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Abstract
Federated learning addresses privacy concerns in multimedia rec-
ommender systems by enabling collaborative model training with-
out exchanging raw data. However, existing federated recommen-
dation models are mainly based on basic backbones like Matrix Fac-
torization (MF), which are inadequate to capture complex implicit
interactions between users and multimedia content. Graph Convo-
lutional Networks (GCNs) offer a promising method by utilizing
the information from high-order neighbors, but face challenges in
federated settings due to problems such as over-smoothing, data het-
erogeneity, and elevated communication expenses. To resolve these
problems, we propose a Cluster-driven Personalized Federated Rec-
ommender Systemwith Interest-awareGraphConvolutionNetwork
(CPF-GCN) for multimedia recommendation. CPF-GCN comprises
a local interest-aware GCN module that optimizes node represen-
tations through subgraph-enhanced adaptive graph convolution
operations, mitigating the over-smoothing problem by adaptively
extracting information from layers and selectively utilizing high-
order connectivity based on user interests. Simultaneously, a cluster-
driven aggregation approach at the server significantly reduces
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communication costs by selectively aggregating models from clus-
ters. The aggregation produces a global model and cluster-level
models, combining them with the user’s local model allows us
to tailor the recommendation model for the user, achieving per-
sonalized recommendations. Moreover, we propose an adversarial
optimization technique to further augment the robustness of CPF-
GCN. Experiments on three datasets demonstrate that CPF-GCN
significantly outperforms the state-of-the-art models.
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1 Introduction
With the explosive growth of multimedia content in recent years,
navigating the vast ocean of available videos, images, and music
has become increasingly challenging. Recommender systems have
risen to this challenge [12], helping users discover their interested
content across various domains [19, 20, 31]. As deep learning tech-
nology has become more widely applied [23, 34], it has further
enhanced the capabilities of these systems. However, recommender
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systems typically process data and train models on central servers,
requiring the collection of users’ personal data. This exposes users
to significant privacy risks. Federated recommender systems have
emerged to solve this problem by allowing participants to collab-
oratively train the model through the exchange of intermediate
parameters instead of raw data [17], thereby preserving privacy.

The backbones of existing federated recommender systems are
mostly basic, such as Matrix Factorization (MF) [4] and Neural
Collaborative Filtering (NCF) [30]. In these methods, updates are
primarily according to explicit user-item interactions, overlooking
the complex implicit interactions represented by a bipartite graph of
users and items. Graph Neural Networks (GNNs) introduce a novel
approach to leverage this graph structure [1]. As a prominent GNN
variant, Graph Convolutional Networks (GCNs) can effectively
gather collaborative information from high-order connections via
the propagation of embeddings across the graph [11]. In a federated
setting, each client keeps a private graph that is not shared with the
server or other users, ensuring privacy protection. SomeGCN-based
federated recommendation models have been introduced recently
[24, 26], where users enhance their local graphs to access high-order
neighbor information by uploading encrypted embeddings to the
server. However, these frameworks primarily focus on low-order
connectivity, limiting their ability to use high-order information
as effectively as centralized models. Besides, GCN-based models
often encounter the over-smoothing issue, where multiple graph
convolution layers cause node embeddings to grow overly similar
[18], thereby reducing model effectiveness.

In addition to the issues mentioned above, federated recom-
mender systems also face problems of heterogeneity and high com-
munication costs. Heterogeneity arises because the data owned
by various clients is rarely independent and identically distributed
(IID) [16], complicating the task of generating only one unified
model to effectively serve all users and achieve personalized recom-
mendations, as described in the top left part of Fig. 1. Furthermore,
achieving optimal performance in federated recommender systems
needs frequent exchanges between the server and all clients. Given
that modern recommender systems often rely on complex deep
learning architectures with millions of parameters, this results in
significant communication burdens.

Motivated by the considerations above, we propose a Cluster-
driven Personalized Federated Recommender System with Interest-
aware Graph Convolution Network (CPF-GCN). CPF-GCN com-
prises two key components: a local interest-aware recommendation
module and a cluster-driven global server. For the local client, the
interest-aware GCN module divides users into different subgraphs
based on their interests, then applies high-order graph convolu-
tion operations within these subgraphs. Thus, the learning of a
user’s embedding can only be facilitated by neighbors who share
interests, avoiding the propagation of irrelevant negative noise. For
the graph convolution on the subgraphs, we refer to and improve
upon the simplified graph convolution proposed in LightGCN [9],
introducing an adaptive graph convolution method. This method
can adaptively extract information from the ego layer and learn
node representations for the next layer, avoiding the inclusion of
excessive high-order information and further alleviating the over-
smoothing problem. Moreover, we employ an adversarial optimiza-
tion technique to enhance the robustness of our GCN model.

𝜽𝜽𝟐𝟐 𝜽𝜽𝟑𝟑
𝜽𝜽𝟒𝟒

𝜽𝜽𝟏𝟏Clients

CPF-GCN ServerGeneral Server

Personalized
Rec. Models

Unified
Rec. Model

𝜽𝜽𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝜽𝜽𝟏𝟏 𝜽𝜽𝟐𝟐 𝜽𝜽𝟑𝟑 𝜽𝜽𝟒𝟒

Figure 1: Comparison between a general federated server and
our CPF-GCN. Each user uploads distinct preferences to the
server. The general server aggregates these preferences and
generates a unified recommendation model, while CPF-GCN
tailors a personalized model for each user.

For the global server, we propose a cluster-driven federated
learning framework. The server first clusters users based on their
representations. Unlike traditional federated methods that select
all clients or randomly choose some clients for aggregation, our
method adaptively selects a certain number of clients from each
cluster based on its size, ensuring that the selected clients are rep-
resentative. In this way, only a relatively small number of clients
need to be selected to achieve good performance, reducing com-
munication costs. Subsequently, our model aggregates the chosen
clients, generating a global model and several cluster-level models.
To safeguard user privacy, a Local Differential Privacy (LDP) tech-
nique is used during this procedure. Through the integration of
the generated global model, cluster-specific model, and previously
obtained local model, a personalized recommendation model can be
produced for each user, achieving personalized recommendations
while protecting user privacy. As illustrated in the top right part
of Fig. 1, users upload their distinct multimedia preferences to the
server, then the server tailors a personalized model for each user.

To summarize, our key contributions are outlined as follows:

• We propose a subgraph-enhanced adaptive graph convolu-
tion method for the local GCN model to mitigate the issue of
over-smoothing by generating subgraphs from the user-item
bipartite graph, and adaptively learning node representations
by weighing similarities between hidden and ego layers.

• We design a cluster-driven federated framework that selects
representatives from each user cluster for model aggrega-
tion and generates cluster-level and global models for per-
sonalized recommendation, addressing heterogeneity while
boosting efficiency.

• We integrate the concept of adversarial training into model
optimization by designing an adversarial loss, thereby en-
hancing the model’s robustness.

• Extensive experiments on three multimedia datasets indicate
that our proposed CPF-GCNmodel significantly outperforms
existing federated recommendation models.
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2 Related Work
2.1 GNNs for Recommendation
Graph Neural Networks (GNNs) [33] emerge as an effective tool in
recommender systems that exploit the interactive information in
user-item interaction graphs. Early adaptations of GNNs in recom-
mender systems focused on learning embeddings by capturing the
structure of the user-item bipartite graph [6, 15, 21]. For example,
[15] designs a removal algorithm to filter redundant information
while utilizing GNNs to mine information from high-order connec-
tivity, enhancing the model’s generalization capabilities. In addition,
models like Graph Convolutional Networks (GCNs) [14] have laid
the foundation for subsequent advances in this field. [22] highlights
the dynamic nature of both users and points-of-interest, proposing
a time-sensitive and interaction-augmented GCN for continuous
point-of-interest recommendations. Moreover, over-smoothing is
a notorious issue with GNN-based methods, leading to advances
that modify or simplify GCN components[9, 18, 27]. LightGCN
[9] is an important milestone that simplifies GCNs by eliminating
feature transformations and nonlinearities. [18] further proposes
IMP-GCN, which addresses the over-smoothing problem by ensur-
ing that high-order graph convolution only involves users with
similar interests. [40] designs a layer-refined GCN known as Lay-
erGCN, which reduces the noise introduced by external factors
by refining layer representations during each propagation. These
works enhance information utilization, dynamic preference learn-
ing, and training efficiency. Despite these advancements, privacy
protection in recommender systems remains underexplored.

2.2 Federated Learning for Recommender
Systems

Federated Learning (FL) trains models without exchanging raw
data between decentralized devices or servers, keeping user data
private. Therefore, FL can be well applied in recommender systems
and achieve practical privacy protection [2, 13, 28]. [28] introduces
the Federated Averaging algorithm, marking the beginning of its
application in various domains, including recommender systems.
[2] first combines FL with collaborative filtering for personalized
recommendations using implicit user feedback. To address privacy
leakage during training and gradient transmission, methods like
perturbing data and encrypting gradients are used in some works.
[13] randomly selects some unrated items for each user and then
assigns some dummy ratings so that the server cannot easily iden-
tify the set of scores and rated items during server-client interac-
tions. FedMF [4] uses homomorphic encryption to encrypt item
gradients before transferring them to the server. Recently, many
advances have begun to combine FL with GNNs to protect users’
privacy while capturing higher-order information. FGC [38] is a
federated method based on GCNs, using the potential overlap of
services across different clients to guide embedding aggregation
and sharing, optimizing the local training results. PerFedRec [25]
clusters users into different groups, enabling personalized model
learning for each cluster. It integrates LightGCN with a FL frame-
work, achieving personalized federated recommendations under
privacy protection. However, these methods merely use basic GCN
models, which often suffer from the over-smoothing problem, into
FL without unique customization for the federated setting.

3 Problem Definition
We denote U = {𝑢1, 𝑢2, . . . , 𝑢N𝑢

} to be the user set and I =

{𝑖1, 𝑖2, . . . , 𝑖N𝑖
} as the item set. Here,N𝑢 andN𝑖 indicate the counts

of users and items, accordingly, with the aggregate node count
being N = N𝑢 + N𝑖 . Consider A ∈ RN×N as the adjacency matrix
representing user-item interactions, where A𝑛,𝑚 = 1 if an interac-
tion between user 𝑢𝑛 and item 𝑖𝑚 is observed. Using this adjacency
matrix, we can construct a user-item bipartite graph 𝐺 = (V, E),
whereV includes user and item nodes, and E denotes edges. If A
has an entry A𝑛,𝑚 = 1, it indicates the presence of an edge con-
necting user 𝑢𝑛 with item 𝑖𝑚 within the bipartite graph 𝐺 . Let 𝐺𝑠 ,
where 𝑠 belongs to the set {1, . . . ,N𝑠 }, represents a subgraph, with
N𝑠 indicating the total number of subgraphs. The local GCN model
takes the aforementioned data as input and iteratively aggregates
features from neighboring nodes within subgraphs, facilitating the
learning of user and item representations.

In federated settings, historical interactions between users and
items are stored on individual user devices rather than centrally on a
server. Regarding the graph structure, the user-item bipartite graph
G adopts a decentralized approach where every user maintains a
private graph, which includes their own interactions with items.
However, interactions from a single user alone are insufficient to
train the model. To build a graph with multiple user nodes and
their interacted items for training the local GCN model, we adopt
the strategy employed in [36]. Each user uploads their privacy-
preserved embedding along with encrypted item IDs to the server.
The server then returns the encrypted user embeddings and item
IDs to all users. This allows each user to receive multiple users’
embeddings without disclosing identities, enabling them to access
neighboring users and expand their local interaction graph G.

4 Methodology
The framework of the proposed CPF-GCN model is illustrated in
Fig. 2. CPF-GCN consists of a local interest-aware recommendation
module and a cluster-driven global server. The local GCN model
can allocate users into different subgraphs and perform adaptive
graph convolution. The server can cluster users and implement
aggregation based on these clusters to update the model. They
work collaboratively to achieve personalized recommendations.

4.1 Local Interest-aware Recommendation
Module

For the local client, we propose an interest-aware GCN module that
performs subgraph-enhanced adaptive graph convolutions based on
user interests. Additionally, we introduce adversarial optimization
to further improve the performance and robustness of our module.

4.1.1 Subgraph Extraction. This section details the generation
of subgraph 𝐺𝑠 from the user-item interaction graph 𝐺 , aiming to
group users by interests. User grouping operates as an unsupervised
classification task, with users being characterized through feature
vectors and allocated to clusters. Specifically, each user’s feature
vector combines information from the graph structure and their ID
embedding. We refer to this process as feature fusion:

F𝑢 = 𝜎

(
W1

(
e(0)𝑢 + e(1)𝑢

)
+ b1

)
, (1)



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Xingyuan Mao, et al.

Global Server

Local Client

Upload Distribute

User-item Interaction Graph

𝑢1

𝑳𝒂𝒚𝒆𝒓 𝟏
𝑢3 𝑢5

𝑖1 𝑖2 𝑖4 𝑖5

…
𝑳𝒂𝒚𝒆𝒓 𝒍

𝑳𝒂𝒚𝒆𝒓 𝟏
𝑢2 𝑢4

𝑖1 𝑖3 𝑖5

…

𝑳𝒂𝒚𝒆𝒓 𝒍

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Subgraph 𝑮𝟏

Subgraph 𝑮𝟐

𝐸(0)

𝐸(2)

𝐸(𝐿)

…

Adaptive Graph Convolution

Clustering Client Sampling

Subgraph Extraction

𝐸

: Subgraph combination

: Cosine similarity

: Personalized prediction

: Layer combination

𝐸(1)

𝑒𝑢
0 𝑒𝑢

1

2-layer MLP

Feature Fusion

𝑃𝑢 = 𝑀𝐿𝑃(𝐹𝑢)

𝐹𝑢

Classification

ℒ𝑎𝑑𝑣
𝑃𝑢

Layer Adaptation

Graph Convolution

𝐸𝑠
𝑙−1 𝐸𝑠

0

𝐸𝑠
𝑙
= ෨𝑇𝑠𝐸𝑠

𝑙−1

𝐸𝑠
𝑙

𝐸𝑠
𝑙

Model Aggregation

𝜃𝑛
𝑡

𝜃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡

𝜃𝑙𝑜𝑐𝑎𝑙,𝑛
𝑡

𝜃𝐶(𝑛)
𝑡

Personalized 
Rec. Model

Figure 2: The framework of CPF-GCN. It consists of a local interest-aware GCN module and a cluster-driven global server.

where F𝑢 represents the user feature obtained through feature fu-
sion. The user embedding of the ego layer is denoted by e(0)𝑢 , and
e(1)𝑢 denotes the user embedding following the first layer of prop-
agation within full graph 𝐺 . The weight matrix and bias vector
for the fusion method are respectively symbolized by𝑾1 ∈ R𝑑×𝑑

and 𝒃1 ∈ R1×𝑑 , where 𝑑 indicates the size of the embedding. The
activation function 𝜎 is chosen to be LeakyReLU, given its efficacy
in processing either positive or slightly negative information. To as-
sign users to distinct subgraphs, F𝑢 is further transformed through
a two-layer neural network as follows:

H𝑢 = 𝜎 (W2F𝑢 + b2) ,
P𝑢 = W3H𝑢 + b3,

(2)

where P𝑢 is the prediction vector indicating the user’s group as-
signment based on the highest value’s position within the vector.
W2 ∈ R𝑑×𝑑 and W3 ∈ R𝑑×N𝑠 are weight matrices for the two
layers of the neural network, while b2 ∈ R1×𝑑 and b3 ∈ R1×N𝑠

represent the bias vectors for these layers. Users with similar em-
beddings will produce similar prediction vectors via Eq. (2), thereby
being classified into the same group. The goal of creating subgraphs
is to form a matrix that maps user-item relationships within each

subgraph. For the matrix of each subgraph, user-item adjacencies
from the original graph are excluded if the corresponding user does
not belong to the group, based on the group information obtained.

4.1.2 Subgraph-enhancedAdaptiveGraphConvolution. Bas-
ed on the generated subgraphs, we propose a subgraph-enhanced
adaptive graph convolution method for our local GCN model. Since
our model is built upon the LightGCN framework, let us first review
the graph convolution method in LightGCN. The node embedding
of ego layer is represented by E(0) ∈ RN×𝑑 . For the 𝑙-th layer,
we represent the node embedding with E(𝑙 ) . The simplified graph
convolution in LightGCN is described by:

E(𝑙 ) = T̃E(𝑙−1) , (3)

where T̃ is the transition matrix, formulated as T̃ = D−1/2AD−1/2.
Here, A represents the previously defined adjacency matrix, and D
represents the corresponding diagonal matrix where each element
D𝑖𝑖 indicates the count of non-zero entries within the 𝑖-th row of A.
This equation signifies that the node embeddings for the 𝑙-th layer
are obtained through the aggregation of data from the (𝑙 − 1)-th
layer with the transition matrix T̃.
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However, aggregating features iteratively from higher-order
neighbors can cause the over-smoothing problem and a dilution of
unique node features. This process overlooks the variety of higher-
order features and allows noise from neighbors to degrade the
learning of embeddings, consequently diminishing model effective-
ness. To address this problem, our proposed model groups users
into subgraphs and performs the high-order propagation within
these subgraphs. Similarly, the convolution process within a sub-
graph employs a symmetric transition matrix T̃𝑠 = D−1/2

𝑠 A𝑠D
−1/2
𝑠 .

The adjacency matrix A𝑠 for the subgraph 𝐺𝑠 is derived from the
interaction matrix R𝑠 ∈ RN𝑠𝑢×N𝑠𝑖 , with N𝑠𝑢 and N𝑠𝑖 represent-
ing the counts of users and items in the subgraph 𝐺𝑠 , respectively.
Specifically, A𝑠 is structured as follows:

A𝑠 =

(
0 R𝑠
RT𝑠 0

)
. (4)

Given that the immediate connections linking users to items
significantly reflect user preferences, in our model, the first-order
graph convolution operation incorporates all first-order neighbors.
In other words, the first layer embedding propagation acts within
the full graph 𝐺 , described by the following formulation:

E(1) = T̃E(0) . (5)

For the high-order graph convolution, we perform each convolu-
tion operation within subgraphs, and we design an adaptive graph
convolution mechanism that adaptively extracts the information
from the ego layer to mitigate the introduction of extraneous noise.
In this context, a node within a subgraph is restricted to utilizing
data solely from its neighbor nodes within the same subgraph. This
ensures that users maintain access to information from all intercon-
nected items, as these items are part of the user’s subgraph, while
keeping the noise from the high-order neighbors out. We formulate
the high-order graph convolution within subgraph 𝐺𝑠 as:

E(𝑙 )𝑠 = T̃𝑠E
(𝑙−1)
𝑠 ,

E(𝑙 )𝑠 =

(
m(𝑙 ) + 𝜉

)
E(𝑙 )𝑠 ,

(6)

where 𝑙 ⩾ 2, E(𝑙 )𝑠 represents the embedding of the nodes in subgraph
𝐺𝑠 after the 𝑙-th convolution layer. The similarity vector m(𝑙 ) ∈
RN𝑠 captures node similarity between the current layer and the ego
layer, aiming to preserve crucial features while adaptively extract
information from the ego layer. The small quantity 𝜉 serves to
ensure there is no zero vector in E(𝑙 )𝑠 . The similarity measurement
m(𝑙 ) is determined by:

m(𝑙 ) = sim
(
E(𝑙 )𝑠 , E(0)𝑠

)
. (7)

In this context, cosine similarity serves as the sim function which
calculates the similarity between two vectors e𝑖 = E(𝑙 )

𝑠 [𝑖, :] and
e𝑗 = E(0)𝑠 [ 𝑗, :] using the formula:

sim
(
e𝑖 , e𝑗

)
=

e𝑖 · e𝑗
max

(
∥e𝑖 ∥2∥e𝑗 ∥2, 𝜖

) , (8)

where 𝜖 represents a tiny constant introduced to prevent division
by zero. The adaptation of embeddings enhances the integration of
hidden layers akin to the ego layer while diminishing the impact of
those layers deviating from it, preserving the uniqueness of each

node’s embedding so that they do not become increasingly similar
to other nodes. Thus further alleviating the over-smoothing issue.

After getting node embeddings at the 𝑙-th layer for each sub-
graph, the ultimate node embeddings for the 𝑙-th layer are con-
structed by combining all embeddings for the 𝑙-th layer from vari-
ous subgraphs as follows:

E(𝑙 ) =
∑︁
𝑠∈𝐺𝑠

E(𝑙 )𝑠 . (9)

To obtain the final embeddings for users and items, we com-
bine embeddings from all layers, similar to the approach used in
LightGCN, which can be expressed by the following equation:

E = 𝛼0E(0) + 𝛼1E(1) + · · · + 𝛼𝑙E(𝐿) , (10)
where 𝛼𝑙 ≥ 0 denotes the weight given to the 𝑙-th layer. In line with
LightGCN, this weight is uniformly set to 1

𝐿+1 , ensuring an equal
contribution from each layer to the final embedding.

4.1.3 Personalized Prediction and Adversarial Optimization.
In our system, each user benefits from a uniquely tailored recom-
mendation model 𝜃𝑡𝑛 to achieve personalized multimedia recom-
mendations. Details on formulating 𝜃𝑡𝑛 will be provided in Section
4.2.2. Using this personalized model, we can acquire the final repre-
sentations for users and items. Then, to get personalized predictions,
we dot product the final embeddings for each user and item:

𝑦𝑢𝑖 = e𝑢e𝑇𝑖 , (11)

where e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑 are the final embeddings of user 𝑢 and
item 𝑖 , respectively.

After getting the prediction, we use an adversarial method to
optimize our model. One commonly used loss function in recom-
mender systems is the pairwise Bayesian personalized ranking
(BPR) loss [32], designed to promote the model to assign higher
scores to observed interactions than those unobserved. The BPR
loss can be defined by:

L𝐵𝑃𝑅 (𝜃 ) = −
N𝑢∑︁
𝑛=1

∑︁
𝑖∈I+

𝑢

∑︁
𝑗∉I+

𝑢

ln𝜎
(
𝑦𝑢𝑖 (𝜃 ) − 𝑦𝑢 𝑗 (𝜃 )

)
, (12)

where 𝜃 represents the model parameters. 𝜎 is the sigmoid function,
and I+

𝑢 denotes the items with which 𝑢 has interacted before.
However, BPR lacks robustness against small data perturbations,

leading to potentially poorer generalization on unseen data [10].
To address this issue, we design a loss function that introduces
adversarial perturbations to the model parameters during training.
We formulate the adversarial loss as follows:

L𝑎𝑑𝑣 (𝜃 ) = L𝐵𝑃𝑅 (𝜃 ) + 𝜆𝑎𝑑𝑣L𝐵𝑃𝑅 (𝜃 + Δ) + 𝜆𝐿2 ∥𝜃 ∥
2 , (13)

where 𝜆𝐿2 controls the 𝐿2 regularization strength to prevent over-
fitting and 𝜆𝑎𝑑𝑣 controls the strength of the adversarial component.
Δ denotes the perturbations on model parameters, specifically can
be formulated as follows:

Δ = 𝜆𝛿 · ∇𝜃L𝐵𝑃𝑅 (𝜃 )
∥∇𝜃L𝐵𝑃𝑅 (𝜃 )∥2

, (14)

where 𝜆𝛿 is a hyper-parameter controlling the magnitude of the
perturbations and ∇𝜃L𝐵𝑃𝑅 (𝜃 ) represents the gradient of the BPR
loss with respect to the model parameters 𝜃 . The denominator here
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normalizes the gradient to ensure that the perturbation is solely
directional, keeping its magnitude controlled by 𝜖 .

The training process of our proposed adversarial loss can be seen
as engaging in a minimax game:

𝜃
′
,Δ

′
= arg min

𝜃
max
Δ

L𝐵𝑃𝑅 (𝜃 ) + 𝜆𝑎𝑑𝑣L𝐵𝑃𝑅 (𝜃 + Δ), (15)

where the optimization of model parameters 𝜃 serves as the mini-
mizer, while the perturbations Δ act as the maximizer, seeking to
find the most challenging perturbations against the current model.
This game iteratively proceeds until achieving convergence.

By compelling the model to learn more robust and distinctive
features, our proposed adversarial optimization method can not
only bolster the model’s resilience to slight variations in data but
also enhance its generalization ability.

4.2 Global Cluster-driven Federated Framework
For the global server, we propose a cluster-driven federated learning
framework. This framework performs privacy-preserving model
and embedding aggregation within different scopes to generate
global and cluster-level models, which are used for creating the
previously mentioned personalized recommendation model.

4.2.1 User Clustering and Sampling. Similar to the earlier pro-
cess of extracting local subgraphs, the global server clusters users
into different classes based on their embeddings e𝑢,𝑛 , with user 𝑛
being assigned to cluster 𝐶 (𝑛). Standard clustering techniques like
K-means are suitable here. The node representation e𝑢,𝑛 benefits
from a combination of characteristic and joint features unique to
every user, thereby enriching the representation.

In federated recommender systems, while conventional client
selection techniques randomly pick clients from the complete client
set, we propose a novel approach that is particularly beneficial
under conditions where communication costs are high. Specifically,
we introduce a cluster-based client samplingmethod that adaptively
selects a handful of random users from each cluster, relative to
the size of the cluster, for participation in the model aggregation.
By choosing clients that accurately represent their clusters, our
federated model can operate more effectively and efficiently.

4.2.2 Server Aggregation and Personalized Model Genera-
tion. Server aggregation incorporates Local Differential Privacy
(LDP) as a key privacy-preserving mechanism in our system. LDP,
an extension of differential privacy, ensures data confidentiality by
encrypting uploaded gradients. This encryption involves clipping
gradients whose 𝐿∞-norm exceeds a certain threshold 𝛿 and adding
zero-mean Laplacian noise to protect privacy. For each client’s
gradient 𝑔, we modify it through the equation:

𝑔′ = 𝑐𝑢𝑡 (𝑔, 𝛿) + 𝐿𝑎𝑝 (0, 𝜆), (16)

where 𝑔′ represents encrypted gradient, 𝑐𝑢𝑡 (·, 𝛿) refers to the cut-
off operation at threshold 𝛿 , and 𝐿𝑎𝑝 (0, 𝜆) adds Laplacian noise
characterized by a scale parameter 𝜆.

Using the encrypted gradient, our framework executes aggrega-
tion for model parameters and embeddings. During aggregation at
epoch 𝑡 , the server creates a global model 𝜃𝑡

𝑔𝑙𝑜𝑏𝑎𝑙
for all users, as

well as cluster-level models 𝜃𝑡
𝐶 (𝑛) , with 𝐶 (𝑛) signifying the cluster

that includes user 𝑛. These models are formed using a weighted

Table 1: Statistics of datasets.

Dataset #Users #Items #Interactions Density

Foursquare 1083 38,333 91,024 0.22%
Lastfm-2K 1,860 17,632 92,601 0.28%

MovieLens-100K 943 1,682 100,000 6.30%

sum based on local data volumes from participating clients. The
update of the global model 𝜃𝑡

𝑔𝑙𝑜𝑏𝑎𝑙
is given by:

𝜃𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

= 𝜃𝑡−1
𝑔𝑙𝑜𝑏𝑎𝑙

− 𝜂 · 𝑔, (17)

where 𝜂 represents the learning rate, and 𝑔 is the aggregated gradi-
ent for all selected clients S, calculated as a weighted sum of the
encrypted gradients 𝑔′𝑛 :

𝑔 =
∑︁
𝑛∈S

𝐷𝑛∑
𝑖∈S 𝐷𝑖

𝑔′𝑛, (18)

where 𝐷𝑛 indicates the local data amount of client 𝑛. Similarly, the
update of the cluster-level model 𝜃𝑡

𝐶 (𝑛) are formulated as:

𝜃𝑡
𝐶 (𝑛) = 𝜃

𝑡−1
𝐶 (𝑛) − 𝜂 · 𝑔𝐶 (𝑛) , (19)

where 𝑔𝐶 (𝑛) is the aggregated gradient for the cluster 𝐶 (𝑛), calcu-
lated as a weighted sum of the encrypted gradients 𝑔′𝑛 from the
selected clients within the cluster.

In the following step, we tailor a personalized recommendation
model for each user as described in Section 4.1.3. Consider 𝜃𝑡

𝑙𝑜𝑐𝑎𝑙,𝑛

as the local GCN model learned at epoch 𝑡 for user 𝑛. The global
model 𝜃𝑡

𝑔𝑙𝑜𝑏𝑎𝑙
, and the cluster-level model 𝜃𝑡

𝐶 (𝑛) , combined with
𝜃𝑡
𝑙𝑜𝑐𝑎𝑙,𝑛

, are used to generate a personalized recommendation model
𝜃𝑡𝑛 for user 𝑛 using the formula:

𝜃𝑡𝑛 = 𝛽𝑛,1𝜃
𝑡
𝑙𝑜𝑐𝑎𝑙,𝑛

+ 𝛽𝑛,2𝜃𝑡𝐶 (𝑛) + 𝛽𝑛,3𝜃
𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

, (20)

where 𝛽𝑛,1, 𝛽𝑛,2, 𝛽𝑛,3 are the weights that balance the contributions
of the local, cluster-level, and global models, respectively. These
coefficients can be either fixed or learnable parameters.

5 Experiment
5.1 Experimental Setup
5.1.1 Datasets. We use three datasets enriched with multimedia
information, including Foursquare [37], a dataset capturing user
check-ins; Lastfm-2K [3], a collection of music listening histories
from the Last.fm platform; and MovieLens-100K [8], a dataset
of movie ratings by users. All these datasets are publicly available
and commonly used to evaluate multimedia recommender system
models, the key characteristics of which are shown in Table 1.

5.1.2 Baseline Methods. We conduct comparisons between our
CPF-GCN and several representative or cutting-edge models to
prove its efficacy. These methods include centralized approaches as
well as federated methods, specifically as follows:

The centralized models:
• BPR [32]: It is a typical matrix factorization algorithm opti-
mized through Bayesian personalized ranking (BPR) loss.



Cluster-driven Personalized Federated Recommendation with Interest-aware GCN for Multimedia MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 2: Overall performance comparison. The best results are in bold and the second-best results are underlined.

Dataset Metric Centralized Baselines Federated Baselines CPF-GCN Improv.BPR NGCF LightGCN FedMF FedNCF FedGNN PerFedRec FedIS PFedRec

Foursquare

Recall@5 0.3176 0.3490 0.3601 0.3324 0.3209 0.3361 0.3878 0.3223 0.4033 0.4515 +12.0%
NDCG@5 0.2307 0.2599 0.2728 0.2298 0.2154 0.2399 0.3144 0.2301 0.2913 0.3768 +19.8%
Recall@10 0.4044 0.4404 0.4552 0.4304 0.4203 0.4146 0.4552 0.4312 0.4782 0.5171 +8.1%
NDCG@10 0.2589 0.2909 0.3023 0.2778 0.2627 0.2690 0.3361 0.2638 0.3142 0.3965 +18.0%

Lastfm

Recall@5 0.7014 0.7043 0.7269 0.6930 0.6676 0.6817 0.6258 0.7258 0.7426 0.7624 +2.7%
NDCG@5 0.5956 0.6183 0.6062 0.5653 0.5341 0.5496 0.5523 0.6109 0.6184 0.6814 +10.2%
Recall@10 0.7405 0.7822 0.7892 0.7643 0.7312 0.7629 0.6973 0.7833 0.7862 0.8016 +1.6%
NDCG@10 0.6023 0.6301 0.6272 0.5820 0.5598 0.5750 0.5773 0.6313 0.6440 0.6932 +7.6%

MovieLens

Recall@5 0.4563 0.4624 0.4687 0.4782 0.4379 0.3606 0.5736 0.5901 0.5776 0.6829 +15.7%
NDCG@5 0.3231 0.3243 0.3209 0.3427 0.2930 0.2437 0.4580 0.4502 0.4277 0.5649 +23.3%
Recall@10 0.6238 0.6257 0.6320 0.6489 0.6115 0.5345 0.6607 0.7205 0.7189 0.7709 +7.0%
NDCG@10 0.3563 0.3755 0.3721 0.3902 0.3417 0.2966 0.4736 0.5052 0.4780 0.5982 +18.4%

• NGCF [35]: It is a representative GNN-based model that
propagates embeddings inside a bipartite graph to capture
collaborative signals through high-order connectivities.

• LightGCN [9]: This model simplifies NGCF by eliminating
the feature transformation and nonlinearities. It implements
a light graph convolution method for message propagation.

The federated models:
• FedMF [4]: This model uses federated matrix factorization
and employs stochastic gradient descent while safeguarding
gradients through a secure aggregation method.

• FedNCF [30]: This is a federated recommendation model
built upon the neural collaborative filtering (NCF) frame-
work. It can train NCF models while preserving user privacy.

• FedGNN [36]: It utilizes the GNN for privacy-preserving
federated recommendation, using LightGCN as the backbone
model for local clients.

• PerFedRec [25]: It is a federated recommendation model
enhanced with a joint representation learning technique to
achieve personalized recommendations.

• FedIS [5]: It is an efficient federated recommendation model
that can reduce user feature dependencies through the train-
ing of a global item-based collaborative filtering model.

• PFedRec [39]: It proposes a dual personalization approach
to achieve detailed customization for both users and items,
allowing slight adjustments to item embeddings.

5.1.3 Evaluation Metrics. We apply the commonly used leave-
one-out method for evaluation [35]. We sort the users’ behaviors by
time. For each user in the dataset, their most recent interaction is
designated for testing, while all prior interactions serve as training
data. Following previous settings [25, 29], we select 100 uninter-
acted items randomly and place these items in the test set, then
rank the test item within this set. The evaluation protocols we used
are Recall@𝑘 and NDCG@𝑘 , where 𝑘 is chosen to be 5 or 10, using
the top-5 and top-10 results to compute the performance.

5.1.4 Hyper-parameter Settings. Our CPF-GCN model is im-
plemented in PyTorch. The number of training epochs is set to 500
with an early stopping strategy. The embedding size 𝑑 is fixed to 64

Table 3: Ablation study on three datasets. R@5 andN@5 refer
to Recall@5 and NDCG@5, respectively.

Model Foursquare Lastfm MovieLens
R@5 N@5 R@5 N@5 R@5 N@5

CPF-GCN-s 0.4174 0.3530 0.7091 0.6370 0.5546 0.4349
CPF-GCN-p 0.3259 0.2423 0.6694 0.5480 0.4274 0.2889
CPF-GCN-a 0.4395 0.3751 0.7543 0.6756 0.6702 0.5508

CPF-GCN 0.4515 0.3768 0.7624 0.6814 0.6829 0.5649

for both users and items, and the embeddings are initialized using
the Xavier method [7]. The learning rate is initially configured at
0.01, and we apply a dropout ratio of 0.3. For the adversarial set-
tings, the coefficients 𝜆𝑎𝑑𝑣 and 𝜖 are both set to 0.1 to control the
strength of adversarial perturbations. There are 128 users that take
part in each training round, and we defaultly divide these users
into 3 clusters. The parameters 𝛽𝑛,1, 𝛽𝑛,2, 𝛽𝑛,3, which are used in
generating personalized recommendation model, are all fixed to 1

3 .

5.2 Performance Comparison
The performance comparison outcomes are shown in Table 2. The
results show that compared with the baseline models, our proposed
model consistently provides better performance. The most signif-
icant improvement is seen in the MovieLens dataset, since each
user in this dataset has interacted with a large number of items,
which helps us tailor personalized recommendation models for
them. Specifically, we can find that CPF-GCN achieves a significant
lead over other models in terms of NDCG, indicating that our per-
sonalized model excels in capturing relevant items and optimizing
their ranking order. Although the lead in recall is not as high as
that in NDCG, there is still a noticeable improvement. Additionally,
for different top-k values, our model shows a more significant lead
at 𝑘 = 5 compared to 𝑘 = 10. This suggests that our model is partic-
ularly effective at ranking the most relevant items at the top of the
recommendation list, allowing us to recommend the multimedia
content that users are most interested in.

5.3 Ablation Study
To prove the impact of some important modules of CPF-GCN, we
perform ablation experiments on three datasets. We implement
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Figure 3: Effect of number of layers and subgraphs.

three variants of our model: CPF-GCN-s replaces the subgraph-
enhanced adaptive graph convolution method with the primary
simplified graph convolution introduced in LightGCN. CPF-GCN-
p modifies CPF-GCN by removing the user clustering step and
personalized recommendation module, thereby creating a unified
model for all users. CPF-GCN-a removes the adversarial optimiza-
tion method, using the BPR loos function instead. Table 3 displays
the outcomes of ablation experiments in terms of Recall@5 and
NDCG@5. We can find that the full CPF-GCN model outperforms
all its variants. Specifically, the CPF-GCN-p model shows the poor-
est performance, proving that our proposed methods can effectively
customize personalized recommendation models for users, achiev-
ingmore accurate recommendations. The performance also declines
inCPF-GCN-s, demonstrating the superiority of our proposed local
interest-aware GCNmodel over existing GCNs. The performance of
CPF-GCN-a also decreases compared to the full CPF-GCN, indicat-
ing that adversarial optimization contributes to the improvement
of model robustness and generalization performance.

5.4 Hyper-parameter Analyses
In this section, we explore how some key hyper-parameters affect
the performance of the CPF-GCN. These parameters include the
number of layers and subgraphs, the coefficient 𝜆𝑎𝑑𝑣 , which controls
the strength of the adversarial loss, and the number of user clusters.

5.4.1 Effect of Number of Layers 𝐿 and Subgraphs N𝑠 . We
implement CPF-GCN with varying numbers of layers 𝐿 and sub-
graphsN𝑠 , as shown in Fig. 3. From the perspective of 𝐿, CPF-GCN
performs best with 𝐿 = 2 or 𝐿 = 3 on two datasets. As we stack
more than three layers, the performance of models with N𝑠 = 1,
i.e., only one graph, significantly declines, indicating the issue of
over-smoothing. In contrast, models with multiple subgraphs show
more stable performance, suggesting our method can effectively
mitigate the over-smoothing problem. Regarding N𝑠 , models with
N𝑠 = 2 andN𝑠 = 3 perform better, while theN𝑠 = 4 model, despite
being the most stable with increased layers, also cuts off many im-
portant connections between short-distance nodes. As a result, its
performance after stacking more layers is even worse than that of
models with fewer layers and subgraphs, and additionally leads to
high communication costs due to the larger number of subgraphs.

5.4.2 Effect of Adversarial Coefficient 𝜆𝑎𝑑𝑣 . 𝜆𝑎𝑑𝑣 is a coeffi-
cient that controls the strength of the adversarial loss. The perfor-
mance of CPF-GCN with different 𝜆𝑎𝑑𝑣 is shown in Fig. 4. From the
results, we can see that the two datasets have a significant difference
in sensitivity to 𝜆𝑎𝑑𝑣 . For the Foursquare dataset, CPF-GCN per-
forms best when 𝜆𝑎𝑑𝑣 = 10. In contrast, for the MovieLens dataset,
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Figure 4: Effect of 𝜆𝑎𝑑𝑣 .
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Figure 5: Effect of number of user clusters.

the best performance is observed at 𝜆𝑎𝑑𝑣 = 0.01, after which the
model performance significantly decreases. This indicates that ex-
cessive artificial perturbations may disrupt the training process and
reduce the model performance, requiring us to identify the most
appropriate value of 𝜆𝑎𝑑𝑣 for different datasets.

5.4.3 Effect of Number of User Clusters 𝐾 . User clusters are
generated in the global server to achieve personalized recommen-
dations. Fig. 5 illustrates the impact of different numbers of user
clusters 𝐾 . The results show that compared to 𝐾 = 1, where all
users are in the same cluster, dividing users into two or more clus-
ters enhances the model’s recommendation performance. CPF-GCN
performs best when 𝐾 = 2, and although the performance slightly
decreases as 𝐾 increases, it still remains better than when 𝐾 = 1.

6 Conclusion
In this paper, we introduce a GCN-based personalized federated
multimedia recommendation framework named CPF-GCN, which
addresses the challenges of over-smoothing, data heterogeneity,
and high communication costs associated with existing GCN-based
federated recommender systems. By integrating the local interest-
aware GCN module with the global cluster-driven federated frame-
work, CPF-GCN can effectively capture user preference, achiev-
ing personalized multimedia recommendations while preserving
user privacy. Extensive experiments on three multimedia datasets
demonstrate that CPF-GCN significantly outperforms state-of-the-
art federated recommendation models.
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