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Abstract

Unprecedented visual details of biological structures are being revealed by
subcellular-resolution whole-brain 3D microscopy data, enabled by recent ad-
vances in intact tissue processing and light-sheet fluorescence microscopy (LSFM).
These volumetric data offer rich morphological and spatial cellular information,
however, the lack of scalable data processing and analysis methods tailored to
these petabyte-scale data poses a substantial challenge for accurate interpretation.
Further, existing models for visual tasks such as object detection and classification
struggle to generalize to this type of data. To accelerate the development of suitable
methods and foundational models, we present CANVAS, a comprehensive set
of high-resolution whole mouse brain LSFM benchmark data, encompassing six
neuronal and immune cell-type markers, along with a set of cell annotations and a
leaderboard. We also demonstrate challenges in generalization of baseline models
built on existing architectures, especially due to the heterogeneity in cellular mor-
phology across phenotypes and anatomical locations in the brain. To the best of
our knowledge, CANVAS is the first and largest LSFM benchmark capturing intact
mouse brain tissue at subcellular level, and includes extensive annotations of cells
throughout the brain.

1 Introduction

The brain is comprised of thousands of distinct cell types with diverse molecular, morphological, and
functional properties that exhibit region-specific heterogeneity [2, 6, 16] and reflect local microenvi-
ronments. While thin-section imaging can only capture a limited view of cellular diversity[22], recent
advances in light-sheet fluorescence microscopy (LSFM), tissue clearing, and labeling techniques
now enable high-resolution imaging of intact tissues, including whole mouse brains. Such advances
open new opportunities for in-depth phenotyping of individual cells throughout the brain, integrating
their molecular, morphological, and microenvironmental features.

However, large-scale, subcellular-resolution 3D data of intact tissues, such as mouse brains, often
reach the petabyte scale in real-world applications, and the lack of robust data processing and analysis
techniques tailored to these datasets hinders comprehensive interpretation. Scalable end-to-end ETL
(Extract, Transform, Load) pipelines and generalizable machine learning methods are essential for
extracting meaningful biological insights. While machine learning has made remarkable progress
in computer vision tasks including object detection, existing methods in biomedical imaging and
related domains still struggle to generalize to these types of data. As new data modalities continue to
emerge, the need for foundational models that can capture generalizable features across modalities
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is becoming increasingly important. Although various strategies have been proposed to build such
models without large annotated datasets, making both data and annotations publicly available remains
critical for accelerating progress.

In this work, we present a new high-resolution light-sheet dataset (CANVAS) and a leaderboard for a
cell detection task. The CANVAS data set is composed of 3D images of whole brains labeled with one
of six cell-type markers (NeuN, cFos, PV, TH, Iba1, and GFAP), each with cell centroid annotations
for three regions of interest (Table 3). The raw volumetric data cover the entire mouse brain
except for the cFos marker, which covers a hemisphere, with 1,600-1,850 z-slices at approximately
7,000×10,000 pixels per slice, yielding 44,240 and 45,726 annotated cell centroids for train and test
set. Using CANVAS, we demonstrate that baseline models from existing architectures struggle to
generalize, underscoring the importance of publicly available datasets like CANVAS and the domain’s
need for foundational models. To our knowledge, CANVAS represents the first and largest publicly
available LSFM dataset with extensive annotations, evaluation metrics, and a benchmark leaderboard,
serving as a critical resource for developing robust foundational models for object detection in LSFM
and other biological volumetric data. The dataset, annotations, and leaderboard are available at
https://canvas.lct-data.com.

2 CANVAS: whole-brain volumetric data

CANVAS showcases six distinct cell type markers: Neuron Specific Nuclear Protein (NeuN), Ion-
ized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), Tyrosine
hydroxylase (TH), cFos (a neural activity marker), and Parvalbumin (PV). Enabling investigation of
specific cell populations within complex tissues like the brain, makes molecular cell type markers
invaluable tools in neuroscience and biomedical research. The six protein-based markers in this
benchmark represent only a small subset of available markers, but each highlights a distinct and
functionally important cell class relevant to health and disease. In addition, these markers exhibit
distinct morphological characteristics, often varying by brain region.

NeuN is a marker that localizes neuronal cell bodies across the brain. NeuN expression is ubiquitous
throughout the brain with varying regional densities. IBA1 labels microglia, resident immune cells,
also with ubiquitous expression, with regional differences in both density and morphology that reflect
local immune states. GFAP marks astrocytes, which are highly concentrated along the fiber tracts
and surrounding vasculature; astrocytes exhibit significant regional and morphological heterogeneity.
TH is a classic marker for dopaminergic neurons, found in high densities within several subcortical
nuclei, with extensive long-range axonal projections throughout the brain. PV labels one of the
largest classes of interneurons, displaying variable densities and morphologies across the cortical and
subcortical structures, as well as the cerebellum. cFOS, an immediate early gene product, serves as a
proxy for recent neuronal activation, providing a brain-wide snapshot of activity patterns in response
to stimuli or behavior. cFOS expression patterns can vary greatly between individual animals but
are typically morphologically consistent. Together, these markers encompass a diverse range of cell
types and functions, capturing the spatial complexity and regional specialization of the intact brain.

Data acquisition. The workflow for data acquisition begins with SHIELD preservation[17] of
mouse brains to preserve the integrity of biomolecules during extended tissue processing. Next,
delipidation removes lipids, the major component of cellular membranes, to improve molecular
and optical access for downstream immunolabeling and imaging. Fluorescently labeled molecular
probes were uniformly and efficiently delivered throughout intact samples via the SmartBatch+
system, which utilizes probe-binding affinity modulation and electrophoretically enhanced molecular
transport[24][12]. Finally, samples are rendered transparent by refractive-index matching with
EasyIndex and imaged using SmartSPIM at 3.6X magnification, generating whole-brain datasets
with voxel sizes of 1.8 µm × 1.8 µm × 4 µm. Acquiring one channel whole brain dataset takes 40
minutes and generates ~100 GB of data.

Data processing and visualization. A series of post-processing steps are applied after LSFM data
acquisition to improve image quality while preserving underlying scientific information[20]. First,
destriping removes stripe artifacts introduced by the light paths during SmartSPIM imaging. Second,
because multiple z-stack tiles are required for whole mouse brain coverage, each tile stack must be
stitched together, producing a series of TIFF images compressed with lossless zlib (level 1). Each
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TIFF file represents a complete XY plane at a single z-step, determined during imaging; in our case,
this corresponds to a 4 µm z-axis depth. The stitched data are then converted into the Zarr format
[25], suitable for efficiently storing and handling large volumetric datasets. Finally, the Zarr-formated
data are served via Neuroglancer [15], providing an interactive visualization.

3 Cell detection benchmark

An adult mouse brain contains approximately 70 million neurons and 17 million immune cells. Given
the existence of thousands of distinct cell types in the brain, the markers we selected are expressed
in hundreds of thousands to millions of cells. For example, microglia, labeled by IBA1, account
for 5-12% of the total cellular population. Thus, detecting individual cells labeled by each marker
across the brain requires automated and scalable computational approaches. Over the past decades,
deep neural networks (DNNs) have achieved state-of-the-art performance in computer vision tasks,
including object detection. In principle, these models can also be applied to localize individual cells
in LSFM data. Here, we propose a cell detection benchmark using the CANVAS dataset, along with
baseline models built on established DNN backbones. We further show that these baseline models
struggle to generalize and underperform on subsets CANVAS—particularly when cells exhibit diverse
morphological profiles.

3.1 Baseline models

U-Net [18] and ResNet [10] architectures are among the most widely used backbones in computer
vision tasks for biomedical image analysis. Numerous variations of these networks have been
proposed[13], many incorporating 3D convolution layers to handle volumetric data [5, 3]. More
recently, models based on the Vision Transformer (ViT) architecture [7] have also been introduced.
However, most of these existing models were developed and trained for other data modalities, such as
computed tomography (CT), functional magnetic resonance imaging (fMRI), X-ray, or histopathology
[9, 8, 19, 23], with relatively few tailored for microscopy data—and even then, typically for specific
subdomains (e.g., retina confocal imaging) [4]. In addition, training ViT models requires extensive
computational resources, even for the smallest networks, and they are generally inefficient in terms
of inference speed when applied to large-scale datasets such as CANVAS. For our benchmark, we
adopted ConvMixerNet [21] as the backbone for baseline models. ConvMixerNet employs a concept
similar to patch embeddings in ViT but is simpler and sufficiently effective on our dataset to serve as
a baseline. As ConvMixerNet was originally proposed for semantic segmentation, we introduced an
additional layer to transform the network’s probability heatmap into discrete 3D cell locations using
non-maximum suppression, as shown in Appendix A. With this layer, a voxel at position (x, y, z) is
identified as a local maximum and defined as a cell centroid if:

H(x, y, z) = max
|i|≤dmin

|j|≤dmin

|k|≤dmin

H(x+ i, y + j, z + k) (1)

where H is the 3D probability heatmap derived from the model, dmin is the minimum distance
between peaks, and a valid detection from Algorithm 2 satisfies:

Valid(x, y, z) = [H(x, y, z) = Hmax(x, y, z)] ∧ [H(x, y, z) ≥ τ ] (2)

where Hmax represents 3D max-pooled output from H for finding local maxima, and τ is a threshold
ranged from 0 to 1.

To train the network, we manually generated a small size of cell mask training data for each cell type
marker, using a whole-brain dataset not included in this paper. We limited the size of the training set
to the minimum sufficient to guide cell centroid annotations due to the impracticality of generating
whole-brain cell masks. A binary form of focal loss [14] was used for model training and we trained
a separate model for each cell-type marker dataset to further investigate generalizability. An NVIDIA
RTX 3090 or 4090 graphics card was used for training, and the model converged within one day.

3.2 Data Annotation

For each cell-type marker dataset, three ROIs were selected for the training set and three for the test
set. To generate ground-truth cell annotations, we first performed inference using the baseline models
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described in Section 3.1. Based on the predicted cell centroids, we center-cropped volumes around
each cell with dimensions of 32 × 32 × 8 pixels (x, y, z), covering the physical area of 57.6 µm ×
57.6 µm × 32 µm. Each cropped cell volume was then manually annotated as either 0 (non-cell)
or 1 (cell). Annotation work was done by seven annotators using the MorPheT annotation tool[11].
450 ~11,000 cells were annotated per region, with cells labeled as 0 (non-cells) filtered out. False
negatives missed by the predictions were subsequently recovered through manual review. In total,
more than 130,000 predictions were annotated, yielding approximately 70,000 ground-truth cell
centroids. Detailed information on the selected regions for each dataset is shown in Table 3.

3.3 Evaluation method

Model performance was evaluated using accuracy and the F1 score. True positives (TPs) were
determined by calculating the Euclidean distance between each predicted cell coordinate and the
closest ground-truth cell center using a kd-tree nearest-neighbor search[1]. A prediction was assigned
as a TP if the distance fell below a tolerance threshold, defined in voxels and set individually for
each cell type and anatomical region, shown in Table B.1. The tolerance threshold was set to the
average cell radius, estimated as half the mean diameter of six representative cells sampled from each
anatomical region. Each prediction was matched to at most one ground-truth cell center to enforce a
one-to-one correspondence. False positives (FPs) and false negatives (FN) were then calculated using
the ground-truth and TPs. Accuracy was defined as TP

TP+FP+FN , along with a precision-recall curve.
F1 score was calculated as the harmonic mean of precision and recall.

3.4 Results

Using the baseline models and annotations described above, we evaluated model performance both
within datasets and across datasets, using three different models that were trained on cell type markers
with significantly different features. We found that model performance varied across regions and
datasets, likely due to the cells’ distinct morphological and regional profiles. This is demonstrated
by the TH model achieving an F1 score of 0.27 or lower on the cFos dataset, while reaching almost
0.96 in region_3 of the TH dataset, which highlights the challenge model faces generalizing across
different cell-type markers and regions. This trend is seen across most marker and cell-type model
combinations, as shown in Table B.2. We also evaluated the three models on all six regions of the
PV dataset, yielding F1 scores of 0.31 (cFos model), 0.70 (TH model), and 0.64 (IBA1 model).
Inter-regional variations in PV+ staining profiles cause large differences in F1 scores, ranging from
0.53 (region_2) to 0.97 (region_6, region_3). Region_2 corresponds to the RT anatomical region,
where PV+ cell morphologies significantly differ from those in the other two regions (HIP and
mPFC), contributing to the observed generalization issue. Further emphasizing the difficulties in
generalizability, PV+ cell morphologies are region dependent, with cells in the RT (Region_2) distinct
from those in the other regions (HIP and mPFC). This is also seen in the TH dataset with the TH model
where the F1 score ranges from 0.49 to 0.94 between regions due to differences in cell morphologies.

4 Conclusion

In this paper, we present CANVAS, a large-scale and subcellular resolution dataset, labeled with
six different markers and accompanied by extensive annotations. A public leaderboard enables
benchmarking of baseline models to advance robust foundational models for the LSFM domain.
Current limitations include the limited number of manually generated cell centroid labels, which
restrict scalability. Approaches such as active learning could help reduce labeling burden andimprove
consistency, particularly given the domain expertise required for accurate annotations. The dataset
can also be expanded with additional markers, as many brain cell types such as oligodendrocytes,
various interneuron, and neurotransmitter-specific populations remain unrepresented.

Nonetheless, we believe the CANVAS dataset holds immediate potential for the broader fields of
biomedical and neuroscience research–both as a standalone modality and as a complementary axis
for multi-omics analyses, together with other data modalities such as fMRI and mRNA sequencing.
As future work, we plan on increasing the number of LSFM brain samples and their cell annotations
across additional brain regions, and adding more markers to target a wider range of cell types.
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A Algorithms

Algorithm 1: Model with Location Prediction
Input :Detection Model M , threshold τ ∈ [0, 1]
Output :Location prediction model Mloc

Parameters :dmin = 3 (minimum distance between peaks)

1 Iimg ← Volumetric Image Input from Model M
2 Iidx ← Batch index
3 H ← Model output; 3D probability heatmap
4 k ← 2× dmin + 1
5 Hmax ← MaxPool3D(H, kernel = (k, k, k), stride = (1, 1, 1), padding = "valid")
6 Hmax ← ZeroPad3D(Hmax, padding = dmin)
7 L← FindMaxima(H,Hmax, Iidx, τ)
8 Mloc ← Model(Iimg, Iidx, L)
9 return Mloc

Algorithm 2: FindMaxima Layer
Input :Heatmap H (shape (B,X, Y, Z)), max-pooled heatmap Hmax (shape (B,X, Y, Z)), batch

indices I (shape (B, ))
Output :Cell locations L (shape (N, 4)) with columns [b, x, y, z]
Parameters :Threshold τ ∈ [0, 1]

1 Mlocal ← (H = Hmax)
2 Mthresh ← (H ≥ τ)
3 Mvalid ←Mlocal ∧Mthresh

4 L← where(Mvalid)
5 imin ← cast(min(I), int64)
6 Lbatch ← L[:, 0] + imin

7 Lbatch ← expand_dims(Lbatch, axis = −1)
8 L← concatenate([Lbatch, L[·, 1 :]], axis = 1)
9 return L

B Evaluation

B.1 Evaluation parameters

Table 1: Tolerance thresholds (per region) for each dataset

Brain ID Marker Region_1 Region_2 Region_3

brain_1 GFAP 4.1 5.0 6.0
brain_3 IBA1 5.6 5.2 4.7
brain_5 NeuN 6.0 5.9 5.9
brain_7 TH 6.3 5.6 6.1
brain_8 cFos 7.8 8.4 7.9
brain_9 PV 9.7 5.8 7.8

B.2 Baseline models evaluation
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Table 2: Performance metrics (Accuracy and F1 Score) for three different cell-type models across
regions.

Cell Type Region cFOS Model TH Model Iba1 Model
Accuracy F1_Score Accuracy F1_Score Accuracy F1_Score

cFos

Total 0.64 0.78 0.15 -0.28 0.26 -0.34 0.58 -0.15 0.74 -0.08
Train Set 0.64 0.78 0.14 -0.31 0.25 -0.37 0.58 -0.06 0.73 -0.05

region_1 0.67 0.80 0.13 -0.27 0.23 -0.34 0.56 -0.16 0.72 -0.12
region_2 0.72 0.84 0.14 -0.23 0.25 -0.30 0.58 +0.01 0.73 +0.01
region_3 0.53 0.70 0.16 -0.72 0.27 -0.67 0.61 -0.05 0.75 -0.04

Test Set 0.65 0.78 0.16 -0.25 0.27 -0.31 0.59 -0.15 0.74 -0.11
region_4 0.67 0.80 0.15 -0.21 0.25 -0.27 0.57 -0.17 0.72 -0.12
region_5 0.73 0.85 0.15 -0.17 0.26 -0.22 0.62 -0.03 0.76 -0.03
region_6 0.55 0.71 0.19 -0.62 0.31 -0.58 0.59 -0.24 0.74 -0.16

NeuN

Total 0.01 -0.63 0.02 -0.76 0.12 -0.31 0.21 -0.39 0.40 -0.29 0.57 -0.25
Train Set 0.01 -0.62 0.02 -0.75 0.11 -0.34 0.20 -0.42 0.38 -0.26 0.55 -0.23

region_1 0.00 -0.67 0.00 -0.80 0.13 -0.27 0.23 -0.35 0.41 -0.31 0.58 -0.26
region_2 0.07 -0.65 0.13 -0.71 0.13 -0.25 0.23 -0.32 0.31 -0.25 0.48 -0.25
region_3 0.01 -0.53 0.02 -0.68 0.09 -0.79 0.17 -0.77 0.37 -0.28 0.54 -0.25

Test Set 0.01 -0.63 0.02 -0.76 0.12 -0.28 0.22 -0.36 0.41 -0.32 0.59 -0.26
region_4 0.00 -0.67 0.00 -0.80 0.13 -0.22 0.23 -0.29 0.38 -0.36 0.55 -0.30
region_5 0.09 -0.65 0.16 -0.69 0.13 -0.20 0.23 -0.26 0.32 -0.33 0.48 -0.30
region_6 0.01 -0.54 0.02 -0.69 0.11 -0.69 0.21 -0.69 0.47 -0.36 0.64 -0.26

TH

Total 0.02 -0.62 0.04 -0.74 0.43 0.60 0.16 -0.53 0.27 -0.55
Train Set 0.01 -0.62 0.02 -0.75 0.45 0.62 0.16 -0.48 0.27 -0.51

region_1 0.01 -0.65 0.02 -0.79 0.40 0.57 0.13 -0.59 0.23 -0.61
region_2 0.00 -0.72 0.01 -0.83 0.38 0.55 0.07 -0.49 0.14 -0.58
region_3 0.04 -0.49 0.08 -0.61 0.88 0.94 0.29 -0.36 0.45 -0.34

Test Set 0.03 -0.61 0.06 -0.72 0.41 0.58 0.15 -0.58 0.26 -0.58
region_4 0.01 -0.66 0.02 -0.78 0.35 0.52 0.1 -0.64 0.17 -0.68
region_5 0.01 -0.72 0.03 -0.82 0.32 0.49 0.03 -0.62 0.06 -0.73
region_6 0.09 -0.45 0.17 -0.53 0.80 0.89 0.36 -0.47 0.53 -0.38

PV

Total 0.19 -0.46 0.31 -0.47 0.54 +0.11 0.70 +0.10 0.47 -0.21 0.64 -0.17
Train Set 0.19 -0.45 0.32 -0.46 0.54 +0.09 0.70 +0.08 0.50 -0.14 0.67 -0.12

region_1 0.21 -0.46 0.35 -0.45 0.67 +0.26 0.80 +0.22 0.30 -0.42 0.46 -0.38
region_2 0.00 -0.72 0.01 -0.83 0.36 -0.02 0.53 -0.02 0.47 -0.09 0.64 -0.08
region_3 0.39 -0.14 0.56 -0.13 0.93 +0.05 0.96 +0.03 0.84 +0.18 0.91 +0.12

Test Set 0.18 -0.46 0.31 -0.48 0.54 +0.14 0.70 +0.13 0.45 -0.29 0.62 -0.23
region_4 0.19 -0.48 0.31 -0.49 0.61 +0.26 0.76 +0.24 0.26 -0.47 0.41 -0.43
region_5 0.01 -0.73 0.01 -0.84 0.38 +0.06 0.56 +0.07 0.42 -0.23 0.59 -0.19
region_6 0.38 -0.16 0.56 -0.15 0.94 +0.14 0.97 +0.08 0.86 +0.03 0.92 +0.02

GFAP

Total 0.00 -0.64 0.00 -0.78 0.02 -0.41 0.03 -0.57 0.23 -0.46 0.37 -0.45
Train Set 0.00 -0.64 0.00 -0.77 0.01 -0.44 0.02 -0.60 0.20 -0.44 0.33 -0.45

region_1 0.00 -0.67 0.00 -0.80 0.00 -0.40 0.00 -0.57 0.20 -0.52 0.34 -0.50
region_2 0.00 -0.72 0.00 -0.84 0.02 -0.36 0.04 -0.51 0.19 -0.38 0.32 -0.41
region_3 0.00 -0.53 0.00 -0.70 0.10 -0.78 0.18 -0.76 0.20 -0.46 0.33 -0.46

Test Set 0.00 -0.65 0.00 -0.78 0.03 -0.38 0.05 -0.53 0.29 -0.45 0.45 -0.40
region_4 0.00 -0.67 0.00 -0.80 0.01 -0.34 0.02 -0.50 0.22 -0.52 0.36 -0.49
region_5 0.00 -0.73 0.00 -0.85 0.05 -0.27 0.09 -0.40 0.30 -0.35 0.46 -0.33
region_6 0.00 -0.54 0.01 -0.70 0.05 -0.76 0.09 -0.80 0.45 -0.38 0.62 -0.29

IBA1

Total 0.01 -0.63 0.03 -0.75 0.40 -0.03 0.57 -0.03 0.69 0.82
Train Set 0.01 -0.63 0.02 -0.76 0.35 -0.10 0.52 -0.10 0.64 0.78

region_1 0.02 -0.65 0.03 -0.77 0.48 +0.07 0.65 +0.07 0.72 0.84
region_2 0.01 -0.72 0.01 -0.83 0.38 0.00 0.55 0.00 0.57 0.72
region_3 0.00 -0.53 0.00 -0.70 0.21 -0.67 0.34 -0.59 0.65 0.79

Test Set 0.02 -0.63 0.04 -0.75 0.43 0.03 0.61 0.03 0.74 0.85
region_4 0.02 -0.65 0.03 -0.77 0.47 +0.12 0.64 +0.12 0.74 0.85
region_5 0.01 -0.72 0.03 -0.82 0.48 +0.15 0.64 +0.16 0.65 0.79
region_6 0.03 -0.52 0.06 -0.65 0.37 -0.44 0.54 -0.35 0.83 0.91
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C CANVAS Dataset Overview

C.1 LSFM data

Figure 1: Overview of datasets in CANVAS showing six cell type markers imaged using light sheet
fluorescence microscopy. Markers include NeuN (cyan), IBA1 (magenta), GFAP (yellow), TH
(red), cFOS (green), and PV (grey). All markers except PV are based on immunolabeling; PV is
transgenically labeled with fluorescent proteins. All datasets represent whole-brain imaging, except
cFOS, which is hemisphere-only. Images are 500 µm maximum intensity projections. Scale bar: 2
mm.

Figure 2: Zoomed-in views from the CANVAS dataset showing six cell type markers acros various
brain regions: NeuN (cyan), IBA1 (magenta), GFAP (yellow), TH (red), cFOS (green), and PV (grey),
presented as 80 µm maximum intensity projections. Images include the following brain regions: HIP
(hippocampus), VTA (ventral tegmental area), CP (caudate putamen), ZI (zona incerta), CEA (central
amygdalar nucleus), RT (reticular nucleus of the thalamus), SS (somatosensory areas), VIS (visual
areas), LC (locus coeruleus), MO (somatomotor areas), and mPFC (medial prefrontal cortex); and
fiber tracts: cc (corpus callosum) and fr (fasciculus retroflexus). Scale bar: 100 µm.
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C.2 Annotation data

The table 3 shows the details of ROI selection for each cell type marker dataset for the train set, along with the
number of cells annotated. The test set also contains three regions per each marker dataset, while not reported
here.

Table 3: Region selections for each dataset

Brain ID Marker Region ID ROI (x, y, z) Size (px) # annotated cells

brain_5 NeuN
region_1 (2316, 4627, 137) 300× 300× 150 7,233
region_2 (2236, 5212, 582) 300× 300× 150 1,766
region_3 (2442, 3001, 779) 300× 300× 150 8,321

brain_8 cFos
region_1 (4076, 4422, 899) 500× 500× 250 3,782
region_2 (4402, 3198, 1132) 300× 300× 150 2,827
region_3 (2481, 5237, 484) 400× 400× 200 2,781

brain_7 TH
region_1 (2990, 5337, 1143) 300× 300× 150 1,185
region_2 (2698, 6705, 941) 300× 300× 150 1,118
region_3 (3204, 4272, 1126) 300× 300× 150 400

brain_9 PV
region_1 (1380, 5294, 697) 600× 600× 300 715
region_2 (2048, 4494, 871) 400× 400× 200 3,915
region_3 (3025, 2114, 623) 500× 500× 250 1,497

brain_12 GFAP
region_1 (2666, 4850, 443) 300× 300× 150 1,944
region_2 (2688, 2876, 707) 200× 200× 100 477
region_3 (3267, 5465, 1008) 300× 300× 150 109

brain_11 IBA1
region_1 (2638, 4805, 422) 400× 400× 200 2,076
region_2 (1866, 6035, 217) 400× 400× 200 2,021
region_3 (2240, 3556, 737) 400× 400× 200 2,073

C.3 Data structure
[Marker]_[Brain_ID] (cFos_brain_8)

image
0000_431340_465490_032660_Ch2.tif
0001_431340_465490_032640_Ch2.tif
0002_431340_465490_032620_Ch2.tif
0003_431340_465490_032600_Ch2.tif
..

label
TRAIN

cFos_brain8_region1_gt.csv
cFos_brain8_region2_gt.csv
cFos_brain8_region3_gt.csv

TEST (not publicly available)
cFos_brain8_region4_gt.csv
cFos_brain8_region5_gt.csv
cFos_brain8_region6_gt.csv
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main purpose of the paper is to introduce a new LSFM dataset, along with annotations
and a benchmark leaderboard, as described in the Abstract and Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the presented dataset are discussed in the Conclusion (Section 4).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As this is a dataset benchmark paper, the raw data, corresponding annotations, and
evaluation metrics are provided. For replicating the baseline model results, we described the novel
layer introduced in Section 3.1 and provided further details in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: As a benchmark dataset paper, the leaderboard will be made publicly available with open
access to the data and annotations, although the code used to generate the dataset will not be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: The main focus of the paper is about releasing a new public dataset, along with a
benchmark leaderboard.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The compute resources and training time for the baseline models are described in Section
3.1.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

14

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All the open-source code and models that were used in the paper are properly referenced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The data will be publicly shared on the leaderboard website with descriptions and
instructions upon the paper publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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