
DeltaDock: A Unified Framework for Accurate,
Efficient, and Physically Reliable Molecular Docking

Jiaxian Yan1, Zaixi Zhang1, Jintao Zhu2, Kai Zhang1, Jianfeng Pei2, Qi Liu1∗
1State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China

2Center for Quantitative Biology,
Academy for Advanced Interdisciplinary Studies, Peking University

{jiaxianyan, zaixi, sa517494}@mail.ustc.edu.cn, zhujt@stu.pku.edu.cn,
jfpei@pku.edu.cn, qiliuql@ustc.edu.cn

Abstract

Molecular docking, a technique for predicting ligand binding poses, is crucial in
structure-based drug design for understanding protein-ligand interactions. Recent
advancements in docking methods, particularly those leveraging geometric deep
learning (GDL), have demonstrated significant efficiency and accuracy advantages
over traditional sampling methods. Despite these advancements, current methods
are often tailored for specific docking settings, and limitations such as the neglect
of protein side-chain structures, difficulties in handling large binding pockets,
and challenges in predicting physically valid structures exist. To accommodate
various docking settings and achieve accurate, efficient, and physically reliable
docking, we propose a novel two-stage docking framework, DeltaDock, consisting
of pocket prediction and site-specific docking. We innovatively reframe the pocket
prediction task as a pocket-ligand alignment problem rather than direct prediction
in the first stage. Then we follow a bi-level coarse-to-fine iterative refinement
process to perform site-specific docking. Comprehensive experiments demonstrate
the superior performance of DeltaDock. Notably, in the blind docking setting,
DeltaDock achieves a 31% relative improvement over the docking success rate
compared with the previous state-of-the-art GDL model DiffDock. With the
consideration of physical validity, this improvement increases to about 300%.†

1 Introduction

Recent advancement in geometric deep learning (GDL) [1, 2, 3] presents an innovative and promising
molecular docking paradigm to predict and understand the interactions between target proteins and
drugs, which is of paramount importance for drug discovery [4, 5]. Unlike traditional docking
methods that employ optimization algorithms to sample and identify best binding poses [6, 7],
GDL methods interpret molecular docking as either a regression or generation task, eliminating
the need for intensive candidate sampling [8, 9, 10]. Studies have demonstrated that GDL methods
outperform their traditional counterparts, delivering enhancements in both the accuracy of binding
pose predictions, as measured by the root-mean-square deviation (RMSD) metric, and the inference
efficiency [11, 12].

According to whether a prior pocket is given, molecular docking can be divided into blind and
site-specific docking [13]. Traditional sampling methods adeptly navigate both scenarios, primarily
differing in the scope of the search space they explore. In contrast, GDL methods typically specialize
in either one. For instance, EquiBind [8], and DiffDock [9] are designed for blind docking, neglecting
the incorporation of binding pockets. Uni-Mol [14] and DiffBind-FR [15] concentrate on site-specific
docking and only protein atomic level structure within a defined radius (usually 6-12 Å) of the

∗Qi Liu is the corresponding author.
†All codes and data will be released on https://github.com/jiaxianyan/DeltaDock.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jiaxianyan/DeltaDock

co-crystal is modeled. Despite some progress, these methods not only fail to handle two docking
settings smoothly like traditional methods, but also confronted with certain limitations. For blind
docking methods, they ignore the fine-grained protein side-chain structure. Regarding the site-specific
docking methods, when dealing with pockets larger than the predetermined cutoff or when there is a
requirement to model extensive pocket surrounding structures to account for long-range interactions,
these methods significantly deteriorate in performance [16] and the demand for computational
resources can escalate significantly, as evidenced in Appendix.A.2 and Appendix.A.3.

Besides these challenges, current GDL methods face additional limitations due to the lack of inductive
biases, such as penalties for steric clashes or constraints on ligand mobility, leading to the generation
of unrealistic docking poses. Buttenschoen et al. [16] proposed the PoseBusters test suit to verify and
highlight these problems. In addition to the RMSD between predicted and ground-truth poses, the
test suite incorporates 18 checks, encompassing chemical validity and consistency, intramolecular
validity, and intermolecular validity. According to the test suite, the previously highest-performing
method, DiffDock, achieves a success rate of only 14%. This is significantly lower than the 38%
success rate achieved when chemical validity is not taken into account.

To resolve these problems, we propose DeltaDock, a unified GDL framework for accurate, efficient,
and physically valid docking. DeltaDock is a two-stage framework consisting of a pocket prediction
stage and a site-specific docking stage. With "Delta", we mean that the optimal poses are predicted
by iteratively refining the input structures in the second docking stage. The first pocket prediction
stage is specialized for blind docking, where a binding pocket is identified from a set of candidates
through a novel contrastive pocket-ligand alignment module CPLA. Then in the second stage, within
the pockets predefined or selected by CPLA, binding structures are predicted in a bi-level coarse-
to-fine iterative refinement module Bi-EGMN. This module prioritizes the residue-level structure
covered by a large outer box (Fig.4) for pose positioning and coarse structure prediction. And the
atom-level structure, within a relatively small radius from the coarse structure, is characterized for
more refined predictions. In particular, the module incorporates (i) a GPU-accelerated pose sampling
algorithm generating high-quality initial structure, (ii) a training objective imposing penalties for
steric clashes and constraints on ligand mobility, and (iii) a rapid post-processing step composing
torsional alignment and energy minimization for structure correction.

To accommodate two different docking settings, DeltaDock is specially designed as a two-stage
framework rather than an end-to-end framework. Particularly, the pocket-ligand alignment module is
inspired by the observation shown in Fig.5. Existing pocket prediction methods generally achieve a
recall rate of just 70%-80%. However, when combining all possible pockets predicted by multiple
methods, this recall rate reaches nearly 95%. According to this result, we shift the focus from
designing increasingly powerful pocket prediction models to developing strategies for the effective
selection of a candidate pocket from an ensemble of predicted pockets. The pocket prediction task is
thus reframed as a pocket-ligand alignment problem innovatively. Regarding the site-specific docking
stage, the key idea is to accurately predict reliable poses. Based on the proposed bi-level iterative
refinement model, several components presented above are introduced additionally. Among them,
the pose sampling algorithm is adopted for structure initialization, as previous works on structure
prediction [17] have demonstrated the importance of a good initial structure. Other two components,
namely the physics-informed training object and the fast structure correction step, are leveraged to
ensure physical validity.

To demonstrate the effectiveness of DeltaDock, we performed comprehensive experiments to evaluate
its predictive accuracy, efficiency, generalizability, and ability to predict physically valid binding
poses. The experimental outcomes indicate that DeltaDock consistently surpasses the baseline
methods in both blind docking and site-specific docking settings while maintaining remarkable
computational efficiency. Notably, in the blind docking setting, DeltaDock exceeded the performance
of the previous SOTA GDL method, DiffDock, by 30.8% in terms of the docking success rate, and it
required only approximately 3.0 seconds per protein-ligand pair. With the consideration of physical
validity, this improvement increases to approximately 300% on the PoseBusters benchmark.

2

3D Ligand
Encoder

3D Pocket
Encoder

Candidate PocketsLigand Molecule

…

Contrastive Learning

a) b)

𝑚ℒ 𝑚!
"𝑚#

"𝑚$
"

Ligand atom Protein atomProtein 𝛼-carbon Minimum distance to ligand atomsBoundary of cubic box

Bilevel Iterative Refinement Fast Structure Correction

2

1 3

Residue-level refinement

Sampled initial pose Updated pose

SMINA Energy
MinimizationAtomic-level refinement

1

2

Adjusting torsional angles

Rotating ligandTranslating ligand

Final Output

20Å

6Å

Input Output

Recycling

Figure 1: The overview of DeltaDock’s two modules. (a) The pocket-ligand alignment module
CPLA. Contrastive learning is adopted to maximize the correspondence between target pocket and
ligand embeddings for training. During inference, the pocket with the highest similarity of the ligand
is selected. (b) The bi-level iterative refinement module Bi-EGMN. Initialized with a high-quality
sampled pose, the module first performs a coarse-to-fine iterative refinement. This process generates
progressively refined ligand poses utilizing a recycling strategy. To guarantee the physical plausibility
of the predicted poses, a two-step fast structure correction is subsequently applied. This correction
involves torsion angle alignment followed by energy minimization based on the SMINA.

2 Related Work

2.1 Sampling-based Docking

Traditional docking methods, epitomized by the likes of VINA [18] and SMINA [19], operate on a
"sampling-and-scoring" paradigm to identify the best binding pose. Optimization algorithms such as
BFGS [20] are used to sample optimal poses within the defined search space on CPUs. This process,
which involves a significant number of steps and multiple copies, is rather computationally intensive.
Recent studies have attempted to speed up the sampling process using GPUs. Notable examples are
Vina-GPU [21], Uni-Dock [22], and DSDP [23], which use more copies and shorter search steps to
fully leverage the parallel computational power of GPUs. This approach has demonstrated substantial
efficacy, achieving a speed increase of an order of magnitude compared to prior CPU-based methods.

2.2 Geometric Deep Learning-based Docking

GDL introduces a new paradigm in molecular docking, where the sampling process is bypassed by
interpreting molecular docking as either a regression task or a generation task [8, 9]. However, recent
researches have highlighted limitations of current GDL methods, such as neglect of protein side-chain
structures [15], difficulties in handling large binding pockets, and challenges in predicting physically
valid structures [16]. Compared with physically reliable sampling-based methods, especially recent
developed GPU-accelerated methods, the existing limitations hinder the practical application of GDL
methods. To address these concerns, in this work, we propose DeltaDock to overcome these problems
and accomplish efficient, accurate, and physical reliable docking.

2.3 Binding Pocket Prediction

As the foundation of structure-based drug design, binding pocket prediction has attracted expansive
attention. A variety of methods have been developed for this task, encompassing traditional com-
putational methods, such as Fpocket [24], machine learning (ML) methods, such as P2Rank [25],
and GDL methods, such as PUResNet [26]. These methods generally adopt ligand-free approaches
and focus on predicting all potential binding sites within individual proteins. Recent blind docking
methods, DSDP and FABind, apply pocket prediction for target ligands to reduce the docking search
space, which is of great help to fast and accurate blind docking. In this study, our proposed model,
DeltaDock, also prioritizes defining a pocket for blind docking. However, instead of improving model
architecture for pocket prediction like previous methods, DeltaDock reframe the pocket prediction
task as a pocket-ligand alignment problem and employ contrastive learning to select a candidate
pocket from the combined pockets set.

3

3 DeltaDock Framework

3.1 Preliminaries

Notations. In this work, the separate structures of a protein P and a ligand L are used as inputs
(Fig. 1). Both molecules are initially encoded as graphs, and we denote a molecule graph as
G = (V, E), where V and E represent the node set and edge set respectively. Each node vi ∈ V is
associated with a coordinate xi and a feature vector hi. Each edge (i, j) ∈ E is associated with an
edge feature vector eij . For the ligand L and ligand graph GL, vLi represents the i-th atom in the
ligand and xL

i corresponds to the atom’s coordinate. For the protein P , the situation is more complex,
and two graphs based on the two structural levels of the protein are constructed. One is the protein
atomic graph GP , and the other is the protein residue graph GP∗. GP contains protein atomic-level
information similar to ligand graph GL, while GP∗ contains protein residue-level information and
overlooks the side-chain structure information. In GP∗, vP∗

i represents the i-th residue in the protein
and xP∗

i corresponds to the Cα coordinate of this residue. Details of the graph construction can be
found in Appendix.A.6.

Overview. Our goal is to train a model f that excels in both site-specific docking and blind docking
scenarios of rigid molecular docking, wherein the protein structure is fixed and only the ligand’s
flexibility is considered.

As depicted in Fig. 1, DeltaDock comprises two modules: a pocket-ligand alignment module CPLA
responsible for selecting binding pocket from a pocket candidate set, and a bi-level iterative refinement
module Bi-EGMN dedicated to executing site-specific docking given the binding pockets. This design
allows DeltaDock to handle both blind docking and site-specific docking seamlessly. In the subsequent
part of this section, we will elaborate on these two modules respectively.

3.2 Contrastive Pocket-ligand Alignment

CPLA treats the pocket prediction task as a pocket-ligand alignment problem. We employ a list
of well-established ligand-free pocket prediction methods to generate candidate pocket sets, and
then map these pockets and the target ligand into the same embedding space. The correct pocket
embedding is expected to have higher similarity with ligand embedding than other pockets.

3.2.1 Data Preprocessing

The initial step of this module involves using RDKit [27] to generate a 3D conformer of the input
ligand, as depicted in Fig. 1. Binding site prediction models including P2Rank and DSDP are adopted
to extract druggable binding sites, and the binding sites predicted by these different methods are
combined to form a set of candidate binding sites, denoted as S = {ς1, ς2, ...}, where ςi represents
the geometric center of i-th binding site. For CPLA, the protein pocket ρi is defined as the residues
within 15.0 Å to ςi.

3.2.2 Ligand and Pocket Encoders

To map the ligand and pockets into the embedding space, the ligand encoder Attentive-FP (AFP) [28]
and protein encoder Geometric Vector Perceptron (GVP) [29] are employed. These encoders first
extract informative ligand node and protein node representations, and the feature extraction process
can be formally expressed as:

HL = AFP (GL), HP∗ = GV P (GP∗), (1)

where HL is the ligand embedding matrix of shape |VL|×d and HP∗ is the protein residue embedding
matrix of shape |VP∗| × d. The ligand representations mL and pocket representations mρ

i are then
obtained by pooling ligand nodes embedding and pocket nodes embedding:

mL = Sum(HL,VL), mρ
i = Sum(HP∗,Vρ

i), (2)

where Vρ
i is the protein node set of i-th pocket ρ, and the pooling operation is sum pooling. For the

pocket encoder, we input the entire protein residue graph GP∗ rather than just the protein pocket
residue graph, to incorporate global protein information into the pocket representation.

4

3.2.3 Contrastive Embdding Alignment

With ligand representation mL and pocket representation mρ
i in hand, we calculate the cosine

similarity score:

si =
mL ·mρ

i

∥mL∥2 · ∥m
ρ
i ∥2

. (3)

For the candidate pockets S = {ς1, ς2, ...}, the similarity score s+ between the target pocket and the
ligand is expected to be higher than others. Thus, we propose the contrastive learning objective:

L = − 1

N
· log exp(s+/τ)∑

i exp(si/τ)
, (4)

where τ is the temperature paramter. For blind docking, the pocket with the highest similarity score
with the ligand is selected for the next docking step.

3.3 Bi-level Iterative Refinement

With a binding site ς predefined by the user or selected by CPLA, we design the bi-level iterative
refinement module Bi-EGMN to predict binding pose within this pocket (Fig. 1).

3.3.1 Inital Structure Sampling

For an iterative refinement module, an initial structure is needed as a starting point. Previous
work on molecular 3D conformer generation [17] demonstrates the importance of a good initial
structure. Therefore, Bi-EGMN adopts a rapid GPU-accelerated sampling method proposed by
Huang et al. [23] to sample a high-quality initial XL. In this work, the search steps number and the
search copy number are set to 40 and 384, respectively. Details about the search box setting can be
found in the Appendix.B.3.1.

3.3.2 Structure Refinement

With input initial structure XL, we iteratively update it to improve its accuracy. As discussed in
Sec.1, the modeling of an entire binding pocket structure is crucial for the success of the process.
Current methods either ignore the atom-level structure or model the full-atom pocket structure directly.
The latter approach can significantly elevate the computational resource demand, particularly when
dealing with large pockets. To overcome these challenges and maintain high docking accuracy and
efficiency, we propose a bi-level strategy in this work. In the following sections, we first present
the details of the bi-level strategy. Subsequently, we discuss the Bi-EGMN layer, which is used to
perform refinement, as depicted in Fig. 1.

Bi-level strategy. The first refinement level is the residue level, where the protein residues within
a 40.0 Å cubic region centered at the geometric centers of ligands are considered as pocket ρ.
Previous work demonstrates such a range is large enough to cover the binding pocket [30]. In this
context, as the full-atom structure of proteins is not considered, the pocket residue graph Gρ∗ is
adapted. The second level is the atomic level, where we set the ligand structures refined through T
rounds of residue level refinement as the reference structure. In this level, protein atoms within a
6.0 Å radius of the ligand atoms are considered to construct pocket atomic graph Gρ for modeling
the fine-grained interaction. The ligand coordinates Xa,L output by the last layer of atomic level
refinement correspond to the final predicted structure X̂L.

Bi-EGMN Layer. The bi-level E(3)-equivariant graph matching network (Bi-EGMN) layer is the
model designed to calculate the protein-ligand interaction and refine the structures. More specifically,
this layer adheres to the message-passing paradigm [31] and consists of four functions: intra-message
function, inter-message function, aggregate function, and update function.

The intra-message function works to extract messages mi,j and m̂i,j between a node i and its
neighbor nodes j from the same molecule graph. mi,j is later used for the updating of node features
and m̂i,j for the updating node coordinates. ∀(i, j) ∈ EP ∪ EL, this function can be formally written
as :

d
(l)
i,j = ||x(l)

i − x
(l)
j ||, mi,j = φm(h

(l)
i , h

(l)
j , d

(l)
i,j ,), m̂i,j = (x

(l)
i − x

(l)
j) · φm̂(mi,j), (5)

5

where d
(l)
i,j is the relative distance between node i and node j, and φ is a MLP.

The inter-message function works to extract messages µi,j and µ̂i,j between a node i and its neighbor
nodes j from the other molecule graphs. Formally, ∀i ∈ VP , j ∈ VL or i ∈ VL, j ∈ VP :

µi,j = φµ(h
(l)
i , h

(l)
j , d

(l)
i,j), µ̂i,j = (x

(l)
i − x

(l)
j) · φµ̂(µi,j). (6)

After extracting inter-message and intra-message, the aggregation function aggregates the neighbor
messages of the node i. ∀i ∈ VP ∪ VL:

mi =
∑

j∈N (i)

mi,j , m̂i =
∑

j∈N (i)

1

d
(l)
i,j + 1

· m̂i,j , (7)

µi =
∑

j∈N (l)
∗ (i)

φ(µi,j) · µi,j , µ̂i =
∑

j∈N (l)
∗ (i)

1

d
(l)
i,j + 1

· µ̂i,j , (8)

where N (i) is the neighbor of node i in the same graph, and N (l)
∗ (i) is the set of nodes associated

with node i in the other graph.

Finally, the update function updates the position and features of each node:

x
(l+1)
i = ηx

(0)
i + (1− η)x

(l)
i + m̂i + µ̂i, ∀i ∈ VL, (9)

h
(l+1)
i = (1− β) · h(l)

i + β · φ(h(l)
i ,mi, µi, h

(0)
i), ∀i ∈ VP ∪ VL, (10)

where β and η are feature skip connection weight and coordinates skip connection weight, respec-
tively. Through such a message-passing paradigm, our Bi-EGMN layers make to update coordinates
iteratively.

3.3.3 Fast Structure Correction

Lastly, as Bi-EGMN updates structures by modifying the coordinates rather than the torsional angles,
as is done in methods like DiffDock [9] and other sampling-based methods, it is crucial to ensure the
plausibility of bond lengths and bond angles of the updated structure X̂L. Therefore, fast structure
correction steps, torsion alignment, and SMINA-based energy minimization are designed.

Torsion Alignment. We employ a rapid torsion alignment for the updated structure. The target of this
alignment is to align the input structure XL with the updated structures X̂L by rotating its torsional
bonds. Formally, let (bi, ci) denote a i-th rotatable bond, where bi and ci are the starting and ending
atoms of the bond, respectively. We randomly select a neighboring atom ai of bi and a neighbor atom
di of ci to calculate the dihedral angle δ̂i = ∠(aibici, bicidi) based on updated structure coordinates
X̂L. Subsequently, we rotate the rotatable bond (bi, ci) of input structures to match its dihedral angle
δi the same as δ̂i. This simple operation can be implemented efficiently using RDKit. After all
rotatable bonds have been rotated, we align the rotated input structure to the updated structures to
obtain the torsionally aligned structure X̂LT . This process ensures the plausibility of bond lengths
and bond angles in the torsionally aligned structure X̂LT .

Energy Minimization. To further enhance the reliability of DeltaDock, we implement an energy
minimization on the torsionally aligned structure X̂LT , when an inter-molecular steric clash between
the protein and ligand is detected. This energy minimization is conducted using SMINA [19], as
it is a highly efficient tool for this process compared with specialized energy minimization tool
OpenMM [32] (details see Appendix.A.5). The output structure of this process is X̂L′

.

3.4 Training and Inference

3.4.1 CPLA

The training object L is a contrastive object defined before (Eq. 4). For a protein and its candidate
pockets set S = {ς1, ς2, ...}, the positive pair is the target pocket-ligand pair and the negative pairs
are other pocket-ligand pairs. The pocket-ligand pairs across different proteins are not used. When
training, we calculate the minimum center distance (DCCmin) between all candidate pockets and
the ligand. If DCCmin ≤ 5.0 Å, we add the ligand center into S to assert the existence of positive
pairs for every protein (details see Appendix.B.3.1).

6

Table 1: Blind docking performance on the PDBbind dataset. All methods take RDKit-generated
ligand structures and holo protein structures as input, trying to predict bound complex structures.
DeltaDock-SC refers to the model variant that generates structures without implementing fast structure
correction. DeltaDock-Random refers to the model variant that generates structures without high-
quality initial poses. The best results are bold, and the second best results are underlined.

Method Time average Time Split (363) Timesplit Unseen (142)
RMSD % below Centroid % below RMSD % below Centroid % below

Seconds 2.0Å 5.0Å 2.0Å 5.0Å 2.0Å 5.0Å 2.0Å 5.0Å

QVINA-W 49* 20.9 40.2 41.0 54.6 15.3 31.9 35.4 47.9
GNINA 393 21.2 37.1 36.0 52.0 13.9 27.8 25.7 39.5
VINA 119* 10.3 36.2 32.3 55.2 7.8 25.5 24.1 41.8
SMINA 146* 13.5 33.9 38.0 55.9 9.0 25.7 29.9 41.7
GLIDE 1405* 21.8 33.6 36.1 48.7 19.6 28.7 29.4 40.6
DSDP 1.22 40.2 59.0 59.5 78.2 37.3 54.9 55.6 71.8

EquiBind 0.03 5.5 39.1 40.0 67.5 0.7 18.8 16.7 43.8
TANKBind 0.87 17.6 57.8 55.0 77.8 3.5 43.7 40.9 70.8
DiffDock 80 36.0 61.7 62.9 80.2 17.2 42.3 43.3 62.6
FABind 0.12 33.1 64.2 60.8 80.2 19.4 60.4 57.6 75.7
FABind+ 6.4 43.8 73.3 59.1 86.2 34.7 63.2 57.6 75.7

DeltaDock-SC 2.58 47.9 68.0 70.0 83.2 40.8 60.6 65.5 78.9
DeltaDock 2.97 47.4 66.9 66.7 83.2 40.8 61.3 60.6 78.9
1 The time of consumption is denoted with * if it only consumes CPU.
2 All results of baselines are taken from [11] for fair comparison.

3.4.2 Bi-EGMN

We design a physics-informed loss function for the Bi-EGMN module for training. The coordinates
Xa,L and Xr,L output by the last layer of atomic level and residue level are both employed in the
computation of this loss. Formally, the loss function can be expressed as follows:

L = Linter + λ1Lintra + λ2Lvdw + λ3Lbound, (11)

where λ are weight hyper-parameters. Among the four components, inter-distance map loss Linter is
responsible for the RMSD accuracy. Other three items, namely intra-distance map loss Lintra, vdw
constraint loss Lvdw, and bound matrix constraint loss Lbound are employed for physical validity.
When training and inferencing, we follow previous work [33] and employ the recycling strategy
(details see Appendix.B.3.2).

4 Experiments

4.1 Settings

Dataset. We conduct experimetns on PDBbind [34] v2020 and PoseBusters [16] datasets in this
work. Our model is trained on the PDBbind dataset, where the training, validation, and testing set are
constructed based on the time split strategy used in previous work [11]. PoseBusters, which contains
428 carefully selected data released from 1 January 2021 to 30 May 2023, is directly adopted to
evaluate the ability to predict physically valid poses.

Evaluation. Root-mean-square-deviation (RMSD) and centroid distance (CD) are used to evaluate
the docking accuracy of different docking methods, and the PoseBusters [16] test suite is employed
to evaluate the performance of predicting physically valid poses. Additionally, as pocket prediction
plays an important role in our framework, the distance between the center of the predicted pocket
and the center of the ground-truth ligand structure (DCC), and the volume coverage rate (VCR) are
employed to evaluate the pocket prediction accuracy (details in Appendix.B).

4.2 Overall Performance on the PDBbind

We first assess the comprehensive performance of DeltaDock on the PDBbind dataset, encompassing
both blind docking and site-specific docking settings.

7

a) b)

Figure 2: Site-specific docking performance. (a) Overall Performance of different methods on the
PDBbind test set. The search space was delineated by extending the minimum and maximum of the x,
y, and z coordinates of the ligand by 4 Å respectively. For TANKBind, we directly supply the protein
block with a radius of 20 Å centered around the ground-truth ligand center to the model. (b) Overall
performance of different methods on the PoseBusters dataset. (c) A waterfall plot for illustrating the
PoseBusters tests as filters for both DeltaDock and DeltaDock-SC predictions. The evaluation results
for DeltaDock are denoted above the lines, while those for DeltaDock-SC are annotated below.

4.2.1 Blind Docking

As demonstrated in Table.1, DeltaDock outperforms all baseline methods. Specifically, DeltaDock
achieves a remarkable success rate of 47.4% (where RMSD < 2.0 Å), surpassing the previous SOTA
GDL method, DiffDock, which has a success rate of 36.0%. Recent GPU-accelerated docking
methods have also made significant progress in blind docking. However, when compared to DSDP,
which is the top-performing sampling-based method in the PDBbind test set, DeltaDock still exhibits
superior performance across all metrics. Notably, as elucidated in Section 3.3, DeltaDock employs
the same sampling algorithm as DSDP for generating the initial structure. Yet, our framework allows
DeltaDock to significantly outperform DSDP.

Beyond accuracy, efficiency is a critical performance measure for molecular docking methods. As
indicated in Table 1, DeltaDock maintains a competitive level of efficiency, despite the inclusion of
an energy minimization operation to enhance accuracy and reliability. Molecular docking methods
invariably face a trade-off between efficiency and accuracy. However, the data presented in Table 1
suggest that DeltaDock could serve as a viable tool for practical applications, balancing these two
crucial aspects effectively.

4.2.2 Site-specific Docking

Most existing GDL methods, such as DiffDock and EquiBind, are primarily designed for blind
docking scenarios and are not inherently suited for site-specific docking tasks. However, DeltaDock
seamlessly integrates blind docking and site-specific docking settings. In this context, the pocket is
directly provided, eliminating the need for pocket selection via CPLA. The performance of DeltaDock
in site-specific docking is illustrated in Fig.2. When supplied with predefined binding sites, traditional
sampling methods exhibit a significant improvement in results. For instance, the docking success
rate of VINA escalates from 10.3% to 45.0%. Despite this enhancement, DeltaDock consistently
surpasses all baselines. Previous research suggested that while GDL docking methods excel at pocket
searching, traditional methods tend to outperform GDL models in site-specific docking tasks [35].
However, as evidenced by the results presented in Table.1 and Fig.2, DeltaDock exhibits superior
performance in both blind and site-specific docking scenarios, demonstrating its versatility and
robustness in handling diverse docking settings.

4.3 Evaluation of Pose Validity

We further investigate DeltaDock’s ability to predict physically valid structures by employing the
PoseBusters test suite, as designed by Buttenschoen et al. [16]. In addition to the RMSD between
predicted and ground-truth poses, the test suite incorporates 18 checks, encompassing chemical
validity and consistency, intramolecular validity, and intermolecular validity. When physical validity

8

a)

b)

Figure 3: Further analysis on the (a) PDBbind and (b) PoseBusters dataset. Left: DCC cumulative
curve of top-1 pockets. Middle: VCR cumulative curve of top-1 pockets. Right: Scatter plot of
RMSD of initial and updated poses. All experiments are conducted in the blind docking setting.

is considered, the docking success rates of traditional sampling methods remain stable, while the
performance of previous geometric deep learning methods significantly declines, especially for
TANKBind, DeepDock, and Uni-Mol. The DeltaDock-SC variant, even without the application
of the fast structure correction step, shows significant improvement over previous methods. These
results substantiate DeltaDock’s capacity to predict physically valid structures, thereby affirming its
reliability for practical applications.

4.4 Further Analysis

4.4.1 Pocket-ligand Alignment and Iterative Refinement

Beyond the overall docking performance, the pocket-ligand alignment and iterative refinement results
are explored (Fig. 3). As depicted in the figure, CPLA predicts significantly more accurate pockets
than other methods and Bi-EGMN can diminish the discrepancy between ground-truth structures and
input structures. Generally, the PDBbind test set poses a more significant challenge to Bi-EGMN
than the PoseBusters dataset. And for CPLA, PoseBusters dataset is more challenging otherwise. The
consistent good performance on the two datasets demonstrates the effectiveness and generalization
capacity of CPLA and Bi-EGMN.

4.4.2 Ablation Studies
Table 2: Results of ablation study.

Method RMSD % below 2 Å
PDBbind PoseBusters

DeltaDock 47.4 49.3
w/o CPLA 41.2 43.7
w/o Bi-EGMN 44.6 41.8

w/o Residue Level 44.6 44.4
w/o Atom Level 44.6 42.1

In this section, ablation studies are conducted to
assess the contributions of different components.
We first ablate the whole CPLA or Bi-EGMN,
and then the residue-level or the atom-level in
Bi-EGMN (see Appendix. B.4 for implement de-
tails). As illustrated in Table 2, it becomes clear
that each component, encompassing CPLA and
the bi-level strategy in Bi-EGMN, plays a signif-
icant role in enhancing the overall performance
of DeltaDock. Due to the space limitation, a full
ablation study can be found in Appendix. C.3.

5 Conclusion

In this work, we proposed DeltaDock, a unified framework for accurate, efficient, and physically
reliable molecular docking. DeltaDock was a two-stage docking framework, consisting of pocket
prediction and site-specific docking. We innovatively reframed the pocket prediction task as a pocket-
ligand alignment problem and then followed a hybrid strategy to jointly utilize both GDL and physics-
informed traditional algorithms for site-specific docking. Comprehensive experiments demonstrated
the superior performance of DeltaDock. Notably, in the blind docking setting, DeltaDock achieved
a 31% relative improvement over the docking success rate compared with the previous state-of-

9

the-art GDL model. We hope this work will further facilitate the broad application and continued
development of the molecular docking framework.

6 Acknowledgements

We extend our gratitude to the reviewers for their valuable and insightful feedback, which significantly
improved this work. We are also grateful to Lixue Cheng from Microsoft Research for her helpful
suggestions and comments. This research was supported by grants from the National Natural Science
Foundation of China (No.62406303, No.623B2095), the National Key R&D Program of China
(No.2023YFF1205103), the Anhui Provincial Natural Science Foundation (No.2308085QF229), and
the Fundamental Research Funds for the Central Universities.

10

References

[1] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. In ArXiv, 2021.

[2] Zaixi Zhang, Zepu Lu, Zhongkai Hao, Marinka Zitnik, and Qi Liu. Full-atom protein pocket
design via iterative refinement. In NeurIPS’23, 2023.

[3] Zaixi Zhang and Qi Liu. Learning subpocket prototypes for generalizable structure-based drug
design. In ICML’24, 2023.

[4] Xing Du, Yi Li, Yuan-Ling Xia, Shi-Meng Ai, Jing Liang, Peng Sang, Xing lai Ji, and Shu-Qun
Liu. Insights into protein–ligand interactions: Mechanisms, models, and methods. International
Journal of Molecular Sciences, 17:144, 2016.

[5] Shuangli Li, Jingbo Zhou, Tong Xu, Liang Huang, Fan Wang, Haoyi Xiong, Weili Huang,
Dejing Dou, and Hui Xiong. Structure-aware interactive graph neural networks for the prediction
of protein-ligand binding affinity. In KDD’21, 2021.

[6] Jiankun Lyu, Sheng Wang, Trent E. Balius, Isha Singh, Anat Levit, Yurii S. Moroz, Matthew J.
O’Meara, Tao Che, Enkhjargal Algaa, Kateryna A Tolmachova, Andrey A. Tolmachev, Brian K.
Shoichet, Bryan L. Roth, and John J. Irwin. Ultra-large library docking for discovering new
chemotypes. Nature, 566:224 – 229, 2019.

[7] Brian Joseph Bender, Stefan Gahbauer, Andreas Luttens, Jiankun Lyu, Chase M Webb, Reed M.
Stein, Elissa A. Fink, Trent E. Balius, Jens Carlsson, John J. Irwin, and Brian K. Shoichet. A
practical guide to large-scale docking. Nature protocols, page 4799–4832, 2021.

[8] Hannes Stärk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, and T. Jaakkola.
Equibind: Geometric deep learning for drug binding structure prediction. In ICML’22, 2022.

[9] Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. In ICLR’23, 2023.

[10] Zaixi Zhang, Jiaxian Yan, Qi Liu, and Enhong Chen. A systematic survey in geometric deep
learning for structure-based drug design. ArXiv, abs/2306.11768, 2023.

[11] Qizhi Pei, Kaiyuan Gao, Lijun Wu, Jinhua Zhu, Yingce Xia, Shufang Xie, Tao Qin, Kun He,
Tie-Yan Liu, and Rui Yan. Fabind: Fast and accurate protein-ligand binding. In NeurIPS’23,
2023.

[12] Yangtian Zhang, Huiyu Cai, Chence Shi, and Jian Tang. E3bind: An end-to-end equivariant
network for protein-ligand docking. In ICLR’23, 2023.

[13] Nafisa Hassan, Amr Alhossary, Yuguang Mu, and C. Kwoh. Protein-ligand blind docking using
quickvina-w with inter-process spatio-temporal integration. Scientific Reports, 7, 2017.

[14] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
In ICLR’23, 2023.

[15] Jintao Zhu, Zhonghui Gu, Jianfeng Pei, and Luhua Lai. Diffbindfr: An se(3) equivariant network
for flexible protein-ligand docking. In ArXiv, 2023.

[16] Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane. Posebusters: Ai-based
docking methods fail to generate physically valid poses or generalise to novel sequences.
Chemical Science, 2023.

[17] Danny Reidenbach and Aditi S. Krishnapriyan. Coarsenconf: Equivariant coarsening with
aggregated attention for molecular conformer generation. In ArXiv, 2023.

[18] Oleg Trott and Arthur J. Olson. Autodock vina: Improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of Computa-
tional Chemistry, 31:455–461, 2010.

[19] David Ryan Koes, Matthew P. Baumgartner, and Carlos J. Camacho. Lessons learned in
empirical scoring with smina from the csar 2011 benchmarking exercise. Journal of chemical
information and modeling, 53 8:1893–904, 2013.

[20] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer New York, NY, 2000.

11

[21] Ji Ding, Shi xiong Tang, Zheming Mei, Lingyue Wang, Qinqin Huang, Haifeng Hu, Ming Ling,
and Jiansheng Wu. Vina-gpu 2.0: Further accelerating autodock vina and its derivatives with
graphics processing units. Journal of chemical information and modeling, 63:1982–1998, 2023.

[22] Yuejiang Yu, Chun Cai, Jiayue Wang, Zonghua Bo, Zhengdan Zhu, and Hang Zheng. Uni-dock:
Gpu-accelerated docking enables ultralarge virtual screening. Journal of chemical theory and
computation, 19:3336–3345, 2023.

[23] Yupeng Huang, Hong Zhang, Siyuan Jiang, Dajiong Yue, Xiaohan Lin, Jun Zhang, and Yi Qin
Gao. Dsdp: A blind docking strategy accelerated by gpus. Journal of chemical information and
modeling, 63:4355–4363, 2023.

[24] Vincent Le Guilloux, Peter Schmidtke, and Pierre Tufféry. Fpocket: An open source platform
for ligand pocket detection. BMC Bioinformatics, 10:168 – 168, 2009.

[25] Radoslav Krivák and David Hoksza. P2rank: machine learning based tool for rapid and accurate
prediction of ligand binding sites from protein structure. Journal of Cheminformatics, 10:39,
2018.

[26] Jeevan Kandel, Hilal Tayara, and Kil to Chong. Puresnet: prediction of protein-ligand binding
sites using deep residual neural network. Journal of Cheminformatics, 13:65, 2021.

[27] Greg Landrum, Paolo Tosco, Brian Kelley, Ric, sriniker, gedeck, Riccardo Vianello, Nadi-
neSchneider, Eisuke Kawashima, Andrew Dalke, David Cosgrove, Dan N, Gareth Jones, Brian
Cole, Matt Swain, Samo Turk, AlexanderSavelyev, Alain Vaucher, Maciej Wójcikowski, Ichiru
Take, Daniel Probst, Kazuya Ujihara, Vincent F. Scalfani, guillaume godin, Axel Pahl, Francois
Berenger, JLVarjo, strets123, JP, and DoliathGavid. rdkit/rdkit: 2022_03_4 (q1 2022) release,
July 2022.

[28] Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li,
Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Pushing the
boundaries of molecular representation for drug discovery with graph attention mechanism.
Journal of medicinal chemistry, 63:8749–8760, 2020.

[29] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael J. L. Townshend, and Ron O. Dror.
Learning from protein structure with geometric vector perceptrons. In ICLR ’21, 2020.

[30] Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
Trigonometry-aware neural networks for drug-protein binding structure prediction. In
NeurIPS’22, 2022.

[31] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML’17, 2017.

[32] Peter K. Eastman, Jason M. Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao,
Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D.
Stern, Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. Openmm 7: Rapid develop-
ment of high performance algorithms for molecular dynamics. PLoS Computational Biology,
13, 2016.

[33] John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A A Kohl, Andy Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David A. Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior,
Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure
prediction with alphafold. Nature, 596:583 – 589, 2021.

[34] Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the
basis for developing protein-ligand interaction scoring functions. Accounts of chemical research,
50 2:302–309, 2017.

[35] Yuejiang Yu, Shuqi Lu, Zhifeng Gao, Hang Zheng, and Guolin Ke. Do deep learning models
really outperform traditional approaches in molecular docking? In ArXiv, 2023.

[36] Limei Wang, Haoran Liu, Yi Liu, Jerry Kurtin, and Shuiwang Ji. Learning hierarchical protein
representations via complete 3d graph networks. In ICLR’23, 2022.

12

[37] Tianfan Fu and Jimeng Sun. Sipf: Sampling method for inverse protein folding. In KDD’22,
2022.

[38] David Dohan, Andreea Gane, Maxwell L. Bileschi, David Belanger, and Lucy J. Colwell.
Improving protein function annotation via unsupervised pre-training: Robustness, efficiency,
and insights. In KDD’21, 2021.

[39] Joel Graef, Christiane Ehrt, and Matthias Rarey. Binding site detection remastered: Enabling
fast, robust, and reliable binding site detection and descriptor calculation with dogsite3. Journal
of Chemical Information and Modeling, 63(10):3128–3137, 2023.

[40] Tom Halgren. New method for fast and accurate binding-site identification and analysis.
Chemical biology & drug design, 69(2):146–148, 2007.

[41] Thomas A Halgren. Identifying and characterizing binding sites and assessing druggability.
Journal of chemical information and modeling, 49(2):377–389, 2009.

[42] Noel M. O’Boyle, Michaela S. Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and
Geoffrey R. Hutchison. Open babel: An open chemical toolbox. Journal of Cheminformatics,
3:33 – 33, 2011.

[43] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language
models of protein sequences at the scale of evolution enable accurate structure prediction.
bioRxiv, 2022.

[44] Oscar Méndez-Lucio, Mazen Ahmad, Ehecatl Antonio del Rio-Chanona, and Jörg Kurt Wegner.
A geometric deep learning approach to predict binding conformations of bioactive molecules.
Nat. Mach. Intell., 3:1033–1039, 2021.

[45] Kaiyuan Gao, Qizhi Pei, Jinhua Zhu, Tao Qin, Kun He, Tie-Yan Liu, and Lijun Wu. Fabind+:
Enhancing molecular docking through improved pocket prediction and pose generation. ArXiv,
abs/2403.20261, 2024.

[46] Rocco Meli and Philip Charles Biggin. spyrmsd: symmetry-corrected rmsd calculations in
python. Journal of Cheminformatics, 12, 2020.

[47] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR’15,
2015.

[48] Bowen Gao, Bo Qiang, Haichuan Tan, Minsi Ren, Yinjun Jia, Minsi Lu, Jingjing Liu, Weiying
Ma, and Yanyan Lan. Drugclip: Contrastive protein-molecule representation learning for virtual
screening. In NeurIPS ’23, 2023.

[49] Greg Landrum et al. Rdkit: A software suite for cheminformatics, computational chemistry,
and predictive modeling. Greg Landrum, 2013.

[50] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel,
Olaf Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, Sebastian W
Bodenstein, David A Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn
Tunyasuvunakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia
Bertolli, Alex Bridgland, Alexey Cherepanov, Miles Congreve, Alexander Imani Cowen-Rivers,
Andrew Cowie, Michael Figurnov, Fabian B Fuchs, Hannah Gladman, Rishub Jain, Yousuf A
Khan, Caroline M R Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian
Stecula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal
Zielinski, Augustin Žídek, Vic-613 tor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis,
and John M. Jumper. Accurate structure prediction of biomolecular interactions with alphafold3.
Nature, 2024.

13

A More Detailed Descriptions

A.1 Dataset Preprocessing

We follow the time split strategy used in previous work [8, 30, 11] to split the dataset to construct the
train, validation, and test set. All compounds discovered in or after 2019 are in the test and validation
sets, and only those found before 2019 are in the training set. The training set, validation set, and test
set have 17,299, 968, and 363 complexes, respectively. The overall performance of docking methods
is evaluated on the time spit test set following previous works. In this work, we only select the protein
chains within 10 Å to the ligand structure.

A.2 Dataset Statistics

Proteins are inherently macromolecules composed of multiple chains, with each chain potentially
containing hundreds or even thousands of residues [36, 37, 38]. In Table.3, we statistically analyze
the PDBbind time-split test set and count atom numbers in proteins. Notably, it can be observed that
the number of atoms escalates substantially as the cutoff value increases.

Table 3: Statistics of the PDBbind time split test set.

Data Average Maximum
Number of Cα Number of atoms Number of Cα Number of atoms

Entire protein structure 322 2,536 1,488 11,697
Structure within 40.0 Å cubic box centered on the ligand 179 1,602 400 3,055
Structure within 15.0 Å from ligand 111 1,050 213 1,944
Structure within 12.0 Å from ligand 73 740 164 1,582
Structure within 8.0 Å from ligand 30 379 75 986
Structure within 6.0 Å from ligand 16 207 45 548

A.3 Example of Large Pocket

Large pockets that consist of several sub-pockets generally exist. For example, the main protease of
SARS-CoV-2 (Fig. 4).

Figure 4: The main protease of SARS-CoV-2 is depicted by the white surface. The ligand structures
in pink, blue, and red correspond to PDB 5RGY, 7AQJ, and 7JU7, respectively. Left: The green
pocket, a protein structure truncated to within 12.0 Å of the blue structure, is insufficient to encompass
the pocket structure necessary for predicting the red structure. Right: The orange pocket, truncated
within a 40.0 Å box utilized by DeltaDock, is ample to cover the entire pocket.

A.4 Analysis of Existing Pocket Prediction Methods

As depicted in Fig.5, existing pocket prediction methods generally achieve a hit rate of approximately
70%-80%, where the distance between the predicted pocket center and ligand center (DCC) is less
than 5.0 Å. Notably, when leveraging combined predictions from multiple methods, the hit rate
significantly increases to nearly 95%. Motivated by this observation, DeltaDock begins with a
ready-to-dock ligand and a candidate pocket set derived from a suite of existing pocket prediction
models.

We further statistics how many pockets these methods predict in Fig. 6. We observe that Fpocket [24],
and DoGSite3 [39] output much more pockets than DSDP [23], P2Rank [25], and SiteMap [40, 41].

14

Figure 5: Performance of different pocket prediction methods on the PDBbind test set. The hit rate
is significantly improved by ensembling the predicted pockets from various methods.

Combining information from Fig. 6 and Fig.5, it is evident that the pockets predicted by DSDP and
P2rank are highly druggable. Other methods, in contrast, tend to predict many non-druggable pockets.

Figure 6: Pocket numbers violin plot of different methods. Pocket prediction methods generally
predict a series of druggable pockets.

A.5 Efficiency Comparison between SMINA and OpenMM

For AI-based structure prediction methods, including AlphaFold2 [33], it is common practice to
employ energy minimization methods for post-processing to ensure the physical validity of the
predicted structures. While specialized methods like OpenMM are available for energy minimization,
we opted not to use them due to computational efficiency considerations. Specifically, we found that
SMINA, which is typically known as a docking method, requires only approximately 0.4 seconds for
energy minimization. This is significantly faster than methods like OpenMM, which can take several
minutes to tens of minutes per protein-ligand pair, as illustrated in the Table. 4 below.

For molecular docking, efficiency is crucial, and specialized methods such as OpenMM can be
excessively time-consuming. What’s more, it is important to note that SMINA, although generally
regarded as a docking method, is not employed for docking in our workflow but rather utilized in its
minimization mode for energy minimization.

Table 4: Efficiency Comparison between SMINA and OpenMM.

Methods Time (per protein-ligand pair)
SMINA about 0.4 seconds
OpenMM several minutes to tens of minutes

15

A.6 Graph Construction

Ligand Graph. The input ligand L is first represented as a ligand graph GL = (VL, EL), where VL

is the node set and node i represents the i-th atom in the ligand. In this work, RdKit [27] is employed
to generate a 3D initial conformer of the input ligand. Each node vLi is also associated with an atom
coordinate xL

i retrieved from the individual ligand structure P and an atom feature vector hL
i . The

edge set EL is constructed according to the spatial distances among atoms. More formally, the edge
set is defined to be:

EL =
{
(i, j) : |xL

i − xL
j |2 < cutL,∀i, j ∈ VL} , (12)

where cutL is a distance threshold, and each edge (i, j) ∈ EL is associated with an edge feature vector
eLij . The node and edge features are obtained by RDKit [27] in the CPLA. And in the Bi-EGMN, they
are achieved by OpenBabel [42]

Protein Atomic Graph. The protein atomic graph GP is constructed in the same way as the ligand
graph.

Protein Residue Graph. For protein residue Graph GP∗ = (VP∗, EP∗), VP∗ is the node set and
the node i represents the i-th residue in the protein. Each node vP∗

i is also associated with an Cα

coordinate of the i-th residue xP∗
i retrieved from the individual protein structure and a residue feature

vector hP∗
i . The edge set EP∗ is constructed according to the spatial distances among atoms. More

formally, the edge set is defined to be:

EP∗ =
{
(i, j) : |xP∗

i − xP∗
j |2 < cutP∗,∀i, j ∈ VP∗} , (13)

where cutP∗ is a distance threshold, and each edge (i, j) ∈ EP∗ is associated with an edge feature
vector eP∗

ij . The edge features are obtained following [9]. As for the node features, they are extracted
from the protein language model ESM2-3B [43] in CPLA. While in Bi-EGMN, they are obtained
following [8].

B More Detailed Experimental Settings

B.1 Baselines

For molecular docking, GDL methods, EquiBind [8], TANKBind [30], DiffDock [9], DeepDock [44],
Uni-Mol [14], FABind [11], and FABind+ [45] and traditional sampling methods, VINA [18],
SMINA [19], and DSDP [23] are used as baselines. According to their performance on both
PDBbind and Posebusters, DiffDock is the previous SOTA GDL docking method, and we thus mainly
focus on the comparison with DiffDock. For pocket prediction, DSDP, P2Rank [25], Fpocket [24],
SiteMap [40, 41], and DoGSite3 [39] are compared.

B.2 Evaluation Metric

For blind docking and site-specific docking, RMSD and centroid distance are used to evaluate
different methods, the formal definitions of these two metrics are:

RMSD =

√√√√ 1

|V |

|V |∑
i=1

(xL
i − x̂L′

i)2, (14)

Centroid = | 1

|V |

|V |∑
i=1

xL
i − 1

|V |

|V |∑
i=1

x̂L′

i |, (15)

where xL
i is the ground truth coordinate of i-th ligand atom and x̂L′

i is the predicted coordinates. In
alignment with previous studies [15, 9], for blind docking, the RMSD is directly computed. However,
in the case of site-specific docking, the RMSD is calculated utilizing the spyrmsd [46].

For pocket prediction, the DCC metric is defined as:

DCC = |ς̂ − 1

|V |

|V |∑
i=1

x̂L′

i |, (16)

16

where ς̂ is the predicted pocket center. As for the VCR metric [23], we calculate the cube side length
of a cube box centered on the pocket that can cover the whole ligand structure.

B.3 Training and inference

Our models are trained using NVIDIA A100-PCIE-40GB GPUs. Training the CPLA on a single
GPU takes approximately 2 hours, while the Bi-EGMN requires about 48 hours on 4 GPUs. To
determine the hyperparameters, we performed a grid search, as outlined in Table 5 and Table 6.

B.3.1 CPLA

Basic Settings. The model was trained employing the Adam optimizer [47] with an initial learning
rate of 0.0003 and an L2 regularization factor of 10−6. The learning rate was scaled down by 0.6 if
no drop in training loss was observed for 10 consecutive epochs. The number of training epochs was
set to 20 with an early stopping rule of 10 epochs if no improvement in the validation performance
was observed.

Candidate Pockets Generation. For CPLA, we consider two methods to generate candidate pockets:
DSDP, and P2Rank. These methods were selected over others, such as SiteMap. Initially, we intended
to incorporate all available methods to construct the candidate pockets. However, the results were
unsatisfactory. This could be attributed to the issue of hard negative samples. CPLA employs
contrastive learning, where the quality of hard negative sample selection directly impacts the training
performance. In this context, hard negative samples represent highly druggable pockets that are not
the target pocket. As illustrated in Fig. 6 and Fig.5, the pockets predicted by DSDP and P2rank are
highly druggable. In contrast, other methods tend to predict non-druggable pockets. The result in
Table. 7 demonstrates that introducing FPocket impairs the training quality. Consequently, we opted
to solely use DSDP and P2rank.

Pocket Augmentation. Given a candidate pockets set S = {ς1, ς2, ...}, we establish a maximum
pocket number, Nmax, to construct negative pockets for data augmentation. If |S| >= Nmax, we
select the top-Nmax pockets in the sort of DSDP, P2Rank accordingly. If |S| < Nmax, we randomly
select (Nmax − |S|) Cα atoms that are more than 20.0 Å from the ligand geometric center to
construct negative pocket centers. This data augmentation is only applied in the training phase.

Ligand Conformation Augmentation. During the CPLA training, we further considered the issue
of the native binding mode. As the native binding mode (i.e., the co-crystal structure) of a given
molecule is unknown in practical scenarios, we aim to train a pose-robust CPLA model. To achieve
this, we adjusted the rotatable bond angles of the co-crystal molecule structure in each epoch during
training. Therefore, the molecule poses in each epoch are perturbed and different.

Other Training Object. We have considered using cross-protein loss for training, where the ground
truth pockets and ligands from the same protein-ligand pairs are considered positive samples, and
those from different protein-ligand pairs are treated as negative samples. Although this loss has been
utilized in previous work for virtual screening [48], it was found to be unsuitable for our model.

B.3.2 Bi-EGMN

Basic Settings. The Adam optimizer [47], characterized by an initial learning rate of 10−3 and an L2

regularization factor of 10−6, is employed for training Bi-EGMN. The learning rate was scaled down
by 0.6 if no drop in training loss was observed for 10 consecutive epochs. The number of training
epochs was set to 1000 with an early stopping rule of 40 epochs if no improvement in the validation
performance was observed.

Training Object. The loss function can be written as:

L = Linter + λ1Lintra + λ2Lvdw + λ3Lbound. (17)

As introduced before, the inter-distance map loss Linter is responsible for the RMSD accuracy. Other
three items, namely intra-distance map loss Lintra, vdW constraint loss Lvdw, and bound matrix
constraint loss Lbound are employed for physical validity.

17

Table 5: The hyperparameter options we searched through for CPLA. The final parameters are marked
in bold.

Parameter Search Sapce

Number of layers 2, 3, 4
Batch Size 8, 16, 32, 64, 128
Dropout 0.1

Learning rate 0.003, 0.001, 0.0003, 0.0001
Max pocket number for training Null, 16, 32, 64, 128

Pocket used for training [DSDP, P2Rank]
Training loss Intra-protein, Cross-protein

ESM2-3B embedding True, False
AFP hidden dimension 64, 128, 256

GVP node scalar hidden dimension 32, 64, 128
GVP node vector hidden dimension 12, 16, 32
GVP edge scalar hidden dimension 32, 64, 128
GVP edge vector hidden dimension 12, 16, 32

The two distance map losses can be formally expressed as:

Linter =
∑
i∈VL

∑
j∈VP

||dpredij − dgtij ||, Lintra =
∑
i∈VL

∑
j∈VL

||dpredij − dgtij ||, (18)

where predicted distance dpredij = ||xpred
i − xpred

j || and ground-truth distance dgtij = ||xgt
i − xgt

j ||
between node i and j are calculated based on node coordinates.

The other two physics-informed losses can be formally expressed as:

Lvdw =
∑
i∈VL

∑
j∈VP

max(dvdwij − dpredij , 0), (19)

Lbound =
∑
i∈VL

∑
j∈VL

max(dbd,lowij − dpredij , 0) +max(dpredij − dbd,upij , 0), (20)

where the vdW distance dvdwij = 0.75(rvdwi + rvdwj) is calculated based on node van der Waals radii
rvdw. As for the lower bound distance dbd,lowij and upper bound distance dbd,upij , they are determined
based on the bound matrix generated by RDKit [49] following [16].

Initial Poses Augmentation. In the training phase of the Bi-EGMN, initial pose augmentation is
employed. The initial poses utilized for training are sampled based on the ground truth pocket. An
adaptive box is defined through a two-step process: (1) the minimum and maximum of the x, y, and z
coordinates of the ligand are extended by 4 Å each; (2) if the box size is less than 22.5 Å after the
first step, it is further extended to 22.5 Å. During the inference phase, however, the box size is fixed
at 30.0 Å, deviating from the adaptive strategy employed during training. For each epoch during
training, a pose is randomly selected. This pose augmentation strategy significantly amplifies the
diversity of the input. As depicted in Fig.7, the sampled poses can nearly encompass the entire pocket
cavity.

Recycling. During both training and inferencing, the recycling strategy is adopted. For training,
we randomly recycle the iterative refinement process 1-3 times, and only the last cycle is used to
compute the gradient. For inferencing, the recycle number is fixed to 4.

B.4 Ablation Studies Settings

w/o CPLA: pockets predicted by DSDP are employed to perform the following predictions.

w/o Bi-EGMN: the sampled structures are directly employed as final structures to calculate metrics.

w/o Residue Level: the residue level is removed from Bi-EGMN.

w/o Atom Level: the atom level is removed from Bi-EGMN.

18

(b) 5l8a(a) 5d1n

Figure 7: Initial pose augmentation. During the initial pose augmentation phase of training the
Bi-EGMN, we randomly select one pose from all sampled poses for each epoch. This selection
strategy ensures that the training initial poses can comprehensively cover the entire pocket.

Table 6: The hyperparameter options we searched through for Bi-EGMN. The final parameters are
marked in bold.

Parameter Search Sapce

Recycle True, False
Hidden dimension 32, 64, 96, 128

Number of layers for each level 4, 6, 8, 10
Batch Size 8, 16, 32, 64
Dropout 0.1

Learning rate 0.001
Initial pose augmentation True, False
Pose sampling box size Adaptive, 30.0 Å

CPLA pockets used for sampling Top-1, Top-2, Top-3, All
Protein structure level Atom level, Residue level, Bi-level

ESM2-3B embedding for residue level True, False

C More Experimental Results

C.1 Binding Pocket Prediction

C.1.1 Overall Performance on PDBbind

In addition to the overall performance presented in Fig.3, we offer a more detailed analysis in Fig.8.
As can be discerned from the figure, the top-1 pockets predicted by CPLA significantly outperform
those predicted by other baseline methods. Furthermore, when considering the top-2 pockets, the
accuracy of pocket prediction is on par with the cumulative performance of all pockets predicted by
other methods.

C.1.2 Results of Different Candidate Pockets

In the current framework, only DSDP and P2Rank are selected to generate candidate pockets. The
motivation and analysis for this operation have been discussed before. To support this selection, we
further present the experimental results of employing different candidate pockets to train CPLA in
Table. 7. These results indicate that only selecting DSDP and P2Rank yields to best performance.

Table 7: Performance of employing different candidate pockets to train CPLA

Pockets % of DCC < 4 Å
DSDP 64.46
P2Rank 55.37
DSDP + P2Rank 69.97
DSDP + P2Rank + Fpocket 65.84

19

(a)

(b)

(c)

Figure 8: Performance of binding pocket prediction models on PDBbind dataset. (a) Comparison
between top-1 pockets predicted by CPLA and top-1 pockets predicted by other methods. (b)
Comparison between top-1 pockets predicted by CPLA and best pockets among all pockets predicted
by other methods. (c) Comparison between top-2 pockets predicted by CPLA and best pockets among
all pockets predicted by other methods.

C.1.3 Influence of Ligand Conformations

When training CPLA, we employ a conformation augmentation strategy to train a pose-robust CPLA
model. The provided Table. 8 illustrates CPLA’s performance when presented with both a co-crystal
ligand structure and an RDKit-generated ligand structure, showcasing the model’s resilience to ligand
poses and the effectiveness of our strategy.

Table 8: Influence of ligand conformations on CPLA

Input ligand pose % of DCC < 4 Å
Co-crystal 70.25
RDKit-generated 69.97

C.1.4 Comparison with FABind

Previous pocket prediction methods, such as DSDP and P2RANK, are ligand-independent. Their
goal is to predict all possible binding sites. However, in molecular docking, the goal is to predict
targeted binding sites. There are now methods that, like CPLA, are ligand-dependent, such as FABind.
To further demonstrate the effectiveness of CPLA, a comparison on pocket prediction accuracy is
conducted between FABind and CPLA as shown in Table. 9. Obviously, our model achieves a
significant advantage.

Table 9: Comparison with FABind

Methods % of DCC < 3.0 Å % of DCC < 4.0 Å
FABind 42.7 56.5
CPLA Top-1 54.8 70.0

20

C.2 Blind Docking Performance on PoseBusters

Due to the space limitation, only site-specific docking performance on PoseBusters has been presented
before. In Fig. 9, we provide the blind docking performance on PoseBusters. We observed that
DeltaDock achieves a docking success rate of 48.8% even when considering the physical validity.

Figure 9: Blind Docking Performance on PoseBusters.

C.3 Detailed Ablation Studies

Comprehensive ablation experiments were performed within two distinct contexts: blind docking
utilizing the PDBbind dataset to assess the impact on RMSD metrics, and site-specific docking
employing the PoseBusters dataset to evaluate the influence on the physical plausibility of the
predicted binding poses.

C.3.1 Ablation Studies On PDBbind

Table.10 presents more detailed ablation studies on PDBbind, including the removal of recycling,
training loss components, structure correction, and structure sampling initialization. From the table,
we observe that: (1) each component contributes to the good RMSD performance of our DeltaDock.
(2) The training loss items and structure correction step employed for physical validity tend to
decrease the RMSD performance. (3) The structure sampling algorithm used for initialization is
especially important for good RMSD performance. (4) When we train DeltaDock like previous
docking methods, removing the loss items and structure correction step for physical plausibility,
DeltaDock still achieves a competitive performance and outperforms all other GDL methods
significantly on the test unseen set even without the using of structure sampling algorithm.
These results demonstrate the effectiveness of DeltaDock.

Table 10: Blind docking performance on the PDBbind dataset.

Method
Time Split (363) Timesplit Unseen (142)

RMSD % below Centroid % below RMSD % below Centroid % below
2.0Å 5.0Å 2.0Å 5.0Å 2.0Å 5.0Å 2.0Å 5.0Å

DeltaDock 47.4 66.9 66.7 83.2 40.8 61.3 60.4 78.9

w/o recycle 46.0 64.2 67.2 80.2 40.8 59.9 62.0 78.2

w/o Lvdw 46.8 65.3 66.4 81.3 40.8 62.7 64.8 78.2
w/o Lintra 43.5 64.7 65.0 84.8 40.1 58.5 61.3 81.7
w/o Lbound 42.4 66.4 66.9 82.1 35.9 61.3 63.4 79.6

w/o torsion alignment 47.9 68.0 69.1 82.9 41.5 62.0 62.7 78.9
w/o energy minimization 46.8 67.8 70.0 83.2 40.1 60.6 65.5 78.8
w/o structure samplinga 16.0 53.4 53.2 80.4 19.0 51.4 52.1 73.9
w/o structure sampling, and structure correction 19.8 55.6 56.2 82.4 21.1 52.8 52.1 77.5

w/o Lbound, Lintra, Lvdw, structure correction, structure sampling 30.0 63.8 65.3 82.9 28.2 53.5 57.7 78.2
a No structure sampling means we directly put the RDKit-generated ligand structure at the center of the protein as the initial structure.

21

C.3.2 Ablation Studies On PoseBusters

Fig. 10 and Fig. 11 present ablation studies on PoseBusters to explore the effect of physics-informed
training items and structure correction step. From the figures, we can see that: (1) the physics-
informed training items and structure correction step contribute to the good physical validity of
DeltaDock. (2) Among the physics-informed training items, Lintra is especially important for
the GDL model to predict valid structures without post-processing. These results demonstrate the
effectiveness of DeltaDock.

Figure 10: Site-specific docking performance on the PoseBusters dataset.

Figure 11: Site-specific docking performance on the PoseBusters dataset.

22

Table 11: Blind docking performance on the PDBbind dataset. The best results are bold, and the
second best results are underlined.

Method Time average Ligand RMSD Centroid Distance
Percentiles % below Threshold Percentiles % below Threshold

Seconds 25% 50% 75% mean 2Å 5Å 25% 50% 75% mean 2Å 5Å

QVINA-W 49 2.5 7.7 23.7 13.6 20.9 40.2 0.9 3.7 22.9 11.9 41.0 54.6
GNINA 393 2.8 8.7 21.2 13.3 21.2 37.1 1.0 4.5 21.2 11.5 36.0 52.0
VINA 119 3.7 6.8 14.6 10.1 10.3 36.2 1.5 4.1 13.3 8.2 32.3 55.2
SMINA 146 3.8 8.1 13.5 12.1 13.5 33.9 1.3 3.7 16.2 9.8 38.0 55.9
GLIDE 1405 2.6 9.3 21.8 16.2 21.8 33.6 0.8 5.6 26.9 14.4 36.1 48.7
DSDP 1.22* 1.0 3.0 7.9 7.2 42.4 59.8 0.3 1.0 4.8 4.9 60.3 75.8

EquiBind 0.03* 3.8 6.2 10.3 8.2 5.5 39.1 1.3 2.6 7.4 5.6 40.0 67.5
TANKBind 0.87* 2.4 4.2 7.6 7.8 17.6 57.8 0.8 1.7 4.3 5.9 55.0 77.8
DiffDock 80* 1.5 3.5 7.4 7.4 36.0 61.7 0.5 1.2 3.3 5.4 62.9 80.2
FABind 0.12* 1.7 3.1 6.7 6.4 33.1 64.2 0.7 1.3 3.6 4.7 60.3 80.2
FABind+ 0.16* 1.2 2.6 5.8 5.2 43.5 71.1 0.4 1.0 2.9 3.5 67.5 84.0
FABind+(40) 6.4* 1.2 2.4 5.3 5.1 43.8 73.3 0.5 1.0 2.6 3.5 69.1 86.2
DeltaDock-SC 2.58* 1.1 2.3 6.2 5.7 47.9 68.0 0.4 0.8 2.6 4.1 70.0 83.2
DeltaDock 2.97* 1.0 2.2 6.4 5.8 47.4 66.9 0.3 0.9 2.9 4.2 66.7 83.2
1 The time of consumption is denoted with * if it corresponds to GPU time; in the absence of this symbol, the time pertains to CPU time.

Table 12: Blind docking performance for PDBbind unseen dataset. The best results are bold, and the
second best results are underlined.

Method
Ligand RMSD Centroid Distance

Percentiles % below Threshold Percentiles % below Threshold
25% 50% 75% mean 2Å 5Å 25% 50% 75% mean 2Å 5Å

QVINA-W 3.4 10.3 28.1 16.9 15.3 31.9 1.3 6.5 26.8 11.9 35.4 47.9
GNINA 4.5 13.4 27.8 16.7 13.9 27.8 2.0 10.1 27.0 15.1 25.7 39.5
VINA 5.0 9.6 19.0 12.8 7.8 25.5 2.2 6.1 17.8 10.9 24.1 41.8
SMINA 4.8 10.9 26.0 15.7 9.0 25.7 1.6 6.5 25.7 13.6 29.9 41.7
GLIDE 3.4 18.0 31.4 19.6 19.6 28.7 1.1 17.6 29.1 18.1 29.4 40.6
DSDP 1.0 4.5 10.0 9.1 37.2 54.9 0.2 1.5 6.5 7.5 54.2 69.0

EQUIBIND 5.9 9.1 14.3 11.3 0.7 18.8 2.6 6.3 12.9 8.9 16.7 43.8
TANKBind 3.0 4.9 8.7 9.3 4.9 52.1 1.3 2.3 4.4 7.2 41.5 76.1
DiffDock 2.9 6.4 16.3 12.0 17.2 42.3 1.0 2.7 14.2 9.8 43.3 62.6
FABind 2.2 3.4 8.3 7.7 19.4 60.4 0.9 1.5 4.7 5.9 57.6 75.6
FABind+ 1.6 3.3 8.9 7.0 34.7 63.2 0.5 1.5 4.2 5.1 58.3 77.1

DeltaDock-SC 1.2 3.9 7.8 5.7 40.8 60.5 0.5 1.2 4.0 4.1 65.5 78.9
DeltaDock 1.0 3.8 7.7 5.8 40.8 61.3 0.4 1.2 4.1 4.2 60.6 78.9
1 The time of consumption is denoted with * if it corresponds to GPU time; in the absence of this symbol, the time pertains to

CPU time.

C.3.3 Detailed Tables of Performance on PDBbind

In the main manuscript, we have opted to present a concise table Table. 1 with key metrics due to the
space constraint. Here, we present the detailed tables Table. 11 and Table. 12, which encompasses all
metrics on PDBbind.

D Broader Impacts and Limitations

D.1 Broader Impacts

The development and maintenance of computational infrastructure for AI-assisted molecular docking
represent a significant allocation of resources. Inefficient allocation or underutilization of these
resources can potentially result in resource wastage.

D.2 Limitations

One disappointing limitation is the reliance on external tools, such as SMINA for post-processing
and the structure sampling algorithm for structure initialization. Although DeltaDock still achieves
the best performance among GDL methods on the test unseen time split set without these tools,
the overall performance degrades. Indeed, due to the limited training data, it’s quite difficult to
accomplish accurate, efficient, and physically reliable docking without any external tools. In the

23

future, we will try to overcome this limitation by exploring pre-training strategies on large-scale
datasets generated by docking methods or recently developed AlphaFold3 [50].

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction can accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations discussion can be found in Appendix. D.2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

24

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all details and parameters to reproduce our results, although the
code and data are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

25

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will provide all data and code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow the common practice of previous work, such as TANKbind [30]
and FABind [11]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducts in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed it in Appendix. D.1

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

27

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper focuses on a drug discovery task, posing no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited datasets, code packages, and models properly in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

28

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Sampling-based Docking
	Geometric Deep Learning-based Docking
	Binding Pocket Prediction

	DeltaDock Framework
	Preliminaries
	Contrastive Pocket-ligand Alignment
	Data Preprocessing
	Ligand and Pocket Encoders
	Contrastive Embdding Alignment

	Bi-level Iterative Refinement
	Inital Structure Sampling
	Structure Refinement
	Fast Structure Correction

	Training and Inference
	CPLA
	Bi-EGMN

	Experiments
	Settings
	Overall Performance on the PDBbind
	Blind Docking
	Site-specific Docking

	Evaluation of Pose Validity
	Further Analysis
	Pocket-ligand Alignment and Iterative Refinement
	Ablation Studies

	Conclusion
	Acknowledgements
	More Detailed Descriptions
	Dataset Preprocessing
	Dataset Statistics
	Example of Large Pocket
	Analysis of Existing Pocket Prediction Methods
	Efficiency Comparison between SMINA and OpenMM
	Graph Construction

	More Detailed Experimental Settings
	Baselines
	Evaluation Metric
	Training and inference
	CPLA
	Bi-EGMN

	Ablation Studies Settings

	More Experimental Results
	Binding Pocket Prediction
	Overall Performance on PDBbind
	Results of Different Candidate Pockets
	Influence of Ligand Conformations
	Comparison with FABind

	Blind Docking Performance on PoseBusters
	Detailed Ablation Studies
	Ablation Studies On PDBbind
	Ablation Studies On PoseBusters
	Detailed Tables of Performance on PDBbind

	Broader Impacts and Limitations
	Broader Impacts
	Limitations

