-exploration sense. These are studied in both the ‘soft
enforcement’ sense, in which case methods can explore both within and outside the feasible region
and return actions that are ε-safe and ε-optimal [e.g., Cam+22; KS19], and the ‘hard enforcement’,
wherein exploratory actions must be restricted to the feasible region [e.g., SGBK15; Bot+22].

More Details on Computational Costs of Prior Methods. Most frequentist confidence-set based hard
enforcement methods pick actions by solving the program

max
θ∈Cθ

t ,a∈A
θ⊤a s.t. ∀Φ ∈ CΦt ,Φa ≤ α.

Assuming, for simplicity, that asafe = 0, due to the structure of the confidence sets the above constraint
translates to

∀i ∈ [1 : m], Φ̂i
ta+ ωt(δ)∥a∥V −1

t
1m ≤ α.

Notice that this constitutes m different second-order conic constraints. In fact, as discussed in §I.2,
we expect V −1

t to have condition number scaling as Ω(t1/4), which adds further computational
burdens to optimising under such constraints.

Of course, as written, the above program is nonconvex due to the objective θ⊤a. Indeed, this is a
well-established issue in linear bandits (without unknown constraints), and was first observed in this
context by Dani et al. [DHK08]. Specifically, notice that due to the ellipsoidal structure of Cθt , even
without unknown constraints, the program

max
θ,a

θ⊤a : θ ∈ Cθt , a ∈ X

is equivalent to solving
max
a∈X

ωt(δ)∥at∥V −1
t

+ θ̂⊤t a,
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and in general it is NP-hard to solve such programs [Sah74; PV91]. Indeed, one can see that if θ̂t = 0,
this is exactly equivalent to positive definite quadratic maximisation, which is known to NP-hard
even if V = I and X is only allowed to range over polytopes.1 Note that with the aforementioned
hard enforcement constraints, X is the intersection of A and these SOC constraints.

This hardness can be addressed via a standard ‘ℓ1-relaxation [DHK08], which reduces the problem
to solving 2d optimisation problems with linear objectives and the above SOC constraints, while
weakening regret to Õ(R(asafe)

√
d3T ): in a nutshell, one replaces the ellipsoid {∥θ − θ̂∥V ≤ ω} by

a skewed ℓ1 ball of the form
{∥V 1/2(θ − θ̂)∥1 ≤

√
dω}.

Such a ball has only 2d extreme points in θ, and of course for any a, one of these extreme points
optimises θ⊤a over this ℓ1-ball, meaning that computing maxθ,a θ

⊤a can be reduced to solving 2d

programs of the form maxa θ
⊤a. The increase in regret occurs due to the

√
d-blowup, which is

needed to ensure that the relaxed confidence set contains the original ellipsoid.

This characterises the costs of most of these ‘optimistic-pessimistic’ methods [e.g. PGBJ21; PGB24;
AAT19]. Afsharrad et al. give a systematic and detailed account of these considerations [AML24].
There are two exceptions. The SAFE-LTS method of Moradipari et al. [MAAT21] uses sampling to
select the objective, but still imposes the same SOC constraints, thus needing only one optimisation
each round. The ROFUL method of Hutchinson et al.[HTA24] instead first picks an action according
to (the NP-hard to implement method) DOSS, and then scales it towards asafe as in S-COLTS. Of
course, note that S-COLTS samples only one set of linear constraints each round, and is efficient.
There are also analytical differences between ROFUL and S-COLTS, as discussed in §4.

Turning to soft enforcement, as we mentioned in the main text, no efficient method is known. The
main method herein for linear bandits is DOSS [GCS24], which instead picks actions by solving

max
θ∈Cθ

t ,a∈A
θ⊤a s.t. ∃Φ ∈ CΦt : Φa ≤ α.

This ∃ operator renders this problem much more challenging, since now the constraint works out to
the union of polytopes ⋃

A∈CΦ
t

A ∩ {Φa ≤ α},

which is highly nonconvex, and hard to condense or relax. Indeed, Gangrade et al. [GCS24] propose
using a similar ℓ1-relaxation as discussed above for both the objective and the constraints, but this
now leads to (2d)m+1-extreme points of the confidence sets (accounting for both θ and the m-rows of
Φ), leading to (2d)m+1 ·LP · log(t) compute needed per round. In contrast, R-COLTS uses LP · log2(t)
compute, and E-COLTS uses only LP · log(t) compute.

More Details on the Failure of Prior Thompson Sampling Analyses. §4 discusses the point where
the prior unsaturation-based analysis of linear TS due to [AG13] breaks down in the presence of
unknown constraints in some detail. For the optimism-based analysis of [AL17], we only briefly
touch upon this in §5, and give a more detailed look in §D. This section serves as a brief summary of
the latter.

The analysis of Abeille and Lazaric relies on the convexity of the value function J(θ) :=
maxa∈A θ

⊤a to both analyse the roundwise regret (∆(at)) and to establish the frequency of a
certain ‘global optimism’ event (see §D. With unknown constraints, the corresponding object of
interest is the value function K(θ,Φ) := sup{θ⊤a : a ∈ A,Φa ≤ α}. This map is not convex in Φ,
which causes both of these steps to break down. R-COLTS avoids this issue by resampling. It is also
possible to give an analysis of S-COLTS (and E-COLTS) within the optimism framework, although
this again utilises a scaling trick to bypass the same issue. Of course, we also establish optimism in a
convexity-free way by analysing the local behaviour at a∗.

Finding a Feasible Point, and Soft-Enforcement with O(1) Risk. Notice that since there are plenty
of polynomial time methods for hard enforcement in SLBs (even though the prior methods impose
SOC constraints), in principle one can develop efficient soft-enforcement methods with regret scaling
inversely in maxa Γ(a) by first discovering an action that has Γ(a) ≥ const. ·maxa Γ(a), and then

1Of course, we could also reveal the value of θ̂⊤t a at the optimum, and then, irrespective of the value of θ̂t,
turn this into a positive definite quadratic maximisation problem over the set X ∩ {θ̂⊤t a = v}.
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plugging this into a hard enforcement method. In this case, the exploration time would be random,
but a constant, so the net risk would ostensibly be O(1) as T explodes, far below our

√
T bounds,

making the performance close to that of hard enforcement.2

In parallelly conducted research, we (along with coauthors) have recently provided an efficient method
for this problem [GPSS25], which extends a previous (inefficient) approach to testing the feasibility of
LPs due to us [GGSS24]. This method, termed FAST, is also based on Thompson Sampling, and also
utilises the coupled noise design of §4.2 as a core element. However, there are significant differences
in the analysis of this method: because the expression maxa Γ(a) = maxa mini(α− Φ∗a)

i can be
expressed as the value of a matrix game over A and the probability simplex, one can exploit the
boundedness of the probability simplex in 1-norm to directly analyse a Lagrangian. We leave the
details to the appropriate paper. The net result is thus: let amm be the maximiser of the margin Γ(a)
over A, and let Γ∗ := maxa Γ(a). Then with high probability FAST finds a point aFAST such that
Γ(aFAST) ≥ Γ∗/2 in τ = O(d3/Γ2

∗) rounds, which incurring a net safety risk of O(d3/Γ∗).

Nevertheless, let us note that coupling our FAST method with S-COLTS gives the first algorithm
which selects actions by only optimising over linear constraints, and gives both O(d3/Γ∗) risk and
Õ(R(aFAST)

√
d3T ) ≤ Õ(Γ−1

∗
√
d3T ) regret without prior knowledge of any safe action such as

the asafe assumed in this paper, as well as all prior papers on hard constraint enforcement in safe
bandits. Naturally, note that if maxa Γ(a) is small, this regret bound can be much weaker than the
unconditional Õ(

√
d3T ) bound of R-COLTS: which method to prefer depends on the application, and

the importance of attaining O(1) instead of O(
√
d3T ) risk. We also note that in principle the regret

bound can be tightened beyond this: instead of searching for a maximiser of Γ(a), one could directly
search for a minimiser ofR(a) = ∆(a)/Γ(a). Finding an efficient and effective way to do this is an
interesting open problem.

D Local Optimism, Global Optimism, and Unsaturation

In §5, we (implicitly) defined a local-optimism condition on the perturbation law µ in the statement
of Lemma 10, which is compared to a ‘global optimism’ condition suggested by the prior work of
Abeille & Lazaric [AL17]. To further contextualise these, let us explicitly define them.
Definition 13. Let K(θ,Φ) := sup{θ⊤a : a ∈ A,Φa ≤ α} denote the value function of optimising
the objective θ under constraint matrix Φ over A, with the convention that sup ∅ = −∞. Recall that
the local optimism event at a∗ is

Lt(δ) := {(η,H) : θ̃(η, t)⊤a∗ ≥ θ⊤∗ a∗, Φ̃(H, t)a∗ ≤ α},

where a∗ is the constrained optimum for the true parameters (θ∗,Φ∗). Further, define the global
optimism event

Gt(δ) := {(η,H) : K(θ̃(η, t), Φ̃(H, t)) ≥ θ⊤∗ a∗ = K(θ∗,Φ∗)}.

For π ∈ (0, 1], we say that a law µ on (η,H) satisfies π-local optimism if

∀t,E[µ(Lt(δ))|Ht−1]1Cont(δ) ≥ π1Cont(δ),

and similarly, that µ satisfies π-global optimism if

∀t,E[µ(Gt(δ))|Ht−1]1Cont(δ) ≥ π1Cont(δ).

Notice that G demands perturbations such that after optimising the perturbed parameters, the value of
the resulting program is larger than θ⊤∗ a∗, while L demands the stronger condition that a∗ is feasible,
and its value increases. Evidently, L ⊂ G, and so π-local optimism of µ implies π-global optimism.
Naturally, the entirety of §5 follows if we have a globally optimistic µ instead of locally optimistic µ.
We presented this section with Lt instead due to limited space in the main text.

As discussed in §4.2, we will also show, in §G, Lt(δ) ∩ Cont(δ) ⊂ Ut(δ) ∩ Cont(δ), i.e., when
consistency holds, local optimism implies unsaturation. Thus, Lt links the global-optimism based

2note that there is a cost, though: as stated before, the regret would scale inversely in the Slater gap, and until
the safe point is discovered, would grow linearly.
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framework of [AL17], and the unsaturation based framework of [AG13]. Nevertheless, technically,
these are distinct events.

Let us briefly note that the prior work [AG13] essentially passes through the same strategy as us
when establishing a good unsaturation rate, in that they argue that local-optimism holds frequently
(although they do not consider unknown constraints, so their argument does not extend to our setting).
On the other hand, [AL17] presents a convexity-based proof of frequent global optimism for linear TS
without unknown constraints, while immediately breaks in our setting because K(θ,Φ) is nonconvex
in Φ. We also reiterate that our coupled noise design of §4.2 essentially takes the same conditions on
perturbations used in these prior works, and extends them to produce the same bounds on unsaturation
or global-optimism rates by arguing that local-optimism holds. This means that these prior results do
not capture the prevalence of these events beyond local optimism. Our simulations in §J suggest that
this leaves a significant amount of performance on the table, capturing which theoretically would
require deeper understanding of Ut \ Lt and Gt \ Lt.
Role of These Conditions in Our Work. To analyse S-COLTS and E-COLTS, we used a look-back
approach enabled by the unsaturation condition, while to analyse R-COLTS, we relied on a direct use
of the optimism condition. It turns out that the unsaturation condition is not effective at capturing
at least our strategy for analysing the resampling-based strategy R-COLTS. The reason is that while
the resampling will ensure that at least one of the optima of attaining the various K(i, t) values will
be unsaturated, we have no guarantee that the procedure we take of picking the i∗,t that maximises
K(i, t) will choose an unsaturated action. On the other hand, the optimism condition can be used to
analyse S-COLTS and E-COLTS directly (see §H.5), but a direct execution of the previous optimism
based approach [AL17] fails due to the lack of convexity of the map K(θ,Φ). Instead, we have to
directly analyse expressions of the form E[|K(θ̃, Φ̃)−K(θ̃′, Φ̃′)| | Ht−1], where (θ̃, Φ̃) and (θ̃′, Φ̃′)
are iid draws of the perturbation at tie t. Under the assumption that there is an action with positive
safety margin with small Mt, this can be executed via a similar scaling-based analysis, albeit at a loss
of some factors in the regret bound (§H.5). In our opinion the unsaturation based look-back analysis
of ∆(at) is conceptually clearer, and we chose to present it in the main instead.

Nevertheless, in terms of their explanatory power, neither condition dominates the other. Indeed, in
simulations, we find both cases where unsaturation is frequent but global optimism is not, and cases
where global optimism is frequent but unsaturation is not.3 Of course, in our analysis, both of these
are connected by local optimism as detailed above, which is rendered frequent through our coupled
design. Nevertheless, the local optimism rate can be significantly smaller than the unsaturation and
global optimism rates, particularly when the noise is shrunk far below the theoretically analysed
setting of Θ(

√
d)-scale noise (see §J). These observations again hint that developing a tight theory of

linear TS (both with and without unknown constraints) requires a deeper understanding of the portion
of these events that do not intersect with local optimism.

E An Informal Discussion of Contextual Safe Linear Bandits

Rather than static bandit problems, most practical scenarios are contextual, wherein the learner
observes some side information xt before choosing an action, and this side information affects the
reward and constraint structure at time t. A common setting to model this [PGB24; AG13] is to
assume that there is a known feature map φ : X ×A → Rd such that the reward and constraints at
time t are of the form

θ⊤∗ φ(xt, a) and Φ∗φ(xt, a) ≤ α.
Throughout, we assume the same feedback structure, i.e., noisy measurements of θ⊤∗ φ(xt, at) and
Φ∗φ(xt, at). Naturally, regret is compared to the optimal policy A∗ : X → A, where

A∗(x) = argmax θ⊤∗ φ(x, a) : Φ∗φ(x, a) ≤ α, a ∈ A.
It should be noted that the Lemma 1 on consistency, and the elliptical potential lemma (Lemma 14)
continue to hold, with Vt replaced by I +

∑
s≤t φ(xs, as)φ(xs, as)

⊤, and at by φ(xt, at). No-
tationally, we extend ∆(a),Γ(a) to ∆(x, a) = θ⊤∗ (φ(x,A∗(x)) − φ(x, a)) and Γ(x, a) =
maxi((α− Φ∗φ(x, a))

i)+.
3This is most pertinent for the setting where we drive the perturbations with independent noise, where in §J.3

we observed that the unsaturation rate decayed with m, but the global optimism rate did not. Indeed, this is what
prompted us to write the optimism-based analysis of §H.5.
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A key observation is that our result on the frequency of the local optimism persists in this contextual
setting. Under the hood, this essentially shows that at any t, and for any vector φ,

P
{
(η,H) : θ̃⊤φ ≥ θ⊤∗ φ, Φ̃φ ≤ Φ∗φ

∣∣∣Ht−1

}
1Cont(δ) ≥ π1Cont(δ),

where π ≥ 0.28 for the coupled noise driven by Unif(
√
3dS)d. Consequently, frequent local

optimism follows in the contextual setting by using this result for φ(xt,A∗(xt)) at time t.

The above observation means that using the same coupled noise lets us extend the results of Theo-
rem 11 on the regret of R-COLTS to the contextual case with only cosmetic changes in the analysis.
This holds no matter how the sequence xt is selected, as long as the noise remains conditionally
centred and subGaussian given at, xt, the algorithmic randomness, and the history. Note, however,
that the optimisation over a may become harder due to the feature map φ, and efficiency requires
further structural assumptions on φ.

Focusing now on S-COLTS, let us first note that if we were given a safe action asafe that was safe
no matter the context, i.e., such that infx Γ(x, asafe) ≥ Γsafe > 0, and φ were ‘nice’ in terms of
a ∈ A,4 then as long as we know Γsafe a priori, no real change is required, and the guarantees of
Theorem 9 for S-COLTS extend to the contextual setting,5 since we can again guarantee the frequent
choice of unsaturated actions through our persistent local optimism property. We note that previous
works on safe contextual bandits [PGB24] assume exactly this existence of an ‘always very safe’
action. Nevertheless, this structure is unrealistic: practically, safety should depend strongly on the
context, and it is unlikely that a single action would always be safe, let alone have a large safety
margin. A more natural assumption is that instead of a single safe action, we are given a safe policy
Asafe : X → A. Here, again, if we know that infx Γ(x,Asafe(x)) ≥ Γsafe > 0, and we know the
value of Γsafe, then we are good to go, although this is a strong assumption. Without knowing this
value, we need to be able to determine a good estimate of Γ(xt,Asafe(xt)) in order to appropriately
ensure feasiblity of perturbed programs, and to scale back the actions bt. This can be a challenging
task, especially if xt varies in an adversarial way, and structures enabling such estimation must
be assumed.6 Finally, note that even if we were given Γ(x,Asafe(x)) as a function explicitly, the
easily forthcoming regret bounds rather pessimistically scale with (infx Γ(x,Asafe(x)))

−1, and do
not capture how variation in this margin with x can be used to limit regret. A (at least somewhat)
different analysis is needed to express this in a clear way. Resolving such limitations is an important
open problem in the theory of SLBs.

This lacuna also affects the E-COLTS method of §I.2, but to a lesser extent. Sticking with ‘nice’
feature maps, again, if there exists an action that is always safe, i.e., if maxa minx Γ(xt, at) > 0,
then the guarantees of Theorem 12 extend with arbitrary context sequence. Without this guarantee,
the main gap is the exploration policy being utilised, which must be adapted to attain a good coverage
over {φ(x, a)} even as xt varies. Given such a policy, however, the results of Theorem 12 again
extend to the contextual case with arbitrary xt.

F Some Basic Tools For the Analysis

We begin with some standard tools that are repeatedly utilised in the analysis. The first of these,
termed the elliptical potential lemma offers generic control on the accumulation of ∥at∥V −1

t
.

Lemma 14. [APS11; CVA20] For any sequence of actions {at} ⊂ {∥a∥ ≤ 1}, and any t,∑
s≤t

∥as∥2V −1
s
≤ 2d log(1 + t/d), and

∑
s≤t

∥as∥V −1
s
≤
√
2dt log(1 + t/d).

Further, for all t, δ, ωt(δ) ≤ 1 +
√

1/2 log((m+ 1)/δ) + d/2 log(1 + t/d).

We further explicitly write the following instantiation of the Cauchy-Schwarz inequality pertinent to
our setting.

4We essentially need a way to efficiently select an action a such that φ(xt, a) = ρφ(xt, bt) + (1 −
ρ)φ(xt, asafe), so that safety can still be attained by mixing with asafe.

5upto replacing ∆(asafe) by 1
6For instance, if xt were drawn in some static randomised way, and Γ were sufficiently simple, then we

could learn Γ(x,Asafe(x)) using regression techniques.
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Lemma 15. For any positive definite matrix V . For pair of tuples (θ,Φ) and (θ̃, Φ̃) lying in
Rd × Rm×d and any a ∈ Rd, it holds that

max
(
|(θ − θ̃)⊤a|,max

i
|(Φi − Φ̃i)a|

)
≤ max(∥θ̃ − θ∥V ,max

i
∥Φ̃i − Φi∥V ) · ∥a∥V −1 .

Proof. Notice that (θ̃ − θ)⊤a = (θ̃ − θ)⊤V 1/2V −1/2a ≤ ∥(V 1/2(θ̃ − θ)∥ · ∥V −1/2a∥. The claim
follows by first repeating the same observation for each (Φi − Φ̃i) (adjusting for the fact that these
are row-vectors), and then recalling that (for column vectors) ∥a∥M = ∥M1/2a∥ by definition.

This immediately yields a proof of the concentration statement of Lemma 3, which motivated the
definition of Mt(a).

Proof of Lemma 3. Notice that by a union bound

P(∃t : max(∥ηt∥,max
i
∥Hi

t∥) > B(δt)) ≤
∑
t

δt = δ.

Now assume that max(∥ηt∥,maxi ∥Hi
t∥) ≤ B(δt), and that the consistency event Cont(δ) holds.

Then, via the triangle inequality,

∥θ̃(ηt, t)− θ∗∥Vt
≤ ∥θ̃(ηt, t)− θ̂t∥Vt

+ ∥θ̂t − θ∗∥Vt
.

Of course, given Cont(δ), the second term is smaller than ωt(δ). For the first, expanding the definition
of θ̃(·, ·), we find that

∥θ̃(ηt, t)− θ̂t∥Vt
= ωt(δ)∥ηtV −1/2

t ∥Vt
= ∥ωt(δ)ηtV

−1/2
t · V 1/2

t ∥ ≤ ωt(δ)∥ηt∥,
and of course, ∥ηt∥ ≤ B(δt) by our assumption above. Thus, given the concentration assumption on
∥ηt∥s and Cont(δ), for any t, it holds that

∥θ̃(ηt, t)− θ∗∥Vt ≤ (1 +B(δt))ωt(δ) ≤ Btωt(δ).

Of course, entirely the same applies to ∥Φ̃(Ht, t)
i − Φi

∗∥Vt
, with η replaced by Hi

t . The claim now
follows by Lemma 15 and the fact that Con(δ) :=

⋂
Cont(δ) has chance at least 1− δ.

G Analysis of the Coupled Noise Design

We will first execute the strategy described in §4.2 to show that under the conditions of Lemma 8,
local optimism is frequent. We will then use this to show the frequency of unsaturation.
Lemma 16. Let p ∈ (0, 1], and let ν be a law on Rd×1 such that

∀u ∈ Rd, ν({ζ : ζ⊤u ≥ ∥u∥) ≥ p.
Let µ be the the pushforward of ν under the map ζ 7→ (ζ⊤,−1mζ

⊤). Then, for all t,
1Cont(δ)E[µ(Lt(δ))|Ht−1] ≥ p1Cont(δ), where Lt(δ) is the local optimism event (6).

Proof. Observe that under a draw from µ, for all t, we have

θ̃⊤ := (θ̃(η, t))⊤ = θ̂⊤t + ωt(δ)ζ
⊤V

−1/2
t

Φ̃ := Φ̃(H, t) = Φ̂t − 1m(ωt(δ)ζ
⊤V

−1/2
t ).

Further, recall that if the event Cont(δ) occurs, then, for all a,

θ̂⊤t a ≥ θ⊤∗ a+ ωt(δ)∥V −1/2
t a∥, and Φ̂ta ≤ Φ∗a+ 1m(ωt(δ)∥V −1/2

t a∥,

where we have the Cauchy-Schwarz inequality, and the fact that ∥a∥V −1
t

= ∥V −1/2
t a∥. Thus,

assuming Cont(δ), for any action a, we find that

θ̃⊤a ≥ θ⊤∗ a+ ωt(δ)
(
ζ⊤V

−1/2
t a− ∥V −1/2

t a∥
)
,

Φ̃a ≥ Φ∗a+ 1mωt(δ)
(
ζ⊤V

−1/2
t a− ∥V −1/2

t a∥
)
.
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Now, set a = a∗, and suppose that ζ⊤V −1/2
t a∗ ≥ ∥V −1/2

t a∗∥. Then we can conclude that

θ̃⊤a∗ ≥ θ⊤∗ a∗ and Φ̃a∗ ≤ Φ∗a∗ ≤ α,
the final inequality holding since a∗ is of course feasible for the program it optimises. Of course, by
definition, this means that the ensuing noise η,H lie in the event Lt(δ)

Now, it only remains to argue that ζ⊤V −1/2
t a∗ ≥ ∥ζ⊤V −1/2

t a∗∥ happens with large chance given
Ht−1. But notice that both V −1/2

t and (the constant) a∗ are Ht−1-measurable, and so are constant
given it. It follows thus that

E[ν({ζ : ζ⊤V
−1/2
t a∗ > ∥V −1/2

t a∗∥}) | Ht−1] ≥ inf
u∈Rd

ν({ζ⊤u > ∥u∥}) ≥ p.

To finish the proof of frequent unsaturation, we only need to determine that this local optimism
induces unsaturation in the actions.

Proof of Lemma 8. Fix a t, and assume consistency. Suppose that max(∥ηt∥,maxi ∥Hi
t∥) ≤ B(δt).

Note that given Cont(δ), this with chance at least 1− δt. As a consequence, for any action a ∈ St :=
{a : ∆(a) > Mt(a)}, by following the proof of Lemma 3 we can conclude that

θ̃(η, t)⊤a ≤ θ⊤∗ a+Mt(a) = θ⊤∗ a∗ −∆(a) +Mt(a) < θ⊤∗ a∗.

Now, suppose that the drawn ζ induces local optimism. We claim that then all saturated actions
are suboptimal. Indeed, by the above, each unsaturated action satisfies θ̃(η, t)⊤a < θ⊤∗ a∗. But
θ̃(η, t)⊤a∗ ≥ θ⊤∗ a∗, and further Φ̃(H, t)a∗ ≤ α, means that there is an action that is feasible for
the perturbed program with value strictly larger than that attained by any saturated action, i.e., any
member of St. It thus follows that the optimum a(η,H, t) ∈ Sc

t = {a : ∆(a) ≤Mt(a)}.
Now, we know from Lemma 16 that given Ht−1, our assumptions of Cont(δ) and the norm-control
on ∥ηt∥,maxi ∥Hi

t∥ imply that local optimism occurs with chance at least p. Since these events occur
with chance at least 1 − δt, this means that unsaturation occurs with chance at least p − δt. Since
definition 4 restricts attention to t : δt ≤ p/2, the statement follows.

G.1 Bounds for Simple Reference Laws

We argue that both the standard Gaussian, and the uniform law of the sphere of radius
√
3d yield

effective noise distributions for our coupled design.

For the Gaussian, recall that if Z ∼ N (0, Id), then ∥Z∥2 is distributed as a χ2-random variable. A
classical subexponential concentration argument [e.g. LM00, Lemma 1] yields that for any x,

P(∥Z∥2 ≥ d+ 2
√
dx+ 2x) ≤ e−x.

Note that (d+ 2
√
dx+ 2x) ≤ (

√
d+
√
2x)2, and hence taking x = log(1/ξ) in the above yields that

B(ξ) ≤
√
d+

√
2 log(1/ξ). Further, due to the isotropicity of Z,Z⊤u/∥u∥ law

= Z1 ∼ N (0, 1), and
thus π ≥ 1− Φ(1) ≥ 0.158 . . . .

Further, notice that if Z ∼ N (0, Id), then Y :=
√
3dZ/∥Z∥ ∼ Unif(

√
3d · Sd), and by isotropicity,

for any u, Y ⊤u/∥u∥ law
= Y1. As a result,

P(Y ⊤u/∥u∥ ≥ 1) = P(Y1 ≥ 1) =
1

2
P(Y 2

1 ≥ 1)

=
1

2
P((3d− 1)Z2

1 ≥
d∑

i=2

Z2
i ) ≥

1

2
P(Z2

1 ≥ 1) · P(
d∑

i=2

Z2
i ≥ 3d− 1).

But notice that d − 1 + 2
√
(d− 1) · d/3 + 2d/3 ≤ 3d − 1, and thus, P(

∑d
i=2 Z

2
i ≥ 3d − 1) ≤

exp(−d/3). Invoking the bound on P(Z1 ≥ 1) = 1
2P(|Z1| ≥ 1) above, we conclude that π ≥

0.15 · (1− e−d/3). Of course, ∥Y ∥ =
√
3d surely, giving the B expression.

We note that while the above only shows a 0.15(1− e−d/3) bound on the anticoncentration of the
uniform law on

√
3dSd, it is a simple matter of simulation to find that this is actually larger than
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0.28 for all d - for small dimensions, the bound turns out to be very loose, while as d diverges,
this converges from above towards the chance that a standard Gaussian exceeds 1/

√
3, which is

0.2818 . . . .

H The Analysis of S-COLTS

We move on to the analysis of S-COLTS. Before proceeding, we recall that in our presentation of
S-COLTS in Algorithm 1, we assumed access to a quantity Γ0 ∈ [Γ(asafe)/2,Γ(asafe)]. We will first
address how to obtain such a quantity by repeatedly playing at = asafe, and characterise how long
this takes. For completenesss, the cost of this will be incorporated into our regret bound.

Beyond this, we need to characterise the subsequent time spent playing asafe due to Mt(asafe)
being large, and to prove the look-back bound of Lemma 7, along with the characterisation of∑
Mτ(t)(aτ(t)) offered in Lemma 5. We will analyse these results in order, and finally show

Theorem 9 using these results.

H.1 Identifying Γ0 and Sampling Rate of asafe

We first discuss the determination of Γ0. There are two main points to make: how to ensure a correct
value of Γ0, and how many rounds of exploration this costs. To this end, we first recall the following
nonasymptotic law of iterated logarithms [e.g. HRMS21].
Lemma 17. Let {Ft} be a filtration, and let {ξt} be a process such that each ξt is Ft-measurable,
and is further conditionally centred and 1-subGaussian given Ft−1. Then

∀δ ∈ (0, 1],P(∃t : |Zt| > LIL(t, δ)) ≤ δ,
where Zt :=

∑
s≤t ξt, and

LIL(t, δ) :=

√
4t log

max(1, log(t))

δ
.

With this in hand, the determination of Γ0 proceeds thus: we repeatedly play asafe, and maintain the
running average Avt =

∑
s≤t(α− Ss)/t. Further, we maintain the upper and lower bounds

uit := Avt + LIL(t, δ/m)/t, ℓit := Avt − LIL(t, δ)/t.

We stop at the first time when ∀i, ℓit ≥ uit/2, and set Γ0 = mini ℓ
i
t. This stopping time is denoted T0.

Let us first show that this procedure is correct, and bound the size of T0.
Lemma 18. Under the procedure specified above, it holds with probability at least 1− δ that

Γ0 ∈ [Γ(asafe)/2,Γ(asafe)]

and that
T0 ≤

8

Γ(asafe)2
log(8/(δΓ(asafe)

2))

Proof. Notice that we can write

Avt = α− Φ∗asafe +
∑
s≤t

wS
s /t.

For succinctness, let us write Γ = α−Φ∗asafe. Now, by our assumption on the noise wS
t , we observe

that each coordinate of wS
t constitutes an adapted, centred, and 1-subGaussian process. Applying

Lemma 17 along with a union bound over the coordinates then tells us that with probability at least
1− δ,

∀t, |Avt − Γ| ≤ LIL(t, δ/m)/t · 1m.

As a consequence, at all t, we have
ut ≥ Γ ≥ ℓt,

where ut is the vector with ith coordinate uit, and similarly for ℓt. It follows thus that at the stopping
time T0,

∀i, ℓiT0
≥ uiT0

/2 =⇒ ℓT0
≥ Γ/2.
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Of course, a fortiori, it follows that Γ0 = mini ℓ
i
t ≥ mini Γ

i/2 = Γ(asafe)/2. Further, of course,
Γ0 ≤ Γ(asafe) follows as well, since ∀tmini ℓ

i
t ≤ mini(Γ

i) = Γ(asafe).

It only remains to control T0. To this end, notice that for all t

ℓt = Avt − LIL(t,m/δ)/t · 1m ≥ Γ− 2LIL(t,m/δ)/t · 1m,

and similarly,
ut ≤ Γ + 2LIL(t,m/δ)/t · 1m.

Of course, then ℓit > uit/2 for all t such that

∀i,Γi − LIL(t,m/δ)/t ≥ Γi/2 + LIL(t,m/δ)/2t ⇐⇒ Γi > 3LIL(t,m/δ)/t.

It follows thus that
T0 ≤ inf{t : tΓ(asafe) ≥ 3LIL(t,m/δ)}.

By a simple inversion, this can be bounded as

T0 ≤ inf{t : t > 8/Γ(asafe)
2 log(1/δ) and t > 8/Γ(asafe)

2 log(1 + log(t))},
which is bounded as

T0 ≤
8

Γ(asafe)2
log(8/(δΓ(asafe)

2)).

Number of Times asafe is sampled after T0. Given the behaviour of Γ0 above, we can further bound
the number of times asafe is played after determining Γ0.
Lemma 19. For any Γ0 > 0, and T , the number of times S-COLTS plays asafe because Mt(asafe) >

Γ0/3 is bounded as 9ω2
TB2

T

Γ2
0

+ 1.

Proof. Let nt denote the total number of times asafe has been played up to time t. Then, of course,
Vt ≽ I + ntasafea

⊤
safe. Now, recall that for symmetric positive definite matrices A,B, it holds that

A ≽ B ⇐⇒ B−1 ≽ A−1.7 Thus, we have

Mt(asafe) ≤ ωtBt

√
a⊤safe(I + ntasafea⊤safe)

−1asafe.

Now, by the Sherman-Morrisson formula,

asafe(I + ntasafea
⊤
safe)

−1asafe = ∥asafe∥2 −
a⊤safe(ntasafea

⊤
safe)asafe

1 + nt∥asafe∥2
=

∥asafe∥2

1 + nt∥asafe∥2
≤ 1

nt
.

It follows thus that
Mt(asafe) ≤

ωtBt√
nt
.

Thus Mt(asafe) > Γ0/3 if and only if

nt ≤
9ω2

tB
2
t

Γ2
0

.

Of course, each time this occurs, nt is increased by one. Consequently, the number of times asafe is
played by time t is at most

9ω2
TB

2
T

Γ2
0

+ 1.

Note that since (ωTBT )
2 = Θ(d2 + d log(m/δ)) with our choice of the coupled noise driven by

Unif(
√
3dSd), the bound above due to playing asafe due to too large an Mt(asafe) outstrips the bound

on T0 above as long as log(1/Γ(asafe)) = o(d2), as is to be expected.
7In more technical terms, inversion is monotone decreasing in the Loewner sense. A simple way

to see this is to define C = B−1/2AB−1/2. Then A ≽ B =⇒ C ≽ I (really iff), since for
any x, (B−1/2x)⊤A(B−1/2x) ≥ (B−1/2x)⊤B(B−1/2x) ⇐⇒ x⊤Cx ≥ x⊤x. Using this for
y = C−1/2x then gives x⊤x = (C−1/2x)⊤C(C−1/2x) ≥ (C−1/2x)⊤(C−1/2x) = x⊤C−1x. Since
C−1 = B1/2A−1B1/2 (direct multiplication), the same trick yields x⊤B−1x = (B−1/2x)⊤(B−1/2x) ≥
x⊤B−1/2(B1/2A−1B1/2)B−1/2x, or in other words, B−1 ≽ A−1.
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H.2 Proof of the Look-Back Bound

The main text provides a brief sketch of the approach. We will flesh out these details, as well as fill in
the omitted aspects of the bound. To this end, we first state a result lower bounding ρt. Note that the
second half of this result implies Lemma 6.
Lemma 20. Assume that Γ0 ∈ [Γ(asafe)/2,Γ(asafe)], and that both Con(δ) =

⋂
Cont(δ) and the

event of Lemma 3 hold true. Then for all t such that Mt(asafe) ≤ Γ0/3, it holds that

ρt ≥
Γ(asafe)

Γ(asafe) + 3Mt(bt)

and

ρt ≥
2Mt(asafe)

2Mt(asafe) +Mt(bt)
.

A fortiori, each of the following bounds is true:

(1− ρt)Mt(asafe) ≤Mt(at),

ρtMt(bt) ≤ 2Mt(at), and
(1− ρt)Γ(asafe) ≤ 6Mt(at).

Proof. Recall that ρt is the largest ρ in [0, 1] such that

Φ̂t(ρbt + (1− ρ)asafe) + ωt(δ)∥ρbt + (1− ρ)asafe∥V −1
t

1m ≤ α.

So, if we demonstrate a ρ0 ≤ 1 that satisfies this inequality, then ρt ≥ ρ0.

First note that under the assumption Mt(asafe) ≤ Γ0/3, we know that

Φ̃tasafe ≤ α− Γ(asafe)1m + Γ0/3 · 1m ≤ α− 2Γ(asafe)/3 · 1m,

and thus bt exists since the program defining it is feasible. Now,

Φ̂tasafe + ωt(δ)∥asafe∥V −1
t

1m = Φ̂tasafe +
Mt(asafe)

Bt
1m

≤ α− Γ(asafe)1m +
2Mt(asafe)

Bt
1m ≤ α−

2Γ(asafe)

3
1m,

using the consistency of the confidence sets (and the Cauchy-Schwarz inequality), along with the fact
that Bt = 1 +max(1, B(δt)) ≥ 2. Further,

Φ̂tbt + ω(δ)∥bt∥V −1
t
≤ Φ̃tbt +

Bt − 1

Bt
Mt(bt)1m +

1

Bt
Mt(bt)1m ≤ α+Mt(bt)1m.

Therefore,

Φ̂t(ρbt + (1− ρ)asafe) + ωt(δ)∥ρbt + (1− ρ)asafe∥V −1
t

≤ ρ
(
Φ̂tbt +

Mt(bt)

Bt
1m

)
+ (1− ρ)

(
Φ̂tasafe +

Mt(asafe)

Bt
1m

)
≤ α+ (ρMt(bt)− (1− ρ)Γ(asafe)/3)1m.

It is straightforward to find that the additive term above is nonpositive for ρ0 = Γ(asafe)
Γ(asafe)+3Mt(bt)

, and

thus ρt ≥ Γ(asafe)
Γ(asafe)+3Mt(bt)

.

Further, since Mt(asafe) ≤ Γ(asafe)/3, we also have

α− 2Γ(asafe)/3 ≤ α− 2Mt(asafe).

Thus, we can also write

Φ̂tasafe +Mt(asafe)/Bt1m ≤ α− 2Mt(asafe)1m,

and carrying out the same procedure then shows that

ρt ≥
2Mt(asafe)

2Mt(asafe) +Mt(bt)
.
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To draw the final conclusions, first observe that

1−ρt ≤
Mt(bt)

2Mt(asafe) +Mt(bt)
=⇒ 2(1−ρt)Mt(asafe) ≤ ρtMt(bt) ≤Mt(at)+(1−ρt)Mt(asafe),

where we used the fact that ρtbt = at − (1− ρt)asafe, and that Mt is a scaling of a norm. It follows
that (1 − ρt)Mt(asafe) ≤ Mt(at), and of course, that ρtMt(bt) ≤ 2Mt(at). Further, by a similar
calculation,

(1− ρt) ≤
3Mt(bt)

Γ(asafe) + 3Mt(bt)
=⇒ (1− ρt)Γ(asafe) ≤ 3ρtMt(bt) ≤ 6Mt(at).

Proving the Look-Back Bound. The above control on (1 − ρt) is natural in light of terms of the
form (1− ρt)∆(asafe) appearing in the bound as sketched in the main text. Let us now complete this
argument.

Proof of Lemma 7. We assume Γ0 ∈ [Γ(asafe)/2,Γ(asafe)], and that the event of Lemma 3 holds, as
well as Con(δ). Together these occur with chance at least 1− 3δ.

Now, we begin as in the main text, by observing that

∆(at) = ∆(ρtbt + (1− ρt)asafe) = ρt∆(bt) + (1− ρt)∆(asafe).

Let s < t be such that Ms(asafe) ≤ Γ0/3 as well. Then we further know that

Φ̃sbs ≤ α =⇒ Φ̃tbs ≤ α+ (Mt(bs) +Ms(bs))1m.

As a consequence, for

σs→t :=
Γ(asafe)

Γ(asafe) + 3(Mt(bs) +Ms(bs))
,

we have

Φ̃t(σs→tbs+(1−σs→t)asafe) ≤ α+
(
σs→t(Mt(bs) +Ms(bs))−

2(1− σs→t)Γ(asafe)

3

)
1m ≤ α.

Define b̄s→t = σs→tbs + (1 − σs→t)asafe. By the above observation, b̄s→t is feasible for Φ̃t, and
therefore θ̃⊤t b̄s→t ≤ θ̃⊤t bt. To use this, we note that

∆(bt) = ∆(b̄s→t) + θ⊤∗ (b̄s→t − bt) = ∆(b̄s→t) + θ̃⊤t (b̄s→t − bt) + (θ̃t − θ∗)⊤(b̄s→t − bt)

≤ ∆(b̄s→t) + θ̃⊤t (b̄s→t − bt) +Mt(b̄s→t) +Mt(bt),

where we first use Lemma 3, and then bound Mt(b̄s→t − bt) by using the fact that Mt is a norm. The
second term above is of course nonpositive, and so can be dropped while retaining the upper bound.
Further,

∆(b̄s→t) = σs→t∆(bs) + (1− σs→t)∆(asafe).

This leaves us with the bound

∆(at) ≤ (1− ρt + ρt(1− σs→t))∆(asafe)

+ ρt (σs→t∆(bs) +Mt(bt) + σs→tMt(bs) + (1− σs→t)Mt(asafe)) ,

where we used the triangle inequality and the fact that Mt is a scaling of a norm to write the final two
terms. We will, of course, evaluate this at s = τ(t). In the subsequent, we will just write τ instead of
τ(t) for the sake of reducing the density of notation. Using the fact that ∆(bτ ) ≤Mτ (bτ ), we set up
the basic bound

∆(at) ≤ (1− ρt + ρt(1− στ→t))∆(asafe)

+ ρtMt(bt) + ρt(στ→t(Mτ (bτ ) +Mt(bτ )) + (1− στ→t)Mt(asafe)).

Now, first observe that by Lemma 20,

(1− ρt)∆(asafe) ≤ 6
∆(asafe)

Γ(asafe)
Mt(at),
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and further
ρtMt(bt) ≤ 2Mt(at).

We are left with terms scaling with στ→t or (1− στ→t). For this, we first observe that

Mt(bτ ) = Btωt∥bτ∥V −1
t
≤ Btωt

Bτωτ
·Bτωτ∥bτ∥V −1

τ
=

Btωt

Bτωτ
·Mτ (bτ ),

where we use the fact that Vt is nondecreasing (in the positive definite ordering). Let us abbreviate
Jτ→t := 1 + Btωt/(Bτωτ ). Upon observing that ρt ≤ 1, to finish the argument, we only need to
control

(1− στ→t)(∆(asafe) +Mt(asafe)) + Jτ→tστ→tMτ (bτ ).

Now, notice that since Mτ (asafe) ≤ Γ0/3,

στ→t =
Γ(asafe)

Γ(asafe) + 3(Mt(bτ ) +Mτ (bτ ))
≤ Γ(asafe)

Γ(asafe) + 3Mτ (bτ )
≤ ρτ ≤

2Mτ (aτ )

Mτ (bτ )
,

where we invoke Lemma 20 for the final two inequalities. Thus, we find that

στ→tJτ→tMτ (bτ ) ≤ Jτ→t · ρτMτ (bτ ) ≤ 2Jτ→tMτ (aτ ).

This leaves us with the term (1− στ→t)(∆(asafe) +Mt(asafe)). To bound this, observe that

(1− στ→t) =
3(Mt(bτ ) +Mτ (bτ ))

Γ(asafe) + 3(Mt(bτ ) +Mτ (bτ ))

=⇒ (1− στ→t)Γ(asafe) = 3στ→t(Mt(bτ ) +Mτ (bτ )) ≤ 3στ→tJτ→tMτ (bτ ).

Recall from the discussion above that στ→tMτ (bτ ) ≤ ρτMτ (bτ ) ≤ 2Mτ (aτ ). Using this, and the
fact that Mt(asafe) ≤ Γ(asafe)/3 then yields

(1− στ→t)(∆(asafe) +Mt(asafe)) ≤ 6Jτ→t
∆(asafe)

Γ(asafe)
Mτ (aτ ) + 2Jτ→tMτ (aτ ).

Putting everything together, then, we conclude that

∆(at) ≤ 6
∆(asafe)

Γ(asafe)
(Mt(at) + Jτ→tMτ (aτ )) + 2Mt(at) + 4Jτ→tMτ (aτ ),

which of course implies the bound we set out to show.

H.3 Controlling Accumulation in the Look-Back Bound

We proceed to control the accumulation of the look-back terms.

Proof of Lemma 5. Since Bt and ωt are nondecreasing, for any s ≤ t ≤ T, we have

(1 + (Btωt(δ)/Bsωs(δ)))Ms(as) = (Bsωs(δ) +Btωt(δ))∥as∥V −1
s
≤ 2BTωT (δ)∥as∥V −1

s
.

Let TT = {t ≤ T :Mt(asafe) ≤ Γ0/3}, and UT = {s ∈ TT : ∆(bs) ≤Mt(bs)}. Then notice that∑
t∈TT

∥aτ(t)∥V −1
τ(t)

=
∑
s∈UT

Ls∥as∥V −1
s
,

where Ls = |{t ∈ TT : τ(t) = s}| is the number of times s serves as τ(t) for some t. But this is the
same as the time (restricted to TT ) between s and the next member of UT , i.e., the length of the ‘run’
of the method playing saturated actions (plus one).

At this point, a weaker bound of the form 2
χ log(T 2/δ)

∑
s∈UT

∥as∥V −1
s

is straightforward: each
round has at least a chance χ/2 of picking a saturated bt, and so the chance that the kth such run has
length greater than 2

χ log(k(k + 1)/δ) is at most δ/k(k + 1). Since there are at most T runs up to
time T , union bounding over this gives maxUT

Ls ≤ 1 + 2 log(T (T + 1)/δ)/χ.

The rest of this proof is devoted to give a more refined martingale analysis that saves upon the
multiplicative log(T ) term above. We encapsulate this as an auxiliary Lemma below.
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Lemma 21. In the setting of Lemma 5, it holds that with probability at least 1− δ,∑
s∈UT

Ls∥as∥V −1
s
≤ 5

χ
(
∑
s∈UT

∥as∥V −1
s

+ log(1/δ))

This result is shown below. Assuming this result, the original claim follows immediately, since due to
the nonnegativity of ∥ · ∥·,

∑
s∈UT

∥as∥V −1
s
≤
∑

t≤T ∥at∥V −1
t
.

To finish the argument, we move on to showing the auxiliary lemma described above.

Proof of Lemma 21. We work with the reduction to
∑

s∈UT
∥as∥V −1

s
established above. Let us

denote ζi = inf{t > ζi−1 : Mt(asafe) ≤ Γ0/3,∆(bt) ≤ Mt(bt)} as the times that an unsaturated
action is picked, with ζ0 := 0—for i : ζi ≤ T, these are precisely the elements of UT . Notice
that this {ζi} is a sequence of stopping times adapted to the history {Ht}. Let us further denote
Li = (ζi+1 − ζi), for i ≥ 0 (this corresponds to Ls, where s = ζi). The object we need to control is∑

i:ζi≤T

LiXi,

where Xi = ∥aζi∥V −1
ζi

∈ [0, 1], the lower bound being since Xi is a norm, and the upper bound since
Vζi ≽ I . For notational convenience, we always set X0 = 1. Now, to control this, let us first pass to
the associated sigma algebrae of the ζi past, denoted as

Gi := ζ(Hζi).

Notice that since ζi is nondecreasing, we know that {Gi} forms a filtration. Of course, by definition,
Xi are adapted to Gi, while Li are adapted to Gi+1. We further know that Li is the time (including
ζi) between ζi and ζi+1. But then for each t > ζi, P (ζi+1 = t|ζi+1 > t − 1,Ht−1) ≥ χ/2. As a
result, these Lis are conditionally stochatically domainted by a geometric random variable, i.e.,

P(Li > 1 + k|Gi) ≤ (1− χ/2)k.

This in turn implies that for any λ small enough,

E[eλ(Li−1)Xi |Gi] ≤
χ/2

1− (1− χ/2)eλXi
.

In the subsequent, we will need to select a λ that is independent of all of these Li, Xi. To ensure that
the calculation makes sense, we ensure that (1−χ/2)eλ ≤ 1 (which suffices since 0 ≤ Xi ≤ 1). Let
us define Fi(λ) := − log((1− (1− χ/2)eλXi)/(χ/2)). Then by the above calculation, we find that
the process {Mi} with M0 := 1 and

Mi := exp
(
λ
∑

(Li − 1)Xi −
∑

Fi(λ)
)

is a nonnegative supermartingale with respect to the filtration {Fi} with Fi = Gi+1} and F0 defined
to be the trivial sigma algebra. Thus, by Ville’s inequality, P(∃i :Mi > 1/δ) ≤ δ. Taking logarithms,
we find that with probability at least 1− δ, it holds that

∀n,
∑
i≤n

LiXi ≤
∑
i≤n

Xi +
log(1/δ)

λ
+
∑
i≤n

Fi(λ)

λ
,

as long as 0 < λ < − log(1−χ/2). All we need now is a convenient bound on Fi(λ) and a judicious
choice of λ. To this end, we observe the following simple result.

Lemma 22. For any constant u ∈ (0, 1), consider the map f(x) := − log 1−uex

1−u over the domain
[0,− log(u)). Then for all x ∈ [0,− 1

2 log(u)], we have

f(x) ≤
√
u

1−
√
u
x.
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Proof. Observe that

f ′(x) =
uex

1− uex
=

ef

1− u
(1− e−f (1− u)) = ef

1− u
− 1 ≥ 0

The inequalities above arise since ef = 1−u
1−uex > 1− u using the fact that ex ≥ 1. By taking another

derivative, we may see that f ′ itself is an increasing function. Now, suppose g(x) satisfies

g(0) = f(0) = 0, and ∀x, g′(x) = f ′(−1/2 log(u)) =

√
u

1−
√
u
.

Then since g′(x) ≥ f ′(x) for all x ∈ [0,− 1
2 log(u)], by the fundamental theorem of calculus it

follows that for all x ≤ − 1
2 log u, f(x) =

∫ x

0
f ′ ≤

∫ x

0
g′ = g(x).

Now, of course, Fi(λ) = f(λXi), with u = 1− χ/2. Then setting λ = − 1
2 log(1− χ/2), we have

∀n,
∑
i≤n

LiXi ≤
∑

Xi +
log(1/δ)

− log(1− χ/2)/2
+
∑
i≤n

√
1− χ/2

1−
√
1− χ/2

Xi.

To get the form needed, we observe that
√
1− v

1−
√
1− v

≤ 2

v
⇐⇒ (2 + v)2(1− v) ≤ 4 ⇐⇒ −v3 − 3v2 ≤ 0,

and of course − log(1− v)/2 ≥ v/2. Plugging in v = χ/2 > 0, we end up at

∀n,
∑
i≤n

LiXi ≤
(
1 +

4

χ

)∑
i≤n

Xi +
4

χ
log(1/δ).

Note that no explicit n-dependent term appears in the above. This makes sense: we essen-
tially have the Xis acting as ‘time steps’, and so

∑
LiXi should behave as (1 + 2/χ)

∑
Xi +

O(
√∑

Xi log(1/δ)/χ+ log(1/δ)), via a Bernstein-type computation. In our case, the square root
terms do not meaningfully help the solution,8 and so we just pick a convenient λ instead.9 Now,
going back to our original object of study, we have Li = Lζi , Xi = ∥aζi∥V −1

ζi

, and these ζis are
precisely the members of UT , so we conclude that

∀T,
∑
s∈UT

LsXs ≤
5

χ

(∑
s∈Ut

Xs + log(1/δ)

)
.

H.4 Regret and Risk Bounds for S-COLTS

With the above pieces in place, we move on to showing the final bounds on the behaviour of S-COLTS.

Proof of Theorem 9. We first argue the safety properties. Firstly, in the exploration phase, as well
as to explore, we repeatedly play asafe. But this is, by definition, safe, and so accrues no safety cost.
When not playing asafe, the selected action at at time t satisfies

Φ̂tat + ωt(δ)∥at∥V −1
t

1m ≤ α.

But, given the consistency event Cont(δ),

∀a,Φ∗a ≤ Φ̂ta+ ωt(δ)∥a∥V −1]
t

,

and so Φ∗at ≤ α. Since Con(δ) :=
⋂

Cont(δ) holds with chance at least 1− δ, it follows that at is
safe at every t, and a fortiori, ST = 0 for every T .

Let us turn to the regret analysis. Fix any T . We break the regret analysis into four pieces: the regret
accrued over the initial exploration, that accrued after this phase, but when Mt(asafe) > Γ0/3, and

8since there will always be an additive log(1/δ) and 1
χ

∑
Xi term

9and in the process, avoid the subtleties of the dependence of λ on the Xis if we optimised it
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over the time TT := {t ≥ T0 : Mt(asafe) ≤ Γ0/3}, and finally the regret incurred up to the time
inf{t : δt > χ/2}.

The last of these is the most trivial to handle: the number of such rounds is bounded as
√
2δ/χ, and

the regret in any round is at most 2.

For the first case, Lemma 18 ensures that with probability at least 1− δ, this phase has length at most

8

Γ(asafe)2
log(8/(δΓ(asafe)

2)),

and further, the output Γ0 is at least Γ(asafe)/2 at the end. Using this to instantiate Lemma 19, we
further find that the number of times asafe is selected beyond this initial exploration is in total bounded
as

1 +
36ω2

TB
2
T

Γ(asafe)2
.

Together these contribute at most

∆(asafe) ·
44ω2

TB
2
T

Γ(asafe)2
log(8/δΓ(asafe)

2)

to the regret.

This leaves us with the times at which Mt(asafe) ≤ Γ0/3, for which we apply Lemma 7, along with
the control of Lemma 5 to find that the net regret accrued thus is bounded as

O

(1 + ∆(asafe)

Γ(asafe)

)
BTωT (δ) ·

5

χ

∑
t≤T

∥at∥V −1
t

+ log(1/δ)

 .

To complete the book-keeping, the probabilistic events required for this are the consistency of the
confidence sets, that for all t,max(∥ηt∥,maxi ∥Hi

t∥) is bounded by B(δt), and of course the bound
on the times between unsaturated bt being constructed from Lemma 5. Together, these occur with
chance at least 1− 3δ, and putting the same together with the stopping time bound, we conclude that
with chance at least 1− 4δ, S-COLTS(µ, δ) satisfies the regret bound

RT ≤
(
1 +

∆(asafe)

Γ(asafe)

)
Õ

ωt(δ)BT

χ

∑
t≤T

∥at∥V −1
t

+
∆(asafe)

Γ(asafe)
· Õ
(
ω2
TB

2
T

Γ(asafe)

)
+

√
8δ

χ
.

Now, invoking Lemma 14, we can bound ωT (δ) = Õ(
√
d+log(m/δ)), and

∑
∥at∥V −1

t
= Õ(

√
dT ).

Finally, for the law µ induced via the coupled noise design by Unif(
√
3dSd), we further know that

BT = O(
√
d) and χ ≥ 0.28. Of course, for this noise, Bt =

√
3d with certainty, which boosts the

probability above to 1− 3δ. The claim thus follows for S-COLTS(µ, δ/3).

H.5 An Optimism-Based Analysis of S-COLTS

We analyse S-COLTS under the assumption that µ satisfies B-concentration and π-global optimism
(Definition 13). We shall be somewhat informal in executing this.

Setting Up. We first note that regret accrued over rounds in which Mt(bt) > Γ(asafe)/3 and
Mt(asafe) ≤ Γ0/3 is small. Indeed,∑

t∈TT

1{Mt(bt) > Γ(asafe)/3} ≤
9

Γ(asafe)2

∑
t∈TT

Mt(bt)
2

≤ 16

Γ(asafe)2

∑
t∈TT

Mt(at)
2

ρ2t
= Õ

(
d5

Γ(asafe)4

)
,

where TT = {t :Mt(asafe) ≤ Γ0/3}, and we used the bound on Mt(bt) from Lemma 20, along with
the fact that since bt ∈ A,Mt(bt) ≤ Btωt = Õ(d), which in turn implies that ρt ≥ Γ(asafe)/Ω̃(d).
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Naturally, this additive term is much weaker than that seen in Theorem 9. Nevertheless, the optimism-
based framework does recover a similar main term. In particular we will show a regret bound of
Õ(Γ(asafe)

−1
√
d3T )

The point of the above condition is that (using Lemma 20), if Mt(bt) ≤ Γ(asafe)/3, then ρt ≥ 1
2 . We

will repeatedly use this fact in the subsequent.

Now, we begin similarly to the previous analysis by using

∆(at) = (1− ρt)∆(asafe) + ρt∆(bt) ≤ (1− ρt)∆(asafe) + ∆(bt).

The first term is well-controlled, as detailed in the proof of Lemma 7. So, we only need to worry
about

∑
∆(bt). Notice that for this it suffices to control

∑
E[∆(bt)|Ht−1]. Indeed, ∆(bt) ≤ 1 (and

if it is ≤ 0, we can just drop it from the sum, i.e., we could study (∆(bt))+ instead with no change in
the argument), so the difference

∑
t≤T ∆(bt)−E[∆(bt)|Ht−1] is a martingale with increments lying

in [−1, 1], and the LIL (Lemma 17) ensures that for all T simultaneously, the difference between
these is O(

√
T log(log(T )/δ)) with chance at least 1− δ.

From the above, then, we can restrict attention to t such that Mt(asafe) ≤ Γ0/3, ρt ≥ 1
2 . Finally,

recalling the notation K(θ,Φ) = max{θ⊤a : a ∈ A,Φa ≤ α} from Definition 13, we observe that

∆(bt) = θ⊤∗ a∗ − θ̃⊤t bt + (θ̃t − θ∗)⊤bt
≤ K(θ∗,Φ∗)−K(θ̃t, Φ̃t) +Mt(bt)

≤ K(θ∗,Φ∗)−K(θ̃t, Φ̃t) + 4Mt(at),

where we used Lemma 3, and Lemma 20 along with the fact that ρt ≥ 1/2. Now note that the final
term above is summable to Õ(

√
d3T ). Thus, it equivalently suffices to analyse the behaviour of

Et−1[K(θ∗,Φ∗)−K(θ̃t, Φ̃t)|Ht−1]. In order to do so, we begin with a ‘symmetrisation’ lemma.

Lemma 23. Let (θ̃t, Φ̃t) and (θ̄t, Φ̄t) denote two independent copies of parameter perturbations at
time t. Let Et−1[·] := E[· | Ht−1]. If µ satisfies π-global optimism, then

1Cont(δ)Et−1[(K(θ∗,Φ∗)−K(θ̃t, Φ̃t)] ≤ 1Cont(δ) ·
1

π
Et−1[|K(θ̃t, Φ̃t)−K(θ̄t, Φ̄t)|].

Proof. Let Ḡ := {K(θ̄t, Φ̄t) ≥ K(θ∗,Φ∗)}. Since K(θ∗,Φ∗) is a constant, and since (θ̃t, Φ̃t) are
independent of (θ̄t, Φ̄t) given Ht−1, we conclude that

Et−1[K(θ∗,Φ∗)−K(θ̃t, Φ̃t)] = Et−1[K(θ∗,Φ∗)−K(θ̃t, Φ̃t) | Ḡ].
But given Ḡ, K(θ∗,Φ∗) ≤ K(θ̄t, Φ̄t), and so

Et−1[K(θ∗,Φ∗)−K(θ̃t, Φ̃t)] ≤ Et−1[K(θ̄t, Φ̄t)−K(θ̃t, Φ̃t) | Ḡ]

≤ Et−1[|K(θ̄t, Φ̄t)−K(θ̃t, Φ̃t)| | Ḡ].
Finally, for any nonnegative random variable X, and any event E, it holds that

Et−1[X|E]Et−1[1E] = Et−1[X1E] ≤ Et−1[X].

The claim follows upon taking X = |K(θ̄t, Φ̄t) −K(θ̃t, Φ̃t)|,E = Ḡ, and recognising that due to
π-optimism, Ḡ satisfies Et−1[1Ḡ]1Cont ≥ π1Cont .

The main question now becomes controlling how far the deviations in K can go. We control this
using a similar scaling trick as in the proof of Lemma 7.

For the sake of clarity, we will denote the optimiser of K(θ̃t, Φ̃t) as b̃t (instead of just bt as in the rest
of the text), and similarly that of K(θ̄t, Φ̄t) as b̄t. Our goal is to control (the conditional mean of)

|θ̄⊤t b̄⊤t − θ̃⊤t b̃t|.

Naturally, the core issue remains that b̄t and b̃t are optima in distinct feasible sets, and so it is hard to,
e.g., compare θ̃⊤t b̃t and θ̃⊤t b̄t. To this end, we observe that

Φ̄tb̄t ≤ α =⇒ Φ∗bt ≤ α+Mt(b̄t)1m =⇒ Φ̃tb̄t ≤ α+ 2Mt(bt)1m,
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as long as consistency and the boundedness of the noise norms holds (which occurs with high
probability). Using this and the fact that Φ̃tasafe ≤ α− 2Γ(asafe)/31m, we find that

Φ̃t(σ̄tb̄t + (1− σ̄t)asafe) ≤ α, where σ̄t =
Γ(asafe)

Γ(asafe) + 3Mt(b̄t)
.

Thus, we may write

θ̄⊤t b̄t − θ̃⊤t b̃t = (1− σ̄t)θ̄⊤b̄t + σ̄t(θ̄t − θ̃⊤t )b̄t + θ̃⊤t (σ̄tb̄t − b̃t).
Above, the third term is nonpositive, while the second term may be bounded by 2σ̄tMt(b̄t), which
can further be bounded by 8Mt(āt) upon recalling that ρt(b̄t) ≥ 1

2 and the bound on ρtMt(bt) in
Lemma 20. This leaves the first term. It is tempting to bound this directly via θ̄⊤t b̄t ≤ ∥θ̄t∥∥b̄t∥, but
notice that the former can be as large as Bt ∼

√
d. Instead, we can use the related bound

(1− σ̄t)(θ̄⊤b̄t) ≤ (1− σ̄t)Mt(b̄t) + (1− σ̄t)θ⊤∗ b̄t.
Now notice that (1− σ̄t) ≤ 1, and Mt(b̄t) ≤ 4Mt(āt) controls the first term. Similarly, θ⊤∗ b̄t ≤ 1

(both have norm bounded by 1), so the second term is bounded by 1 − σ̄t ≤ 3Mt(b̄t)
Γ(asafe)

≤ 12Mt(āt)
Γ(asafe)

.
Putting these together, we conclude that

(1− σ̄t)(θ̄⊤t b̄t) ≤ 4Mt(āt) +
12Mt(āt)

Γ(asafe)
,

which in turn yields the bound

K(θ̄t, Φ̄t)−K(θ̃t, Φ̃t) ≤ 12Mt(āt) +
12Mt(āt)

Γ(asafe)
≤ 24Mt(āt)

Γ(asafe)
.

Of course, switching the roles of (θ̄t, Φ̄t) and (θ̃t, Φ̃t), we have an analogous bound on K(θ̃t, Φ̃t)−
K(θ̄t, Φ̄t). Putting these together, we conclude that

|K(θ̄t, Φ̄t)−K(θ̃t, Φ̃t)| ≤
24(Mt(āt) +Mt(ãt))

Γ(asafe)
.

Finally, notice that āt, ãt, and the actually selected action at all have the same distribution given
Ht−1. We can thus conclude that

Et−1[|K(θ̄t, Φ̄t)−K(θ̃t, Φ̃t)|] ≤ 48Et−1

[
Mt(at)

Γ(asafe)

]
.

With this in hand, the issue returns to one of concentration. We know that
∑
Mt(at) is Õ(

√
d3T ),

and each Mt(at) is bounded as O(d) and so
∑
Mt(at)− Et−1[Mt(at)] enjoys concentration at the

scale dLIL(T, δ) = Õ(
√
d2T ) = o(

√
d3T ). Thus, passing back to the the unconstrained sums, we

end up with a bound of the form

RT = Õ
(
Γ(asafe)

−1
√
d3T

)
+ Õ(d5Γ(asafe)

−4).

The main loss in the main term above is that instead of a ∆(asafe)/Γ(asafe), we just have a Γ(asafe)−1

term in the bound. This can be lossy, e.g., when asafe is very close to a∗, but in the regime ∆(asafe) =
Ω(1), it recovers essentially the same guarantees as Theorem 9, albeit with a weaker additive term.

I The Analysis of Soft Constraint Enforcement Methods.

I.1 The Analysis of R-COLTS

Let us first show the optimism result for R-COLTS

Proof of Lemma 10. Fix any t, and assume Cont(δ). For each i ∈ [1 : It], we know that K(i, t) :=

K(θ̃(i, t), Φ̃(i, t)) ≥ θ̃(i, t)⊤a∗ ≥ θ⊤∗ a∗ whenever the event L occurs, and thus this inequality holds
with chance at least π in every round. Since the draws are all independent given Ht−1, the chance
that maxK(i, t) < θ⊤∗ a∗ is at most (1− π)It ≤ exp(− log(1/δt)r · π) ≤ δt = δ/t(t+1). Thus, if we
assume that Con(δ) :=

⋂
Cont(δ) holds true, the chance that at any t, K(it, t) < θ⊤∗ a∗ is at most∑

δt = δ. By Lemma 1, Con(δ) holds with chance at least 1− δ, and we are done.
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Of course, the above proof, and thus the statement of this Lemma, holds verbatim if we replace Lt by
Gt (Definition 13).

With the optimism result of Lemma 10, the argument underlying Theorem 11 is extremely standard.

Proof of Theorem 11. Assume consistency, and that at every t, θ̃⊤t at ≥ θ⊤∗ a∗. Since we sample at
most 2 + r log(1/δt) programs in round t, we further know that with probability at least 1− δ,

∀t,max
i

(
max ∥η(i, t)∥,max

j
∥Hj

t (i, t)∥)
)
∥ ≤ βt := B(δt/(2 + r log(1/δt)).

Assume that this too occurs, and define M̃t(a) = ωt(δ)(1 + βt)∥a∥V −1
t

. Then, using consistency,

θ⊤∗ at ≥ θ̃⊤t at − M̃t(at),Φ∗at ≤ Φ̃tat + M̃t(at)1m ≤ α+ M̃t(at)1m.

So, the safety risk is bounded as

ST ≤
∑
t

M̃t(at) ≤ ωT (δ)(1 + βT )
∑
t≤T

∥at∥V −1
t
.

Further,
θ⊤∗ a∗ − θ⊤∗ at ≤ θ⊤∗ a∗ − θ̃⊤t at + M̃t(at),

which implies that
RT ≤ ωT (δ)(1 + βT

∑
t≤T

∥at∥V −1
t

as well. Now Lemma 14 controls ωT

∑
t≤T ∥at∥V −1

t
to Õ(

√
d2T ), and for our selected noise, the

coupled design driven by Unif(
√
3dSd), we have B(·) =

√
3d independently of t, r, δ, and thus

βT =
√
3d. The events needed to show the above were the consistency, the concentration of the

sampled noise to βt at each time t, and the optimism event of Lemma 10. Again, the second happens
with certainty for us, and so the above bounds hold at all T with chance at least 1− 2δ. Consequently,
the result was stated for R-COLTS(µ, r, δ/2).

I.2 The Exploratory-COLTS Method

As discussed in §5, the Exploratory COLTS, or E-COLTS method, augments COLTS with a low-rate of
flat exploration, and exploits the resulting (eventual) perturbed feasibility of actions with large safety
margin to bootstrap the scaling-based analysis of S-COLTS to soft-enforcement without resampling.

The main distinction lies, of course, in the fact that in the soft enforcement setting, we do not have
access to a given safe action asafe. To motivate the method, let us consider how S-COLTS uses the
knowledge of asafe. This occurs in three ways: to ensure the existence of a(ηt, Ht, t), to compute
the action at from this, and to enable the look-back analysis of Lemma 7. The second use is easy
to address: we will simply play at = a(ηt, Ht, t) if it exists. The key observation is that rather
than explicit knowledge of any one particular safe action, as long as some action a exists such that
Mt(a) ≤ Γ(a)/3, the entirely of the first and third uses can be recovered, and so the machinery of §4
can be enabled.

Forced Exploration. We enable the eventual existence of such actions by introducing a small
rate of forced exploration in our method E-COLTS. Concretely, we demand a ‘κ-good’ exploration
policy over A, i.e., one such that after N exploratory actions e1, · · · , eN , we are assured that∑
eie

⊤
i ≽ κ⌊N/d⌋Id, where κ > 0 is a constant. This can, e.g., be done by playing the elements of a

barycentric spanner of A in round-robin [AK08; DHK08]. The resulting κ is a geometric property of
A, and we note that κ only enters the analysis, not the algorithm.

Let us call a time step t where the exploratory policy is executed an ‘E-step’. In E-COLTS, we ensure
tha tat any t, at least Btωt

√
dt such E-steps have been performed, and if not, we force an E-step.

Note that we expect that the majority of the learning process occurs at steps other than E-steps, since
this is where the informative action a(ηt, Ht, t) is played. Consequently, we will call such steps
‘L-steps’.
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Algorithm 3 Exploratory-COLTS (E-COLTS(µ, δ))
1: Input: µ, δ, exploration policy.
2: Initialise: u0 ← 0, Bt ← 1 +B(δt)
3: for t = 1, 2, . . . do
4: Draw (ηt, Ht) ∼ µ.
5: if ut−1 ≤ Btωt(δ)

√
dt OR a(ηt, Ht, t) does not exist then

6: Pick at via exploration policy.
7: ut ← ut−1 + 1.
8: else
9: at ← a(ηt, Ht, t), ut ← ut−1.

10: Play at, observe Rt, St, update Ht.

By our requirement of enough E-steps, at any L-step t, the sample second moment matrix Vt satsifies
Vt ≽ κBtωt

√
t/dId, and so,

∀a,Mt(a) ≤ ψ(t) :=
(
dB2

t ω
2
t

κ2t

)1/4

· ∥a∥.

This means that at such t, any a with Γ(a) > 2ψ(t)/3 satisfies Mt(a) ≤ Γ(a)/3, and so a(ηt, Ht, t)
exists, and we may use the analysis of §4 for such a.

Regret Bound. The above insight is the main driver of the result of Theorem 12, which we show in
§I.2.1 to follow. Recall that this states that under the E-COLTS strategy, executed with a µ constructed
through the coupled noise design with base measure Unif(

√
3dSd), the risk and regret satisfy, with

high probability, the bounds

ST = Õ(
√
d3T ) + min

a
Õ
( d3∥a∥4
κ2Γ(a)4

)
, and

RT = min
a:Γ(a)>0

{
R(a)Õ(

√
d3T ) + Õ

( d3∥a∥4
κ2Γ(a)4

)}
,

where κ is precisely the ‘goodness-factor’ of the exploratory policy. Let us briefly discuss this result.

Risk bound. Unlike S-COLTS, E-COLTS suffers nontrivial risk, which is unavoidable due to the lack
of knowledge of asafe [PGBJ21]. The Õ(

√
d3T ) risk above above is comparable to the Õ

√
d2T ) risk

of the prior soft enforcement method DOSS [GCS24], with a
√
d loss again attributable to efficiency.

Note that compared to R-COLTS, the risk bound is essentially the same, but now incurs an extra
additive term scaling, essentially, with (maxa Γ(a))

−4. Thus, a nontrivial risk bound is only shown
if this maximum is strictly positive, i.e., under Slater’s condition. Nevertheless, the term is additive,
and scales with T only logarithmically (through a dependence on ωt(δ), and so in typical scenarios
is not expected to dominate as T diverges, although the fourth-power dependence on this quantity
would increase the ‘burn-in’ time of this result.

Regret bound. As discussed in §5, the main term of the regret bound above improves over that of
S-COLTS, since it minimises over R(a), rather than working with the arbitrary R(asafe). Note that
finding the minimiser ofR may be challenging, but E-COLTS nevertheless adapts to this. However,
the additive lower-order term is larger than in S-COLTS due to the ‘flat’ exploration of E-COLTS, and
its practical effect is unclear. In simple simulations, we do observe a significant regret improvement
(§J). We note that the κ-good exploration condition only affects the lower order term in RT , although
again the fourth order dependence on Γ(a) is nontrivial. Of course, relative to E-COLTS, the result
suffers from an instance-dependence, and again, unless Slater’s condition is satisfied, it is ineffective.

Practical Role of Forced Exploration. E-COLTS uses forced exploration to ensure that Vt is large,
which leads to both feasibility of the perturbed program, and the scaling-based analysis. In practice,
however, one expects that low-regret algorithms satisfy maxa ∥a∥V −1

t
≲ t−1/4∥a∥ directly, the idea

being that actions with larger V −1
t -norm represent underexplored directions that would naturally be

selected (recent work has made strides towards actually proving such a result, although it does not
quite get there [BGCG23]). Thus we believe that this forced exploration can practically be omitted
except when the perturbed program is infeasible. Indeed, in simulations, we find that this strategy
already has good regret (§J).
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I.2.1 The Analysis of E-COLTS

We will essentially reuse our analysis of S-COLTS, with slight variations.

Proof of Theorem 12. We will first discuss the bound on the regret. Throughout, we assume con-
sistency, and the noise concentration event of Lemma 3. We will further just write ωt instead of
ωt(δ). Recall the terminology that every t in which we pick an action according to the exploratory
policy is called an ‘E-step’, and every other step an ‘L-step’. Here E and L stand for exploration
and learning respectively, the idea being that the former constitute the basic exploration required to
enable feasibility under perturbations, and so the main learning process occurs in L-steps.

Note that the number of E-steps up to time t is explicitly delineated to be at most ⌈Btωt

√
dt⌉. Using

the κ-good assumption, then, we find that at every L-step,

Vt ≽ κBtωt

√
t/dI ⇐⇒ (κBtωt

√
t/d)−1I ≽ V −1

t .

Now, fix any action a0 with Γ(a0) > 0. Then notice that at any L-step,

∥a0∥2V −1
t
≤
√
d∥a0∥2

κBtωt

√
t

=⇒ Mt(a0)
2 ≤ Btωt∥a0∥2

κ
·
√
d/t.

Thus, for all

t ≥ t0(a0) := inf

{
t :

34d∥a0∥4B2
t ω

2
t

κ2Γ(a0)4
≤ t
}

that are L-steps, we know that as long as the noises ηt, Ht satisfy the bound of Lemma 3, Φ̃ta0 ≤
α− 2Γ(a0)/31m. Note that since ω2

t ≤ d log(t) + log(m/δ), and since under our choice of coupled
noise, Bt =

√
3d for all t, we can conclude that

t0(a0) ≤
Cd3∥a0∥4

κ2Γ(a0)4
log

Cd3∥a0∥4

κ2Γ(a0)4
+
Cd2∥a0∥4 log(m/δ)

κ2Γ(a0)4
log

Cd2∥a0∥4 log(m/δ)
κ2Γ(a0)4

= Õ

(
d3∥a0∥4

κ2Γ(a0)4

)
,

where C is some large enough constant (C = 4 · 81 suffices). This implies that at all t > t0(a0) at
which the number of E-steps, ut, is large enough, the perturbed program is feasible, and at exists.
Thus, after this time, no extraneous E-steps are accrued due to infeasibility of the perturbed program.

At this point we apply the proof of Lemma 7, with ρt = 1. Let

τ = τ(t) = sup{s ≤ t : ∆(as) ≤Mt(as),Mt(a0) ≤ Γ(a0)/3}.

Now, aτ need not be feasible for Φ̃t, but we know that Φ̃τaτ ≤ α =⇒ Φ̃taτ ≤ α +Mt(aτ ) +
Mτ (aτ ). So for

στ→t :=
Γ(a0)

Γ(a0) + 3(Mt(aτ ) +Mτ (aτ ))
,

we know that
Φ̃t(στ→taτ + (1− στ→t)a0) ≤ α.

Let āτ→t := στ→taτ + (1− στ→t)a0. Then we can write

∆(at) = ∆(āτ→t) + θ⊤∗ (āτ→t − at)

≤ ∆(āτ→t) + θ̃⊤t (āτ→t − at) +Mt(at) +Mt(āτ→t)

≤ στ→t∆(aτ ) + (1− στ→t)∆(a0) +Mt(at) + στ→tMt(aτ ) + (1− στ→t)Mt(a0)

≤ (1− στ→t)∆(a0) +Mt(at) + στ→t(Mt(aτ ) +Mτ (aτ )) + (1− στ→t)Mt(a0),

where in the end we used the fact that ∆(aτ ) ≤Mτ (aτ ). Now,

1− στ→t ≤
3(Mt(aτ ) +Mτ (aτ ))

Γ0
,
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and of course Mt(a0) ≤ Γ0. We end up with a bound of the form

∆(at) ≤ C
(
1 +

∆(a0)

Γ(a0)

)
(Mt(at) +Mτ (aτ ) +Mt(aτ )),

which is essentially the same as that of Lemma 7. Given this, we can immediately invoke Lemma 5
(appropritaely modifying by asafe → a0 and Γ0 → Γ(a0)). We end up with the control that

∑
t≤T,Mt(a0)≤Γ0/3

∆(at) = Õ

(1 + ∆(a0)

Γ(a0)

)
· BTωT

χ
·
∑
t≤T

∥at∥V −1
t

 .

For our choice of noise (being the coupled design executed with ν = Unif(
√
3dSd), we have

χ = Ω(1), B = O(
√
d), and so this can be bounded as∑

t≤T,Mt(a0)≤Γ0/3

∆(at) = Õ
(
R(a0)d3T

)
.

Of course, the above holds true for all t > t0(a0) that were not E-steps. Before t0(a0), we may
bound the per-round regret by 2. Finally, we are left with the E-steps after the time t0(a0). Since, as
argued above, no extraneous E-steps due to the infeasiblity of perturbed programs occur, we can then,
for T ≥ t0(a0), simply bound the total number of E-steps by 1 +BTωT

√
dT , and accrue roudwise

regret of at most 2 in these steps. With our chosen noise, Bt = O(
√
d), this cost is Õ(

√
d3T ).

Summing these three contributions, and invoking the bound on t0(a0) finishes the argument upon
recognizing that a0 is arbitrary, and so we may minimise over it.

Turning now to the risk, first observe that for any t > T0 := mina t0(a), there exists at least one action
such that Mt(a) ≤ Γ(a)/3, and so the perturbed program is always feasible, i.e., a(ηt, Ht, t) exists.
Now, consider subsequent times. Observe that in L-steps, since Φ̃tat ≤ α, we know by Lemma 3
that Φ∗at ≤ α+Mt(at)1m, assuming consistency and the concentration of max(∥ηt∥,maxi ∥Hi

t∥).
Thus, in L-steps, the risk accrued at any time is at most Mt(at). On the other hand, in E-steps, the
risk accumulated can be bounded by just 1 (using the boundedness of Φ∗ and A, and so we only need
to work out the total number of these. But after time T0 such an E-step only occurs to make sure
that the net number of E-steps is at least Btωt

√
dt, and so the total number of such steps is at most

BTωT

√
dT .

Putting these together, we conclude that the net risk accrued is bounded as

ST ≤ T0 +
∑

T0≤t≤T
t is an E-step

1 +
∑
t≤T,

t is an L-step

Mt(at) = BT · Õ(
√
d2T +min

a
Õ

(
dB2

t ω
2
t ∥a∥4

κ2Γ(a)4

)
.

Invoking Lemma 14, as well as the fact that BT = Bt =
√
3d for our noise design, the claim follows.

Finally, let us account for the probabilistic conditions needed: we need the concentration event of
Lemma 5 to hold for the regret bound, and the consistency and noise-boundedness events for both.
Of course, the second is not actually needed, since our noise is bounded always. Together, then, these
occur with chance at least 1−2δ under our noise design. Of course, then, passing to E-COLTS(µ, δ/2)
yields the claimed result.
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J Simulation Study

We conduct simulation studies to investigate the behaviour of E-COLTS/R-COLTS, and of S-COLTS.
We first study the soft and hard constraint enforcement problems with our coupled noise design. After
this, we investigate the behaviour of COLTS methods using independent (or decoupled) noise in §J.3.
All experiments were executed on a consumer-grade laptop computer running a Ryzen-5 chip, in the
MATLAB environment, and the total time of all experiments ran to about 8 hours.

J.1 Soft Constraint Enforcement

We begin with studying the behaviour of the soft constraint enforcement strategies E-COLTS and
R-COLTS. Throughout, we treat E-COLTS as R-COLTS(µ, 0, δ), with no exploration.

Setting. We set Φ∗ to be a certain 9 × 9 directed adjacency matrix, A, obtained from https:
//sparse.tamu.edu/vanHeukelum/cage4, which is a≈ 60% populated matrix with d = m = 9.

The rows of Φ∗ were normalised to have norm 1. We study the problem of optimising θ∗ = 1d/
√
d

overA = [0, 1/
√
d]d, and enforce the unkonwn constraints Φ∗a ≤ 0.8 · 1/√d. We note that the action

0 is always safe, no matter the Φ̃t. This choice is intentional, in that it lets us avoid the inconvenient
fixed exploration present in E-COLTS and S-COLTS. Throughout, we set δ = 0.1.

As stated above, for the bulk of this section, we will implement E-COLTS without forced exploration.
Indeed, this is not required since 0 is always feasible, as discussed above. This can equivalently be
interpreted as R-COLTS with the resampling parameter r = 0.

Effect of Noise Rate. As previously noted, in linear TS, small perturbation noise—of the scale 1
rather than Θ(

√
d)—retains sufficient rates of global optimism and unsaturation to enable good regret

behaviour. Note that such a small noise directly reduces BT , and thus we would expect it to improve
our regret behaviour by a factor of about

√
d. In order to exploit this, we begin by conducting pilot

experiments with our coupled noise design to determine a reasonable noise scale for us to use.

Concretely, we drive our coupled noise design with the laws νγ = Unif(γ · Sd), and run E-COLTS
without exploration for 103 steps 100 times. In each run, we simply record whether (i) global
optimism; (ii) local optimism; and (iii) unsaturation held, and estimate their rates simply as the
fraction of time over the run that this property was true. We construct these rate estimates for
γ ∈ [

√
3d

−3
,
√
3d], specifically evaluating the same for 41 values of γ chosen over an exponential

grid (i.e., so that log(γ) has a constant step). Figure 3 shows the resulting estimates.

Figure 3: Behaviour of the Global and Local Optimism
Rates, as well as the Unsaturation Rate. The black verti-
cal line lies at γ = 0.5, the value selected for subsequent
experimentation. The largest studied value is at

√
3d,

which has logarithm about 1.65 Observe that the global
optimism and unsaturation rates are significant, and in
particular ≈ 1 for γ = 0.5, far below

√
3d ≈ 5.2.

The core observation is that global optimism
and unsaturation rates are already at ∼ 1 for
log(γ) ≈ −1, indicating good performance with
this noise. Note that while such performance
with small noise has been previously observed
for linear TS without unknown constraints, we
are unaware if an explicit observation of these
rates as above has been performed. Of course,
proving these properties at such small γ is an
open question, and we also note that our es-
timates above are not quite correct, since they
integrate the events across time, while their rates
could vary with t. In any case, the main upshot
for this is that in our subsequent experiments,
we work with γ = 0.5 instead of

√
3d ≈ 5.2.

The Behaviour of E-COLTS and R-COLTS. We
now study R-COLTS and E-COLTS over the long
horizon T = 5 · 104. We execute R-COLTS with
zero resamplings (i.e., E-COLTS with no explo-
ration), and then one and finally two resamplings
in each round, all driven by the coupled pertur-
bation noise with ν0.5.

42

https://sparse.tamu.edu/vanHeukelum/cage4
https://sparse.tamu.edu/vanHeukelum/cage4


Figure 4: Regret (left) and Risk (right) of R-COLTS with zero, one, and two resamplings per round. Top includes
one-sigma error bars, and for clarity, the bottom figures omit them. Note that the regret behaviour is an order of
magnitude smaller than the scale

√
d2T ≈ 6600, while the risk behaviour is about a factor of half of this. We

further observe that resampling improves regret signficantly, while only hurting the risks slightly, although this
effect appears to decelerate as resampling is increased.

On DOSS. We note that DOSS is not implemented. E-COLTS runs in ∼ 10−3s per round on our
machine. (Relaxed)-DOSS is totally impractical: (2d)m+1 > 1012, and so it needs > 109s, i.e., years,
per round!

Observations. Figure 4 shows the observed regret and risk traces over 100 runs. The observed regret
behaviour is very strong: even without resampling, the terminal median regret of ∼ 600 is closer to√
T log T ≈ 750 than to

√
d2T log(T ) ≈ 6600. The risk behaviour is more significant, but still half

this scale. The observation of RT suggests that a stronger regret bound may hold for E-COLTS and
R-COLTS, which is in line with the stronger instance-specific regret behaviour of the optimism-based
method DOSS [GCS24]. Proving this is an interesting open problem.

These simulations thus bear out the strong performance of E-COLTS/R-COLTS with r = 0. Further,
as we add resampling, risk degrades mildly, but the regret improves significantly, although the returns
diminish with more resampling. This suggests that practically, a few resamplings in R-COLTS are
enough to extract most of the advantage. Interestingly, resampling has a palpable effect even though
the optimism rate is nearly one!

J.2 Hard Constraint Enforcement

Next, we investigate the behaviour of S-COLTS over the same instance, supplied with the data
asafe = 0. The natural point of comparison to S-COLTS is the SAFE-LTS algorithm [MAAT21],
which operates in O(SOCP log t) computation per round.10

10We do not implement other prior methods for SLBs, mainly because SAFE-LTS has previously been seen
to have similar behaviour, and be about 2d = 18 times faster than these methods. Of course, we also did not
implement DOSS as a comparison for the soft constriant enforcement methods since it is impractical to execute
for d = m = 9.
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Concretely, we again drive this method with ν0.5 as before. For SAFE-LTS, we sample a perturbed
objective vector with the same noise scale, and otherwise optimise over the second order conic
constraints as detailed in §4.3. In both cases, we used the library methods linprog and coneprog
provided by MATLAB to implement these methods.11 Note that these methods are specifically
tailored to linear and conic programming respectively. As before, we repeat runs of length T = 5 ·104
for a total of 100 runs.

Strong Safety Behaviour. We note that in all of our runs, we did not observe any constraint violation
from either S-COLTS or SAFE-LTS, despite the fact that we executed these methods with δ =
0.1. This suggests both that in practice, the parameter δ can be relaxed (which would yield mild
improvements in regret), and in any case verifies the strong safety properties of these methods.

Comparison of Regret. We show the regret traces over the 100 runs in Figure 5. We observe that
S-COLTS has a slightly improved regret performance relative to SAFE-LTS, which may be attributed
to the selection of stronger exploratory directions through solving the perturbed program.

Figure 5: Regret Behaviour of S-COLTS and SAFE-LTS on the same instance as previous figures (one-sigma
error curves). We note that S-COLTS offers a mild improvement in regret over SAFE-LTS. However, this comes
with a 5× reduction in net computational time per round, which is the main advantage of S-COLTS.

Computational Speedup. In wall-clock terms, each iteration of SAFE-LTS is about 5.2× slower
than that of S-COLTS on this 9 dimensional instance with 9 unknown constraints (over 5 · 106
total iterations, S-COLTS took about 0.22ms per iteration, while SAFE-LTS took about 1.16ms), a
significant computational advantage even in this modest parameter setup.

High Level Conclusions. The main takeaway from this set of experiments is that S-COLTS offers
tangible benefits in computational time relative to SAFE-LTS (and a fortiori, to other pessimism-
optimism based frequentist hard constraint enforcement methods), while even obtaining a slight
improvement in the regret behaviour. This demonstrates the utility of S-COLTS over these prior
methodologies, and suggests that it is the natural approach that should be used in practice.

J.2.1 Investingating Behaviour with Increasing m

Of course, the computational problem of optimising m SOC constraints becomes harder as m grows,
and so we expect that the computational advantage of S-COLTS over SAFE-LTS would grow with
m.12 To investigate this hypothesis more closely, we turn to a slightly different setup.

Setup. We set d = 2, θ∗ = (1, 0),A = [−1/
√
d, 1/
√
d]d. For m ≥ 3, we impose m unknown

constraints such that the feasible region forms a regular m-gon with one vertex at (0.2/
√
2, 0).

This allows us to systematically increase m (to very high values) without incurring significant
computational costs. We investigate the behaviour of S-COLTS and E-COLTS on this setup with the
coupled noise design as in the previous section (γ = 0.5) for m ∈ {10, 20, · · · , 100}. We also

11Of course, R-COLTS/E-COLTS were also implemented using linprog.
12Note that it may be possible to mitigate this somewhat by instead imposing the convex constraint

maxi(Φ̂ta − α)i + ∥a∥−1
Vt

≤ 0 to exploit that the same matrix V −1
t appears in all constraints. However,

the gradient computation of this map still grows with m, so the overall picture is unclear. Of course, imposing
only m linear constraints is bound to be faster.
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Figure 6: Comparisons of the regret (left, one-sigma error curves) and computational costs (right) of S-COLTS
and SAFE-LTS in the d = 2 instance as m varies. This is the same setting as Figure 2, right, but presented
separately rather than as a ratio. The left plots the regrets at time T = 103 over 50, and the right plots the
wall-clock time per iteration on our resources in milliseconds. S-COLTS needs 0.14 − 0.25 milliseconds per
iteration, while SAFE-LTS needs > 4.5 at m = 100. At the same time, for m ≥ 10, the regret of S-COLTS is
about 3× smaller.

execute this for m = 1, where a single constraint passing through the same vertex is enforced. In all
cases, we set asafe = 0, which is always feasible.
Strong Computatational Speedup. As seen in Figure 6, S-COLTS has a strong computational advatange,
which further grows with m. In particular, at m = 1, S-COLTS is about 1.3× faster to execute than
SAFE-LTS, while for m = 100, this advantage grows to 18×.
Improved Regret Performance.13 Further, instead of the small gain seen in the previous section, in
this problem S-COLTS has a strong statistical advantage relative to SAFE-LTS for even moderate m.
Indeed, while at m = 1, its regret is about 10% larger than that of SAFE-LTS, for larger m, its regret
is many times smaller. In particular, for m ≥ 10, we found that the regret of S-COLTS is roughly 3×
smaller (ranging between 2.7× and 3.4×.).
Takeaways. This investigation further bolsters the strong advantage of S-COLTS over SAFE-LTS. Note
that alternative confidence-set based hard enforcement methods are at least 2d times slowed than
SAFE-LTS, meaning that the computational advantage of S-COLTS is even stronger relative to these
methods. For large m, this appears to be accompanied by a large statistical advantage, making this
the natural method in applications of SLBs.

J.3 Simulation Study on the Behaviour of the Decoupled Noise

Finally, we investigate the behaviour of the COLTS framework under the decoupled noise design,
wherein, instead of setting H = −1mη, we draw η, and each row of H, independently from νγ .
The main impetus behind this, of course, is that this decoupled design is a natural choice to execute
COLTS, although it is contraindicated by the analysis tools available to us.

Behaviour of Event Rates with γ. To begin with, Figure 7 shows the global optimism, local optimism,
and unsaturation rates with this decoupled noise for the same instance as previously studied. Observe
first that the decoupled noise design does experience a slight decrease in each of these rates compared
to those seen in Figure 3. However, this effect is relatively mild, and in particular, we can see that
the unsaturation rate is already up to nearly one at our previously selected value of γ = 0.5. This
suggests that the decoupled noise would do nearly as well as the coupled noise in this case.

Behaviour of Regret and Risk. To further investigate the above claim, we execute E-COLTS without
exploration (or equivalently, R-COLTS with r = 0) driven with this decoupled noise over the longer
horizon T = 5 · 104. The resulting regret and risks are plotted in Figure 8, along with the same for
E-COLTS with coupled noise. Observe that the decoupled noise sees a significant loss of about 3× in
regret, but sees a gain of about 1.5× in risk. Heuristically, we may think of the decoupled noise as

13Note: for the regret ratio in Figure 2, we perform 100 separate runs with both methods, and compute the
ratio of regret for the two methods in each. That figure reports the mean over this data - in this case, the expected
mean is ∼ 1.5 at m = 1, but with wide confidence intervals (CIs). For m ≥ 10, the lower confidence bounds all
exceed 2. At m = 1, the mean regret of SAFE-LTS is about 0.91× that of S-COLTS, with strongly overlapping
CIs.
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Figure 7: Behaviour of the Global Optimism, Local Optimism, and Unsaturation Rates with γ for the Decoupled
Noise in the setting of Figure 3. Observe that while these rates decay somewhat with respect to the coupled
noise, they are still strong, and especially for large γ are nearly as good as with the coupled noise.

Figure 8: Behaviour of regret (left) and risk (right) for E-COLTS executed with the decoupled noise compared
with E-COLTS executed with the coupled noise (one-sigma error bars). Observe that the regret behaviour sharply
deteriorates, while the risk behaviour slightly improves for the decoupled noise design. Heuristically, this
suggests that the decoupled noise behaves ‘like’ the coupled noise, but with a smaller value of γ.

behaving as if the noise is coupled but "shrunk", so that the behaviour of the risk is improved, but the
behaviour of the regret worsens.

Practically speaking, our recommendation remains to use the coupled noise design, in that it attains
higher rates of explanatory events, and carries theoretical guarantees. Nevertheless, establishing that
RT and ST do scale sublinearly with the decoupled noise design, as is evident from Figure 8, is an
interesting open problem.

J.3.1 Investigation of Rates with Increasing m

Of course, the main obstruction with the use of the decoupled noise in §4.2 was to do with many
constraints. Indeed, it should be clear that under this decoupled noise, the local optimism rate must
decay exponentially with m, since if any row of Φ̃t is perturbed so that a∗ violates its constraints,
local optimism would fail (and this would occcur with a constant chance, no matter the estimates).

To probe whether this indeed occurs, we simulate the behaviour of E-COLTS with the coupled and
decoupled noise designs on a simplified setup.

Setup. We again take the d = 2 polygonal constraints investigated in §J.2.1. We investigate
the behaviour of E-COLTS with both the coupled and decoupled noise designs on this instance as
m ∈ {10, 20, . . . , 100} ∪ {200, 300, . . . , 1000}, thus letting us probe an extremely high number of
unknown constraints.

Observations. There are two main observations of Figure 9. Firstly, note that as shown in the main
text, the rates of optimism and unsaturation under the coupled noise design are stable, and do not
meaningfully vary with m after it has grown at least slightly.
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Figure 9: Behaviour of the rates of global and local optimism, and of unsaturation, in the polygonal instances
as the number of constraints is increased for the coupled (left) and decoupled (right) noise designs driven by
Unif(S2). Observed that the behaviour of these is stable with m for the coupled design, but for the decoupled
design, the local optimism and unsaturation rate decay with m. Surprisingly, the global optimism rate remains
stable even for the decoupled noise design.

On the other hand, under the decoupled noise design, the local optimism rate clearly crashes ex-
ponentially. The unsaturation rate has a slower but evident decay: roughly, this is as m−1.3 for
m ≤ 100, and appears to be exponential for large m. However, surprisingly, the global optimism
rate remains stable (although lower than the same with the coupled design). This shows that there
are situations with low-regret where frequent global optimism would be the ‘correct’ explanation for
good performance of methods like S-COLTS or E-COLTS (indeed, this is what prompted us to write the
optimism based analysis of these methods in §H.5). Note however that proving that global optimism
is frequent under the decoupled design is an open problem. In fact, with unknown constraints, we do
not know of any method to deal with global optimism lower bounds that does not pass through local
optimism, since the approach of Abeille & Lazaric [AL17] relies on convexity properties of the value
function in terms of the unknown parameters, which fails in this case.
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