Private Language Models via Truncated Laplacian Mechanism

Anonymous ACL submission

Abstract

Recently it has been shown that deep learning
models for NLP tasks are prone to attacks that
can even reconstruct the verbatim training texts.
To prevent privacy leakage, researchers have
investigated word-level perturbations, relying
on the formal guarantees of differential privacy
(DP) in the embedding space. However, many
existing approaches either achieve unsatisfac-
tory performance in the high privacy regime
when using the Laplacian or Gaussian mech-
anism, or resort to weaker relaxations of DP
that are inferior to the canonical DP in terms
of privacy strength. This raises the question
of whether a new method for private word em-
bedding can be designed to overcome these
limitations.

In this paper, we propose a novel private em-
bedding method called the high dimensional
truncated Laplacian mechanism. Specifically,
we introduce a non-trivial extension of the trun-
cated Laplacian mechanism, which was pre-
viously only investigated in one-dimensional
space cases. Theoretically, we show that our
method has a lower variance compared to the
previous private word embedding methods. To
further validate its effectiveness, we conduct
comprehensive experiments on private embed-
ding and downstream tasks using three datasets.
Remarkably, even in the high privacy regime,
our approach only incurs a slight decrease in
utility compared to the non-private scenario.

1 Introduction

The recent developments of deep learning have led
to significant success in various tasks in Natural
Language Processing (NLP), from next word pre-
diction in mobile keyboards (Ramaswamy et al.,
2019), to critical tasks like predicting patient health
conditions from clinical records (Yao et al., 2019).
However, such applications may always involve
user-generated textual data as the training dataset,
which contains sensitive information. To address

privacy concerns, text anonymization (Anandan
et al., 2012; Pilan et al., 2022) has been commonly
used, which involves identifying sensitive attributes
and replacing them with alternative values. Nev-
ertheless, such heuristic approaches become inef-
fective as deep neural networks often tend to mem-
orize training data, making them susceptible to
information leakage about the training data (Shokri
et al., 2017; Carlini et al., 2021, 2019). One way
that takes into account the limitations of existing
approaches is designing Differentially Private (DP)
algorithms. DP (Dwork et al., 2006a) is resilient to
arbitrary side information that might be available
to attackers and has become a de facto method for
private data analysis.

Recently, there has been significant research fo-
cusing on differentially private (DP) versions of
word embedding from various perspectives (Yue
et al., 2021; Feyisetan et al., 2019; Krishna et al.,
2021; Feyisetan et al., 2020; Xu et al., 2021a,b;
Carvalho et al., 2021b,a; Habernal, 2021, 2022).
However, there are still some shortcomings in these
approaches. On the one hand, several works con-
sider adding Laplacian or Gaussian noise to the
embedding space to ensure DP (Habernal, 2021; Kr-
ishna et al., 2021; Habernal, 2022). However, these
mechanisms suffer from high noise levels, resulting
in low utility, especially in the high privacy regime
when the privacy parameter () is small. Moreover,
these mechanisms can even alter the semantics of
sentences (see Fig.1). On the other hand, there is a
growing body of work that focuses on a relaxation
of the canonical definition of DP, known as metric
DP, which can achieve better performance. How-
ever, as a relaxed notion of DP, Metric DP cannot
provide the same level of strong privacy guarantees
as the canonical DP (Mattern et al., 2022). This
raises the question of whether we can develop im-
proved private word embedding mechanisms that
go beyond the limitations of Laplacian or Gaussian
mechanisms within the framework of canonical DP.



P
Comparison of Private Embedding
Original: Oh and we came on a Saturday night around 11:30 for context. (—Privacy Leakage)
Trlaplace: Oh and we came on a Saturday night around 9:30pm for <unk> (—Private and Fluent)
Laplace: Oh and we came on a Saturday night around around for <unk> (—Semantic Problem)
Gaussian: Oh and we came on a Saturday night around 11:30 for <unk> (—Privacy Leakage)
J

Figure 1: An example of (private) text re-write for different mechanisms with e = 0.1.

In this paper, we provide an affirmative answer
to the previous question by proposing a novel pri-
vate mechanism for word embedding. Our ap-
proach is inspired by the superior performance
of the truncated Laplacian mechanism in one-
dimensional space (Geng et al., 2020). However,
it remains unclear whether this superiority can
extend to high dimensional cases, as directly ex-
tending the one-dimensional truncated Laplacian
mechanism is challenging. To bridge this gap,
we develop a high dimensional truncated Lapla-
cian mechanism(TrLaplace), which is a non-trivial
extension of the one-dimensional case. Theoreti-
cally, we show that compared with Laplacian and
Gaussian mechanisms for private word embedding,
TrLaplace-based private embedding has a lower
variance. Moreover, we also conduct intensive ex-
periments on both private embedding and down-
stream tasks to show our approach significantly
outperforms the previous methods in the high pri-
vacy regime, and it will not drop much accuracy
and utility compared with the non-private case.

Due to space limitations, more details and exper-
iments are included in Appendix.

2 Background

Differential Privacy is a data post-processing tech-
nique designed to ensure data privacy by adding
confusion to potential attackers. Specifically, sup-
pose there is one dataset noted as D, and we change
or delete one data record in this dataset which we
call D’'. If the output distributions of D and D’
are close enough, then we cannot distinguish these
two distributions, i.e., we cannot infer whether the
deleted or replaced data sample is really in this
dataset. The formal details are given by (Dwork
et al., 2006b).

In this work, we adopt a similar setting to previ-
ous research on private word embedding (Feyisetan
et al., 2020; Xu et al., 2021a; Krishna et al., 2021).
We consider a scenario where a user inputs a word
w from a discrete fixed vocabulary V. Our goal is

to preserve the user’s privacy with respect to her/his
word. To achieve this goal, we aim to design an
algorithm that accepts w as input and whose distri-
bution of output is close to the case where w’ € W
is the input, with w’ # w is any other word. From
the attacker’s perspective, based on the output, he
cannot distinguish whether the user’s input word is
w or w’ as their output distributions are almost the
same. Formally, we have the following definition.

Definition 1 Given a discrete vocabulary W, a
randomized algorithm A : W +— R is word-level
(e, 0)-differentially private (DP) if for all pair of
words w,w' € W and for all T C R we have
P(A(w) € T) < eP(A(w') € T) + §. When
6 = 0, we call the algorithm A is e-DP.

In this paper, we assume the user holds a sentence
s = wiwsy - - - wy, With n words. And we aim to de-
sign an (e, §)-DP algorithm, which is private w.r.t.
each word w;.

3 Private Embedding via Truncated
Laplacian Mechanism

In this section, we will provide details of our
method. Generally speaking, for each token wj,
to achieve DP, our approach consists of three steps.
First, each token wj; is mapped to an d-dimensional
pre-trained word embedding ¢(w;). And we per-
form a clipping step to get a clipped embedding:

c
ll¢(wi)ll2
where the threshold C' > 0 is a hyper-parameter.
In the second step, we add some random noise to
the clipped embedding vector to make it satisfies
DP. Finally, we will perform the projection step by
finding the nearest word w; to the perturbed and
clipped embedding vector within the embedding
space:

CLIPEmb(w;) = ¢(w;) min{1, )]

W; = arg miyr\l} |¢p(w) — CLIPEmb(w;) — 1|2,
we
2



where 7 is the randomized noise we add in the sec-
ond step. See Algorithm 1 for details. It is notable

Algorithm 1 Privacy Preserving Mechanism

Input: String s = wjws ... wy,, clipping thresh-
old C, privacy parameter ¢ > 0.
Output: String § = W1Ws . . . Wy,
1: foralli e {1,...,n} do
2:  Sample n from the truncated Laplacian dis-
tribution in Theorem 3.
3:  Obtain the perturbed clipped embedding
r; = CLIPEmb(w;) + 7.
Let w; = Proj (r;) as in (2).
end for
6: return s = wW1Wsy . . . Wy,.

AN

that the goal of clipping is to make the ¢2-norm
of embedding vector be bounded so that we can
adding noise to ensure DP, such as the Laplacian
mechanism or Gaussian mechanism (Dwork and
Roth, 2014).

Theorem 1 (Laplacian Mechanism) Suppose
CLIPEmb(w) € R? denote the clipped em-
bedding vector with threshold C. Then the
mechanism Ajq,(w) = CLIPEmb(w) + ny is
e-DP, where m1 = (11, -+ ,M1,4) and 1;; is
drawn from a Laplacian Distribution Lap(%(f))
with A1 = 2V/dC. For a parameter )\, the
Laplacian distribution has the density function
Lap(X)(z) = 55 exp(—%).

Theorem 2 (Gaussian Mechanism) Suppose
CLIPEmb(w) € RY denote the clipped embed-
ding vector with threshold C. Then the mechanism
Ajap(w) = CLIPEmb(w) + 12 is (€, §)-DP when
€ < 1, where ny ~ N (0, wld) is drawn
Jfrom a Gaussian distribution.

In the following we propose an improved mech-
anism namely high dimensional truncated Lapla-
cian mechanism. Before that we first recall the
probability density function of the one-dimensional
truncated Laplacian distribution, which could be
written as the following with some appropriate con-
stants «, A and B:

Le—all forz e [-A, A
friap(@) = {B AL )
0, otherwise.

In our mechanism, we add high dimensional trun-
cated Laplacian noise to the clipped embedding
vector. Here each coordinate of the noise is i.i.d.

sampled from a truncated Laplacian distribution
with some specific «, A and B.

It is notable that although using truncated Lapla-
cian noise to ensure DP has been studied in (Geng
et al., 2020; Sommer et al., 2021), all of them only
consider the case where d = 1 and their methods
cannot extend to the case where d > 1. For exam-
ple, (Geng et al., 2020) only shows adding noise
with density function (3) for A = % log(1+ %)
and o = < can ensure (€, )-DP. Compared with
Theorem 3 we can see the constant A is more com-
plicated and the proof is also different. Thus, our
mechanism cannot be considered as a trivial exten-
sion of the one-dimensional case. Secondly, while
the Laplacian mechanism can guarantee e-DP, the
truncated one can only ensure (¢, §)-DP. However,
as we will see below, our mechanism is superior
to Laplacian mechanism for utility. It is also no-
table that we need to assume € < 20 a \/d, this is
reasonable since we always wish € to be as small
as possible, as large € indicates the algorithm is no
longer private. If we want large ¢ > 26 i Vd, we
can use the trick of adding dummy dimension to
the vector to increase its dimensionality manually
and then projecting back to the original space after
adding noise. In the following we will show our
mechanism has lower variance than the Laplacian
and Gaussian mechanisms.
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Figure 2: Privacy Test. Curves of the value N,, with

privacy budget € for Yelp dataset.

4 Theoretical Sensitivity Analysis

In the last section, we introduce our truncated lapla-
cian mechanism, we will analyze its sensitivity and
proof our claim in this section.

Theorem 3 Suppose CLIPEmb(w) € R? is the
clipped embedding vector with threshold C. Define
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then the mechanism A(w) = CLIPEmb(w) + n
is (¢,0)-DP, where n = (n1,--- ,m1) and each n;
has the density function as in (3) with the above
parameters.

Proof 1 (Proof of Theorem 3) Consider a pair
of tokens w,w’. Let perturbed encoderl
r1 = CLIPEmb(w) + m, also let ro =
CLIPEmb(w’) + 19 = CLIPEmb(w) + Ag + 12,
where ||Agll; < Ay and ||Ag||, < Ao which
are due to the clipping operation.

Let us denote the set of possible values of rj, by
Si fork =1,2.

Define U = [-C — A,C + A]%. Note that for
any subset V C U — (§1 U Sy), P(r1 €V)) =
P(ro € V) = 0, hence (€,0)-DP is satisfied for
this part. We need to ensure (€,9)-DP is satisfied
for all elements in S1 U S5 too.

First, consider an element s € S1 N Sy. Then:

f(r1=s)= f(n =s— CLIPEmb(s))

Similarly:

f (7“2 = S) — f (7’]2 = 8§ — CLIPEmb(S) — AS)
Using the above equations:

exp (—aAr) < exp (—al|Aql,)
< P(r; =s)

S Pl = sy = &P (@[|Aslly) < exp (@A)

From the above equation, setting setting o =
€/ A1 ensures pure e-DP for all s € §; N Sa. With
this, it follows that for any V C &1 N Sy:

e P(roeV)<P(r1€V)<eP(raeV).

by setting o = €/ A;.
Now consider an element s € So — Sy. Clearly,
f(r1=s)=0. Also:
P( ) < 1
max ro=35)< —.
s€S2—81 2 - B
But notice that volume(Sa—S1) < A% This fol-
lows from the fact that for every coordinate, there

are at most A, levels that can be attained by ro
but not by r1. Thus, for any T C Sy — 81, we have

A d
P(rieT)=0andP(roeT) < <§O>

Similarly, for any T C 81 — Sa, we have

A d
P(ro€T)=0andP(r; €T) < <B°°> .

Now, let us now consider some general T C S1U
So. Let To =T N (51 USQ) T Ti=Tn0 (51 —32)
and Ty = T N (Sy — 81). It is easy to see that
T = ToUTi U T and that Ty, T1 and Ty are
pairwise-disjoint. Then:

PrieT)=P(ri €To)+P(r1 €Th)
+P(7‘1 67-2)

A d
< eP(ry € To) + (;) +0

A \?
<eP(roeT)+ (B) .

“)

Thus, we can set § = (Af”)d. Obviously, this result
is only useful if B > A.

For each coordinate

41
[ frp(a)ds = [ 2pe el
z€R 0 B
2

—aA\
= Bi()d (1 — € @ ) =1
We can solve B = 2(1+7QA). Thus, take
B = ?—?, we can see A = —élog(l — —"‘2??) =
—% log(l — —5+).

2\/85%

Theorem 4 The variance of mechanism A in Theo-
rem 3 is lower than the variance of Laplacian mech-
anism and Gaussian mechanism when § < eid.

Proof 2 (Proof of Theorem 4) We first show the
2
variance of our mechanism A is bounded by 2%.

We can easily see that the variance is E|| A(w) —
w3 =dV withV = [ g frrap(z)|z*dz, so
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Thus, we have

11 11
V=—2-"A% 4 4 feo4
aB” ¢ a2B°
11 CaA
+ 4$E (1 — € @ )
11 A : @D
=-2——Ae " (A+2—-)+2—
=B (A+2-)+2—
A2
<2=1
g2
Thus, in total we have E|| A(w) — w||3 < 2‘?% =
8d2C?
e
Next for Laplacian mechanism in Theorem 1 we
2
have E[|| Ajgp(w) — w||3] = 2‘?1. Thus the vari-

ance of high dimensional truncated Laplacian is
always lower than Laplacian.

Similarly, the variance of Gaussian mechanism
8C2d(In 1.25+In1/6)
2
€

in Theorem 4 is , we can easily

see that our mechanism has lower variance when
1

0 < p

5 Experiments

In this section, we conduct experiments for our
method based on two parts: DP text re-write for
fine-tuning (private embedding) and downstream
tasks (sentiment analysis). In all experiments,
we compare our Truncated Laplace (TrLaplacian)
mechanism with Gaussian and Laplacian mecha-
nisms.
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Figure 3: Privacy Test. Curves of N,, value w.r.t. pri-
vacy budget e for Yahoo dataset.

5.1 Experimental Setup

Datasets: For the DP text re-write task, we use
the Yelp ! and Yahoo (Yang et al., 2019) datasets.
The Yelp Open dataset is a subset of Yelp business,
review, and user data with a training size of 8,539
and a testing size of 2,174. The Yahoo dataset con-
tains 14,180 news articles and 34,022 click events.
All data are collated to obtain a training, validation,
and testing set segmented by sentences. For down-
stream tasks, we use the SST-2 dataset (Socher
et al., 2013), from which we use 68221 heavily po-
larized reviews from the Internet Movie Database.
We divide the SST-2 dataset into an 80:20 ratio
for training and testing. The training set consists
of 54,576 reviews, with 30,362 positive reviews
and 24,214 negative reviews. The testing set con-
sists of 13,645 reviews, with 7,651 positive reviews
and 5,994 negative reviews. The statistics of the
datasets are presented in Table 7 in Appendix.

Baseline: For DP text re-write, although Krishna
et al. (2021) uses the Laplacian mechanism to the
sentence level DP instead of word level as in Defi-
nition 1. However, as Habernal (2021) mentioned,
the approach in (Krishna et al., 2021) is not DP.
Thus, here we will not compare with their method,
and we will use the Laplacian and Gaussian mecha-
nisms for the clipped embedding as baseline meth-
ods. For private fine-tuning, as we mentioned pre-
viously, all the previous methods only focus on
metric DP instead of the original DP in Definition
1. Thus, our method is incomparable with theirs,
and we will still use Laplacian and Gaussian mech-
anisms as baselines.

"https://www.yelp.com/dataset/



Table 1: Privacy Test. Performance under GloVe Embedding initialization for the non-private case ( € = co) and
the three mechanisms, where the privacy budget ranges from 0.05 to 0.5. 1 means a higher value under this metric
indicates better results, and | means the opposite. The best performance is bolded.

Original Gaussian Laplacian TrLaplacian

Privacy budget ¢ %) 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5
Loss| 2.95 51.25 2666 9.92 597 51.43 37.86 1535 7.31 289 286 284 3.04
Rougelt 92.37 14.01 59.52 83.61 89.06 13.02 4330 75.77 86.98 9244 9243 9241 92.25
Yahoo BLEU?T 8.501 9.286 8.418 8.489 8.499 9.132 8.287 8.474 8.493 8.499 8.500 8.497 8.504
Ny T 0.703 0.072 0.511 0.595 0.628 0.066 0.334 0.566 0.642 0.706 0.682 0.666 0.662
BERT-S?t 0.975 0.849 0.908 0.955 0.963 0.839 0.889 0.942 0.959 0976 0.971 0971 0.971

Loss] 3.07 34.67 21.62 1061 598 36.00 34.64 1486 7.38 298 299 3.02 294
Rougelt 89.40 15.97 48.89 76.48 84.97 12.60 14.68 66.62 82.08 89.45 8947 89.34 89.54
Yelp BLEU?T 8.934 8.976 8.850 8.926 8.930 8.607 8916 8913 8.928 8.931 8.935 8.936 8.936
Ny 1 0.706 0.144 0.381 0.608 0.694 0.052 0.138 0.525 0.646 0.705 0.721 0.722 0.725
BERT-S1 0.973 0.874 0.895 0.943 0.964 0.855 0.874 0.927 0.952 0971 0.973 0971 0.972

Table 2: Utility Test. Comparison of classification accuracy with three embedding methods (Random, GloVe and
fastText) for different mechanisms under various privacy budget via sentiment analysis task over the SST-2 dataset.

Random(seed = 42) GloVe fastText
Privacy budget ¢ TrLaplace Laplace Guassian TrLaplace Laplace Guassian TrLaplace Laplace Guassian
0.05 86.04 85.97 84.93 88.68 88.57 88.57 89.37 89.37 89.40
0.1 85.44 84.89 84.06 88.95 88.25 88.24 89.51 89.50 89.30
0.2 86.18 85.45 85.90 88.93 88.51 88.76 89.45 89.35 89.19
0.5 86.33 85.55 85.34 88.88 88.48 88.60 89.51 89.40 89.18

Evaluation Metrics: We use the loss of cross-
entropy to measure the performance of language
models. Specifically, cross-entropy is mainly used
to determine how similar the actual output is to
the expected output. Smaller model loss indi-
cates less noise added to perturb the text. Addi-
tionally, we will use Rougel and BLEU scores.
Rougel (Lin, 2004) calculates recall using standard
results and the number of 1-grams co-occurring
in the auto-generated text. Similarly, BLEU (Pa-
pineni et al., 2002) measures the similarity be-
tween standard results and automatically generated
text. Rougel measures word-level accuracy, while
BLEU measures sentence fluency. Moreover, we
use BERTScore (Zhang* et al., 2020) to measure
the semantic similarity of the perturbed sentence
with the original one. To measure the privacy-
preserving ability, we use the percentage of N,
(Feyisetan et al., 2020), which is the number of
words that are not replaced. Thus, under the same
privacy budget, larger V,, will be better (we want
to change fewer words for accuracy).

Setup: As an embedding can be considered as
an initialization of the model, here we will con-
sider three different initialization: Random embed-
ding (Wieting and Kiela, 2019), GloVe (Pennington
et al., 2014) and fastText (Bojanowski et al., 2017).
We conduct experiments on these embeddings and

the subsequent fine-tuning in the DP model via
our mechanism. Each pre-trained word embed-
ding is a 300-dimensional vector, and the size of
considered vocabulary is 10*. For privacy budget,
we set 0 = 4%, and we consider both the high
privacy regime where € € {0.05,0.1,0.2,0.5} and
the low privacy regime € € {1, 5,10, 20}. For large
€ we will use our previous dummy dimension trick
(d = 500 for e = 10 and d = 1700 for ¢ = 20).

5.2 Privacy Experiment on Embedding

We first show the results on private embedding.
Specifically, we use GloVe or fastText for initializa-
tion, and then use three different private embedding
mechanisms with different privacy budgets. Noted
that large ¢ > 10 is meaningless for privacy, we
concentrated more on a small privacy budget in
the main context. Fig. 1 and 5 show the text after
projecting the clipped and perturbed embedding
back to the word domain in step 4 of Algorithm 1
for different mechanisms when e = 0.1. We can
see our method (TrLaplace) outperforms the other
two methods from both privacy and semantic per-
spectives, while the Gaussian mechanism fails to
obfuscate the time, and the Laplacian mechanism
totally replaces the time by another word, which
destroys the structure of the sentence.

Tab. 1 and Tab. 3 are the results on different
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Figure 4: Privacy-Utility Test. Curves of Loss, Rougel and BERTScore with different privacy budget € for Yelp

(Upper) and Yahoo (Lower) datasets.

Table 3: Privacy Test. Performance under GloVe Embedding initialization for the non-private case ( € = co) and
the three mechanisms, where the privacy budget ranges from 1 to 20. T means a higher value under this metric
indicates better results, and | means the opposite. The best performance is bolded.

Original Gaussian Laplacian TrLaplacian

Privacy budget € 00 1 5 10 20 1 5 10 20 1 5 10 20
Loss| 2.95 428 3.01 303 298 493 324 305 3.13 285 297 292 281
Rougelt 92.37 90.97 9227 92.16 92.19 90.02 92.09 92.28 92.26 92.41 9235 9224 9245
Yahoo BLEU?T 8.501 8.501 8.501 8.499 8.500 8.503 8.501 8.502 8.500 8.498 8.501 8.499 8.499
Ny T 0.703 0.637 0.680 0.664 0.672 0.660 0.658 0.675 0.655 0.674 0.670 0.702 0.680
BERT-St 0.975 0.968 0.973 0971 0.972 0.966 0.970 0971 0.971 0974 0972 0975 0.974
Loss| 3.07 474 314 313 297 502 330 3.66 3.17 293  3.03 3.00 298
Rougelt 89.40 86.63 89.13 89.27 89.80 86.43 89.04 88.15 89.23 89.68 89.40 89.37 89.60
Yelp BLEU?T 8.934 8.933 8.936 8.933 8.944 8.931 8932 8933 8.934 8.934 8931 8.934 8938
Ny T 0.706 0.708 0.725 0.708 0.739 0.691 0.721 0.704 0.699 0.724 0.700 0.712 0.740
BERT-S1 0.973 0969 0.975 0.975 0.975 0.964 0.969 0.969 0.968 0975 0971 0976 0.976

Table 4: Utility Test. Comparison of classification accuracy with three embedding methods (Random, GloVe and
fastText) and different mechanisms under various privacy budget via sentiment analysis task in SST-2 dataset.

Random(seed = 42) GloVe fastText
Privacy budget € TrLaplace Laplace Guassian TrLaplace Laplace Guassian TrLaplace Laplace Guassian
1 85.99 84.05 85.36 89.01 88.61 88.62 89.19 89.18 89.08
5 85.90 85.27 85.31 88.76 88.76 88.47 89.46 89.43 89.20
10 85.27 84.98 84.57 89.15 88.52 88.48 89.68 89.45 89.53
20 85.75 85.44 84.12 88.75 88.40 88.57 89.45 89.40 89.24




Table 5: Privacy Test. Performance under fastText Embedding initialization for the non-private case (¢ = o)
and three mechanisms (Gaussian, Laplacian and TrLaplacian) on Yelp dataset. The privacy budget ranges from
0.05 to 20. 1T means a higher value under this metric indicates better results, and | means the opposite. The best

performance is bolded.

Original Gaussian Laplacian TrLaplacian
Privacy budget € 00 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5
Loss| 3.35 3501 2933 931 450 36.23 29.69 17.15 5.58 1.20 120 126 1.23
Rougel? 87.8 1272 28.68 77.95 86.90 10.99 27.96 5897 85.16 92.43 92.67 9229 9243
BLEU?t 8.929 8.226 8.745 8918 8.931 8.998 8.681 8.898 8.931 8.937 8.938 8.937 8.938
Ny 1 0.713 0.138 0232 0.661 0.765 0.058 0.225 0.484 0.753 0.813 0.807 0.804 0.813
BERT-S1 0.967 0.864 0.873 0.945 0.966 0.857 0.867 0.908 0.962 0981 0978 0979 0.978
Original Gaussian Laplacian TrLaplacian
Privacy budget e 00 1 5 10 20 1 5 10 20 1 5 10 20
Loss| 3.35 310 1.68 148 1.29 360 155 1.53  1.51 122 125 128 1.27
Rougelt 87.8 89.47 92.06 92.40 92.49 88.17 91.87 91.90 9191 9242 9235 9234 9231
BLEU?T 8.929 8.936 8.937 8.936 8.936 8.935 8.937 8.936 8.934 8.938 8.939 8.937 8.938
Ny 1 0.713 0.794 0.809 0.804 0.813 0.758 0.801 0.795 0.792 0.807 0.802 0.800 0.808
BERT-St 0.967 0976 0977 0.978 0.980 0.967 0.978 0976 0.977 0979 0978 0.978 0.980

metrics regarding private embedding with Glove
initialization and Tab. 5 is with fastText initializa-
tion. We also present the detailed trends w.r.t € for
three mechanisms in Fig. 4. When ¢ < 1, from
Tab. 1 we can see that for both Yahoo and Yelp,
the loss of Gaussian and Laplacian mechanisms
will be catastrophically large while our mechanism
has a much smaller loss. From Tab. 3 we can
see we have almost the same phenomenon when
in the low privacy regime. Moreover, for Rougel,
Trlaplacian also leads the other two mechanisms
for both datasets, which means our mechanism led
to steady superiority from lexical/syntactic aspects.
For BLEU, the gap between all three mechanisms
to the non-private case becomes small for both two
datasets. But our method still has a slight advantage
compared with the other two. For N,, value, we
can see in Fig. 2 and Fig. 3, our mechanism outper-
forms the other two mechanisms by changing less
percentage of words to achieve the same privacy
level, which indicates our method can exactly find
sensitive words without hurting other words, thus
keeps semantic properties. For BERTScore, our
mechanism is almost the same as the non-private
case, while there is a larger gap for others. It is no-
table that, in almost all experiments our mechanism
is the best, and the Gaussian mechanism is better
than the Laplacian mechanism, which matches our
theorem. However, it becomes less obvious when €
is large. The main reason is that when e is enough
large the noise will be sufficiently small and be-
comes nearly negligible, which can also be sup-
ported by the proof of Theorem 4. For evaluation
metrics, our mechanism may even be better than

the non-private case, this may be due to small noise
that could improve generalization, which is similar
to adversarial training.

6 Utility of Private Fine-tuning

Due to space limitations, the discussion on the Util-
ity of Private Fine-tuning has been moved to the
appendix.

Table 6: Results on SST-2 data for classification task
with GloVe initialization under € = 10, where 0/1 repre-
sents the label and support is the size for each class.

Mechanism ‘ Label ‘ Support ‘ Precision ‘ Recall ‘ F1-score

Guassian 0.87 0.87 0.87
TrLaplace 0 2976 0.88 0.87 0.87
Laplace 0.89 0.84 0.86
Guassian 0.90 0.90 0.90
TrLaplace 1 3847 0.90 0.91 0.90
Laplace 0.88 0.92 0.90

7 Conclusions

We introduce a novel method called the high dimen-
sional truncated Laplacian mechanism for private
embedding, which extends the one-dimensional
case to the high-dimensional case. Theoretical anal-
ysis demonstrates that our method exhibits lower
variance compared to existing private word embed-
ding techniques. Experiments show that even in
the high privacy regime, our approach incurs only a
minimal loss in utility compared to the non-private
case, which maintains privacy while preserving the
quality of embeddings for promising performance.



Limitations

First, the word level DP has the disadvantages of
length constraints and linear growth of privacy bud-
get (Mattern et al., 2022). However, such limita-
tions are rooted from the definition of DP, instead
of our mechanism. Secondly, to ensure DP guaran-
tees, in this paper our mechanism involves clipping
embedding vectors and adding calibrated noises,
which inevitably introduce errors to the outputs of
the task at hand. And these errors may affect dif-
ferent groups of individuals differently and may
cause unfairness issues. However, we still need to
mention that, such unfairness issues are mainly due
to the definition of DP, rather than our method, as
DP machine learning algorithms will always have a
disparate impact on model accuracy (Bagdasaryan
etal., 2019).
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7.
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SST-2 10 24214/30362  5994/7651
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Table 8: Time Cost. Comparison of the time cost of
each epoch (seconds) under GloVe Embedding initial-
ization for the non-private case and three mechanisms
(Gaussian, Laplacian and TrLaplacian), the privacy bud-
get ranges from 0.05 to 20.

e<1 e>1

Privacy budget € 005 01 02 05 1 5 10 20
Non-private 111

Yahoo Gaussian e 113 111 111 111 111 111 111

Laplacian 111 113 111 111 111 111 111 111

TrLaplacian 123 123 123 123 123 123 123 123
Non-private 111

Yel Gaussian 38 37 38 38 37 37 37 37

P Laplacian 38 37 37 37 37 31 31 37

TrLaplacian 46 41 46 42 42 42 42 4

Implementation Details Models in this paper
are implemented based on the PyTorch % and Ten-
sorFlow 3 with their libraries. Experiments are con-
ducted on NVIDIA GeForce RTX 3090 GPUs. To
implement our mechanism, we use the acceptance-
rejection sampling method (Neal, 2003) to sample a
point from the high dimensional truncated Laplace
distribution from the Laplace distribution, only by
rejecting the samples outside the interval.

For text re-write, we use the auto-encoder
model. The embedding is initialized with the 300-
dimensional pre-trained Random, GloVe, and fast-
Text word embedding. We use one-layer BILSTM
with dropout for encoder, and using setup: dropout
rate 0.5, Adam (Kingma and Ba, 2015) with an ini-
tial learning rate of 0.0005 and betas (0.5, 0.999),
batch size 1024, and number of training epochs
50. For the downstream classification task over the
IMDB data, we use Adam with an initial learning
rate of 103, dropout rate 0.2. We set the maximum
number of epochs to be 20.

B Utility of Private Fine-tuning

we present the classification accuracy results for
private fine-tuning across various embeddings and
privacy levels in Tab. 2, Tab. 4 and Tab. 6. It
is evident that our mechanism consistently outper-
forms the other two methods for all embeddings.
Furthermore, our approach achieves results that are
comparable to the non-private case, where the accu-
racy scores are 90.14 for Random, 90.19 for GloVe,
and 90.19 for fastText in non-private cases. Impor-
tantly, the efficacy of our approach will become
even more pronounced when dealing with larger
datasets. This can be attributed to the minimal
amount of noise that the TrLaplacian mechanism

*https://pytorch.org/
3https://www.tensorflow.org/
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requires, thereby preserving the utility of the em-
bedding. Tab. 6 shows that for class 0, our method
achieves significant improvement in accuracy com-
pared with the other two methods. And for class
1, the precision of our method is higher than the
others. In Tab. 8 in the Appendix, we show the
time cost of each epoch for each experiment, and
we can see that compared with Laplacian and Gaus-
sian mechanisms, our method does not need too
much additional time, which means our mechanism
is also efficient.

(Comparison Semantic Problem of Private Embedding )

Original: do not come here! food poisoning alert! (—Neg.)
Trlaplace: do not come here! food poisoning alert! (—Neg.)
Laplace: this place is awesome! love this place! (—Pos.)

Gaussian: do not go here! food glorious <unk>! (—Pos.)

Figure 5: Another example of text re-write with dif-
ferent mechanisms with e = 0.1. The Gaussian and
Laplacian mechanism destroyed semantic properties of
original sentence.
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