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ABSTRACT

In many applications, we aim to assess the impact of a policy or intervention on
outcomes of interest using retrospective data. This setting is challenging due to
unobserved confounding, which can bias causal estimates. One approach to address
this issue—in statistics, econometrics, and epidemiology—is to use instrumental
variables (IVs) within two-stage regression frameworks. An IV is a variable that
influences the treatment but has no direct effect on the outcome and is independent
of unobserved confounders. However, across many applications, suitable and valid
IVs are difficult to find or may not be available at all. We propose a method for
decomposing the observed variables to find a representation which satisfies the stan-
dard IV assumptions of relevance, exclusion restriction, and unconfoundedness. To
implement this decomposition, we introduce a deep learning model, ZNet, with an
architecture that mirrors the structural causal model of IVs and is compatible with
a wide range of two-stage IV estimators. Our experiments demonstrate that ZNet
can (i) recover ground-truth instruments when they exist and (ii) construct proxy
latent instruments that reduce bias due to unobserved confounding when no explicit
instruments are available. These results suggest that ZNet can be used as a plug-in
module for causal effect estimation in general observational settings, regardless of
whether the (untestable) assumption of unconfoundedness is satisfied.

1 INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard for identifying the causal impact of an
intervention or treatment policy in medicine and beyond (Bothwell et al. 2016). RCTs support
causal conclusions since randomization ensures that treatment assignments are not influenced by
variables which also affect the outcome of interest. However, we often want, or need, to evaluate
treatment effects outside of an RCT. For instance, a clinical trial for some medical interventions can
be unethical, and randomization of social interventions can be infeasible. Thus, there is also growing
need to develop alternative evidence generation methods for settings where RCTs are prohibitively
expensive and time-consuming.

In settings where an RCT is infeasible, it is common to utilize retrospective data along with causal
inference methods that adjust for confounding in real-world treatment assignments. However, in
many real-world datasets, the confounding factors are unobserved and testing for their existence is
impossible (Imbens & Rubin, [2015)). For instance, consider the problem of determining the effects
of a newly available consumer Al tool for mobile heart monitoring on cardiovascular health using
electronic health records (EHRs). While EHRs contain numerous variables about an individual’s lab
results, medications, and diagnoses, they may not account for lifestyle factors which influence both
consumer choice to use the product and health outcomes. In this setting, traditional causal inference
methods to determine the efficacy of the tool will produce biased estimates potentially obscuring the
true health impact.

A common approach to account for unobserved confounding used across statistics, econometrics, and
epidemiology is to use an instrumental variable (IV) that does not directly influence the outcome,
but directly affects the treatment, which enables unbiased estimation of causal effects under certain
conditions (Imbens & Rubin, 2015)). Classic examples of IVs used in the literature include: in
economics, geographical proximity to a college as an instrument for educational attainment in
estimating the returns of schooling (Card, |1993)) and draft lotteries as instruments to study the effect
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of military service on long-term economic outcomes (Angrist, |1990). Genetic factors have been used
as I'Vs in medicine since gene variants are often highly correlated with risk factors but do not directly
influence outcomes associated with these risk factors (Davey Smith & Ebrahim, [2003;|Davey Smith
& Hemanil, 2014). While such I'Vs can enable causal identification, they were all present in the initial
dataset construction and known to the analyst. Moreover, candidate instruments may not be strong
or valid. For example, the use of genetic IVs is challenged by the strength of their correlations with
risk factors (Davies et al.l [2015; Burgess et al., [2016), the availability of genetic data in large and
representative populations, and the risk that pleiotropy induces bias in effect estimates (i.e., gene
variants are associated with multiple traits which leaves pathways other than through the considered
risk factor open). Together, this means that appropriate IVs are often hard to find in practice.

In this paper, we consider the construction of IVs automatically from the observed data. Several ex-
isting works select or refine candidate instruments, especially genetic factors, to improve downstream
effect estimation (Kuang et al.,2020; |Silva & Shimizu| |2017; Kang et al.|[2016; Zhang et al., 2021}
Burgess et al., 20165 Davies et al.,2015). These works do not remove the need for domain expertise
as a candidate IV must be included in the observed data. There is a small body of existing works
which learn variational distributions to construct IV representations from probabilistic associations
(Yuan et al.} 2022} [L1 & Yaol 2024; |Cheng et al., 2023 Chou et al., 2024). We combine these efforts
by learning a discriminatory decomposition of the feature space into confounder and instrumental
components through a model architecture that encodes the structural causal model (SCM) of IVs
with ZNet. If there are existing instruments, ZNet can recover representations highly correlated with
these variables. In the absence of existing instruments, ZNet learns a representation that serves as an
instrument. This automated instrument construction can mitigate the need to rely on domain expertise
to circumvent untestable assumptions about unobserved confounders. We demonstrate the ability of
our method to learn suitable and superior instrument representations for causal inference.

2 PRELIMINARIES

LetY € Y C R denote a continuous outcome, T € 7 C R a treatment variable (discrete or
continuous), and C' € X C R? a set of observed covariates associated with each unit. The treatment
T has a causal effect on the outcome Y, while the covariates C' may influence both 7" and Y (i.e.,
C confound the relation of primary interest between 7" and Y'). In addition to these measured con-
founders C, there are unknown or unobserved confounders U, which induce spurious associations by
simultaneously affecting both the treatment and outcome (Fig. [Th.). We assume that the outcome
variable Y is determined by the following SCM:

Y =¢(C.T)+ey(U), T=19(C)+er(U), (1)

for some unknown functions ¢ : X x 7 — Y and ¢y : X — 7. Following (Hartford et al.]
2017), we assume that the unobserved confounders U influence the outcome Y and the treatment
T additively, via the “error” functions of U, ey and e, respectively, which we henceforth denote
ey and er. As a result, the observational and interventional distributions generally differ, i.e.,
EY|C,T] = ¢(C,T)+Eley|C,T] # ¢(C,T) + Eley|C] = E[Y |do(T"), C]. Thus, estimating the
potential outcome associated with T' = ¢ would lead to a confounding bias A(c,t), where

Ale,t) =EY|C =¢,T =1t] —E[Y|C = ¢,do(T) = t], Ve, t. 2)

De-confounding with instrumental variables (IVs). A common method for removing the confound-
ing bias A(c, t) is to use IV regression. In the classical IV setting, we assume access to an additional
variable Z that is not influenced by the unobserved confounders U, affects the treatment 7', and has
no direct effect on the outcome Y (Verbeekl, [2004; |Angrist et al., [1996). Formally, given a set of
observed confounders C, Z is a valid IV if it satisfies the following conditions[ﬂ:

Unconfoundedness: Z 1 ey |C,
Exclusion restriction: Z only enters ¢ through T’
Relevance: Z }. T|C.

!The definition we provide here is that of a conditional instrument in order to match DeepIV (Hartford et al.,
2017) the most general downstream IV estimator. Ultimately, we construct Z, C' to be independent in addition to
these assumptions so that Z is a IV without conditioning on C' as well.
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(a) Causal graph in the presence of IVs (b) Two-stage framework for counterfactual prediction with IVs

First stage: Treatment model Second stage: Outcome model

(€,2) > F=F.(T|C,2) =T (1) He(C,T) p>7

Figure 1: Illustration of the IV setting. (a) Causal graph: nodes Z, C,T,U and Y represent the IV,
covariates, treatment, unobserved confounders and outcome, respectively; (b) Two-stage framework
for counterfactual prediction via IVs: F; and Hg are the learned treatment and outcome functions.

Under these conditions, the variable Z can be used in a two-stage regression framework to estimate the
effect of 7" on Y. Under the additive model in , (Hartford et al., [2017) uses the instrument Z to set
up an inverse problem by relating the counterfactual E[Y'|do(T"), C] to observable distributions:

E[Y|C,Z] =E[p(C,T) + ey|C, Z] = E[p(C,T)|C, Z] + Eley |C]
_ / E[Y |do(T), C] dF (T|C, Z). 3)

Thus, with Z, we can estimate the counterfactual E[Y |do(T'), C|] by learning models for the two ob-
servable functions E[Y'|C, Z] and F(T'|C, Z). While this inverse problem is ill-posed, it provides a
practical framework for estimating E[Y'|do(T"), C], and identification is possible under certain con-
ditions (Newey & Powell, 2003 A typical two-stage regression first fits a model F(T'|C, Z), and

then estimates E[Y |do(T'), C| by replacing F(T'|C, Z) with F(T|C, Z) in (3) (Fig. b)).

Equation [3]is notably more general than traditional IV regression with linear models. Here we allow
Eley|C] # 0, i.e. observed confounders can be correlated with unobserved errors. In a two stage
least square regression (TSLS), no endogenous variables can remain for unbiased regression estimates
(Verbeek, [2004). With either framework, we obtain conditional average treatment effects (CATE) and
and average treatment effects (ATE):

CATE(C) = E[Y|do(T) =
ATE = E[Y|do(T) =

,C] — E[Y|do(T) = 0,C]
] —E[Y|do(T) = 0]

—_ =

3 CONSTRUCTING INSTRUMENTS FROM DATA

To apply the standard two-stage IV framework de-
scribed in Section [2] we typically have access to a
valid instrument Z among a collection of observed
covariates X . In this case, we would set C = X \ Z.
In our set up, instead of Z being some known subset
of the observed variables X, Z is learned from data.
We do not assume that instruments exist as a subset
of the observed data. As illustrated in Figure 2} we
derive from the observed variables X two new sets,
a confounder C and an instrument Z, such that Z Figure 2: Graph for constructed I'Vs.
satisfies the three key assumptions listed in Section

[2l In the process, we learn a new SCM by learning new structural equations. We construct two
functions (i.e., neural networks) f, ¢ that learn variable sets C' = f(X), Z = g(X) from X such that
Y =¢(C,T)+ ey and T = ¢'(C, Z) + er with fixed T, Y. This defines a new SCM where the
instrument Z is derived from the observed data X without a priori being known or interpretable and
the relationship between 7" and Y is unchanged.

Notice that this construction is suitable in general. First, suppose there is a subset of the variables that
can serve as an instrument, Z C X. Then if we learn g(X) = Z and f(X) = X \ Z, we succeed.
Second, suppose there is a latent instrument learnable from the observed data. For example, imagine

2For example, in the linear case, Two-Stage Least Squares Regression (TSLS) allows for identification of
causal effects.
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the case of an emergency department. Randomly assigned providers have varying propensities to
give treatments from their interpretation of the data observed for any patient but assignment does
not affect outcomes directly. Such providers are assigned and take actions in ways that show up
in the retrospective data: patient visit time, labs and tests run, symptoms listed in notes, etc. The
provider influences X and a representation of this influence might be inferred by g to serve as Z.
However, nothing about the construction of our model requires an a posteriori interpretation of Z.
ZNet constructs an instrument representations even in the absence of true instruments. Sufficient
satisfaction of the three IV conditions allows for IV regression independent of interpretation, and
our derived instruments can be abstract exogenous representations of the feature space. This means
our method can be used without domain knowledge of instrument existence and leverages existing
instrumental variable relationships, should they exist.

The key idea of our proposed method is to force the desired causal dependencies through learned
structural equations, i.e. we learn functions f, g forcing IV conditions to hold with Z = g(X) and
C = f(X). Relevance requires that we learn a variable Z predictive of 7. We therefore force
non-zero covariance between ¢g(X ) and 7'. Exclusion restriction requires that all direct influence of X
on Y be captured by C. This is encouraged by forcing non-zero covariance between f(X) and Y and
zero covariance between f(X) and g(X). The derived IV g(X) will automatically be unconfounded
and independent of the error ey if derived from X which is unconfounded by U. The assumption
that observed variables are not influenced by U is standard to allow for classical IV regression and
straightforward IV generation (Yuan et al., |2022; [Li & Yaol 2024} [Cheng et al.,|2023; Chou et al.}
2024).

To allow for our method to produce an instrument even more generally when X may be influenced
by U, we add an additional constraint inspired by the following observation.

Lemma 1. If Z ~ N(0,0?) and Cov(Z,ey — Eley|X,T]) = 0, then Cov(Z,ey) = 0.

Proof. Notice that as E[Z] = 0, we have

0=Cov(Z,ey —Eley|X,T))
=E[Z - (ey — Eley|X,T])] - E[Z] - E[(ey — Eley | X, T])]
— B[Z - (ey — Eley|X, T)]
—E[Z - ey] — E[Z] - Eley|X, T]
= Cov(Z,ey).

O

We learn a model for Y = E[Y'|X, T] and compute its residuals as Y — E[Y'|X, T]. Notice Y —
EY| X, T|=Y —o(X,T)— (E[Y|X,T]| —p(X,T)) = ey —Eley| X, T). Lemmasuggests how
to construct of a loss term which enforces unconfoundedness. Notice that regardless of whether any
existing instruments are normally distributed, if we can construct g(X) = Z ~ N(0, 0?) to have no
covariance with the residuals ey — Eley | X, T, i.e. with Y — E[Y'| X, T'], then Z has zero covariance
with ey by Lemmal(l] Together, this suggests the following model constraints:

Constraint 1 (Instrumental Unconfoundedness): Cov(g(X),ey) =0, Z ~ N(0,0?).
Constraint 2 (Exclusion Restriction): Cov(f(X),Y) > 0, Cov(g(X), f(X)) =0.
Constraint 3 (Relevance): Cov(T, g(X)) > 0.

4 RELATED WORK

The majority of existing works for learning IVs automate IV selection from observed candidates.
Meaning these works recover existing IVs. ModelV chooses instruments by looking at clusters of
treatment effects based on weighting the observed variables used as instruments (Hartford et al.|
2021). DIV.VAE uses a variational autoencoder (VAE) approach to disentangle an instrument under
the assumption that a surrogate instrument exists in the data (Cheng et al.l 2024). IV.Tetrad (Silva
& Shimizu|, [2017) builds strong instruments requiring at least two observed IV candidates. Several
methods for refining IV candidates and estimating causal effects from these candidates can fall into
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this category as well including sisVIVE (Kang et al.,[2016), TEDVAE (Zhang et al.| 2021} and Ivy
(Kuang et al.} 2020) among many others (Davies et al., 2015} |Burgess et al.,[2016)).

Methods to learn IVs were also proposed in the GIV (Wu et al. [2023)), AutoIV (Yuan et al.| [2022)),
VIV (Li & Yaol|2024), DVAE.CIV (Cheng et al.||[2023)), and GDIV (Chou et al.| 2024)). GIV generates
a categorical IV with unsupervised expectation-maximization that groups data according to underlying
distributional differences assumed to arise from the aggregation of data from multiple sources. This
automates the idea of using environment as an IV in data coming multiple sources (Schweisthal
et al.}2024). The other methods learn variational distributions. The AutoIV method uses a mutual
information (MI) based loss to generate an abstract IV from observed data by learning variational
distributions (Yuan et al.,|2022). VIV, DVAE.CIV, and GDIV use VAEs to learn independent latent
variables that serve as Z, U, C' from the observed data Y, T, X, sometimes including an additional
adjustment variable A derived from Y, X. VAEs have shown great success in probabilistic modeling
in general but lack theory to guarantee learning the true causal model and satisfaction of IV conditions.

5 METHODS

We introduce an architecture which we call @

ZNet, a multi-armed multi-loss network (Fig-

Y
ure [3) specifically constructed to enforce Con- @ m 4 m
straints 1-3 and learn a new SCM. The network - .
contains four feed forward neural networks, @ ¢ Learned
D, f,g,m: @ is our model for E[Y|X,T], f,g Inputs Reprecentations
learn to derive the instrument Z and confounders ¢ 3
C from X, and 7 estimates the treatment 7" from | Second Stage Regression Inputs @ @ @
the derived instrument Z. The losses force net-
works f, g to learn latent representations from ) .
the input observational dataset { X, T, Y'} lever- Figure 3: ZNet Architecture.
aging @, 7. The networks f, g, w, ® each consist
of two hidden layers, where the activation function can be chosen between ReLU or linear. The
output layers of f, g may use either a linear mapping or a temperature-scaled softmax. From our
trained ZNet, we learn representations for {C, Z} from X and use the existing 7', Y to assemble the
dataset {C, Z,T,Y }. We use downstream IV estimators on this data to predict and evaluate treatment

effects across data settings. We compare treatment effect estimation using ZNet to GIV, AutolV, and
VIV.

5.1 ZNET LOSS TERMS

The ZNet multi-part loss function automates IV generation by forcing Constraints 1-3. We first
consider a Pearson correlation-based (PC) loss, which between any two variables A and B is the ratio
of the covariance between A and B and the product of the standard deviations of each of A and B:

Cov(A, B)

PO(AB) = ="

“

Each time we seek to minimize covariance, we minimize (PC)2. In contrast, for relationships
we seek to maximize covariance, we minimize 1 — (PC)2. To increase the generality of ZNet
beyond linear settings, we additionally employ a mutual information (MI) based loss, minimized or
maximized in the same respective manner, and approximated using kernel density estimation (KDE)
with Guassian kernels.

Enforcing Constraint 1 (Instrumental Unconfoundedness): To enforce unconfoundedness, we
leverage Lemma We first learn a model @ to predict Y = &(X ® T') from X and T using mean

squared error (MSE). Then via a loss minimizing the correlation between the error ¥ — Y and Z, we
encourage zero correlation of Z with ey:

LXTHYZOZ1~MSE((I)(X@T)7Y) (5)
L5%e, = a2 PC(Y =Y, Z)? (6)
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As ngey approaches 0, satisfaction of Constraint 1 and thereby instrumental unconfoundedness is
reached. The loss Ly 77—,y is trained separately and first.

Enforcing Constraint 2 (Exclusion Restriction): We need C' to capture all observed variation in
Y not through 7. We discourage Z from being directly predictive of Y, i.e. remove additional
information about Y conditional on C' and T, by encouraging C' to be highly correlated with Y~ and
Z to have zero covariance with C, i.e. combining the following two losses encourages Constraint 2
and exclusion restriction by preventing Z from entering ¢’:

LECy = a3 (1—PC(C,Y)?) +as- MSE(C,Y) (7
LYY e = as - PC(C, Z)? (8)

Enforcing Constraint 3 (Relevance): We enforce relevance of the learned instrument Z to the
treatment variable 7" by forcing its predictive power and correlation. When 7' is binary, we have

LEC 1 (Z) = ag - BCE(n(Z),T) + oz - (1 — PC(Z,T)?) )

using binary cross-entropy (BCE). We would replace BCE by mean squared error (MSE) when the
treatment 7" is continuous.

Z and C Distribution Losses We use a Kullback-Leibler (KL) divergence loss on each dimension of
Z and C with a mean-zero normal distribution to stabilize Z, C' and to force learning Z ~ N (0, 02)
for the sake of Lemma[I] We also minimize the average PC across dimensions within C' and Z to
encourage the features of the learned representations to be distinct.

5.2 TREATMENT EFFECT ESTIMATION

We use three downstream estimators of treatment effects to demonstrate the ability of ZNet for causal
inference: TSLS, DFIV and DeepIV. Each method takes as input the true treatment term 7" and our
learned representations C' and Z. TSLS is the classical IV estimator. It assumes linear structural
equations and independence of U and X (Imbens & Rubin, |2015} |Verbeek| [2004). DeeplV (Hartford
et al.,[2017) generalizes TSLS by allowing the model at each stage to be parameterized by a neural
network and X Y U. The DFIV estimator is a second leading estimator which allows basis functions
at each stage to be parametrized by neural networks (Xu et al.| 2020). We compare our pipeline to
using the true instrument TruelV, if it exists, and to TARNet (Shalit et al., 2017)), a state of the art
treatment effect estimator used in the absence of an I'V.

5.3 TRAINING

ZNet training occurs in three stages. First, ® is trained to predict Y from X and 7" using the MSE
loss Lx 7y, i.e. only o is non-zero. The ® network is then frozen. Next f, g are pretrained with
all loss coefficients set to 0 except for as, ag to encourage a starting representation for C relevant
to Y and Z relevant to T'. Then ZNet (f, g, 7) is trained with the full loss to learn the SCM with
{Z,C,T,Y}. In training ZNet, our loss terms are potentially conflicting, so to stabilize training, we
allowed the network to use gradient surgery (Yu et al.l 2020).

Hyperparameters, including loss term weights, whether constraints are PC or MI, and the necessity
of gradient surgery, were tuned using Bayesian optimization implemented in Botorch (Balandat et al.|
2020). We perform the optimization in two stages. For each IV generation method (ZNet, AutolV,
GIV, and VIV), we maximized the instrument’s relevance F-Statistic and minimized the correlation
between learned C' and Z using Botorch’s native adaptation of the Noisy Expected Improvement
acquisition function for multi-objective optimization. We then choose the parameter set from the
Pareto front with the highest F-Statistic. We tune the causal inference methods (DeeplV, DFIV,
and TARNet) to simultaneously minimize the MSE of the model’s ATE against a nearest-neighbors
(NN) ATE and the MSE of estimated Y on factual Y, again with the Noisy Expected Improvement
acquisition function. The parameter set is selected from the Pareto front by least NN ATE MSE.
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6 EVALUATION

6.1 DATA GENERATION

For evaluation, we focus on binary treatments, though ZNet could easily be adapted for continuous
settings. We construct multiple semi-synthetic datasets to evaluate ZNet’s ability to predict causal
effects across settings. The IHDP data is a common causal inference benchmark dataset (Hill, 201 1)).
It is data based on an experiment that studied the effect of home visits during infancy on cognitive
test scores of premature infants. There are 985 individuals and 25 covariates. We build our data from
these covariates, masking some covariates to serve as unobserved confounding. We define three sets
of covariates, X 7, XY and X<V, where we each X! is the subset of covariates X which
have a causal relationship with the covariate subset [ in the arrow’s direction. We create the following
classes of data based on their inclusion of an instrument:

1. Disjoint Candidate: 3 X7 s.t. X?TNXY =2, X TnXV =0

2. Mixed Candidate: 3 X°7 c X=T st. X°TnX?Y =g, X TnXV =g
3. Latent Categorical Instrument: 3 Z, f s.t. f(X~T) = Z € N*

4. No Candidate 3 X°7 C X~ T st. X°TnX*Y =g, X" TnXV=0p

For each class, we consider X<V # @ and, in the appendix, X <U — &. We also consider data
where U = & (i.e. no unobserved confounding). After fixing covariate sets, we choose functions
¢, 1, ey, er and generate the variables Y, T similar to (Wu et al., [2023) by writing

Y = ¢(Xy,T) + ey (U) + ey forey ~N(0,.1) (10)
T ~ Bernoulli(P) for P = ¢(Xr) + er(U) + ep forep ~ N (0, .1). (11)

We consider a linear and non-linear version of ¢, v for each dataset. Data are split into 60% for
training, 20% for validation, and 20% for testing. All experimental results are that of the test data.

ZNet successfully recovers existing instruments. In the
Linear Mixed Candidate dataset, there are three vari-
ables X13,X14,X15 € X7 which are instruments.
ZNet chooses to generate a 10-dimensional variable Z
which is correlated with and linearly predicts each of
X13, X14, X15 (Figure[5a,b). Instrument recovery is due -
to the combination of ZNet loss constraints. Upon ablation

of each, recovery deteriorates. We see this in the decreasing True Latent Catecorical istrumens ™ 0%
ability to predict the true instruments from that recovered by

the network without each component (Figure[5]c). We see Figure 4: Normalized confusion ma-
similar performance in other datasets with candidates and 4o demonstrating ZNet recovery of
include a non-linear example in Appendix Figure [7]

-

- 1.00
6.2 LEARNING INSTRUMENTS WITH ZNET
-0.75

-0.50

K-Means Cluster
2

3

-0.25

linear latent categorical instrument.

ZNet is also able to recover latent instruments. We demonstrate this with our Linear Categorical
Instrument dataset. The true instrument groups the observed data into 5 clusters. ZNet can be seen
to approximately recover these clusters after K-Means and cluster relabeling in Figure 4]

Independent of the existence of an instrument in the observed data, ZNet generates an instrument
representation that is correlated with 7', independent of the confounder representation C', independent
of the error in predicting Y, and unconfounded by U. We evaluate the suitability of this instrument
representation empirically. We demonstrate this with our Non-linear No Candidate dataset. The
generated instrument representation is relevant to 7', not additionally helpful in predicting Y, and
shows weak correlation to unobserved confounders (Figure[6). We observe strong F-Statistics for 7
prediction from generated representations Z and low PC across prohibited relationships between Z
and confounders in the other datasets as well which we report in Appendix Tables|[7} [8]

7
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(a) Univariate correlations between ZNet Z (dim=9) and candidate instruments (X13, X14, X15)

(b) Multivariate correlations between predictions of (c) Correlations between predictions of X13, X14,
X13, X14, X15 from ZNet Z X15 from ZNet Z under loss ablations
a3 A = 084 a1 R =08 x15:R? = 084 10
" o3 7 INet Ful 081 | o084
it bl e 08
o S B oig 1 2 Ablate Constraint 1: Unconfoundedness 025 019 030
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x

Figure 5: Learned instrument representation is correlated to existing instruments in linear
dataset with mixed instrument candidate. a) Learned instruments scattered against the true
instruments. b) Regression predictions from learned Z dimensions predicting the true instruments
scattered against the true instruments. c) Regression R? values for predicting the true instrument with
ZNet learned instruments across loss ablation experiments.

(a) Relevance of the learned instrument representation in the non-linear data with no candidate

Train split: F=15.34, p=8.06e-21 Val split: F=4.96, p=1.39e-05 Test split: F=1.83, p=0.0813
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(b) Exclusion Restriction of the same learned instrument  (c) Unconfoundedness of the same learned instrument

Average absolute value of Pearson correlations between U and Z

Y =BT + Zﬁici + Z 6;iZ; F-Stat P-Value
i J
. Train 0.58 0.446 Train 0.118
Test the hypothesis that val 055 0.461 Val 0.098
Ho:Vjé; =0 Test 0.06 0.813 Test 0.126

Figure 6: Learned instrument representation is valid even in the absence of real instruments
in nonlinear data with no instrument candidate. a) We see learned instruments are relevant
based on calibration plots of regression of 7" on learned Z. b) Exclusion restriction is satisfied as
representations Z do not improve the prediction of Y after accounting for the treatment and learned
confounders C' (F-tests are not significant). ¢) Learned instrument representations Z show minimal
correlation with the unobserved confounders U'.

6.3 CAUSAL INFERENCE WITH ZNET LEARNED REPRESENTATIONS

ZNet learned representations, along with those of AutolV, GIV, and VIV, can recover ATE and CATE
after a second stage regression, i.e. TSLS, DeeplV, or DFIV. Performance of ZNet is comparable to
using the ground truth instrument, TruelV, when available, and IV generation generally exceeds that
of TARNet, which ignores confounding, for both ATE, Table E[, and CATE, Appendix Tables EL E
ZNet is on average the highest performing among IV generation methods across comprehensive data
generation processes (Appendix Tables 0] [T0). Notably, in the setting of no unobserved confounding
(no U) without a candidate instrument, ZNet is comparable to TARNet. Given that we cannot
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Dataset Diff Means  TARNet IV Method TSLS DeeplV DF IV
0.054 -0.025 TruelV -0.002" 0.108 0.132"
Linear Disjoint ZNet 0.119 0.054 0303
True ATE: 0815 AutolV -1.393 0.038 -0.964
VIV 0.147 0.123 0.546
GIV -0.620 0.115 0.304
-0.539 -0.146 TruelV -0.524 0317 0.042"
. ZNet 0125 -0.136" -0.231
Linear Latent
True ATE: 0.941 AutolV -1.315 -0.309 -0.270
VIV -0.082 0.171 -0.122
GIV 0.285 -0.234 -0.447
0.407 0.429 TruelV 0.263" 0.429" 0.369
. . ZNet 0.437 0.381°" 0.655
Linear Mixed
True ATE: 0.608 AutolV -0.803 0.548 0270
VIV 1.349 0.637 -0.256
GIV 1.171 0.525 0.217"
-0.296 0.169  TruelV - - -
Linear No Candidate (no U) ZNet 2718 ’0'033** _0'336*
True ATE: 1.882 AutolV 0.963 -0.017 -0.300"
VIV 0.279 0.111 -0.107
GIV 0.137 -0.097 -0.741
0.657 0.240 TruelV - - -
Linear No Candidate ZNet 0.025 0.189 0.156
True ATE: 0.354 AutolV -0.028 0.251 0.565
VIV 0.305 0.185 0.632
GIV 2.614 0.278 -0.031"
0.766 0.324 TruelV 0266 02727  -0.103"
Non-linear Disjoint ZNet 0.524 0.309 0.147
True ATE: 0.544 AutolV 1.511 0.389 -0.403
VIV 0.561 0.555 0214
GIV 0.697 0.365 1.120
0.528 0.050 TruelV 1.381 -0.020 4762
Non-linear Latent ZNet 0.152 0.039  -0.063
True ATE: 0.333 AutolV 4809  -0.008 0.785
VIV 1.790 -0.039 -0.170
GIV -0.235 -0.028 0.084"
0.849 0.255 TruelV 0477 0.142" -0.156"
Non-linear Mixed ZNet 0.244 0218 0.033
True ATE: 0.558 AutolV 10.821 0.036 2.079
VIV 0.950 0.408 0.847
GIV -0.981 0.293 0.983
0.250 0.068  TruelV - - -
Non-linear No Candidate (no U) ZNet -0.528 -0.012 -0.143
True ATE: 1.429 AutolV -1.806 0.064 -0.257
VIV 0.182 -0.085 -0.209
GIV 3.389 0.053 -0.665
0.783 0.423 TruelV - - -
Non-linear No Candidate iNet 0.200 0.260 0.049
True ATE: 0.435 utoIV -25.181 0.720 0.477
VIV 0.898 0.422 0.404
GIV -0.109 0.640 0.345"

Table 1: Mean error on ATE by dataset and causal inference method across 50 resampled
bootstraps. Smallest errors are bolded. Second smallest are italicized. A single * indicates that the
two best are significantly better than the third best. Two ** indicates that the best is significantly
better than the second best.

assess the existence (or lack thereof) of unobserved confounding in non-synthetic datasets, ZNet’s
performance on these datasets support its translation to real-world settings.

7 DISCUSSION

We present novel methodology for data driven learning of IV representations using deep learning
with superior performance. Our network, ZNet, differs from existing literature generating IVs in its
approach. Existing methods learn variational distributions, while our method learns SCMs. Existing
methods assume that unobserved confounders do not influence the observed data, while our method
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relaxes this assumption. These make our implementation simple and transparent for widespread utility.
We demonstrate that ZNet is able to recover valid instrument representations. In the case of existing
instruments among the observed data, recovered instruments are highly correlated with these variables.
This is shown empirically in cases when the instrument was either observed or latent. Regardless of
the existence of instruments in the data, ZNet shows strong performance predicting treatment effects
across settings of unobserved confounding performing on average better than existing variational
methods for IV generation.

ZNet eliminates the need for domain knowledge of pre-existing IVs by automating instrument repre-
sentations from observed data. We contribute the most comprehensive evaluation of IV generation
for causal inference, which demonstrates the broad utility of IV generation. We present performance
across a comprehensive collection of data generation settings. Since the data generation process
is untestable in practice, these results suggest that ZNet can serve as a plug-in causal inference
estimator. ZNet is high performing across these semi-synthetic settings. Regardless of the existence
of a candidate or a latent instrument, or of unobserved confounding, ZNet can match or exceed the
performance of TARNet and of probabilistic IV generation methods.

Solutions to the ZNet loss minimization problem will always give a representation that serves as
an instrument since IV constraints are explicitly embedded in the loss function. This instrument
can then be used in any downstream instrument regression where satisfying the standard IV criteria
(or, equivalently, ZNet criteria) implies the validity of subsequent causal inference. However, IV
estimation in general is limited by a lack of theoretical guarantees of identifiably in the general
case. This theoretically limits our approach and IV estimation in general. However, strong empirical
results alongside ongoing work to stabilize downstream IV estimators, i.e. (Li et al.| 2024), suggest
the value in the increased use of these methods beyond linear settings. We see great potential for
IV estimation in general and our methods in particular with the growing use of unstructured data.
Unstructured data may contain latent or abstract instruments more frequently, as high-dimensional
feature spaces often contain rich information that our approach could learn to extract as instruments.
Our method’s simplicity adds interpretability. Learning SCMs through constraints allows for direct
control over the strength and validity of learned instruments, which elucidates performance in the
absence of theoretical guarantees on downstream causal inference. Due to its lack of assumptions on
the data generation process, ZNet suggests that IV generation presents the potential to strengthen
causal inference and broaden its applicability.
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ADDITIONAL FIGURES

(a) Univariate correlations between ZNet Z (dim=2)

and candidate instruments (X13, X14, X15)
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Figure 7: Learned instrument representation is correlated to existing instruments in non-linear
dataset with mixed instrument candidate in test set. a) Learned instruments against the true
instruments. b) Regression predictions from learned Z dimensions predicting the true instruments. c)
Regression R? values for predicting the true instrument with ZNet learned instruments across loss

ablation experiments.
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(c) Correlations between predictions of X13, X14,

X15 from ZNet Z under loss ablations
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Dataset Method X13 X14 X15
ZNet Full 0.593 0.542 0.691
Ablate Unconfoundedness Constraint 0.629 0435 0.705
Linear Disjoint Ablate Exclusion Restriction Constraint  0.666  0.554  0.749
Ablate Relevance Constraint 0.586 0.440 0.542
Ablate All Constraint 0.016 0.023 0.032
ZNet Full 0.784 0.707 0.811
Ablate Unconfoundedness Constraint 0.616 0.453 0.604
Linear Disjoint (no U — X) Ablate Exclusion Restriction Constraint  0.714  0.514  0.682
Ablate Relevance Constraints 0.271 0.207 0.367
Ablate All Constraints 0.259 0.143 0.124
ZNet Full 0.837 0.835 0.838
Ablate Unconfoundedness Constraint 0.255 0.194 0.302
Linear Mixed Ablate Exclusion Restriction Constraint  0.355 0.392  0.358
Ablate Relevance Constraint 0.322 0.311 0.329
Ablate All Constraints 0.024 0.054 0.050
ZNet Full 0.711 0.624 0.591

Ablate Unconfoundedness Constraint 0.259 0.353 0.228

Linear Mixed (no U — X) Ablate Exclusion Restriction Constraint 0306 0359  0.411

Ablate All Constraints 0.023 0.018 0.033
ZNet Full 0.361 0.387 0.293
Ablate Unconfoundedness Constraint 0.181 0.202 0.283
Non-linear Disjoint Ablate Exclusion Restriction Constraint  0.410 0.423  0.442
Ablate Relevance Constraint 0.220 0.213 0.239
Ablate All Constraints 0.092 0.058 0.033
ZNet Full 0.532 0.384 0.516

Ablate Unconfoundedness Constraint 0.285 0.175 0.282
Non-linear Disjoint (no U — X))  Ablate Exclusion Restriction Constraint  0.372  0.414 0.421

Ablate Relevance Constraint 0.009 0.035 0.004
Ablate All Constraints 0.068 0.024 0.045
ZNet Full 0.767 0.577 0.759
Ablate Unconfoundedness Constraint 0.299 0357 0.321
Non-linear Mixed Ablate Exclusion Restriction Constraint  0.109  0.064  0.106
Ablate Relevance Constraint 0.164 0.137 0.154
Ablate All Constraints 0.028 0.020 0.017
ZNet Full 0.209 0.120 0.178

Ablate Unconfoundedness Constraint 0.463 0273 0.387
Non-linear Mixed (no U — X)) Ablate Exclusion Restriction Constraint  0.362 0.242  0.415
Ablate Relevance Constraint 0.369 0272 0421
Ablate All Constraints 0.027 0.060 0.036

Table 2: Multivariate R? for recovering instruments X 13, X14, X15 for each dataset and
method.
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(a) No candidate (U influences X) (b) No candidate (no U influence on X) (¢) No candidate (no confounding)

(e) Latent instrument candidate
(no U influence on X)

(d) Latent instrument candidate
(U influences X)

() Disjoint candidate (U influences X) (8) Disjoint candidate (no U influence on X)

Jogn]olo

(h) Mixed candidate (U influences X) (i) Mixed candidate (no U influence on X)

X X

Figure 8: Directed acyclic graphs (DAGs) demonstrating the various data generation processes
on which ZNet is evaluated. Linear and non-linear relationships are constructed for each DAG
giving 18 total datasets for evaluation. Maintext results focus on cases where U influences X as this
is more challenging, more general, and unique to ZNet.
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Dataset TARNet IV Method DeeplV DFIV
0.103 TruelV 0.223 0.180
ZNet 0.165 0.315
Linear Disjoint AutolV 0.113 0.993
VIV 0.236 0.593
GIV 0.209 0.542
0.410 TruelV 0.394 0.306
ZNet 0.329 0.500
Linear Disjoint (no U — X) AutolV 0.432 1.541
VIV 0.439 0.328
GIV 0.499 0.363
0.170 TruelV 0.364 0.142
ZNet 0.267 0.236
Linear Latent AutolV 0.367 0.291
VIV 0.260 0.193
GIV 0.324 0.471
0.474 TruelV 0.498 0.153
ZNet 0.472 0.651
Linear Latent (no U — X) AutolV 0.520 0.328
VIV 0.538 0.372
GIV 0.518 0.861
0.435 TruelV 0.541 0.418
ZNet 0.459 2.182
Linear Mixed AutolV 0.664 0.398
VIV 0.746 0.264
GIV 0.649 0.246
0.403 TruelV 0.500 0.781
ZNet 0.344 0.375
Linear Mixed (no U — X) AutolV 0.793 2.337
VIV 0.561 0.648
GIV 0.493 0.237
0.278 TruelV - -
ZNet 0.471 0.199
Linear No Candidate AutolV 0.357 0.581
VIV 0.389 0.698
GIV 0.336 0.130
0.425 TruelV - -
ZNet 0.557 0.318
Linear No Candidate (no U — X) AutolV 0.569 0.272
VIV 0.666 0.427
GIV 0.471 0.374
0.193 TruelV - -
ZNet 0.173 0.431
Linear No Candidate (no U) AutolV 0.353 0.401
VIV 0.236 0.236
GIV 0.301 0.761

Table 3: PEHE on linear synthetic datasets.
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Dataset TARNet IV Method DeeplV DFIV
0.531 TruelV 0.539 0.383
ZNet 0.467 0.332
Non-linear Disjoint AutolV 0.585 0.467
VIV 0.727 0.325
GIV 0.550 1.140
1.158 TruelV 0.560 2.098
ZNet 0.748 0.656
Non-linear Disjoint (no U — X) AutolV 0.577 1.262
VIV 0.624 0.727
GIV 0.593 5.709
0.108 TruelV 0.261 4.784
ZNet 0.198 0.162
Non-linear Latent AutolV 0.253 0.866
VIV 0.370 0.348
GIV 0.259 0.197
0.452 TruelV 0.355 0.218
ZNet 0.264 0.451
Non-linear Latent (no U — X)) AutolV 0.459 0.796
VIV 0.572 0.459
GIV 0.261 2.703
0.346 TruelV 0.326 0.281
ZNet 0.362 0.242
Non-linear Mixed AutolV 0.446 2.264
VIV 0.694 0.874
GIV 0.439 0.992
0.756 TruelV 0.847 0.976
ZNet 0.665 0.669
Non-linear Mixed (no U — X) AutolV 0.975 0.799
VIV 0.906 0.698
GIV 0.839 1.069
0.562 TruelV - -
ZNet 0.402 0.423
Non-linear No Candidate AutolV 0.788 0.611
VIV 0.588 0.476
GIV 0.712 0.429
0.681 TruelV - -
ZNet 0.960 0.667
Non-linear No Candidate (no U — X) AutolV 0.679 0.586
VIV 0.776 0.551
GIV 0.716 0.604
1.148 TruelV — —
ZNet 1.157 1.124
Non-linear No Candidate (no U) AutolV 1.138 1.056
VIV 1.227 1.082
GIV 1.179 1.152

Table 4: PEHE on non-linear synthetic datasets.
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Dataset Diff Means TARNet IV Method TSLS DeeplV DF IV
-0.327 -0.311  TruelV 0.266°  -0.264" -0.271"
Linear Disjoint (no U/ — X) ZNet -0.356  -0.295 -0.469
True ATE: 0745 AutolV -0.044  -0.361 -1.454.
VIV 0.704 -0.353  -0.074"
GIV -1456  -0.426 -0.304
0.054 -0.025  TruelV -0.002”  0.108 0.132"
Linear Disjoint ZNet 0.119 0.054" 0303
True ATE: 0.815 AutolV -1.393 0.038 -0.964
VIV 0.147 0.123 0.546
GIV -0.620 0.115 0.304
-0.498 -0.427  TruelV -0.171 -0.445  0.068"
Linear Latent (no U — X) ZNet -1.577  -0.406 -0.506
True ATE: 0957 Autol\/ 1505 —0462 -022]
VIV 0210  -0476 -0.308
GIV 0245  -0372"  -0.864
-0.539 -0.146  TruelV -0.524 -0317  0.042"
. ZNet -0.125  -0.136"  -0.231
L L
T T 0041 AutolV 1315 0309 -0.270
o VIV -0.082  -0.171" -0.122"
GIV 0.285 -0.234  -0.447
-0.396 -0.297  TruelV -0.260°  -0.304  -0.690
Linear Mixed (no U — X) ZNet -0.112"  0.005 -0.165
True ATE. 1.569 AutolV 3.508 0.226 -1.906
VIV 0.883 -0.100°  -0.581
GIV 2.462 -0.461  -0.072"
0.407 0429  TruelV 0.263"  0.429" 0.369
. . ZNet 0.437 0.381" 0.655
L Mixed
T;ﬂiagTE‘,"g 608 AutolV 20.803 0548 0270
o VIV 1.349 0.637 -0.256"
GIV 1.171 0.525 0.217"
-0.062 -0.085  TruelV - - -
Linear No Candidate (no U — X) ZNet -0.630 -0.088 'O'ZIi
True ATE: 0.952 AutolV -2.496 -0110 0.050 )
VIV 0.404 0.016" 0.337"
GIV 0.372 -0.175 -0.353
-0.296 -0.169 TruelV - — —
Linear No Candidate (no U) ZNet 2.718 '0'033** '0'336*
True ATE: 1.882 AutolV 0.963  -0.017 -0.300°
VIV 0.279 -0.111  -0.107"
GIV 0.137 -0.097 -0.741
0.657 0.240  TruelV - - -
Linear No Candidate iNetIV 2)2)2258 0. 12891 0.156
True ATE: 0.354 uto -0. 0251 0.565
VIV 0.305 0.185 0.632
GIV -2.614 0278  -0.031"

Table 5: ATE results on synthetic linear datasets.
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Dataset Diff Means TARNet IV Method TSLS DeeplV DFIV
-0.481 -0.372 TruelV -0.864  -0.207" 2.097
Non-linear Disjoint (no U — X) iNet 0514 -0.635  -0.534
True ATE: 0.919 utolV -1.676 -0.410 -1.180*
VIV -4.066 -0.225 -0.608
GIV 25776 -0.196"  -5.724
0.766 0.324  TruelV 0.266" 0272  -0.103"
Non-linear Disjoint ZNet 0.524 0.309 0.147
True ATE: 0.544 AutolV 1.511 0.389 -0.403
A%0% 0.561 0.555 -0.214
GIvV 0.697 0.365 1.120
-0.316 -0.423 TruelV -0.479 -0.231 -0.155"
. ZNet -0.924 -0.260 -0.370
I;&';K‘T‘E‘r A (no U = X) AutolV 0.146  -0232 0258
o VIV -0.605  -0.319  -0.042"
GIV -0.810 -0.238 -2.706
0.528 0.050 TruelV 1.381 -0.020 4.762
Non-linear Latent ZNet 0.152 —0.032* -0.063
VIV 1.790 -0.039 -0.170
GIvV -0.235 -0.028 0.084"
-0.277 -0.227  TruelV -0.227°  -0519  -0.723
Non-linear Mixed (no U — X) ZNet -0.443-0.173 -0.196
True ATE: 1.777 AutolV 1.033 -O.457$ -0.432
VIV 0.438 -0.190 0.181
GIV 15.700 -0.334 0.794
0.849 0.255  TruelV 0.477  0.142°  -0.156"
Non-linear Mixed ZNet 0.244 0.218** 0.033
VIV 0.950 0.408 0.847
GIV -0.981 0.293 0.983
0.174 0.134 TruelV - - -
Non-linear No Candidate (no U — X)) ZNet 0.267 0'”7** 0'302*
True ATE: 0.828 AutolV -0.445 0.069 0275W
VIV 0.111 0.164 0.043
GIvV -0.405 0.291 -0.277
0.250 -0.068 TruelV - - -
Non-linear No Candidate (no U) iNetI '(1)'52 8 '0'0124 '0'1;3
True ATE: 1.429 utolV - .80*6* 0.06 -0. 57*
VIV 0.182 -0.085 -0.209
GIV 3.389 0.053 -0.665
0.783 0.423 TruelV - - -
Non-linear No Candidate iN et 0'52 00 0.260 0‘0:9
True ATE: 0.435 utolV -25.181 0'720* 0.477
VIV 0.898 0.422 0.404
GIV -0.109  0.640  0.345

Table 6: ATE results on synthetic non-Linear datasets.

19



Under review as a conference paper at ICLR 2026

F-Stat(Z,T) Corr(Z,C) Corr(Z,Y-Yhat) Corr(Z,U)
Dataset IV Method (Relevance) (Independence) (Exogeneity) (Independence)
(Train/Val/Test) (Train/Val/Test) (Train/Val/Test) (Train/Val/Test)
TruelV 53.566/12.507 / 6.603 0.027/0.051/0.136  0.047/0.116/0.117  0.030/0.062/0.045
ZNet 63.617/14.699 /1 4.927 0.040/0.044/0.092  0.037/0.059/0.060  0.140/0.175/0.088
Linear Disjoint AutolV 22.820/6.721/0.944 0.214/0.211/0.253 0.000/0.000/0.000  0.166/0.143/0.272
VIV 18.407 / 1.497 / 4.065 0.038/0.064/0.116  0.018/0.030/0.026  0.036/0.035/0.085
GIV 1.301/0.642/6.703 0.135/0.114/0.161 0.001/0.110/0.072  0.194/0.184/0.199
TruelV 35.681/29.173/4.562 0.027/0.051/0.136  0.066/0.103/0.231 0.018/0.038 / 0.065
ZNet 13.524/13.151/6.735 0.040/0.090/0.058  0.013/0.004/0.102  0.022/0.050/0.095
Linear Disjoint (no U — X)) AutolV 10.865/2.572/3.442 0.186/0.184/0.260  0.000/0.000/0.000  0.014/0.060 /0.080
VIV 18.639/6.582/3.192 0.037/0.076/0.077  0.037/0.092/0.142  0.060/0.053 / 0.052
GIV 0.278/0.253/0.788 0.148/0.161/0.195 0.001/0.065/0.060  0.011/0.041/0.068
TruelV 68.564 /36.180/ 30.735 0.200/0.201/0.250  0.027/0.007 /0.046  0.018/0.053/0.085
ZNet 210.017/29.806/13.066  0.180/0.196/0.200  0.035/0.034/0.089  0.112/0.185/0.097
Linear Latent AutolV 47.460/21.996/22.106 0.263/0.256/0.271 0.000/0.000/0.000  0.051/0.055/0.088
VIV 13.772/1.628 / 1.948 0.031/0.060/0.118  0.022/0.017/0.109  0.022/0.050/0.102
GIV 7.756 /1.936 / 0.007 0.140/0.164/0.166  0.036/0.036/0.141 0.021/0.066 / 0.046
TruelV 68.564 /36.180 /30.735 0.204/0.212/0.266  0.009/0.019/0.039  0.018/0.053 / 0.085
ZNet 25.361/9.822/10.956 0.042/0.053/0.146  0.009/0.063/0.078  0.012/0.056 /0.094
Linear Latent (no U — X) AutolV 38.894/19.722/4.108 0.269/0.275/0.268  0.000/0.000/0.000  0.023/0.073/0.116
VIV 23.563/13.233/5.743 0.023/0.047/0.134  0.007/0.019/0.095  0.028/0.055/0.041
GIV 4.305/0.010/0.621 0.137/0.141/0.137  0.003/0.057/0.065  0.021/0.039/0.072
TruelV 26.792/7.467/10.101 0.027/0.051/0.136  0.176/0.120/0.272  0.030/0.062/0.045
ZNet 24.163/11.648/9.514 0.168/0.166/0.233  0.016/0.025/0.101 0.059/0.071/0.115
Linear Mixed AutolV 77.162/20.885/ 12.485 0.236/0.243/0.287  0.000/0.001 /0.001 0.322/0.330/0.281
VIV 10.911/3.364 /6.297 0.026/0.055/0.120  0.037/0.027/0.058  0.030/0.057/0.053
GIV 9.928/3.886/3.115 0.143/0.172/0.232  0.022/0.081/0.084  0.060/0.124/0.008
TruelV 33.874/20.091/16.317 0.027/0.051/0.136  0.004/0.033/0.164  0.018/0.038/0.065
ZNet 207.114/39.401/27.046  0.096/0.092/0.153  0.010/0.101/0.081 0.014/0.049 / 0.090
Linear Mixed (no U — X)) AutolV 1.394/0.111/0.225 0.261/0.272/0.253  0.000/0.000/0.000  0.022/0.040/0.116
VIV 9.804/0.683/4.310 0.032/0.051/0.091 0.035/0.026/0.187  0.041/0.062/0.122
GIV 9.271/0.775/ 0.506 0.148/0.143/0.152  0.013/0.062/0.076  0.017/0.029/0.037
TruelV - — - -
ZNet 21.299/2.298/2.315 0.037/0.060/0.122  0.010/0.089/0.050  0.223/0.228/0.247
Linear No Candidate AutolV 77.352/30.622/0.391 0.265/0.263/0.241 0.000/0.000/0.000  0.368/0.357/0.343
VIV 18.753/ 6.859 / 3.228 0.042/0.063 / 0.095 0.060/0.056/0.096  0.065/0.076 / 0.090
GIV 3.667/1.458/0.825 0.138/0.158/0.166  0.009/0.027/0.012  0.126/0.150/0.216
TruelV - - - -
ZNet 78.441/1.012/7.704 0.169/0.168/0.214  0.008/0.093/0.023  0.056/0.061/0.088
Linear No Candidate (no U — X)  AutolV 25.720/0.402 /0.701 0.254/0.268 / 0.264  0.000/0.000/0.000  0.012/0.053/0.051
VIV 26.796 / 6.537/ 16.852 0.029/0.070/0.134  0.038/0.068/0.075  0.048/0.069/0.071
GIV 0.298/0.272/0.029 0.200/0.193/0.197  0.004/0.020/0.008  0.017/0.057/0.057
TruelV - - - -
ZNet 463.273/3.552/0.938 0.110/0.118/0.095 0.074/0.015/0.083 —/=/-
Linear No Candidate (no U) AutolV 18.562/0.437/3.744 0.248/0.252/0.206  0.000/0.000 / 0.000 —/—/-
VIV 15.274/7.716 / 4.874 0.030/0.062/0.103 0.021/0.108 /0.144 —/—/-
GIV 0.055/2.459/2.216 0.156/0.143/0.208  0.022/0.018/0.041 —/=/-

Table 7: Instrument strength and validity on linear synthetic datasets.
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F-Stat(Z,T) Corr(Z,C) Corr(Z,Y-Yhat) Corr(Z,U)
Dataset IV Method (Relevance) (Independence) (Exogeneity) (Independence)
(Train/Val/Test) (Train/Val/Test) (Train/Val/Test) (Train/Val/Test)
TruelV 41.662/12.868 / 4.620 0.027/0.051/0.136  0.124/0.100/0.176 ~ 0.030/0.062/0.045
ZNet 28.150/12.159/19.772 0.067/0.077/0.111 0.004/0.028 /0.107  0.093/0.131/0.069
Non-linear Disjoint AutolV 142.891/48.571/15.159  0.214/0.232/0.205 0.000/0.000/0.000  0.327/0.287/0.357
VIV 16.443/1.351/10.179 0.038/0.054/0.111 0.015/0.079/0.015  0.030/0.068 /0.073
GIV 37.947/8.967/17.319 0.145/0.120/0.184  0.021/0.027/0.045  0.187/0.187/0.266
TruelV 19.956 /5.440/ 18.102 0.027/0.051/0.136  0.014/0.014/0.133  0.018/0.038 / 0.065
ZNet 17.203/4.722/12.113 0.038/0.058/0.170  0.013/0.065/0.075  0.018/0.045/0.071
Non-linear Disjoint (no U — X)) AutolV 5.259/3.103/1.239 0.225/0.224/0.233  0.000/0.000/0.000  0.033/0.016/0.084
VIV 4.690/0.937/1.670 0.035/0.069/0.098  0.004/0.070/0.128  0.044/0.056/0.070
GIV 16.805/ 1.806 / 5.565 0.130/0.133/0.237  0.114/0.006/0.140  0.035/0.071/0.036
TruelV 30.818/7.298 /2.185 0.204/0.212/0.266  0.005/0.011/0.052  0.064 /0.083 / 0.022
ZNet 19.834/1.402 / 1.290 0.034/0.043/0.172  0.004/0.014/0.070  0.116/0.089/0.081
Non-linear Latent AutolV 76.120/14.009/0.317 0.212/0.192/0.205 0.000/0.000/0.000  0.363/0.328/0.311
VIV 16.454 /4.075 / 3.042 0.027/0.052/0.118  0.018/0.061/0.024  0.051/0.064/0.132
GIV 20.388 /4.855/11.145 0.123/0.130/0.145  0.001/0.082/0.239  0.226/0.266/0.328
TruelV 35.494/1.009/0.196 0.204/0.212/0.266  0.002/0.030/0.050  0.018/0.053/0.085
ZNet 19.330/0.650/0.817 0.028/0.069 /0.109  0.012/0.038/0.139  0.016/0.046/0.086
Non-linear Latent (no U — X) AutolV 43.267/1.545/0.663 0.239/0.257/0.234  0.000/0.000/0.000  0.044/0.056/0.104
VIV 10.032/8.944 /12.677 0.025/0.056/0.133  0.034/0.094/0.142  0.047/0.074 / 0.085
GIV 0.302/0.010/2.774 0.100/0.100/0.115 0.023/0.025/0.107  0.037/0.056 / 0.064
TruelV 39.277/14.385/ 6.638 0.027/0.051/0.136  0.080/0.084/0.186  0.030/0.062/0.045
ZNet 81.609/27.086 / 14.220 0.037/0.038/0.140  0.013/0.024/0.088  0.099/0.084 /0.062
Non-linear Mixed AutolV 218.811/58.758 / 33.881 0.201/0.222/0.227  0.000/0.000/0.000  0.345/0.301/0.358
VIV 13.916/7.281/4.760 0.021/0.070/0.132  0.021/0.033/0.154  0.038/0.060/0.078
GIV 8.884/2.184/4.662 0.096/0.142/0.184  0.055/0.098/0.017  0.045/0.097 / 0.055
TruelV 60.302/11.847/7.502 0.027/0.051/0.136  0.034/0.068/0.144  0.018/0.038 / 0.065
ZNet 972.072/27.721/14.899  0.038/0.059/0.100  0.022/0.036/0.044  0.038/0.029/0.032
Non-linear Mixed (no U — X)) AutolV 354.559/71.052/57.682  0.270/0.274/0.322  0.000/0.000/0.000  0.026/0.051/0.082
VIV 16.785/3.347 / 1.459 0.038/0.049/0.113  0.021/0.070/0.204  0.048/0.073/0.081
GIV 3.221/5.328/0.129 0.153/0.171/0.180  0.116/0.010/0.137  0.016/0.052/0.079
TruelV — — - -
ZNet 15.335/4.959/1.181 0.067/0.102/0.222  0.020/0.048/0.093  0.119/0.099/0.127
Non-linear No Candidate AutolV 85.371/16.582/0.149 0.227/0.211/0.302  0.000/0.000/0.000  0.205/0.165/0.243
VIV 18.972/3.681/5.362 0.025/0.054/0.113  0.027/0.084/0.089  0.022/0.060/0.100
GIV 16.638 / 4.238 / 4.860 0.173/0.155/0.165  0.059/0.031/0.010  0.132/0.051/0.086
TruelV - - - -
ZNet 102.430/2.654 / 3.266 0.046/0.071/0.138  0.010/0.056/0.057  0.067/0.041/0.049
Non-linear No Candidate (no U — X)  AutoIV 99.004 /21.237/ 14.164 0.192/0.186/0.252  0.000/0.000/0.000  0.022/0.089/0.048
VIV 13.953/18.708 / 2.071 0.033/0.082/0.116 ~ 0.043/0.035/0.100  0.028 /0.085/0.089
GIV 2.033/4.684/1.203 0.183/0.169/0.198  0.015/0.009/0.042  0.025/0.024 /0.080
TruelV - - - -
ZNet 123.260/10.146/2.912 0.208/0.223/0.216  0.117/0.107 /0.166 —/=/-
Non-linear No Candidate (no U) AutolV 75.873/14.926 / 8.766 0.223/0.201/0.268  0.000 / 0.000 / 0.000 —/=/-
VIV 16.756 / 8.589 /9.893 0.032/0.062/0.114  0.068 /0.078 / 0.079 —/=/-
GIV 10.804 /5.268 /0.193 0.137/0.120/0.194  0.000/0.056 / 0.038 —/—/-

Table 8: Instrument strength and validity on non-linear synthetic datasets.

DeeplV

Avg. |Error ATE| (SE)

DFIV

Avg. |Error ATE) (SE)

TSLS
Avg. |Error ATE| (SE)
ZNet 0.550 (0.154)
AutolV 3.305 (1.416)
VIV 0.776 (0.222)
GIV 3.192 (1.574)

0.201 (0.040)
0.262 (0.050)
0.254 (0.042)
0.285 (0.039)

0.271 (0.042)
0.675 (0.142)
0.316 (0.056)
0.891 (0.319)

Table 9: Comparison of IV methods on average across the 18 different data generation processes.
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DeeplV DFIV
Avg. PEHE (SE) Avg. PEHE (SE)
ZNet 0.470 (0.063) 0.552 (0.111)
AutolV 0.559 (0.060) 0.882 (0.147)
VIV 0.586 (0.059) 0.491 (0.056)
GIV 0.519 (0.057) 0.999 (0.3106)

Table 10: Comparison of IV methods on average across the 18 different data generation
processes for CATE estimation.
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