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Abstract

Distant supervision uses triple facts in knowl-001
edge graphs to label a corpus for relation ex-002
traction, leading to wrong labeling and long-003
tail problems. Some works use the hierarchy004
of relations for knowledge transfer to long-005
tail relations. However, a coarse-grained rela-006
tion often implies only an attribute (e.g., do-007
main or topic) of the distant fact, making it008
hard to discriminate relations based solely on009
sentence semantics. One solution is resort-010
ing to entity types, but open questions remain011
about how to fully leverage the information of012
entity types and how to align multi-granular013
entity types with sentences. In this work,014
we propose a novel model to enrich distantly-015
supervised sentences with entity types. It con-016
sists of (1) a pairwise type-enriched sentence017
encoding module injecting both context-free018
and -related backgrounds to alleviate sentence-019
level wrong labeling, and (2) a hierarchical020
type-sentence alignment module enriching a021
sentence with the triple fact’s basic attributes022
to support long-tail relations. Our model023
achieves new state-of-the-art results in overall024
and long-tail performance on benchmarks.025

1 Introduction026

Human-curated knowledge graphs (KGs), play a027

critical role in many downstream tasks but suffer028

from the incompleteness (Xiong et al., 2018; Yao029

et al., 2019). As a remedy, relation extraction is to030

distinguish the relation between two entities accord-031

ing to their semantics in text, but a major obstacle is032

a lack of sufficient labeled corpus. Fortunately, dis-033

tant supervision can be used to annotate a raw text034

corpus via KGs for relation extraction, a.k.a. dis-035

tantly supervised relation extraction (DSRE). This036

is based on a strong assumption that a sentence037

containing two entities will express the semantics038

of their relation in a KG (Riedel et al., 2010).039

The assumption cannot always hold, leading to040

the wrong labeling problem. For example, both041

This is the tale of the depression-era boxer james_j._braddock, played by 
russell crowe, who was described by the new_york_city, police.
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A 49-year-old man arrested in belfast this week was charged with murder
 in the killing of robert_mccartney, a 33-year-old, catholic, who was...
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Figure 1: Two sentences with the same long-tail relation. For
each sentence, multi-granular relations from top to bottom
are pointed by its best pairwise types, which indicates not all
pairwise types provide the same contribution. Blue is sub-
ject entity, and red is object entity. The 1st sentence relies
on the direct pairwise types due to its relation-irrelevant se-
mantics while the 2nd sentence integrates its relation-relevant
semantics and pairwise types to enhance its representation.

“Jobs founded Apple” and “Jobs ate Apple” are 042

labeled with “/BUSINESS/COMPANY/FOUNDERS” 043

according to a KG triple fact (Steven Jobs, /BUSI- 044

NESS/COMPANY/FOUNDERS, Apple Inc). A basic 045

technique for this problem is selective attention 046

(Zeng et al., 2015; Lin et al., 2016; Ji et al., 2017) 047

under multi-instance learning framework (Riedel 048

et al., 2010; Hoffmann et al., 2011). Given a bag 049

of sentences with the same entity pair, it learns 050

to select correct one(s) by an end-to-end attention. 051

The other major challenge is known as the long-tail 052

problem, caused by domain mismatching during 053

distant supervision. That is, many relation labels 054

correspond only to a limited number of training 055

sentences in the corpus (Ye et al., 2019). For ex- 056

ample, in a DSRE benchmark, the distant super- 057

vision is an encyclopedic KG (i.e., Freebase (Bol- 058

lacker et al., 2008)) while the corpus is news arti- 059

cles from the New York Times (NYT), so relations, 060

like “/PEOPLE/PERSON/RELIGION”, scarcely ap- 061

pear. As illustrated by Li et al. (2020b) and Zhang 062

et al. (2019), more than 70% of relation labels in 063

NYT can be regarded as long-tail relations. 064

To mitigate the long-tail problem, some works 065
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(Han et al., 2018; Zhang et al., 2019; Li et al.,066

2020b) resort to the hierarchy of relations for067

knowledge transfer from data-rich relations to068

the long-tail ones since the relations have coarse-069

grained overlap. They focus on interactive opera-070

tions between hierarchical relations and intra-bag071

sentences, including relation-to-sentence attention072

(Han et al., 2018) as a hierarchical extension of se-073

lective attention, and sentence-to-relation attention074

(Li et al., 2020b) enriching sentences with multi-075

granular relations. As such, they achieve knowl-076

edge transfer by learning to distinguish coarse-077

grained relations for sentences with sufficient data,078

which provides a latent constraint for the long-tail079

relations. However, a coarse-grained relation usu-080

ally denotes the only basic attribute of the distant081

oracle triple fact in KG, so a sentence scarcely082

contains its semantics and we can only imply the083

relation via background information. Again, true-084

labeled “Jobs founded Apple”, does not explicitly085

contain any semantics of its coarse-grained rela-086

tion “/BUSINESS/COMPANY”, but we can directly087

reason it from the predicate founded and type of088

Apple. Thus, it is a challenge for a hierarchical089

DSRE model to correctly imply coarse-grained re-090

lations based solely on sentences, not to mention091

the existence of the wrong labeling problem.092

A direct yet promising way to overcome this093

challenge is to incorporate extra information for094

entities (Vashishth et al., 2018; Hu et al., 2019;095

Chu et al., 2020). One popular source is the entity096

types, i.e., an entity’s “ISA” attributes in KG, which097

characterizes the entity from multiple perspectives098

(Chen et al., 2020). As Figure 1 shows, although099

the 1st sentence’s semantics is irrelevant to relation,100

the pairwise types people.deceased_person and lo-101

cation.location directly align with the fine grained102

relation. However, existing works (Vashishth et al.,103

2018; Chu et al., 2020) ignore this potential of ex-104

plicit structured types information.105

In this work, we aim to improve DSRE by ex-106

ploiting structured information in the entity types107

from both pairwise and hierarchical perspectives108

to alleviate the wrong labeling and the long-tail109

problems respectively. To this end, we first propose110

a context-free type-enriched embedding module to111

generate word embeddings with pairwise types as-112

sociated with the entity pair in a bag. As shown in113

Figure 1, even without the corresponding semantic114

support, pairwise types can provide direct attributes115

of entities to align with the relation. Besides, we116

develop a context-related type-sentence alignment 117

module to generate robust sentence representation 118

with pairwise types. Since entities have specific 119

characteristic in certain semantics, we leverage se- 120

mantics to select proper pairwise types and then 121

enrich sentence representation, as the 2nd sentence 122

in Figure 1 shows. Such an alignment is enhanced 123

by a guidance from the relation to auto-seek for 124

associations between pairwise types and sentences. 125

At the meantime, hierarchical information has 126

been proven crucial in knowledge transfer for long- 127

tail relations (Han et al., 2018; Zhang et al., 2019; 128

Li et al., 2020b). Thereby, we naturally extend the 129

base alignment module into a hierarchy by propos- 130

ing a hierarchical type-sentence alignment module. 131

An intuitive example in Figure 1 shows that differ- 132

ent grained relations are pointed by various gran- 133

ular pairwise types. This indicates that these pair- 134

wise types contain hierarchical semantics, which 135

makes it feasible to extend base alignment into 136

hierarchy. Thus, the strong association between 137

pairwise types and coarse-grained relations can im- 138

prove knowledge transfer for long-tail relations. 139

We conduct extensive experiments on two popu- 140

lar benchmarks, NYT-520k and NYT-570k, show- 141

ing that our model achieves new state-of-the-art 142

overall and long-tail performance. Further analy- 143

ses reveal insights into our model. 144

2 Approach 145

Task Definition. Given a bag of sentences B = 146

{s1, . . . , sN} containing a pair of subject e(s) and 147

object e(o) entities, the distant supervision (Mintz 148

et al., 2009) assigns the sentence bag with a rela- 149

tion label r according to KG triple fact. The goal 150

of relation extraction is to predict the relation label 151

r̂ of an entity pair based on the corresponding sen- 152

tences bag B. Labels of coarse-grained relations, 153

[r(1), . . . , r(M)], can be derived from the mention 154

of r. For instance, when r = /BUSINESS/COMPA- 155

NY/FOUNDERS, r(1) = /BUSINESS/COMPANY and 156

r(2) = /BUSINESS. In the following, we will detail 157

our approach, as illustrated in Figure 2. 158

2.1 Context-Free Type-Enriched Word Emb 159

Following most previous DSRE works, we first 160

tokenize each sentence sj ∈ B and employ a 161

word2vec method (Mikolov et al., 2013) to de- 162

rive a sequence of word embeddings by looking 163

up a learnable matrix W (emb) ∈ Rde×|V|, i.e., 164

X̃j = [x̃j
1, . . . , x̃

j
n] ∈ Rde , where V denotes word 165
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Figure 2: Our proposed model, called Hierarchical Relation-guided Type-Sentence Alignment Model (HiRAM), for DSRE.

vocabulary. j denotes the index of a sentence in166

the bag and n denotes the sentence length. In the167

sequel, we omit j if no confusion is caused. Then,168

as a common practice in DSRE (Zeng et al., 2014),169

a word’s relative distances to both the subject and170

object entities (a.k.a relative positions) also play171

significant roles. The distances are first denoted172

as two integers (dist(s) and dist(o) ∈ Z) and then173

embedded into two learnable vectors (x̃(ds)
i and174

x̃
(do)
i ∈ Rdp). Therefore, the updated sequence175

of word embeddings is Xj = [x1, . . . ,xn], where176

xi = [x̃i; x̃
(ds)
i ; x̃

(do)
i ] ∈ Rdw , [; ] denotes vector177

concatenation, and dw := de + 2dp.178

Previous works (Li et al., 2020a,b) also found179

that explicitly enriching each word with both entity180

embeddings (i.e., e(s) and e(o)) in a context-free181

manner is important to DSRE’s success. However,182

many entities scarcely appear in the raw corpus and183

have multi-characteristics (e.g., Apple could be a184

fruit or a company). Thus, the model is hard to dis-185

tinguish the relations only via sentence semantics.186

Therefore, we leverage entity types to character-187

ize entities’ attributes. That is, given an entity e,188

its types are defined as a set of type mentions, i.e.,189

T = {t1, t2, . . . }. However, previous works (Chu190

et al., 2020) directly concatenate the entity types of191

both e(s) and e(o), completely regardless of poten-192

tials of explicit structured information of types. As193

demonstrated by Krompaß et al. (2015), a relation194

in KG is usually constrained by the entity types of195

e(s) and e(o) simultaneously (i.e., pairwise types),196

instead of their individuals. We thereby propose197

a pairwise type embedding module to enrich the198

word embedding X also in a context-free manner.199

Type and Pairwise Type Embedding. First, 200

given an entity type set T = {t1, t2, . . . } (either 201

T (s) for subject or T (o) for object), we tokenize 202

each type mention tj into a sequence of words, then 203

embed the words by looking up W (emb), and lastly 204

derive the type embedding tj by applying a mean- 205

pooling to the word embeddings of the mention. 206

The embedding of the entire type is 207

T = [t1, t2, . . . ] ∈ R|T |×de . (1) 208

As such, we subsequently define the embedding 209

of the pairwise type by considering a combina- 210

tion of every subject ∀t(s)l ∈ T
(s) and object type 211

∀t(o)k ∈ T
(o). Instead of sole semantics via a vector 212

concatenation, we take into account the prior struc- 213

tured information in each type pair by leveraging a 214

translational scheme (Bordes et al., 2013). Hence, 215

we represent each type pair (t(s)l , t
(o)
k ) as 216

cl,k = [c̃
(sem)
l,k ; c̃

(str)
l,k ] ∈ R4de , (2) 217

where, c̃(sem)
l,k = t

(s)
l �W (sem)t

(o)
k , 218

and c̃
(str)
l,k = t

(o)
k − t

(s)
l . 219

Here, “�” denotes Hadamard product, and W (sem) 220

denotes a learnable projection. c̃(sem)
l,k aims to cap- 221

ture the prior semantic relation in the pair (Nickel 222

et al., 2011) since not all types combinations are 223

valid in the whole dataset. c̃(str)l,k aims to measure 224

its structured relation. Lastly, we denote all the 225

embeddings of pairwise types as 226

C = {cl,k}∀l∈[1,|T (s)|],∀k∈[1,|T (o)|], (3) 227

where C ∈ R4de×m and m = |T (s)| · |T (o)|. 228

3



Type-Enriched Word Embedding. However,229

an open question still remains about how to operate230

on variable-length embeddings of pairwise types,231

C, to enrich each word embedding, xj ∈X , in a232

context-free manner. Inspired by self-attentive sen-233

tence encoding (Lin et al., 2016), we present a bag-234

level type-attentive module, which compresses C235

into a single vector representation to facilitate type-236

enriching. Intuitively, such self-attentive module237

is focused on the prior knowledge of the type pair238

in the corpus. Formally, we first generate a global239

query (Lin et al., 2016) with structured information240

of both entities and types to retrieve possible prior241

pairwise types, i.e.,242

q̃(f)=[e(o);Pool(T (o))]−[e(s);Pool(T (s))], (4)243

followed by a standard Bilinear-based attention,244

q(f)=C · softmax(CTW (sa)q(f))∈R4de , (5)245

where “·” denotes matrix multiplication and W (sa)246

is a learnable weight matrix. Lastly, we use a gate247

as in (Li et al., 2020b) to derive the context-free248

type-enriched word embedding, i.e.,249

g
(gf)
i = Sigmoid(MLP([xi; q

(f)]; θ(gf1))), (6)250

x
(gf)
i = MLP([xi; q

(f)]; θ(gf2)), (7)251

vi = g
(gf)
i � xi + (1− g

(gf)
i )� x

(gf)
i , (8)252

where MLP denotes a multi-layer perceptron253

(MLP) module. Hence, word embeddings for s254

are updated to V = [v1, . . . ,vn] ∈ Rdw×n.255

2.2 Context-Related Type-Sent Alignment256

Sentence Encoding. In DSRE, piecewise convo-257

lutional neural network (PCNN) (Zeng et al., 2015)258

is used for sentence embedding. 1D-CNN (Kim,259

2014) is first invoked over V for contextualized260

representations. Then a piecewise max-pooling per-261

forms over the output sequence to obtain sentence-262

level embedding with highlighted entity positions:263

H = [h1, . . . ,hn] = 1D-CNN(V ; θ(cnn)),264

s=tanh([Pool(H(1));Pool(H(2));Pool(H(3))]),265

where H(1), H(2) and H(3) are three consecutive266

parts of H by dividing H w.r.t. the indices of267

subject e(s) and object e(o) entities. Consequently,268

s ∈ Rdh is the resulting sentence-level embedding.269

Type-Sentence Alignment. Consider that types 270

are not comprehensive enough to align with multi- 271

granular relations, we leverage semantic context 272

to select valid pairwise types for generating robust 273

sentence representation. Hence, we first calculate 274

alignment scores between a sentence s ∈ Rdh and 275

the embeddings of pairwise types C ∈ R4de×m by 276

using a simple Bilinear layer, i.e., 277

C̃ = MLP(C; θ(p)) ∈ Rdh×m, (9) 278

a = softmax(C̃TW (al)s) ∈ Rm. (10) 279

Then, we enrich the sentence embedding with the 280

aligned type pairs via another gating mechanism: 281

z = C̃ · a (11) 282

g = Sigmoid(MLP([s; z]; θ(g))), (12) 283

ũ = g � s+ (1− g)� z. (13) 284

Lastly, following previous success (Li et al., 2020b; 285

Devlin et al., 2019), we leverage a residual con- 286

nection (He et al., 2016) with layer normalization 287

(Ba et al., 2016) to derive the final context-related 288

type-enriched sentence embedding, i.e., 289

u = LayerNorm(s+ ũ; θ(lm)). (14) 290

Relation-Guided Alignment at the Sentence 291

Level. Due to the severe wrong labeling problem 292

at the sentence level, previous DSRE works usually 293

skip over sentence-level relation supervisions. For- 294

tunately, empowered by the proposed context-free 295

type enrichment and context-related type-sentence 296

alignment, we can utilize the sentence-level rela- 297

tion label even if the relation label is wrong. The 298

reason for this is that, a sentence has already been 299

equipped with structured background to support 300

sentence-level relation even if the sentence seman- 301

tics cannot deliver the relation. We applied an 302

MLP-based neural classifier to the type-enriched 303

sentence embedding, u, to determine the relation 304

at the sentence level, i.e., 305

P (sl)(r̂|u) = softmax(MLP(u; θ(sl))), (15) 306

where, P (sl)(r̂|u) is a categorical distribution over 307

all possible relations. Hence, the training objective 308

is to minimize the cross-entropy loss, 309

L(sl) = −
∑
D

∑
B

logP (sl)(r̂ = r|u), (16) 310

where D denotes a DSRE dataset consisting of sen- 311

tence bags B. The guidance from the sentence-level 312
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relation leads to strong type-sentence alignment313

(as illustrated in §3.1 and §3.2). As a result, the314

sentence-level wrong labeling problem is alleviated.315

In contrast, previous works w/ sentence-level rela-316

tion supervisions (Li and Roth, 2002) suffer from317

the confirmation bias problem (Chen et al., 2019)318

caused by the sentence-level wrong labeling.319

2.3 Hierarchical Type-Sentence Alignment320

Inspired by former works (Han et al., 2018; Zhang321

et al., 2019; Li et al., 2020b) for handling long-tail322

relations, we also extend our basic model into hier-323

archy. However, the basic attributes contained by324

coarse-grained relation are irrelevant to the seman-325

tics in sentences. Thus, instead of direct operating326

on the hierarchy of relations (i.e., from fine-grained327

r to coarse-grained [r(1) . . . r(M)] relations), we328

leverage coarse-grained entity types describing the329

domain/type properties of the entities in the triple330

facts to enrich each sentence via the guidance from331

coarse-grained relation.332

Formally, we adapt the relation-guided type-333

sentence alignment (§2.2) into hierarchy, which334

shares a high-level inspiration with multi-head at-335

tention (Vaswani et al., 2017). First, we reuse the336

architecture from Eq.(9-14) by defining337

a(l), C̃(l) = TS-Align(l)(s,C), ∀l ∈ [1,M ],338

u(l) = TS-Integrate(l)(a(l), C̃(l), s), (17)339

where TS-Align() denotes Eq.(9-10) to obtain340

type-sentence alignment a(l) and TS-Integrate()341

denotes Eq.(11-14) to generate enriched sentence342

representation u(l) at level l. Note that, these mod-343

ules are parameter-untied from each other. Then,344

we update the sentence-level relation-guided loss345

in Eq.(16) to its hierarchical version, i.e.,346

L(sl) = −
∑

D,B,l∈[1,M ]

logP (sl)(r̂(l)=r(l)|u(l)) (18)347

Again, learnable parameters of the sentence-level348

classifiers across l are also untied. Lastly, we obtain349

the hierarchical type-enriched representation, i.e.,350

u(h) = [u;u(1); . . . ;u(M)] ∈ R(1+M)dh . (19)351

Different to previous works (Han et al., 2018;352

Zhang et al., 2019; Li et al., 2020b) focusing on hi-353

erarchical relation embeddings, our work explores354

the constraints by pairwise types for relations to355

mitigate sentence-level wrong labeling and uses356

the hierarchy of entity types on par with that of the357

relation to improve long-tail performance.358

2.4 Relation Classification and Objectives 359

Lastly, we put the sentences back into the bag and 360

derive bag-level embedding for the final relation 361

classification. Hence, for a bag B = [s1, ...sN ], 362

we can obtain sentence embeddings of all the sen- 363

tences U (h) = [u
(h)
1 , . . . ,u

(h)
N ], where u(h)

j is hier- 364

archical type-enriched sentence encoding derived 365

from Eq.(19). To preserve the hierarchical informa- 366

tion learned in u
(h)
j , we proposed to apply multiple 367

selective modules to its different parts, i.e., 368

b = Mul-Sel-Attn(U (h)) = [b(0); b(1); . . . ; b(M)], 369

b(0) = Selective-Attn([u1;. . . ,uN ]), 370

b(l)=Selective-Attn([u
(l)
1 ; . . . ,u

(l)
N ]), ∀l ∈ [1,M ]. 371

where, Selective-Attn() represents the selective 372

attention among the sentences in each granular re- 373

lation, and Mul-Sel-Attn() represents the selec- 374

tive attention among the multi-granular bag rep- 375

resentations. For bag representation, b(0) denotes 376

the finest grained and b(l) denotes coarser grained. 377

Lastly, we use an MLP-based classifier upon b to 378

derive a bag-level categorical distribution, i.e., 379

P (bl)(r̂|e(s), e(o),B). (20) 380

Meanwhile, the corresponding training loss is 381

L(bl) = −
∑
D
P (bl)(r̂ = r|e(s), e(o),B). (21) 382

Therefore, the final training objective is to mini- 383

mize a linear combination of both sentence-level in 384

Eq.(16) and bag-level (in Eq.(21)) losses, i.e., 385

L = L(bl) + βL(sl). (22) 386

3 Experiments 387

Datasets. We evaluate our HiRAM on DSRE 388

benchmarks, New York Times – NYT (Riedel et al., 389

2010), including NYT-520K and NYT-570K. NYT 390

datasets have 53 distinct relations, including an 391

NA class denoting the unavailable relation between 392

entity pairs. Each relation includes two coarse- 393

grained relations (i.e., M = 2), and the number 394

of relations from fine to coarse are 53, 36 and 9. 395

NYT-520K and NYT-570K have the same testing 396

set containing 172,488 sentences, with 96,678 en- 397

tity pairs. The only difference is that there is an 398

overlap of 11,416 entity pairs between training and 399

testing in NYT-570K. Thus, NYT-520K has severer 400

wrong labeling and long-tail problems. 401
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P@N (%) One Two All AUC100 200 300 Mean 100 200 300 Mean 100 200 300 Mean
Comparative Approaches
CNN+ATT (Lin et al., 2016) 76.2 65.2 60.8 67.4 76.2 65.7 62.1 68.0 76.2 68.6 59.8 68.2 -
PCNN+ATT (Lin et al., 2016) 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2 0.341
CoRA (Li et al., 2020b) 78.0 69.0 66.0 71.0 79.0 72.0 66.3 72.4 81.0 74.0 68.3 74.4 0.344
RESIDE (Vashishth et al., 2018) 80.0 75.5 69.3 74.9 83.0 73,5 70.6 75.7 84.0 78.5 75.6 79.4 -
InSRL (Chu et al., 2020) - - - - - - - - - - - - 0.451

HiRAM 93.0 89.0 83.0 88.3 93.0 88.5 84.0 88.5 93.0 88.5 86.0 89.2 0.484

Ablations
HiRAM w/o Hierarchy in §2.3 88.0 84.5 83.0 85.2 90.0 86.0 85.0 87.0 90.0 86.5 85.0 87.2 0.450
HiRAM w/o CF in §2.1 78.0 75.5 74.3 75.9 87.0 76.5 74.0 79.2 87.0 77.5 74.7 79.7 0.425
HiRAM w/o Rel Guidance in Eq. 16 89.0 86.0 76.7 83.9 93.0 88.0 81.7 87.6 93.0 87.0 86.7 88.9 0.482
HiRAM w/ TC 84.0 82.0 75.3 80.4 85.0 81.5 79.7 82.1 89.0 82.5 78.0 83.2 0.462
RoBERTa (Liu et al., 2019) 44.0 46.5 43.3 44.6 38.0 39.5 38.7 38.7 33.0 36.5 37.7 35.7 0.301
RoBERTa w/ CF 80.0 76.0 74.0 76.7 81.0 78.5 76.0 78.5 81.0 76.0 75.0 77.3 0.488
RoBERTa w/ HiRAM 85.0 83.0 79.3 82.4 86.0 85.5 81.3 84.3 89.0 86.0 81.7 85.6 0.518

Table 1: Model Evaluation and ablation study on NYT-520K. “P@N” denotes precision values for the entity pairs with the
top-100, -200 and -300 prediction confidences by randomly keeping one/two/all sentence(s) in each bag. The abbreviation
“CF” represents Context-Free embedding in §2.1; “TC” represents Type Concatenation replacing CF. “RoBERTa” directly
predicts relations via [CLS] token. “RoBERTa w/ CF” adds context-free type-enriched word embedding module on the output of
RoBERTa to generate sentences representation. “RoBERTa w/ HiRAM” denotes the combination of HiRAM and RoBERTa.

P@N (%) One Two All AUC100 200 300 Mean 100 200 300 Mean 100 200 300 Mean
Comparative Approaches
PCNN+HATT (Han et al., 2018) 84.0 76.0 69.7 76.6 85.0 76.0 72.7 77.9 88.0 79.5 75.3 80.9 0.42
PCNN+BAG-ATT (Ye and Ling, 2019) 86.8 77.6 73.9 79.4 91.2 79.2 75.4 81.9 91.8 84.0 78.7 84.8 0.42
SeG (Li et al., 2020a) 94.0 89.0 85.0 89.3 91.0 89.0 87.0 89.0 93.0 90.0 86.0 89.3 0.51
CoRA (Li et al., 2020b) 94.0 90.5 82.0 88.8 98.0 91.0 86.3 91.8 98.0 92.5 88.3 92.9 0.53

HiRAM 96.0 91.5 85.7 91.1 98.0 94.5 89.3 93.9 98.0 95.0 92.3 95.8 0.580

Table 2: Model Evaluation on NYT-570K, published by PCNN+HATT (Han et al., 2018)
.

Evaluation Metrics. Following previous works402

(Lin et al., 2016; Han et al., 2018; Zhang et al.,403

2019; Li et al., 2020b; Chu et al., 2020), we use404

area under precision-recall curve (AUC) and top-N405

precision (P@N) to measure models’ performance406

with the disturbance of wrong labeling, and use407

Hits@K to measure the performance on long-tail408

relations. AUC measures the ability of relation clas-409

sification, while P@N measures the precision of410

high-confidence predictions ranked by the model.411

Settings. For both versions of NYT datasets, de,412

dp, dw, dh and M are 50, 5, 60, 690, and 2 respec-413

tively. The types number of each entity is various414

but we set an upper limit and pad BLANK as a415

choice. We use AdaDelta (Zeiler, 2012) with 0.1416

learning rate. Batch size is 160 with 15 epochs and417

5-th is the best, dropout probability is 0.5, weight418

decay of L2-reg is 10−5. We use random initializa-419

tion or RoBERTa-base to initialize our models.420

Comparative Approach. We compare our Hi-421

RAM with many strong competitors, including422

(1) PCNN+ATT (Lin et al., 2016) proposes a se-423

lective attention to alleviate wrong labeling. (2) 424

PCNN+HATT (Han et al., 2018) extends selec- 425

tive attention with hierarchical relations. (3) RE- 426

SIDE (Vashishth et al., 2018) leverages side KGs’ 427

information to improve DSRE. (4) PCNN+BAG- 428

ATT (Ye and Ling, 2019) proposes intra-bag and 429

inter-bag attentions to handle the wrongly labeled 430

sentences. (5) PCNN+KATT (Zhang et al., 2019) 431

integrates externally pre-trained graph embeddings 432

with relation hierarchies for long-tail relations. (6) 433

SeG (Li et al., 2020a) focuses on one-sentence bags 434

and proposes entity-aware embedding. (7) CoRA 435

(Li et al., 2020b) transfers multi-granular relations 436

features into sentences in hierarchies for long-tail 437

relations. (8) InSRL (Chu et al., 2020) integrates 438

sentence, entity description and types together via 439

intact space representation learning. 440

3.1 Overall Performance on Benchmarks 441

As shown in Tables 1 and 2, HiRAM outperforms 442

former baselines on NYT-570K. Different from 443

CoRA’s poor performance on NYT-520K, HiRAM 444

achieves a new state-of-the-art on both popular 445
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# Training Instance <100 <200

Hits@K (Macro) 10 15 20 10 15 20

PCNN+ATT (Lin et al., 2016) <5.0 7.4 40.7 17.2 24.2 51.5
PCNN+HATT∗ (Han et al., 2018) 29.6 51.9 61.1 41.4 60.6 68.2
PCNN+KATT∗ (Zhang et al., 2019) 35.3 62.4 65.1 43.2 61.3 69.2
CoRA∗ (Li et al., 2020b) 66.6 72.0 87.0 72.7 77.3 89.4
CoRA (Li et al., 2020b) 66.6 66.6 75.9 71.7 72.7 80.3

HiRAM 72.2 96.3 96.3 77.3 96.9 96.9

HiRAM w/o Hierarchy in §2.3 50.0 88.9 92.6 59.1 90.9 93.9
HiRAM w/o CF in §2.1 66.6 88.9 92.6 72.7 90.9 93.9
HiRAM w/o Rel Guidance in Eq. 16 55.6 66.7 88.9 63.6 72.7 90.9
HiRAM w/ TC 72.2 77.7 88.9 77.3 81.8 90.9
RoBERTa (Liu et al., 2019) 0 0 0 0 0 11.6
RoBERTa w/ HiRAM 38.8 61.1 66.6 50.0 54.5 72.7

Table 3: Hits@K (Macro) tests only on the relations whose number of training instance < 100/200. “Hits@K” denotes whether
a test sentence bag whose gold relation label r(0) falls into top-K relations ranked by their prediction confidences.“Macro”
denotes macro average is applied regarding relation labels. “∗” denotes the model is trained on NYT-570K.

Case Sentence 1: although the regime of president bashar_al-assad hails from an obscure offshoot of shiism
– the alawites – syria is nearly three-quarters sunni, with alawites, members of other muslim sects and ...
r(2): /people r(1): /people/person r(0): /people/person/religion

Case Sentence 2: having so many operating systems makes it expensive to make software , said faraz_hoodbhoy, the
chief executive of camera phones save and share multimedia content.
r(2): /business r(1): /business/company r(0): /business/company/founder

Table 4: Two cases with long-tail relations are mis-classified by previous works whereas HiRAM is competent. Analysis of the
attention probability shown in Figure 3 proves the utility of context-related type-sentence alignment with relation guidance.

benchmarks in P@N and AUC. Compared with446

InSRL integrating both clean entity types’ concate-447

nation and accurate entity descriptions, HiRAM448

increases the AUC score by nearly 7%, verifying449

the capability of our specific model designer.450

3.2 Ablation Study451

We conduct an ablation study on NYT-520K, as452

shown at the bottom of Table 1. Compared to453

HiRAM, “HiRAM w/o Hierarchy” drops 6% in454

AUC. “HiRAM w/o Rel Guidance” performs well455

on P@N and AUC but has huge gap in P@One,456

which represents that the relation-Guided align-457

ment in hierarchy can empower sentence repre-458

sentation with less data in Multi-instance Learn-459

ing. Meanwhile, top-n precision of “HiRAM w/o460

CF” drops by nearly 10.5%. To prove the superior-461

ity of our specific design, we replace the pairwise462

type in §2.1 with simple type concatenation. The463

AUC score of “HiRAM w/ TC” decreases by 4.5%464

and nearly 5.6% of top-n precision. To further465

emphasize our word embedding §2.1 is module-466

agnostic, we combine RoBERTa (Liu et al., 2019)467

with our module respectively. As the bottom panel468

shows, “RoBERTa w/ CF” makes great progress,469

and “RoBERTa w/ HiRARM” achieves the best470

performance among three RoBERTa-related ex- 471

periments. However, due to the strong ability of 472

RoBERTa model, the wrong labeling problem hurt 473

the performance severely, especially in P@N. 474

3.3 Performance on Long-Tail Relations 475

Since former baselines are mainly trained on NYT- 476

570K, we reproduce CoRA on NYT-520K for fair 477

comparison as shown in Table 3. HiRAM achieves 478

a new state-of-the-art result in Hits@K with 20% 479

superiority. Removing hierarchy module in §2.3, 480

the performance of “HiRAM w/o Hierarchy” de- 481

creases by nearly 30% on Hits@10 but is better 482

than baselines in other settings, verifying the impor- 483

tance of hierarchical model for long-tail relations. 484

The huge decline of “HiRAM w/o Rel Guidance” 485

verifies the necessity of relation guidance. Due to 486

lacks of plenty reliable training data, RoBERTa is 487

hard to handle the long-tail problem but our specific 488

modules further increase its performance. 489

3.4 Case Study and Error Analysis 490

Firstly, we conduct a case study to qualitatively 491

analyze the effect of our model in §2.3 The case 492

study of two samples are shown in Table 4 and the 493

type-sentence alignment distribution is shown in 494
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Figure 3: Each heatmap represents the distribution of type-sentence alignment a in Eq.(10) and al in Eq.(17). The
horizontal axis represents the types of subject entity, and the vertical axis represents the types of object entity. The
top row, from left to right, represents three alignment distributions of first case, and the bottom row represents three
alignment distributions of second case, as Table 4 shows. Notice that “VC” is the abbreviation of venture captial.

Figure 3. Secondly, we investigate the possible495

reasons for the misclassifications of HiRAM.496

Distribution of Type-Sentence Alignment. For497

the first case, despite the failure in expressing the498

long-tail relation “/PEOPLE/PERSON/RELIGION”,499

the selected pairwise types are sufficient to pre-500

dict this relation. As the top row of Figure501

3 shows, people.person with BLANK helps to502

identify the character of subject entity, and reli-503

gion.religion with high alignment score can pro-504

vide direct attributes. For the second case, the se-505

mantics is implicitly related to its long-tail relation506

“/BUSINESS/COMPANY/FOUNDER”. The proper507

pairwise types are selected by coarser relation guid-508

ance, like (organizer.organizer, organizer.founder).509

Error Analysis. To analyse the implicit reasons510

for wrong predictions, we have manually checked511

several randomly-sampled error test examples. 1)512

Most of error cases are annotated as /PEOPLE/PER-513

SON/PLACE_OF_BIRTH because the semantics514

and the relation may be completely irrelevant and515

the types are hard to maintain people’s birth place.516

2) Mean pooling in Eq.(4) might not be the most517

optimal way to replace entity itself when the entity518

has too many characters.519

4 Related Work520

Wrong Labeling Problem. Many works (Liu521

et al., 2016; Ji et al., 2017; Ye and Ling, 2019; Li522

et al., 2020a) propose various extensions of vanilla523

selective attention (Lin et al., 2016). Ye and Ling524

(2019) combine intra-/inter-bag level selective at- 525

tention for DSRE. For one-sentence bags, Li et al. 526

(2020a) design the entity-aware embedding in a 527

context-free manner with a gate mechanism. 528

Long-tail Relations. Knowledge transfer via hi- 529

erarchical relations is effective. Han et al. (2018) 530

design relation-to-sentence attention in hierarchies, 531

and Li et al. (2020b) modify it to sentence-to- 532

relation attention. Many works (Vashishth et al., 533

2018; Hu et al., 2019; Chu et al., 2020) resort to 534

extra knowledge, i.e., entity description and en- 535

tity types. Entity description (Hu et al., 2019; Chu 536

et al., 2020) mainly stems from the Wikipedia page, 537

which contains factual statements of the relation 538

with other entities. Such oracle knowledge can 539

boost DSRE performance but is impractical. 540

5 Conclusion 541

In this work, we propose a new model, HiRAM, 542

training on a single Titan XP, except for RoBERTa 543

w/ RTX 6000, to alleviate wrong labeling and long- 544

tail problems in DSRE. For the wrong labeling 545

problem, we propose a context-free type-enriched 546

word embedding to enrich each word with prior 547

knowledge and a context-related type-sentence 548

alignment module to complement sentences with 549

semantics-fitted pairwise types. For the long-tail 550

problem, we extend the base alignment into the 551

hierarchy to utilize the multi-granular entity types. 552

The experiments with extensive analyses show the 553

superiority of HiRAM. 554
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