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ABSTRACT

Conditional Generative Adversarial Nets (cGANs) have been widely adopted for
image generation. cGANs take i) a noise vector and ii) a conditional variable as
input. The conditional variable can be discrete (e.g., a class label) or continuous
(e.g., an input image) resulting into class-conditional (image) generation and image-
to-image translation models, respectively. However, depending on whether the
conditional variable is discrete or continuous, various cGANs employ substantially
different deep architectures and loss functions for their training. In this paper, we
propose a novel framework, called MVP, for conditional data generation. MVP
resorts to multivariate polynomials of higher-order and treats in a unified way both
discrete and continuous conditional variables. MVP is highly expressive, capturing
higher-order auto- and cross-correlations of input variables (noise vector and condi-
tional variable). Tailored sharing schemes are designed between the polynomial’s
parameter tensors, which result in simple recursive formulas. MVP can synthesize
realistic images in both class-conditional and image-to-image translation tasks even
in the absence of activation functions between the layers.

1 INTRODUCTION

Modelling high-dimensional distributions and generating samples from complex distributions are
fundamental tasks in machine learning. Generative adversarial networks (GANs) (Goodfellow et al.,
2014) have demonstrated spectacular results in the two tasks using both unsupervised (Miyato et al.,
2018) and supervised (Brock et al., 2019) learning. In the unsupervised setting, (the generator
of) a GAN accepts as input a noise vector zI and maps the noise vector to a high-dimensional
output. The supervised models, called conditional Generative Adversarial Nets (cGANs) (Mirza
& Osindero, 2014), accept both a noise vector zI and an additional conditional variable zII that
facilitates the generation. The conditional variable can be discrete (e.g., a class or an attribute label)
or continuous (e.g., a low-resolution image). The impressive results obtained with both discrete
conditional input (Brock et al., 2019) and continuous conditional input (Park et al., 2019; Ledig et al.,
2017) have led to a plethora of applications that range from text-to-image synthesis (Qiao et al., 2019)
to deblurring (Yan & Wang, 2017) and medical analysis (You et al., 2019).

Despite the similarity in the formulation for discrete and continuous conditional input (i.e., learning
the function GpzI, zIIq), the literature has focused on substantially different architectures and losses.
Frequently, techniques are simultaneously developed, e.g., the self-attention in the class-conditional
Self-Attention GAN (Zhang et al., 2019) and in the Attention-GAN (Chen et al., 2018) with continu-
ous conditional input. This delays the progress since practitioners develop twice as many architectures
and losses for every case. A couple of straightforward ideas can be employed to unify the behavior of
the two conditional variable types. One idea is to use an encoder network to obtain representations
that are independent of the conditional variable. This has two drawbacks: i) the network ignores the
noise and a deterministic one-variable mapping is learned (Isola et al., 2017), ii) such encoder has not
been successful so far for discrete conditional input. An alternative idea is to directly concatenate the
labels in the latent space instead of finding an embedding. In AC-GAN (Odena et al., 2017) the class
labels are concatenated with the noise; however, the model does not scale well beyond 10 classes.
We argue that concatenation of the input is only capturing additive correlation and not higher-order
interactions between the inputs. A detailed discussion is conducted on sec. D (in the Appendix).
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A polynomial expansion with respect to the input variables can capture such higher-order correlations.
Π-Net (Chrysos et al., 2020) casts the function approximation into a polynomial expansion of a single
input variable. By concatenating the input variables, we can express the function approximation as a
polynomial of the fused variable. However, the concatenation reduces the flexibility of the model
significantly, e.g., it enforces the same order of expansion with respect to the different variables and it
only allows the same parameter sharing scheme to all variables.

We introduce a multivariate framework, called MVP, for conditional data generation. MVP resorts
to multivariate polynomials with two input variables, i.e., zI for the noise vector and zII for the
conditional variable. MVP captures higher-order auto- and cross-correlations between the variables.
By imposing a tailored structure in the higher-order interactions, we obtain an intuitive, recursive
formulation for MVP. The formulation is flexible and enables different constraints to be applied to
each variable and its associated parameters. The formulation can be trivially extended to M input
variables. In summary, our contributions are the following:

• We introduce a framework, called MVP, that expresses a high-order, multivariate polynomial
for conditional data generation. Importantly, MVP treats both discrete and continuous
conditional variables in a unified way.

• We offer an in-depth relationship with state-of-the-art works, such as SPADE (Park et al.,
2019), that can be interpreted as polynomial expansions. We believe this perspective better
explains the success of such architectures and offers a new direction for their extension.

• MVP is trained on eight different datasets for both class-conditional generation and image-
to-image translation tasks. The trained models rely on both input variables, i.e., they do not
ignore the noise vector.

• To illustrate the expressivity of the model, we also experiment with generators that do not
use activation functions between the layers. We verify that MVP can synthesize realistic
images even in the absence of activation functions between the layers.

The source code of MVP will be published upon the acceptance of the paper.

2 RELATED WORK

The literature on conditional data generation is vast; dedicated surveys per task (Agnese et al., 2019;
Wu et al., 2017b) can be found for the interested reader. Below, we review representative works in
conditional generation and then we summarize the recent progress in multiplicative interactions.

2.1 CONDITIONAL GENERATIVE MODELS

The challenging nature of image/video generation has led to a proliferation of conditional models.
Although cGAN (Mirza & Osindero, 2014) is a general framework, since then the methods developed
for conditional generation differ substantially depending on the type of conditional data. We present
below representative works of the two categories, i.e., discrete and continuous conditional data, and
their combination.

Discrete conditional variable: This is most frequently used for class-conditional generation (Miyato
et al., 2018; Brock et al., 2019; Kaneko et al., 2019). Conditional normalization (Dumoulin et al.,
2017; De Vries et al., 2017) techniques have been popular in the case of discrete conditional input,
e.g., in generation of natural scenes images (Miyato et al., 2018; Brock et al., 2019). Conditional
normalization cannot trivially generalize to a continuous conditional variable. In AC-GAN (Odena
et al., 2017), they concatenate the class labels with the noise; however, their model does not scale
well (i.e., they train one model per 10 classes). The aforementioned methods cannot be trivially used
or modified for continuous conditional input. Text-to-image generation models (Qiao et al., 2019; Li
et al., 2019; Zhang et al., 2018; Xu et al., 2018) use a specialized branch to embed the text labels.

Continuous conditional variable: The influential work of pix2pix (Isola et al., 2017) has become
the reference point for continuous conditional input. The conditional input is embedded in a low-
dimensional space (with an encoder), and then mapped to a high-dimensional output (through a
decoder). The framework has been widely used for inverse tasks (Ledig et al., 2017; Pathak et al.,
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2016; Wu et al., 2017a; Iizuka et al., 2017; Huang et al., 2017; Yu et al., 2018a; Grm et al., 2019; Xie
et al., 2018; Yan & Wang, 2017), conditional pose generation (Ma et al., 2017; Siarohin et al., 2018;
Liang et al., 2019), representation learning (Tran et al., 2017), conditional video generation (Wang
et al., 2018a), generation from semantic labels (Wang et al., 2018b), image blending (Wu et al., 2019;
Zhan et al., 2019). We recognize two major drawbacks in the aforementioned methods: a) they cannot
be easily adapted for discrete conditional input, b) they learn a deterministic mapping, i.e., the noise
is typically ignored. However, in many real applications, such as inverse tasks, the mapping is not
one-to-one; there are multiple plausible outputs for every conditional input. The auxiliary losses used
in such works, e.g., `1 loss (Isola et al., 2017), perceptual loss (Ledig et al., 2017), are an additional
drawback. Those losses both add hyper-parameters that require tuning and are domain-specific, thus
it is challenging to transfer them to different domains or even different datasets. On the contrary, in
our experiments, we do not use any additional loss.

Discrete and continuous conditional variables: Few works combine both discrete and continuous
conditional inputs (Yu et al., 2018b; Xu et al., 2017; Lu et al., 2018). However, these methods include
significant engineering (e.g., multiple discriminators (Xu et al., 2017), auxiliary losses), while often
the generator learns to ignore the noise (similarly to the continuous conditional input). Antipov et al.
(2017) design a generator for face aging. The generator combines continuous with discrete variables
(age classes), however there is no Gaussian noise utilized, i.e., a deterministic transformation is
learned for each input face. InfoGAN (Chen et al., 2016) includes both discrete and continuous
conditional variables. However, the authors explicitly mention that additional losses are required,
otherwise the generator is ‘free to ignore’ the additional variables.

The idea of Li et al. (2020) is most closely related to our work. They introduce a unifying framework
for paired (Isola et al., 2017) and unpaired (Zhu et al., 2017a) learning. However, their framework
assumes a continuous conditional input, while ours can handle discrete conditional input (e.g., class
labels). In addition, their method requires a pre-trained teacher generator, while ours consists of a
single generator trained end-to-end.

Diverse data generation: Conditional image generation often suffers from deterministic mappings,
i.e., the noise variable has often negligible or negative impact in the generator (Zhu et al., 2017b;
Isola et al., 2017). This has been tackled in the literature with additional loss terms and/or auxiliary
network modules. A discussion of representative methods that tackle diverse generation is deferred to
sec. I in the Appendix. In Table 1 the differences of the core techniques are summarized. Even though
diverse generation is a significant task, we advocate that learning a generator does not ignore the input
variables can be achieved without such additional loss terms. We highlight that diverse generation
is a byproduct of MVP and not our main goal. Particularly, we believe that diverse images can be
synthesized because the higher-order correlations of the input variables are captured effectively the
proposed method.

Table 1: Comparison of techniques used for diverse, conditional generation. The majority of the
methods insert additional loss terms, while some of them even require additional networks to be
trained to achieve diverse generation results. MVP learns a non-deterministic mapping without
additional networks or loss terms, thus simplifying the training. Nevertheless, as we empirically
exhibit in sec. H.7, dedicated works that tackle diverse generation can be used in conjunction with
the proposed MVP to further boost the diversity of the synthesized images.

Methods for diverse generation.

Model additional auxiliary
loss terms networks

BicycleGAN (Zhu et al., 2017b) XXX XXX
Yang et al. (2019); Lee et al. (2019) XXX 7

Huang et al. (2018); Lee et al. (2020) XXX XXX
MVP (ours) 7 7

2.2 MULTIPLICATIVE INTERACTIONS

Multiplicative connections have long been adopted in computer vision and machine learning (Shin &
Ghosh, 1991; Hochreiter & Schmidhuber, 1997; Bahdanau et al., 2015). The idea is to combine the
inputs through elementwise products or other diagonal forms. Even though multiplicative connections

3



Under review as a conference paper at ICLR 2021

have successfully been applied to different tasks, until recently there was no comprehensive study
of their expressivity versus the standard feedforward networks. Jayakumar et al. (2020) include the
proof that second order multiplicative operators can represent a greater class of functions than classic
feed-forward networks. Even though we capitalize on the theoretical argument, our framework can
express any higher-order interactions while the framework of Jayakumar et al. (2020) is limited to
second order interactions.

Table 2: Comparison of attributes of polynomial-like neural networks. Even though the architectures
of Karras et al. (2019); Chen et al. (2019); Park et al. (2019) were not posed as polynomial expansions,
we believe that their success can be (partly) attributed to the polynomial expansion (please check
sec. F for further information). Π-Net and StyleGAN are not designed for conditional data generation.
In practice, learning complex distributions requires high-order polynomial expansions; this can be
effectively achieved with products of polynomials as detailed in sec. 3.2. Only Π-Net and MVP
include such a formulation. Additionally, the only work that enables multiple conditional variables
(and includes experiments with both continuous and discrete conditional variables) is the proposed
MVP.

Attributes of polynomial-like networks.

Model product of discrete continuous multiple
polynomials cond.variable cond. variable cond. variables

Π-Net (Chrysos et al., 2020) XXX 7 7 7
StyleGAN (Karras et al., 2019) 7 7 7 7

sBN (Chen et al., 2019) 7 XXX 7 7
SPADE (Park et al., 2019) 7 7 XXX 7

MVP (ours) XXX XXX XXX XXX

Higher-order interactions have been studied in the tensor-related literature (Kolda & Bader, 2009;
Debals & De Lathauwer, 2017). However, their adaptation in modern deep architectures has been
slower. Chrysos et al. (2020) propose high-order polynomial for mapping the input z to the output
x “ Gpzq. Π-Netfocuses on a single input variable and cannot handle the multivariate cases that are
the focus of this work. Three additional works that can be thought of as polynomial expansions are
Karras et al. (2019); Park et al. (2019); Chen et al. (2019). The three works were originally introduced
as (conditional) normalization variants, but we attribute their improvements in the expressiveness of
their polynomial expansions. Under the polynomial expansion perspective, they can be expressed as
special cases of the proposed MVP. A detailed discussion is conducted in sec. F in the Appendix. We
believe that the proposed framework offers a direction to further extend the results of such works,
e.g., by allowing more than one conditional variables.

3 METHOD

The framework for a multivariate polynomial with a two-variable input is introduced (sec. 3.1). The
derivation, further intuition and additional models are deferred to the Appendix (sec. B). The crucial
technical details, including the stability of the polynomial, are developed in sec. 3.2. We emphasize
that a multivariate polynomial can approximate any function (Stone, 1948; Nikol’skii, 2013), i.e., a
multivariate polynomial is a universal approximator.

Table 3: Symbols
Symbol Role

N Expansion order of the polynomial
k Rank of the decompositions

zI, zII Inputs to the polynomial
n, ρ Auxiliary variables

W rn,ρs Parameter tensor of the polynomial
Urns,C,β Learnable parameters

˚ Hadamard product

Notation:Tensors/matrices/vectors are symbolized by
calligraphic/uppercase/lowercase boldface letters e.g.,
W ,W ,w. The mode-m vector product of W (of
order M ) with a vector u P RIm is W ˆm u and
results in a tensor of order M ´ 1. We assume that
śb
i“a xi “ 1 when a ą b. The core symbols are sum-

marized in Table 3, while a detailed tensor notation is
deferred to the Appendix (sec. B.1).
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3.1 TWO INPUT VARIABLES

Given two input variables 1 zI, zII P Kd where K Ď R or K Ď N, the goal is to learn a function
G : Kdˆd Ñ Ro that captures the higher-degree interactions between the elements of the two inputs.
We can learn such higher-degree interactions as polynomials of two input variables. A polynomial of
expansion order N P N with output x P Ro has the form:

x “ GpzI, zIIq “

N
ÿ

n“1

n`1
ÿ

ρ“1

ˆ

W rn,ρs
ρ
ź

j“2

ˆjzI

n`1
ź

τ“ρ`1

ˆτzII

˙

` β (1)

where β P Ro and W rn,ρs
P Roˆ

śn
m“1 ˆmd for n P r1, N s, ρ P r1, n ` 1s are the learnable

parameters. The expansion depends on two (independent) variables, hence we use the n and ρ as
auxiliary variables. The two products of (1) do not overlap, i.e., the first multiplies the modes r2, ρs
(of W rn,ρs) with zI and the other multiplies the modes rρ` 1, n` 1s with zII.
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Figure 1: Abstract schematic forN th order approximation of x “ GpzI , zIIq. The inputs zI , zII are
symmetric in our formulation. We denote with zI a sample from a prior distribution (e.g., Gaussian),
while zII symbolizes a sample from a conditional input (e.g., class label or low-resolution image).

Recursive relationship: The aforementioned derivation can be generalized to an arbitrary expansion
order. The recursive formula for an arbitrary order N P N is the following:

xn “ xn´1 `

´

UT
rn,IszI `U

T
rn,IIszII

¯

˚ xn´1 (2)

for n “ 2, . . . , N with x1 “ UT
r1,IszI ` U

T
r1,IIszII and x “ CxN ` β. The parameters C P

Roˆk,Urn,φs P Rdˆk for n “ 1, . . . , N and φ “ tI, IIu are learnable.

The intuition behind this model is the following: An embedding is initially found for each of the two
input variables, then the two embeddings are added together and they are multiplied elementwise
with the previous approximation. The different embeddings for each of the input variables allows
us to implement Urn,Is and Urn,IIs with different constraints, e.g., Urn,Is to be a dense layer and
Urn,IIs to be a convolution.

3.2 MODEL EXTENSIONS AND TECHNICAL DETAILS

There are three limitations in (2). Those are the following: a) (2) describes a polynomial expansion
of a two-variable input, b) each expansion order requires additional layers, c) high-order polynomials
might suffer from unbounded values. Those limitations are addressed below.

Our model can be readily extended beyond two-variable input; an extension with three-variable input
is developed in sec. C. The pattern (for each order) is similar to the two-variable input: a) a different
embedding is found for each input variable, b) the embeddings are added together, c) the result is
multiplied elementwise with the representation of the previous order.

The polynomial expansion of (2) requires ΘpNq layers for an N th order expansion. That is, each new
order n of expansion requires new parameters Urn,Is and Urn,IIs. However, the order of expansion

1To avoid cluttering the notation we use same dimensionality for the two inputs. However, the derivations
apply for different dimensionalities, only the dimensionality of the tensors change slightly.
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can be increased without increasing the parameters substantially. To that end, we can capitalize on
the product of polynomials. Specifically, let N1 be the order of expansion of the first polynomial.
The output of the first polynomial is fed into a second polynomial, which has expansion order of N2.
Then, the output of the second polynomial will have an expansion order of N1 ¨N2. The product
of polynomials can be used with arbitrary number of polynomials; it suffices the output of the τ th
polynomial to be the input to the pτ`1qth polynomial. For instance, if we assume a product of Φ P N
polynomials, where each polynomial has an expansion order of two, then the polynomial expansion
is of 2Φ order. In other words, we need Θplog2pNqq layers to achieve an N th order expansion.

In algebra, higher-order polynomials are unbounded and can thus suffer from instability for large
values. To avoid such instability, we take the following three steps: a) MVP samples the noise
vector from the uniform distribution, i.e., from the bounded interval of r´1, 1s, b) a hyperbolic
tangent is used in the output of the generator as a normalization, i.e., it constrains the outputs in
the bounded interval of r´1, 1s, c) batch normalization (Ioffe & Szegedy, 2015) is used to convert
the representations to zero-mean. We emphasize that in GANs the hyperbolic tangent is the default
activation function in the output of the generator, hence it is not an additional requirement of our
method. Additionally, in our preliminary experiments, the uniform distribution can be changed
for a Gaussian distribution without any instability. A theoretical analysis on the bounds of such
multivariate polynomials would be an interesting subject for future work.

4 EXPERIMENTS

The proposed MVP is empirically evaluated in three settings: a) a class-conditional generation, i.e.,
with discrete conditional input, b) an image-to-image translation, i.e., with continuous conditional
input, c) a mixed conditional setting with two conditional variables. The goal is to showcase how
MVP can be used with both discrete and continuous conditional inputs. Even though architectures
specialized for a single task (e.g., Ledig et al. (2017)) perform well in that task, their well-selected
inductive biases (e.g., perceptual or `1 loss) do not generalize well in other domains or different
conditional inputs. Hence, our goal is not to demonstrate state-of-the-art results in specific tasks, but
rather to propose one generic formulation. Further experiments (e.g., class-conditional generation
with SVHN or MNIST to SVHN translation; sec H), the details on the datasets and the evaluation
metrics (sec. G) are deferred to the Appendix. Throughout the experimental section, we reserve the
symbol zII for the conditional input (e.g., a class label).

Our framework, e.g., (2), does not include any activation functions. To verify the expressivity of our
framework, we maintain the same setting for the majority of the experiments below. Particularly, the
generator does not have activation functions between the layers; there is only a hyperbolic tangent in
the output space for normalization. Training a generator without activation functions between the
layers also emerged in Π-Net (Chrysos et al., 2020), where the authors demonstrate the challenges
in such framework. However, we conduct one experiment using a strong baseline with activation
functions. That is, a comparison with SNGAN (Miyato & Koyama, 2018) in class-conditional
generation is performed (sec. 4.1).

Baselines: ‘Π-Net-SICONC’ implements a polynomial expansion of a single variable, i.e., by
concatenating all the input variables. ‘SPADE’ implements a polynomial expansion with respect to
the conditional variable. Also, ‘GAN-CONC’ and ‘GAN-ADD’ are added as baselines, where we
replace the Hadamard products with concatenation and addition respectively. An abstract schematic
of the differences between the compared polynomial methods is depicted in Fig. 6, while a detailed
description of all methods is deferred to sec. G. Each experiment is conducted five times and the
mean and the standard deviation are reported.

4.1 CLASS-CONDITIONAL GENERATION

The first experiment is on class-conditional generation, where the conditional input is a class label in
the form of one-hot vector. Two types of networks are utilized: a) a resnet-based generator (SNGAN),
b) a polynomial generator (Π-Net) based on Chrysos et al. (2020). The former network has exhibited
strong performance the last few years, while the latter bears resemblance to the formulation we
propose in this work.
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Table 4: Quantitative evaluation on class-conditional generation with resnet-based generator (i.e.,
SNGAN). Higher Inception Score (IS) (Salimans et al., 2016) (lower Frechet Inception Distance
(FID) (Heusel et al., 2017)) indicates better performance. The baselines improve the IS of SNGAN,
however they cannot improve the FID. Nevertheless, SNGAN-MVP improves upon all the baselines
in both the IS and the FID.

class-conditional generation on CIFAR10
Model IS (Ò) FID (Ó)

SNGAN 8.30˘ 0.11 14.70˘ 0.97
SNGAN-CONC 8.50˘ 0.49 30.65˘ 3.55
SNGAN-ADD 8.65˘ 0.11 15.47˘ 0.74

SNGAN-SPADE 8.69˘ 0.19 21.74˘ 0.73
SNGAN-MVP 8.77˘ 0.12 14.22˘ 0.66

Resnet-based generator: The experiment is conducted by augmenting the resnet-based generator
of SNGAN. The quantitative results are in Table 4 and synthesized samples are illustrated in Fig. 2(a).
SNGAN-MVP improves upon all the baselines in both the Inception score (IS) (Salimans et al., 2016)
and the FID (Heusel et al., 2017). The proposed formulation enables inter-class interpolations. That
is, the noise zI is fixed, while the class zII is interpolated. In Fig. 2(b) and Fig. 2(c), intra-class and
inter-class linear interpolations are illustrated respectively. Both the quantitative and the qualitative
results exhibit the effectiveness of our framework.

(a) Random samples per class (b) Intra-class interpolation (c) Inter-class interpolation
Figure 2: Synthesized images by MVP in the class-conditional CIFAR10 (with resnet-based genera-
tor): (a) Random samples where each row depicts the same class, (b) Intra-class linear interpolation
from a source to the target, (c) inter-class linear interpolation. In inter-class interpolation, the class
labels of the leftmost and rightmost images are one-hot vectors, while the rest are interpolated
in-between; the resulting images are visualized. In all three cases, MVP synthesizes realistic images.

Table 5: Quantitative evaluation on class-conditional generation with Π-Net-based generator. In CI-
FAR10, there is a considerable improvement on the IS, while in Cars196 FID drops dramatically with
MVP. We hypothesize that the dramatic improvement in Cars196 arises because of the correlations
of the classes. For instance, the SUV cars (of different carmakers) share several patterns, which
are captured by our high-order interactions, while they might be missed when learning different
normalization statistics per class.

class-conditional generation on CIFAR10
Model IS (Ò) FID (Ó)

GAN-CONC 3.73˘ 0.32 294.33˘ 8.16
GAN-ADD 3.74˘ 0.60 298.53˘ 16.54

SPADE 4.00˘ 0.53 294.21˘ 16.33
Π-Net-SICONC 6.65˘ 0.60 71.81˘ 33.00

Π-Net 7.54˘ 0.16 37.26˘ 1.86
MVP 7.87˘ 0.21 34.35˘ 2.68

class-conditional generation on Cars196
Model FID (Ó)

GAN-CONC 240.45˘ 16.79
GAN-ADD 208.72˘ 12.65

SPADE 168.19˘ 39.71
Π-Net-SICONC 153.39˘ 27.93

Π-Net 120.40˘ 28.65
MVP 55.48˘ 3.16
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Π-Net-based generator: A product of polynomials, based on Π-Net, is selected as the baseline
architecture for the generator. Π-Net has conditional batch normalization (CBN) in the generator,
while in the rest compared methods CBN is replaced by batch normalization. The results in CIFAR10
are summarized in Table 5 (left), where MVP outperforms all the baselines by a large margin. An
additional experiment is performed in Cars196 that has 196 classes. The results in Table 5 (right)
depict a substantial improvement over the all the baselines (53.9% reduction over the best-performing
baseline). We should note that the baseline was not built for conditional generation, however we
have done our best effort to optimize the respective hyper-parameters. We hypothesize that the
improvement arises because of the correlations of the classes. That is, the 196 classes might be
correlated (e.g., the SUV cars of different carmakers share several patterns). Such correlations
are captured by our framework, while they might be missed when learning different normalization
statistics per class. Overall, MVP synthesizes plausible images (Fig. 11) even in the absence of
activation functions.

4.2 CONTINUOUS CONDITIONAL INPUT

The performance of MVP is scrutinized in tasks with continuous conditional input, e.g., super-
resolution. The conditional input zII is an input image, e.g., a low-resolution sample or a corrupted
sample. Even though the core architecture remains the same, a single change is made in the structure
of the discriminator: Motivated by (Miyato & Koyama, 2018), we include an elementwise product of
zII with the real/fake image in the discriminator. This stabilizes the training and improves the results.
A wealth of literature is available on such continuous conditional inputs (sec. 2.1), however we select
the challenging setting of using a generator without activation functions between the layers.

Table 6: Quantitative evaluation on super-resolution with Π-Net-based generator on Cars196. The
task on the left is super-resolution 16ˆ, while on the right the task is super-resolution 8ˆ. Our
variant of SPADE, i.e., SPADE-MVP (details in sec. G), vastly improves the original SPADE. The
full two-variable model, i.e., MVP, outperforms the compared methods.

Super-resolution 16ˆ Cars196
Model FID (Ó)
SPADE 111.75˘ 13.41

Π-Net-SICONC 80.16˘ 12.42
SPADE-MVP 72.63˘ 3.18

MVP 60.42˘ 6.19

Super-resolution 8ˆ Cars196
Model FID (Ó)
SPADE 119.18˘ 14.82

Π-Net-SICONC 186.42˘ 40.84
SPADE-MVP 64.76˘ 8.26

MVP 62.76˘ 4.37

The experiments are performed in (a) super-resolution, (b) block-inpainting. Super-resolution assumes
a low-resolution image is available, while in block inpainting, a (rectangular) part of the image is
missing. The two tasks belong in the broader category of ‘inverse tasks’, and they are significant both
for academic reasons but also for commercial reasons (Sood et al., 2018; You et al., 2019). Such
inverse tasks are underdetermined; each input image corresponds to several plausible output images.

The FID scores in Cars196 for the task of super-resolution are reported in Table 6. In super-resolution
16ˆ, zII has 48 dimensions, while in super-resolution 8ˆ, zII has 192 dimensions. Notice that the
performance of Π-Net-SICONC deteriorates substantially when the dimensionality of the conditional
variable increases. That validates our intuition about the concatenation in the input of the generator
(sec. E). We also report the SPADE-MVP, which captures higher-order correlations with respect
to the first variable as well (further details in sec. G). The proposed SPADE-MVP outperforms
the original SPADE, however it cannot outperform the full two-variable model, i.e., MVP. MVP
maintains outperforms all baselines by a large margin.

The qualitative results on (a) super-resolution 8ˆ on CelebA, (b) super-resolution 8ˆ on Cars196,
(c) super-resolution 16ˆ on Cars196 are illustrated in Fig. 3. Similarly the qualitative results on
block-inpainting are visualized in Fig. 11. For each conditional image, different noise vectors zI are
sampled. Notice that the corresponding synthesized images differ in the fine-details. For instance,
changes in the mouth region, the car type or position and even background changes are observed.
Thus, MVP results in high-resolution images that i) correspond to the conditional input, ii) vary
in fine-details. Similar variation has emerged even when the source and the target domains differ
substantially, e.g., in the translation of MNIST digits to SVHN digits (sec. H.3). We should mention
that regularization techniques have been proposed specifically for image-to-image translation, e.g.,
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(a) Super-resolution 8ˆ (b) Super-resolution 8ˆ (c) Super-resolution 16ˆ

Figure 3: Synthesized images for super-resolution by (a), (b) 8ˆ, (c) 16ˆ. The first row depicts the
conditional input (i.e., low-resolution image). The rows 2-6 depict outputs of the MVP when a noise
vector is sampled per row. Notice how the noise changes (a) the smile or the pose of the head, (b) the
color, car type or even the background, (c) the position of the car.

Yang et al. (2019); Lee et al. (2019). However, such works utilize additional losses and even require
additional networks for training, which makes the training more computationally heavy and more
sensitive to design choices.

5 CONCLUSION

The topic of conditional data generation is the focus of this work. A multivariate polynomial
model, called MVP, is introduced. MVP approximates a function GpzI, zIIq with inputs zI (e.g.,
sample from a Gaussian distribution) and zII (e.g., class or low-resolution image). MVP resorts to
multivariate polynomials with arbitrary conditional inputs, which capture high-order correlations of
the inputs. The empirical evaluation confirms that our framework can synthesize realistic images
in both class-conditional generation (trained on CIFAR10, Cars196 and SVHN), attribute-guided
generation and image-to-image translation (i.e., super-resolution, block-inpainting, edges-to-shoes,
edges-to-handbag, MNIST-to-SVHN). We also showcase that it can be extended to three-variable
input with class-conditional super-resolution. In addition to conditional data generation, the proposed
framework can be used in tasks requiring fusion of different types of variables.
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A SUMMARY OF SECTIONS IN THE APPENDIX

In the following sections, further details and derivations are provided to elaborate the details of the
MVP. Specifically, in sec. B the decomposition and related details on the method are developed. The
extension of our method beyond two-input variables is studied in sec. C. A method frequently used
in the literature for fusing information is concatenation; we analyze how concatenation captures
only additive and not more complex correlations (e.g., multiplicative) in sec. D. The differences
from Π-Net (Chrysos et al., 2020) is explored in sec. E. In sec. F, some recent (conditional) data
generation methods are cast into the polynomial neural network framework and their differences from
the proposed framework are analyzed. The experimental details including the evaluation metrics
and details on the baselines are developed in sec. G. In sec. H, additional experimental results are
included. Lastly, the differences from works that perform diverse generation are explored in sec. I.

B METHOD DERIVATIONS

In this section, we expand on the method details, including the scalar output case or the notation.
Specifically, a more detailed notation is determined in sec. B.1; the scalar output case is analyzed
in sec. B.2. In sec. B.3 a second order expansion is assumed to illustrate the connection between
the polynomial expansion and the recursive formula. Sequentially, we derive an alternative model
with different factor sharing. This model, called Nested-MVP, has a nested factor sharing format
(sec. B.4).

B.1 NOTATION

Our derivations rely on tensors (i.e., multidimensional equivalent of matrices) and (tensor) products.
We relay below the core notation used in our work, the interested reader can find further information
in the tensor-related literature (Kolda & Bader, 2009; Debals & De Lathauwer, 2017).

Symbols of variables: Tensors/matrices/vectors are symbolized by calligraphic/uppercase/lowercase
boldface letters e.g., W ,W ,w.

Matrix products: The Hadamard product of A,B P RIˆN is defined as A ˚B and is equal to
api,jqbpi,jq for the pi, jq element. The Khatri-Rao product of matricesA P RIˆN andB P RJˆN is
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denoted byAdB and yields a matrix of dimensions pIJq ˆN . The Khatri-Rao product for a set of
matrices tArms P RImˆNuMm“1 is abbreviated byAr1s dAr2s d ¨ ¨ ¨ dArMs

.
“
ÄM

m“1Arms.

Tensors: Each element of an M th order tensor W is addressed by M indices, i.e., pWqi1,i2,...,iM
.
“

wi1,i2,...,iM . An M th-order tensor W is defined over the tensor space RI1ˆI2ˆ¨¨¨ˆIM , where Im P Z
for m “ 1, 2, . . . ,M . The mode-m unfolding of a tensor W P RI1ˆI2ˆ¨¨¨ˆIM maps W to a matrix
Wpmq P RImˆĪm with Īm “

śM
k“1
k‰m

Ik such that the tensor element wi1,i2,...,iM is mapped to the

matrix element wim,j where j “ 1`
řM

k“1
k‰m

pik ´ 1qJk with Jk “
śk´1

n“1
n‰m

In. The mode-m vector

product of W with a vector u P RIm , denoted by W ˆm u P RI1ˆI2ˆ¨¨¨ˆIm´1ˆIm`1ˆ¨¨¨ˆIM , results
in a tensor of order M ´ 1:

pW ˆm uqi1,...,im´1,im`1,...,iM “

Im
ÿ

im“1

wi1,i2,...,iMuim . (3)

We denote W ˆ1 u
p1q ˆ2 u

p2q ˆ3 ¨ ¨ ¨ ˆM upMq
.
“W

śm
m“1ˆmu

pmq.

The CP decomposition (Kolda & Bader, 2009) factorizes a tensor into a sum of component rank-one
tensors. The rank-R CP decomposition of an M th-order tensor W is written as:

W .
“ rrUr1s,Ur2s, . . . ,UrMsss “

R
ÿ

r“1

up1qr ˝ up2qr ˝ ¨ ¨ ¨ ˝ upMqr , (4)

where ˝ is the vector outer product. The factor matrices
 

Urms “ ru
pmq
1 ,u

pmq
2 , ¨ ¨ ¨ ,u

pmq
R s P

RImˆR
(M

m“1
collect the vectors from the rank-one components. By considering the mode-1 unfolding

of W , the CP decomposition can be written in matrix form as:

Wp1q
.
“ Ur1s

ˆ 2
ä

m“M

Urms

˙T

(5)

The following lemma is useful in our method:
Lemma 1. For a set of N matrices tArνs P RIνˆKuNν“1 and tBrνs P RIνˆLuNν“1, the following
equality holds:

p

N
ä

ν“1

Arνsq
T ¨ p

N
ä

ν“1

Brνsq “ pA
T
r1s ¨Br1sq ˚ . . . ˚ pA

T
rNs ¨BrNsq (6)

An indicative proof can be found in the Appendix of Chrysos et al. (2019).

B.2 SCALAR OUTPUT

The proposed formulation expresses higher-order interactions of the input variables. To elaborate that,
we develop the single output case below. That is, we focus on an element τ of the output vector, e.g.,
a single pixel. In the next few paragraphs, we consider the case of a scalar output xτ , with τ P r1, os
when the input variables are zI, zII P Kd. To avoid cluttering the notation we only refer to the scalar
output with xτ in the next few paragraphs.

As a reminder, the polynomial of expansion order N P N with output x P Ro has the form:

x “ GpzI, zIIq “

N
ÿ

n“1

n`1
ÿ

ρ“1

ˆ

W rn,ρs
ρ
ź

j“2

ˆjzI

n`1
ź

τ“ρ`1

ˆτzII

˙

` β (7)

We assume a second order expansion (N “ 2) and let τ denote an arbitrary scalar output of x. The
first order correlations can be expressed through the sums

řd
λ“1 w

r1,1s
τ,λ zII,λ and

řd
λ“1 w

r1,2s
τ,λ zI,λ. The

second order correlations include both auto- and cross-correlations. The tensors W r2,1s and W r2,3s

capture the auto-correlations, while the tensor W r2,2s captures the cross-correlations.
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+
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τ
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Figure 4: Schematic for second order expansion with scalar output xτ P R. The abbreviations
zI,λ, zI,µ are elements of zI with λ, µ P r1, ds. Similarly, zII,λ, zII,µ are elements of zII . The first
two terms (on the right side of the equation) are the first-order correlations; the next two terms are the
second order auto-correlations. The last term expresses the second order cross-correlations.

A pictorial representation of the correlations are captured in Fig. 4. Collecting all the terms in an
equation, each output is expressed as:

xτ “ βτ `
d
ÿ

λ“1

”

w
r1,1s
τ,λ zII,λ ` w

r1,2s
τ,λ zI,λ `

d
ÿ

µ“1

w
r2,1s
τ,λ,µzII,λzII,µ `

d
ÿ

µ“1

w
r2,3s
τ,λ,µzI,λzI,µ `

d
ÿ

µ“1

w
r2,2s
τ,λ,µzI,λzII,µ

ı

(8)

where βτ P R. Notice that all the correlations of up to second order are captured in equation 8.

B.3 SECOND ORDER DERIVATION FOR TWO-VARIABLE INPUT

In all our derivations, the variables associated with the first input zI have an I notation, e.g., Ur1,Is.
Respectively for the second input zII, the notation II is used.

Even though equation 7 enables any order of expansion, the learnable parameters increase exponen-
tially, therefore we can use a coupled factorization to reduce the parameters. Next, we derive the
factorization for a second order expansion (i.e., N “ 2) and then provide the recursive relationship
that generalizes it for an arbitrary order.

Second order derivation: For a second order expansion (i.e., N “ 2 in equation 1), we factorize
each parameter tensor W rn,ρs. We assume a coupled CP decomposition for each parameter as
follows:

• LetW r1,1s
p1q “ CUT

r1,IIs andW r1,2s
p1q “ CUT

r1,Is be the parameters for n “ 1.

• Let W r2,1s
p1q “ CpUr2,IIs d Ur1,IIsq

T and W r2,3s
p1q “ CpUr2,Is d Ur1,Isq

T capture the
second order correlations of a single variable (zII and zI respectively).

• The cross-terms are expressed in W r2,2s
ˆ2 zI ˆ3 zII. The output of the τ element2 is

řd
λ,µ“1 w

r2,2s
τ,λ,µzI,λzII,µ. The product Ŵ

r2,2s
ˆ2zIIˆ3zI also results in the same elementwise

expression. Hence, to allow for symmetric expression, we factorize the termW
r2,2s
p1q as the

sum of the two terms CpUr2,IIs dUr1,IsqT and CpUr2,Is dUr1,IIsqT . For each of the two
terms, we assume that the vector-valued inputs are accordingly multiplied.

The parameters C P Roˆk,Urm,φs P Rdˆk (m “ 1, 2 and φ “ tI, IIu) are learnable. The
aforementioned factorization results in the following equation:

x “ CUT
r1,IIszII `CU

T
r1,IszI `C

´

Ur2,IIs dUr1,IIs

¯T´

zII d zII

¯

`C
´

Ur2,Is dUr1,Is

¯T´

zI d zI

¯

`

C
´

Ur2,Is dUr1,IIs

¯T´

zI d zII

¯

`C
´

Ur2,IIs dUr1,Is

¯T´

zII d zI

¯

` β

(9)

2An elementwise analysis (with a scalar output) is provided on the Appendix (sec. B.2).
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This expansion captures the correlations (up to second order) of the two input variables zI, zII.

To make the proof more complete, we remind the reader that the recursive relationship (i.e., (2) in the
main paper) is:

xn “ xn´1 `

´

UT
rn,IszI `U

T
rn,IIszII

¯

˚ xn´1 (10)

for n “ 2, . . . , N with x1 “ U
T
r1,IszI `U

T
r1,IIszII and x “ CxN ` β.

Claim 1. The equation (9) is a special format of a polynomial that is visualized as in Fig. 1 of the
main paper. Equivalently, prove that (9) follows the recursive relationship of (10).

Proof. We observe that the first two terms of equation 9 are equal to Cx1 (from equation 10). By
applying Lemma 1 in the terms that have Khatri-Rao product, we obtain:

x “ β `Cx1 `C

"

´

UT
r2,IIszII

¯

˚

´

UT
r1,IIszII

¯

`

´

UT
r2,IszI

¯

˚

´

UT
r1,IszI

¯

`

´

UT
r2,IszI

¯

˚

´

UT
r1,IIszII

¯

`

´

UT
r2,IIszII

¯

˚

´

UT
r1,IszI

¯

*

“

β `Cx1 `C

"

”´

UT
r2,IszI

¯

`

´

UT
r2,IIszII

¯ı

˚ x1

*

“ Cx2 ` β

(11)

The last equation is precisely the one that arises from the recursive relationship from equation 10.

To prove the recursive formula for the N th order expansion, a similar pattern as in sec.C of Poly-
GAN (Chrysos et al., 2019) can be followed. Specifically, the difference here is that because of the
two input variables, the auto- and cross-correlation variables should be included. Other than that, the
same factor sharing is followed.

B.4 NESTED-MVP MODEL FOR TWO-VARIABLE INPUT

The model proposed above (i.e., equation 10), relies on a single coupled CP decomposition, however
a more flexible model can factorize each level with a CP decomposition. To effectively do that, we
utilize learnable hyper-parameters brns P Rω for n P r1, N s, which act as scaling factors for each
parameter tensor. Then, a polynomial of expansion order N P N with output x P Ro has the form:

x “ GpzI, zIIq “

N
ÿ

n“1

n`2
ÿ

ρ“2

ˆ

W rn,ρ´1s
ˆ2 brN`1´ns

ρ
ź

j“3

ˆjzI

n`2
ź

τ“ρ`1

ˆτzII

˙

` β (12)

To demonstrate the factorization without cluttering the notation, we assume a second order expansion
in equation 12.

Second order derivation: The second order expansion, i.e., N “ 2, is derived below. We jointy
factorize all parameters of equation 12 with a nested decomposition as follows:

• First order parameters : W r1,1s
p1q “ CpAr2,IIs dBr2sq

T andW r1,2s
p1q “ CpAr2,Is dBr2sq

T .

• Let W r2,1s
p1q “ C

"

Ar2,IIs d

„

´

Ar1,IIs d Br1s

¯

Vr2s

*T

and W r2,3s
p1q “ C

"

Ar2,Is d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

capture the second order correlations of a single variable (zII

and zI respectively).

• The cross-terms are included in W r2,2s
ˆ2 br1s ˆ3 zI ˆ4 zII. The output of the τ element is

expressed as
řω
ν“1

řd
λ,µ“1 w

r2,2s
τ,ν,λ,µbr1s,ωzI,λzII,µ. Similarly, the product Ŵ

r2,2s
ˆ2 br1sˆ3
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zII ˆ4 zI has output
řω
ν“1

řd
λ,µ“1 w

r2,2s
τ,ν,µ,λbr1s,ωzI,λzII,µ for the τ element. Notice that the

only change in the two expressions is the permutation of the third and forth modes of the
tensor; the rest of the expression remains the same. Therefore, to account for this symmetry
we factorize the term W r2,2s as the sum of two terms and assume that each term is multiplied

by the respective terms. LetW r2,2s
p1q “ C

"

Ar2,Is d

„

´

Ar1,IIs dBr1s

¯

Vr2s



`Ar2,IIs d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

.

The parameters C P Roˆk,Arn,φs P Rdˆk,Vrns P Rkˆk,Brns P Rωˆk for n “ 1, 2 and φ “
tI, IIu are learnable. Collecting all the terms above and extractingC as a common factor (we ommit
C below to avoid cluttering the notation):

pAr2,IIs dBr2sq
T pzII d br2sq ` pAr2,Is dBr2sq

T pzI d br2sq`
"

Ar2,IIs d

„

´

Ar1,IIs dBr1s

¯

Vr2s

*T

pzII d zII d br1sq`

"

Ar2,Is d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

pzI d zI d br1sq`

"

Ar2,Is d

„

´

Ar1,IIs dBr1s

¯

Vr2s

*T

pzI d zII d br1sq`

"

Ar2,IIs d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

pzII d zI d br1sq “

´

AT
r2,IIszII `A

T
r2,IszI

¯

˚

´

BT
r2sbr2s

¯

`

´

AT
r2,IIszII `A

T
r2,IszI

¯

˚

"

V T
r2s

„

´

AT
r1,IIszII `A

T
r1,IszI

¯

˚

´

BT
r1sbr1s

¯

*

(13)

The last equation is precisely a recursive equation that can be expressed with the Fig. 5 or equivalently
the generalized recursive relationship below.

𝑧𝐼

𝑧𝐼𝐼

+

𝐴 1,𝐼𝐼

𝐴 1,𝐼

∗

+

𝐴 2,𝐼𝐼

𝐴 2,𝐼

+ … ∗

+

𝐴 𝑁,𝐼𝐼

𝐴 𝑁,𝐼

𝐶
+

𝛽
𝐺(𝑧𝐼, 𝑧𝐼𝐼)

∼

∼
𝐵𝑀𝑊,…

or

𝑉 2

𝐵[2]𝑏[2]

+

𝑉𝑁

𝐵[𝑁]𝑏[𝑁]

Figure 5: Abstract schematic for N th order approximation of x “ GpzI , zIIq with Nested-MVP
model. The inputs zI , zII are symmetric in our formulation. We denote with zI a sample from the
noise distribution (e.g., Gaussian), while zII symbolizes a sample from a conditional input (e.g., a
class label or a low-resolution image).

Recursive relationship: The recursive formula for the Nested-MVP model with arbitrary expansion
order N P N is the following:

xn “
´

AT
rn,IszI `A

T
rn,IIszII

¯

˚

´

V T
rnsxn´1 `B

T
rnsbrns

¯

(14)
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where n P r2, N s and x1 “

´

AT
r1,IszI ` AT

r1,IIszII

¯

˚

´

BT
r1sbr1s

¯

. The parameters C P

Roˆk,Arn,φs P Rdˆk,Vrns P Rkˆk,Brns P Rωˆk for φ “ tI, IIu are learnable. Then, the
output x “ CxN ` β.

The Nested-MVP model manifests an alternative network that relies on slightly modified assumptions
on the decomposition. Thus, changing the underlying assumptions of the decomposition can modify
the resulting network. This can be an important tool for domain-specific applications, e.g., when the
domain-knowledge should be inserted in the last layers.

C BEYOND TWO VARIABLES

Frequently, more than one conditional inputs are required (Yu et al., 2018b; Xu et al., 2017; Maximov
et al., 2020). In such tasks, the aforementioned framework can be generalized to more than two input
variables. We demonstrate how this is possible with three variables; then it can trivially extended to
an arbitrary number of input variables.

Let zI, zII, zIII P Kd denote the three input variables. We aim to learn a function that captures the
higher-order interactions of the input variables. The polynomial of expansion order N P N with
output x P Ro has the form:

x “ GpzI, zII, zIIIq “

N
ÿ

n“1

n`1
ÿ

ρ“1

n`1
ÿ

δ“ρ

ˆ

W rn,ρ,δs
ρ
ź

j“2

ˆjzI

δ
ź

τ“ρ`1

ˆτzII

n`1
ź

ζ“δ`1

ˆζzIII

˙

` β (15)

where β P Ro and W rn,ρ,δs
P Roˆ

śn
m“1 ˆmd (for n P r1, N s and ρ, δ P r1, n` 1s) are the learnable

parameters. As in the two-variable input, the unknown parameters increase exponentially. To that end,
we utilize a joint factorization with factor sharing. The recursive relationship of such a factorization
is:

xn “ xn´1 `

´

UT
rn,IszI `U

T
rn,IIszII `U

T
rn,IIIszIII

¯

˚ xn´1 (16)

for n “ 2, . . . , N with x1 “ U
T
r1,IszI `U

T
r1,IIszII `U

T
r1,IIIszIII and x “ CxN ` β.

Notice that the pattern (for each order) is similar to the two-variable input: a) a different embedding
is found for each input variable, b) the embeddings are added together, c) the result is multiplied
elementwise with the representation of the previous order.

D CONCATENATION OF INPUTS

A popular method used for conditional generation is to concatenate the conditional input with the
noise labels. However, as we showcase below, concatenation has two significant drawbacks when
compared to our framework. To explain those, we will define a concatenation model.

Let zI P Kd11 , zII P Kd22 where K1,K2 can be a subset of real or natural numbers. The output

of a concatenation layer is x “ P T
”

zI; zII

ıT

where the symbol ‘;’ denotes the concatenation

and P P Rpd1d2qˆo is an affine transformation on the concatenated vector. The jth output is
xj “

řd1
τ“1 pτ,jzI,τ `

řd2
τ“1 pτ`d1,jzII,τ .

Therefore, the two differences from the concatenation case are:

• If the input variables are concatenated together we obtain an additive format, not a multi-
plicative that can capture cross-term correlations. That is, the multiplicative format does
allow achieving higher-order auto- and cross- term correlations.
• The concatenation changes the dimensionality of the embedding space. Specifically, the

input space has dimensionality d1 ¨ d2. That has a significant toll on the size of the filters
(i.e., it increases the learnable parameters), while still having an additive impact. On the
contrary, our framework does not change the dimensionality of the embedding spaces.
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E IN-DEPTH DIFFERENCES FROM Π-NET

In the next few paragraphs, we conduct an in-depth analysis of the differences between Π-Net and
MVP. The analysis assumes knowledge of the proposed model, i.e., (2).

Chrysos et al. (2020) introduce Π-Net as a polynomial expansion of a single input variable. Their
goal is to model functions x “ Gpzq as high-order polynomial expansions of z. Their focus is
towards using a single-input variable z, which can be noise in case of image generation or an image
in discriminative experiments. The authors express the StyleGAN architecture (Karras et al., 2019)
as a polynomial expansion, while they advocate that the impressive results can be attributed to the
polynomial expansion.

To facilitate the in-depth analysis, the recursive relationship that corresponds to (2) is provided below.
An N th order expansion in Π-Net is expressed as:

xn “
´

ΛT
rnsz

¯

˚ xn´1 ` xn´1 (17)

for n “ 2, . . . , N with x1 “ ΛT
r1sz and x “ ΓxN ` β. The parameters Λ,Γ are learnable.

In this work, we focus on conditional data generation, i.e., there are multiple input variables available
as auxiliary information. The trivial application of Π-Net would be to concatenate all the M input
variables zI, zII, zIII, . . .. The input variable z becomes z “

”

zI; zII; zIII; . . .
ı

, where the symbol
‘;’ denotes the concatenation. Then, the polynomial expansion of Π-Net can be learned on the
concatenated z. However, there are four significant reasons that we believe that this is not as flexible
as the proposed MVP.

When we refer to Π-Net below, we refer to the model with concatenated input. In addition, let
zI P Kd11 , zII P Kd22 denote the input variables where K1,K2 can be a subset of real or natural
numbers.

Parameter sharing: MVP allows additional flexibility in the structure of the architecture, since
MVP utilizes a different projection layer for each input variable. We utilize this flexibility to share
the parameters of the conditional input variable; as we detail in (19), we set Urn,IIs “ Ur1,IIs on
(2). If we want to perform a similar sharing in Π-Net, the formulation equivalent to (17) would
be pλrnsqi “ pλr1sqi for i “ d1, . . . , d1 ` d2. However, sharing only part of the matrix might be
challenging. Additionally, when Λ is a convolution, the sharing pattern is not straightforward to be
computed. Therefore, MVP enables additional flexibility to the model, which is hard to be included
in Π-Net.

Inductive bias: The inductive bias is crucial in machine learning (Zhao et al., 2018), however
concatenating the variables restricts the flexibility of the model (i.e. Π-Net). To illustrate that, let us
use the super-resolution experiments as an example. The input variable zI is the noise vector and zII

is the (vectorized) low-resolution image. If we concatenate the two variables, then we should use a
fully-connected (dense) layer, which does not model well the spatial correlations. Instead, with MVP,
we use a fully-connected layer for the noise vector and a convolution for zII (low-resolution image).
The convolution reduces the number of parameters and captures the spatial correlations in the image.
Thus, by concatenating the variables, we reduce the flexibility of the model.

Dimensionality of the inputs: The dimensionality of the inputs might vary orders of magnitude,
which might create an imbalance during learning. For instance, in class-conditional generation con-
catenating the one-hot labels in the input does not scale well when there are hundreds of classes (Odena
et al., 2017). We observe a similar phenomenon in class-conditional generation: in Cars196 (with
196 classes) the performance of Π-Net deteriorates considerably when compared to its (relative)
performance in CIFAR10 (with 10 classes). On the contrary, MVP does not fuse the elements of the
input variables directly, but it projects them into a subspace appropriate for adding them.

Order of expansion with respect to each variable: Frequently, the two inputs do not require the
same order of expansion. Without loss of generality, assume that we need correlations up to NI and
NII order (with NI ă NII ) from zI and zII respectively. MVP includes a different transformation

20



Under review as a conference paper at ICLR 2021

for each variable, i.e., Urn,Is for zI and Urn,IIs for zII. Then, we can set Urn,Is “ 0 for n ą NI . On
the contrary, the concatenation of inputs (in Π-Net) constrains the expansion to have the same order
with respect to each variable.

All in all, we can use concatenation to fuse variables and use Π-Net, however an inherently multivari-
ate model is more flexible and can better encode the types of inductive bias required for conditional
data generation.

F DIFFERENCES FROM OTHER NETWORKS CAST AS POLYNOMIAL NEURAL
NETWORKS

A number of networks with impressive results have emerged in (conditional) data generation the
last few years. Three such networks that are particularly interesting in our context are Karras et al.
(2019); Park et al. (2019); Chen et al. (2019). We analyze below each method and how it relates to
polynomial expansions:

• Karras et al. (2019) propose an Adaptive instance normalization (AdaIN) method for
unsupervised image generation. An AdaIN layer expresses a second-order interaction3:
h “ pΛTwq ˚ npcphinqq, where n is a normalization, c the convolution operator and w is
the transformed noisew “MLP pzIq (mapping network). The parameters Λ are learnable,
while hin is the input to the AdaIN. Stacking AdaIN layers results in a polynomial expansion
with a single variable.

• Chen et al. (2019) propose a normalization method, called sBN, to stabilize the GAN
training. The method performs a ‘self-modulation’ with respect to the noise variable and
optionally the conditional variable in the class-conditional generation setting. Henceforth,
we focus on the class-conditional setting that is closer to our work. sBN injects the network
layers with a multiplicative interaction of the input variables. Specifically, sBN projects the
conditional variable into the space of the variable zI through an embedding function. Then,
the interaction of the two vector-like variables is passed through a fully-connected layer
(and a ReLU activation function); the result is injected into the network through the batch
normalization parameters. If cast as a polynomial expansion, a network with sBN layers
expresses a single polynomial expansion4

• Park et al. (2019) introduce a spatially-adaptive normalization, i.e., SPADE, to improve
semantic image synthesis. Their model, referred to as SPADE in the remainder of this work,
assumes a semantic layout as a conditional input that facilitates the image generation. We
analyze in sec. F.1 how to obtain the formulation of their spatially-adaptive normalization.
If cast as a polynomial expansion, SPADE expresses a polynomial expansion with respect to
the conditional variable.

The aforementioned works propose or modify the batch normalization layer to improve the per-
formance or stabilize the training, while in our work we propose the multivariate polynomial as a
general function approximation technique for conditional data generation. Nevertheless, given the
interpretation of the previous works in the perspective of polynomials, we still can express them
as special cases of MVP. Methodologically, there are two significant limitations that none of the
aforementioned works tackle:

• The aforementioned architectures focus on no or one conditional variable. Extending the
frameworks to multiple conditional variables might not be trivial, while MVP naturally
extends to arbitrarily many conditional variables.

• Even though the aforementioned three architectures use (implicitly) a polynomial expansion,
a significant factor is the order of the expansion. In our work, the product of polynomi-
als enables capturing higher-order correlations without increasing the amount of layers
substantially (sec. 3.2).

3The formulation is derived from the public implementation of the authors.
4In MVP, we do not learn a single embedding function for the conditional variable. In addition, we do not

project the (transformed) conditional variable to the space of the noise-variable. Both of these can be achieved
by making simplifying assumptions on the factor matrices of MVP.
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In addition to the aforementioned methodological differences, our work is the only polynomial
expansion that conducts experiments on a variety of conditional data generation tasks. Thus, we both
demonstrate methodologically and verify experimentally that MVP can be used for a wide range of
conditional data generation tasks.

F.1 IN-DEPTH DIFFERENCES FROM SPADE

In the next few paragraphs, we conduct an in-depth analysis of the differences between SPADE and
MVP.

Park et al. (2019) introduce a spatially-adaptive normalization, i.e., SPADE, to improve semantic
image synthesis. Their model, referred to as SPADE in the remainder of this work, assumes a
semantic layout as a conditional input that facilitates the image generation.

The nth model block applies a normalization on the representation xn´1 of the previous layer and
then it performs an elementwise multiplication with a transformed semantic layout. The transformed
semantic layout can be denoted asAT

rn,IIszII where zII denotes the conditional input to the generator.
The output of this elementwise multiplication is then propagated to the next model block that performs
the same operations. Stacking N such blocks results in an N th order polynomial expansion which is
expressed as:

xn “
´

AT
rn,IIszII

¯

˚

´

V T
rnsxn´1 `B

T
rnsbrns

¯

(18)

where n P r2, N s and x1 “ AT
r1,IszI. The parameters C P Roˆk,Arn,φs P Rdˆk,Vrns P

Rkˆk,Brns P Rωˆk for φ “ tI, IIu are learnable. Then, the output x “ CxN ` β.

SPADE as expressed in (18) resembles one of the proposed models of MVP (specifically (14)). In
particular, it expresses a polynomial with respect to the conditional variable. The parametersArn,Is
are set as zero, which means that there are no higher-order correlations with respect to the input
variable zI. Therefore, our work bears the following differences from Park et al. (2019):

• SPADE proposes a normalization scheme that is only applied to semantic image generation.
On the contrary, our proposed MVP can be applied to any conditional data generation task,
e.g., class-conditional generation or image-to-image translation.
• SPADE is a special case of MVP. In particular, by setting i)Ar1,IIs equal to zero, ii)Arn,Is

in (14) equal to zero, we obtain SPADE. In addition, MVP allows different assumptions on
the decompositions which lead to an alternative structure, such as (2).
• SPADE proposes a polynomial expansion with respect to a single variable. On the other

hand, our model can extend to an arbitrary number of input variables to account for auxiliary
labels, e.g., (16).
• Even though SPADE models higher-order correlations of the conditional variable, it still

does not leverage the higher-order correlations of the representations (e.g., as in the product
of polynomials) and hence without activation functions it might not work as well as the
two-variable expansion.

Park et al. (2019) exhibit impressive generation results with large-scale computing (i.e., they report
results using NVIDIA DGX with 8 V100 GPUs). Our goal is not to compete in computationally
heavy, large-scale experiments, but rather to illustrate the benefits of the generic formulation of MVP.

SPADE is an important baseline for our work. In particular, we augment SPADE in wo ways: a) by
extending it to accept both continuous and discrete variables in zII and b) by adding polynomial terms
with respect to the input variable zI. The latter model is referred to as SPADE-MVP (details on the
next section).

G EXPERIMENTAL DETAILS

Metrics: The two most popular metrics (Lucic et al., 2018; Creswell et al., 2018) for evaluation of
the synthesized images are the Inception Score (IS) (Salimans et al., 2016) and the Frechet Inception
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Distance (FID) (Heusel et al., 2017). The metrics utilize the pretrained Inception network (Szegedy
et al., 2015) to extract representations of the synthesized images. FID assumes that the representations
extracted follow a Gaussian distribution and matches the statistics (i.e., mean and variance) of the
representations between real and synthesized samples. Alternative evaluation metrics have been
reported as inaccurate, e.g., in Theis et al. (2016), thus we use the IS and FID. Following the
standard practice of the literature, the IS is computed by synthesizing 5, 000 samples, while the FID
is computed using 10, 000 samples.

The IS is used exclusively for images of natural scenes as a metric. The reasoning behind that is that
the Inception network has been trained on images of natural scenes. On the contrary, the FID metric
relies on the first and second-order moments of the representations, which are considered more robust
to different types of images. Hence, we only report IS for the CIFAR10 related experiments, while
for the rest the FID is reported.

Dataset details: There are five main datasets used in this work:

• Large-scale CelebFaces Attributes (or CelebA for short) (Liu et al., 2015) is a large-scale
face attributes dataset with 202, 000 celebrity images. We use 160, 000 images for training
our method.

• Cars196 (Krause et al., 2013) is a dataset that includes different models of cars in different
positions and backgrounds. Cars196 has 16, 000 images, while the images have substantially
more variation than CelebA faces.

• CIFAR10 (Krizhevsky et al., 2014) contains 60, 000 images of natural scenes. Each image is
of resolution 32ˆ 32ˆ 3 and is classified in one of the 10 classes. CIFAR10 is frequently
used as a benchmark for image generation.

• The Street View House Numbers dataset (or SVHN for short) (Netzer et al., 2011) has
100, 000 images of digits (73, 257 of which for training). SVHN includes color house-
number images which are classified in 10 classes; each class corresponds to a digit 0 to 9.
SVHN images are diverse (e.g., with respect to background, scale).

• MNIST (LeCun et al., 1998) consists of images with handwritten digits. Each images depicts
a single digit (annotated from 0 to 9) in a 28ˆ 28 resolution. The dataset includes 60, 000
images for training.

• Shoes (Yu & Grauman, 2014; Xie & Tu, 2015) consists of 50, 000 images of shoes, where
the edges of each shoe are extracted (Isola et al., 2017).

• Handbags (Zhu et al., 2016; Xie & Tu, 2015) consists of more than 130, 000 images of
handbag items. The edges have been computed for each image and used as conditional input
to the generator (Isola et al., 2017).

• Anime characters dataset (Jin et al., 2017) consists of anime characters that are generated
based on specific attributes, e.g., hair color. The public version used5 contains annotations
on the hair color and the eye color. We consider 7 classes on the hair color and 6 classes on
the eye color, with a total of 14, 000 training images.

All the images of CelebA, Cars196, Shoes and Handbags are resized to 64ˆ 64 resolution.

Architectures: The discriminator structure is left the same for each experiment, we focus only on
the generator architecture. All the architectures are based on two different generator schemes, i.e.,
the SNGAN (Miyato & Koyama, 2018) and the polynomial expansion of Chrysos et al. (2020) that
does not include activation functions in the generator.

The variants of the generator of SNGAN are described below:

• SNGAN (Miyato & Koyama, 2018): The generator consists of a convolution, followed by
three residual blocks. The discriminator is also based on successive residual blocks. The
public implementation of SNGAN with conditional batch normalization (CBN) is used as
the baseline.

5The version is downloaded following the instructions of https://github.com/bchao1/
Anime-Generation.
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• SNGAN-MVP [proposed]: We convert the resnet-based generator of SNGAN to an MVP
model. To obtain MVP, the SNGAN is modified in two ways: a) the Conditional Batch
Normalization (CBN) is converted into batch normalization (Ioffe & Szegedy, 2015), b) the
injections of the two embeddings (from the inputs) are added after each residual block, i.e.
the formula of (2). In other words, the generator is converted to a product of two-variable
polynomials.

• SNGAN-CONC: Based on SNGAN-MVP, we replace each Hadamard product with a
concatenation. This implements the variant mentioned in sec. D.

• SNGAN-SPADE (Park et al., 2019): As described in sec. F.1, SPADE is a polynomial
with respect to the conditional variable zII. The generator of SNGAN-MVP is modified to
perform the Hadamard product with respect to the conditional variable every time.

The variants of the generator of Π-Net are described below:

• Π-Net (Chrysos et al., 2020): The generator is based on a product of polynomials. The
first polynomials use fully-connected connections, while the next few polynomials use
cross-correlations. The discriminator is based on the residual blocks of SNGAN. We stress
out that the generator does not include any activation functions apart from a hyperbolic
tangent in the output space for normalization. The authors advocate that this exhibits the
expressivity of the designed model.

• Π-Net-SICONC: The generator structure is based on Π-Net with two modifications: a) the
Conditional Batch Normalization is converted into batch normalization (Ioffe & Szegedy,
2015), b) the second-input is concatenated with the first (i.e., the noise) in the input of the
generator. Thus, this is a single variable polynomial, i.e., a Π-Net, where the second-input is
vectorized and concatenated with the first. This baseline implements the Π-Net described in
sec. E.

• MVP [proposed]: The generator of Π-Net is converted to an MVP model with two modifi-
cations: a) the Conditional Batch Normalization is converted into batch normalization (Ioffe
& Szegedy, 2015), b) instead of having a Hadamard product with a single variable as in
Π-Net, the formula with the two-variable input (e.g., (2)) is followed.

• GAN-CONC: Based on MVP, each Hadamard product is replaced by a concatenation. This
implements the variant mentioned in sec. D.

• GAN-ADD: Based on MVP, each Hadamard product is replaced by an addition. This
modifies (14) to xn “
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• SPADE (Park et al., 2019): As described in sec. F.1, SPADE defines a polynomial with
respect to the conditional variable zII. The generator of Π-Net is modified to perform the
Hadamard product with respect to the conditional variable every time.

• SPADE-MVP [proposed]: This is a variant we develop to bridge the gap between SPADE
and the proposed MVP. Specifically, we augment the aforementioned SPADE twofold: a) the
dense layers in the input space are converted into a polynomial with respect to the variable
zI and b) we also convert the polynomial in the output (i.e., the rightmost polynomial in
the Fig. 6 schematics) to a polynomial with respect to the variable zI. This model captures
higher-order correlations of the variable zI that SPADE did not not originally include. This
model still includes single variable polynomials, however the input in each polynomial
varies and is not only the conditional variable.

The two baselines GAN-CONC and GAN-ADD capture only additive correlations, hence they cannot
effectively model complex distributions without activation functions. Nevertheless, they are added as
a reference point to emphasize the benefits of higher-order polynomial expansions.

An abstract schematic of the generators that are in the form of products of polynomials is depicted in
Fig. 6. Notice that the compared methods from the literature use polynomials of a single variable,
while we propose a polynomial with an arbitrary number of inputs (e.g., two-input shown in the
schematic).
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Figure 6: Abstract schematic of the different compared generators. All the generators are products
of polynomials. Each colored box represents a different type of polynomial, i.e., the green box
symbolizes polynomial(s) with dense layers, the blue box denotes convolutional or cross-correlation
layers. The red box includes the up-sampling layers. (a) Π-Net implements a single-variable
polynomial for modeling functions x “ Gpzq. Π-Net enables class-conditional generation by using
conditional batch normalization (CBN). (b) An alternative to CBN is to concatenate the conditional
variable in the input, as in Π-Net-SICONC. This also enables the non-discrete conditional variables
(e.g., low-resolution images) to be concatenated. (c) SPADE implements a single-variable polynomial
for conditional image generation. The polynomial is built with respect to the conditional variable
zII . This is substantially different from the polynomial with multiple-input variables, i.e., MVP.
Two additional differences are that (i) SPADE is motivated as a spatially-adaptive method (i.e., for
continuous conditional variables), while MVP can be used both for discrete and for continuous type
variables, (ii) there is no polynomial in the dense layers in the SPADE. However, as illustrated in
Π-Net converting the dense layers into a higher-order polynomial can further boost the performance.
(d) The proposed generator structure.

Implementation details of MVP: Throughout this work, we reserve the symbol zII for the condi-
tional input (e.g., a class label). In each polynomial, we reduce further the parameters by using the
same embedding for the conditional variables. That is expressed as:

Urn,IIs “ Ur1,IIs (19)

for n “ 2, . . . , N . Equivalently, that would beArn,IIs “ Ar1,IIs in (14). Additionally, Nested-MVP
performed better in our preliminary experiments, thus we use (14) to design each polynomial. Given
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the aforementioned sharing, the N th order expansion is described by:
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for n “ 2, . . . , N . Lastly, the factor Ar1,IIs is a convolutional layer in the case of continuous
conditional input, while it is a fully-connected layer in the case of discrete conditional input.

H ADDITIONAL EXPERIMENTS

Additional experiments and visualizations are provided in this section. Additional visualizations for
class-conditional generation are provided in sec. H.1. An additional experiment with class-conditional
generation with SVHN digits is performed in sec. H.2. An experiment that learns the translation of
MNIST to SVHN digits is conducted in sec. H.3. To explore further the image-to-image translation,
two additional experiments are conducted in sec. H.4. An attribute-guided generation is performed in
sec. H.5 to illustrate the benefit of our framework with respect to multiple, discrete conditional inputs.
This is further extended in sec. H.6, where an experiment with mixed conditional input is conducted.
Finally, an additional diversity-inducing regularization term is used to assess whether it can further
boost the diversity the synthesized images in sec. H.7.

H.1 ADDITIONAL VISUALIZATIONS IN CLASS-CONDITIONAL GENERATION

In Fig. 7 the qualitative results of the compared methods in class-conditional generation on CIFAR10
are shared. Both the generator of SNGAN and ours have activation functions in this experiment.

(a) Ground-truth samples (b) SNGAN (Miyato et al., 2018) (c) MVP
Figure 7: Qualitative results on CIFAR10. Each row depicts random samples from a single class.

In Fig. 8 samples from the baseline Π-Net (Chrysos et al., 2020) and our method are depicted for
the class-conditional generation on CIFAR10. The images have a substantial difference. Similarly,
in Fig. 9 a visual comparison between Π-Net and MVP is exhibited in Cars196 dataset. To our
knowledge, no framework in the past has demonstrated such expressivity; MVP synthesizes images
that approximate the quality of synthesized images from networks with activation functions.

In Fig. 10, an inter-class interpolation of various compared methods in CIFAR10 are visualized. The
illustrations of the intermediate images in SNGAN-CONC and SNGAN-ADD are either blurry or
not realistic. On the contrary, in SPADE and MVP the higher-order polynomial expansion results in
more realistic intermediate images. Nevertheless, MVP results in sharper shapes and images even in
the intermediate results when compared to SPADE.

H.2 CLASS-CONDITIONAL GENERATION ON HOUSE DIGITS

An experiment on class-conditional generation with SVHN is conducted below. SVHN images
include (substantial) blur or other distortions, which insert noise in the distribution to be learned. In
addition, some images contain contain a central digit (i.e., based on which the class is assigned), and
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(a) Π-Net (Chrysos et al., 2020) (b) MVP
Figure 8: Qualitative results on CIFAR10 when the generator does not include activation functions
between the layers. Each row depicts random samples from a single class; the same class is depicted
in each pair of images. For instance, the last row corresponds to boats.

(a) Π-Net (b) MVP
Figure 9: Qualitative results on Cars196 when the generator does not include activation functions
between the layers. Each row depicts random samples from a single class; the same class is depicted
in each pair of images. The differences between the synthesized images are dramatic.

partial visibility of other digits. Therefore, the generation of digits of SVHN is challenging for a
generator without activation functions between the layers.

Our framework, e.g., equation 14, does not include any activation functions. To verify the expressivity
of our framework, we maintain the same setting for this experiment. Particularly, the generator
does not have activation functions between the layers; there is only a hyperbolic tangent in the
output space for normalization. The generator receives a noise sample and a class as input, i.e., it is a
class-conditional polynomial generator.
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(a) SNGAN-CONC (b) SNGAN-ADD

(c) SNGAN-SPADE (d) SNGAN-MVP
Figure 10: Inter-class linear interpolations across different methods. In inter-class interpolation, the
class labels of the leftmost and rightmost images are one-hot vectors, while the rest are interpolated
in-between; the resulting images are visualized. Many of the intermediate images in SNGAN-CONC
and SNGAN-ADD are either blurry or not realistic. On the contrary, in SPADE and MVP the
higher-order polynomial expansion results in more realistic intermediate images. Nevertheless, MVP
results in sharper shapes and images even in the intermediate results when compared to SPADE.

The results in Fig. 12(b) illustrate that despite the noise, MVP learns the distribution. As mentioned
in the main paper, our formulation enables both inter-class and intra-class interpolations naturally.
In the inter-class interpolation the noise zI is fixed, while the class zII is interpolated. In Fig. 12(d)
several inter-class interpolations are visualized. The visualization exhibits that our framework is able
to synthesize realistic images even with inter-class interpolations.

H.3 TRANSLATION OF MNIST DIGITS TO SVHN DIGITS

An experiment on image translation from the domain of binary digits to house numbers is conducted
below. The images of MNIST are used as the source domain (i.e., the conditional variable zII), while
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(a) Class-conditional generation (b) Class-conditional generation (c) Block-inpainting
Figure 11: Synthesized images by MVP in the (a), (b) class-conditional generation (sec. 4.1) and
(b) block-inpainting (sec. 4.2). The networks do not include activation functions between the layers.
In class-conditional generation, each row depicts a single class. Notice how the MVP synthesizes
diverse images even in the absence of activation functions.

(a) Ground-truth samples (b) MVP (c) Intra-class interpolation(d) Inter-class interpolation
Figure 12: Synthesized images by MVP in the class-conditional SVHN: (a) Ground-truth samples,
(b) Random samples where each row depicts the same class, (c) Intra-class linear interpolation from
a source (leftmost image) to the target (rightmost image), (d) inter-class linear interpolation. In
inter-class interpolation, the class labels of the leftmost and rightmost images are one-hot vectors,
while the rest are interpolated in-between; the resulting images are visualized. In all three cases
((b)-(d)), MVP synthesizes realistic images.

the images of SVHN are used as the target domain. The correspondence of the source to the target
domain is assumed to be many-to-many, i.e., each MNIST digit can synthesize multiple SVHN
images. No additional loss is used, the setting of continuous conditional input from sec. 4.2 is used.

The images in Fig. 13 illustrate that MVP can translate MNIST digits into SVHN digits. Additionally,
for each source digit, there is a significant variation in the synthesized images.

Figure 13: Qualitative results on MNIST-to-SVHN translation. The first row depicts the conditional
input (i.e., a MNIST digit). The rows 2-6 depict outputs of the MVP when a noise vector is sampled
per row. Notice that for each source digit, there is a significant variation in the synthesized images.
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H.4 TRANSLATION OF EDGES TO IMAGES

An additional experiment on translation is conducted, where the source domain depicts edges and the
target domain is the output image. Specifically, the tasks of edges-to-handbags (on Handbags dataset)
and edges-to-shoes (on Shoes dataset) have been selected Isola et al. (2017).

In this experiment, the MVP model of sec. 4.2 is utilized, i.e., a generator without activation functions
between the layers. The training is conducted using only the adversarial loss. Visual results for both
the case of edges-to-handbags and edges-to-shoes are depicted in Fig. 14. The first row depicts the
conditional input zII, i.e., an edge, while the rows 2-6 depict the synthesized images. Note that in
both the case of handbags and shoes there is significant variation in the synthesized images, while
they follow the edges provided as input.

(a) edges-to-handbags (b) edges-to-shoes
Figure 14: Qualitative results on edges-to-image translation. The first row depicts the conditional
input (i.e., the edges). The rows 2-6 depict outputs of the MVP when we vary zI . Notice that for
each edge, there is a significant variation in the synthesized images.

H.5 MULTIPLE, DISCRETE CONDITIONAL INPUTS

Frequently, more than one type of input conditional inputs are available. Our formulation can be
extended beyond two input variables (sec. C); we experimentally verify this case. The task selected is
attribute-guided generation trained on images of Anime characters. Each image is annotated with
respect to the color of the eyes (6 combinations) and the color of the hair (7 combinations).

Since SPADE only accepts a single conditional variable, we should concatenate the two attributes in
a single variable. We tried simply concatenating the attributes directly, but this did not work well.
Instead, we can use the total number of combinations, which is the product of the individual attribute
combinations, i.e., in our case the total number of combinations is 42. Obviously, this causes ‘few’
images to belong in each unique combination, i.e., there are 340 images on average that belong to
each combination. On the contrary, there are 2380 images on average for each eye color.

SPADE and Π-Net are trained by using the two attributes in a single combination, while in our
case, we consider the multiple conditional variable setting. In each case, only the generator differs
depending on the compared method. In Fig. 15 few indicative images are visualized for each method;
each row depicts a single combination of attributes, i.e., hair and eye color. Notice that SPADE results
in a single image per combination, while in Π-Net-SINCONC there is considerable repetition in each
case. The single image in SPADE can be explained by the lack of higher-order correlations with
respect to the noise variable zI.

In addition to the diversity of the images per combination, an image from every combination is
visualized in Fig. 16. MVP synthesizes more realistic images than the compared methods of Π-Net-
SINCONC and SPADE.
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(a) Π-Net-SINCONC (b) SPADE (c) MVP
Figure 15: Each row depicts a single combination of attributes, i.e., hair and eye color. Please zoom-in
to check the finer details. The method of SPADE synthesizes a single image per combination. Π-Net-
SINCONC synthesizes few images, but not has many repeated elements, while some combinations
result in unrealistic faces, e.g., the 5th or the 7th row. On the contrary, MVP synthesizes much more
diverse images for every combination.

(a) Π-Net-SINCONC (b) SPADE (c) MVP
Figure 16: Each row depicts a single chair color, while each column depicts a single eye color.
SPADE results in some combinations that do not follow the structure of the face, e.g., 3rd column
in the last row. Similarly, in Π-Net-SINCONC some of the synthesized images are not completely
realistic, e.g., penultimate row. MVP synthesizes images that resemble faces for every combination.
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H.6 MULTIPLE CONDITIONAL INPUTS WITH MIXED CONDITIONAL VARIABLES

We extend the previous experiment with multiple conditional variables to the case of mixed conditional
variables, i.e., there is one discrete and one continuous conditional variable. The discrete conditional
variable captures the class label, while the continuous conditional variable captures the low-resolution
image. Thus, the task is class-conditional super-resolution.

We use the experimental details of sec. 4.2 in super-resolution 8ˆ. In Fig. 17, we visualize how for
each low-resolution image the results differ depending on the randomly sampled class label. The FID
in this case is 53.63, which is similar to the previous two cases. Class-conditional super-resolution
(or similar tasks with multiple conditional inputs) can be of interest to the community and MVP
results in high-dimensional images with large variance.

H.7 IMPROVE DIVERSITY WITH REGULARIZATION

Figure 17: Three-
variable input gener-
ative model.

As emphasized in sec. I, various methods have been utilized for synthesizing
more diverse images in conditional image generation tasks. A reasonable
question is whether our method can be used in conjunction with such methods,
since it already synthesizes diverse results. Our hypothesis is that when MVP
is used in conjunction with any diversity-inducing technique, it will further
improve the diversity of the synthesized images. To assess the hypothesis, we
conduct an experiment on edges to images that is a popular benchmark in such
diverse generation tasks (Zhu et al., 2017b; Yang et al., 2019).

The plug-n-play regularization term of Yang et al. (2019) is selected and added
to the GAN loss during the training. The objective of the regularization term
Lreg is to maximize the following term:

Lreg “ minp
||GpzI, 1, zIIq ´GpzI, 2, zIIq| |1

||zI, 1 ´ zI, 2| |1
, τq (21)

where τ is a predefined constant, zI, 1, zI, 2 are different noise samples. The motivation behind this
term lies in encouraging the generator to produce outputs that differ when the input noise samples
differ. In our experiments, we follow the implementation of the original paper with τ “ 10.

The regularization loss of equation 21 is added to the GAN loss; the architecture of the generator
remains similar to sec. H.4. The translation task is edges-to-handbags (on Handbags dataset) and
edges-to-shoes (on Shoes dataset). In Fig. 18 the synthesized images are depicted. The regularization
loss causes more diverse images to be synthesized (i.e., when compared to the visualization of Fig. 14
that was trained using only the adversarial loss). For instance, in both the shoes and the handbags,
new shades of blue are now synthesized, while yellow handbags can now be synthesized.

The empirical results validate the hypothesis that our model can be used in conjunction with diversity
regularization losses in order to improve the results. Nevertheless, the experiment in sec. H.4
indicates that a regularization term is not necessary to synthesize images that do not ignore the noise
as feed-forward generators had previously.

I DIFFERENCE OF MVP FROM OTHER DIVERSE GENERATION TECHNIQUES

One challenge that often arises in conditional data generation is that one of the variables gets ignored
by the generator (Isola et al., 2017). This has been widely acknowledged in the literature, e.g., Zhu
et al. (2017b) advocates that it is hard to utilize a simple architecture, like Isola et al. (2017), with
noise. A similar conclusion is drawn in InfoGAN (Chen et al., 2016) where the authors explicitly
mention that additional losses are required, otherwise the generator is ‘free to ignore’ the additional
variables. To mitigate this, a variety of methods have been developed. We summarize the most
prominent methods from the literature, starting from image-to-image translation methods:

• BicycleGAN (Zhu et al., 2017b) proposes a framework that can synthesize diverse images
in image-to-image translation. The framework contains 2 encoders, 1 decoder and 2
discriminators. This results in multiple loss terms (e.g., eq.9 of the paper). Interestingly, the
authors utilize a separate training scheme for the encoder-decoder and the second encoder
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(a) edges-to-handbags (b) edges-to-shoes
Figure 18: Qualitative results on edges-to-image translation with regularization loss for diverse
generation (sec. H.7). The first row depicts the conditional input (i.e., the edges). The rows 2-6
depict outputs of the MVP when we vary zI . Diverse images are synthesized for each edge. The
regularization loss results in ‘new’ shades of blue to emerge in the synthesized images in both the
shoes and the handbags cases.

as training together ’hides the information of the latent code without learning meaningful
modes’.

• Almahairi et al. (2018) augment the deterministic mapping of CycleGAN (Zhu et al.,
2017a) with a marginal matching loss. The framework learns diverse mappings utilizing the
additional encoders. The framework includes 4 encoders, 2 decoders and 2 discriminators.

• MUNIT (Huang et al., 2018) focuses on diverse generation in unpaired image-to-image
translation. MUNIT demonstrates impressive translation results, while the inverse translation
is also learnt simultaneously. That is, in case of edges-to-shoes, the translation shoes-to-
edges is also learnt during the training. The mapping learnt comes at the cost of multiple
network modules. Particularly, MUNIT includes 2 encoders, 2 decoders, 2 discriminators
for learning. This also results in multiple loss terms (e.g., eq.5 of the paper) along with
additional hyper-parameters and network parameters.

• Drit++ (Lee et al., 2020) extends unpaired image-to-image translation with disentangled
representation learning, while they allow multi-domain image-to-image translations. Drit++
uses 4 encoders, 2 decoders, 2 discriminators for learning. Similarly to the previous methods,
this results in multiple loss terms (e.g., eq.6-7 of the paper) and additional hyper-parameters.

• Choi et al. (2020) introduce a method that supports multiple target domains. The method
includes four modules: a generator, a mapping network, a style encoder and a discriminator.
All modules (apart from the generator) include domain-specific sub-networks in case of mul-
tiple target domains. To ensure diverse generation, Choi et al. (2020) utilize a regularization
loss (i.e., eq. 3 of the paper), while their final objective consists of multiple loss terms.

The aforementioned frameworks contain additional network modules for training, which also results
in additional hyper-parameters in the loss-function and the network architecture. Furthermore, the
frameworks focus exclusively on image-to-image translation and not all conditional generation cases,
e.g., they do not tackle class-conditional or attribute-based generation.

An interesting technique for diverse, class-conditional generation is the self-conditional GAN of Liu
et al. (2020). The method conditions the generator with pseudo-labels that are automatically derived
from clustering on the feature space of the discriminator. This enables the generator to synthesize
more diverse samples. This method is orthogonal to our, i.e., the generator of Liu et al. (2020) can be
replaced with MVP.

Using regularization terms in the loss function has been an alternative way to achieve diverse
generation. Mao et al. (2019); Yang et al. (2019) propose simple regularization terms that can be
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plugged into any architecture to encourage diverse generation. Lee et al. (2019) propose two variants
of a regularization term, with the ‘more stable variant’ requiring additional network modules.

We emphasize that our method can be used in conjunction with many of the aforementioned techniques
to obtain more diverse examples. We demonstrate that this is possible in an experiment in sec. H.7.
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