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Abstract

Recently it has been shown that deep learning001
models for NLP tasks are prone to attacks that002
can even reconstruct the verbatim training texts.003
To prevent privacy leakage, researchers have004
investigated word-level perturbations, relying005
on the formal guarantees of differential privacy006
(DP) in the embedding space. However, many007
existing approaches either achieve unsatisfac-008
tory performance in the high privacy regime009
when using the Laplacian or Gaussian mech-010
anism, or resort to weaker relaxations of DP011
that are inferior to the canonical DP in terms012
of privacy strength. This raises the question013
of whether a new method for private word em-014
bedding can be designed to overcome these015
limitations.016

In this paper, we propose a novel private em-017
bedding method called the high dimensional018
truncated Laplacian mechanism. Specifically,019
we introduce a non-trivial extension of the trun-020
cated Laplacian mechanism, which was pre-021
viously only investigated in one-dimensional022
space cases. Theoretically, we show that our023
method has a lower variance compared to the024
previous private word embedding methods. To025
further validate its effectiveness, we conduct026
comprehensive experiments on private embed-027
ding and downstream tasks using three datasets.028
Remarkably, even in the high privacy regime,029
our approach only incurs a slight decrease in030
utility compared to the non-private scenario.031

1 Introduction032

The recent developments of deep learning have led033

to significant success in various tasks in Natural034

Language Processing (NLP), from next word pre-035

diction in mobile keyboards (Ramaswamy et al.,036

2019), to critical tasks like predicting patient health037

conditions from clinical records (Yao et al., 2019).038

However, such applications may always involve039

user-generated textual data as the training dataset,040

which contains sensitive information. To address041

privacy concerns, text anonymization (Anandan 042

et al., 2012; Pilán et al., 2022) has been commonly 043

used, which involves identifying sensitive attributes 044

and replacing them with alternative values. Nev- 045

ertheless, such heuristic approaches become inef- 046

fective as deep neural networks often tend to mem- 047

orize training data, making them susceptible to 048

information leakage about the training data (Shokri 049

et al., 2017; Carlini et al., 2021, 2019). One way 050

that takes into account the limitations of existing 051

approaches is designing Differentially Private (DP) 052

algorithms. DP (Dwork et al., 2006a) is resilient to 053

arbitrary side information that might be available 054

to attackers and has become a de facto method for 055

private data analysis. 056

Recently, there has been significant research fo- 057

cusing on differentially private (DP) versions of 058

word embedding from various perspectives (Yue 059

et al., 2021; Feyisetan et al., 2019; Krishna et al., 060

2021; Feyisetan et al., 2020; Xu et al., 2021a,b; 061

Carvalho et al., 2021b,a; Habernal, 2021, 2022). 062

However, there are still some shortcomings in these 063

approaches. On the one hand, several works con- 064

sider adding Laplacian or Gaussian noise to the 065

embedding space to ensure DP (Habernal, 2021; Kr- 066

ishna et al., 2021; Habernal, 2022). However, these 067

mechanisms suffer from high noise levels, resulting 068

in low utility, especially in the high privacy regime 069

when the privacy parameter (ϵ) is small. Moreover, 070

these mechanisms can even alter the semantics of 071

sentences (see Fig.1). On the other hand, there is a 072

growing body of work that focuses on a relaxation 073

of the canonical definition of DP, known as metric 074

DP, which can achieve better performance. How- 075

ever, as a relaxed notion of DP, Metric DP cannot 076

provide the same level of strong privacy guarantees 077

as the canonical DP (Mattern et al., 2022). This 078

raises the question of whether we can develop im- 079

proved private word embedding mechanisms that 080

go beyond the limitations of Laplacian or Gaussian 081

mechanisms within the framework of canonical DP. 082
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Comparison of Private Embedding

Original: Oh and we came on a Saturday night around 11:30 for context. (→Privacy Leakage)

Trlaplace: Oh and we came on a Saturday night around 9:30pm for <unk> (→Private and Fluent)

Laplace: Oh and we came on a Saturday night around around for <unk> (→Semantic Problem)

Gaussian: Oh and we came on a Saturday night around 11:30 for <unk> (→Privacy Leakage)

Figure 1: An example of (private) text re-write for different mechanisms with ϵ = 0.1.

In this paper, we provide an affirmative answer083

to the previous question by proposing a novel pri-084

vate mechanism for word embedding. Our ap-085

proach is inspired by the superior performance086

of the truncated Laplacian mechanism in one-087

dimensional space (Geng et al., 2020). However,088

it remains unclear whether this superiority can089

extend to high dimensional cases, as directly ex-090

tending the one-dimensional truncated Laplacian091

mechanism is challenging. To bridge this gap,092

we develop a high dimensional truncated Lapla-093

cian mechanism(TrLaplace), which is a non-trivial094

extension of the one-dimensional case. Theoreti-095

cally, we show that compared with Laplacian and096

Gaussian mechanisms for private word embedding,097

TrLaplace-based private embedding has a lower098

variance. Moreover, we also conduct intensive ex-099

periments on both private embedding and down-100

stream tasks to show our approach significantly101

outperforms the previous methods in the high pri-102

vacy regime, and it will not drop much accuracy103

and utility compared with the non-private case.104

Due to space limitations, more details and exper-105

iments are included in Appendix.106

2 Background107

Differential Privacy is a data post-processing tech-108

nique designed to ensure data privacy by adding109

confusion to potential attackers. Specifically, sup-110

pose there is one dataset noted as D, and we change111

or delete one data record in this dataset which we112

call D′. If the output distributions of D and D′113

are close enough, then we cannot distinguish these114

two distributions, i.e., we cannot infer whether the115

deleted or replaced data sample is really in this116

dataset. The formal details are given by (Dwork117

et al., 2006b).118

In this work, we adopt a similar setting to previ-119

ous research on private word embedding (Feyisetan120

et al., 2020; Xu et al., 2021a; Krishna et al., 2021).121

We consider a scenario where a user inputs a word122

w from a discrete fixed vocabulary W . Our goal is123

to preserve the user’s privacy with respect to her/his 124

word. To achieve this goal, we aim to design an 125

algorithm that accepts w as input and whose distri- 126

bution of output is close to the case where w′ ∈ W 127

is the input, with w′ ̸= w is any other word. From 128

the attacker’s perspective, based on the output, he 129

cannot distinguish whether the user’s input word is 130

w or w′ as their output distributions are almost the 131

same. Formally, we have the following definition. 132

Definition 1 Given a discrete vocabulary W , a 133

randomized algorithm A : W 7→ R is word-level 134

(ϵ, δ)-differentially private (DP) if for all pair of 135

words w,w′ ∈ W and for all T ⊆ R we have 136

P(A(w) ∈ T ) ≤ eϵP(A(w′) ∈ T ) + δ. When 137

δ = 0, we call the algorithm A is ϵ-DP. 138

In this paper, we assume the user holds a sentence 139

s = w1w2 · · ·wn with n words. And we aim to de- 140

sign an (ϵ, δ)-DP algorithm, which is private w.r.t. 141

each word wi. 142

3 Private Embedding via Truncated 143

Laplacian Mechanism 144

In this section, we will provide details of our 145

method. Generally speaking, for each token wi, 146

to achieve DP, our approach consists of three steps. 147

First, each token wi is mapped to an d-dimensional 148

pre-trained word embedding ϕ(wi). And we per- 149

form a clipping step to get a clipped embedding: 150

151

CLIPEmb(wi) = ϕ(wi)min{1, C

∥ϕ(wi)∥2
}, (1) 152

where the threshold C > 0 is a hyper-parameter. 153

In the second step, we add some random noise to 154

the clipped embedding vector to make it satisfies 155

DP. Finally, we will perform the projection step by 156

finding the nearest word ŵi to the perturbed and 157

clipped embedding vector within the embedding 158

space: 159

ŵi = arg min
w∈W

∥ϕ(w)− CLIPEmb(wi)− η∥2,
(2) 160
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where η is the randomized noise we add in the sec-161

ond step. See Algorithm 1 for details. It is notable

Algorithm 1 Privacy Preserving Mechanism

Input: String s = w1w2 . . . wn, clipping thresh-
old C, privacy parameter ϵ > 0.

Output: String ŝ = ŵ1ŵ2 . . . ŵn.
1: for all i ∈ {1, . . . , n} do
2: Sample η from the truncated Laplacian dis-

tribution in Theorem 3.
3: Obtain the perturbed clipped embedding

ri = CLIPEmb(wi) + η.
4: Let ŵi = Proj (ri) as in (2).
5: end for
6: return ŝ = ŵ1ŵ2 . . . ŵn.

162
that the goal of clipping is to make the ℓ2-norm163

of embedding vector be bounded so that we can164

adding noise to ensure DP, such as the Laplacian165

mechanism or Gaussian mechanism (Dwork and166

Roth, 2014).167

Theorem 1 (Laplacian Mechanism) Suppose168

CLIPEmb(w) ∈ Rd denote the clipped em-169

bedding vector with threshold C. Then the170

mechanism Alap(w) = CLIPEmb(w) + η1 is171

ϵ-DP, where η1 = (η1,1, · · · , η1,d) and ηi,j is172

drawn from a Laplacian Distribution Lap(∆1(f)
ϵ )173

with ∆1 = 2
√
dC. For a parameter λ, the174

Laplacian distribution has the density function175

Lap(λ)(x) = 1
2λ exp(−x

λ).176

Theorem 2 (Gaussian Mechanism) Suppose177

CLIPEmb(w) ∈ Rd denote the clipped embed-178

ding vector with threshold C. Then the mechanism179

Alap(w) = CLIPEmb(w) + η2 is (ϵ, δ)-DP when180

ϵ ≤ 1, where η2 ∼ N (0, 8C
2 ln(1.25/δ)

ϵ2
Id) is drawn181

from a Gaussian distribution.182

In the following we propose an improved mech-183

anism namely high dimensional truncated Lapla-184

cian mechanism. Before that we first recall the185

probability density function of the one-dimensional186

truncated Laplacian distribution, which could be187

written as the following with some appropriate con-188

stants α,A and B:189

fTLap(x) =

{
1
B e−α|x|, for x ∈ [−A,A]

0, otherwise.
(3)190

In our mechanism, we add high dimensional trun-191

cated Laplacian noise to the clipped embedding192

vector. Here each coordinate of the noise is i.i.d.193

sampled from a truncated Laplacian distribution 194

with some specific α,A and B. 195

It is notable that although using truncated Lapla- 196

cian noise to ensure DP has been studied in (Geng 197

et al., 2020; Sommer et al., 2021), all of them only 198

consider the case where d = 1 and their methods 199

cannot extend to the case where d > 1. For exam- 200

ple, (Geng et al., 2020) only shows adding noise 201

with density function (3) for A = ∆1
ϵ log(1 + eϵ

2δ ) 202

and α = ϵ
∆1

can ensure (ϵ, δ)-DP. Compared with 203

Theorem 3 we can see the constant A is more com- 204

plicated and the proof is also different. Thus, our 205

mechanism cannot be considered as a trivial exten- 206

sion of the one-dimensional case. Secondly, while 207

the Laplacian mechanism can guarantee ϵ-DP, the 208

truncated one can only ensure (ϵ, δ)-DP. However, 209

as we will see below, our mechanism is superior 210

to Laplacian mechanism for utility. It is also no- 211

table that we need to assume ϵ ≤ 2δ
1
d

√
d, this is 212

reasonable since we always wish ϵ to be as small 213

as possible, as large ϵ indicates the algorithm is no 214

longer private. If we want large ϵ > 2δ
1
d

√
d, we 215

can use the trick of adding dummy dimension to 216

the vector to increase its dimensionality manually 217

and then projecting back to the original space after 218

adding noise. In the following we will show our 219

mechanism has lower variance than the Laplacian 220

and Gaussian mechanisms. 221

Figure 2: Privacy Test. Curves of the value Nw with
privacy budget ϵ for Yelp dataset.

4 Theoretical Sensitivity Analysis 222

In the last section, we introduce our truncated lapla- 223

cian mechanism, we will analyze its sensitivity and 224

proof our claim in this section. 225

Theorem 3 Suppose CLIPEmb(w) ∈ Rd is the 226

clipped embedding vector with threshold C. Define 227
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∆∞ = 2C and ∆1 = 2
√
dC. For ϵ ≤ 2δ

1
d

√
d, if228

α =
ϵ

∆1
, A = −∆1

ϵ
log(1− ϵ

2δ
1
d

√
d
)229

B =
2(1− e−αA)

α
=

∆∞

δ
1
d

,230

then the mechanism A(w) = CLIPEmb(w) + η231

is (ϵ, δ)-DP, where η = (η1, · · · , η1) and each ηi232

has the density function as in (3) with the above233

parameters.234

Proof 1 (Proof of Theorem 3) Consider a pair235

of tokens w,w′. Let perturbed encoder1236

r1 = CLIPEmb(w) + η1, also let r2 =237

CLIPEmb(w′)+η2 = CLIPEmb(w)+∆s+η2,238

where ∥∆s∥1 ≤ ∆1 and ∥∆s∥∞ ≤ ∆∞ which239

are due to the clipping operation.240

Let us denote the set of possible values of rk by241

Sk for k = 1, 2.242

Define U = [−C − A,C + A]d. Note that for243

any subset V ⊆ U − (S1 ∪ S2), P (r1 ∈ V)) =244

P (r2 ∈ V) = 0, hence (ϵ, δ)-DP is satisfied for245

this part. We need to ensure (ϵ, δ)-DP is satisfied246

for all elements in S1 ∪ S2 too.247

First, consider an element s ∈ S1 ∩ S2. Then:248

f (r1 = s) = f (η1 = s− CLIPEmb(s))249

Similarly:250

f (r2 = s) = f (η2 = s− CLIPEmb(s)−∆s)251

Using the above equations:252

exp (−α∆1) ≤ exp (−α ∥∆s∥1)

≤ P (r1 = s)

P (r2 = s)
≤ exp (α ∥∆s∥1) ≤ exp (α∆1)

253

From the above equation, setting setting α =254

ϵ/∆1 ensures pure ϵ-DP for all s ∈ S1 ∩ S2. With255

this, it follows that for any V ⊆ S1 ∩ S2:256

e−ϵP (r2 ∈ V) ≤ P (r1 ∈ V) ≤ eϵP (r2 ∈ V) .257

by setting α = ϵ/∆1.258

Now consider an element s ∈ S2 − S1. Clearly,259

f (r1 = s) = 0. Also:260

max
s∈S2−S1

P (r2 = s) ≤ 1

B
.261

But notice that volume(S2−S1) ≤ ∆d
∞. This fol-262

lows from the fact that for every coordinate, there263

are at most ∆∞ levels that can be attained by r2 264

but not by r1. Thus, for any T ⊆ S2 −S1, we have 265

P (r1 ∈ T ) = 0 and P (r2 ∈ T ) ≤
(
∆∞
B

)d

266

Similarly, for any T ⊆ S1 − S2, we have 267

P (r2 ∈ T ) = 0 and P (r1 ∈ T ) ≤
(
∆∞
B

)d

. 268

Now, let us now consider some general T ⊆ S1∪ 269

S2. Let T0 = T ∩ (S1 ∪ S2) , T1 = T ∩ (S1 − S2) 270

and T2 = T ∩ (S2 − S1). It is easy to see that 271

T = T0 ∪ T1 ∪ T2 and that T0, T1 and T2 are 272

pairwise-disjoint. Then: 273

P (r1 ∈ T ) = P (r1 ∈ T0) + P (r1 ∈ T1)
+ P (r1 ∈ T2)

≤ eϵP (r2 ∈ T0) +
(
∆∞
B

)d

+ 0

≤ eϵP (r2 ∈ T ) +

(
∆∞
B

)d

.

(4)

274

Thus, we can set δ = (∆∞
B )d. Obviously, this result 275

is only useful if B > ∆∞. 276

For each coordinate 277

∫
x∈R

fTLap(x)dx =

∫ A

0
2
1

B
e−α|x|dx

=
2

Bα

(
1− e−αA

)
= 1

278

We can solve B = 2(1−e−αA)
α . Thus, take 279

B = ∆∞

δ
1
d

, we can see A = − 1
α log(1 − α∆∞

2δ
1
δ
) = 280

−∆1
ϵ log(1− ϵ

2
√
dδ

1
δ
). 281

Theorem 4 The variance of mechanism A in Theo- 282

rem 3 is lower than the variance of Laplacian mech- 283

anism and Gaussian mechanism when δ ≤ 1
ed

. 284

Proof 2 (Proof of Theorem 4) We first show the 285

variance of our mechanism A is bounded by 2
d∆2

1
ϵ2

. 286

We can easily see that the variance is E∥A(w)− 287

w∥22 = dV with V =
∫
x∈R fTLap(x)|x|2dx, so 288
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∫
x2f(x)dx

=2
1

B

∫ A

0
e−αxx2dx

=2
1

B

∫ A

0
− 1

α
x2d

(
e−αx

)
=2

1

B
(− 1

α
)A2e−αA + 2

1

B

∫ A

0

1

α
e−αx2xdx

(5)

289

and290 ∫ A

0

1

α
e−αx2xdx

=−
∫ A

0

1

α2
· 2xd

(
e−αx

)
=− 1

α2
2Ae−αA +

∫ A

0

2

α2
e−αxdx

=− 1

α2
2A · e−αA +

2

α3

(
1− e−2αA

)
(6)291

Thus, we have292

V = −2
1

α

1

B
A2e−αA − 4

1

α2

1

B
Ae−αA

+ 4
1

α3

1

B

(
1− e−αA

)
= −2

1

α

1

B
Ae−αA(A+ 2

1

α
) + 2

∆2
1

ε2

< 2
∆2

1

ε2
.

(7)293

Thus, in total we have E∥A(w)− w∥22 ≤ 2d∆2
1

ϵ2
=294

8d2C2

ϵ2
.295

Next for Laplacian mechanism in Theorem 1 we296

have E[∥Alap(w) − w∥22] =
2d∆2

1
ϵ2

. Thus the vari-297

ance of high dimensional truncated Laplacian is298

always lower than Laplacian.299

Similarly, the variance of Gaussian mechanism300

in Theorem 4 is 8C2d(ln 1.25+ln 1/δ)
ϵ2

, we can easily301

see that our mechanism has lower variance when302

δ ≤ 1
ed

.303

5 Experiments304

In this section, we conduct experiments for our305

method based on two parts: DP text re-write for306

fine-tuning (private embedding) and downstream307

tasks (sentiment analysis). In all experiments,308

we compare our Truncated Laplace (TrLaplacian)309

mechanism with Gaussian and Laplacian mecha-310

nisms.311

Figure 3: Privacy Test. Curves of Nw value w.r.t. pri-
vacy budget ϵ for Yahoo dataset.

5.1 Experimental Setup 312

Datasets: For the DP text re-write task, we use 313

the Yelp 1 and Yahoo (Yang et al., 2019) datasets. 314

The Yelp Open dataset is a subset of Yelp business, 315

review, and user data with a training size of 8,539 316

and a testing size of 2,174. The Yahoo dataset con- 317

tains 14,180 news articles and 34,022 click events. 318

All data are collated to obtain a training, validation, 319

and testing set segmented by sentences. For down- 320

stream tasks, we use the SST-2 dataset (Socher 321

et al., 2013), from which we use 68221 heavily po- 322

larized reviews from the Internet Movie Database. 323

We divide the SST-2 dataset into an 80:20 ratio 324

for training and testing. The training set consists 325

of 54,576 reviews, with 30,362 positive reviews 326

and 24,214 negative reviews. The testing set con- 327

sists of 13,645 reviews, with 7,651 positive reviews 328

and 5,994 negative reviews. The statistics of the 329

datasets are presented in Table 7 in Appendix. 330

Baseline: For DP text re-write, although Krishna 331

et al. (2021) uses the Laplacian mechanism to the 332

sentence level DP instead of word level as in Defi- 333

nition 1. However, as Habernal (2021) mentioned, 334

the approach in (Krishna et al., 2021) is not DP. 335

Thus, here we will not compare with their method, 336

and we will use the Laplacian and Gaussian mecha- 337

nisms for the clipped embedding as baseline meth- 338

ods. For private fine-tuning, as we mentioned pre- 339

viously, all the previous methods only focus on 340

metric DP instead of the original DP in Definition 341

1. Thus, our method is incomparable with theirs, 342

and we will still use Laplacian and Gaussian mech- 343

anisms as baselines. 344

1https://www.yelp.com/dataset/
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Table 1: Privacy Test. Performance under GloVe Embedding initialization for the non-private case ( ϵ = ∞) and
the three mechanisms, where the privacy budget ranges from 0.05 to 0.5. ↑ means a higher value under this metric
indicates better results, and ↓ means the opposite. The best performance is bolded.

Original Gaussian Laplacian TrLaplacian

Privacy budget ϵ ∞ 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5

Yahoo

Loss↓ 2.95 51.25 26.66 9.92 5.97 51.43 37.86 15.35 7.31 2.89 2.86 2.84 3.04
Rouge1↑ 92.37 14.01 59.52 83.61 89.06 13.02 43.30 75.77 86.98 92.44 92.43 92.41 92.25
BLEU↑ 8.501 9.286 8.418 8.489 8.499 9.132 8.287 8.474 8.493 8.499 8.500 8.497 8.504
Nw ↑ 0.703 0.072 0.511 0.595 0.628 0.066 0.334 0.566 0.642 0.706 0.682 0.666 0.662

BERT-S↑ 0.975 0.849 0.908 0.955 0.963 0.839 0.889 0.942 0.959 0.976 0.971 0.971 0.971

Loss↓ 3.07 34.67 21.62 10.61 5.98 36.00 34.64 14.86 7.38 2.98 2.99 3.02 2.94
Rouge1↑ 89.40 15.97 48.89 76.48 84.97 12.60 14.68 66.62 82.08 89.45 89.47 89.34 89.54

Yelp BLEU↑ 8.934 8.976 8.850 8.926 8.930 8.607 8.916 8.913 8.928 8.931 8.935 8.936 8.936
Nw ↑ 0.706 0.144 0.381 0.608 0.694 0.052 0.138 0.525 0.646 0.705 0.721 0.722 0.725

BERT-S↑ 0.973 0.874 0.895 0.943 0.964 0.855 0.874 0.927 0.952 0.971 0.973 0.971 0.972

Table 2: Utility Test. Comparison of classification accuracy with three embedding methods (Random, GloVe and
fastText) for different mechanisms under various privacy budget via sentiment analysis task over the SST-2 dataset.

Random(seed = 42) GloVe fastText
Privacy budget ϵ TrLaplace Laplace Guassian TrLaplace Laplace Guassian TrLaplace Laplace Guassian

0.05 86.04 85.97 84.93 88.68 88.57 88.57 89.37 89.37 89.40
0.1 85.44 84.89 84.06 88.95 88.25 88.24 89.51 89.50 89.30
0.2 86.18 85.45 85.90 88.93 88.51 88.76 89.45 89.35 89.19
0.5 86.33 85.55 85.34 88.88 88.48 88.60 89.51 89.40 89.18

Evaluation Metrics: We use the loss of cross-345

entropy to measure the performance of language346

models. Specifically, cross-entropy is mainly used347

to determine how similar the actual output is to348

the expected output. Smaller model loss indi-349

cates less noise added to perturb the text. Addi-350

tionally, we will use Rouge1 and BLEU scores.351

Rouge1 (Lin, 2004) calculates recall using standard352

results and the number of 1-grams co-occurring353

in the auto-generated text. Similarly, BLEU (Pa-354

pineni et al., 2002) measures the similarity be-355

tween standard results and automatically generated356

text. Rouge1 measures word-level accuracy, while357

BLEU measures sentence fluency. Moreover, we358

use BERTScore (Zhang* et al., 2020) to measure359

the semantic similarity of the perturbed sentence360

with the original one. To measure the privacy-361

preserving ability, we use the percentage of Nw362

(Feyisetan et al., 2020), which is the number of363

words that are not replaced. Thus, under the same364

privacy budget, larger Nw will be better (we want365

to change fewer words for accuracy).366

Setup: As an embedding can be considered as367

an initialization of the model, here we will con-368

sider three different initialization: Random embed-369

ding (Wieting and Kiela, 2019), GloVe (Pennington370

et al., 2014) and fastText (Bojanowski et al., 2017).371

We conduct experiments on these embeddings and372

the subsequent fine-tuning in the DP model via 373

our mechanism. Each pre-trained word embed- 374

ding is a 300-dimensional vector, and the size of 375

considered vocabulary is 104. For privacy budget, 376

we set δ = 1
4d

, and we consider both the high 377

privacy regime where ϵ ∈ {0.05, 0.1, 0.2, 0.5} and 378

the low privacy regime ϵ ∈ {1, 5, 10, 20}. For large 379

ϵ we will use our previous dummy dimension trick 380

(d = 500 for ϵ = 10 and d = 1700 for ϵ = 20). 381

5.2 Privacy Experiment on Embedding 382

We first show the results on private embedding. 383

Specifically, we use GloVe or fastText for initializa- 384

tion, and then use three different private embedding 385

mechanisms with different privacy budgets. Noted 386

that large ϵ > 10 is meaningless for privacy, we 387

concentrated more on a small privacy budget in 388

the main context. Fig. 1 and 5 show the text after 389

projecting the clipped and perturbed embedding 390

back to the word domain in step 4 of Algorithm 1 391

for different mechanisms when ϵ = 0.1. We can 392

see our method (TrLaplace) outperforms the other 393

two methods from both privacy and semantic per- 394

spectives, while the Gaussian mechanism fails to 395

obfuscate the time, and the Laplacian mechanism 396

totally replaces the time by another word, which 397

destroys the structure of the sentence. 398

Tab. 1 and Tab. 3 are the results on different 399
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(a) Loss with ϵ = 0.05 to ϵ = 5. (b) Rouge1 with ϵ = 0.05 to ϵ = 5. (c) BERT Score with ϵ = 0.05 to ϵ = 1.

(d) Loss with ϵ = 0.05 to ϵ = 5. (e) Rouge1 with ϵ = 0.05 to ϵ = 5. (f) BERT Score with ϵ = 0.05 to ϵ = 1.

Figure 4: Privacy-Utility Test. Curves of Loss, Rouge1 and BERTScore with different privacy budget ϵ for Yelp
(Upper) and Yahoo (Lower) datasets.

Table 3: Privacy Test. Performance under GloVe Embedding initialization for the non-private case ( ϵ = ∞) and
the three mechanisms, where the privacy budget ranges from 1 to 20. ↑ means a higher value under this metric
indicates better results, and ↓ means the opposite. The best performance is bolded.

Original Gaussian Laplacian TrLaplacian

Privacy budget ϵ ∞ 1 5 10 20 1 5 10 20 1 5 10 20

Yahoo

Loss↓ 2.95 4.28 3.01 3.03 2.98 4.93 3.24 3.05 3.13 2.85 2.97 2.92 2.81
Rouge1↑ 92.37 90.97 92.27 92.16 92.19 90.02 92.09 92.28 92.26 92.41 92.35 92.24 92.45
BLEU↑ 8.501 8.501 8.501 8.499 8.500 8.503 8.501 8.502 8.500 8.498 8.501 8.499 8.499
Nw ↑ 0.703 0.637 0.680 0.664 0.672 0.660 0.658 0.675 0.655 0.674 0.670 0.702 0.680

BERT-S↑ 0.975 0.968 0.973 0.971 0.972 0.966 0.970 0.971 0.971 0.974 0.972 0.975 0.974

Yelp

Loss↓ 3.07 4.74 3.14 3.13 2.97 5.02 3.30 3.66 3.17 2.93 3.03 3.00 2.98
Rouge1↑ 89.40 86.63 89.13 89.27 89.80 86.43 89.04 88.15 89.23 89.68 89.40 89.37 89.60
BLEU↑ 8.934 8.933 8.936 8.933 8.944 8.931 8.932 8.933 8.934 8.934 8.931 8.934 8.938
Nw ↑ 0.706 0.708 0.725 0.708 0.739 0.691 0.721 0.704 0.699 0.724 0.700 0.712 0.740

BERT-S↑ 0.973 0.969 0.975 0.975 0.975 0.964 0.969 0.969 0.968 0.975 0.971 0.976 0.976

Table 4: Utility Test. Comparison of classification accuracy with three embedding methods (Random, GloVe and
fastText) and different mechanisms under various privacy budget via sentiment analysis task in SST-2 dataset.

Random(seed = 42) GloVe fastText
Privacy budget ϵ TrLaplace Laplace Guassian TrLaplace Laplace Guassian TrLaplace Laplace Guassian

1 85.99 84.05 85.36 89.01 88.61 88.62 89.19 89.18 89.08
5 85.90 85.27 85.31 88.76 88.76 88.47 89.46 89.43 89.20
10 85.27 84.98 84.57 89.15 88.52 88.48 89.68 89.45 89.53
20 85.75 85.44 84.12 88.75 88.40 88.57 89.45 89.40 89.24
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Table 5: Privacy Test. Performance under fastText Embedding initialization for the non-private case (ϵ = ∞)
and three mechanisms (Gaussian, Laplacian and TrLaplacian) on Yelp dataset. The privacy budget ranges from
0.05 to 20. ↑ means a higher value under this metric indicates better results, and ↓ means the opposite. The best
performance is bolded.

Original Gaussian Laplacian TrLaplacian

Privacy budget ϵ ∞ 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5

Loss↓ 3.35 35.01 29.33 9.31 4.50 36.23 29.69 17.15 5.58 1.20 1.20 1.26 1.23
Rouge1↑ 87.8 12.72 28.68 77.95 86.90 10.99 27.96 58.97 85.16 92.43 92.67 92.29 92.43
BLEU↑ 8.929 8.226 8.745 8.918 8.931 8.998 8.681 8.898 8.931 8.937 8.938 8.937 8.938
Nw ↑ 0.713 0.138 0.232 0.661 0.765 0.058 0.225 0.484 0.753 0.813 0.807 0.804 0.813

BERT-S↑ 0.967 0.864 0.873 0.945 0.966 0.857 0.867 0.908 0.962 0.981 0.978 0.979 0.978

Original Gaussian Laplacian TrLaplacian

Privacy budget ϵ ∞ 1 5 10 20 1 5 10 20 1 5 10 20

Loss↓ 3.35 3.10 1.68 1.48 1.29 3.60 1.55 1.53 1.51 1.22 1.25 1.28 1.27
Rouge1↑ 87.8 89.47 92.06 92.40 92.49 88.17 91.87 91.90 91.91 92.42 92.35 92.34 92.31
BLEU↑ 8.929 8.936 8.937 8.936 8.936 8.935 8.937 8.936 8.934 8.938 8.939 8.937 8.938
Nw ↑ 0.713 0.794 0.809 0.804 0.813 0.758 0.801 0.795 0.792 0.807 0.802 0.800 0.808

BERT-S↑ 0.967 0.976 0.977 0.978 0.980 0.967 0.978 0.976 0.977 0.979 0.978 0.978 0.980

metrics regarding private embedding with Glove400

initialization and Tab. 5 is with fastText initializa-401

tion. We also present the detailed trends w.r.t ϵ for402

three mechanisms in Fig. 4. When ϵ < 1, from403

Tab. 1 we can see that for both Yahoo and Yelp,404

the loss of Gaussian and Laplacian mechanisms405

will be catastrophically large while our mechanism406

has a much smaller loss. From Tab. 3 we can407

see we have almost the same phenomenon when408

in the low privacy regime. Moreover, for Rouge1,409

Trlaplacian also leads the other two mechanisms410

for both datasets, which means our mechanism led411

to steady superiority from lexical/syntactic aspects.412

For BLEU, the gap between all three mechanisms413

to the non-private case becomes small for both two414

datasets. But our method still has a slight advantage415

compared with the other two. For Nw value, we416

can see in Fig. 2 and Fig. 3, our mechanism outper-417

forms the other two mechanisms by changing less418

percentage of words to achieve the same privacy419

level, which indicates our method can exactly find420

sensitive words without hurting other words, thus421

keeps semantic properties. For BERTScore, our422

mechanism is almost the same as the non-private423

case, while there is a larger gap for others. It is no-424

table that, in almost all experiments our mechanism425

is the best, and the Gaussian mechanism is better426

than the Laplacian mechanism, which matches our427

theorem. However, it becomes less obvious when ϵ428

is large. The main reason is that when ϵ is enough429

large the noise will be sufficiently small and be-430

comes nearly negligible, which can also be sup-431

ported by the proof of Theorem 4. For evaluation432

metrics, our mechanism may even be better than433

the non-private case, this may be due to small noise 434

that could improve generalization, which is similar 435

to adversarial training. 436

6 Utility of Private Fine-tuning 437

Due to space limitations, the discussion on the Util- 438

ity of Private Fine-tuning has been moved to the 439

appendix. 440

Table 6: Results on SST-2 data for classification task
with GloVe initialization under ϵ = 10, where 0/1 repre-
sents the label and support is the size for each class.

Mechanism Label Support Precision Recall F1-score
Guassian 0.87 0.87 0.87
TrLaplace 0 2976 0.88 0.87 0.87
Laplace 0.89 0.84 0.86

Guassian 0.90 0.90 0.90
TrLaplace 1 3847 0.90 0.91 0.90
Laplace 0.88 0.92 0.90

7 Conclusions 441

We introduce a novel method called the high dimen- 442

sional truncated Laplacian mechanism for private 443

embedding, which extends the one-dimensional 444

case to the high-dimensional case. Theoretical anal- 445

ysis demonstrates that our method exhibits lower 446

variance compared to existing private word embed- 447

ding techniques. Experiments show that even in 448

the high privacy regime, our approach incurs only a 449

minimal loss in utility compared to the non-private 450

case, which maintains privacy while preserving the 451

quality of embeddings for promising performance. 452
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Limitations453

First, the word level DP has the disadvantages of454

length constraints and linear growth of privacy bud-455

get (Mattern et al., 2022). However, such limita-456

tions are rooted from the definition of DP, instead457

of our mechanism. Secondly, to ensure DP guaran-458

tees, in this paper our mechanism involves clipping459

embedding vectors and adding calibrated noises,460

which inevitably introduce errors to the outputs of461

the task at hand. And these errors may affect dif-462

ferent groups of individuals differently and may463

cause unfairness issues. However, we still need to464

mention that, such unfairness issues are mainly due465

to the definition of DP, rather than our method, as466

DP machine learning algorithms will always have a467

disparate impact on model accuracy (Bagdasaryan468

et al., 2019).469
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Table 8: Time Cost. Comparison of the time cost of
each epoch (seconds) under GloVe Embedding initial-
ization for the non-private case and three mechanisms
(Gaussian, Laplacian and TrLaplacian), the privacy bud-
get ranges from 0.05 to 20.

ϵ < 1 ϵ ≥ 1
Privacy budget ϵ 0.05 0.1 0.2 0.5 1 5 10 20

Yahoo

Non-private 111
Gaussian 111 113 111 111 111 111 111 111
Laplacian 111 113 111 111 111 111 111 111

TrLaplacian 123 123 123 123 123 123 123 123

Yelp

Non-private 111
Gaussian 38 37 38 38 37 37 37 37
Laplacian 38 37 37 37 37 37 37 37

TrLaplacian 46 41 46 42 42 42 42 42

Implementation Details Models in this paper664

are implemented based on the PyTorch 2 and Ten-665

sorFlow 3 with their libraries. Experiments are con-666

ducted on NVIDIA GeForce RTX 3090 GPUs. To667

implement our mechanism, we use the acceptance-668

rejection sampling method (Neal, 2003) to sample a669

point from the high dimensional truncated Laplace670

distribution from the Laplace distribution, only by671

rejecting the samples outside the interval.672

For text re-write, we use the auto-encoder673

model. The embedding is initialized with the 300-674

dimensional pre-trained Random, GloVe, and fast-675

Text word embedding. We use one-layer BiLSTM676

with dropout for encoder, and using setup: dropout677

rate 0.5, Adam (Kingma and Ba, 2015) with an ini-678

tial learning rate of 0.0005 and betas (0.5, 0.999),679

batch size 1024, and number of training epochs680

50. For the downstream classification task over the681

IMDB data, we use Adam with an initial learning682

rate of 10−3, dropout rate 0.2. We set the maximum683

number of epochs to be 20.684

B Utility of Private Fine-tuning685

we present the classification accuracy results for686

private fine-tuning across various embeddings and687

privacy levels in Tab. 2, Tab. 4 and Tab. 6. It688

is evident that our mechanism consistently outper-689

forms the other two methods for all embeddings.690

Furthermore, our approach achieves results that are691

comparable to the non-private case, where the accu-692

racy scores are 90.14 for Random, 90.19 for GloVe,693

and 90.19 for fastText in non-private cases. Impor-694

tantly, the efficacy of our approach will become695

even more pronounced when dealing with larger696

datasets. This can be attributed to the minimal697

amount of noise that the TrLaplacian mechanism698

2https://pytorch.org/
3https://www.tensorflow.org/

requires, thereby preserving the utility of the em- 699

bedding. Tab. 6 shows that for class 0, our method 700

achieves significant improvement in accuracy com- 701

pared with the other two methods. And for class 702

1, the precision of our method is higher than the 703

others. In Tab. 8 in the Appendix, we show the 704

time cost of each epoch for each experiment, and 705

we can see that compared with Laplacian and Gaus- 706

sian mechanisms, our method does not need too 707

much additional time, which means our mechanism 708

is also efficient. 709

Comparison Semantic Problem of Private Embedding

Original: do not come here! food poisoning alert! (→Neg.)

Trlaplace: do not come here! food poisoning alert! (→Neg.)

Laplace: this place is awesome! love this place! (→Pos.)

Gaussian: do not go here! food glorious <unk>! (→Pos.)

Figure 5: Another example of text re-write with dif-
ferent mechanisms with ϵ = 0.1. The Gaussian and
Laplacian mechanism destroyed semantic properties of
original sentence.
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