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ABSTRACT

Clustered federated learning (CFL) is an advanced technique in
the field of federated learning (FL) that addresses the issue of cata-
strophic forgetting caused by non-independent and identically dis-
tributed (non-1ID) datasets. CFL achieves this by clustering clients
based on the similarity of their datasets and training a global model
for each cluster. Despite the effectiveness of CFL in mitigating per-
formance degradation resulting from non-IID datasets, the potential
risk of privacy leakages in CFL has not been thoroughly studied.
Previous work evaluated the risk of privacy leakages in FL using the
property inference attack (PIA), which extracts information about
unintended properties (i.e., attributes that differ from the target
attribute of the global model’s main task). In this paper, we explore
the potential risk of unintended property leakage in CFL by subject-
ing it to both passive and active PIAs. Our empirical analysis shows
that the passive PIA performance on CFL is substantially better
than that on FL in terms of the attack AUC score. Moreover, we
propose an enhanced active PIA method tailored for CFL to improve
the attack performance. Our method introduces a scale-up parame-
ter that amplifies the impact of malicious local updates, resulting
in better performance than the previous technique. Furthermore,
we demonstrate that the vulnerability of CFL can be alleviated by
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applying differential privacy (DP) mechanisms at the client-level.
Unlike previous works, which have shown that applying DP to FL
can induce a high utility loss, our empirical results indicate that
DP can be used as a defense mechanism in CFL, leading to a better
trade-off between privacy and utility.
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« Security and privacy; « Computing methodologies — Dis-
tributed artificial intelligence;

KEYWORDS

clustered federated learning, property inference attack, differential
privacy

ACM Reference Format:

Hyunjun Kim, Yungi Cho, Younghan Lee, Ho Bae, and Yunheung Paek. 2023.
Exploring Clustered Federated Learning’s Vulnerability against Property
Inference Attack. In The 26th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID °23), October 16—18, 2023, Hong Kong, China.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3607199.3607218

1 INTRODUCTION

Federated learning (FL) is a collaborative learning method that
trains a single global model using local datasets of individual clients.
During the training process, only the local updates (i.e., gradients)
generated by each client are uploaded and aggregated on the server
to prevent private local datasets from being exposed to other clients
or the server. Such a scheme enables the server to train the global
model without accessing private raw data directly. In real-world
scenarios, the clients’ private local datasets exhibit heterogeneity,
which presents the non-independent and identically distributed
(non-1ID) data problem. Although early FL studies [12, 16] reported
that their method could handle heterogeneity in the data distribu-
tions, training the global model over non-IID data inevitably entails
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performance degradation. To overcome this issue, many researchers
have explored advanced FL techniques for handling non-IID data,
such as revising the loss function, the aggregation method, and the
dataset distribution [8, 10, 21-23, 28].

Among these techniques, clustered federated learning (CFL) is
a simple yet powerful method that groups clients based on the
similarity of their data distributions [8, 21, 22]. As clients with
similar data distributions are grouped into a single cluster, their
data distributions become relatively independent and identically
distributed (IID) within that cluster. Each cluster is allocated to
one of the global models, and each global model is trained only
with clients in its allocated cluster. Sattler et al. [22] proposed a
hierarchical clustering method based on cosine similarity between
updates generated from each pair of clients. Ghosh et al. [8] moved
the clustering location from the server to the client to reduce the
computational cost. Under this approach, each client receives every
global model of each cluster and then selects the cluster whose
model has the lowest loss over the client’s dataset. Furthermore,
Ruan et al. [21] proposed a soft clustering method as a relaxed
version of the hard clustering method; their method regards each
client’s local dataset as a mixture of multiple data distributions, and
a global model is maintained for each data distribution. Each client
participates in training multiple global models according to the
degree of relevance between each global model’s data distribution
and the client’s data distribution. The aforementioned studies on
CFL have effectively mitigated the issue of performance degradation
in FL caused by non-IID datasets. However, the clustering process in
CFL results in relatively IID data distribution among clients within
a specific cluster, which may raise privacy concerns regarding the
presence of similar data between the clients. This potential privacy
risk in CFL has not been thoroughly examined yet. Previous studies
on FL have evaluated the risk of privacy leakages using advanced
inference attacks that infer private information from local updates,
aggregated updates, or the trained global model [5, 6, 11, 18, 19, 24].

Among these attacks, our focus is on the property inference at-
tack (PIA), which seeks to extract unintended property information
from a model trained for a specific task [5, 18, 19]. Unintended
properties refer to attributes that are different from the target at-
tribute of the model’s main task. For instance, in the process of
training a global model to infer races from given human faces, un-
intended property information (e.g., wearing sunglasses) regarding
the training images can be included in the aggregated updates. PIA
extracts such unintended property information even if it is inde-
pendent of the race, thereby compromising the person’s privacy.
Melis et al. [18] proposed two types of PIA specifically designed
for FL: passive and active. The passive PIA analyzes the pattern of
aggregated updates computed from the change in the global model
parameters to determine whether the unintended property appears
in the clients’ datasets. The active PIA method further improves
the attack performance by training the global model to learn sepa-
rable representations for the data with and without the unintended
property by manipulating the attacker’s local update.

After conducting both passive PIA and active PIA on CFL, we
confirm our assertion that CFL scheme may raise the risk of un-
intended property leakage. In our experiments, we demonstrate
that the AUC of passive PIA is on average 30.32% higher on CFL
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compared to FL (among 5 task combinations). We analyze and dis-
cuss this phenomenon in subsection 4.4. Furthermore, we find that
active PIA is relatively ineffective against CFL because the attacker
can only manipulate a single global model at a time. To address
this limitation, we propose a method inspired by the work of Bag-
dasaryan et al. [2] on backdoor attacks, which involves increasing
the magnitude of the attacker’s local update. As a result, our active
PIA shows better performance, with an average increase of 4.14%
in the AUC, compared to the previous active PIA [18].

To mitigate PIA attacks on CFL, we explore several existing de-
fense techniques that have been reported to be effective against pri-
vacy leakage attacks such as dropout [29], L2 regularization [11, 24],
and differential privacy (DP) (1, 7, 17, 20, 25, 26]. While dropout and
L2 regularization are widely used as regularization techniques, they
can also be used for defense against privacy leakage attacks because
they remove partial information in local updates. DP provides a
privacy guarantee by adding noise to local updates. However, pre-
vious studies [18, 19] have reported that dropout and DP are not
effective against PIA in FL. In this study, we evaluate the effective-
ness of dropout, L2 regularization, and DP as defense techniques
against PIA in CFL. Our experimental results show that dropout
and L2 regularization are not effective for securing CFL against PIA.
We also evaluate the effectiveness of DP by adopting it to CFL at
the client-level, similar to previous works [18, 19]. Specifically, we
add noise to each client’s update using DP-SGD [1] locally before
aggregation. When evaluating the PIA attack performance under
the privacy budget € = 33.14 (noise level o = 0.2), our results indi-
cate that DP noise effectively prevents the attacker from inferring
unintended properties on both FL and CFL. Also, when evaluating
the utility loss, the CFL model performance decreases by 3.51% on
average, while the FL model performance decreases by 19.55% on
average after applying DP. This suggests that CFL provides a better
trade-off between privacy and utility than FL with DP.

Our contributions are as follows:

o To the best of our knowledge, we are the first to perform PIA
on a well-known CFL framework and show CFL is signifi-
cantly vulnerable to PIA. In addition, we further improve the
attack performance by proposing a powerful active attack
method tailored for CFL.

e We provide an informative insight why CFL is more vulner-
able than FL against PIA using visual representations.

e We demonstrate that DP can be effectively applied to CFL
(unlike FL) to mitigate PIA while maintaining the model
performance.

1.1 Organization

Section 2 describes FL and CFL, and an overview of previous PIA
on FL. In section 3, we establish CFL scenario and PIA threat model,
followed by an explanation of how PIA can be adapted to CFL, and
proposed active PIA. In section 4, we show that CFL is more vulner-
able than FL, and describes that a proposed active attack is more
powerful than the previous active attack in CFL. Moreover, we ana-
lyze the root cause for CFL’s vulnerability. In section 5, we provide
experiments on CFL with existing defense techniques including
DP approach. Finally, in section 6, we discuss the limitations and
future work.



Exploring Clustered Federated Learning’s Vulnerability
against Property Inference Attack

RAID °23, October 16-18, 2023, Hong Kong, China

Algorithm 1: Clustered Federated Learning (CFL)

Algorithm 2: LocalUpdate

Input :Number of clusters NC, Number of clients N, Loss
function F, Private dataset D, Global epoch Eg,
Local epoch Ej, Local learning rate

Output: Global models w,

1 Initialize Global models wo[NC]

2 for each global epochr = 1,2, ..., Eg do

3 Server: Broadcast w,_1 to N clients
4 for each clientn = 1,2, ..., N in parallel do
5 in « argminc Ny F(wr-1[Jj])
6 Sp — {sn,j}ﬁ.\lzc1 with sp j = 1{in = j} or 0{i,, # j}
7 A — LocalUpdate(F, D[n], wy—1[in], E, B)
8 for each cluster j = 1,2,..., NC do
. N ) N )
o || welil « (2R snjdn) /(D snj)

—

o return Global models WE,

2 RELATED WORK

In this section, we briefly introduce FL and CFL. Next, we explain
the previous PIA on FL.

2.1 Federated Learning

Due to the demand for learning over decentralized private data
without any direct access, FL has been proposed and extensively
studied recently [12, 16]. FL scheme involves a server and N clients,
each having its own private dataset. FL consists of three main
stages: 1) Model distribution: The server S distributes the global
model wyjopq; to the clients; 2) Local update: Each client uses its
local data dj, to compute a local update Aj,.,; with the local epoch
Ej; and 3) Aggregation: The clients send their Aj,.,; to the server.
Then, the server aggregates the clients’ Aj,.,; according to a given
aggregation rule and updates wyjopq With the aggregated updates.
We use FedAVG as the default aggregation rule, and FL iterates these
three stages for global epoch Eg. The latest issue in FL is how to train
a global model with non-IID data since data from individual devices
are usually non-IID in the real world. A significant discrepancy
amongst the clients’ data distributions can lead to catastrophic
forgetting and a failure of the global model’s training [10, 23]. The
following studies have focused on training multiple global models
by clustering clients and assigning them to specific global models [8,
15, 21, 22]. The following subsection details these CFL studies.

2.2 Clustered Federated Learning

CFL is an FL technique designed to handle non-IID data by clus-
tering clients so that the data distribution within each cluster is
reasonably IID. Each cluster retains its own global model, and the
server updates the global models using only clients that belong
to that cluster. Google first introduces this idea [15] and devises
a simple expectation-maximization-type (EM-type) algorithm to
find appropriate clusters for each client. This algorithm assigns
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Input :Loss function F, Local dataset d, Global model w,
Local epoch Ej, Local learning rate
Output:Local model wg,

1 W) < W

2 for each local epochi=1, 2,.., E; do

3 mini-batch b; sampled from d
AF (b,
4 Wi & Wj—1 — ﬁ%

5 if active attack then
6 L return y(wg, — w) +w

7 else
8 L return Local model wg,

the best hypothesis for each cluster in terms of minimizing the
weighted sum of each client’s losses. In follow-up research, Sattler
et al. [22] revise the central clustering method; the server collects
local updates and computes the cosine similarity between them as
a criterion for clustering. Ghosh et al. [8] change the location of the
client clustering process from the server to the clients to reduce the
burden of the server. After downloading all models from the server,
each client chooses the cluster that shows the lowest loss value of
the global model corresponding to the cluster with each client’s cur-
rent data batch. Clients may change their assigned clusters due to
data sampling in batch process at each global epoch. As a result, the
number of clients assigned to each cluster can vary across clusters.
Ruan et al. [21] focus on the fact that some data distributions are
composed of multiple mixtures of data distributions. This method
assigns a global model to each data distribution instead of assigning
a global model to each group of clients. Each cluster updates its
global model with the stochastic mixture of clients’ local updates
according to their respective data distributions. Therefore, we can
consider Ruan’s method as an extension of Ghosh et al’s [8] for
non-IID environments. These CFL studies have primarily focused
on improving the model’s accuracy when trained with non-IID data
while overlooking potential side effects. Following previous stud-
ies, we aim to examine the relationship between CFL and privacy
leakages, focusing on the well-known CFL method [8] and PIA.

2.3 Property Inference Attack

PIA is a privacy leakage attack that infers the presence of unin-
tended properties in the training data. Unintended properties refer
to the properties that exist in specific subsets of the training data,
but generally not in all training data and are also unrelated to the
main task. Melis et al. [18] develop a passive PIA suitable for FL
assuming that the attacker is one of the clients in FL and wants to
know whether any clients use the data containing unintended prop-
erty in a specific global epoch. The primary strategy is to generate
simulated aggregated updates using an auxiliary dataset and train a
PIA model with them to infer the presence of the unintended prop-
erty. Specifically, since the global model is distributed to all clients,
the attacker can compute the aggregated updates by subtracting
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Figure 1: Overview of PIA against CFL.

the previous global model parameters from the current ones. To
generate the simulated aggregated updates as the training data for
the PIA model, the attacker simulates the local update algorithm 2
at every global epoch with the previous global model parameters
and the auxiliary dataset. The PIA model is then trained with a
set of simulated aggregated updates generated by the attacker to
determine whether the aggregated updates contain unintended
properties. This paper builds on the work of Melis et al. [18] for the
CFL setting, as will be described further in section 3.

In addition to this passive PIA, Melis et al. [18] propose an active
PIA that intentionally causes the global model to leak more infor-
mation about the unintended property by injecting a malicious
gradient using multi-task loss. To mitigate PIA, several studies
have applied the DP techniques to FL. Since the nature of DP is to
increase privacy while reducing utility, it is essential to find the
appropriate level of DP noise so that the model can maintain its
performance while preventing privacy leakage. However, previous
studies have reported being unable to establish the proper DP level
against PIA in a normal FL setting [18, 19].

3 PROPERTY INFERENCE ATTACK ON CFL

In this section, we first describe our base CFL model and present a
threat model for PIA against CFL. Next, we describe the PIA against
FL [18], outlining the modifications to adapt it for CFL. Then, we
introduce our active attack designed to address the limitation that
arises when the previous active PIA is adapted to CFL.

3.1 Base CFL Method

The base CFL algorithm used in this study [8] is depicted in algo-
rithm 1. Similar to FL, this algorithm consists of three main parts: 1)
Model distribution: All global models w are broadcasted to clients
(Line 3 in algorithm 1); 2) Local Update: Each client determines
the global model with the lowest loss value and sets its index as
the cluster identity estimates i (Lines 4-5 in algorithm1). After de-
termining the global model with the lowest loss value, each client
initializes its local model with the corresponding global model w;
and trains it using the method outlined in algorithm 2 (Line 7 in al-
gorithm 1); and 3) Aggregation: For each cluster, the server receives
the local models from the cluster’s clients, aggregates them by av-
eraging, and generates the next global model for the cluster (Lines
8-9 in algorithm 1).

3.2 Threat Model

Our threat model follows the previous PIA studies [18, 19] with few
modifications for CFL settings. We assume that K clients (where
K > 3) participate in FL or CFL. One of these clients is the attacker,
who wants to infer the presence of the unintended property in the
training batch. The attacker is considered honest-but-curious and
the server and clients strictly follow algorithm 1 without colluding
with each other.

3.2.1 Attacker’s objective. The attacker’s objective is to identify
the presence of the target unintended property in the clients’ train-
ing data from the aggregated updates for each global epoch. In our
threat model, since the server does not provide any other informa-
tion to clients except the global models, the attacker can only see
the aggregated updates, not the local updates. In this scenario, the
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attacker attempts to infer the presence of the unintended property
in the training data but does not link this information to a specific
client.

3.2.2  Attacker’s capabilities. In the prior PIA study on FL [18], the
attacker is able to compute the aggregated updates by subtracting
the last updated global model from the previous global model, since
all clients including the attacker receive the single global model
from the server on every global epoch. In CFL, we assume that
the attacker has knowledge of the global model parameters as
previous studies [8, 13, 14, 21] distribute all clusters’ global model
parameters to clients for efficiency. Since the attacker can access
all global models at every epoch, the attacker can compute the
corresponding aggregated updates for each cluster. Additionally,
for training the PIA model, the attacker has an auxiliary dataset
correctly labeled with the unintended property and the main task.
The attacker has the capability to execute malicious actions during
local computations. The attacker cannot violate the overall learning
protocol. In such scenarios, the attacker can employ the active PIA
approach, which distinguishes itself from the passive PIA approach
by utilizing a multi-task loss instead of the base single-task loss
used by the other benign clients during the local update process.

3.3 Attack Method

3.3.1 Overview of PIA. In this subsection, we first present a de-
scription of the PIA against FL proposed in the previous work [18].
We then explain how we adapt PIA for CFL, providing an overview
of the PIA against CFL.

To elaborate on PIA against FL, during the model distribution
phase, the server distributes the global model to the clients; mean-
while, the attacker downloads and saves it for further analysis. In
the local update phase, the clients perform local model updates, and
the attacker calculates the previous aggregated updates using saved
global models by subtracting the current global model from the
previous one. The attacker also generates training data (simulated
aggregated updates) for the PIA model using an auxiliary dataset.
In the aggregation phase, the clients transmit their local updates to
the server. Meanwhile, in the case of an active attack, the attacker
deliberately uploads malicious updates to the server. More details
on active PIA will be provided in subsubsection 3.3.4. During the
attack phase, the attacker trains the PIA model using the simulated
aggregated updates and infers the unintended property from the
actual aggregated updates.

Figure 1 provides a concise overview of PIA on CFL. For CFL,
we define the attack model very similarly, with the following minor
changes. The server sends multiple global models to the clients,
one for each cluster. The attacker then stores these models and
uses them to calculate aggregated updates for each cluster. The
attacker also generates the simulated aggregated updates for each
cluster. The attacker infers the unintended property using the single
PIA model rather than the multiple PIA models according to each
cluster. The rest of the process is the same as in FL. In the following
subsections, we will explain more details about how to train the
PIA model and how to infer the unintended property with the PIA
model.
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Algorithm 3: Training PIA model on CFL

Input:Number of clusters NC, Loss function F, Global
epoch Eg, Local epoch Ej, Local learning rate 8, The
number of simulated clients it;j;op,;» The number of
aggregation simulation itsggr, Auxiliary dataset
labeled with the unintended property Dprop,
Auxiliary dataset labeled without the unintended
property Dnonprop

Output: PIA model M

1 Gper [NC] — 0, Gnonprop [NC] — 0

/* training data for PIA model */
2 Initialize PIA model M
/* We use Random Forest as a PIA model */

3 for each global epochr = 1,2, ..., Eg do

/* line 2 in Algorithm 1 */
4 receive all clusters’ global models wy_1 from the server
5 estimate cluster identity i

6 A « LocalUpdate(F, Dprop U Dnonprop, wr-1lil, Er, B)
7 upload A to the server

8 for each cluster j = 1,2,..., NC do

/* generating PIA training data */
9 Iprop < 0, Inonprop < 0
10 for each simulation itert = 1,2, ..., it.jjon; dO

/* LocalUpdate randomly samples each
mini-batch from the dataset and
returns different local updates at

each iteration of simulation */
11 Aprop < LocalUpdate(F, Dprop, wr—1[il, E, B)
12 Anonprop < LocalUpdate(F, Dnonprop, Wr-1[il,

En p)

13 prop < gprop Y Aprop
14 | 9nonprop < Gnonprop Y Anonprop
15 for each simulation iterk = 1,2, ..., itaggr do
16 Aprop < the simulated aggregated updates

from gprop U gnonprop
17 Anonprop < the simulated aggregated updates
from Jnonprop

18 Gprop < Gprop Y Aprop

19 Gnonprop — Gnonprop U Anonprap

20 Train PIA model M with Gprop, Gnonprop

21 return PIA model M

3.3.2  Training the PIA model. In FL, the attacker categorizes the
auxiliary dataset into two groups: one that exhibits the unintended
property and another that does not. Subsequently, the attacker
operates the local update with each auxiliary dataset, generating
simulated aggregated updates that correspond to whether or not
the unintended property is present. In CFL, we can use a similar
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training process, but with one important difference: the attacker
generates the simulated aggregated updates separately for each
cluster. A detailed explanation of this is as follows.

We define Gprop and Guonprop as sets of simulated aggregated
updates with and without the unintended property data, respec-
tively (Line 1 in algorithm3). To generate these updates, the attacker
follows the CFL training process (Lines 3-7 in algorithm3) and iter-
ates algorithm 2 to generate sets of local updates with and without
the property data (Lines 8-14 in algorithm 3). The attacker samples
some of these local updates from gprop U gnonprop and aggregates
them to create the simulated aggregated updates with the property
data Aprop (Line 16 in algorithm 3), while the simulated aggregated
updates without any property data, Anonprop are generated solely
using gnonprop (Line 17 in algorithm 3). The attacker then accumu-
lates Aprop and Aponprop into Gprop and Gnonprop, respectively
(Lines 18-19 in algorithm 3). Then, the attacker trains the PIA model
using the sets Gprop and Gponprop (Line 20 in algorithm 3).

3.3.3 Inference with the PIA model. In FL, the PIA model uses
aggregated updates of each global epoch as input to identify the
presence of the unintended property. By subtracting the global
models from two consecutive epochs, the aggregated updates in
the earlier epoch can be calculated. Additionally, Melis et al. [18]
reported that the random forest model exhibits the best performance
when used as a PIA model. For that, we also adopt the random forest
model as the PIA model. In CFL, at each global epoch, the aggregated
updates are not a single value because there are multiple aggregated
updates corresponding to each cluster’s global model. To handle
each cluster’s global model, we employ a single PIA model trained
on all the simulated aggregated updates generated by each cluster
instead of employing an individual PIA model for each. Thus, the
single PIA model is used to predict the presence of the unintended
property in every cluster.

3.3.4 Active attack. In this subsection, we describe how the pre-
vious active PIA, proposed by Melis et al. [18], works on FL and
highlight its limitation when applied to CFL. Subsequently, we
introduce an improved active PIA that addresses this limitation.

The key distinction between the active PIA and the passive PIA
lies in the utilization of different loss functions. Instead of the basic
single-task loss function, the previous active PIA uses the multi-task
loss to manipulate the global model to have an improved internal
separation of the unintended property. To compute their malicious
local updates with the multi-task loss, the attacker extends its local
model with a property classifier attached to the last layer. The
multi-task loss is as follows:

Lt = o - L(x, y; Wigear) + (1 = @) - L(x, §5 Wocar) (1)

where x is the input labeled with the main task and unintended
property, and wj,cq; is the local model held by the attacker. y and g
are the main task label and unintended property label, respectively.
a is the multi-task loss weight that balances the weight of the two
loss terms in the multi-task loss.

The limitation of the previous active PIA is that it may not
be significantly better than the passive PIA in CFL setting. This
is because the active PIA relies on the attacker’s malicious local
updates to directly impact the global model. However, in CFL, the
reflection of malicious local updates on the global model occurs less
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frequently compared to FL, due to the consideration of multiple
global models.

In that, we propose a method that increases the magnitude of
malicious local updates. This idea is inspired by the work of Bag-
dasaryan et al. [2], which scales up the attacker’s local update to
replace the global model with one infected by backdoors. We at-
tempt to replace the global model in each cluster with a model
that heavily incorporates the unintended property. Our active PIA
scales up the attacker’s malicious local gradients during the local
training phase before uploading the attacker’s local updates. We
include the aforementioned modification at lines 5-6 in algorithm 2.
The attacker calculates the difference between the previous global
model, w, and the local updates, wg, (which is the local model after
local training). The difference is then increased by the scale-up
parameter y and added to the previous global model w. Finally, our
malicious local updates are computed as y(wg, — w) + w.

Although the frequency of impacting the global model is reduced
by the nature of CFL, our active PIA increases the magnitude of the
impact, leading to the replacement of the global model with one that
incorporates the unintended property. Although the attacker ma-
nipulates the attacker’s local updates, it is still "honest-but-curious"
because it follows the whole training protocol precisely and does
not tamper with the communications during training.

4 EXPERIMENTS

In this section, we describe the datasets, model architectures, and
hyper-parameters used in our research and then compare passive
PIA’s performance in both FL and CFL, highlighting the weakness
of CFL against passive PIA. Moreover, we evaluate the performance
of the previous active PIA for FL and CFL and our enhanced active
PIA for CFL. We then examine the reasons behind the increased vul-
nerability of CFL against PIA. For all experiments in this section, we
designate one client as a victim who is the only one with the prop-
erty data following previous studies [18, 19]. We use the AUC (area
under the ROC curve) score as a metric for evaluating the model’s
performance on the main task and the PIA attack performance.

4.1 Experimental Settings

4.1.1 Datasets. We use the same datasets as those used in multi-
party PIA [18]: the Labeled Faces in the Wild (LFW) dataset [9] and
the Yelp-author dataset. LFW dataset is a face attributes dataset
with 13, 233 images covering 5, 749 individuals, each of which has
a size of 62x47 pixels and is labeled with multiple attributes such
as gender, race, and whether the person is wearing glasses or sun-
glasses. the Yelp-author dataset is a subset of the Yelp dataset that
covers healthcare service reviews tagged with ratings and attributes
such as parking information, business category, and location. This
sampled dataset includes 16, 207 reviews written by the top 10 most
participated reviewers.

For each dataset, we examine multiple combinations of the main
task and the target unintended property inferred by the attacker, al-
lowing us to evaluate various scenarios through experiments. These
combinations are outlined in Table 2, and we provide an explana-
tion of task combination A as an example. For the combination A,
the main task is to classify the individuals’ faces in the LFW dataset
as either smiling or not smiling, while the unintended property
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Table 1: Hyper-parameter settings for FL and CFL

Dataset Global Epoch | Local Epoch | Batch Size | Learning Rate | Multi-task Loss Weight Size of Scale-up
(Eg) (Ep) (B) () Root Dataset (y)

LFW | 5000 | 1 | 2| 0.01 | 0.9 | 13233 | 50r10

Yelp-author | 500 | 1 B 0.05 | 0.9 | 16207 | 50r10

Table 2: Combinations of the main task and the target unintended property that is inferred by the attacker

Task Combination A B C D E
Dataset LFW Yelp-author
Main Task Smile Race Gender Review Score Review Score
Main Task Labels Not Smiling / Smiling | Asian / White / Black | Female / Male From 0 to 5 From 0 to 5
Target Wearing Sunglasses | Wearing Sunglasses | Race is Black | Author of Review | Author of Review
Unintended Property or Not or Not or Not is Author 1 or Not | is Author 2 or Not

refers to whether the individuals are wearing sunglasses or not.
The attacker’s PIA model performs a binary classification task that
identifies whether there is an individual wearing sunglasses in the
cluster.

For each combination, we generate a distinct experimental dataset
using the same methodology as the previous study [18]. The origi-
nal dataset is divided into a training set and a test set. The test set is
used to evaluate the model’s performance at the last global epoch.
The training set is further divided into two datasets: one containing
only data with the target unintended property (Train,), and the
other containing only data without the target unintended property
(Trainyyp). Half of Trainy, is assigned to the attacker, while the re-
maining half is assigned to the victim. Trainy,, is distributed to all
clients, including the attacker and the victim. To create non-IID
local datasets for each client, we employ the Dirichlet sampling
method, as used in Wang et al. [28]. The attacker uses the assigned
dataset as an auxiliary dataset for simulating the aggregated up-
dates. As a result, the attacker possesses an auxiliary dataset that
shares a similar data distribution with the victim’s dataset.

4.1.2  Model architecture and hyper-parameters. In our experiments,
we use the neural networks used in previous work [18]. Specifically,
for LFW, we use a convolutional neural network (CNN) model with
three spatial convolutional layers (32, 64, and 128 filters), each with
a filter size of (3, 3) and subsequent max-pooling layers with a
pooling size of 2. For Yelp-author, we use a GRU model with an
embedding layer, a GRU layer, and a fully connected layer. The
embedding layer embeds words to the embedding vectors with
100 dimensions, and the GRU layer maps an embedding vector
sequence to a 128-dimensional hidden vector sequence. The last
hidden vector in the hidden vector sequence is then fed to a fully
connected layer for the final decision. For our active attack, we
utilize grid search to determine an optimal scale-up parameter y,
which is set to either 5 or 10. The hyper-parameters used in our
experiments are summarized in Table 1.
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4.2 Attack Performance of Passive PIA

As shown in Table 3, we compare the passive PIA attack perfor-
mance between FL and CFL. We vary the combination of the main
task/unintended property, as presented in Table 2, and the num-
ber of clients to demonstrate its impact on the passive PIA attack
performance. Note that the results in the table are averaged across
five different random seeds due to the stochastic behavior of the
clustering algorithm used in CFL. We conduct a total of 85 exper-
iments, varying the number of clients from 3 to 20. Among the
experiments conducted with the number of clients from 3 to 20, Ta-
ble 3 shows the results for 5, 10, 15, and 20 clients. The rest of the
test cases are consistent with Table 3, and the full table can be found
in Appendix B. Our experiments show that passive PIA on CFL
outperforms passive PIA on FL in 80 out of 85 experiments, with an
average improvement of 30.32% in passive PIA attack performance.
As previously stated in Melis et al. [18], some task combinations
make it difficult to detect the presence of the unintended property.
Additionally, the attack performance decreases as the number of
clients increases. Our results indicate that passive PIA on CFL may
not outperform passive PIA on FL in scenarios where the attack
performance is limited due to the task combination’s difficulty and
the number of clients. Consequently, our experiments support that
unintended property leakage is more pronounced in CFL. We fur-
ther analyze the reasons for CFL’s increased vulnerability to PIA
and the limitations of PIA on CFL in comparison to PIA on FL
in subsection 4.4.

4.3 Attack Performance of Active PIA

We evaluate the attack performance of the previous active PIA [18]
for FL and CFL and our proposed active PIA for CFL, as presented
in Table 4. We use combinations A, B, and C, and vary the number
of clients to 5, 10, 15, and 20. For our proposed active PIA method,
we report the most effective attack performance achieved by setting
the scale-up parameter y to either 5 or 10. Also, we note that our
approach outperforms the previous active PIA method, regardless
of the value of y. In most cases, the attack performance of the pre-
vious active PIA method is higher when applied to CFL than when
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Table 3: Passive Property Inference Attack with FL and CFL

Attack Performance (AUC)
Task Combination A B C D E
FL Method
, ceHo FL CFL FL CFL FL CFL FL CFL FL CFL
# of Clients

5 0.7326 0.9424 | 0.8154 0.9684 | 0.9297 0.9769 || 0.5302 0.7570 | 0.5764 0.6937
10 05957 0.9009 | 0.6145 0.9371 | 0.8429 0.9084 || 0.4421 0.5975 | 0.3051 0.4763
15 05488 0.8284 | 0574 0.8265 | 0.7934 0.8354 || 04816 0.6094 | 0.5526 0.4064
20 05367 0.7414 | 05534 0.7952 | 0.6731 0.8002 || 04401 0.5232 | 0.4933 0.3808

Table 4: Active Property Inference Attack with FL and CFL

Attack Performance (AUC)
1-10 Task Combination A B C
FL Method
1-10 &PIA || FL([18]) | CFL ([18]) | CFL (Ours) || FL ([18]) | CFL ([18]) | CFL (Ours) || FL ([18]) | CFL ([18]) | CFL (Ours)
# of Clients
5 0.8560 0.9592 0.9613 0.8406 0.8992 0.9324 0.9681 0.9427 0.9809
10 0.6905 0.8939 0.9042 0.7035 0.8238 0.8644 0.7575 0.8871 0.9532
15 0.6219 0.8218 0.8503 0.6039 0.7563 0.7632 0.7870 0.8395 0.9212
20 0.5999 0.8023 0.8141 0.5602 0.7351 0.7802 0.7533 0.8411 0.8951

applied to FL, with an average improvement of 18.39%. However,
when the number of clients is 5 and the task combination is C, the
opposite is observed due to the limitation of the previous active
PIA method on CFL. However, our proposed active PIA method
shows higher attack performance when applied to CFL in this case.
Moreover, our proposed active PIA method shows an average im-
provement of 4.14% compared to the previous active PIA method
when applied to CFL. Therefore, these experimental results success-
fully demonstrate that our proposed active PIA method effectively
addresses the limitation of the previous active PIA method on CFL.

4.4 Analysis of PIA in the CFL Setting

We find that CFL is relatively weaker than FL against PIA due to
the following reasons. Firstly, Melis et al. [18] reported that PIA
achieves better attack performance when fewer clients participate
in FL. In the case of CFL, clients are divided into multiple clusters,
which can improve PIA performance by reducing the number of
clients participating in a single global model. However, this also
makes it more difficult for the PIA model to identify the pattern of
unintended property due to multiple aggregated updates generated
from multiple global models. Therefore, the decreased number of
participating clients can be one of the reasons for the phenomenon
but does not provide a comprehensive explanation of this phenom-
enon. To provide a more complete explanation, we analyze the
difference between FL and CFL in terms of data distribution and
catastrophic forgetting. When FL is trained over non-IID data, there
can be a significant difference between the data distribution of the
current and previous global epochs [10, 23]. Since the global model
is fitted to the data batch of the previous global epoch, the current
local updates, which are generated from the current data distribu-
tion, can result in catastrophic forgetting and drastic changes in the
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global model parameters. Although the gradient pattern generated
by the unintended property in the input image is independent of
the main task, the drastic changes in the global model parameters
can result in an inconsistent pattern of unintended property in the
aggregated updates. This inconsistency makes it difficult for PIA
model to identify the specific pattern of unintended property. In
contrast, in the case of CFL, the global model for each cluster is
trained over relatively IID data. Therefore, the occurrence of cata-
strophic forgetting is reduced, and the global models are less likely
to undergo excessive changes in parameters compared to FL. As a
result, the pattern of the unintended property appears clearly in
the aggregated updates, making it easier for PIA model to identify
this pattern.

To support our explanations, we employ t-SNE [27] to visually
depict the aggregated updates of each global epoch, demonstrating
that the pattern of the unintended property appears clearer in CFL
compared to FL. We then calculate the cosine similarity between
the aggregated updates of two consecutive global epochs to demon-
strate the changes in the aggregated updates during the training of
the global model.

In Figure 2, we present the results of t-SNE when the number of
clients is 5 and the task combination is C. We plot the aggregated
updates generated during the first 1000 global epochs and all global
epochs in Figure 2. As demonstrated in Figure 2, the label separation
of aggregated updates generated in CFL is better than that of those
generated in FL. This implies that the aggregated updates generated
in CFL contain more distinct information about the unintended
property. This information makes it easier for the PIA model to
infer the presence of data with the unintended property.

Figure 3 displays the aggregated updates when the number of
clients is 13 and the task combination is D, where PIA on CFL
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Figure 2: t-SNE visualized aggregated updates in each setting.

does not outperform PIA on FL. In this case, aggregated updates
generated in CFL also show less label separation. The limitation of
PIA on CFL is that the factors that degrade PIA’s performance (e.g.,
the difficulty of task combinations, and the number of clients) may
affect CFL more, resulting in lower PIA performance compared to
FL.

We calculate the cosine similarities between aggregated updates
generated at consecutive global epochs to measure the changes in
aggregated updates at every global epoch with the same setting in
t-SNE experiments. As depicted in Figure 4, cosine similarities in
FL are much smaller than ones in CFL on average. The mean and
standard deviation values of cosine similarities in FL are 0.3074 and
0.2752, respectively. In contrast, the mean and standard deviation
values of cosine similarities of cluster 0 in CFL are 0.9234 and 0.1725,
respectively. This result supports that aggregated updates change
drastically at every global epoch in FL, making PIA against FL much
harder.

5 DEFENSE
5.1 Existing Defense Techniques

We evaluate the effectiveness of existing defense techniques on
CFL for task combinations A, B, and C by conducting experiments
using two regularization methods: (i) adding dropout layers and
(ii) using L2 regularization. These techniques have been hypoth-
esized to be helpful in mitigating the impact of PIA, as they can
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reduce unnecessary information, which may include unintended
property [11, 24, 29].

The number of clients in these experiments varies with 5, 10, 15,
and 20, following the same experimental setup as the active PIA
experiment in subsection 4.3. Our results show that both methods
resulted in only a minor reduction or even an improvement in PIA
performance, as shown in Table 5 and Table 6. We set the dropout
rate to 0.1 and 0.2, and the L2 penalty to 0.01 and 0.02. Among the
different hyper-parameters, the best PIA attack performances are
highlighted in bold.

As shown in Table 5, for task combinations B and C, with a
dropout rate of 0.1, which shows the worst PIA performance (and
the best defense performance), the passive PIA performance is
reduced by 14.85% and 5.6% on average, respectively, across all
client numbers. However, for task combination A, the passive PIA
performance increases on average by 1.26%. When L2 regulariza-
tion is applied with an L2 penalty of 0.02 which shows the worst
PIA performance, for task combinations B and C, the passive PIA
performance is reduced by 8.08% and 6% on average, respectively.
However, for task combination A, the passive PIA performance
increases on average by 4.1%.

As shown in Table 6, using a dropout rate of 0.01 (which shows
the worst PIA performance), the results for task combinations A, B,
and C show a small reduction in active PIA performance by 3.03%,
9.4% and 4.1% on average, respectively. When L2 regularization is
applied against our active PIA attack, we observe minor changes
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Figure 4: Cosine similarities between aggregated updates generated at consecutive global epochs in each setting.

in performance, with average decreases of less than 2% across all
client numbers.

These results are highly unstable and vary depending on the
task combinations. Even for the cases that appear to be effective,
the reductions in attack performance are minimal. Thus, adding
dropout layers or applying L2 regularization is not a reliable defense
technique for CFL.

5.2 Applying DP on CFL

DP is a privacy-preserving technique that adds a certain level of
noise to data. When DP is satisfied, it provides an upper bound
on the difference between the DP technique’s outputs when the
DP technique’s inputs differ by one element. In our paper, we use
(€, o)-differential privacy [4].

In this section, we present an evaluation of DP against PIA in
the context of CFL. To the best of our knowledge, this is the first
work to investigate the trade-off of DP on CFL. In our paper, we
consider the client-level DP (local differential privacy) [1, 3, 18]. To
satisfy the DP definition at the client-level, we use DP-SGD [1] as
a differential private deep learning optimization method. Specifi-
cally, in Line 1 of algorithm 2, we initialize the momentum accoun-
tant for tracking privacy loss. In Line 4, we substitute the local

AF (b;,w)
Aw

model update formula w; < wij_1 — with w; «— w;_1 —
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AF(d, .
Ji ||b1||2 (Zdebi éww) min(1, I AF(S:W) T )+ N(0, UZCZI)) where C
! Aw 2
denotes a clipping parameter and o denotes a noise scale parameter.

Subsequently, the momentum accountant keeps track of the current
privacy loss e. After local training, the clients upload their noisy
local updates to the server.

We evaluate the impact of DP on defense against PIA and model
performance, as shown in Table 7 and Table 8, respectively. We
consider different levels of privacy loss, €: 9.23(0.5) and 33.13(0.2),
with the corresponding DP noise scales o indicated in parentheses.
First, we examine the attack performance of PIA and find that the
best attack performance among passive PIA and active PIA is 0.5111.
This result indicates that it is difficult to infer unintended properties
through PIA at these levels of privacy loss (e = 9.23 or 33.13).

As previously noted, DP not only results in improving privacy
but also leads to a decrease in model performance. Table 8 shows
the model performance at each privacy loss level, with the value in
parentheses indicating the rate of change after applying DP. With
an € of 9.23, both FL and CFL show significant declines in utility on
average, with FL model performance dropping by 36.35% and CFL
model performance decreasing by 13.96%. Although it is possible to
secure FL and CFL against PIA with an € of 9.23, it is still difficult to
apply it due to the significant decrease in utility. In contrast, with
an € of 33.13, FL performance decreases by 19.55%, whereas CFL
performance only experiences a minimal decrease of 3.51%. In more
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Table 5: Passive Property Inference Attack with CFL after applying dropout and L2 regularization
(lower means the better defense)

Attack Performance (AUC)
Method Task Combination A H B H C
ropout Rate
. 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
# of Clients
Dropout 5 0.9424 | 0.9245 | 0.9469 || 0.9684 | 0.8705 0.8291 0.9769 | 0.8289 | 0.8374
P 10 0.9009 | 0.9011 | 0.9184 || 0.9371 | 0.7784 | 0.8556 0.9084 | 0.8591 | 0.8587
15 0.8284 | 0.8140 | 0.8293 || 0.8265 | 0.6907 | 0.7881 0.8354 | 0.8019 | 0.7849
20 0.7414 | 0.8054 | 0.8015 0.7952 | 0.6685 | 0.8110 0.8002 | 0.8176 | 0.8120
L2 Penalty
. 0 0.01 0.02 0 0.01 0.02 0 0.01 0.02
# of Clients
L2 5 0.9424 | 0.9647 | 0.9647 0.9684 | 0.9806 | 0.9783 0.9769 | 0.8933 | 0.8896
10 0.9009 | 0.9216 | 0.9214 0.9371 | 0.8587 0.8546 0.9084 | 0.8768 | 0.8728
15 0.8284 | 0.8292 | 0.8274 0.8265 | 0.7647 | 0.7709 0.8354 | 0.7910 | 0.7865
20 0.7414 | 0.8313 | 0.8295 0.7952 | 0.6440 0.6538 0.8002 | 0.7679 | 0.7707

Table 6: Active Property Inference Attack with CFL after applying dropout and L2 regularization
(lower means the better defense)

Attack Performance (AUC)
Method | Task Combination A H B H C
ropout Rate
. 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
# of Clients
Dropout 5 0.9613 | 0.9056 | 0.8575 0.9324 | 0.7662 | 0.7562 0.9809 | 0.9216 | 0.8770
P 10 0.9042 | 0.9090 | 0.8861 0.8644 | 0.7588 | 0.7687 0.9532 | 0.8777 | 0.9098
15 0.8503 | 0.8319 | 0.8673 0.7632 | 0.7374 | 0.7695 || 0.9212 | 0.9029 | 0.8839
20 0.8141 | 0.8542 | 0.9049 || 0.7802 | 0.7611 | 0.7343 0.8951 | 0.8924 | 0.9542
L2 Penalty
R 0 0.01 0.02 0 0.01 0.02 0 0.01 0.02
# of Clients
L2 5 0.9613 | 0.9133 | 0.8930 0.9324 | 0.9724 | 0.8659 0.9809 | 0.8933 | 0.8946
10 0.9042 | 0.9271 | 0.8433 0.8644 | 0.8506 | 0.7578 0.9532 | 0.9196 | 0.9318
15 0.8503 | 0.8336 | 0.8833 0.7632 0.8104 | 0.8493 0.9212 | 0.9464 | 0.9702
20 0.8141 0.8055 | 0.9166 0.7802 | 0.8392 | 0.8255 0.8951 | 0.9351 | 0.9158

detail, with task combinations A, B, and C, the CFL performance
decreases by 2.13%, 5.08%, and 3.32%, respectively. We observe that
the impact of performance degradation is relatively minimal in CFL
compared to FL, thanks to the consistent aggregated updates. As
explained in subsection 4.4, the fluctuations in aggregated updates
are far more pronounced in FL than in CFL, especially in terms of
cosine similarity. Hence, DP, which shows a less negative effect on
performance than FL, presents a suitable solution for preventing
PIA on CFL.

6 DISCUSSION

In this section, we address the limitations of our work and potential
future directions. One limitation of the PIA is that an auxiliary
dataset is required to conduct the attack. Additionally, the effec-
tiveness of PIA is heavily influenced by the number of clients and
the task combination. We leave the analysis of this phenomenon as
future work. Moreover, the attacker can only deduce the presence
of the unintended property in the training batch (cluster-level) but
not for a specific client. However, the attacker can leverage such
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information with other extra information [18] (e.g., clients partici-
pating and dropping out) to pinpoint the exact victim client. For
instance, if a new unintended property is identified in a particu-
lar cluster’s training batches, the attacker may conclude that such
property is associated with one of the newly joined clients in the
cluster. In more extreme settings [15, 22] where the server does not
distribute all global models to the clients, it may not be possible to
perform PIA unless the victim is in the same cluster as the attacker.
However, in such cases, the attacker can utilize a global model
acquisition attack that extracts all global models by analyzing the
attacker’s gradient and adjusting its assigned cluster. The details of
this attack are documented in Appendix A. Future research could
focus on developing a CFL method that enhances the performance
of CFL and provides protection while inducing only minimal com-
putational overhead. Furthermore, evaluating the potential risks of
CFL against various privacy leakage attacks can also be a direction
for future research. In summary, we claim that recent CFL studies
have an internal vulnerability against PIA. We analyze the root
cause of the vulnerability and suggest DP technique as a suitable
defense solution. We emphasize that future research should not
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Table 7: Attack Performance of FL and CFL after applying DP
(lower means the better defense)

Attack Performance
Attack Type Passive PIA Active PIA
B Task Combination A B C A B C
FL Method
K etho FL CFL FL CFL FL CFL FL CFL FL CFL FL CFL
# of Clients
5 0.4973 0.4983 | 0.4918 0.4948 | 0.4944 0.5081 0.5038 0.5038 | 0.5031 0.4976 | 0.5040 0.4986
0.3 10 0.4910 0.4974 | 0.4961 0.4992 | 0.5046 0.5026 || 0.5042 0.5049 | 0.4975 0.4924 | 0.5024 0.4992
i 15 0.4963 0.4959 | 0.4945 0.5094 | 0.4990 0.5027 || 0.4989 0.5050 | 0.4953 0.4943 | 0.5039 0.4961
20 0.4974 0.5037 | 0.5014 0.4966 | 0.5034 0.4951 0.4950 0.5027 | 0.5053 0.4919 | 0.5111 0.5063
5 0.4910 0.4960 | 0.4986 0.4933 | 0.5022 0.4969 || 0.5093 0.5001 | 0.5031 0.4976 | 0.496  0.4923
33.13 10 0.5012 0.4976 | 0.4982 0.5055 | 0.4939 0.5036 || 0.5045 0.5066 | 0.4975 0.4924 | 0.5041 0.4986
: 15 0.4961 0.5025 | 0.5069 0.4990 | 0.4979 0.5102 || 0.4983 0.4942 | 0.4953 0.4943 | 0.5081 0.4976
20 0.5032 0.5058 | 0.4962 0.4957 | 0.5016 0.4935 || 0.4968 0.4952 | 0.5053 0.4919 | 0.4925 0.5029
Table 8: Model Performance and Its Change Rate on FL and CFL after applying DP
(higher means the better utility)
Model Performance
. Task Combination A B C
FL Method
) e FL CFL FL CFL FL CFL
# of Clients
5 0.6119 (-35.68%)  0.9169 (-6.03%) | 0.537 (-26.96%) 0.777 (-8%) | 0.5489 (-25.22%)  0.792 (-1.42%)
093 10 0.5003 (-47.66%)  0.8401 (-13.2%) | 0.5039 (-38.8%)  0.7325 (-7.07%) | 0.512 (-21.25%)  0.638 (-31.87%)
: 15 0.4999 (-47.56%) 0.7992 (-17.42%) | 0.5151 (-43.48%) 0.7661 (-12.5%) | 0.4988 (-22.63%) 0.7714 (-19.43%)
20 0.5049 (-46.9%)  0.8493 (-12.04%) | 0.5059 (-38.68%) 0.7102 (-20.58%) | 0.4942 (-41.35%) 0.7877 (-17.9%)
5 0.7786 (-18.16%)  0.9641 (-1.19%) | 0.6577 (-10.55%)  0.822 (-2.68%) | 0.6325 (-13.84%)  0.824 (+2.56%)
513 10 0.8994 (-5.91%)  0.9447 (-2.4%) | 0.5015(-39.1%)  0.7496 (-4.91%) | 0.6304 (-3.03%)  0.9181 (-1.95%)
’ 15 0.8786 (-7.85%)  0.9468 (-2.17%) | 0.5501 (-39.64%)  0.8528 (-2.6%) | 0.4994 (-22.54%)  0.9019 (-5.8%)
20 0.8477 (-10.85%)  0.9389 (-2.75%) | 0.5352 (-35.13%) 0.8037 (-10.12%) | 0.6065 (-28.02%)  0.8816 (-8.11%)

only focus on improving the FL performance but also on ensuring
clients’ data privacy.

[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In International Conference
on Artificial Intelligence and Statistics. PMLR, 2938-2948.
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[22

A GLOBAL MODEL ACQUISITION ATTACK

In this section, we describe an attack method that acquires global
models of CFL from the server that does not distribute all global
models to the clients. The limitation of this attack is that it requires
the participation of multiple attackers to obtain all global models.
If the server changes the client’s allocated cluster at every global
epoch, the attacker can obtain all global models along multiple
global epochs without the participation of multiple attackers, but
cannot obtain the latest global model except the one obtained at
the current global epoch. In this paper, we focus on Sattler et al’s
CFL method [22], and this attack method can be extended to other
CFL methods with additional adaptation to their specific clustering
method.
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The attack process consists of two phases. In the first phase, the
attacker aims to identify its initial cluster. This can be achieved by
computing the local update using the attacker’s auxiliary dataset
or generating a random local update and sending the local gradient
to the server. The server assigns a cluster to the attacker based on
its criteria. In the second phase, the attacker seeks a local update
that can make the attacker to be assigned to a different cluster. In
Sattler et al. [22]’s CFL method, the server sends intermediate mod-
els to newly joined clients to examine the returned local updates
for hierarchical clustering and classify which partition the clients
belong to. For this CFL method, the attacker can compute the an-
tiparallel vectors of the initial local gradient and local gradients
computed from the intermediate models. The cosine similarities
between each of these vectors and its original gradient are all -1. If
the newly joined attackers send these vectors to the server, it may
induce them to be assigned to other clusters because the server will
conclude that their local gradients are significantly different from
the initial local gradient. The attacker repeats the second phase
until obtaining all global models.

B TABLE OF PASSIVE PROPERTY INFERENCE
ATTACK

In this section, we include the complete table presenting the results
of Passive PIA.



RAID ’23, October 16-18, 2023, Hong Kong, China

Table 9: Passive Property Inference Attack with FL and CFL (FULL)

Kim and Cho et al.

Attack Performance (AUC)
Task Combination A
‘ot Clienst Method || oy pp | B cRL | L CHL FL CFL FL CFL
3 0.873 0.9423 | 0.9644 0.9885 | 0.9856 0.9903 || 0.5845 0.7756 | 0.6736 0.8869
4 0.8158 0.9689 | 0.8666 0.9898 | 0.9622 0.984 || 0.6709 0.7491 | 03793 0.8119
5 07326 0.9424 | 0.8154 0.9684 | 0.9297 0.9769 || 05302 0.7570 | 05764 0.6937
6 0.6815 0.9371 | 0.7587 0.9587 | 0.8544 0.9732 || 0.5422 0.7320 | 0.4495 0.6570
7 0.6695 0.9167 | 0.7693 0.9569 | 0.8045 0.9578 || 0.5365 0.6976 | 0.4614 0.6502
8 06369 0.9211 | 0.6861 0.9606 | 0.7797 0.9421 || 0.4045 0.7574 | 0.5049 0.5437
9 06589 0.917 | 06517 0.903 | 0.7451 0.9095 || 0.4883 0.6217 | 0.3605 0.4670
10 0.5957 0.9009 | 0.6145 0.9371 | 0.8429 0.9084 || 0.4421 0.5975 | 03051 0.4763
11 05942 0.8703 | 0.6233 0.903 | 0.8093 0.9127 || 0.4302 0.6563 | 0.2203 0.4715
12 05931 0.8666 | 0.6016 0.8735 | 0.7121 0.8742 || 0.4667 0.6096 | 0.2196 0.4369
13 05527 0.8523 | 05761 0.8594 | 0.7158 0.8904 || 0.5575 05529 | 03921 0.4125
14 05545 0.8402 | 05925 0.8744 | 0.7282 0.8659 || 0.5047 0.5943 | 03426 0.4392
15 05488 0.8284 | 0574 0.8265 | 0.7934 0.8354 || 0.4816 0.6094 | 0.5526 0.4064
16 05503 0.7959 | 05746 0.8228 | 0.7179 0.8136 || 04632 0.5798 | 03483 0.4125
17 05303 0.7754 | 05666 0.7819 | 0.6376 0.8112 || 0.4343 0.6150 | 03435 0.3601
18 05078 0.8187 | 05492 0.8063 | 0.7103 0.752 || 0.5038 0.5614 | 0.5343 0.3653
19 05462 0.7686 | 05557 0.8413 | 0.7118 0.8016 || 0.4844 0.4848 | 0.4151 0.4069
20 05367 0.7414 | 05534 0.7952 | 0.6731 0.8002 || 0.4401 0.5232 | 0.4933 0.3808
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