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ABSTRACT

Federated Learning (FL) revolutionizes machine learning by enabling model train-
ing across decentralized data sources without aggregating sensitive client data.
However, the inherent heterogeneity of client data presents unique challenges, as
not all client contributions positively impact model performance. In this work, we
propose a novel algorithm, Merit-Based Federated Averaging (MeritFed), which
dynamically assigns aggregation weights to clients based on their data distribution’s
relevance to a target objective. By leveraging stochastic gradients and solving an
auxiliary optimization problem, our method adaptively identifies beneficial collabo-
rators, ensuring efficient and robust learning. We establish theoretical convergence
guarantees under mild assumptions and demonstrate that MeritFed achieves
superior convergence by harnessing the advantages of diverse yet complementary
datasets. Empirical evaluations highlight its ability to mitigate the adverse effects
of outlier and adversarial clients, paving the way for more effective and resilient
FL in heterogeneous environments.

1 INTRODUCTION

Federated Learning (FL) introduces an innovative paradigm redefining traditional machine learning
workflow. Instead of centrally pooling sensitive client data, FL allows for model training on decen-
tralized data sources stored directly on client devices (Konečný et al., 2016; Zhang et al., 2021). In
this approach, rather than training Machine Learning (ML) models in a centralized manner, a shared
model is distributed to all clients. Each client then performs local training, and model updates are
exchanged between clients and the FL orchestrator (often referred to as the master server) (McMahan
et al., 2017; Shokri & Shmatikov, 2015).

Personalized Federated Learning (PFL). The concept of PFL (Collins et al., 2021; Hanzely et al.,
2020; Sadiev et al., 2022; Almansoori et al., 2024; Borodich et al., 2021; Sadiev et al., 2022) has
been gaining traction. In this framework, each client, often referred to as an agent, takes part in
developing their own personalized model variant. This tailored training approach leverages local
data distributions, aiming to design models that cater to the distinct attributes of each client’s dataset
(Fallah et al., 2020). In contrast, standard Parallel SGD (Zinkevich et al., 2010) often leads
to models that generalize across all clients rather than personalize to the specific data distributions
and unique characteristics of individual clients, potentially resulting in suboptimal performance on
personalized tasks. However, a prominent challenge arises in this decentralized training landscape
due to the data’s non-IID (independent and identically distributed) nature across various clients.
Data distributions that differ considerably can have a pronounced impact on the convergence and
generalization capabilities of the trained models. While certain client-specific data distributions
might strengthen model performance, others could prove detrimental, introducing biases or potential
adversarial patterns. Additionally, within the personalized federated learning paradigm, the emphasis
on crafting individualized models could inadvertently heighten these data disparities (Kairouz et al.,
2021). Consequently, this may lead to models that deliver subpar or (potentially) incorrect results
when applied to wider or diverse datasets (Kulkarni et al., 2020).

Collaboration as a service. In this paper, we introduce a modified protocol for FL that deviates from
a strictly personalized approach. Rather than focusing solely on refining individualized models, our
approach seeks to harness the advantages of distinct data distributions, curb the detrimental effects
of outlier clients, and promote collaborative learning. Through this innovative training mechanism,
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our algorithm discerns which clients are optimal collaborators to ensure faster convergence and
potentially better generalization.

1.1 SETUP

We assume that there are n clients participating in the training and consider the first one as a target
client. The goal is to train the model for this client, i.e., we consider

minx∈Rd {f(x) ≡ f1(x) := Eξ1∼D1
[fξ1(x)]} , (1)

where fξ1 : Rd → R is the loss function on sample ξ1 and f : Rd → R is an expected loss.
Other clients can also have data sampled from similar distributions, but we also allow adversarial
participants, e.g., Byzantines (Lamport et al., 1982; Lyu et al., 2020). That is, some clients can be
beneficial for the training in certain stages, but they are not assumed to be known apriori.

The considered target client scenario naturally arises in cross-silo FL on medical image data. In such
applications, different hospitals naturally have different data distributions (e.g., due to the differences
in the equipment). Therefore, the data coming from one clinic can be useless to another clinic. At the
same time, several clinics can have similar data distributions.

While our setup focuses on optimizing models for a single target client, an alternative direction
involves using a small IID validation set at the server to guide the aggregation of updates from locally
Non-IID clients. This can help produce a model that performs well across clients, as if the data were
IID. This formulation may be more broadly applicable in practice when personalization is not the goal
and such a validation set is available. Our framework can naturally extend to this setting by changing
the objective function. In contrast, our setup is more privacy-aware: clients share neither their raw
data with the server or other clients nor pure stochastic gradients, making our method particularly
suited for sensitive applications.

1.2 CONTRIBUTION

Our main contributions are listed below.

• New method: MeritFed. We proposed a new method called Merit-based Federated Averaging
for Diverse Datasets (MeritFed) that aims to solve (1). The key idea is to use the stochastic
gradients received from the clients to adjust the weights of averaging through the inexact solving of
the auxiliary problem of minimizing a validation loss as a function of aggregation weights.

• Provable convergence under mild assumptions. We prove that MeritFed converges not worse
than SGD that averages only the stochastic gradients (or pseudo-gradients for multiple local steps)
received from clients having the same data distribution (these clients are not known apriori) for
smooth non-convex and Polyak-Lojasiewicz functions under standard bounded variance assumption
(Theorem 1). We also prove that MeritFed has even better theoretical convergence when there
exists a group of clients with “close enough” data distribution (Theorem 2).

• Utilizing all possible benefits. We numerically show that MeritFed benefits from collaboration
with clients having different yet close to the target one data distributions. That is, MeritFed
automatically detects beneficial clients at any stage of training. Moreover, we illustrate the
Byzantine robustness of the proposed method even when Byzantine workers form a majority.

1.3 RELATED WORK

Federated optimization. Standard results in distributed/federated optimization focus on the problem:

minx∈Rd
1
n

∑n
i=1 fi(x), (2)

where fi(x) represents either expected or empirical loss on the client i. This problem significantly
differs from (1), since one cannot completely ignore the updates from some clients to achieve a better
solution. Typically, in this case, communication is the main bottleneck of the methods for solving
such problems. To address this issue one can use communication compression (Alistarh et al., 2017;
Stich et al., 2018; Mishchenko et al., 2019), local steps (Stich, 2018; Khaled et al., 2020; Kairouz
et al., 2021; Wang et al., 2021; Mishchenko et al., 2022; Sadiev et al., 2022; Beznosikov et al., 2024),
client importance sampling (Cho et al., 2020; Nguyen et al., 2020; Ribero & Vikalo, 2020; Lai et al.,
2021; Luo et al., 2022; Chen et al., 2022d), or decentralized protocols (Lian et al., 2017; Song et al.,
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2022), or FL of graph neural network on graph data (Tan et al., 2023). However, these techniques
are orthogonal to what we focus on in our paper, though incorporating them into our algorithm is a
prominent direction for future research.

Clustered FL. Another way of utilizing benefits from the other clients is the clustering of clients
based on some information about their data or personalized models. (Tang et al., 2021) propose a
personalized formulation with ℓ2-regularization that attracts a personalized model of a worker to
the center of the cluster that this worker belongs to. A similar objective is studied by (Ma et al.,
2022). (Ghosh et al., 2020) develop an algorithm that updates clusters’s centers using the gradients
of those clients that have the smallest loss functions at the considered cluster’s center. It is worth
mentioning that, in contrast to our work, the mentioned works modify the personalized objective
to illustrate some benefits of collaboration while we focus on the pure personalized problem of the
target client. Under the assumption that the data distributions of each client are mixtures of some
finite set of underlying distributions, (Marfoq et al., 2021) derive the convergence result for the
Federated Expectation-Maximization algorithm. This is the closest work to our setup in the Clustered
FL literature. However, in contrast to (Marfoq et al., 2021), we do not assume that the gradients
are bounded and that the local loss functions have bounded gradient dissimilarity. Another close
work to ours is (Fraboni et al., 2021), where the authors consider so-called clustered-based sampling.
However, (Fraboni et al., 2021) also make a non-standard assumption on the bounded dissimilarity of
the local loss functions, while one of the key properties of our approach is its robustness to arbitrary
clients’ heterogeneity. (Li et al., 2020) is also a relevant paper in the sense that not all workers are
selected for aggregation at each communication round (due to the client sampling). However, this
work focuses on weighted empirical risk minimization (with weights proportional to the dataset size),
i.e., (Li et al., 2020) consider a different problem. Ma et al. (2023) addresses the “clustering collapse”
issue with clustering rules based on the min-loss criterion and k-means style criterion.(Bao et al.,
2023) focus on optimizing collaboration in federated learning by grouping workers into clusters
based on data similarity. Their method requires minimizing a score function for each pair of clients
to measure the distance between their data. This clustering process involves computational efforts
during the preprocessing stage, and the training within each cluster uses static aggregation weights.

Non-uniform averaging. There are works studying the convergence of distributed SGD-type methods
that use non-uniform, fixed weights of averaging. (Ding & Wang, 2022) propose a method to detect
collaboration partners and adaptively learn "several" models for numerous heterogeneous clients.
Directed graph edge weights are used to calculate group partitioning. Since the calculation of optimal
weights in their approach is based on similarity measures between clients’ data, it is unclear how to
compute them in practice without sacrificing the privacy. (Even et al., 2022) develop and analyze
another approach for personalized aggregation, where each client filters gradients and aggregates them
using fixed weights. The optimal weights also require estimating the distance between distributions
(or communicating empirical means among all clients and estimating effective dimensions). Both
works do not consider weights evolving in time, which is one of the key features of our method.

Non-fixed weights are considered in (Wu & Wang, 2021), but the authors focus on non-personalized
problem formulation. In particular, (Wu & Wang, 2021) propose the method called FedAdp that
uses cosine similarity between gradients and the Gompertz function for updating aggregation weights.
Under the strong bounded local gradient dissimilarity assumption1, (Wu & Wang, 2021) derive a
non-conventional upper bound (for the loss function at the last iterate of their algorithm) that does
not necessarily imply convergence of the method. (Zhang et al., 2020) introduce FedFomo that
uses additional data to adjust the weights of aggregation in Federated Averaging. In this context,
FedFomo is close to MeritFed. However, the weights selection formulas significantly differ from
ours. In particular, (Zhang et al., 2020) do not relate the proposed weights with the minimization
problem from Line 9 of our method. In addition, there is no theoretical convergence analysis of
FedFomo.

Bi-level optimization. Taking into account that we want to solve problem (1) using the information
coming from not only the target client, it is natural to consider the following bi-level optimization

1(Wu & Wang, 2021) assume that there exist constants A,B > 0 such that A∥∇f(x)∥ ≤ ∥∇fi(x)∥ ≤
B∥∇f(x)∥ for every client i ∈ [n] and any x, where f(x) = 1

n

∑n
i=1 fi(x).
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(BLO) problem formulation:

min
w∈∆n

1

f(x∗(w)), (3)

s.t. x∗(w) ∈ argminx∈Rd

∑n
i=1wifi(x), (4)

where ∆n
1 is a unit simplex in Rn: ∆n

1 = {w ∈ Rn |
∑n

i=1 wi = 1, wi ≥ 0 ∀i ∈ [n]}. The problem
in (3) is usually called the upper-level problem (UL), while the problem in (4) is the lower-level (LL)
one. Since in our case f(x) ≡ f1(x), (3)-(4) is equivalent to (1). In the general case, this equivalence
does not always hold and, in addition, function f is allowed to depend on w not only through x∗. All
these factors make the general BLO problem hard to solve. The literature for this general class of
problems is quite rich, and we cover only closely related works.

The closest works to ours are (Chen et al., 2021a), which propose so-called Target-Aware Weighted
Training (TAWT), and its extension to the federated setup (Huang et al., 2022). Their analysis relies on
the existence of weights w, such that dist(

∑n
i=1 wiDi,Dtarget) = 0 in terms so-called representation-

based distance (Chen et al., 2021a), which is also zero in our case, or existence of identical neighbors.
However, the analysis is based on BLO’s techniques and requires a hypergradient estimation, i.e.,
∇wf(x

∗(w), w), which is usually hard to compute. To avoid the hypergradient calculation, (Chen
et al., 2021a) also propose a heuristic based on the usage of cosine similarity between the clients’
gradients, which makes the implementation of the algorithm similar to FedAdp (Wu & Wang, 2021).

In fact, there are two major difficulties in estimating hypergradient. The first one is that the optimal
solution x∗(w) of the lower problem for every given w needs to be estimated. The known approaches
iteratively update the lower variable x multiple times before updating w, which causes high commu-
nication costs in a distributed setup. A lot of methods (Ghadimi & Wang, 2018; Hong et al., 2020;
Chen et al., 2021b; Ji et al., 2021; 2022) are proposed to effectively estimate x∗(w) before updating
w, but anyway the less precise estimate slows down the convergence. The second obstacle is that hy-
pergradient calculation requires second-order derivatives of fi(w, x). Many existing methods (Chen
et al., 2022c; Dagréou et al., 2022) use an explicit second-order derivation of fi(w, x) with a major
focus on efficiently estimating its Jacobian and inverse Hessian, which is computationally expensive
itself, but also dramatically increases the communication cost in a distributed setup. A number
of methods (Chen et al., 2022c; Li et al., 2022; Dagréou et al., 2022) avoid directly estimating its
second-order computation and only use the first-order information of both upper and lower objectives,
but they still have high communication costs and do not exploit our assumptions. For a more detailed
review of BLO, we refer to (Zhang et al., 2023; Liu et al., 2021; Chen et al., 2022a).

2 MERITFED : MERIT-BASED FEDERATED LEARNING FOR DIVERSE
DATASETS

Recall that the primary objective the target client seeks to solve is given by (1) where n workers are
connected with a parameter-server. Standard Parallel SGD

xt+1 = xt − γ
n

∑n
i=1 gi(x

t, ξi), (5)

where gi(x
t, ξi) denotes a stochastic gradient (unbiased estimate of ∇fi(x

t)) received from client i,
cannot solve problem (1) in general, since workers {2, . . . , n} do not necessarily have the same data
distribution as the target client. This issue can be solved if we modify the method as follows:

xt+1 = xt − γ
|G|
∑

i∈G gi(x
t, ξi), (6)

where G denotes the set of workers that have the same data distribution as the target worker. However,
the group G is not known in advance. This aspect makes the method from (6) impractical. Moreover,
this method ignores potentially useful vectors received from the workers having different yet similar
data distributions.

2.1 THE PROPOSED METHOD

We develop Merit-based Federated Learning for Diverse Datasets (MeritFed; see Algorithm 1)
aimed at solving (1) and safely gathering all potential benefits from collaboration with other clients.
As in Parallel SGD all clients are required to send stochastic gradients to the server. However, in
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Algorithm 1 MeritFed: Merit-based Federated Learning for Diverse Datasets
1: Input: Starting point x0 ∈ Rd, stepsize γ > 0
2: for t = 0, ... do
3: server sends xt

i,0 = xt to each worker
4: for each worker i = 1, . . . , n in parallel do
5: for k = 0, · · · ,K − 1 do If K = 1
6: compute stoch. gradient gi,k(xt

i,k, ξi,k) from local data
7: xt

i,k+1 = xt
i,k − γlg

t
i,k γl = 1

8: send ∆t
i = xt

i,K − xt to the server ∆t
i = −gi(x

t, ξi)

9: wt+1 ≈ argmin
w∈∆n

1

f

(
xt + γ

n∑
i=1

wi∆
t
i

)
wt+1 ≈ argmin

w∈∆n
1

f

(
xt − γ

n∑
i=1

wigi(x
t, ξi)

)
10: xt+1 = xt + γ

n∑
i=1

wt+1
i ∆t

i xt+1 = xt − γ
n∑

i=1

wt+1
i gi(x

t, ξi)

contrast to uniform averaging of the received stochastic gradients, MeritFed uses the weights wt

from the unit simplex ∆n
1 that are updated at each iteration. In particular, the new vector of weights

wt+1 ∈ Rn at iteration t approximates argminw∈∆n
1
f(xt − γ

∑n
i=1 wigi(x

t, ξi)), where K = 1

for simplicity. Then, the server uses the weights for averaging stochastic gradients and updating xt.

Local steps. Our approach provably supports multiple local updates. The results are given by Theo-
rem 1. But some results and experiments are presented for K = 1 for the sake of simplicity.

2.2 AUXILIARY PROBLEM IN LINE 9

In general, solving the problem in Line 9 is not easier than solving the original problem (1). Instead,
MeritFed requires solving it approximately. That is, the dataset used for solving this problem only
needs to have the same distribution as the target client’s data. In particular, if the training data of
the target client is sufficiently good to approximate the expected loss function f , then no extra data
is required. Theoretically, the validation data only needs to have the same distribution as the target
client’s data, so validation data can be the same as the training data (or duplicate them). Sections 4
and D shows experimental results where the validation data duplicates the training data. Moreover,
the validation dataset size is much smaller than the training dataset in our experiments. Alternative
approach dividing the training data into two sets is described in Section A.4.

To avoid any risk of compromising clients’ privacy, the target client dataset should be stored only on
the target client, and stochastic gradients received from other clients cannot be directly sent to the
target client. To satisfy these requirements, one can approximate

argminw∈∆n
1
{φt(w) ≡ f (xt − γ

∑n
i=1 wigi(x

t, ξi))} (7)

using zeroth-order2 Mirror Descent (or its accelerated version) (Duchi et al., 2015; Shamir, 2017;
Gasnikov et al., 2022b):

wk+1 = argminw∈∆n
1

{
α⟨g̃k, w⟩+Dr(w,w

k)
}
, (8)

where α > 0 is the stepsize, g̃k is a finite-difference approximation of the directional derivative of
sampled function

φt,ξk(w)
def
= fξk (x

t − γ
∑n

i=1 wigi(x
t, ξi)) , (9)

where ξk is a fresh sample from the distribution D1 independent from all previous steps of the method,

e.g., one can use g̃k =
n(φ

t,ξk
(wk+he)−φ

t,ξk
(wk−he))

2h for h > 0 and e being sampled from the uniform
distribution on the unit Euclidean sphere, and Dr(w,w

k) = r(w) − r(wk) − ⟨∇r(wk), w − wk⟩
is the Bregman divergence associated with a 1-strongly convex function r. Although, typically,

2In this case, the server can ask the target client to evaluate loss values at the required points without sending
the stochastic gradients received from other workers.
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Figure 1: Mean Estima-
tion: µ = 0.001, MD
learning rate = 3.5.
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Figure 2: Mean Estima-
tion: µ = 0.01, MD learn-
ing rate = 4.5.
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Figure 3: Mean Estima-
tion: µ = 0.1, MD learn-
ing rate = 12.5.
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the oracle complexity bounds for gradient-free methods have O(n) dependence on the problem
dimension (Gasnikov et al., 2022a), one can get just O(log2(n)), in the case of the optimization over
the probability simplex (Shamir, 2017; Gasnikov et al., 2022b). More precisely, if f is M2-Lipschitz
w.r.t. ℓ2-norm and convex, then one can achieve E[φt(w) − φt(w

∗)] ≤ δ using O(M
2
2 log2(n)/δ2)

computations of φ, where R is ℓ1-distance between the starting point and the solution (Gasnikov
et al., 2022b) and prox-function r(w) =

∑n
i=1 wi log(wi), which is 1-strongly convex w.r.t. ℓ1-norm.

Memory usage. It is worth mentioning that MeritFed requires the server to store n vectors at each
iteration for solving the problem in Line 9. While standard SGD does not require such a memory,
closely related methods — FedAdp and TAWT — also require the server to store n vectors for the
computation of the weights for aggregation. However, for modern servers, this is not an issue.

3 CONVERGENCE ANALYSIS

In our analysis, we rely on the standard assumptions for non-convex optimization literature.
Assumption 1. For all i ∈ G the stochastic gradient gi(x, ξi) is an unbiased estimator of ∇fi(x)
with bounded variance, i.e., Eξi

[gi(x, ξi)] = ∇fi(x) and for σG ≥ 0

Eξi
∥gi(x, ξi)−∇fi(x)∥2 ≤ σ2

G . (10)

Moreover, f is L-smooth, i.e., ∀ x, y ∈ Rd

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L
2 ∥x− y∥2. (Lip)

The above assumption combines the well-known bounded variance and smoothness of the objective
assumptions. It is classical for the analysis of stochastic optimization methods, e.g., see (Nemirovski
et al., 2009; Juditsky et al., 2011).

Next, we assume that there exists a set of workers with “close enough” data distributions to the target
one. This can be formalized as follows.
Assumption 2. Let F ⊆ [n] be a subset of workers such that F ∩ G = ∅ and for some ν ≥ 0, ρ ≥ 0
and all x ∈ Rd ∥∥∥ 1

F

∑
i∈F ∇fi(x)−∇f(x)

∥∥∥2 ≤ ν∥∇f(x)∥2 + ρ2. (11)

Moreover, for all i ∈ F , the stochastic gradient gi(x, ξi) is an unbiased estimator of ∇fi(x) with
bounded variance, i.e., Eξi [gi(x, ξi)] = ∇fi(x) and for σF ≥ 0

Eξi
∥gi(x, ξi)−∇fi(x)∥2 ≤ σ2

F .

The above assumption guarantees that the gradients from workers in F approximate the true global
gradient within relative and absolute error bounds and the stochastic gradients from these workers
also have bounded variance. In practice, ν and ρ can depend on x, and can be relatively small if x is
far from the solution. However, for simplicity of the analysis we assume that ν and ρ are constants.

Finally, we also make the following (optional) assumption called Polyak-Łojasiewicz (PŁ) condition
(Polyak, 1963; Lojasiewicz, 1963).
Assumption 3. f satisfies Polyak-Łojasiewicz (PŁ) condition with parameter µ, i.e., for µ ≥ 0

f∗ ≥ f(x)− 1
2µ∥∇f(x)∥2, ∀ x ∈ Rd. (PL)
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This assumption belongs to the class of structured non-convexity conditions allowing linear conver-
gence for first-order methods, e.g., Gradient Descent (Necoara et al., 2019).

The main result for MeritFed is given below (see the proof in Appendix B).
Theorem 1. Let Assumptions 1 holds. Then after T iterations, if K = 1 MeritFed with γ ≤ 1

2L

outputs xt, t = 0, · · · , T − 1 such that

1
T

∑T−1
t=0 E∥∇f(xt)∥2 ≤ 2(f(x0)−f(x∗))

Tγ + 2σ2γL
G + 2δ

γ ,

and if K > 1 MeritFed with γ = 2, γl ≤ 1
12LK outputs xt, t = 0, · · · , T − 1

1
T

∑T−1
t=0 E∥∇f(xt)∥2 ≤ 4(f(x0)−Ef(xT ))

γlKT + 24γ2
l KL2σ2

G +
32γlLσ2

G

G + 4δ
γlK

,

where δ is the accuracy of solving the problem in Line 9 and G = |G|. Moreover if Assumption 3
additionally holds, if K = 1 MeritFed with γ ≤ 1

2L outputs xT such that

E[f
(
xT
)
− f∗] ≤ (1− γµ)

T (
f
(
x0
)
− f∗)+ σ2γL

µG + δ
γµ ,

and if K > 1 MeritFed with γ = 2, γl ≤ 1
12LK outputs xt, t = 0, · · · , T − 1

E[f(xT )− f∗] ≤
(
1− µγlK

2

)T
[f(x0)− f∗] +

12γ2
l KL2σ2

G

µ +
16γlLσ2

G

µG + 2δ
µγlK

.

If δ is small, then the above result matches the known results for Parallel SGD (Ghadimi & Lan, 2013;
Karimi et al., 2016; Khaled & Richtárik, 2022) that uniformly averages the workers from the group
G, i.e., those workers that have data distribution D1 (see the method in (6)). In fact, we see a linear
speed-up of 1/G in the obtained convergence rates.

Note, that when K > 1 the terms with no linear speed-up contain γl with a higher power, that
recovers results for Local SGD and implies that the terms vanish faster with vanishing stepsize.

Moreover, in the case when some workers have different yet similar data, which we formalize as
Assumption 2, we provide an improved result below. We consider K = 1 for the sake of simplicity.

Theorem 2. Let Assumptions 1 and 2 hold with G = |G|, F = |F|, ν ≤ G
F . Then after T iterations

of MeritFed with γ ≤ 1
8L outputs xt, t = 0, · · · , T − 1 such that

1
T

∑T−1
t=0 E∥∇f(xt)∥2 ≤ 4(f(x0)−f(x∗))

Tγ + 2min
(

σ2
GγL

G + δ
γ ,

4γLGσ2
G

(G+F)2 +
4γLFσ2

F
(G+F)2 + ρ2F

G+F + 2δ
γ

)
,

where δ is the accuracy of solving the problem in Line 9. Moreover if Assumption 3 additionally
holds, then after T iterations of MeritFed with γ ≤ 1

8L outputs xT such that

Ef
(
xT
)
−f∗ ≤ (1− γµ)

T (
f
(
x0
)
− f∗)+ 1

µ min
(

σ2
GγL

G + δ
γ ,

4γLGσ2
G

(G+F)2 +
4γLFσ2

F
(G+F)2 + ρ2F

G+F + 2δ
γ

)
.

Assumption 2 is reasonable, especially at the initial stage of training when the generated points
are far from the solution (see the discussion after Assumption 2). So the theorem shows that the
variance-induced term is reduced, allowing for a linear speedup proportional to 1/(G+F), compared to
1/G without the assumption (Theorem 1). Moreover, if ρ and δ are small, then the neighborhood term
E is smaller than the neighborhood term from Theorem 1 and, consequently, than the neighborhood
term in the convergence bound for the method from (6). Theorem 2 also implies that for small δ
MeritFed converges not worse than Parallel SGD that uniformly averages the workers from G ∪ F .

MeritFed needs neither identifying distribution-similar workers nor high-precision solving of
Line 9, and empirically converges well even when workers’ distributions are distinct but close.

4 EXPERIMENTS

Since the literature on FL is very rich, we focus only on the closely related methods satisfying two
criteria: (i) they solve the same problem as we consider in 1, and (ii) have theoretical guarantees.
That is, we evaluate the performance of proposed methods in comparison with FedAdp (Wu &
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Figure 4: GoEmotions
(extra val.): α = 0.5
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(extra val.): α = 0.7
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Figure 6: GoEmotions
(extra val.): α = 0.9
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Figure 7: GoEmotions
(extra val.): α = 0.99

Wang, 2021), TAWT (Chen et al., 2021a), and FedProx (Li et al., 2020) (FedProx reduces to
FedAvg if there are no local steps, that is the setup for MeritFed). We also compare standard
SGD with uniform weights (labeled as SGD Full3), SGD that collects only gradients from clients
with the target distribution (SGD Ideal) and two versions of our algorithm: (i) MeritFed SMD,
samples gradient for the Mirror Descent subroutine, and (ii) MeritFed MD, that uses the full
dataset (additional or train) to calculate gradient for Mirror Descent step. In addition, we present the
evolution of weights (if applicable) using heat-map plots. In the main text, we show the results for
the case when the additional validation dataset is available for the problem in Line 9. Additional
experiments and details with the usage of train data for the problem in Line 9, with the presence of
Byzantine participants and with more workers, are provided in Appendix D.

Mean estimation. The problem is to find such a vector that minimizes the mean squared distance to
the data samples. More formally, the goal is to solve minx∈Rd Eξ∼D1

∥x− ξ∥2, that has the optimum
at x∗ = Eξ∼D1 [ξ]. We consider D1 = N (0, I) and also two other distributions from where some
clients also get samples: D2 = N (µ1, I) and D3 = N (e, I), where 1 = (1, 1, . . . , 1)⊤ ∈ Rd,
µ > 0 is a parameter, and e is some vector that we obtain in advance via sampling uniformly at
random from the unit Euclidean sphere. Detailed experimental setup is provided in Section D.2.

We consider three cases: µ = 0.001, 0.01, 0.1. The smaller µ is, the closer D2 is to D1 and, thus, the
more beneficial the samples from the second group are. Therefore, for small µ, we expect to see that
MeritFed outperforms SGD Ideal. Moreover, since the workers from the third group have quite
different data distribution, SGD Full is expected to work worse than other baselines.

The results are presented in Figures 1-3. They fit the described intuition and our theory well: the
workers from the second group are beneficial (since their distributions are close enough to the
distribution of the target client). Indeed, MeritFed achieves better optimization error (due to the
smaller variance because of the averaging with more workers). However, when the dissimilarity
between distributions is large the second group becomes less useful for the training, and MeritFed
has comparable performance to SGD Ideal and consistently outperforms other methods.

Texts classification: GoEmotions + BERT. The next problem we consider is devoted to fine-
tuning pretrained BERT (Devlin et al., 2018) model for emotions classification on the GoEmotions
dataset (Demszky et al., 2020). The dataset consist of texts labeled with one or more of 28 emotions.
First of all, we form "truncated dataset" by cutting the dataset so that its each entry has the only label.

3Although, FedProx and SGD Full are designed for standard empirical risk minimization; these are our
standard baselines.
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Then we use Ekman mapping (Ekman, 1992) to split the data between clients. According to the
mapping, 28 emotions can be mapped to 7 basic emotions. That is, we simulate a situation when the
target client classifies only basic emotions, e.g., the target client has only emotions belonging to "joy"
class and namely includes only "joy", "amusement", "approval", "excitement", "gratitude", "love",
"optimism", "relief", "pride", "admiration", "desire", "caring". The distribution of these sub-emotions
is kept to be the same as the distribution of the truncated train dataset. Clients, that data are supposed
to have similar distribution (second group – next 10 clients), also have texts from base class "joy" and
are labeled as one of the sub-emotion belonging to "joy". The distribution of sub-emotions is also the
same as the distribution of the truncated train dataset. These texts constitute an α portion of the total
client’s data. The other 1− α portion of the texts is taken from "neutral" class. The rest of clients
(third group – next 9 clients) are supposed to have different distribution and their data consist of either
texts belonging to one of the other basic emotion, either mixed with neutral (if there is not enough
texts to have a desired number of samples) or texts from "neutral" class only. Again, the distribution
of sub-emotions is the same as the distribution of the truncated train dataset. The results are presented
in Figures 4-7. The target client benefits from collaborating with clients from the second group and
achieves better accuracy using MeritFed. See Section D.3 for the detailed description.

MedMNIST. We apply MeritFed to enhance the classification of medical images, as introduced in
the MedMNIST dataset (Yang et al., 2021). MedMNIST offers medical image datasets, including
three datasets featuring images of internal organs (Organ{A,C,S}MNIST) with identical labels.
These datasets can be collectively utilized during training to improve accuracy. A potential method
involves aggregating gradients computed from these three datasets. However, due to the diverse
nature of the data, some datasets may have limited contributions to the training. We anticipate
that adaptive aggregation, provided by MeritFed, will improve the model’s performance. For
empirical justification, we assume that each worker possesses one MedMNIST dataset. Importantly,
MeritFed does not restrict the setup to only three workers and accommodates additional clients
with irrelevant data, aligning with real-world scenarios. To demonstrate this, we introduce a nuisance
worker handling data from other MedMNIST datasets. See Appendix D.4 for the detailed description.

Image classification: CIFAR10 + ResNet18. The results can be found in Appendix D.6.

5 CONCLUSION

We introduced a novel algorithm called Merit-based Federated Learning (MeritFed) to address
the challenges posed by the heterogeneous data in federated learning via the adaptive selection of
the aggregation weights through solving the auxiliary problem at each iteration. We showed that
MeritFed can effectively harness the advantages of distinct data distributions, control the detri-
mental effects of outlier clients, and promote collaborative learning. We assign adaptive aggregation
weights to clients participating in training, allowing for faster convergence and potentially better
generalization. MeritFed stands in contrast to TAWT, which depends on computationally intensive
hypergradient estimations, and FedAdp, which uses cosine similarity for weight calculation. In
addition, we incorporate zero-order MD to enhance privacy. The key contributions of this paper
include the development of MeritFed, provable convergence under mild assumptions, and the
ability to utilize benefits from collaborating with clients having different but similar data.

However, our work has some limitations. Firstly, (in theory) MeritFed relies on the fact that the
objective from the problem in Line 9 gives a good enough approximation of the expected risk f ,
which in some situations may require the availability of additional data on the target client to solve
the problem (though in all of our experiments, it was not the case and MeritFed worked well
even without additional data). Collecting and maintaining extra data may not always be practical or
efficient. Secondly, the experiments used a limited number of clients and a dataset of moderate size.
Extending MeritFed to large-scale FL with a substantial number of clients and massive datasets
may pose scalability challenges. Addressing these limitations is part of our plan for future work.

Furthermore, MeritFed serves as a foundation for numerous extensions and enhancements. Future
research can explore topics such as acceleration techniques, adaptive or scaled optimization methods
(e.g., variants akin to Adam (Kingma & Ba, 2014)) on the server side, communication compression
strategies, and the efficient implementation of similar collaborative learning approaches for all clients
simultaneously. These directions will contribute to the continued development of FL methods, making
them more efficient, robust, and applicable to a wide range of practical scenarios.

9
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A EXTENDED RELATED WORK

A.1 RELATION TO TRANSFER LEARNING

While our approach resembles transfer learning (West et al., 2007), where a model trained on one
dataset is then enhanced/fine-tuned on another related dataset, MeritFed differs significantly in both
motivation and framework. Unlike transfer learning, which involves adapting a pre-trained model
to new data, MeritFed enhances the training process itself. Transfer learning can be theoretically
viewed as training with “better” initialization, while MeritFed decides on the fly what dataset to
use and to what extent.

That is, MeritFed performs adaptive aggregation and benefits from clients having data with the
same distribution. It promotes collaborative learning, which is particularly applicable in cross-silo
federated learning (scenarios such as medical imaging).

Furthermore, in situations where datasets are unrelated, traditional transfer learning may not yield
performance improvements. In contrast, MeritFed performs not worse than SGD Ideal under
such conditions. Additionally, MeritFed provides robustness against Byzantine attacks, further
distinguishing it from conventional transfer learning methods.

Exploring whether MeritFed can outperform transfer learning techniques in specific applications
remains a valuable direction for future research but outside the scope of our work.

A.2 PERSONALIZED FL BY GRAPH-BASED AGGREGATION

Another related direction in FL more accurately addresses client clustering by constructing a clients’
relation graph. (Chen et al., 2022b) does a graph-based model aggregation (k-hop) based on an
adaptively learned Graph Convolution Net (GCN). (Zhang et al., 2024) also uses GCN to perform
graph-guided aggregation but focuses on recommendations. Both works lack theoretical analysis and
require solving a subproblem (similar to BLO) of learning GCN at each iteration. This subproblem
has a higher computation cost than MeritFed has for adaptive aggregation.

A.3 WEIGHTS UPDATE FOR TAWT AND FEDADP

TAWT. A faithful implementation of TAWT (Chen et al., 2021a) would require a costly evaluation of
the inverse of the Hessian matrix

∑T
t=1 wt∇2f(xk) to calculate an approximation of hyper-gradient

gk. Then gk is supposed to be used to run one step of Mirror Descent (with step size ηk) to update
the weights:

wk+1
t =

wk
t exp{−ηkgkt }∑T

t′=1 w
k
t′ exp{−ηkgkt′}

. (12)

In practice, (Chen et al., 2021a) advise bypassing this step by replacing the Hessian-inverse-weighted
dissimilarity measure with a cosine-similarity-based measure, i.e., to approximate gkt by −c ×
S(∇f0(x

k),∇ft(x
k)), where

S(a, b) = arccos
⟨a, b⟩
∥a∥∥b∥

denotes the cosine similarity between two vectors.

FedAdp. FedAdp (Wu & Wang, 2021) uses a similar update rule for weights, but it additionally
uses a non-linear mapping function (Gompertz function)

G(ξ) = α
(
1− e−e−αξ

)
where ξ is the smoothed angle in radian, e denotes the exponential constant and α is a constant. By
denoting Sk

t = S(∇f0(x
k),∇ft(x

k)) one can obtain FedAdp weights update rule in the form

wk
t =

eG(S
k
t )∑n

t′=1 e
G(Sk

t )
.
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A.4 MISSING APPROACHES FOR SOLVING AUXILIARY PROBLEM IN LINE 7

Fresh Data. Let us assume that the target client can obtain new samples from distribution D1 at any
moment in time.

Additional Validation Data. Alternatively, one can assume that the target client has an additional
validation dataset D̂ sampled from D1. Then, instead of function f in Line 7, one can approximately
minimize

f̂(x) = 1

|D̂|

∑
ξ∈D̂ fξ(x), (13)

which under certain conditions provably approximates the original function f(x) with any predefined
accuracy if the dataset D̂ is sufficiently large (Shalev-Shwartz et al., 2009; Feldman & Vondrak,
2019). More precisely, the worst-case guarantees (e.g., (Liu & Tong, 2024)) imply that to guarantee
E[f(x̂∗)− f(x∗)] ≤ δ, where x̂∗ ∈ argminx∈Rd f̂(x) and x∗ ∈ argminx∈Rd f(x), the validation
dataset should be of the size |D̂| ∼ max {L/µ, 1/µδ} under the assumption that fξ(x) is µ-strongly
convex. However, as we observe in our experiments, MeritFed works well even with a relatively
small size of the validation dataset for non-convex problems.
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B PROOF OF THEOREM 1

We the theorem divide the proof into two parts: K = 1 and K > 1.

B.1 NO LOCAL STEPS (K = 1)

Theorem 3. Let Assumptions 1 holds. Then after T iterations of MeritFed with γ ≤ 1
2L outputs

xt, t = 0, · · · , T − 1 such that

1

T

T−1∑
t=0

E
∥∥∇f

(
xt
)∥∥2 ≤

2
(
f
(
x0
)
− f(x∗)

)
Tγ

+
2σ2γL

G
+

2δ

γ
, (14)

where δ is the accuracy of solving the problem in Line 7 and G = |G|. Moreover if Assumption 3
additionally holds, then after T iterations of MeritFed with γ ≤ 1

2L outputs xT such that

Ef
(
xT
)
− f∗ ≤ (1− γµ)

T (
f
(
x0
)
− f∗)+ σ2γL

µG
+

δ

γµ
. (15)

Proof. We write gti or simply gi instead of gi(xt, ξti) when there is no ambiguity. Then, the update
rule in MeritFed can be written as

xt+1 = xt − γ

n−1∑
i=0

wt+1
i gi(x

t),

where wt+1 is an approximate solution of

min
w∆n

1

f

(
xt − γ

n−1∑
i=0

wigi(x
t)

)

that satisfies

E
[
f
(
xt+1

)
|xt, ξt

]
−min

w
f

(
xt − γ

n−1∑
i=0

wigi(x
t)

)
≤ δ.

By definition of the minimum, we have

min
w∈∆n

1

f

(
xt − γ

n−1∑
i=0

wigi(x
t)

)
≤ f

(
xt − γ

G

∑
i∈G

gi(x
t)

)
(Lip)
≤ f

(
xt
)
− γ

G

〈
∇f
(
xt
)
,
∑
i∈G

gi(x
t)

〉
+

Lγ2

2

∥∥∥∥∥ 1

G

∑
i∈G

gi(x
t)

∥∥∥∥∥
2

≤ f
(
xt
)
− γ

G

〈
∇f
(
xt
)
,
∑
i∈G

gi(x
t)

〉
+ γ2L

∥∥∥∥∥∇f
(
xt
)
− 1

G

∑
i∈G

gi(x
t)

∥∥∥∥∥
2

+γ2L
∥∥∇f

(
xt
)∥∥2.

The last two inequalities imply

E
[
f
(
xt+1

)
|xt, ξt

]
≤ f

(
xt
)
− γ

G

〈
∇f
(
xt
)
,
∑
i∈G

gi(x
t)

〉
+ γ2L

∥∥∥∥∇f
(
xt
)
−
∑

i∈G gi(x
t)

G

∥∥∥∥2
+γ2L

∥∥∇f
(
xt
)∥∥2 + δ.
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Taking the full expectation we get

E[f(xt+1)] ≤ E[f(xt)]− γ(1− γL)E
[
∥∇f(xt)∥2

]
+γ2LE

[∥∥∥∥∇f
(
xt
)
−
∑

i∈G gi(x
t)

G

∥∥∥∥2
]
+ δ

γ≤ 1
2L

≤ E[f(xt)]− γ

2
E
[
∥∇f(xt)∥2

]
+

γ2L

G2

∑
i∈G

E
[∥∥∇f

(
xt
)
− gi(x

t)
∥∥2]+ δ

(10)
≤ E[f(xt)]− γ

2
E
[
∥∇f(xt)∥2

]
+

γ2Lσ2

G
+ δ. (16)

The above is equivalent to

γ

2
E
∥∥∇f

(
xt
)∥∥2 ≤ Ef

(
xt
)
− Ef

(
xt+1

)
+

σ2γ2L

G
+ δ,

which concludes the first part of the proof.

Next, summing the inequality for t ∈ {0, 1, . . . , T − 1} leads to

1

T

T−1∑
t=0

E
∥∥∇f

(
xt
)∥∥2 ≤

2
(
f
(
x0
)
− Ef

(
xT
))

Tγ
+

2σ2γL

G
+

2δ

γ

≤
2
(
f
(
x0
)
− f(x∗)

)
Tγ

+
2σ2γL

G
+

2δ

γ
.

Combining (16) with (PL) gives

γµE[f(xt)− f∗] ≤ γ

2
E
[
∥∇f(xt)∥2

]
≤ E[f(xt)]− E[f(xt+1)] +

γ2Lσ2

G
+ δ,

or equivalently

E[f(xt+1)]− f∗ ≤ (1− γµ)E[f(xt)− f∗] +
γ2Lσ2

G
+ δ.

The above unrolls as

Ef
(
xT
)
− f∗ ≤ (1− γµ)

T (
f
(
x0
)
− f∗)+ (σ2

Gγ2L

G
+ δ

) T−1∑
t=0

(1− γµ)
t

≤ (1− γµ)
T (

f
(
x0
)
− f∗)+ (σ2

Gγ2L

G
+ δ

) ∞∑
t=0

(1− γµ)
t

≤ (1− γµ)
T (

f
(
x0
)
− f∗)+ γLσ2

G

µG
+

δ

γµ
,

which is the result of the theorem (15).
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B.2 LOCAL STEPS (K > 1)

The derivation is based on Reddi et al. (2020).
Lemma 1. For independent, mean 0 random variables z1, . . . , zr, we have

E
[
∥z1 + ...+ zr∥2

]
= E

[
∥z1∥2 + ...+ ∥zr∥2

]
.

Lemma 2. For any step-size satisfying γl ≤ 1
3LK , we can bound the drift for any k ∈ {0, · · · ,K−1}

as

1

G

G∑
i=1

E∥xt
i,k − xt∥2 ≤ 5Kγ2

l σ
2
G + 20K2γ2

l E[∥∇f(xt)))∥2
]
. (17)

Proof. The result trivially holds for k = 1 since xt
i,0 = xt for all i ∈ [m]. We now turn our attention

to the case where k ≥ 1. To prove the above result, we observe that for any client i ∈ [m] and
k ∈ [K],

E∥xt
i,k − xt∥2 = E

∥∥xt
i,k−1 − xt − γlg

t
i,k−1

∥∥2
≤ E

∥∥xt
i,k−1 − xt − γl(g

t
i,k−1 −∇f(xt

i,k−1) +∇f(xt
i,k−1)−∇f(xt) +∇f(xt))

∥∥2
≤
(
1 +

1

2K − 1

)
E
∥∥xt

i,k−1 − xt

∥∥2 + E
∥∥γl(gti,k−1 −∇f(xt

i,k−1))
∥∥2

+ 4KE[∥γl(∇f(xt
i,k−1)−∇f(xt))∥2

]
+ 4KE[∥γl∇f(xt)))∥2

]
The first inequality uses the fact that gtk−1,i is an unbiased estimator of ∇f(xt

i,k−1) and Lemma 1.
The above quantity can be further bounded by the following:

E∥xt
i,k − xt∥2 ≤

(
1 +

1

2K − 1

)
E∥xt

i,k−1 − xt∥2 + γ2
l σ

2
G + 4Kγ2

l E∥L(xt
i,k−1 − xt)∥2

+ 4KE[∥γl∇f(xt)))∥2
]

=

(
1 +

1

2K − 1
+ 4Kγ2

l L
2

)
E∥(xt

i,k−1 − xt)∥2 + γ2
l σ

2
G

+ 4Kγ2
l E[∥∇f(xt)))∥2

]
=

(
1 +

1

K − 1

)
E∥(xt

i,k−1 − xt)∥2 + γ2
l σ

2
G

+ 4Kγ2
l E[∥∇f(xt)))∥2

]
Here, the first inequality follows from Assumption 1, and the last one from 4Kγ2

l L
2 ≤ 4

9K the
following chain:

1

2K − 1
=

1

2K − 1
± 1

K − 1
=

1

K − 1
− K

(2K − 1)(K − 1)
≤ 1

K − 1
− 4

9K
.

Averaging over the clients i, we obtain the following:

1

G

G∑
i=1

E∥xt
i,k − xt∥2 ≤

(
1 +

1

K − 1

)
1

G

G∑
i=1

E∥xt
i,k−1 − xt∥2 + γ2

l σ
2
G

+ 4Kγ2
l E[∥∇f(xt)))∥2

]
Unrolling the recursion, we obtain the following:

1

G

G∑
i=1

E∥xt
i,k − xt∥2 ≤

k−1∑
p=0

(
1 +

1

K − 1

)p [
γ2
l σ

2
G + 4Kγ2

l E[∥∇f(xt)))∥2
]]

≤ (K − 1)×

[(
1 +

1

K − 1

)K

− 1

]
×
[
γ2
l σ

2
G + 4Kγ2

l E[∥∇f(xt)))∥2
]]

≤ 5Kγ2
l σ

2
G + 20K2γ2

l E[∥∇f(xt)))∥2
]
,

concluding the proof of Lemma 2. The last inequality uses the fact that (1 + 1
K−1 )

K ≤ 5 for
K > 1.
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Theorem 4. Let Assumptions 1 holds. Then after T iterations of MeritFed with γ = 2, γl ≤ 1
12LK

outputs xt, t = 0, · · · , T − 1 such that

1

T

T−1∑
t=0

E
∥∥∇f(xt)

∥∥2 ≤
4
(
f(x0)− Ef(xT )

)
γlKT

+ 24γ2
l KL2σ2

G +
32γlLσ

2
G

G
+

4δ

γlK
,

where δ is the accuracy of solving the problem in Line 7 and G = |G|. Moreover if Assumption 3
additionally holds, then after T iterations of MeritFed outputs xT such that

E[f(xT )− f∗] ≤
(
1− µγlK

2

)T
[f(x0)− f∗] +

12γ2
l KL2σ2

G

µ +
16γlLσ2

G

µG + 2δ
µγlK

.

Proof. We write gti or simply gi instead of gi(xt, ξti) when there is no ambiguity. Then, the update
rule in MeritFed can be written as

xt+1 = xt + γ

n−1∑
i=0

wt+1
i ∆t

i,

where wt+1 is an approximate solution of

min
w∆n

1

f

(
xt + γ

n−1∑
i=0

wi∆
t
i

)

that satisfies

E
[
f
(
xt+1

)
|xt, ξt

]
−min

w
f

(
xt + γ

n−1∑
i=0

wi∆
t
i

)
≤ δ.

By definition of the minimum, we have

min
w∈∆n

1

f

(
xt + γ

n−1∑
i=0

wi∆
t
i

)
≤ f

(
xt +

γ

G

∑
i∈G

∆t
i

)
(Lip)
≤ f

(
xt
)
+

γ

G

〈
∇f
(
xt
)
,
∑
i∈G

∆t
i

〉
+

Lγ2

2

∥∥∥∥∥ 1

G

∑
i∈G

∆t
i

∥∥∥∥∥
2

= f
(
xt
)
+

γ

G

〈
∇f
(
xt
)
,
∑
i∈G

∆t
i + γlKG∇f(xt)

〉
− γγlK∥∇f(xt)∥2 + Lγ2

2G2

∥∥∥∥∥∑
i∈G

∆t
i

∥∥∥∥∥
2

Next we bound

E

〈
∇f
(
xt
)
,
∑
i∈G

∆t
i + γlKG∇f(xt)

〉
= E

〈
∇f
(
xt
)
, γlKG∇f(xt)−

∑
i∈G

K−1∑
k=0

γlg
t
i,k

〉

≤ γlKG

2
∥∇f(xt)∥2 + 1

2γlKG

∥∥∥∥∥γl∑
i∈G

K−1∑
k=0

(
∇f(xt)−∇f(xt

i,k)
)∥∥∥∥∥

2

≤ γlKG

2
∥∇f(xt)∥2 + L2γl

2

∑
i∈G

K−1∑
k=0

∥xt − xt
i,k∥2,

where we used unbiasedness given by Assumption 1, and
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∥∥∥∥∥∑
i∈G

∆t
i

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈G

K−1∑
k=0

γlg
t
i,k

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∑
i∈G

K−1∑
k=0

γlg
t
i,k − γlKG∇f(xt)

∥∥∥∥∥
2

+ 2
∥∥γlKG∇f(xt)

∥∥2
≤ 2

∥∥∥∥∥γl∑
i∈G

K−1∑
k=0

(
gti,k −∇f(xt

i,k)
)
+
(
∇f(xt

i,k)−∇f(xt)
)∥∥∥∥∥

2

+ 2
∥∥γlKG∇f(xt)

∥∥2
≤ 4γ2

l KG
∑
i∈G

K−1∑
k=0

∥∥gti,k −∇f(xt
i,k)
∥∥2 + 4γ2

l KG
∑
i∈G

K−1∑
k=0

∥∥∇f(xt
i,k)−∇f(xt)

∥∥2
+2
∥∥γlKG∇f(xt)

∥∥2
≤ 4γ2

l KG
∑
i∈G

K−1∑
k=0

∥∥gti,k −∇f(xt
i,k)
∥∥2 + 4γ2

l KG
∑
i∈G

K−1∑
k=0

∥∥∇f(xt
i,k)−∇f(xt)

∥∥2
+2
∥∥γlKG∇f(xt)

∥∥2
≤ 4γ2

l KG
∑
i∈G

K−1∑
k=0

∥∥gti,k −∇f(xt
i,k)
∥∥2 + 4γ2

l KGL2
∑
i∈G

K−1∑
k=0

∥∥xt
i,k − xt

∥∥2
+2
∥∥γlKG∇f(xt)

∥∥2.
Taking an expectation we obtain

E

∥∥∥∥∥∑
i∈G

∆t
i

∥∥∥∥∥
2

≤ 4γ2
l KGσ2

G + 4γ2
l KGL2

∑
i∈G

K−1∑
k=0

E
∥∥xt

i,k − xt
∥∥2 + 2

∥∥γlKG∇f(xt)
∥∥2.

The inequalities above imply

Ef
(
xt+1

)
≤ Ef

(
xt
)
− γγlKE∥∇f(xt)∥2 + γlγK

2
E∥∇f(xt)∥2 + γlγL

2

2G

∑
i∈G

K−1∑
k=0

E∥xt − xt
i,k∥2

+
2γ2

l γ
2KLσ2

G

G
+

2γ2
l KL3

G

∑
i∈G

K−1∑
k=0

E
∥∥xt

i,k − xt
∥∥2 + Lγ2

l γ
2K2E

∥∥∇f(xt)
∥∥2 + δ

Lemma 2
≤ Ef

(
xt
)
− γlγK

2
E∥∇f(xt)∥2 + γlγL

2

2
K
(
5Kγ2

l σ
2
G + 20K2γ2

l E∥∇f(xt)∥2
)

+
2γ2

l γ
2KLσ2

G

G
+ 2γ2

l K
2L3
(
5Kγ2

l σ
2
G + 20K2γ2

l E∥∇f(xt)∥2
)

+Lγ2
l γ

2K2
∥∥∇f(xt)

∥∥2 + δ

= Ef
(
xt
)
+

γlK

2

{
γL220K2γ2

l + 80γ3
l K

3L3 + 2Lγ2γlK − γ
}
E∥∇f(xt)∥2

+
5K2γ3

l σ
2
GγL2

2
+

2γ2
l γ

2KLσ2
G

G
+ 10γ4

l K
3L3σ2

G + δ
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Setting γl ≤ 1
12LK , γ = 2 we obtain

Ef
(
xt+1

)
≤ Ef

(
xt
)
− γlK

4
E∥∇f(xt)∥2 + 10γ4

l K
3L3σ2

G + 5γ3
l K

2L2σ2
G +

8γ2
l KLσ2

G

G
+ δ

≤ Ef
(
xt
)
− γlK

4
E∥∇f(xt)∥2 + 10

12
γ3
l K

2L2σ2
G + 5γ3

l K
2L2σ2

G +
8γ2

l KLσ2
G

G
+ δ

≤ Ef
(
xt
)
− γlK

4
E∥∇f(xt)∥2 + 6γ3

l K
2L2σ2

G +
8γ2

l KLσ2
G

G
+ δ

The above is equivalent to

γlK

4
E∥∇f(xt)∥2 ≤ Ef

(
xt
)
− Ef

(
xt+1

)
+ 6γ3

l K
2L2σ2

G +
8γ2

l KLσ2
G

G
+ δ,

which concludes the first part of the proof.

Next, summing the inequality for t ∈ {0, 1, . . . , T − 1} leads to

1

T

T−1∑
t=0

E
∥∥∇f

(
xt
)∥∥2

≤
4
(
f
(
x0
)
− Ef

(
xT
))

γlKT
+ 24γ2

l KL2σ2
G +

32γlLσ
2
G

G
+

4δ

γlK
.

Combining (16) with (PL) gives

µγlK

2
E[f(xt)− f∗] ≤ γlK

4
E
[
∥∇f(xt)∥2

]
≤ E[f(xt)]− E[f(xt+1)] + 6γ3

l K
2L2σ2

G +
8γ2

l KLσ2
G

G
+ δ,

or equivalently

E[f(xt+1)− f∗] ≤
(
1− µγlK

2

)
E[f(xt)− f∗] + 6γ3

l K
2L2σ2

G +
8γ2

l KLσ2
G

G
+ δ.

The above unrolls as

E[f
(
xT
)
− f∗]

≤
(
1− µγlK

2

)T (
f
(
x0
)
− f∗)

+

(
+6γ3

l K
2L2σ2

G +
8γ2

l KLσ2
G

G
+ δ

) T−1∑
t=0

(
1− µγlK

2

)t

≤
(
1− µγlK

2

)T (
f
(
x0
)
− f∗)

+

(
+6γ3

l K
2L2σ2

G +
8γ2

l KLσ2
G

G
+ δ

) ∞∑
t=0

(
1− µγlK

2

)t

≤
(
1− µγlK

2

)T (
f
(
x0
)
− f∗)+ 12γ2

l KL2σ2
G

µ
+

16γlLσ
2
G

µG
+

2δ

µγlK

which is the result of the theorem (15).
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C PROOF OF THEOREM 2

Theorem 5. Let Assumptions 1 and 2 hold with G = |G| > 0, F = |F| > 0, ν ≤ G
F . Then after T

iterations of MeritFed with γ ≤ 1
8L outputs xt, t = 0, · · · , T − 1 such that

1

T

T−1∑
t=0

E
∥∥∇f

(
xt
)∥∥2 ≤

4
(
f
(
x0
)
− Ef

(
xT
))

γT
+

8γLGσ2
G

(G + F)2
+

8γLFσ2
F

(G + F)2
+

2ρ2F

G + F
+

4δ

γ
, (18)

where δ is the accuracy of solving the problem in Line 7. Moreover if Assumption 3 additionally
holds, then after T iterations of MeritFed with γ ≤ 1

8L outputs xT such that

Ef
(
xT
)
− f∗ ≤ (1− γµ)

T (
f
(
x0
)
− f∗)+ 4γLGσ2

G
µ(G + F)2

+
4γLFσ2

F
µ(G + F)2

+
ρ2

µ

F

G + F
+

2δ

γµ
. (19)

Proof. We write gti or simply gi instead of gi(xt, ξti) when there is no ambiguity. Then, the update
rule of MeritFed can be written as

xt+1 = xt − γ

n−1∑
i=0

wt+1
i gi(x

t),

where wt+1 is an approximate solution of

min
w∆n

1

f

(
xt − γ

n−1∑
i=0

wigi(x
t)

)
that satisfies

E
[
f
(
xt+1

)
|xt, ξt

]
−min

w
f

(
xt − γ

n−1∑
i=0

wigi(x
t)

)
≤ δ.

By definition of the minimum, we have

min
w∈∆n

1

f

(
xt − γ

n−1∑
i=0

wigi(x
t)

)
≤ f

(
xt − γ

G + F

∑
i∈G∪F

gi(x
t)

)
(Lip)
≤ f

(
xt
)
− γ

G + F

〈
∇f
(
xt
)
,
∑

i∈G∪F
gi(x

t)

〉
+

Lγ2

2

∥∥∥∥∥ 1

G + F

∑
i∈G∪F

gi(x
t)

∥∥∥∥∥
2

≤ f
(
xt
)
+

2γ2LG2

(G + F)2
∥∥∇f

(
xt
)∥∥2 + 2γ2L

(G + F)2

∥∥∥∥∥∑
i∈F

∇fi
(
xt
)∥∥∥∥∥

2

− γ

G + F

〈
∇f
(
xt
)
,
∑
i∈G

gi(x
t)

〉
+

2γ2L

(G + F)2

∥∥∥∥∥∑
i∈G

∇f
(
xt
)
− gi(x

t)

∥∥∥∥∥
2

− γ

G + F

〈
∇f
(
xt
)
,
∑
i∈F

gi(x
t)

〉
+

2γ2L

(G + F)2

∥∥∥∥∥∑
i∈F

∇fi
(
xt
)
− gi(x

t)

∥∥∥∥∥
2

.

The last two inequalities imply
E
[
f
(
xt+1

)
|xt, ξt

]
≤ f

(
xt
)
+

2γ2LG2

(G + F)2
∥∥∇f

(
xt
)∥∥2 + 2γ2L

(G + F)2

∥∥∥∥∥∑
i∈F

∇fi
(
xt
)∥∥∥∥∥

2

+ δ.

− γ

G + F

〈
∇f
(
xt
)
,
∑
i∈G

gi(x
t)

〉
+

2γ2L

(G + F)2

∥∥∥∥∥∑
i∈G

∇f
(
xt
)
− gi(x

t)

∥∥∥∥∥
2

− γ

G + F

〈
∇f
(
xt
)
,
∑
i∈F

gi(x
t)

〉
+

2γ2L

(G + F)2

∥∥∥∥∥∑
i∈F

∇fi
(
xt
)
− gi(x

t)

∥∥∥∥∥
2
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Taking an expectation conditioned on xt we get

E[f(xt+1)|xt]

≤ f(xt)− γ

2

(
1− 4γLG2

(G + F)2

)
∥∇f(xt)∥2 + γ(F −G)

2(G + F)
∥∇f(xt)∥2 +

2γ2LGσ2
G

(G + F)2

− γ

G + F

〈
∇f
(
xt
)
,
∑
i∈F

∇fi(x
t)

〉
+

2γ2L

(G + F)2

∥∥∥∥∥∑
i∈F

∇fi
(
xt
)∥∥∥∥∥

2

+
2γ2LFσ2

F
(G + F)2

+ δ

γ≤ (G+F)2

8LG2

≤ f(xt)− γ

4
∥∇f(xt)∥2 +

2γ2LGσ2
G

(G + F)2
+

2γ2LFσ2
F

(G + F)2
+ δ

− γ

G + F

〈
∇f
(
xt
)
,
∑
i∈F

∇fi(x
t)

〉
+

2γ2L

(G + F)2

∥∥∥∥∥∑
i∈F

∇fi
(
xt
)∥∥∥∥∥

2

(20)

+
γ(F −G)

2(G + F)
∥∇f(xt)∥2

= f(xt)− γ

4
∥∇f(xt)∥2 +

2γ2LGσ2
G

(G + F)2
+

2γ2LFσ2
F

(G + F)2
+ δ

+
1

2

γF

G + F

∥∥∥∥∥ 1F ∑
i∈F

∇fi(x
t)−∇f

(
xt
)∥∥∥∥∥

2

− 1

2

γG

G + F

∥∥∇f
(
xt
)∥∥2

−1

2

γF

G + F

∥∥∥∥∥ 1F ∑
i∈F

∇fi(x
t)

∥∥∥∥∥
2

+
2γ2L

(G + F)2

∥∥∥∥∥∑
i∈F

∇fi
(
xt
)∥∥∥∥∥

2

(11)
≤ f(xt)− γ

4
∥∇f(xt)∥2 +

2γ2LGσ2
G

(G + F)2
+

2γ2LFσ2
F

(G + F)2
+ δ +

ρ2

2

γF

G + F

+
ν

2

γF

G + F

∥∥∇f
(
xt
)∥∥2 − 1

2

γG

G + F

∥∥∇f
(
xt
)∥∥2

−1

2

γF

G + F

(
1− 2γLF

G + F

)∥∥∥∥∥ 1F ∑
i∈F

∇fi(x
t)

∥∥∥∥∥
2

(21)

Next, since ν ≤ G
F and γ ≤ 1

8L ≤ (G+F)
4LF , we can take the full expectation from (21) and get

γ

4
E
∥∥∇f

(
xt
)∥∥2 ≤ Ef

(
xt
)
− Ef

(
xt+1

)
+

2γ2LGσ2
G

(G + F)2
+

2γ2LFσ2
F

(G + F)2
+

ρ2

2

γF

G + F
+ δ,

Summing up the above inequality for t ∈ {0, 1, . . . , T − 1}, we derive

1

T

T−1∑
t=0

E
∥∥∇f

(
xt
)∥∥2 ≤

4
(
f
(
x0
)
− Ef

(
xT
))

γT
+

8γLGσ2
G

(G + F)2
+

8γLFσ2
F

(G + F)2
+

2ρ2F

G + F
+

4δ

γ
,

which gives the first part of the result.

Next, if Assumption 3 holds, we combine (22) with (PL):

E[f(xt+1)− f∗] ≤ (1− γµ)E[f(xt)− f∗] +
4γ2LGσ2

G
(G + F)2

+
4γ2LFσ2

F
(G + F)2

+
γρ2F

G + F
+ 2δ.

Unrolling the above recurrence, we obtain

Ef
(
xT
)
− f∗ ≤ (1− γµ)

T (
f
(
x0
)
− f∗)+ 4γLGσ2

G
µ(G + F)2

+
4γLFσ2

F
µ(G + F)2

+
ρ2

µ

F

G + F
+

2δ

γµ
.
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Theorem 6. Let Assumptions 1 and 2 hold with G = |G|, F = |F|, ν ≤ G
F . Then after T iterations

of MeritFed with γ ≤ 1
8L outputs xt, t = 0, · · · , T − 1 such that

1

T

T−1∑
t=0

E
∥∥∇f

(
xt
)∥∥2 ≤

4
(
f
(
x0
)
− f(x∗)

)
Tγ

+ min

{
2σ2γL

G
+

2δ

γ
,

8γLGσ2
G

(G + F)2
+

8γLFσ2
F

(G + F)2
+

2ρ2F

G + F
+

4δ

γ

}
, (22)

where δ is the accuracy of solving the problem in Line 7. Moreover if Assumption 3 additionally
holds, then after T iterations of MeritFed with γ ≤ 1

8L outputs xT such that

Ef
(
xT
)
− f∗ ≤ (1− γµ)

T (
f
(
x0
)
− f∗)+ (23)

min

{
σ2γL

µG
+

δ

γµ
,

4γLGσ2
G

µ(G + F)2
+

4γLFσ2
F

µ(G + F)2
+

ρ2

µ

F

G + F
+

2δ

γµ

}
, (24)

Proof. The results is a direct corollary of Theorems 3 and 5.
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D ADDITIONAL EXPERIMENTS

Our code is available at https://anonymous.4open.science/r/86315.

D.1 HARDWARE

We use a cluster with the following hardware: AMD EPYC 7552 48-Core CPU, 512GiB RAM,
NVIDIA A100 80GB GPU, 200Gb storage space.

D.2 EXPERIMENTAL SETUP FOR MEAN ESTIMATION PROBLEM

We consider 150 clients with data distributed as follows: the first 5 workers have data from D1 (the
first group of clients), the next 95 workers have data from D2 (the second group of clients), and the
remaining 50 clients have data from D3 (the third group of clients). Each client has 1000 samples
from the corresponding distribution, and the target client has additional 1000 samples for validation,
i.e., for solving the problem in Line 7. The dimension of the problem is d = 10. Parameters that
are the same for all experiments: number of peers = 150, number of samples = 1000, batch size
= 100, learning rate = 0.01, number of steps for Mirror Descent = 50. For FedAvg, the number of
sampled clients K is chosen from the set {5, 10}.

D.3 RESULTS WITHOUT ADDITIONAL VALIDATION DATASET

For MeritFed each worker calculates stochastic gradient using a batch size of 40; then the server
performs 10 steps of Mirror Descent (or its stochastic version) with a batch-size of 30 (in case of
stochastic version) and a learning rate of 0.1 to update weights of aggregation, and then performs
a model parameters update with a learning rate of 0.01. The plots are averaged over 3 runs with
different seeds. Additionally, accuracy plots show standard deviation.

In this section, we provide experiments without an additional dataset. Instead, we use the target client’s
train dataset to approximately solve the problem in Line 7. The results are provided in Figures 8-11
(image classification) and Figures 12-15 (text classification). They show that MeritFed’s behavior
with and without additional validation data is almost the same. Thus, these preliminary results
give evidence that our method can be efficient in practice even when an extra validation dataset is
unavailable.
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Figure 8: CIFAR10:
α = 0.5
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Figure 9: CIFAR10:
α = 0.7
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Figure 10: CIFAR10:
α = 0.9
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Figure 11: CIFAR10:
α = 0.99
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Figure 12: GoEmotions:
α = 0.5
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Figure 13: GoEmotions:
α = 0.7
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Figure 14: GoEmotions:
α = 0.9
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Figure 15: GoEmotions:
α = 0.99

D.4 MISSING DETAILS FOR MEDMNIST EXPERIMENTS

Complete dataset-worker mapping is OrganSMNIST, OrganAMNIST, OrganCMNIST, PathMNIST,
DermaMNIST, OCTMNIST, PneumoniaMNIST, RetinaMNIST, BreastMNIST, BloodMNIST, Tis-
sueMNIST. OrganSMNIST worker is the target one.

We employ the same hyperparameters as specified in (Yang et al., 2021), including an input resolution
of 28x28, ResNet-18 architecture, entropy loss, a batch size of 128, and the Adam optimizer with an
initial learning rate of 0.001. This setup is run for 100 epochs, with the learning rate decreased by a
factor of 0.1 after 50 and 75 epochs. Additionally, we expand the number of channels for grayscale
images, as originally done by the authors.
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Figure 17: Evolution of Relevant Weights

OrganSMNIST worker is the target one. For the ADAM Ideal baseline, we use only the gradients
from the target client and ignore the others. Moreover, we employ the same hyperparameters as
specified in (Yang et al., 2021). See For ADAM baseline, we aggregate gradients uniformly from
the first three workers, then proceed with the Adam step. For MeritFed, we maintain the same
parameters but adjust the learning rate schedule to reduce after 40 and 75 epochs. The mirror
descent learning rate is set at 0.1, with five iterations. To enable a fair comparison, we incorporate
our adaptive aggregation technique into Adam optimizer, obtaining MeritFedA. It adaptively
aggregates gradients before performing the Adam update. The gradient with respect to the weights
is obtained by deriving the Adam update formula, where the gradient is replaced with its weighted
counterpart. This derived gradient is then used to update the weights of aggregation via Mirror Descent.
The experimental results, depicted in Figures 16 and 17 demonstrate the superior performance of
MeritFed and its capability to identify workers that are beneficial for training.

D.5 ROBUSTNESS AGAINST BYZANTINE ATTACKS

MeritFed is robust to Byzantine attacks since our proof of Theorem 1 does not make any assump-
tions on the vectors received from the workers having different data distribution than the target client.
This means that any worker i ̸∈ G can send arbitrary vectors at each iteration, and MeritFed will
still be able to converge. Moreover, MeritFed can tolerate Byzantine attacks even if Byzantine
workers form a majority, e.g., the method converges even if all clients are Byzantine except for the
target one.

To test the Byzantine robustness of our method on the mean estimation problem, we chose the total
number of peers equal to 55 with the 50 clients being malicious. Malicious clients know the target
distribution of the first 5 client and use it for performing IPM (with parameter εIPM = 0.1) (Xie et al.,
2019) and ALIE (with parameter zALIE = 100) (Baruch et al., 2019) attacks. We also consider the Bit
Flipping4 (BF) and the Random Noise5 (RN) attacks. The following choice of parameters is used:
each client has 1000 samples from the corresponding distribution. The dimension of the problem
is d = 10, learning rate = 0.01, number of steps for Mirror Descent = 10, learning rate for Mirror
Descent = 3.5.

The results are presented in Figures 18-21. As expected, SGD Full does not converge under the
considered attacks, and SGD Ideal shows the best results since, by design, it averages only with
non-Byzantine workers. FedAdp has poor performance under ALIE attack and is quite unstable
under RN attack. As in other experiments, TAWT is very biased towards the target client, which helps
TAWT to tolerate Byzantine attacks, but it does not take extra advantage of averaging with clients

4Byzantine workers compute stochastic gradients gki and send −gki to the server.
5Byzantine workers compute stochastic gradients gki and send gki + σξki to the server, where ξki ∼ N (0, I)

and σ = 1.
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having the same distribution. Finally, MeritFed consistently shows comparable results to SGD
Ideal.
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Figure 18: ALIE
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Figure 19: BF
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Figure 20: IPM
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Figure 21: RN

D.6 RESNET18+CIFAR10

Image classification: CIFAR10 + ResNet18. This part is devoted to image classification on the
CIFAR10 (Krizhevsky et al., 2009) dataset using ResNet18 (He et al., 2016) model and cross-entropy
loss. We consider 20 clients with data distributed as follows: the first worker has data from D1 (the
first group of clients), the next 10 workers have data from D2 (the second group of clients), and the
remaining 9 clients have data from D3 (the third group of clients). Specifically, the target client’s
objective is to classify the first three classes: 0, 1, and 2. This client possesses data with these three
labels. The following ten workers (second group) also have datasets where a proportion, denoted by
α ∈ (0, 1], consists of classes from the set 0, 1, 2, while the remaining 1− α portion includes classes
from the set 3, 4, 5. The remaining clients (third group) have data from the rest, e.g., 6, 7, 8, 9 labeled.
The data is randomly distributed among clients without overlaps, adhering to the aforementioned
label restrictions. For MeritFed each worker calculates stochastic gradient using a batch size of
75; then the server performs 10 steps of Mirror Descent (or its stochastic version) with a batch-size
of 90 (in case of stochastic version) and a learning rate of 0.1 to update weights of aggregation,
and then performs a model parameters update with a learning rate of 0.01. We normalize images
(similarly to (Horváth & Richtárik, 2020)). Since an additional validation dataset can be used by
MeritFed, we cut 300 samples of each target class (0, 1, 2) off from the test data. Accuracy and
loss are calculated on the rest of the test data, including labels 0, 1, and 2, modeling the case when
the target client aims to classify samples with these labels.

The results are provided in Figures 22-25, where we show how accuracy and cross-entropy loss
change for different methods and different values of α, which measures the similarity between data
distributions of the target client and the second group of clients, and the evolution of the aggregation
weights. In all settings, MeritFed outperforms SGD Ideal and other baselines regardless of α.
In all cases, the weights are almost the same for all workers during the few initial steps (even if
workers have quite different distributions like for the last nine clients). This phenomenon can be
explained as follows: if we have two different convex functions with different optima (e.g., two
quadratic functions), then for a far enough starting point, the gradients of those functions will point
roughly in the same direction. Therefore, during a few initial steps, both gradients are useful and the
method gives noticeable weights to both. However, once the method comes closer to the optima, the
gradients become noticeably different, and after a certain stage, the gradient of the second function
no longer points closely towards the optimum of the first function. Therefore, starting from this
stage, MeritFed assigns a smaller weight to the gradient of the second function. Going back
to Figures 22-25, we see a similar behavior: for α = 0.5, the advantages of collaboration with clients
2-11 disappear after a certain stage since the method reaches the region where two distributions
become noticeably different. In contrast, when α = 0.99, those workers have a very close distribution
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to the target worker, and therefore, their stochastic gradients remain useful during the whole learning
process. FedAdp is biased to the target client and assigns almost identical weights to either clients
with similar or dissimilar distributions, which results in an accuracy decrease at the end of the training,
in contrast to MeritFed, which tracks and maintains less weights to non-beneficial clients. TAWT
is much more biased to the target client, which makes it almost identical to SGD Ideal.
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Figure 22: CIFAR10
(extra val.): α = 0.5
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Figure 23: CIFAR10
(extra val.): α = 0.7
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Figure 24: CIFAR10
(extra val.): α = 0.9
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Figure 25: CIFAR10
(extra val.): α = 0.99.

D.7 RESNET18+CIFAR10: 40 WORKERS

In the mean estimation problem, we generate the data and can control the number of workers.
Therefore, for this problem we have many clients participating in the training.

However, for the other two tasks, datasets are fixed. Therefore, we limited the number of workers to
20 to have enough data on each client (given the splitting strategy) without repetition. That is, each
data sample (image or tokens) from the original datasets belongs to no more than 1 client. Therefore,
to run experiments with more workers we either need to have more data or allow repetitions in data
on the clients.

In the additional experiments, we have 40 clients where the new 20 clients are just copies of the first
20 clients. The experimental setup follows the same data partitioning idea as presented in the paper
and deals with four values of heterogeneity values across clients α. For MeritFed each worker
calculates stochastic gradient using a batch size of 75; then the server uses Mirror Descent (or its
stochastic version) with a batch-size of 90 (in case of stochastic version) and a learning rate of 0.1 to
update weights of aggregation, and then performs a model parameters update with a learning rate of
0.01.

The results presented on Figures 26-29. Overall, the conclusions are consistent with what we have in
the experiment with 20 workers, further supporting the scalability of MeritFed.
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Figure 26: CIFAR10:
α = 0.5

0 100 200 300 400
Iterations

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

= 0.7

TAWT
SGD Ideal
SGD Full
MeritFed SMD
FedAdp

0 100 200 300 400
Iterations

100

101

Cr
os

sE
nt

ro
py
Lo

ss

= 0.7

TAWT
SGD Ideal
SGD Full
MeritFed SMD
FedAdp

0 400
Iterations

w1
w5
w10
w14
w18
w23
w27
w31
w36
w40

TAWT

0 400
Iterations

w1
w5
w10
w14
w18
w23
w27
w31
w36
w40

FedAdp

0 400
Iterations

w1
w5
w10
w14
w18
w23
w27
w31
w36
w40

MeritFed SMD

0.0

0.2

0.4

0.6

0.8
1.0

= 0.7

Figure 27: CIFAR10:
α = 0.7
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Figure 28: CIFAR10:
α = 0.9
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Figure 29: CIFAR10:
α = 0.99.
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