
Sniper GMMs: Structured Gaussian mixtures poison
ML on large n small p data with high efficacy

Abstract
We propose a method for structured learning of Gaussian mixtures with low KL-
divergence from target mixture models that in turn model the raw data. We show
that samples from these structured distributions are highly effective and evasive
in poisoning training datasets of popular machine learning training pipelines such
as neural networks, XGBoost and random forests. Such attacks are especially
destructive given the current uptrends towards distributed machine learning with
several untrusted client devices that provide their data to servers and cloud service
providers for privacy preserving distributed machine learning. In current day and
age of machine learning, Gaussian mixtures are perceived to be an older/classical
technique in practice, although they are still actively studied from a theoretical
perspective. Therefore it is quite interesting to see that they can be highly effective
in performing data poisoning attacks on complex ML pipelines if learned with the
right structural constraints.

1 Introduction
Data poisoning attack methods have propped up in plenty [1, 2] to damage the efficacy of training
machine learning models. Their mode of operation is based on either modifying existing training
data records via attacks such as one pixel attacks [3] or via addition of a subsample of poisoned
data points [4] to the training datasets. These methods attempt to evade detection by models that
screen the datasets or ML pipelines and anomaly detectors to detect data poisoning. Post the filtering
of any detected points (typically with false alarms or false negatives); the rest of the undetected
points produce a degradation in model performance on otherwise genuine data points upon which
model predictions are to be obtained post deployment of the model. These methods are currently
based on adversarial training [5, 6, 7, 8, 9, 10, 11, 12, 13]. We provide an alternative attack scheme
for data poisoning that is instead based on structured learning of Gaussian mixtures with low KL-
divergence from target mixture models that in turn model the raw data. We showthat samples from
these structured distributions are highly effective and evasive inpoisoning training datasets of popular
machine learning training pipelines suchas neural networks, XGBoost and random forests. In current
day and age of machine learning Gaussian mixtures are perceived to be an older/classical technique.
Therefore it is quite interesting to see that they can be highly effective in performing data poisoning
attacks if learned with the right structural constraints.

2 Structured Decoy Distribution Learning

We now present our proposed results that help in structured distribution learning of Gaussian
mixtures such that the KL-divergence between the learnt mixture and the target mixture is minimized.
This helps in learning distributions from which the poisoned data points can be sampled from.
The motivation is to use RKHS and distance based statistical dependency measures such as
distance correlation, HSIC, MMD [14] between multivariate Gaussians as a gadget to minimize
KL-divergence between Gaussian mixtures. Therefore we first start by connecting distance
correlation to KL-divergence in the case of multivariate Gaussians as follows.

Theorem 2.1 (Separability theorem). Minimization of distance correlation argmin
Z

(X,Z) with

respect to Z maximizes the Kullback-Leibler divergence, KL(X||Z) for X ∼ N (0,ΣX) and
Z ∼ N (0,ΣZ)
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Proof. Distance correlation can be represented as Tr (XTXZTZ)√
Tr (XTX)2 Tr (ZTZ)2

[15]. For covariance matri-

ces ΣX = XTX and ΣZ = ZTZ we have

det[(XTX)2] det([ZTZ])2 ≤ Tr (XTXZTZ) (1)

≤
√

Tr (XTX)2 Tr (ZTZ)2

by arithmetic-geometric mean inequality for the lower bound and Cauchy-Schwartz inequality for
the upper bound on distance covariance Tr (XTXZTZ). log det(ZTZ) is the differential entropy
h(Z) upto a constant for multivariate Gaussians. Similarly, the joint entropy h(X,Z) is given

by log det(Σ) where Σ =

[
XTX XTZ
ZTX ZTZ

]
Kullback-Leibler divergence is defined using joint

entropy and entropy as h(X||Z) = h(X,Z)− h(X). By Fischer’s inequality, we have

det(Σ) ≤ det(XTX) det(ZTZ)

As det(XTX) is fixed and det(ZTZ) decreases with decrease in distance covariance, an increase of
h(X||Z) is only possible when h(X,Z) = log det(Σ) increases which is inturn only possible when
Tr(XTZ) decreases. Thereby minimizing sum of distance covariance and Tr(XTZ) maximizes the
Kullback-Leibler divergence in the direction stated above while it also minimizes differential entropy
det(ZTZ).

Distance correlation-KL divergence separability theorem: We now plan to exploit our separabil-
ity theorem we presented above given the fact that KL-divergence between Gaussian mixtures is
separable into terms that only depend on the KL-divergence between the multivariate Gaussian com-
ponents that form the mixture. We can thereby substitute −DKL(fa||fα) with distance correlation
DCor(Σfa ,Σ

f
α) and −DKL(fa||gb) with DCor(Σfa ,Σ

g
b) instead based on this theorem which shows

that optimizing KL-divergence between multivariate Gaussians is equivalent to optimizing distance
correlation for the same.

2.1 Bounds on KL-Divergence between two Gaussian Mixtures

For the distribution learning problem motivated in the previous section, the key is to be able to learn
a τ -close Gaussian mixture to a given target Gaussian mixture. We therefore share some results on
KL-divergences between Gaussian mixtures [16]. This helps exploit lower bounds in distribution
testing problems that attempt to distinguish two distributions based on their samples. Let f and g be
two PDFs in Rd, where d is the dimension of the observed vectors x. The KL-divergence between
f and g is defined as DKL(f ||g) =

∫
Rd f(x) log f(x)

g(x)dx. When f and g are PDFS of multivariate
normals:

DKL(f ||g) =
1

2
log
|Σg|
|Σf |

+
1

2
Tr((Σg)−1Σf ) +

1

2
(µf − µg)T (Σg)−1(µf − µg)− d

2
(2)

When f and g are PDFs for GMMs, the expression for f is (with an analogous expression for g):

f(x) =

A∑
a=1

ωfafa(x) =

A∑
a=1

ωfaN
(
x;µfa ,Σ

f
a

)
(3)

A practical upper-bound on KL-divergence between two Gaussian mixtures is given by

Davg(f ||g) =
1

2

∑
a

ωfa

[
log
∑
α

ωfαe
−DKL(fa||fα) + log

∑
α

ωfαzaα − log
∑
b

ωgb tab − log
∑
b

ωgb e
−DKL(fa||gb)

]
as detailed in the Appendix B.
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3 Modified EM algorithm for our structured distribution learning problem

Therefore upon applying our separability theorem we have the following objective that needs to be
minimized instead, as long as the initialization for the optimization is done such that the absolute
value of the sum of two of the four terms above that do not depend on the target distribution are
much higher than the absolute value of the sum of the other two terms which are known before hand.
Upon invoking the separability theorem in 2.1, in order to minimize the above average bound on
KL-divergence Davg(f ||g) between Gaussian mixtures, the following has to be minimized

1

2

∑
a

ωfa

log
∑
α

ωfαe
DCov(Σfa,Σ

f
α) + log

∑
α

ωfα√
|Σfa + Σfα|

− log
∑
b

ωgb e
DCov(Σfa,Σ

g
b ) − log

∑
b

ωgb√
|Σfa + Σgb |


(4)

This is fortunately possible because the KL divergence between Gaussian mixtures is expressed via
separable terms of KL between components of Gaussian mixtures. Note that two terms are constant
in here with respect to the target mixture distribution as follows

Davg(f ||g) =
1

2

∑
a

ωfa

C1 + C2 − log
∑
b

ωgb√
|Σfa + Σgb |

− log
∑
b

ωgb e
DCov(Σaf ,Σ

g
b )

 (5)

With Σfg = 1
N−1Z

T
b Zb, where N is the number of samples, our problem is equivalent to minimizing

the following for each component a

ωfa log
∑
α

ωfαe
DCov(Σfa,Σ

f
α) + ωfa log

∑
α

ωfα√
|Σfa + Σfα|

(6)

− ωfa log
∑
b

ωgb e
DCov(Σfa,

1
N−1Z

T
b Zb) − ωfa log

∑
b

ωgb√
|Σfa + 1

N−1Z
T
b Zb|

(7)

= ωfa (C1 + C2)− ωfa log
∑
b

ωgb e
DCov(Σfa,

1
N−1Z

T
b Zb) − ωfa log

∑
b

ωgb√
|Σfa + 1

N−1Z
T
b Zb|

(8)

− ωfa log
∑
b

ωgb e
DCov

(
Σfa,

1
N−1 (Zb−µgb)

T
(Zb−µgb)

)
− ωfa log

∑
b

ωgb e
− 1

2 (µgb−µ
f
a)
T
(

Σfa+ 1
N−1 (Zb−µgb)

T
(Zb−µgb)

)−1

(µgb−µ
f
a)√

|Σfa + 1
N−1 (Zb − µgb)T (Zb − µgb)|

(9)

+ ωfa (C1 + C2) + λ.EMLoss

where the EMLoss in the last term is the standard EM loss. Here, the objective function is regularized
with the standard loss used in EM-algorithms for estimating Gaussian mixtures. Therefore we now
have a modified EM algorithm that learns Gaussian mixtures with respect to a target distribution
while satisfying the closeness constraints with respect to KL-divergence.

4 Modified EM algorithm for structured learning of Gaussian mixtures

E-step updates: For each component b at step t, compute

γ
(t+1)
ib =

ωgb
(t)
p
(
yi|µgb

(t)
,Σgb

(t)
)

∑B
b′=1 w

g
b′

(t)
p
(
yi|µgb′

(t)
,Σgb′

(t)
) , i = 1, . . . , N

and finally

n
(t+1)
b =

N∑
i=1

γ
(t+1)
ib
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Dataset Sample Size Attributes Balanced # of Classes
EEG Eye State 14,980 15 Yes 2
Avila 20,867 10 Yes 12
Skin Segmentation 245,057 4 No 2

Table 1: A listing of datasets that we used for empirical investigations is provided in this table along
with their dimensions.

M-step updates: For each component b, compute the following update
ωgb

(t+1)
=
n

(t+1)
b

N

The rest of updates for the mean vector and covariances are in Appendix B.

Theorem 4.1. The function log
∑
b

ωgb√
|Σfa+Σgb |

is convex if

ωgb

∑
b

 ωgb√
|Σfa + Σgb |

− ωgb

 ≥ 0

as this results in a positive semi-definite Hessian.

Proof. The proof is in Appendix C.

Theorem 4.2. The function LogSumExp(p) = log(
∑
i(e

p
i )) is convex.

Proof. The proof is in Appendix D.

5 Upper and lower bounds on distance correlation
In the spirit of upper and lower bounds of [16] on KL-divergence that proved quite useful in this
work, we propose our derived upper and lower bounds on distance correlation that we present in the
Appendices F & G below.

6 Numerical Experiments

We performed numerical experiments on 3 UCI-ML repository datasets of EEG eye state, occupancy
and Avila with their dimensions and specifications detailed in Table 1 above. We show in a series
of captioned figures in the appendix below that the well-tuned classification models such as neural
networks with increasing hidden layers of 1, 4 , 8 and 12 as well as models such as XGBoost and
Random Forests cannot distinguish between the real and poisoned samples generated by our scheme,
thereby making it really hard for an attacker that is dependent on machine learning to estimate the pair
of mixture distributions used to model the real samples and to obtain poisoned samples respectively.
Our pipeline consists of a model to detect a decoy Vs. non-decoy and in addition we also perform
a label reconstruction attack to reconstruct the raw labels of the client. The poisoned samples are
generated only using raw features. We see a spin-off empirical benefit that upon adding poisoned
samples, not only do we prevent their detection; but we also make it extremely hard for the attacker
to be able to reconstruct the raw labels corresponding to the raw data; via a second model. We use
default SciPy parameters for powell minimization to optimize mu and parameters of ftol = 0.001,
xtol = 0.001, maxfev = 4000 for optimizing Zb in our modified EM algorithm while the rest
of the steps in our algorithm are trivial to compute.

7 Conclusion
We show the efficacy and evasiveness of data poisoning with structured learning of Gaussian mixtures
with low KL-divergence from target mixture models that in turn model the raw data. We also provide
new results connecting RKHS and distance statistics like distance correlation to information theoretic
measures like KL-divergence, and employ these results in optimizing for KL-divergence between
Gaussian mixtures.
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Figure 1: EEG: Classification of decoy Vs. non-decoy splinters using NN’s, XGBoost and Random
Forest shows that the models are unable to distinguish them when the sample size of decoy splinters is
twice that of the non-decoy splinters. Our pipeline is a standard one used in data-poisoning schemes
with two models; one to detect and one to classify. We obtain similar results upon using anomaly
detectors such as isolation forests as well. The pipeline consists of a model to detect a decoy Vs.
non-decoy and in addition we also perform a label reconstruction attack to reconstruct the raw labels
of the client. The splinters are generated only using raw features. We see a spin-off empirical
benefit that upon adding decoy splinters, not only do we prevent their detection; but we also make it
extremely hard for the attacker to be able to reconstruct the raw labels corresponding to the raw data;
via a second model.
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Occupation and Avila datasets: Classification of decoy Vs. non-decoy splinters using NN’s, XGBoost
and Random Forest shows that the models are unable to distinguish them when the sample size
of decoy splinters is twice that of the non-decoy splinters. Our pipeline is a standard one used in
data-poisoning schemes with two models; one to detect and one to classify. Our pipeline consists
of a model to detect a decoy Vs. non-decoy and in addition we also perform a label reconstruction
attack to reconstruct the raw labels of the client. The splinters are generated only using raw features.
We see a spin-off empirical benefit that upon adding decoy splinters, not only do we prevent their
detection; but we also make it extremely hard for the attacker to be able to reconstruct the raw labels
corresponding to the raw data; via a second model.

A Upper bounds on KL-divergence between Gaussian mixtures

[16] defines the upper and lower bounds for KL-Divergence between GMMs to be:

Dlower(f ||g) =
∑
a

ωfa log

∑
α ω

f
αe
−DKL(fa||fα)∑
b ω

g
b tab

−
∑
a

ωfaH(fa) (10)

Dupper(f ||g) =
∑
a

ωfa log

∑
α ω

f
αzaα∑

b ω
g
b e
−DKL(fa||gb)

+
∑
a

ωfaH(fa) (11)

where H(fa) is the entropy of fa, and the normalization constants of the product of the individual
Gaussians are given by:

log tab = −d
2

log 2π − 1

2
log |Σfa + Σgb | −

1

2
(µgb − µ

f
a)T (Σfa + Σgb)

−1(µgb − µ
f
a) (12)

log zaα = −d
2

log 2π − 1

2
log |Σfa + Σfα| −

1

2
(µfα − µfa)T (Σfa + Σfα)−1(µfα − µfa) (13)

We will focus on optimizing the following average of the lower and upper bounds of the KL-
Divergence between GMMs as it was shown to be a good estimate of the KL-Divergence between
GMMs in [16].

7



Davg(f ||g) =
1

2
(Dlower(f ||g) +Dupper(f ||g))

=
1

2

(∑
a

ωfa log

∑
α ω

f
αe
−DKL(fa||fα)∑
b ω

g
b tab

−
∑
a

ωfaH(fa)

)

+
1

2

(∑
a

ωfa log

∑
α ω

f
αzaα∑

b ω
g
b e
−DKL(fa||gb)

+
∑
a

ωfaH(fa)

)

=
1

2

∑
a

ωfa log

∑
α ω

f
αe
−DKL(fa||fα)∑
b ω

g
b tab

+
1

2

∑
a

ωfa log

∑
α ω

f
αzaα∑

b ω
g
b e
−DKL(fa||gb)

Davg(f ||g) =
1

2

∑
a

ωfa

[
log
∑
α

ωfαe
−DKL(fa||fα) + log

∑
α

ωfαzaα − log
∑
b

ωgb tab − log
∑
b

ωgb e
−DKL(fa||gb)

]

If we assume that the data is mean-centered, the normalization constant tab becomes

log tab = −d
2

log 2π − 1

2
log |Σfa + Σgb | = e(−

d
2 log 2π− 1

2 log |Σfa+Σgb |) = (2π)
− d2 |Σfa + Σgb |

− 1
2

Similarly, zaα = (2π)
− d2 |Σfa + Σfα|−

1
2 .

Plugging this into (8), we get:

Davg(f ||g) =
1

2

∑
a

ωfa


log

∑
α

ωfαe
−DKL(fa||fα) + log

∑
α

ωfα (2π)−
d
2 |Σfa + Σfα|−

1
2

− log
∑
b

ωgb (2π)−
d
2 |Σfa + Σgb |

− 1
2 − log

∑
b

ωgb e
−DKL(fa||gb)



=
1

2

∑
a

ωfa


log

∑
α

ωfαe
−DKL(fa||fα) +

d log 2π

2
+ log

∑
α

ωfα√
|Σfa + Σfα|

− d log 2π

2
− log

∑
b

ωgb√
|Σfa + Σgb |

− log
∑
b

ωgb e
−DKL(fa||gb)


Davg(f ||g) =

1

2

∑
a

ωfa

log
∑
α

ωfαe
−DKL(fa||fα) + log

∑
α

ωfα√
|Σfa + Σfα|

− log
∑
b

ωgb e
−DKL(fa||gb) − log

∑
b

ωgb√
|Σfa + Σgb |


(14)
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B Scroll down for modified EM updates for covariance and mean that we
optimize via Powell minimization

µgb
(t+1)

=

min
µ



− ωfb log

∑
b′ 6=b

ωgb′
(t)
e

DCov
(

Σf
b′ ,

1
N−1

(
Z

(t)

b′ −µ
g

b′
(t)
)T(

Z
(t)

b′ −µ
g

b′
(t)
))

+ ωgb
(t)
e

DCov
(

Σfb ,
1

N−1

(
Z

(t)
b −µ

)T(
Z

(t)
b −µ

))

− ωfb log



∑
b′ 6=b

ωgb′
(t)
e
− 1

2 (µgb′−µ
f

b′)
T
(

Σf
b′+

1
N−1

(
Z

(t)

b′ −µ
g

b′
(t)
)T(

Z
(t)

b′ −µ
g

b′
(t)
))−1

(µgb′−µ
f

b′)√∣∣∣∣Σfb′ + 1
N−1

(
Z

(t)
b′ − µ

g
b′

(t)
)T (

Z
(t)
b′ − µ

g
b′

(t)
)∣∣∣∣

+
ωgb

(t)
e
− 1

2 (µ−µfb )
T
(

Σfb+ 1
N−1

(
Z

(t)
b −µ

)T(
Z

(t)
b −µ

))−1

(µ−µfb )√∣∣∣∣Σfb + 1
N−1

(
Z

(t)
b − µ

)T (
Z

(t)
b − µ

)∣∣∣∣


+ ωfb (C1 + C2)

+
1

2

∑
b′ 6=b


n

(t+1)
b′ log

∣∣∣∣∣
(

1

N − 1

(
Z

(t)
b′ − µ

g
b′

(t)
)T (

Z
(t)
b′ − µ

g
b′

(t)
))−1

∣∣∣∣∣
+

N∑
i=1

γ
(t+1)
ib′ Tr



(
Z

(t)
b′ − µ

g
b′

(t)
)T (

Z
(t)
b′ − µ

g
b′

(t)
)

N − 1


−1 (

xi − µgb′
(t)
)(

xi − µgb′
(t)
)T



+
1

2


n

(t+1)
b log

∣∣∣∣∣
(

1

N − 1

(
Z

(t)
b − µ

)T (
Z

(t)
b − µ

))−1
∣∣∣∣∣

+

N∑
i=1

γ
(t+1)
ib Tr



(
Z

(t)
b − µ

)T (
Z

(t)
b − µ

)
N − 1


−1

(xi − µ) (xi − µ)
T






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We use Powell minimization method to optimize for Zb as

Z
(t+1)
b =

min
Z



− ωfb log

∑
b′ 6=b

ωgb′
(t)
e

DCov
(

Σf
b′ ,

1
N−1

(
Z

(t)

b′ −µ
g

b′
(t)
)T(

Z
(t)

b′ −µ
g

b′
(t)
))

+ ωgb
(t)
e

DCov
(

Σfb ,
1

N−1 (Z−µgb
(t))

T
(Z−µgb

(t))
)

− ωfb log



∑
b′ 6=b

ωgb′
(t)
e
− 1

2 (µgb′−µ
f

b′)
T
(

Σf
b′+

1
N−1

(
Z

(t)

b′ −µ
g

b′
(t)
)T(

Z
(t)

b′ −µ
g

b′
(t)
))−1

(µgb′−µ
f

b′)√∣∣∣∣Σfb′ + 1
N−1

(
Z

(t)
b′ − µ

g
b′

(t)
)T (

Z
(t)
b′ − µ

g
b′

(t)
)∣∣∣∣

+
ωgb

(t)
e
− 1

2 (µgb
(t)−µfb )

T
(

Σfb+ 1
N−1 (Z−µgb

(t))
T
(Z−µgb

(t))
)−1

(µgb
(t)−µfb )√∣∣∣∣Σfb + 1

N−1

(
Z − µgb

(t)
)T (

Z − µgb
(t)
)∣∣∣∣


+ ωfb (C1 + C2)

+
1

2

∑
b′ 6=b


n

(t+1)
b′ log

∣∣∣∣∣
(

1

N − 1

(
Z

(t)
b′ − µ

g
b′

(t)
)T (

Z
(t)
b′ − µ

g
b′

(t)
))−1

∣∣∣∣∣
+

N∑
i=1

γ
(t+1)
ib′ Tr



(
Z

(t)
b′ − µ

g
b′

(t)
)T (

Z
(t)
b′ − µ

g
b′

(t)
)

N − 1


−1 (

xi − µgb′
(t)
)(

xi − µgb′
(t)
)T



+
1

2


n

(t+1)
b log

∣∣∣∣∣
(

1

N − 1

(
Z − µgb

(t)
)T (

Z − µgb
(t)
))−1

∣∣∣∣∣
+

N∑
i=1

γ
(t+1)
ib Tr



(
Z − µgb

(t)
)T (

Z − µgb
(t)
)

N − 1


−1 (

xi − µgb
(t)
)(

xi − µgb
(t)
)T




C Proof of Theorem 4.1

Proof. This condition simplifies to requiring√
|Σfa + Σgb | ≤ ω

g
b ,∀b

By the arithmetic-geometric-mean (A.G.M) inequality we have,
n∏
k=1

λk ≤
1

nn

(
n∑
k=1

λk

)n
Therefore

∑
b |Σfa + Σgb | ≤

∑
b[Tr(Σfa+Σgb )]n

nn This implies that if,∑
b

Tr(Σfa + Σgb) ≤ n
n

√
ωgb ,∀b

then the condition for convexity
∑
b

√
|Σfa + Σgb | ≤ n n

√
ωgb ,∀b will be satisfied.

D Proof of Theorem 4.2

Proof. We now show that the LogSumExp function log
∑
b ω

g
b e

DCov(Σaf ,Σ
g
b ) is convex as well. In fact,

LogSumExp(f(z)) happens to be convex for any convex function f(z) as shown below.

∂2

∂z2
log
∑

efi(z) =
∂

∂z

[∑
(efi (z) ∂∂z fi(z))∑

efi(z)

]
(15)

10



which is equal to ∑
efi

∂2

∂z2 fi(z)∑
efi(z)

+

∑
ef

i(z)[ ∂∂z fi(z)]
2∑

efi(z)
−

(
∑
efi(z) ∂∂z fi(z))

2

(
∑
efi(z))2

(16)

The first term is positive. The difference of the next two terms is positive due to Jensen’s inequality
as ∑[

ai

(
∂

∂z
fi(z)

)2
]
≥
[∑

ai
∂

∂z
fi(z)

]2

(17)

This proves convexity of log
∑
b ω

g
b e

DCov(Σaf ,Σ
g
b ).

E Upper and lower bounds on distance correlation

F Lower bound

Proof.
det(ZTX)− det(ZTZ)− det(XTZ) + det(XTX)

can be bounded using Hadamard’s inequality as

det(ZTX)− det(ZTZ) + det(XTX)− det(XTZ)

≤ ZTX− ZTZ2
ZTX

n
2 − ZTZ

n
2

ZTX2 − ZTZ2

+XTZ−XTX2
XTZ

n
2 −XTX

n
2

XTZ2 −XTX2

The fractional terms ZTX
n
2−Z

TX
n
2

ZTX2−ZTZ2
, XTZ

n
2−X

TX
n
2

XTZ2−XTX2
can be written as a sum of geometric-series, with

factors of change of ZTX
ZTZ

, XTZ
XTX

respectively because

ZTX
n
2 − ZTZ

n
2

ZTX2 − ZTZ2
=

1− (ZTX2

ZTZ2
)n

1− ZTX2

ZTZ2

=

n−1∑
p=0

ZTX
p

2ZTZ
p−1

2

Therefore these fractional terms can be minimized by minimizing ZTX2 and ZTZ2 as the sums
of products of decreasing functions of norms are also decreasing. By Cauchy-Schwarz inequality
ZT(X− Z) ≤ ZX− Z.

Therefore minimizing Z and X− Z to minimize terms ZTX− ZTZ,XTZ−XTX in addition
to minimizing ZTZ, ZTX2 = Tr(ZTXXTZ) = DCOV (X,Z) minimizes terms ZTX

n
2−Z

TX
n
2

ZTX2−ZTZ2
,

XTZ
n
2−X

TX
n
2

XTZ2−XTX2
which gives us the desired result.

Our upper bound:

Proof. Based on the definition of Lipschitz continuity we have the following bound where L is the
Lipschitz constant of the map that learns Z from X,

f(Xi)− f(Xj)
2

= Zi − Zj
2 ≤ LXi −Xj

2 (18)

Multiplying by 〈Xi,Xj〉 on both sides and summing over all points we have∑
ij

Zi − Zj
2〈Xi,Xj〉 ≤ L

∑
ij

Xi −Xj
2〈Xi,Xj〉

11



Now dividing on both sides by√∑
ij Zi − Zj

2〈Zi,Zj〉
√∑

ij Xi −Xj
2〈Xi,Xj〉 we get

DCOR(X,Z) ≤
L
√∑

ij Xi −Xj
2〈Xi,Xj〉√∑

ij Zi − Zj
2〈ZiZj〉

(19)

But
√∑

ij Xi−Xj
2〈Xi,Xj〉√∑

ij Zi−Zj
2〈ZiZj〉

is the ratio of distance standard deviations which is the square root of

distance variance which is inturn distance covariance between a variable and itself. It has been shown
in [17] that the distance standard deviation can be upper bounded by the trace of the covariance
matrix. Therefore we have

DCOR(X,Z) ≤ L.Tr(ΣX)√∑
ij Zi − Zj

2〈ZiZj〉
(20)

and similarly

DCOV (X,Z) ≤ L.[Tr(ΣX)]2 (21)

Therefore combining our sample SIV inequality with a concentration Hoeffding bound on the quality
of estimating population distance covariance from sample distance covariance in [18] we get with
high-probability 1− δ an updated bound of

DCOV (pxy,F ,G)± ε ≤
√
log(6/δ)

0.24n
+
C

n
+ L.[Tr(ΣX)]2 (22)
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