

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SELECTIVE COLLABORATION FOR ROBUST FEDERATED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Federated Learning (FL) revolutionizes machine learning by enabling model training across decentralized data sources without aggregating sensitive client data. However, the inherent heterogeneity of client data presents unique challenges, as not all client contributions positively impact model performance. In this work, we propose a novel algorithm, Merit-Based Federated Averaging (MeritFed), which dynamically assigns aggregation weights to clients based on their data distribution's relevance to a target objective. By leveraging stochastic gradients and solving an auxiliary optimization problem, our method adaptively identifies beneficial collaborators, ensuring efficient and robust learning. We establish theoretical convergence guarantees under mild assumptions and demonstrate that MeritFed achieves superior convergence by harnessing the advantages of diverse yet complementary datasets. Empirical evaluations highlight its ability to mitigate the adverse effects of outlier and adversarial clients, paving the way for more effective and resilient FL in heterogeneous environments.

1 INTRODUCTION

Federated Learning (FL) introduces an innovative paradigm redefining traditional machine learning workflow. Instead of centrally pooling sensitive client data, FL allows for model training on decentralized data sources stored directly on client devices (Konečný et al., 2016; Zhang et al., 2021). In this approach, rather than training Machine Learning (ML) models in a centralized manner, a shared model is distributed to all clients. Each client then performs local training, and model updates are exchanged between clients and the FL orchestrator (often referred to as the master server) (McMahan et al., 2017; Shokri & Shmatikov, 2015).

Personalized Federated Learning (PFL). The concept of PFL (Collins et al., 2021; Hanzely et al., 2020; Sadiev et al., 2022; Almansoori et al., 2024; Borodich et al., 2021; Sadiev et al., 2022) has been gaining traction. In this framework, each client, often referred to as an agent, takes part in developing their own personalized model variant. This tailored training approach leverages local data distributions, aiming to design models that cater to the distinct attributes of each client's dataset (Fallah et al., 2020). In contrast, standard Parallel SGD (Zinkevich et al., 2010) often leads to models that generalize across all clients rather than personalize to the specific data distributions and unique characteristics of individual clients, potentially resulting in suboptimal performance on personalized tasks. However, a prominent challenge arises in this decentralized training landscape due to the data's non-IID (independent and identically distributed) nature across various clients. Data distributions that differ considerably can have a pronounced impact on the convergence and generalization capabilities of the trained models. While certain client-specific data distributions might strengthen model performance, others could prove detrimental, introducing biases or potential adversarial patterns. Additionally, within the personalized federated learning paradigm, the emphasis on crafting individualized models could inadvertently heighten these data disparities (Kairouz et al., 2021). Consequently, this may lead to models that deliver subpar or (potentially) incorrect results when applied to wider or diverse datasets (Kulkarni et al., 2020).

Collaboration as a service. In this paper, we introduce a modified protocol for FL that deviates from a strictly personalized approach. Rather than focusing solely on refining individualized models, our approach seeks to harness the advantages of distinct data distributions, curb the detrimental effects of outlier clients, and promote collaborative learning. Through this innovative training mechanism,

054 our algorithm discerns which clients are optimal collaborators to ensure faster convergence and
 055 potentially better generalization.
 056

057 **1.1 SETUP**
 058

059 We assume that there are n clients participating in the training and consider the first one as a target
 060 client. The goal is to train the model for this client, i.e., we consider

$$\min_{x \in \mathbb{R}^d} \{f(x) \equiv f_1(x) := \mathbb{E}_{\xi_1 \sim \mathcal{D}_1}[f_{\xi_1}(x)]\}, \quad (1)$$

063 where $f_{\xi_1} : \mathbb{R}^d \rightarrow \mathbb{R}$ is the loss function on sample ξ_1 and $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is an expected loss.
 064 Other clients can also have data sampled from similar distributions, but we also allow adversarial
 065 participants, e.g., Byzantines (Lamport et al., 1982; Lyu et al., 2020). That is, some clients can be
 066 beneficial for the training in certain stages, but they are not assumed to be known apriori.

067 The considered target client scenario naturally arises in *cross-silo* FL on medical image data. In such
 068 applications, different hospitals naturally have different data distributions (e.g., due to the differences
 069 in the equipment). Therefore, the data coming from one clinic can be useless to another clinic. At the
 070 same time, several clinics can have similar data distributions.

071 While our setup focuses on optimizing models for a single target client, an alternative direction
 072 involves using a small IID validation set at the server to guide the aggregation of updates from locally
 073 Non-IID clients. This can help produce a model that performs well across clients, as if the data were
 074 IID. This formulation may be more broadly applicable in practice when personalization is not the goal
 075 and such a validation set is available. Our framework can naturally extend to this setting by changing
 076 the objective function. In contrast, our setup is more privacy-aware: clients share neither their raw
 077 data with the server or other clients nor pure stochastic gradients, making our method particularly
 078 suited for sensitive applications.

079 **1.2 CONTRIBUTION**
 080

081 Our main contributions are listed below.
 082

- 083 • **New method: MeritFed.** We proposed a new method called Merit-based Federated Averaging
 084 for Diverse Datasets (MeritFed) that aims to solve (1). The key idea is to use the stochastic
 085 gradients received from the clients to adjust the weights of averaging through the inexact solving of
 086 the auxiliary problem of minimizing a validation loss as a function of aggregation weights.
- 087 • **Provable convergence under mild assumptions.** We prove that MeritFed converges not worse
 088 than SGD that averages only the stochastic gradients (or pseudo-gradients for multiple local steps)
 089 received from clients having the same data distribution (these clients are not known apriori) for
 090 smooth non-convex and Polyak-Lojasiewicz functions under standard bounded variance assumption
 091 (Theorem 1). We also prove that MeritFed has even better theoretical convergence when there
 092 exists a group of clients with “close enough” data distribution (Theorem 2).
- 093 • **Utilizing all possible benefits.** We numerically show that MeritFed benefits from collaboration
 094 with clients having different yet close to the target one data distributions. That is, MeritFed
 095 automatically detects beneficial clients at any stage of training. Moreover, we illustrate the
 096 Byzantine robustness of the proposed method even when Byzantine workers form a majority.

097 **1.3 RELATED WORK**

098 **Federated optimization.** Standard results in distributed/federated optimization focus on the problem:
 099

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x), \quad (2)$$

100 where $f_i(x)$ represents either expected or empirical loss on the client i . This problem significantly
 101 differs from (1), since one cannot completely ignore the updates from some clients to achieve a better
 102 solution. Typically, in this case, communication is the main bottleneck of the methods for solving
 103 such problems. To address this issue one can use communication compression (Alistarh et al., 2017;
 104 Stich et al., 2018; Mishchenko et al., 2019), local steps (Stich, 2018; Khaled et al., 2020; Kairouz
 105 et al., 2021; Wang et al., 2021; Mishchenko et al., 2022; Sadiev et al., 2022; Beznosikov et al., 2024),
 106 client importance sampling (Cho et al., 2020; Nguyen et al., 2020; Ribero & Vikalo, 2020; Lai et al.,
 107 2021; Luo et al., 2022; Chen et al., 2022d), or decentralized protocols (Lian et al., 2017; Song et al.,

108 2022), or FL of graph neural network on graph data (Tan et al., 2023). However, these techniques
 109 are orthogonal to what we focus on in our paper, though incorporating them into our algorithm is a
 110 prominent direction for future research.

111 **Clustered FL.** Another way of utilizing benefits from the other clients is the clustering of clients
 112 based on some information about their data or personalized models. (Tang et al., 2021) propose a
 113 personalized formulation with ℓ_2 -regularization that attracts a personalized model of a worker to
 114 the center of the cluster that this worker belongs to. A similar objective is studied by (Ma et al.,
 115 2022). (Ghosh et al., 2020) develop an algorithm that updates clusters's centers using the gradients
 116 of those clients that have the smallest loss functions at the considered cluster's center. It is worth
 117 mentioning that, in contrast to our work, the mentioned works modify the personalized objective
 118 to illustrate some benefits of collaboration while we focus on the pure personalized problem of the
 119 target client. Under the assumption that the data distributions of each client are mixtures of some
 120 finite set of underlying distributions, (Marfoq et al., 2021) derive the convergence result for the
 121 Federated Expectation-Maximization algorithm. This is the closest work to our setup in the Clustered
 122 FL literature. However, in contrast to (Marfoq et al., 2021), we do not assume that the gradients
 123 are bounded and that the local loss functions have bounded gradient dissimilarity. Another close
 124 work to ours is (Fraboni et al., 2021), where the authors consider so-called clustered-based sampling.
 125 However, (Fraboni et al., 2021) also make a non-standard assumption on the bounded dissimilarity of
 126 the local loss functions, while one of the key properties of our approach is its robustness to arbitrary
 127 clients' heterogeneity. (Li et al., 2020) is also a relevant paper in the sense that not all workers are
 128 selected for aggregation at each communication round (due to the client sampling). However, this
 129 work focuses on weighted empirical risk minimization (with weights proportional to the dataset size),
 130 i.e., (Li et al., 2020) consider a different problem. Ma et al. (2023) addresses the "clustering collapse"
 131 issue with clustering rules based on the min-loss criterion and k-means style criterion. (Bao et al.,
 132 2023) focus on optimizing collaboration in federated learning by grouping workers into clusters
 133 based on data similarity. Their method requires minimizing a score function for each pair of clients
 134 to measure the distance between their data. This clustering process involves computational efforts
 135 during the preprocessing stage, and the training within each cluster uses static aggregation weights.

136 **Non-uniform averaging.** There are works studying the convergence of distributed SGD-type methods
 137 that use non-uniform, fixed weights of averaging. (Ding & Wang, 2022) propose a method to detect
 138 collaboration partners and adaptively learn "several" models for numerous heterogeneous clients.
 139 Directed graph edge weights are used to calculate group partitioning. Since the calculation of optimal
 140 weights in their approach is based on similarity measures between clients' data, it is unclear how to
 141 compute them in practice without sacrificing the privacy. (Even et al., 2022) develop and analyze
 142 another approach for personalized aggregation, where each client filters gradients and aggregates them
 143 using fixed weights. The optimal weights also require estimating the distance between distributions
 144 (or communicating empirical means among all clients and estimating effective dimensions). Both
 145 works do not consider weights evolving in time, which is one of the key features of our method.

146 Non-fixed weights are considered in (Wu & Wang, 2021), but the authors focus on non-personalized
 147 problem formulation. In particular, (Wu & Wang, 2021) propose the method called FedAdp that
 148 uses cosine similarity between gradients and the Gompertz function for updating aggregation weights.
 149 Under the strong bounded local gradient dissimilarity assumption¹, (Wu & Wang, 2021) derive a
 150 non-conventional upper bound (for the loss function at the last iterate of their algorithm) that does
 151 not necessarily imply convergence of the method. (Zhang et al., 2020) introduce FedFomo that
 152 uses additional data to adjust the weights of aggregation in Federated Averaging. In this context,
 153 FedFomo is close to MeritFed. However, the weights selection formulas significantly differ from
 154 ours. In particular, (Zhang et al., 2020) do not relate the proposed weights with the minimization
 155 problem from Line 9 of our method. In addition, there is no theoretical convergence analysis of
 156 FedFomo.

157 **Bi-level optimization.** Taking into account that we want to solve problem (1) using the information
 158 coming from not only the target client, it is natural to consider the following bi-level optimization

160 ¹(Wu & Wang, 2021) assume that there exist constants $A, B > 0$ such that $A\|\nabla f(x)\| \leq \|\nabla f_i(x)\| \leq$
 161 $B\|\nabla f(x)\|$ for every client $i \in [n]$ and any x , where $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$.

162 (BLO) problem formulation:

$$\min_{w \in \Delta_1^n} f(x^*(w)), \quad (3)$$

$$\text{s.t.} \quad x^*(w) \in \arg \min_{x \in \mathbb{R}^d} \sum_{i=1}^n w_i f_i(x), \quad (4)$$

163 where Δ_1^n is a unit simplex in \mathbb{R}^n : $\Delta_1^n = \{w \in \mathbb{R}^n \mid \sum_{i=1}^n w_i = 1, w_i \geq 0 \forall i \in [n]\}$. The problem
 164 in (3) is usually called the upper-level problem (UL), while the problem in (4) is the lower-level (LL)
 165 one. Since in our case $f(x) \equiv f_1(x)$, (3)-(4) is equivalent to (1). In the general case, this equivalence
 166 does not always hold and, in addition, function f is allowed to depend on w not only through x^* . All
 167 these factors make the general BLO problem hard to solve. The literature for this general class of
 168 problems is quite rich, and we cover only closely related works.

169 The closest works to ours are (Chen et al., 2021a), which propose so-called Target-Aware Weighted
 170 Training (TAWT), and its extension to the federated setup (Huang et al., 2022). Their analysis relies on
 171 the existence of weights w , such that $\text{dist}(\sum_{i=1}^n w_i \mathcal{D}_i, \mathcal{D}_{\text{target}}) = 0$ in terms so-called representation-
 172 based distance (Chen et al., 2021a), which is also zero in our case, or existence of identical neighbors.
 173 However, the analysis is based on BLO’s techniques and requires a hypergradient estimation, i.e.,
 174 $\nabla_w f(x^*(w), w)$, which is usually hard to compute. To avoid the hypergradient calculation, (Chen
 175 et al., 2021a) also propose a heuristic based on the usage of cosine similarity between the clients’
 176 gradients, which makes the implementation of the algorithm similar to FedAdp (Wu & Wang, 2021).

177 In fact, there are two major difficulties in estimating hypergradient. The first one is that the optimal
 178 solution $x^*(w)$ of the lower problem for every given w needs to be estimated. The known approaches
 179 iteratively update the lower variable x multiple times before updating w , which causes high communica-
 180 tion costs in a distributed setup. A lot of methods (Ghadimi & Wang, 2018; Hong et al., 2020;
 181 Chen et al., 2021b; Ji et al., 2021; 2022) are proposed to effectively estimate $x^*(w)$ before updating
 182 w , but anyway the less precise estimate slows down the convergence. The second obstacle is that hy-
 183 pergradient calculation requires second-order derivatives of $f_i(w, x)$. Many existing methods (Chen
 184 et al., 2022c; Dagréou et al., 2022) use an explicit second-order derivation of $f_i(w, x)$ with a major
 185 focus on efficiently estimating its Jacobian and inverse Hessian, which is computationally expensive
 186 itself, but also dramatically increases the communication cost in a distributed setup. A number
 187 of methods (Chen et al., 2022c; Li et al., 2022; Dagréou et al., 2022) avoid directly estimating its
 188 second-order computation and only use the first-order information of both upper and lower objectives,
 189 but they still have high communication costs and do not exploit our assumptions. For a more detailed
 190 review of BLO, we refer to (Zhang et al., 2023; Liu et al., 2021; Chen et al., 2022a).

191 2 MERITFED: MERIT-BASED FEDERATED LEARNING FOR DIVERSE 192 DATASETS

193 Recall that the primary objective the target client seeks to solve is given by (1) where n workers are
 194 connected with a parameter-server. Standard Parallel SGD

$$201 x^{t+1} = x^t - \frac{\gamma}{n} \sum_{i=1}^n g_i(x^t, \xi_i), \quad (5)$$

202 where $g_i(x^t, \xi_i)$ denotes a stochastic gradient (unbiased estimate of $\nabla f_i(x^t)$) received from client i ,
 203 cannot solve problem (1) in general, since workers $\{2, \dots, n\}$ do not necessarily have the same data
 204 distribution as the target client. This issue can be solved if we modify the method as follows:

$$206 x^{t+1} = x^t - \frac{\gamma}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} g_i(x^t, \xi_i), \quad (6)$$

207 where \mathcal{G} denotes the set of workers that have the same data distribution as the target worker. However,
 208 the group \mathcal{G} is not known in advance. This aspect makes the method from (6) impractical. Moreover,
 209 this method ignores potentially useful vectors received from the workers having different yet similar
 210 data distributions.

212 2.1 THE PROPOSED METHOD

214 We develop Merit-based Federated Learning for Diverse Datasets (MeritFed; see Algorithm 1)
 215 aimed at solving (1) and safely gathering all potential benefits from collaboration with other clients.
 As in Parallel SGD all clients are required to send stochastic gradients to the server. However, in

216 **Algorithm 1** MeritFed: Merit-based Federated Learning for Diverse Datasets
217
218 1: **Input:** Starting point $x^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$
219 2: **for** $t = 0, \dots$ **do**
220 3: server sends $x_{i,0}^t = x^t$ to each worker
221 4: **for** each worker $i = 1, \dots, n$ **in parallel do** If $K = 1$
222 5: **for** $k = 0, \dots, K - 1$ **do**
223 6: compute stoch. gradient $g_{i,k}(x_{i,k}^t, \xi_{i,k})$ from local data
224 7: $x_{i,k+1}^t = x_{i,k}^t - \gamma_l g_{i,k}^t$ $\gamma_l = 1$
225 8: **send** $\Delta_i^t = x_{i,K}^t - x^t$ to the server $\Delta_i^t = -g_i(x^t, \xi_i)$
226 9: $w^{t+1} \approx \arg \min_{w \in \Delta_1^n} f \left(x^t + \gamma \sum_{i=1}^n w_i \Delta_i^t \right)$ $w^{t+1} \approx \arg \min_{w \in \Delta_1^n} f \left(x^t - \gamma \sum_{i=1}^n w_i g_i(x^t, \xi_i) \right)$
227 10: $x^{t+1} = x^t + \gamma \sum_{i=1}^n w_i^{t+1} \Delta_i^t$ $x^{t+1} = x^t - \gamma \sum_{i=1}^n w_i^{t+1} g_i(x^t, \xi_i)$
228
229
230
231

contrast to uniform averaging of the received stochastic gradients, MeritFed uses the weights w^t from the unit simplex Δ_1^n that are updated at each iteration. In particular, the new vector of weights $w^{t+1} \in \mathbb{R}^n$ at iteration t approximates $\arg \min_{w \in \Delta_1^n} f(x^t - \gamma \sum_{i=1}^n w_i g_i(x^t, \xi_i))$, where $K = 1$ for simplicity. Then, the server uses the weights for averaging stochastic gradients and updating x^t .

Local steps. Our approach provably supports multiple local updates. The results are given by Theorem 1. But some results and experiments are presented for $K = 1$ for the sake of simplicity.

2.2 AUXILIARY PROBLEM IN LINE 9

In general, solving the problem in Line 9 is not easier than solving the original problem (1). Instead, MeritFed requires solving it *approximately*. That is, the dataset used for solving this problem only needs to have the same distribution as the target client’s data. In particular, if the training data of the target client is sufficiently good to approximate the expected loss function f , then no extra data is required. Theoretically, the validation data only needs to have the same distribution as the target client’s data, so validation data can be the same as the training data (or duplicate them). Sections 4 and D shows experimental results where the validation data duplicates the training data. Moreover, the validation dataset size is much smaller than the training dataset in our experiments. Alternative approach dividing the training data into two sets is described in Section A.4.

To avoid any risk of compromising clients' privacy, the target client dataset should be stored only on the target client, and stochastic gradients received from other clients cannot be directly sent to the target client. To satisfy these requirements, one can approximate

$$\arg \min_{w \in \Delta^n} \{ \varphi_t(w) \equiv f(x^t - \gamma \sum_{i=1}^n w_i g_i(x^t, \xi_i)) \} \quad (7)$$

using zeroth-order² Mirror Descent (or its accelerated version) (Duchi et al., 2015; Shamir, 2017; Gasnikov et al., 2022b):

$$w^{k+1} = \arg \min_{w \in \Delta^n} \left\{ \alpha \langle \tilde{q}^k, w \rangle + D_r(w, w^k) \right\}, \quad (8)$$

where $\alpha > 0$ is the stepsize, \tilde{g}^k is a finite-difference approximation of the directional derivative of sampled function

$$\varphi_{t,\varepsilon^k}(w) \stackrel{\text{def}}{=} f_{\varepsilon^k}(x^t - \gamma \sum_{i=1}^n w_i g_i(x^t, \xi_i)), \quad (9)$$

where ξ^k is a fresh sample from the distribution \mathcal{D}_1 independent from all previous steps of the method, e.g., one can use $\tilde{g}^k = \frac{n(\varphi_{t,\xi^k}(w^k + he) - \varphi_{t,\xi^k}(w^k - he))}{2h}$ for $h > 0$ and e being sampled from the uniform distribution on the unit Euclidean sphere, and $D_r(w, w^k) = r(w) - r(w^k) - \langle \nabla r(w^k), w - w^k \rangle$ is the Bregman divergence associated with a 1-strongly convex function r . Although, typically,

²In this case, the server can ask the target client to evaluate loss values at the required points without sending the stochastic gradients received from other workers.

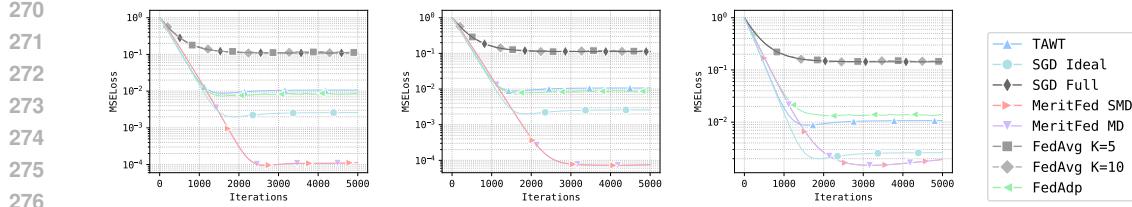


Figure 1: Mean Estimation: $\mu = 0.001$, MD learning rate = 3.5.

Figure 2: Mean Estimation: $\mu = 0.01$, MD learning rate = 4.5.

Figure 3: Mean Estimation: $\mu = 0.1$, MD learning rate = 12.5.

the oracle complexity bounds for gradient-free methods have $\mathcal{O}(n)$ dependence on the problem dimension (Gasnikov et al., 2022a), one can get just $\mathcal{O}(\log^2(n))$, in the case of the optimization over the probability simplex (Shamir, 2017; Gasnikov et al., 2022b). More precisely, if f is M_2 -Lipschitz w.r.t. ℓ_2 -norm and convex, then one can achieve $\mathbb{E}[\varphi_t(w) - \varphi_t(w^*)] \leq \delta$ using $\mathcal{O}(M_2^2 \log^2(n)/\delta^2)$ computations of φ , where R is ℓ_1 -distance between the starting point and the solution (Gasnikov et al., 2022b) and prox-function $r(w) = \sum_{i=1}^n w_i \log(w_i)$, which is 1-strongly convex w.r.t. ℓ_1 -norm.

Memory usage. It is worth mentioning that MeritFed requires the server to store n vectors at each iteration for solving the problem in Line 9. While standard SGD does not require such a memory, closely related methods — FedAdp and TAWT — also require the server to store n vectors for the computation of the weights for aggregation. However, for modern servers, this is not an issue.

3 CONVERGENCE ANALYSIS

In our analysis, we rely on the standard assumptions for non-convex optimization literature.

Assumption 1. For all $i \in \mathcal{G}$ the stochastic gradient $g_i(x, \xi_i)$ is an unbiased estimator of $\nabla f_i(x)$ with bounded variance, i.e., $\mathbb{E}_{\xi_i}[g_i(x, \xi_i)] = \nabla f_i(x)$ and for $\sigma_{\mathcal{G}} \geq 0$

$$\mathbb{E}_{\xi_i} \|g_i(x, \xi_i) - \nabla f_i(x)\|^2 \leq \sigma_{\mathcal{G}}^2. \quad (10)$$

Moreover, f is L -smooth, i.e., $\forall x, y \in \mathbb{R}^d$

$$f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2. \quad (\text{Lip})$$

The above assumption combines the well-known bounded variance and smoothness of the objective assumptions. It is classical for the analysis of stochastic optimization methods, e.g., see (Nemirovski et al., 2009; Juditsky et al., 2011).

Next, we assume that there exists a set of workers with “close enough” data distributions to the target one. This can be formalized as follows.

Assumption 2. Let $\mathcal{F} \subseteq [n]$ be a subset of workers such that $\mathcal{F} \cap \mathcal{G} = \emptyset$ and for some $\nu \geq 0$, $\rho \geq 0$ and all $x \in \mathbb{R}^d$

$$\left\| \frac{1}{F} \sum_{i \in \mathcal{F}} \nabla f_i(x) - \nabla f(x) \right\|^2 \leq \nu \|\nabla f(x)\|^2 + \rho^2. \quad (11)$$

Moreover, for all $i \in \mathcal{F}$, the stochastic gradient $g_i(x, \xi_i)$ is an unbiased estimator of $\nabla f_i(x)$ with bounded variance, i.e., $\mathbb{E}_{\xi_i}[g_i(x, \xi_i)] = \nabla f_i(x)$ and for $\sigma_{\mathcal{F}} \geq 0$

$$\mathbb{E}_{\xi_i} \|g_i(x, \xi_i) - \nabla f_i(x)\|^2 \leq \sigma_{\mathcal{F}}^2.$$

The above assumption guarantees that the gradients from workers in \mathcal{F} approximate the true global gradient within relative and absolute error bounds and the stochastic gradients from these workers also have bounded variance. In practice, ν and ρ can depend on x , and can be relatively small if x is far from the solution. However, for simplicity of the analysis we assume that ν and ρ are constants.

Finally, we also make the following (optional) assumption called Polyak-Łojasiewicz (PL) condition (Polyak, 1963; Łojasiewicz, 1963).

Assumption 3. f satisfies Polyak-Łojasiewicz (PL) condition with parameter μ , i.e., for $\mu \geq 0$

$$f^* \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2, \quad \forall x \in \mathbb{R}^d. \quad (\text{PL})$$

This assumption belongs to the class of structured non-convexity conditions allowing linear convergence for first-order methods, e.g., Gradient Descent (Necoara et al., 2019).

The main result for `MeritFed` is given below (see the proof in Appendix B).

Theorem 1. *Let Assumptions 1 holds. Then after T iterations, if $K = 1$ `MeritFed` with $\gamma \leq \frac{1}{2L}$ outputs x^t , $t = 0, \dots, T - 1$ such that*

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \frac{2(f(x^0) - f(x^*))}{T\gamma} + \frac{2\sigma^2\gamma L}{G} + \frac{2\delta}{\gamma},$$

and if $K > 1$ `MeritFed` with $\gamma = 2$, $\gamma_l \leq \frac{1}{12LK}$ outputs x^t , $t = 0, \dots, T - 1$

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \frac{4(f(x^0) - \mathbb{E}f(x^T))}{\gamma_l KT} + 24\gamma_l^2 KL^2 \sigma_G^2 + \frac{32\gamma_l L\sigma_G^2}{G} + \frac{4\delta}{\gamma_l K},$$

where δ is the accuracy of solving the problem in Line 9 and $G = |\mathcal{G}|$. Moreover if Assumption 3 additionally holds, if $K = 1$ `MeritFed` with $\gamma \leq \frac{1}{2L}$ outputs x^T such that

$$\mathbb{E}[f(x^T) - f^*] \leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \frac{\sigma^2\gamma L}{\mu G} + \frac{\delta}{\gamma\mu},$$

and if $K > 1$ `MeritFed` with $\gamma = 2$, $\gamma_l \leq \frac{1}{12LK}$ outputs x^t , $t = 0, \dots, T - 1$

$$\mathbb{E}[f(x^T) - f^*] \leq \left(1 - \frac{\mu\gamma_l K}{2}\right)^T [f(x^0) - f^*] + \frac{12\gamma_l^2 KL^2 \sigma_G^2}{\mu} + \frac{16\gamma_l L\sigma_G^2}{\mu G} + \frac{2\delta}{\mu\gamma_l K}.$$

If δ is small, then the above result matches the known results for Parallel SGD (Ghadimi & Lan, 2013; Karimi et al., 2016; Khaled & Richtárik, 2022) that uniformly averages the workers from the group \mathcal{G} , i.e., those workers that have data distribution \mathcal{D}_1 (see the method in (6)). In fact, we see a linear speed-up of $1/G$ in the obtained convergence rates.

Note, that when $K > 1$ the terms with no linear speed-up contain γ_l with a higher power, that recovers results for `Local SGD` and implies that the terms vanish faster with vanishing stepsize.

Moreover, in the case when some workers have different yet similar data, which we formalize as Assumption 2, we provide an improved result below. We consider $K = 1$ for the sake of simplicity.

Theorem 2. *Let Assumptions 1 and 2 hold with $G = |\mathcal{G}|$, $F = |\mathcal{F}|$, $\nu \leq \frac{G}{F}$. Then after T iterations of `MeritFed` with $\gamma \leq \frac{1}{8L}$ outputs x^t , $t = 0, \dots, T - 1$ such that*

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \frac{4(f(x^0) - f(x^*))}{T\gamma} + 2 \min\left(\frac{\sigma_G^2\gamma L}{G} + \frac{\delta}{\gamma}, \frac{4\gamma LG\sigma_G^2}{(G+F)^2} + \frac{4\gamma LF\sigma_F^2}{(G+F)^2} + \frac{\rho^2 F}{G+F} + \frac{2\delta}{\gamma}\right),$$

where δ is the accuracy of solving the problem in Line 9. Moreover if Assumption 3 additionally holds, then after T iterations of `MeritFed` with $\gamma \leq \frac{1}{8L}$ outputs x^T such that

$$\mathbb{E}f(x^T) - f^* \leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \frac{1}{\mu} \min\left(\frac{\sigma_G^2\gamma L}{G} + \frac{\delta}{\gamma}, \frac{4\gamma LG\sigma_G^2}{(G+F)^2} + \frac{4\gamma LF\sigma_F^2}{(G+F)^2} + \frac{\rho^2 F}{G+F} + \frac{2\delta}{\gamma}\right).$$

Assumption 2 is reasonable, especially at the initial stage of training when the generated points are far from the solution (see the discussion after Assumption 2). So the theorem shows that the variance-induced term is reduced, allowing for a linear speedup proportional to $1/(G+F)$, compared to $1/G$ without the assumption (Theorem 1). Moreover, if ρ and δ are small, then the neighborhood term \mathcal{E} is smaller than the neighborhood term from Theorem 1 and, consequently, than the neighborhood term in the convergence bound for the method from (6). Theorem 2 also implies that for small δ `MeritFed` converges not worse than Parallel SGD that uniformly averages the workers from $\mathcal{G} \cup \mathcal{F}$.

`MeritFed` needs neither identifying distribution-similar workers nor high-precision solving of Line 9, and empirically converges well even when workers' distributions are distinct but close.

4 EXPERIMENTS

Since the literature on FL is very rich, we focus only on the closely related methods satisfying two criteria: (i) they solve the same problem as we consider in 1, and (ii) have theoretical guarantees. That is, we evaluate the performance of proposed methods in comparison with `FedAdp` (Wu &

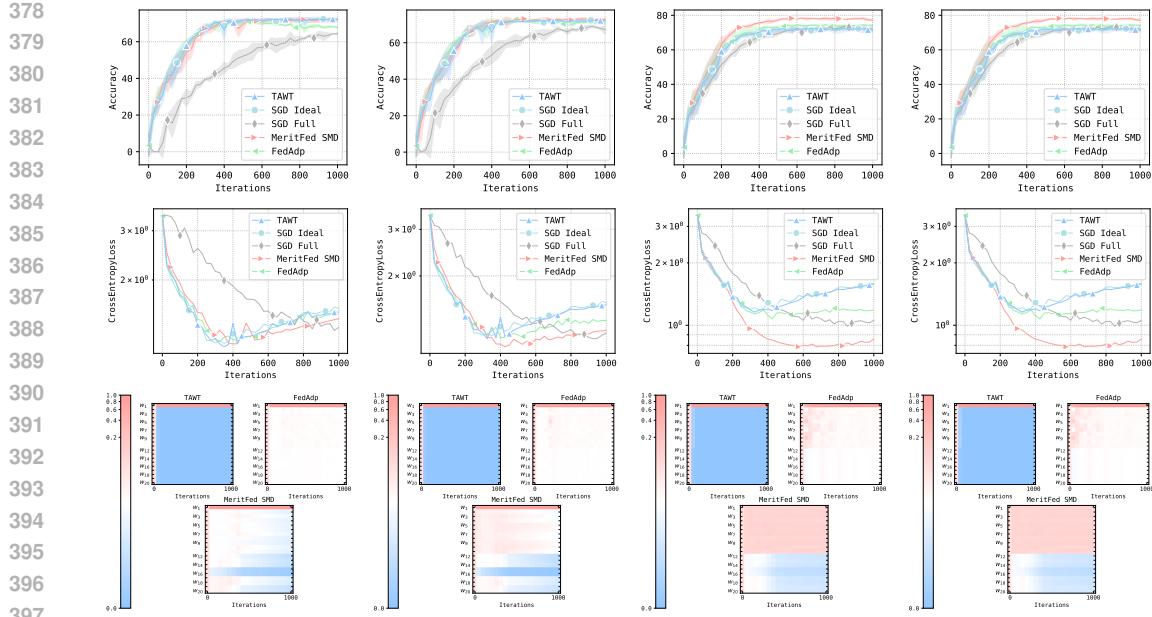


Figure 4: GoEmotions Accuracy vs Iterations for different values of α : $\alpha = 0.5$ (extra val.)

Figure 5: GoEmotions CrossEntropyLoss vs Iterations for the same α values (extra val.)

Figure 6: GoEmotions Heatmaps of weights w_1 to w_{20} vs Iterations for the same α values (extra val.)

Figure 7: GoEmotions Heatmaps of weights w_1 to w_{20} vs Iterations for the same α values (extra val.)

Wang, 2021), TAWT (Chen et al., 2021a), and FedProx (Li et al., 2020) (FedProx reduces to FedAvg if there are no local steps, that is the setup for MeritFed). We also compare standard SGD with uniform weights (labeled as SGD Full³), SGD that collects only gradients from clients with the target distribution (SGD Ideal) and two versions of our algorithm: (i) MeritFed SMD, samples gradient for the Mirror Descent subroutine, and (ii) MeritFed MD, that uses the full dataset (additional or train) to calculate gradient for Mirror Descent step. In addition, we present the evolution of weights (if applicable) using heat-map plots. In the main text, we show the results for the case when the additional validation dataset is available for the problem in Line 9. Additional experiments and details with the usage of train data for the problem in Line 9, with the presence of Byzantine participants and with more workers, are provided in Appendix D.

Mean estimation. The problem is to find such a vector that minimizes the mean squared distance to the data samples. More formally, the goal is to solve $\min_{x \in \mathbb{R}^d} \mathbb{E}_{\xi \sim \mathcal{D}_1} \|x - \xi\|^2$, that has the optimum at $x^* = \mathbb{E}_{\xi \sim \mathcal{D}_1} [\xi]$. We consider $\mathcal{D}_1 = \mathcal{N}(0, \mathbf{I})$ and also two other distributions from where some clients also get samples: $\mathcal{D}_2 = \mathcal{N}(\mu\mathbf{1}, \mathbf{I})$ and $\mathcal{D}_3 = \mathcal{N}(e, \mathbf{I})$, where $\mathbf{1} = (1, 1, \dots, 1)^\top \in \mathbb{R}^d$, $\mu > 0$ is a parameter, and e is some vector that we obtain in advance via sampling uniformly at random from the unit Euclidean sphere. Detailed experimental setup is provided in Section D.2.

We consider three cases: $\mu = 0.001, 0.01, 0.1$. The smaller μ is, the closer \mathcal{D}_2 is to \mathcal{D}_1 and, thus, the more beneficial the samples from the second group are. Therefore, for small μ , we expect to see that MeritFed outperforms SGD Ideal. Moreover, since the workers from the third group have quite different data distribution, SGD Full is expected to work worse than other baselines.

The results are presented in Figures 1-3. They fit the described intuition and our theory well: the workers from the second group are beneficial (since their distributions are close enough to the distribution of the target client). Indeed, MeritFed achieves better optimization error (due to the smaller variance because of the averaging with more workers). However, when the dissimilarity between distributions is large the second group becomes less useful for the training, and MeritFed has comparable performance to SGD Ideal and consistently outperforms other methods.

Texts classification: GoEmotions + BERT. The next problem we consider is devoted to fine-tuning pretrained BERT (Devlin et al., 2018) model for emotions classification on the GoEmotions dataset (Demszky et al., 2020). The dataset consist of texts labeled with one or more of 28 emotions. First of all, we form "truncated dataset" by cutting the dataset so that its each entry has the only label.

³Although, FedProx and SGD Full are designed for standard empirical risk minimization; these are our standard baselines.

432 Then we use Ekman mapping (Ekman, 1992) to split the data between clients. According to the
 433 mapping, 28 emotions can be mapped to 7 basic emotions. That is, we simulate a situation when the
 434 target client classifies only basic emotions, e.g., the target client has only emotions belonging to "joy"
 435 class and namely includes only "joy", "amusement", "approval", "excitement", "gratitude", "love",
 436 "optimism", "relief", "pride", "admiration", "desire", "caring". The distribution of these sub-emotions
 437 is kept to be the same as the distribution of the truncated train dataset. Clients, that data are supposed
 438 to have similar distribution (second group – next 10 clients), also have texts from base class "joy" and
 439 are labeled as one of the sub-emotion belonging to "joy". The distribution of sub-emotions is also the
 440 same as the distribution of the truncated train dataset. These texts constitute an α portion of the total
 441 client's data. The other $1 - \alpha$ portion of the texts is taken from "neutral" class. The rest of clients
 442 (third group – next 9 clients) are supposed to have different distribution and their data consist of either
 443 texts belonging to one of the other basic emotion, either mixed with neutral (if there is not enough
 444 texts to have a desired number of samples) or texts from "neutral" class only. Again, the distribution
 445 of sub-emotions is the same as the distribution of the truncated train dataset. The results are presented
 446 in Figures 4-7. The target client benefits from collaborating with clients from the second group and
 447 achieves better accuracy using MeritFed. See Section D.3 for the detailed description.

448 **MedMNIST.** We apply MeritFed to enhance the classification of medical images, as introduced in
 449 the MedMNIST dataset (Yang et al., 2021). MedMNIST offers medical image datasets, including
 450 three datasets featuring images of internal organs (Organ{A,C,S}MNIST) with identical labels.
 451 These datasets can be collectively utilized during training to improve accuracy. A potential method
 452 involves aggregating gradients computed from these three datasets. However, due to the diverse
 453 nature of the data, some datasets may have limited contributions to the training. We anticipate
 454 that adaptive aggregation, provided by MeritFed, will improve the model's performance. For
 455 empirical justification, we assume that each worker possesses one MedMNIST dataset. Importantly,
 456 MeritFed does not restrict the setup to only three workers and accommodates additional clients
 457 with irrelevant data, aligning with real-world scenarios. To demonstrate this, we introduce a nuisance
 458 worker handling data from other MedMNIST datasets. See Appendix D.4 for the detailed description.

459 **Image classification: CIFAR10 + ResNet18.** The results can be found in Appendix D.6.

460 5 CONCLUSION

462 We introduced a novel algorithm called Merit-based Federated Learning (MeritFed) to address
 463 the challenges posed by the heterogeneous data in federated learning via the adaptive selection of
 464 the aggregation weights through solving the auxiliary problem at each iteration. We showed that
 465 MeritFed can effectively harness the advantages of distinct data distributions, control the detri-
 466 mental effects of outlier clients, and promote collaborative learning. We assign adaptive aggregation
 467 weights to clients participating in training, allowing for faster convergence and potentially better
 468 generalization. MeritFed stands in contrast to TAWT, which depends on computationally intensive
 469 hypergradient estimations, and FedAdp, which uses cosine similarity for weight calculation. In
 470 addition, we incorporate zero-order MD to enhance privacy. The key contributions of this paper
 471 include the development of MeritFed, provable convergence under mild assumptions, and the
 472 ability to utilize benefits from collaborating with clients having different but similar data.

473 However, our work has some limitations. Firstly, (in theory) MeritFed relies on the fact that the
 474 objective from the problem in Line 9 gives a good enough approximation of the expected risk f ,
 475 which in some situations may require the availability of additional data on the target client to solve
 476 the problem (though in all of our experiments, it was not the case and MeritFed worked well
 477 even without additional data). Collecting and maintaining extra data may not always be practical or
 478 efficient. Secondly, the experiments used a limited number of clients and a dataset of moderate size.
 479 Extending MeritFed to large-scale FL with a substantial number of clients and massive datasets
 480 may pose scalability challenges. Addressing these limitations is part of our plan for future work.

481 Furthermore, MeritFed serves as a foundation for numerous extensions and enhancements. Future
 482 research can explore topics such as acceleration techniques, adaptive or scaled optimization methods
 483 (e.g., variants akin to Adam (Kingma & Ba, 2014)) on the server side, communication compression
 484 strategies, and the efficient implementation of similar collaborative learning approaches for all clients
 485 simultaneously. These directions will contribute to the continued development of FL methods, making
 them more efficient, robust, and applicable to a wide range of practical scenarios.

486 REFERENCES
487

488 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
489 efficient sgd via gradient quantization and encoding. *Advances in neural information processing*
490 *systems*, 30, 2017.

491 Abdulla Jasem Almansoori, Samuel Horváth, and Martin Takáč. Collaborative and efficient personal-
492 ization with mixtures of adaptors. *arXiv*, 2024.

493

494 Wenxuan Bao, Haohan Wang, Jun Wu, and Jingrui He. Optimizing the collaboration structure in
495 cross-silo federated learning. In *International Conference on Machine Learning*, pp. 1718–1736.
496 PMLR, 2023.

497 Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
498 distributed learning, 2019.

499

500 Aleksandr Beznosikov, Martin Takáč, and Alexander Gasnikov. Similarity, compression and local
501 steps: three pillars of efficient communications for distributed variational inequalities. *Advances in*
502 *Neural Information Processing Systems*, 36, 2024.

503

504 Ekaterina Borodich, Aleksandr Beznosikov, Abdurakhmon Sadiev, Vadim Sushko, Nikolay Savelyev,
505 Martin Takáč, and Alexander Gasnikov. Decentralized personalized federated min-max problems.
506 *arXiv preprint arXiv:2106.07289*, 2021.

507

508 Can Chen, Xi Chen, Chen Ma, Zixuan Liu, and Xue Liu. Gradient-based bi-level optimization for
509 deep learning: A survey. *arXiv preprint arXiv:2207.11719*, 2022a.

510

511 Fengwen Chen, Guodong Long, Zonghan Wu, Tianyi Zhou, and Jing Jiang. Personalized federated
512 learning with a graph. In Lud De Raedt (ed.), *Proceedings of the Thirty-First International Joint*
513 *Conference on Artificial Intelligence, IJCAI-22*, pp. 2575–2582. International Joint Conferences
514 on Artificial Intelligence Organization, 7 2022b. doi: 10.24963/ijcai.2022/357. URL <https://doi.org/10.24963/ijcai.2022/357>. Main Track.

515

516 Shuxiao Chen, Koby Crammer, Hangfeng He, Dan Roth, and Weijie J Su. Weighted training for
517 cross-task learning. *arXiv preprint arXiv:2105.14095*, 2021a.

518

519 Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
520 gradient methods for bilevel problems. *Advances in Neural Information Processing Systems*, 34:
25294–25307, 2021b.

521

522 Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
523 bilevel optimization. In *International Conference on Artificial Intelligence and Statistics*, pp.
2466–2488. PMLR, 2022c.

524

525 Wenlin Chen, Samuel Horváth, and Peter Richtárik. Optimal client sampling for federated
526 learning. *Transactions on Machine Learning Research*, 2022d. ISSN 2835-8856. URL
527 <https://openreview.net/forum?id=8GvRCWKHIL>.

528

529 Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Convergence
530 analysis and power-of-choice selection strategies. *arXiv preprint arXiv:2010.01243*, 2020.

531

532 Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
533 tations for personalized federated learning. In *International conference on machine learning*, pp.
2089–2099. PMLR, 2021.

534

535 Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
536 optimization that enables stochastic and global variance reduction algorithms. *arXiv preprint*
537 *arXiv:2201.13409*, 2022.

538

539 Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. GoEmotions: A Dataset of Fine-Grained Emotions. In *58th Annual Meeting of the*
Association for Computational Linguistics (ACL), 2020.

540 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
 541 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
 542

543 Shu Ding and Wei Wang. Collaborative learning by detecting collaboration partners. *Advances in
 544 Neural Information Processing Systems*, 35:15629–15641, 2022.

545 John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
 546 zero-order convex optimization: The power of two function evaluations. *IEEE Transactions on
 547 Information Theory*, 61(5):2788–2806, 2015.
 548

549 Paul Ekman. An argument for basic emotions. *Cognition & emotion*, 6(3-4):169–200, 1992.
 550

551 Mathieu Even, Laurent Massoulié, and Kevin Scaman. On sample optimality in personalized
 552 collaborative and federated learning. *Advances in Neural Information Processing Systems*, 35:
 553 212–225, 2022.

554 Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
 555 learning approach. *arXiv preprint arXiv:2002.07948*, 2020.

556 Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable
 557 algorithms with nearly optimal rate. In *Conference on Learning Theory*, pp. 1270–1279. PMLR,
 558 2019.
 559

560 Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-
 561 variance and improved representativity for clients selection in federated learning. In *International
 562 Conference on Machine Learning*, pp. 3407–3416. PMLR, 2021.

563 Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Eduard Gorbunov, Aleksander
 564 Beznosikov, and Alexander Lobanov. Randomized gradient-free methods in convex optimization.
 565 *arXiv preprint arXiv:2211.13566*, 2022a.
 566

567 Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov,
 568 Aleksandr Beznosikov, Martin Takac, Pavel Dvurechensky, and Bin Gu. The power of first-order
 569 smooth optimization for black-box non-smooth problems. In *International Conference on Machine
 570 Learning*, pp. 7241–7265. PMLR, 2022b.

571 Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
 572 programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013.
 573

574 Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint
 575 arXiv:1802.02246*, 2018.

576 Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
 577 clustered federated learning. *Advances in Neural Information Processing Systems*, 33:19586–
 578 19597, 2020.
 579

580 Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and optimal
 581 algorithms for personalized federated learning. *Advances in Neural Information Processing
 582 Systems*, 33:2304–2315, 2020.

583 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 584 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 585 pp. 770–778, 2016.
 586

587 Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
 588 optimization: Complexity analysis and application to actor-critic. *arXiv preprint arXiv:2007.05170*,
 589 2020.

590 Samuel Horváth and Peter Richtárik. A better alternative to error feedback for communication-
 591 efficient distributed learning. *arXiv preprint arXiv:2006.11077*, 2020.
 592

593 Yankun Huang, Qihang Lin, Nick Street, and Stephen Baek. Federated learning on adaptively
 weighted nodes by bilevel optimization. *arXiv preprint arXiv:2207.10751*, 2022.

594 Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
 595 design. In *International conference on machine learning*, pp. 4882–4892. PMLR, 2021.
 596

597 Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from loops. *arXiv*
 598 *preprint arXiv:2205.14224*, 2022.

599 Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
 600 stochastic mirror-prox algorithm. *Stochastic Systems*, 1(1):17–58, 2011.
 601

602 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 603 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 604 vances and open problems in federated learning. *Foundations and Trends® in Machine Learning*,
 605 14(1–2):1–210, 2021.

606 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 607 gradient methods under the polyak-Łojasiewicz condition. In *Machine Learning and Knowledge
 608 Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
 609 September 19–23, 2016, Proceedings, Part I 16*, pp. 795–811. Springer, 2016.
 610

611 Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. *Transactions on
 612 Machine Learning Research*, 2022.

613 Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on
 614 identical and heterogeneous data. In *International Conference on Artificial Intelligence and
 615 Statistics*, pp. 4519–4529. PMLR, 2020. URL <http://proceedings.mlr.press/v108/bayoumi20a/bayoumi20a-supp.pdf>.
 617

618 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 619 arXiv:1412.6980*, 2014.

620 Jakub Konečný, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
 621 Distributed machine learning for on-device intelligence. *arXiv preprint arXiv:1610.02527*, 2016.
 622

623 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 624

625 Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques for
 626 federated learning. In *2020 Fourth World Conference on Smart Trends in Systems, Security and
 627 Sustainability (WorldS4)*, pp. 794–797. IEEE, 2020.

628 Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. Oort: Efficient federated
 629 learning via guided participant selection. In *15th {USENIX} Symposium on Operating Systems
 630 Design and Implementation ({OSDI} 21)*, pp. 19–35, 2021.
 631

632 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. *ACM
 633 Transactions on Programming Languages and Systems*, 4(3):382–401, 1982.

634 Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization without
 635 hessian inverse. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp.
 636 7426–7434, 2022.
 637

638 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 639 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*,
 640 2:429–450, 2020.

641 Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
 642 algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
 643 gradient descent. *Advances in Neural Information Processing Systems*, 30, 2017. URL <https://arxiv.org/pdf/1705.09056.pdf>.
 645

646 Hongcheng Liu and Jindong Tong. New sample complexity bounds for (regularized) sample average
 647 approximation in several heavy-tailed, non-lipschitzian, and high-dimensional cases. *arXiv preprint
 648 arXiv:2401.00664*, 2024.

648 Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level optimization
 649 for learning and vision from a unified perspective: A survey and beyond. *IEEE Transactions
 650 on Pattern Analysis and Machine Intelligence*, 44(12):10045–10067, 2021.

651 Stanislaw Lojasiewicz. A topological property of real analytic subsets. *Coll. du CNRS, Les équations
 652 aux dérivées partielles*, 117(87-89):2, 1963.

653 Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling system and
 654 statistical heterogeneity for federated learning with adaptive client sampling. In *IEEE INFOCOM
 655 2022-IEEE Conference on Computer Communications*, pp. 1739–1748. IEEE, 2022.

656 Lingjuan Lyu, Han Yu, Xingjun Ma, Lichao Sun, Jun Zhao, Qiang Yang, and Philip S Yu. Privacy and
 657 robustness in federated learning: Attacks and defenses. *arXiv preprint arXiv:2012.06337*, 2020.

658 Jie Ma, Guodong Long, Tianyi Zhou, Jing Jiang, and Chengqi Zhang. On the convergence of clustered
 659 federated learning. *arXiv preprint arXiv:2202.06187*, 2022.

660 Jie Ma, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Structured federated learning
 661 through clustered additive modeling. *Advances in Neural Information Processing Systems*, 36:
 662 43097–43107, 2023.

663 Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal. Federated
 664 multi-task learning under a mixture of distributions. *Advances in Neural Information Processing
 665 Systems*, 34:15434–15447, 2021.

666 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 667 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
 668 and statistics*, pp. 1273–1282. PMLR, 2017.

669 Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
 670 with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019.

671 Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
 672 local gradient steps provably lead to communication acceleration! finally! In *International
 673 Conference on Machine Learning*, pp. 15750–15769. PMLR, 2022.

674 I Necoara, Yu Nesterov, and F Glineur. Linear convergence of first order methods for non-strongly
 675 convex optimization. *Mathematical Programming*, 175:69–107, 2019.

676 Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
 677 approximation approach to stochastic programming. *SIAM Journal on optimization*, 19(4):1574–
 678 1609, 2009.

679 Hung T Nguyen, Vikash Sehwag, Seyyedali Hosseinalipour, Christopher G Brinton, Mung Chiang,
 680 and H Vincent Poor. Fast-convergent federated learning. *IEEE Journal on Selected Areas in
 681 Communications*, 39(1):201–218, 2020.

682 Boris T Polyak. Gradient methods for the minimisation of functionals. *USSR Computational
 683 Mathematics and Mathematical Physics*, 3(4):864–878, 1963.

684 Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 685 Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint
 686 arXiv:2003.00295*, 2020.

687 Monica Ribero and Haris Vikalo. Communication-efficient federated learning via optimal client
 688 sampling. *arXiv preprint arXiv:2007.15197*, 2020.

689 Abdurakhmon Sadiev, Ekaterina Borodich, Aleksandr Beznosikov, Darina Dvinskikh, Saveliy Chezhev-
 690 gov, Rachael Tappenden, Martin Takáč, and Alexander Gasnikov. Decentralized personalized
 691 federated learning: Lower bounds and optimal algorithm for all personalization modes. *EURO
 692 Journal on Computational Optimization*, 10:100041, 2022.

693 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex
 694 optimization. In *COLT*, volume 2, pp. 5, 2009.

702 Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
 703 feedback. *The Journal of Machine Learning Research*, 18(1):1703–1713, 2017.
 704

705 Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In *Proceedings of the 22nd*
 706 *ACM SIGSAC conference on computer and communications security*, pp. 1310–1321, 2015.
 707

708 Zhuoqing Song, Weijian Li, Kexin Jin, Lei Shi, Ming Yan, Wotao Yin, and Kun Yuan. Communication-
 709 efficient topologies for decentralized learning with $o(1)$ consensus rate. *Advances in Neural*
 710 *Information Processing Systems*, 35:1073–1085, 2022.

711 Sebastian U Stich. Local sgd converges fast and communicates little. In *International Conference on*
 712 *Learning Representations*, 2018.
 713

714 Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. *Advances*
 715 *in Neural Information Processing Systems*, 31, 2018.
 716

717 Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang. Federated learning
 718 on non-iid graphs via structural knowledge sharing. In *Proceedings of the AAAI conference on*
 719 *artificial intelligence*, volume 37, pp. 9953–9961, 2023.
 720

721 Xueyang Tang, Song Guo, and Jingcai Guo. Personalized federated learning with contextualized
 722 generalization. *arXiv preprint arXiv:2106.13044*, 2021.
 723

724 Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
 725 Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
 726 optimization. *arXiv preprint arXiv:2107.06917*, 2021.
 727

728 Jeremy West, Dan Ventura, and Sean Warnick. Spring research presentation: A theoretical foundation
 729 for inductive transfer. *Brigham Young University, College of Physical and Mathematical Sciences*,
 730 1(08), 2007.

731 Hongda Wu and Ping Wang. Fast-convergent federated learning with adaptive weighting. *IEEE*
 732 *Transactions on Cognitive Communications and Networking*, 7(4):1078–1088, 2021. doi: 10.1109/
 733 TCCN.2021.3084406.
 734

735 Cong Xie, Sanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant sgd by
 736 inner product manipulation, 2019.
 737

738 Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight automl
 739 benchmark for medical image analysis. In *IEEE 18th International Symposium on Biomedical*
 740 *Imaging (ISBI)*, pp. 191–195, 2021.

741 Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
 742 *Knowledge-Based Systems*, 216:106775, 2021.
 743

744 Chunxu Zhang, Guodong Long, Tianyi Zhou, Zijian Zhang, Peng Yan, and Bo Yang. Gpfedrec:
 745 Graph-guided personalization for federated recommendation. In *Proceedings of the 30th ACM*
 746 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 4131–4142, 2024.
 747

748 Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated
 749 learning with first order model optimization. *arXiv preprint arXiv:2012.08565*, 2020.
 750

751 Yihua Zhang, Prashant Khanduri, Ioannis Tsaknakis, Yuguang Yao, Mingyi Hong, and Sijia Liu.
 752 An introduction to bi-level optimization: Foundations and applications in signal processing and
 753 machine learning. *arXiv preprint arXiv:2308.00788*, 2023.
 754

755 Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradient
 755 descent. *Advances in neural information processing systems*, 23, 2010.

756 A EXTENDED RELATED WORK
757758 A.1 RELATION TO TRANSFER LEARNING
759760 While our approach resembles transfer learning (West et al., 2007), where a model trained on one
761 dataset is then enhanced/fine-tuned on another related dataset, MeritFed differs significantly in both
762 motivation and framework. Unlike transfer learning, which involves adapting a pre-trained model
763 to new data, MeritFed enhances the training process itself. Transfer learning can be theoretically
764 viewed as training with “better” initialization, while MeritFed decides on the fly what dataset to
765 use and to what extent.766 That is, MeritFed performs adaptive aggregation and benefits from clients having data with the
767 same distribution. It promotes collaborative learning, which is particularly applicable in cross-silo
768 federated learning (scenarios such as medical imaging).769 Furthermore, in situations where datasets are unrelated, traditional transfer learning may not yield
770 performance improvements. In contrast, MeritFed performs not worse than SGD Ideal under
771 such conditions. Additionally, MeritFed provides robustness against Byzantine attacks, further
772 distinguishing it from conventional transfer learning methods.773 Exploring whether MeritFed can outperform transfer learning techniques in specific applications
774 remains a valuable direction for future research but outside the scope of our work.
775776 A.2 PERSONALIZED FL BY GRAPH-BASED AGGREGATION
777778 Another related direction in FL more accurately addresses client clustering by constructing a clients’
779 relation graph. (Chen et al., 2022b) does a graph-based model aggregation (k-hop) based on an
780 adaptively learned Graph Convolution Net (GCN). (Zhang et al., 2024) also uses GCN to perform
781 graph-guided aggregation but focuses on recommendations. Both works lack theoretical analysis and
782 require solving a subproblem (similar to BLO) of learning GCN at each iteration. This subproblem
783 has a higher computation cost than MeritFed has for adaptive aggregation.784 A.3 WEIGHTS UPDATE FOR TAWT AND FEDADP
785786 **TAWT.** A faithful implementation of TAWT (Chen et al., 2021a) would require a costly evaluation of
787 the inverse of the Hessian matrix $\sum_{t=1}^T w_t \nabla^2 f(x^k)$ to calculate an approximation of hyper-gradient
788 g^k . Then g^k is supposed to be used to run one step of Mirror Descent (with step size η^k) to update
789 the weights:
790

791
$$w_t^{k+1} = \frac{w_t^k \exp\{-\eta^k g_t^k\}}{\sum_{t'=1}^T w_{t'}^k \exp\{-\eta^k g_{t'}^k\}}. \quad (12)$$

792

793 In practice, (Chen et al., 2021a) advise bypassing this step by replacing the Hessian-inverse-weighted
794 dissimilarity measure with a cosine-similarity-based measure, i.e., to approximate g_t^k by $-c \times$
795 $\mathcal{S}(\nabla f_0(x^k), \nabla f_t(x^k))$, where
796

797
$$\mathcal{S}(a, b) = \arccos \frac{\langle a, b \rangle}{\|a\| \|b\|}$$

798

799 denotes the cosine similarity between two vectors.
800801 **FedAdp.** FedAdp (Wu & Wang, 2021) uses a similar update rule for weights, but it additionally
802 uses a non-linear mapping function (*Gompertz function*)
803

804
$$\mathcal{G}(\xi) = \alpha \left(1 - e^{-e^{-\alpha \xi}} \right)$$

805

806 where ξ is the *smoothed angle in radian*, e denotes the exponential constant and α is a constant. By
807 denoting $\mathcal{S}_t^k = \mathcal{S}(\nabla f_0(x^k), \nabla f_t(x^k))$ one can obtain FedAdp weights update rule in the form
808

809
$$w_t^k = \frac{e^{\mathcal{G}(\mathcal{S}_t^k)}}{\sum_{t'=1}^n e^{\mathcal{G}(\mathcal{S}_t^k)}}.$$

810 A.4 MISSING APPROACHES FOR SOLVING AUXILIARY PROBLEM IN LINE 7
811812 **Fresh Data.** Let us assume that the target client can obtain new samples from distribution \mathcal{D}_1 at any
813 moment in time.814 **Additional Validation Data.** Alternatively, one can assume that the target client has an additional
815 validation dataset $\widehat{\mathcal{D}}$ sampled from \mathcal{D}_1 . Then, instead of function f in Line 7, one can approximately
816 minimize

817
$$\widehat{f}(x) = \frac{1}{|\widehat{\mathcal{D}}|} \sum_{\xi \in \widehat{\mathcal{D}}} f_\xi(x), \quad (13)$$

818

819 which under certain conditions provably approximates the original function $f(x)$ with any predefined
820 accuracy if the dataset $\widehat{\mathcal{D}}$ is sufficiently large (Shalev-Shwartz et al., 2009; Feldman & Vondrak,
821 2019). More precisely, the worst-case guarantees (e.g., (Liu & Tong, 2024)) imply that to guarantee
822 $\mathbb{E}[f(\widehat{x}^*) - f(x^*)] \leq \delta$, where $\widehat{x}^* \in \arg \min_{x \in \mathbb{R}^d} \widehat{f}(x)$ and $x^* \in \arg \min_{x \in \mathbb{R}^d} f(x)$, the validation
823 dataset should be of the size $|\widehat{\mathcal{D}}| \sim \max\{L/\mu, 1/\mu\delta\}$ under the assumption that $f_\xi(x)$ is μ -strongly
824 convex. However, as we observe in our experiments, MeritFed works well even with a relatively
825 small size of the validation dataset for non-convex problems.826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B PROOF OF THEOREM 1**
 865

866 We the theorem divide the proof into two parts: $K = 1$ and $K > 1$.
 867

868 **B.1 NO LOCAL STEPS ($K = 1$)**
 869

870 **Theorem 3.** *Let Assumptions 1 holds. Then after T iterations of MeritFed with $\gamma \leq \frac{1}{2L}$ outputs*
 871 *x^t , $t = 0, \dots, T - 1$ such that*
 872

873
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \frac{2(f(x^0) - f(x^*))}{T\gamma} + \frac{2\sigma^2\gamma L}{G} + \frac{2\delta}{\gamma}, \quad (14)$$

 874

875 *where δ is the accuracy of solving the problem in Line 7 and $G = |\mathcal{G}|$. Moreover if Assumption 3*
 876 *additionally holds, then after T iterations of MeritFed with $\gamma \leq \frac{1}{2L}$ outputs x^T such that*
 877

878
$$\mathbb{E} f(x^T) - f^* \leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \frac{\sigma^2\gamma L}{\mu G} + \frac{\delta}{\gamma\mu}. \quad (15)$$

 879

880 *Proof.* We write g_i^t or simply g_i instead of $g_i(x^t, \xi_i^t)$ when there is no ambiguity. Then, the update
 881 rule in MeritFed can be written as
 882

883
$$x^{t+1} = x^t - \gamma \sum_{i=0}^{n-1} w_i^{t+1} g_i(x^t),$$

 884

885 where w^{t+1} is an approximate solution of
 886

887
$$\min_{w \in \Delta_1^n} f\left(x^t - \gamma \sum_{i=0}^{n-1} w_i g_i(x^t)\right)$$

 888

889 that satisfies
 890

891
$$\mathbb{E}[f(x^{t+1})|x^t, \xi^t] - \min_w f\left(x^t - \gamma \sum_{i=0}^{n-1} w_i g_i(x^t)\right) \leq \delta.$$

 892

893 By definition of the minimum, we have
 894

895
$$\begin{aligned} \min_{w \in \Delta_1^n} f\left(x^t - \gamma \sum_{i=0}^{n-1} w_i g_i(x^t)\right) &\leq f\left(x^t - \frac{\gamma}{G} \sum_{i \in \mathcal{G}} g_i(x^t)\right) \\ 896 &\stackrel{(\text{Lip})}{\leq} f(x^t) - \frac{\gamma}{G} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G}} g_i(x^t) \right\rangle + \frac{L\gamma^2}{2} \left\| \frac{1}{G} \sum_{i \in \mathcal{G}} g_i(x^t) \right\|^2 \\ 897 &\leq f(x^t) - \frac{\gamma}{G} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G}} g_i(x^t) \right\rangle + \gamma^2 L \left\| \nabla f(x^t) - \frac{1}{G} \sum_{i \in \mathcal{G}} g_i(x^t) \right\|^2 \\ 898 &\quad + \gamma^2 L \|\nabla f(x^t)\|^2. \end{aligned}$$

 899

900 The last two inequalities imply
 901

902
$$\begin{aligned} \mathbb{E}[f(x^{t+1})|x^t, \xi^t] &\leq f(x^t) - \frac{\gamma}{G} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G}} g_i(x^t) \right\rangle + \gamma^2 L \left\| \nabla f(x^t) - \frac{\sum_{i \in \mathcal{G}} g_i(x^t)}{G} \right\|^2 \\ 903 &\quad + \gamma^2 L \|\nabla f(x^t)\|^2 + \delta. \end{aligned}$$

 904

918 Taking the full expectation we get
 919

$$\begin{aligned}
 \mathbb{E}[f(x^{t+1})] &\leq \mathbb{E}[f(x^t)] - \gamma(1 - \gamma L)\mathbb{E}[\|\nabla f(x^t)\|^2] \\
 &\quad + \gamma^2 L \mathbb{E}\left[\left\|\nabla f(x^t) - \frac{\sum_{i \in \mathcal{G}} g_i(x^t)}{G}\right\|^2\right] + \delta \\
 &\stackrel{\gamma \leq \frac{1}{2L}}{\leq} \mathbb{E}[f(x^t)] - \frac{\gamma}{2}\mathbb{E}[\|\nabla f(x^t)\|^2] + \frac{\gamma^2 L}{G^2} \sum_{i \in \mathcal{G}} \mathbb{E}[\|\nabla f(x^t) - g_i(x^t)\|^2] + \delta \\
 &\stackrel{(10)}{\leq} \mathbb{E}[f(x^t)] - \frac{\gamma}{2}\mathbb{E}[\|\nabla f(x^t)\|^2] + \frac{\gamma^2 L \sigma^2}{G} + \delta. \tag{16}
 \end{aligned}$$

920 The above is equivalent to
 921

$$\frac{\gamma}{2}\mathbb{E}\|\nabla f(x^t)\|^2 \leq \mathbb{E}f(x^t) - \mathbb{E}f(x^{t+1}) + \frac{\sigma^2 \gamma^2 L}{G} + \delta,$$

922 which concludes the first part of the proof.
 923

924 Next, summing the inequality for $t \in \{0, 1, \dots, T-1\}$ leads to
 925

$$\begin{aligned}
 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x^t)\|^2 &\leq \frac{2(f(x^0) - \mathbb{E}f(x^T))}{T\gamma} + \frac{2\sigma^2 \gamma L}{G} + \frac{2\delta}{\gamma} \\
 &\leq \frac{2(f(x^0) - f(x^*))}{T\gamma} + \frac{2\sigma^2 \gamma L}{G} + \frac{2\delta}{\gamma}.
 \end{aligned}$$

926 Combining (16) with (PL) gives
 927

$$\gamma\mu\mathbb{E}[f(x^t) - f^*] \leq \frac{\gamma}{2}\mathbb{E}[\|\nabla f(x^t)\|^2] \leq \mathbb{E}[f(x^t)] - \mathbb{E}[f(x^{t+1})] + \frac{\gamma^2 L \sigma^2}{G} + \delta,$$

928 or equivalently
 929

$$\mathbb{E}[f(x^{t+1})] - f^* \leq (1 - \gamma\mu)\mathbb{E}[f(x^t) - f^*] + \frac{\gamma^2 L \sigma^2}{G} + \delta.$$

930 The above unrolls as
 931

$$\begin{aligned}
 \mathbb{E}f(x^T) - f^* &\leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \left(\frac{\sigma^2 \gamma^2 L}{G} + \delta\right) \sum_{t=0}^{T-1} (1 - \gamma\mu)^t \\
 &\leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \left(\frac{\sigma^2 \gamma^2 L}{G} + \delta\right) \sum_{t=0}^{\infty} (1 - \gamma\mu)^t \\
 &\leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \frac{\gamma L \sigma^2}{\mu G} + \frac{\delta}{\gamma\mu},
 \end{aligned}$$

932 which is the result of the theorem (15). \square
 933

934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 B.2 LOCAL STEPS ($K > 1$)
973

974 The derivation is based on Reddi et al. (2020).

975 **Lemma 1.** For independent, mean 0 random variables z_1, \dots, z_r , we have
976

977
$$\mathbb{E} [\|z_1 + \dots + z_r\|^2] = \mathbb{E} [\|z_1\|^2 + \dots + \|z_r\|^2].$$

978 **Lemma 2.** For any step-size satisfying $\gamma_l \leq \frac{1}{3LK}$, we can bound the drift for any $k \in \{0, \dots, K-1\}$
979 as
980

981
$$\frac{1}{G} \sum_{i=1}^G \mathbb{E} \|x_{i,k}^t - x_t\|^2 \leq 5K\gamma_l^2\sigma_G^2 + 20K^2\gamma_l^2\mathbb{E}[\|\nabla f(x_t))\|^2]. \quad (17)$$

982

983 *Proof.* The result trivially holds for $k = 1$ since $x_{i,0}^t = x_t$ for all $i \in [m]$. We now turn our attention
984 to the case where $k \geq 1$. To prove the above result, we observe that for any client $i \in [m]$ and
985 $k \in [K]$,

986
$$\begin{aligned} \mathbb{E} \|x_{i,k}^t - x_t\|^2 &= \mathbb{E} \|x_{i,k-1}^t - x_t - \gamma_l g_{i,k-1}^t\|^2 \\ &\leq \mathbb{E} \|x_{i,k-1}^t - x_t - \gamma_l(g_{i,k-1}^t - \nabla f(x_{i,k-1}^t) + \nabla f(x_{i,k-1}^t) - \nabla f(x_t) + \nabla f(x_t))\|^2 \\ &\leq \left(1 + \frac{1}{2K-1}\right) \mathbb{E} \|x_{i,k-1}^t - x_t\|^2 + \mathbb{E} \|\gamma_l(g_{i,k-1}^t - \nabla f(x_{i,k-1}^t))\|^2 \\ &\quad + 4K\mathbb{E}[\|\gamma_l(\nabla f(x_{i,k-1}^t) - \nabla f(x_t))\|^2] + 4K\mathbb{E}[\|\gamma_l\nabla f(x_t))\|^2] \end{aligned}$$

992

993 The first inequality uses the fact that $g_{i,k-1}^t$ is an unbiased estimator of $\nabla f(x_{i,k-1}^t)$ and Lemma 1.
994 The above quantity can be further bounded by the following:

995
$$\begin{aligned} \mathbb{E} \|x_{i,k}^t - x_t\|^2 &\leq \left(1 + \frac{1}{2K-1}\right) \mathbb{E} \|x_{i,k-1}^t - x_t\|^2 + \gamma_l^2\sigma_G^2 + 4K\gamma_l^2\mathbb{E}\|L(x_{i,k-1}^t - x_t)\|^2 \\ &\quad + 4K\mathbb{E}[\|\gamma_l\nabla f(x_t))\|^2] \\ &= \left(1 + \frac{1}{2K-1} + 4K\gamma_l^2L^2\right) \mathbb{E} \|x_{i,k-1}^t - x_t\|^2 + \gamma_l^2\sigma_G^2 \\ &\quad + 4K\gamma_l^2\mathbb{E}[\|\nabla f(x_t))\|^2] \\ &= \left(1 + \frac{1}{K-1}\right) \mathbb{E} \|x_{i,k-1}^t - x_t\|^2 + \gamma_l^2\sigma_G^2 \\ &\quad + 4K\gamma_l^2\mathbb{E}[\|\nabla f(x_t))\|^2] \end{aligned}$$

1005

1006 Here, the first inequality follows from Assumption 1, and the last one from $4K\gamma_l^2L^2 \leq \frac{4}{9K}$ the
1007 following chain:
1008

1009
$$\frac{1}{2K-1} = \frac{1}{2K-1} \pm \frac{1}{K-1} = \frac{1}{K-1} - \frac{K}{(2K-1)(K-1)} \leq \frac{1}{K-1} - \frac{4}{9K}.$$

1010

1011 Averaging over the clients i , we obtain the following:

1012
$$\begin{aligned} \frac{1}{G} \sum_{i=1}^G \mathbb{E} \|x_{i,k}^t - x_t\|^2 &\leq \left(1 + \frac{1}{K-1}\right) \frac{1}{G} \sum_{i=1}^G \mathbb{E} \|x_{i,k-1}^t - x_t\|^2 + \gamma_l^2\sigma_G^2 \\ &\quad + 4K\gamma_l^2\mathbb{E}[\|\nabla f(x_t))\|^2] \end{aligned}$$

1015

1016 Unrolling the recursion, we obtain the following:
1017

1018
$$\begin{aligned} \frac{1}{G} \sum_{i=1}^G \mathbb{E} \|x_{i,k}^t - x_t\|^2 &\leq \sum_{p=0}^{k-1} \left(1 + \frac{1}{K-1}\right)^p [\gamma_l^2\sigma_G^2 + 4K\gamma_l^2\mathbb{E}[\|\nabla f(x_t))\|^2]] \\ &\leq (K-1) \times \left[\left(1 + \frac{1}{K-1}\right)^K - 1\right] \times [\gamma_l^2\sigma_G^2 + 4K\gamma_l^2\mathbb{E}[\|\nabla f(x_t))\|^2]] \\ &\leq 5K\gamma_l^2\sigma_G^2 + 20K^2\gamma_l^2\mathbb{E}[\|\nabla f(x_t))\|^2], \end{aligned}$$

1023

1024 concluding the proof of Lemma 2. The last inequality uses the fact that $(1 + \frac{1}{K-1})^K \leq 5$ for
1025 $K > 1$. \square

1026
1027 **Theorem 4.** Let Assumptions 1 holds. Then after T iterations of *MeritFed* with $\gamma = 2$, $\gamma_l \leq \frac{1}{12LK}$
1028 outputs x^t , $t = 0, \dots, T-1$ such that

1029
1030
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \frac{4(f(x^0) - \mathbb{E} f(x^T))}{\gamma_l KT} + 24\gamma_l^2 KL^2 \sigma_G^2 + \frac{32\gamma_l L \sigma_G^2}{G} + \frac{4\delta}{\gamma_l K},$$

1031

1032 where δ is the accuracy of solving the problem in Line 7 and $G = |\mathcal{G}|$. Moreover if Assumption 3
1033 additionally holds, then after T iterations of *MeritFed* outputs x^T such that
1034

1035
1036
$$\mathbb{E}[f(x^T) - f^*] \leq \left(1 - \frac{\mu\gamma_l K}{2}\right)^T [f(x^0) - f^*] + \frac{12\gamma_l^2 KL^2 \sigma_G^2}{\mu} + \frac{16\gamma_l L \sigma_G^2}{\mu G} + \frac{2\delta}{\mu\gamma_l K}.$$

1037

1038
1039 *Proof.* We write g_i^t or simply g_i instead of $g_i(x^t, \xi_i^t)$ when there is no ambiguity. Then, the update
1040 rule in *MeritFed* can be written as
1041

1042
1043
$$x^{t+1} = x^t + \gamma \sum_{i=0}^{n-1} w_i^{t+1} \Delta_i^t,$$

1044

1045 where w^{t+1} is an approximate solution of
1046

1047
1048
$$\min_{w \in \Delta_1^n} f\left(x^t + \gamma \sum_{i=0}^{n-1} w_i \Delta_i^t\right)$$

1049

1050 that satisfies
1051

1052
1053
$$\mathbb{E}[f(x^{t+1})|x^t, \xi^t] - \min_w f\left(x^t + \gamma \sum_{i=0}^{n-1} w_i \Delta_i^t\right) \leq \delta.$$

1054

1055 By definition of the minimum, we have
1056

1057
1058
$$\min_{w \in \Delta_1^n} f\left(x^t + \gamma \sum_{i=0}^{n-1} w_i \Delta_i^t\right) \leq f\left(x^t + \frac{\gamma}{G} \sum_{i \in \mathcal{G}} \Delta_i^t\right)$$

1059
1060
$$\stackrel{(\text{Lip})}{\leq} f(x^t) + \frac{\gamma}{G} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G}} \Delta_i^t \right\rangle + \frac{L\gamma^2}{2} \left\| \frac{1}{G} \sum_{i \in \mathcal{G}} \Delta_i^t \right\|^2$$

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Next we bound

$$\begin{aligned} \mathbb{E} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G}} \Delta_i^t + \gamma_l K G \nabla f(x^t) \right\rangle &= \mathbb{E} \left\langle \nabla f(x^t), \gamma_l K G \nabla f(x^t) - \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \gamma_l g_{i,k}^t \right\rangle \\ &\leq \frac{\gamma_l K G}{2} \|\nabla f(x^t)\|^2 + \frac{1}{2\gamma_l K G} \left\| \gamma_l \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} (\nabla f(x^t) - \nabla f(x_{i,k}^t)) \right\|^2 \\ &\leq \frac{\gamma_l K G}{2} \|\nabla f(x^t)\|^2 + \frac{L^2 \gamma_l}{2} \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \|x^t - x_{i,k}^t\|^2, \end{aligned}$$

where we used unbiasedness given by Assumption 1, and

$$\begin{aligned}
& \left\| \sum_{i \in \mathcal{G}} \Delta_i^t \right\|^2 = \left\| \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \gamma_l g_{i,k}^t \right\|^2 \\
& \leq 2 \left\| \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \gamma_l g_{i,k}^t - \gamma_l K G \nabla f(x^t) \right\|^2 + 2 \|\gamma_l K G \nabla f(x^t)\|^2 \\
& \leq 2 \left\| \gamma_l \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} (g_{i,k}^t - \nabla f(x_{i,k}^t)) + (\nabla f(x_{i,k}^t) - \nabla f(x^t)) \right\|^2 + 2 \|\gamma_l K G \nabla f(x^t)\|^2 \\
& \leq 4\gamma_l^2 K G \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \|g_{i,k}^t - \nabla f(x_{i,k}^t)\|^2 + 4\gamma_l^2 K G \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \|\nabla f(x_{i,k}^t) - \nabla f(x^t)\|^2 \\
& \quad + 2 \|\gamma_l K G \nabla f(x^t)\|^2 \\
& \leq 4\gamma_l^2 K G \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \|g_{i,k}^t - \nabla f(x_{i,k}^t)\|^2 + 4\gamma_l^2 K G \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \|\nabla f(x_{i,k}^t) - \nabla f(x^t)\|^2 \\
& \quad + 2 \|\gamma_l K G \nabla f(x^t)\|^2 \\
& \leq 4\gamma_l^2 K G \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \|g_{i,k}^t - \nabla f(x_{i,k}^t)\|^2 + 4\gamma_l^2 K G L^2 \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \|x_{i,k}^t - x^t\|^2 \\
& \quad + 2 \|\gamma_l K G \nabla f(x^t)\|^2.
\end{aligned}$$

Taking an expectation we obtain

$$\mathbb{E} \left\| \sum_{i \in \mathcal{G}} \Delta_i^t \right\|^2 \leq 4\gamma_l^2 K G \sigma_G^2 + 4\gamma_l^2 K G L^2 \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \mathbb{E} \|x_{i,k}^t - x^t\|^2 + 2 \|\gamma_l K G \nabla f(x^t)\|^2.$$

The inequalities above imply

$$\begin{aligned}
& \mathbb{E} f(x^{t+1}) \\
& \leq \mathbb{E} f(x^t) - \gamma \gamma_l K \mathbb{E} \|\nabla f(x^t)\|^2 + \frac{\gamma_l \gamma K}{2} \mathbb{E} \|\nabla f(x^t)\|^2 + \frac{\gamma_l \gamma L^2}{2G} \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \mathbb{E} \|x^t - x_{i,k}^t\|^2 \\
& \quad + \frac{2\gamma_l^2 \gamma^2 K L \sigma_G^2}{G} + \frac{2\gamma_l^2 K L^3}{G} \sum_{i \in \mathcal{G}} \sum_{k=0}^{K-1} \mathbb{E} \|x_{i,k}^t - x^t\|^2 + L \gamma_l^2 \gamma^2 K^2 \mathbb{E} \|\nabla f(x^t)\|^2 + \delta \\
& \stackrel{\text{Lemma 2}}{\leq} \mathbb{E} f(x^t) - \frac{\gamma_l \gamma K}{2} \mathbb{E} \|\nabla f(x^t)\|^2 + \frac{\gamma_l \gamma L^2}{2} K (5K \gamma_l^2 \sigma_G^2 + 20K^2 \gamma_l^2 \mathbb{E} \|\nabla f(x^t)\|^2) \\
& \quad + \frac{2\gamma_l^2 \gamma^2 K L \sigma_G^2}{G} + 2\gamma_l^2 K^2 L^3 (5K \gamma_l^2 \sigma_G^2 + 20K^2 \gamma_l^2 \mathbb{E} \|\nabla f(x^t)\|^2) \\
& \quad + L \gamma_l^2 \gamma^2 K^2 \mathbb{E} \|\nabla f(x^t)\|^2 + \delta \\
& = \mathbb{E} f(x^t) + \frac{\gamma_l K}{2} \{ \gamma L^2 20K^2 \gamma_l^2 + 80\gamma_l^3 K^3 L^3 + 2L \gamma^2 \gamma_l K - \gamma \} \mathbb{E} \|\nabla f(x^t)\|^2 \\
& \quad + \frac{5K^2 \gamma_l^3 \sigma_G^2 \gamma L^2}{2} + \frac{2\gamma_l^2 \gamma^2 K L \sigma_G^2}{G} + 10\gamma_l^4 K^3 L^3 \sigma_G^2 + \delta
\end{aligned}$$

1134 Setting $\gamma_l \leq \frac{1}{12LK}$, $\gamma = 2$ we obtain
 1135

$$\begin{aligned}
 1136 \quad & \mathbb{E}f(x^{t+1}) \\
 1137 \leq & \mathbb{E}f(x^t) - \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 + 10\gamma_l^4 K^3 L^3 \sigma_G^2 + 5\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta \\
 1138 \leq & \mathbb{E}f(x^t) - \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 + \frac{10}{12}\gamma_l^3 K^2 L^2 \sigma_G^2 + 5\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta \\
 1139 \leq & \mathbb{E}f(x^t) - \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta \\
 1140 \leq & \mathbb{E}f(x^t) - \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta \\
 1141 \leq & \mathbb{E}f(x^t) - \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta \\
 1142 \leq & \mathbb{E}f(x^t) - \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta \\
 1143 \leq & \mathbb{E}f(x^t) - \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta \\
 1144
 \end{aligned}$$

1145 The above is equivalent to

$$1146 \quad \frac{\gamma_l K}{4} \mathbb{E}\|\nabla f(x^t)\|^2 \leq \mathbb{E}f(x^t) - \mathbb{E}f(x^{t+1}) + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta,$$

1149 which concludes the first part of the proof.

1150 Next, summing the inequality for $t \in \{0, 1, \dots, T-1\}$ leads to

$$\begin{aligned}
 1151 \quad & \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x^t)\|^2 \\
 1152 \leq & \frac{4(f(x^0) - \mathbb{E}f(x^T))}{\gamma_l K T} + 24\gamma_l^2 K L^2 \sigma_G^2 + \frac{32\gamma_l L \sigma_G^2}{G} + \frac{4\delta}{\gamma_l K} \\
 1153 \leq & \frac{4(f(x^0) - \mathbb{E}f(x^T))}{\gamma_l K T} + 24\gamma_l^2 K L^2 \sigma_G^2 + \frac{32\gamma_l L \sigma_G^2}{G} + \frac{4\delta}{\gamma_l K} \\
 1154
 \end{aligned}$$

1155 Combining (16) with (PL) gives

$$\begin{aligned}
 1156 \quad & \frac{\mu\gamma_l K}{2} \mathbb{E}[f(x^t) - f^*] \leq \frac{\gamma_l K}{4} \mathbb{E}[\|\nabla f(x^t)\|^2] \\
 1157 \leq & \mathbb{E}[f(x^t)] - \mathbb{E}[f(x^{t+1})] + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta, \\
 1158
 \end{aligned}$$

1159 or equivalently

$$1160 \quad \mathbb{E}[f(x^{t+1}) - f^*] \leq \left(1 - \frac{\mu\gamma_l K}{2}\right) \mathbb{E}[f(x^t) - f^*] + 6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta.$$

1161 The above unrolls as

$$\begin{aligned}
 1162 \quad & \mathbb{E}[f(x^T) - f^*] \\
 1163 \leq & \left(1 - \frac{\mu\gamma_l K}{2}\right)^T (f(x^0) - f^*) \\
 1164 + & \left(6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta\right) \sum_{t=0}^{T-1} \left(1 - \frac{\mu\gamma_l K}{2}\right)^t \\
 1165 \leq & \left(1 - \frac{\mu\gamma_l K}{2}\right)^T (f(x^0) - f^*) \\
 1166 + & \left(6\gamma_l^3 K^2 L^2 \sigma_G^2 + \frac{8\gamma_l^2 K L \sigma_G^2}{G} + \delta\right) \sum_{t=0}^{\infty} \left(1 - \frac{\mu\gamma_l K}{2}\right)^t \\
 1167 \leq & \left(1 - \frac{\mu\gamma_l K}{2}\right)^T (f(x^0) - f^*) + \frac{12\gamma_l^2 K L^2 \sigma_G^2}{\mu} + \frac{16\gamma_l L \sigma_G^2}{\mu G} + \frac{2\delta}{\mu\gamma_l K} \\
 1168
 \end{aligned}$$

1169 which is the result of the theorem (15). □

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 **C PROOF OF THEOREM 2**
 1189

1190 **Theorem 5.** *Let Assumptions 1 and 2 hold with $G = |\mathcal{G}| > 0$, $F = |\mathcal{F}| > 0$, $\nu \leq \frac{G}{F}$. Then after T
 1191 iterations of MeritFed with $\gamma \leq \frac{1}{8L}$ outputs x^t , $t = 0, \dots, T-1$ such that*
 1192

$$1193 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \frac{4(f(x^0) - \mathbb{E} f(x^T))}{\gamma T} + \frac{8\gamma LG\sigma_{\mathcal{G}}^2}{(G+F)^2} + \frac{8\gamma LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \frac{2\rho^2 F}{G+F} + \frac{4\delta}{\gamma}, \quad (18)$$

1194 where δ is the accuracy of solving the problem in Line 7. Moreover if Assumption 3 additionally
 1195 holds, then after T iterations of MeritFed with $\gamma \leq \frac{1}{8L}$ outputs x^T such that
 1196

$$1197 \mathbb{E} f(x^T) - f^* \leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \frac{4\gamma LG\sigma_{\mathcal{G}}^2}{\mu(G+F)^2} + \frac{4\gamma LF\sigma_{\mathcal{F}}^2}{\mu(G+F)^2} + \frac{\rho^2}{\mu} \frac{F}{G+F} + \frac{2\delta}{\gamma\mu}. \quad (19)$$

1200 *Proof.* We write g_i^t or simply g_i instead of $g_i(x^t, \xi_i^t)$ when there is no ambiguity. Then, the update
 1201 rule of MeritFed can be written as
 1202

$$1203 \quad x^{t+1} = x^t - \gamma \sum_{i=0}^{n-1} w_i^{t+1} g_i(x^t),$$

1204 where w^{t+1} is an approximate solution of
 1205

$$1206 \min_{w \in \Delta_1^n} f\left(x^t - \gamma \sum_{i=0}^{n-1} w_i g_i(x^t)\right)$$

1207 that satisfies
 1208

$$1209 \mathbb{E}[f(x^{t+1})|x^t, \xi^t] - \min_w f\left(x^t - \gamma \sum_{i=0}^{n-1} w_i g_i(x^t)\right) \leq \delta.$$

1210 By definition of the minimum, we have
 1211

$$1212 \begin{aligned} \min_{w \in \Delta_1^n} f\left(x^t - \gamma \sum_{i=0}^{n-1} w_i g_i(x^t)\right) &\leq f\left(x^t - \frac{\gamma}{G+F} \sum_{i \in \mathcal{G} \cup \mathcal{F}} g_i(x^t)\right) \\ 1213 &\stackrel{(Lip)}{\leq} f(x^t) - \frac{\gamma}{G+F} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G} \cup \mathcal{F}} g_i(x^t) \right\rangle + \frac{L\gamma^2}{2} \left\| \frac{1}{G+F} \sum_{i \in \mathcal{G} \cup \mathcal{F}} g_i(x^t) \right\|^2 \\ 1214 &\leq f(x^t) + \frac{2\gamma^2 LG^2}{(G+F)^2} \|\nabla f(x^t)\|^2 + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\|^2 \\ 1215 &\quad - \frac{\gamma}{G+F} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G}} g_i(x^t) \right\rangle + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{G}} \nabla f(x^t) - g_i(x^t) \right\|^2 \\ 1216 &\quad - \frac{\gamma}{G+F} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{F}} g_i(x^t) \right\rangle + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{F}} \nabla f_i(x^t) - g_i(x^t) \right\|^2. \end{aligned}$$

1217 The last two inequalities imply
 1218

$$1219 \begin{aligned} \mathbb{E}[f(x^{t+1})|x^t, \xi^t] &\leq f(x^t) + \frac{2\gamma^2 LG^2}{(G+F)^2} \|\nabla f(x^t)\|^2 + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\|^2 + \delta. \\ 1220 &\quad - \frac{\gamma}{G+F} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{G}} g_i(x^t) \right\rangle + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{G}} \nabla f(x^t) - g_i(x^t) \right\|^2 \\ 1221 &\quad - \frac{\gamma}{G+F} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{F}} g_i(x^t) \right\rangle + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{F}} \nabla f_i(x^t) - g_i(x^t) \right\|^2. \end{aligned}$$

1242 Taking an expectation conditioned on x^t we get
 1243

$$\begin{aligned}
 1244 \mathbb{E}[f(x^{t+1})|x^t] & \\
 1245 & \leq f(x^t) - \frac{\gamma}{2} \left(1 - \frac{4\gamma LG^2}{(G+F)^2}\right) \|\nabla f(x^t)\|^2 + \frac{\gamma(F-G)}{2(G+F)} \|\nabla f(x^t)\|^2 + \frac{2\gamma^2 LG\sigma_G^2}{(G+F)^2} \\
 1246 & \quad - \frac{\gamma}{G+F} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\rangle + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\|^2 + \frac{2\gamma^2 LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \delta \\
 1247 & \stackrel{\gamma \leq \frac{(G+F)^2}{8LG^2}}{\leq} f(x^t) - \frac{\gamma}{4} \|\nabla f(x^t)\|^2 + \frac{2\gamma^2 LG\sigma_G^2}{(G+F)^2} + \frac{2\gamma^2 LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \delta \\
 1248 & \quad - \frac{\gamma}{G+F} \left\langle \nabla f(x^t), \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\rangle + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\|^2 \\
 1249 & \quad + \frac{\gamma(F-G)}{2(G+F)} \|\nabla f(x^t)\|^2 \\
 1250 & \quad + \frac{\gamma(F-G)}{2(G+F)} \|\nabla f(x^t)\|^2 \\
 1251 & \quad + \frac{\gamma(F-G)}{2(G+F)} \|\nabla f(x^t)\|^2 \\
 1252 & \quad + \frac{\gamma(F-G)}{2(G+F)} \|\nabla f(x^t)\|^2 \\
 1253 & \quad + \frac{\gamma(F-G)}{2(G+F)} \|\nabla f(x^t)\|^2 \\
 1254 & = f(x^t) - \frac{\gamma}{4} \|\nabla f(x^t)\|^2 + \frac{2\gamma^2 LG\sigma_G^2}{(G+F)^2} + \frac{2\gamma^2 LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \delta \\
 1255 & \quad + \frac{1}{2} \frac{\gamma F}{G+F} \left\| \frac{1}{F} \sum_{i \in \mathcal{F}} \nabla f_i(x^t) - \nabla f(x^t) \right\|^2 - \frac{1}{2} \frac{\gamma G}{G+F} \|\nabla f(x^t)\|^2 \\
 1256 & \quad - \frac{1}{2} \frac{\gamma F}{G+F} \left\| \frac{1}{F} \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\|^2 + \frac{2\gamma^2 L}{(G+F)^2} \left\| \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\|^2 \\
 1257 & \stackrel{(11)}{\leq} f(x^t) - \frac{\gamma}{4} \|\nabla f(x^t)\|^2 + \frac{2\gamma^2 LG\sigma_G^2}{(G+F)^2} + \frac{2\gamma^2 LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \delta + \frac{\rho^2}{2} \frac{\gamma F}{G+F} \\
 1258 & \quad + \frac{\nu}{2} \frac{\gamma F}{G+F} \|\nabla f(x^t)\|^2 - \frac{1}{2} \frac{\gamma G}{G+F} \|\nabla f(x^t)\|^2 \\
 1259 & \quad - \frac{1}{2} \frac{\gamma F}{G+F} \left(1 - \frac{2\gamma LF}{G+F}\right) \left\| \frac{1}{F} \sum_{i \in \mathcal{F}} \nabla f_i(x^t) \right\|^2
 \end{aligned} \tag{20}$$

1255 Next, since $\nu \leq \frac{G}{F}$ and $\gamma \leq \frac{1}{8L} \leq \frac{(G+F)}{4LF}$, we can take the full expectation from (21) and get
 1256

$$\frac{\gamma}{4} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \mathbb{E} f(x^t) - \mathbb{E} f(x^{t+1}) + \frac{2\gamma^2 LG\sigma_G^2}{(G+F)^2} + \frac{2\gamma^2 LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \frac{\rho^2}{2} \frac{\gamma F}{G+F} + \delta,$$

1257 Summing up the above inequality for $t \in \{0, 1, \dots, T-1\}$, we derive
 1258

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 \leq \frac{4(f(x^0) - \mathbb{E} f(x^T))}{\gamma T} + \frac{8\gamma LG\sigma_G^2}{(G+F)^2} + \frac{8\gamma LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \frac{2\rho^2 F}{G+F} + \frac{4\delta}{\gamma},$$

1259 which gives the first part of the result.
 1260

1261 Next, if Assumption 3 holds, we combine (22) with (PL):
 1262

$$\mathbb{E}[f(x^{t+1}) - f^*] \leq (1 - \gamma\mu) \mathbb{E}[f(x^t) - f^*] + \frac{4\gamma^2 LG\sigma_G^2}{(G+F)^2} + \frac{4\gamma^2 LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \frac{\gamma\rho^2 F}{G+F} + 2\delta.$$

1263 Unrolling the above recurrence, we obtain
 1264

$$\mathbb{E} f(x^T) - f^* \leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \frac{4\gamma LG\sigma_G^2}{\mu(G+F)^2} + \frac{4\gamma LF\sigma_{\mathcal{F}}^2}{\mu(G+F)^2} + \frac{\rho^2}{\mu} \frac{F}{G+F} + \frac{2\delta}{\gamma\mu}.$$

1265 \square

1296 **Theorem 6.** Let Assumptions 1 and 2 hold with $G = |\mathcal{G}|$, $F = |\mathcal{F}|$, $\nu \leq \frac{G}{F}$. Then after T iterations
 1297 of MeritFed with $\gamma \leq \frac{1}{8L}$ outputs x^t , $t = 0, \dots, T-1$ such that
 1298

$$\begin{aligned} 1299 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^t)\|^2 &\leq \frac{4(f(x^0) - f(x^*))}{T\gamma} \\ 1300 &+ \min \left\{ \frac{2\sigma^2\gamma L}{G} + \frac{2\delta}{\gamma}, \quad \frac{8\gamma LG\sigma_{\mathcal{G}}^2}{(G+F)^2} + \frac{8\gamma LF\sigma_{\mathcal{F}}^2}{(G+F)^2} + \frac{2\rho^2 F}{G+F} + \frac{4\delta}{\gamma} \right\}, \end{aligned} \quad (22)$$

1302 where δ is the accuracy of solving the problem in Line 7. Moreover if Assumption 3 additionally
 1303 holds, then after T iterations of MeritFed with $\gamma \leq \frac{1}{8L}$ outputs x^T such that
 1304

$$\mathbb{E} f(x^T) - f^* \leq (1 - \gamma\mu)^T (f(x^0) - f^*) + \quad (23)$$

$$\min \left\{ \frac{\sigma^2\gamma L}{\mu G} + \frac{\delta}{\gamma\mu}, \quad \frac{4\gamma LG\sigma_{\mathcal{G}}^2}{\mu(G+F)^2} + \frac{4\gamma LF\sigma_{\mathcal{F}}^2}{\mu(G+F)^2} + \frac{\rho^2}{\mu} \frac{F}{G+F} + \frac{2\delta}{\gamma\mu} \right\}, \quad (24)$$

1311 *Proof.* The results is a direct corollary of Theorems 3 and 5. □
 1312

1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350 **D ADDITIONAL EXPERIMENTS**
13511352
1353
13541355 Our code is available at <https://anonymous.4open.science/r/86315>.
13561357
1358
1359
1360
13611362 **D.1 HARDWARE**
13631364
13651366 We use a cluster with the following hardware: AMD EPYC 7552 48-Core CPU, 512GiB RAM,
1367 NVIDIA A100 80GB GPU, 200Gb storage space.
13681369
1370
1371
13721373 **D.2 EXPERIMENTAL SETUP FOR MEAN ESTIMATION PROBLEM**
13741375
13761377 We consider 150 clients with data distributed as follows: the first 5 workers have data from \mathcal{D}_1 (the
1378 first group of clients), the next 95 workers have data from \mathcal{D}_2 (the second group of clients), and the
1379 remaining 50 clients have data from \mathcal{D}_3 (the third group of clients). Each client has 1000 samples
1380 from the corresponding distribution, and the target client has additional 1000 samples for validation,
1381 i.e., for solving the problem in Line 7. The dimension of the problem is $d = 10$. Parameters that
1382 are the same for all experiments: number of peers = 150, number of samples = 1000, batch size
1383 = 100, learning rate = 0.01, number of steps for Mirror Descent = 50. For FedAvg, the number of
1384 sampled clients K is chosen from the set $\{5, 10\}$.
13851386
1387
1388
13891390 **D.3 RESULTS WITHOUT ADDITIONAL VALIDATION DATASET**
13911392
13931394 For MeritFed each worker calculates stochastic gradient using a batch size of 40; then the server
1395 performs 10 steps of Mirror Descent (or its stochastic version) with a batch-size of 30 (in case of
1396 stochastic version) and a learning rate of 0.1 to update weights of aggregation, and then performs
1397 a model parameters update with a learning rate of 0.01. The plots are averaged over 3 runs with
1398 different seeds. Additionally, accuracy plots show standard deviation.
13991400 In this section, we provide experiments without an additional dataset. Instead, we use the target client's
1401 train dataset to approximately solve the problem in Line 7. The results are provided in Figures 8-11
1402 (image classification) and Figures 12-15 (text classification). They show that MeritFed's behavior
1403 with and without additional validation data is almost the same. Thus, these preliminary results
give evidence that our method can be efficient in practice even when an extra validation dataset is
unavailable.

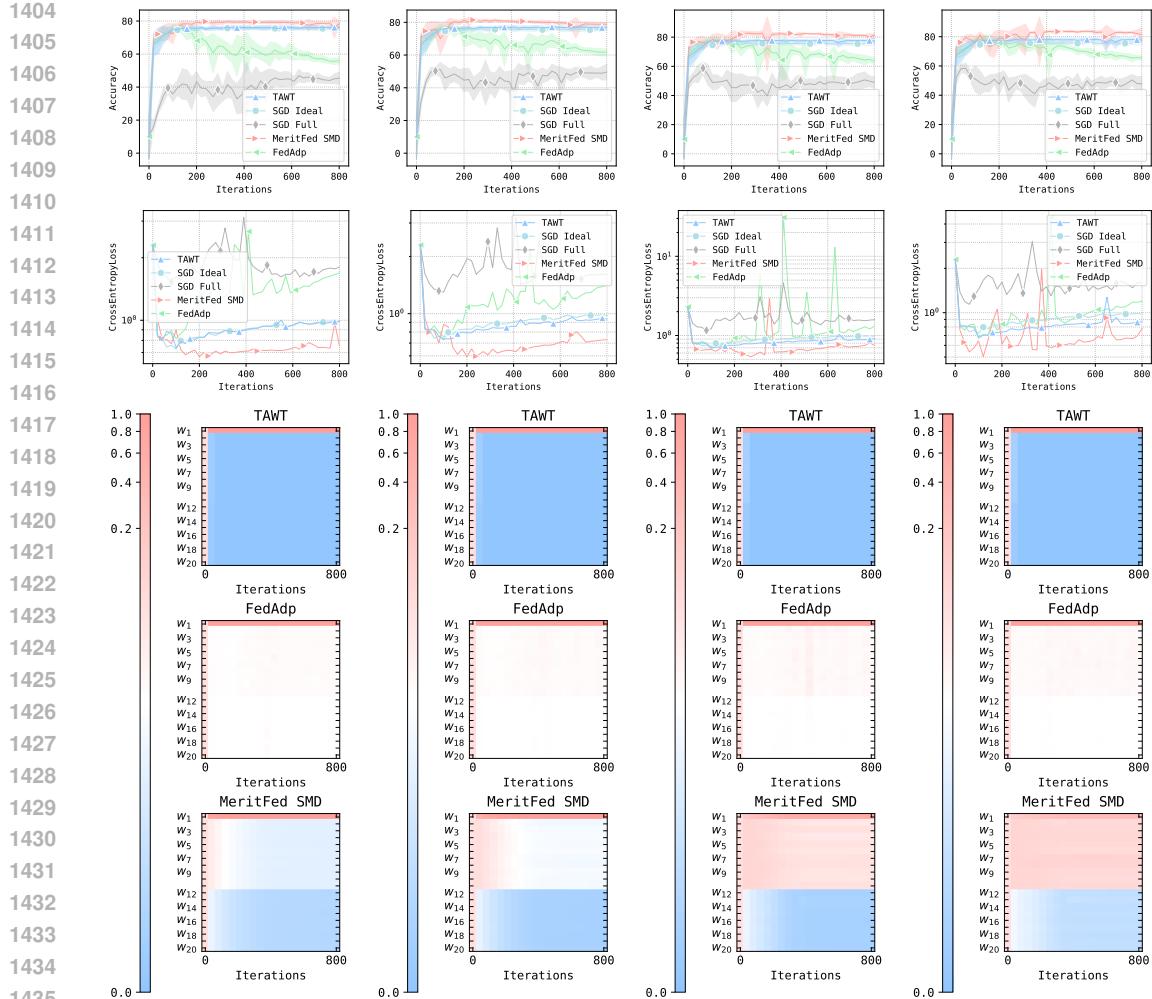


Figure 8: CIFAR10: $\alpha = 0.5$ Figure 9: CIFAR10: $\alpha = 0.7$ Figure 10: CIFAR10: $\alpha = 0.9$ Figure 11: CIFAR10: $\alpha = 0.99$

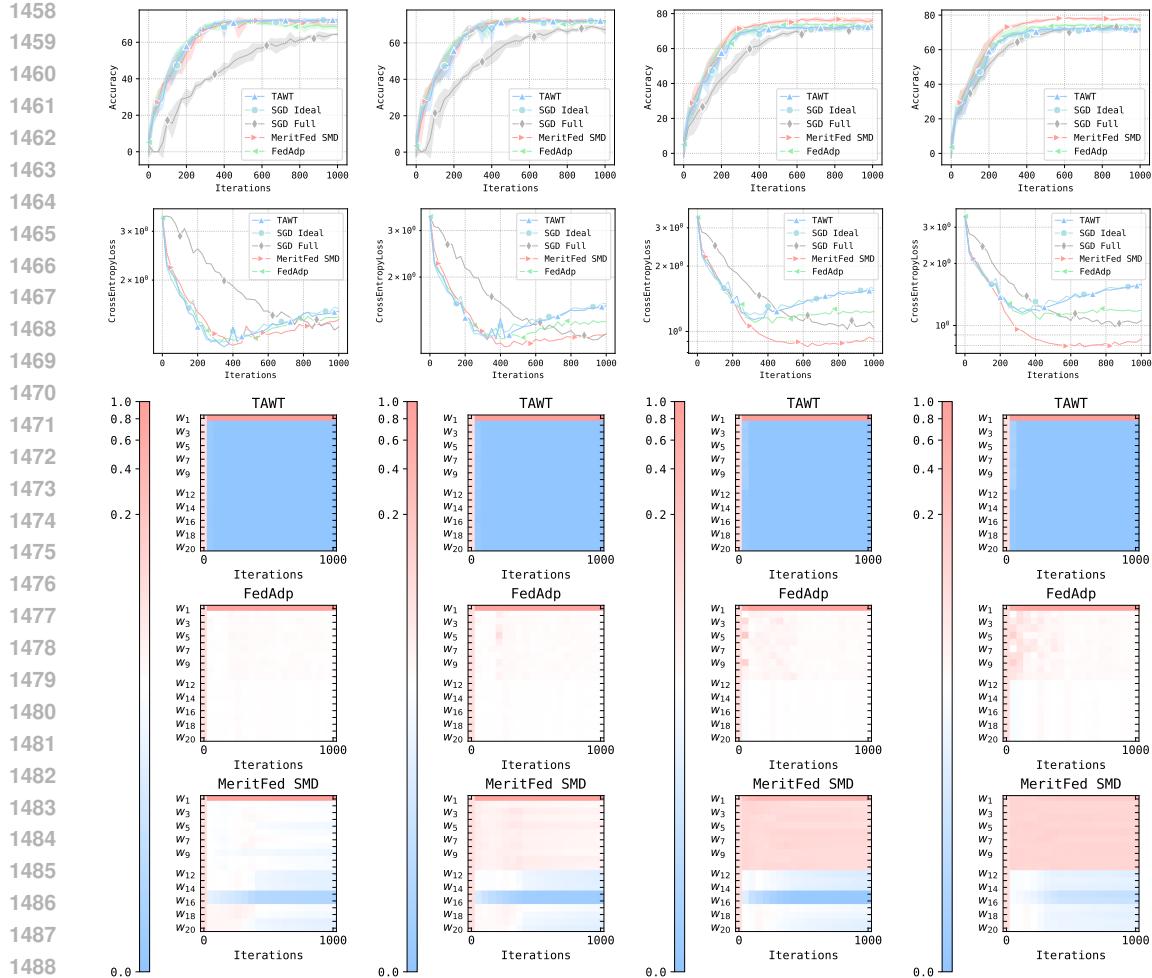


Figure 12: GoEmotions: $\alpha = 0.5$ Figure 13: GoEmotions: $\alpha = 0.7$ Figure 14: GoEmotions: $\alpha = 0.9$ Figure 15: GoEmotions: $\alpha = 0.99$

D.4 MISSING DETAILS FOR MEDMNIST EXPERIMENTS

Complete dataset-worker mapping is OrganSMNIST, OrganAMNIST, OrganCMNIST, PathMNIST, DermaMNIST, OCTMNIST, PneumoniaMNIST, RetinaMNIST, BreastMNIST, BloodMNIST, TissueMNIST. OrganSMNIST worker is the target one.

We employ the same hyperparameters as specified in (Yang et al., 2021), including an input resolution of 28x28, ResNet-18 architecture, entropy loss, a batch size of 128, and the Adam optimizer with an initial learning rate of 0.001. This setup is run for 100 epochs, with the learning rate decreased by a factor of 0.1 after 50 and 75 epochs. Additionally, we expand the number of channels for grayscale images, as originally done by the authors.

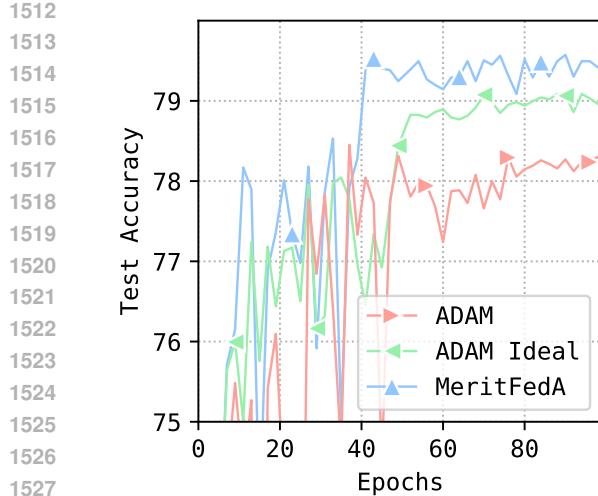


Figure 16: Test Accuracy for OrgansMNIST

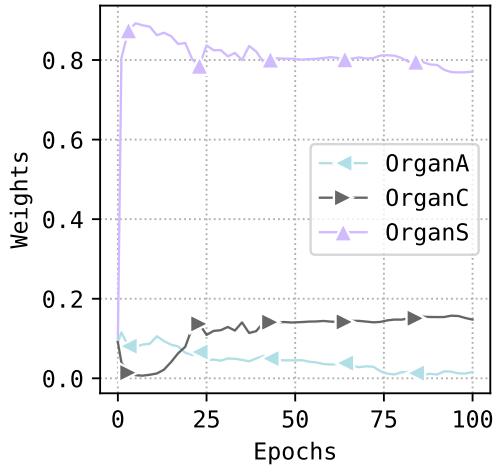


Figure 17: Evolution of Relevant Weights

OrganSMNIST worker is the target one. For the ADAM Ideal baseline, we use only the gradients from the target client and ignore the others. Moreover, we employ the same hyperparameters as specified in (Yang et al., 2021). See For ADAM baseline, we aggregate gradients uniformly from the first three workers, then proceed with the Adam step. For MeritFed, we maintain the same parameters but adjust the learning rate schedule to reduce after 40 and 75 epochs. The mirror descent learning rate is set at 0.1, with five iterations. To enable a fair comparison, we incorporate our adaptive aggregation technique into Adam optimizer, obtaining MeritFedA. It adaptively aggregates gradients before performing the Adam update. The gradient with respect to the weights is obtained by deriving the Adam update formula, where the gradient is replaced with its weighted counterpart. This derived gradient is then used to update the weights of aggregation via Mirror Descent. The experimental results, depicted in Figures 16 and 17 demonstrate the superior performance of MeritFed and its capability to identify workers that are beneficial for training.

D.5 ROBUSTNESS AGAINST BYZANTINE ATTACKS

MeritFed is robust to Byzantine attacks since our proof of Theorem 1 does not make any assumptions on the vectors received from the workers having different data distribution than the target client. This means that any worker $i \notin \mathcal{G}$ can send arbitrary vectors at each iteration, and MeritFed will still be able to converge. Moreover, MeritFed can tolerate Byzantine attacks even if Byzantine workers form a majority, e.g., the method converges even if all clients are Byzantine except for the target one.

To test the Byzantine robustness of our method on the mean estimation problem, we chose the total number of peers equal to 55 with the 50 clients being malicious. Malicious clients know the target distribution of the first 5 client and use it for performing IPM (with parameter $\varepsilon_{\text{IPM}} = 0.1$) (Xie et al., 2019) and ALIE (with parameter $z_{\text{ALIE}} = 100$) (Baruch et al., 2019) attacks. We also consider the Bit Flipping⁴ (BF) and the Random Noise⁵ (RN) attacks. The following choice of parameters is used: each client has 1000 samples from the corresponding distribution. The dimension of the problem is $d = 10$, learning rate = 0.01, number of steps for Mirror Descent = 10, learning rate for Mirror Descent = 3.5.

The results are presented in Figures 18-21. As expected, SGD Full does not converge under the considered attacks, and SGD Ideal shows the best results since, by design, it averages only with non-Byzantine workers. FedAdp has poor performance under ALIE attack and is quite unstable under RN attack. As in other experiments, TAWT is very biased towards the target client, which helps TAWT to tolerate Byzantine attacks, but it does not take extra advantage of averaging with clients

⁴Byzantine workers compute stochastic gradients g_i^k and send $-g_i^k$ to the server.

⁵Byzantine workers compute stochastic gradients g_i^k and send $g_i^k + \sigma \xi_i^k$ to the server, where $\xi_i^k \sim \mathcal{N}(0, \mathbf{I})$ and $\sigma = 1$.

1566 having the same distribution. Finally, MeritFed consistently shows comparable results to SGD
 1567 Ideal.
 1568

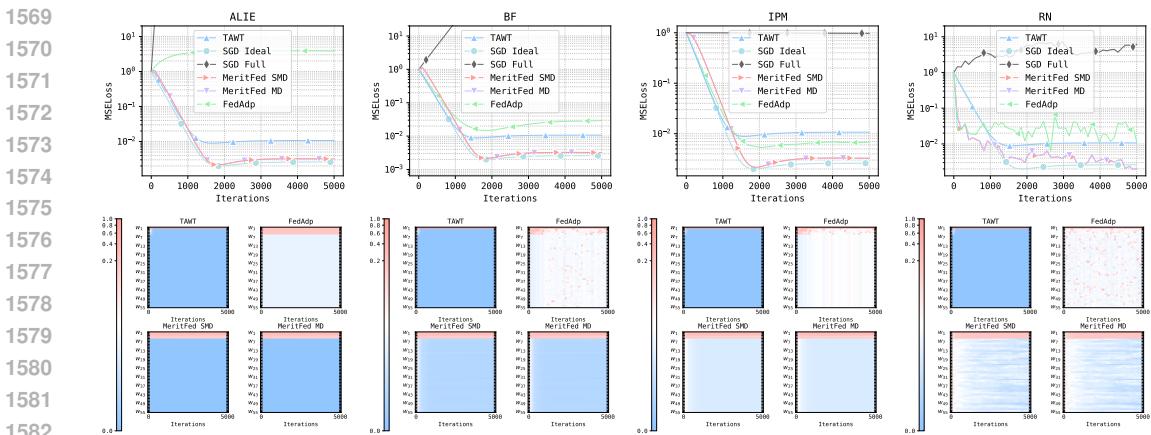


Figure 18: ALIE

Figure 19: BF

Figure 20: IPM

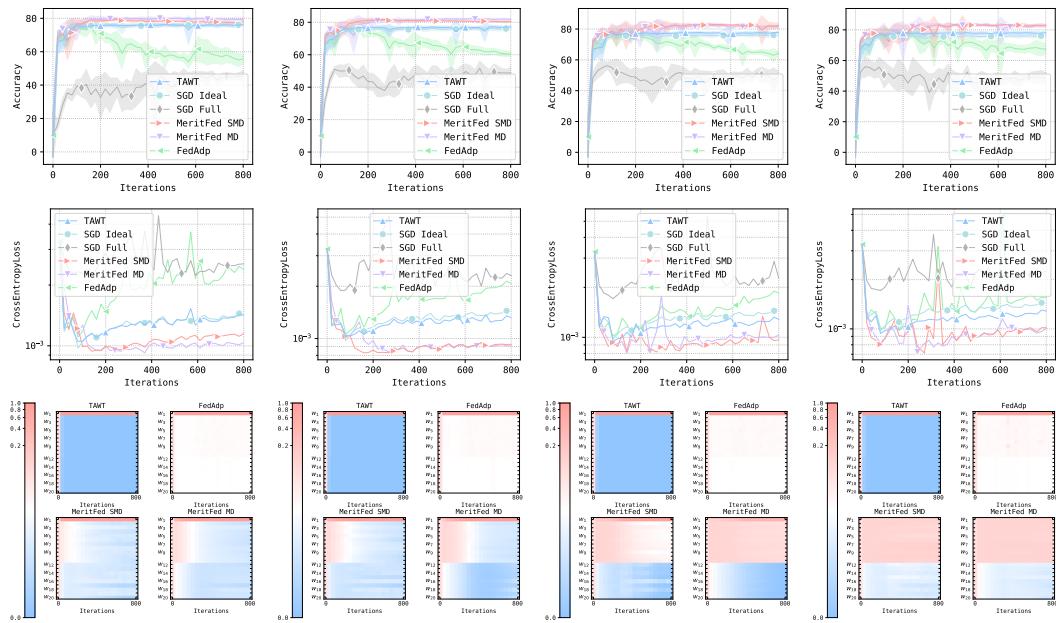
Figure 21: RN

1587 D.6 RESNET18+CIFAR10 1588

1589 **Image classification: CIFAR10 + ResNet18.** This part is devoted to image classification on the
 1590 CIFAR10 (Krizhevsky et al., 2009) dataset using ResNet18 (He et al., 2016) model and cross-entropy
 1591 loss. We consider 20 clients with data distributed as follows: the first worker has data from \mathcal{D}_1 (the
 1592 first group of clients), the next 10 workers have data from \mathcal{D}_2 (the second group of clients), and the
 1593 remaining 9 clients have data from \mathcal{D}_3 (the third group of clients). Specifically, the target client's
 1594 objective is to classify the first three classes: 0, 1, and 2. This client possesses data with these three
 1595 labels. The following ten workers (second group) also have datasets where a proportion, denoted by
 1596 $\alpha \in (0, 1]$, consists of classes from the set 0, 1, 2, while the remaining $1 - \alpha$ portion includes classes
 1597 from the set 3, 4, 5. The remaining clients (third group) have data from the rest, e.g., 6, 7, 8, 9 labeled.
 1598 The data is randomly distributed among clients without overlaps, adhering to the aforementioned
 1599 label restrictions. For MeritFed each worker calculates stochastic gradient using a batch size of
 1600 75; then the server performs 10 steps of Mirror Descent (or its stochastic version) with a batch-size
 1601 of 90 (in case of stochastic version) and a learning rate of 0.1 to update weights of aggregation,
 1602 and then performs a model parameters update with a learning rate of 0.01. We normalize images
 1603 (similarly to (Horváth & Richtárik, 2020)). Since an additional validation dataset can be used by
 1604 MeritFed, we cut 300 samples of each target class (0, 1, 2) off from the test data. Accuracy and
 1605 loss are calculated on the rest of the test data, including labels 0, 1, and 2, modeling the case when
 1606 the target client aims to classify samples with these labels.

1606 The results are provided in Figures 22-25, where we show how accuracy and cross-entropy loss
 1607 change for different methods and different values of α , which measures the similarity between data
 1608 distributions of the target client and the second group of clients, and the evolution of the aggregation
 1609 weights. In all settings, MeritFed outperforms SGD Ideal and other baselines regardless of α .
 1610 In all cases, the weights are almost the same for all workers during the few initial steps (even if
 1611 workers have quite different distributions like for the last nine clients). This phenomenon can be
 1612 explained as follows: if we have two different convex functions with different optima (e.g., two
 1613 quadratic functions), then for a far enough starting point, the gradients of those functions will point
 1614 roughly in the same direction. Therefore, during a few initial steps, both gradients are useful and the
 1615 method gives noticeable weights to both. However, once the method comes closer to the optima, the
 1616 gradients become noticeably different, and after a certain stage, the gradient of the second function
 1617 no longer points closely towards the optimum of the first function. Therefore, starting from this
 1618 stage, MeritFed assigns a smaller weight to the gradient of the second function. Going back
 1619 to Figures 22-25, we see a similar behavior: for $\alpha = 0.5$, the advantages of collaboration with clients
 2-11 disappear after a certain stage since the method reaches the region where two distributions
 1620 become noticeably different. In contrast, when $\alpha = 0.99$, those workers have a very close distribution

1620 to the target worker, and therefore, their stochastic gradients remain useful during the whole learning
 1621 process. FedAdp is biased to the target client and assigns almost identical weights to either clients
 1622 with similar or dissimilar distributions, which results in an accuracy decrease at the end of the training,
 1623 in contrast to MeritFed, which tracks and maintains less weights to non-beneficial clients. TAWT
 1624 is much more biased to the target client, which makes it almost identical to SGD Ideal.
 1625
 1626
 1627
 1628



1649 Figure 22: CIFAR10 Figure 23: CIFAR10 Figure 24: CIFAR10 Figure 25: CIFAR10
 1650 (extra val.): $\alpha = 0.5$ (extra val.): $\alpha = 0.7$ (extra val.): $\alpha = 0.9$ (extra val.): $\alpha = 0.99$.
 1651
 1652
 1653
 1654

D.7 RESNET18+CIFAR10: 40 WORKERS

1655 In the mean estimation problem, we generate the data and can control the number of workers.
 1656 Therefore, for this problem we have many clients participating in the training.
 1657

1658 However, for the other two tasks, datasets are fixed. Therefore, we limited the number of workers to
 1659 20 to have enough data on each client (given the splitting strategy) without repetition. That is, each
 1660 data sample (image or tokens) from the original datasets belongs to no more than 1 client. Therefore,
 1661 to run experiments with more workers we either need to have more data or allow repetitions in data
 1662 on the clients.
 1663

1664 In the additional experiments, we have 40 clients where the new 20 clients are just copies of the first
 1665 20 clients. The experimental setup follows the same data partitioning idea as presented in the paper
 1666 and deals with four values of heterogeneity values across clients α . For MeritFed each worker
 1667 calculates stochastic gradient using a batch size of 75; then the server uses Mirror Descent (or its
 1668 stochastic version) with a batch-size of 90 (in case of stochastic version) and a learning rate of 0.1 to
 1669 update weights of aggregation, and then performs a model parameters update with a learning rate of
 1670 0.01.
 1671

1672 The results presented on Figures 26-29. Overall, the conclusions are consistent with what we have in
 1673 the experiment with 20 workers, further supporting the scalability of MeritFed.

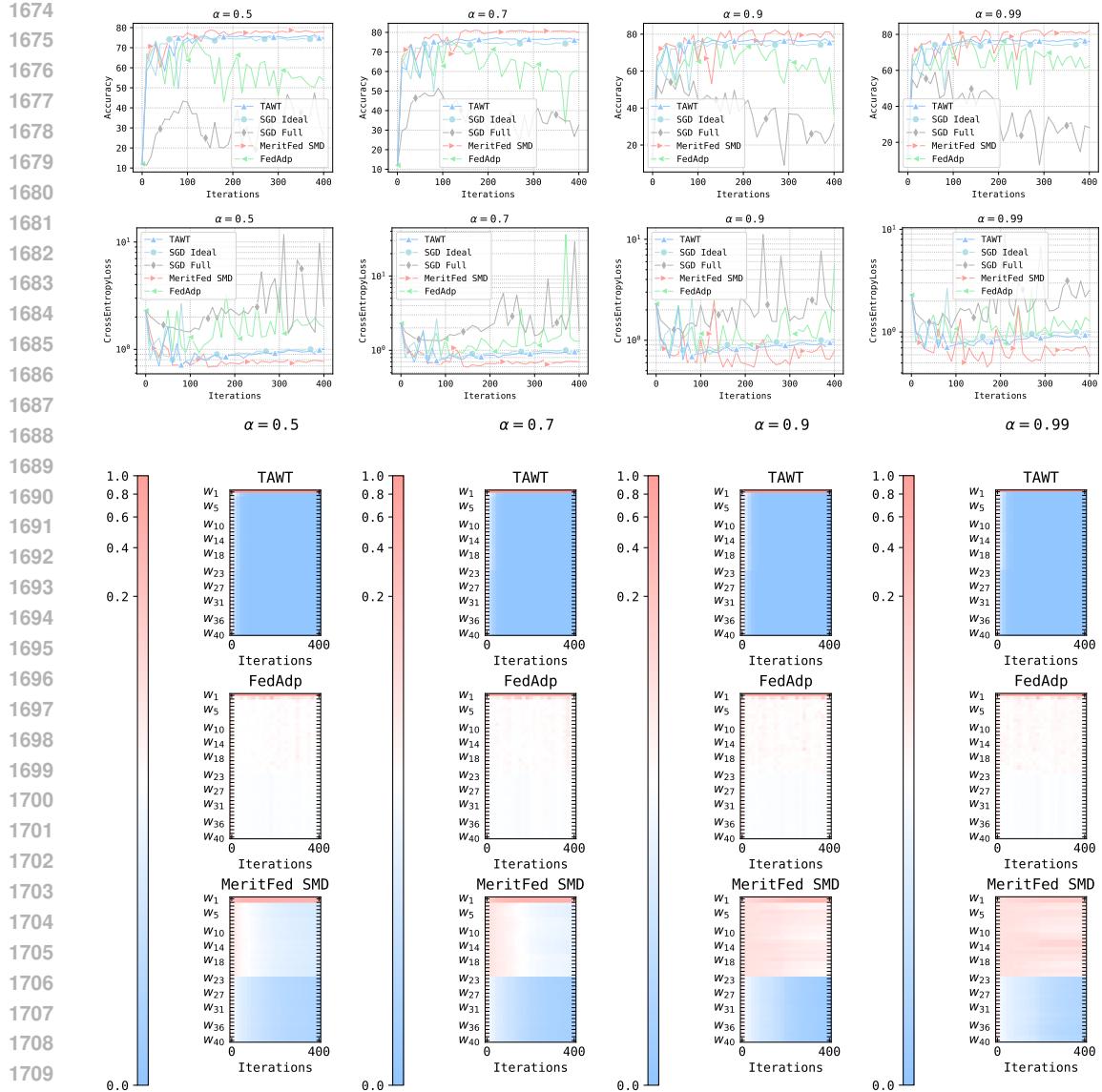


Figure 26: CIFAR10: Figure 27: CIFAR10: Figure 28: CIFAR10: Figure 29: CIFAR10:
 $\alpha = 0.5$ $\alpha = 0.7$ $\alpha = 0.9$ $\alpha = 0.99$.