

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAUSAL EFFECT ESTIMATION WITH LEARNED INSTRUMENT REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

In many applications, we aim to assess the impact of a policy or intervention on outcomes of interest using retrospective data. This setting is challenging due to unobserved confounding, which can bias causal estimates. One approach to address this issue—in statistics, econometrics, and epidemiology—is to use *instrumental variables* (IVs) within two-stage regression frameworks. An IV is a variable that influences the treatment but has no direct effect on the outcome [and is independent of unobserved confounders](#). However, across many applications, suitable and valid IVs are difficult to find or may not be available at all. We propose a method for decomposing the observed variables to find a representation which satisfies the standard IV assumptions of relevance, exclusion restriction, and unconfoundedness. To implement this decomposition, we introduce a deep learning model, *ZNet*, with an architecture that mirrors the *structural causal model* of IVs and is compatible with a wide range of two-stage IV estimators. Our experiments demonstrate that *ZNet* can (i) recover ground-truth instruments when they exist and (ii) construct proxy latent instruments that reduce bias due to unobserved confounding when no explicit instruments are available. These results suggest that *ZNet* can be used as a plug-in module for causal effect estimation in general observational settings, regardless of whether the (untestable) assumption of unconfoundedness is satisfied.

1 INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard for identifying the *causal* impact of an intervention or treatment policy in medicine and beyond (Bothwell et al., 2016). RCTs support causal conclusions since randomization ensures that treatment assignments are not influenced by variables which also affect the outcome of interest. However, we often want, or need, to evaluate treatment effects outside of an RCT. For instance, a clinical trial for some medical interventions can be unethical, and randomization of social interventions can be infeasible. Thus, there is also growing need to develop alternative evidence generation methods for settings where RCTs are prohibitively expensive and time-consuming.

In settings where an RCT is infeasible, it is common to utilize retrospective data along with causal inference methods that adjust for confounding in real-world treatment assignments. However, in many real-world datasets, the confounding factors are unobserved and testing for their existence is impossible (Imbens & Rubin, 2015). For instance, consider the problem of determining the effects of a newly available consumer AI tool for mobile heart monitoring on cardiovascular health using electronic health records (EHRs). While EHRs contain numerous variables about an individual’s lab results, medications, and diagnoses, they may not account for lifestyle factors which influence both consumer choice to use the product and health outcomes. In this setting, traditional causal inference methods to determine the efficacy of the tool will produce biased estimates potentially obscuring the true health impact.

A common approach to account for unobserved confounding used across statistics, econometrics, and epidemiology is to use an *instrumental variable* (IV) that does not directly influence the outcome, but directly affects the treatment, which enables unbiased estimation of causal effects under certain conditions (Imbens & Rubin, 2015). Classic examples of IVs used in the literature include: in economics, geographical proximity to a college as an instrument for educational attainment in estimating the returns of schooling (Card, 1993) and draft lotteries as instruments to study the effect

of military service on long-term economic outcomes (Angrist, 1990). Genetic factors have been used as IVs in medicine since gene variants are often highly correlated with risk factors but do not directly influence outcomes associated with these risk factors (Davey Smith & Ebrahim, 2003; Davey Smith & Hemani, 2014). While such IVs can enable causal identification, they were all present in the initial dataset construction and known to the analyst. Moreover, candidate instruments may not be strong or valid. For example, the use of genetic IVs is challenged by the strength of their correlations with risk factors (Davies et al., 2015; Burgess et al., 2016), the availability of genetic data in large and representative populations, and the risk that pleiotropy induces bias in effect estimates (i.e., gene variants are associated with multiple traits which leaves pathways other than through the considered risk factor open). Together, this means that appropriate IVs are often hard to find in practice.

In this paper, we consider the construction of IVs automatically from the observed data. Several existing works select or refine candidate instruments, especially genetic factors, to improve downstream effect estimation (Kuang et al., 2020; Silva & Shimizu, 2017; Kang et al., 2016; Zhang et al., 2021; Burgess et al., 2016; Davies et al., 2015). These works do not remove the need for domain expertise as a candidate IV must be included in the observed data. There is a small body of existing works which learn variational distributions to construct IV [representations](#) from probabilistic associations (Yuan et al., 2022; Li & Yao, 2024; Cheng et al., 2023; Chou et al., 2024). We [combine these efforts by learning a discriminatory](#) decomposition of the feature space into confounder and instrumental components through a model architecture that encodes the structural causal model (SCM) of IVs with ZNet. [If there are existing instruments, ZNet can recover representations highly correlated with these variables. In the absence of existing instruments, ZNet learns a representation that serves as an instrument.](#) This automated instrument construction can mitigate the need to rely on domain expertise to circumvent untestable assumptions about unobserved confounders. We demonstrate the ability of our method to learn suitable [and superior](#) instrument [representations for causal inference](#).

2 PRELIMINARIES

Let $Y \in \mathcal{Y} \subset \mathbb{R}$ denote a continuous outcome, $T \in \mathcal{T} \subset \mathbb{R}$ a treatment variable (discrete or continuous), and $C \in \mathcal{X} \subset \mathbb{R}^d$ a set of observed covariates associated with each unit. The treatment T has a causal effect on the outcome Y , while the covariates C may influence both T and Y (i.e., C confound the relation of primary interest between T and Y). In addition to these measured confounders C , there are unknown or *unobserved confounders* U , which induce spurious associations by simultaneously affecting both the treatment and outcome (Fig. 1a.). We assume that the outcome variable Y is determined by the following SCM:

$$Y = \varphi(C, T) + e_Y(U), \quad T = \psi(C) + e_T(U), \quad (1)$$

for some unknown functions $\varphi : \mathcal{X} \times \mathcal{T} \rightarrow \mathcal{Y}$ and $\psi : \mathcal{X} \rightarrow \mathcal{T}$. Following (Hartford et al., 2017), we assume that the unobserved confounders U influence the outcome Y and the treatment T additively, via the “error” functions of U , e_Y and e_T , respectively, which we henceforth denote e_Y and e_T . As a result, the observational and interventional distributions generally differ, i.e., $\mathbb{E}[Y|C, T] = \varphi(C, T) + \mathbb{E}[e_Y|C, T] \neq \varphi(C, T) + \mathbb{E}[e_Y|C] = \mathbb{E}[Y|do(T), C]$. Thus, estimating the potential outcome associated with $T = t$ would lead to a *confounding bias* $\Delta(c, t)$, where

$$\Delta(c, t) = \mathbb{E}[Y|C = c, T = t] - \mathbb{E}[Y|C = c, do(T) = t], \quad \forall c, t. \quad (2)$$

De-confounding with instrumental variables (IVs). A common method for removing the confounding bias $\Delta(c, t)$ is to use IV regression. In the classical IV setting, we assume access to an additional variable Z that is not influenced by the unobserved confounders U , affects the treatment T , and has no direct effect on the outcome Y (Verbeek, 2004; Angrist et al., 1996). Formally, given a set of observed confounders C , Z is a valid IV if it satisfies the following conditions¹:

- 101 *Unconfoundedness:* $Z \perp e_Y|C$,
- 102 *Exclusion restriction:* Z only enters φ through T
- 103 *Relevance:* $Z \not\perp T|C$.

¹The definition we provide here is that of a conditional instrument in order to match DeepIV (Hartford et al., 2017) the most general downstream IV estimator. Ultimately, we construct Z, C to be independent in addition to these assumptions so that Z is a IV without conditioning on C as well.

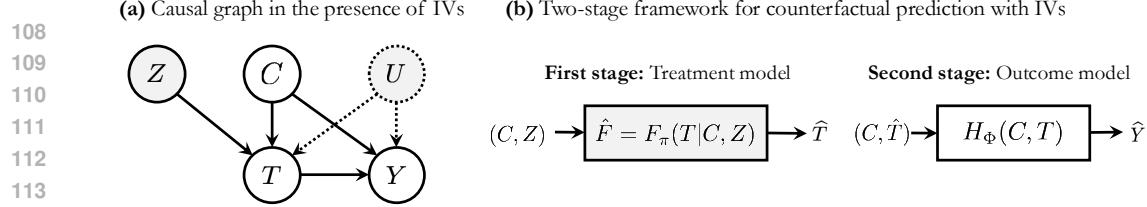


Figure 1: **Illustration of the IV setting.** (a) Causal graph: nodes Z , C , T , U and Y represent the IV, covariates, treatment, unobserved confounders and outcome, respectively; (b) Two-stage framework for counterfactual prediction via IVs: F_π and H_Φ are the learned treatment and outcome functions.

Under these conditions, the variable Z can be used in a two-stage regression framework to estimate the effect of T on Y . Under the additive model in (1), (Hartford et al., 2017) uses the instrument Z to set up an inverse problem by relating the counterfactual $\mathbb{E}[Y|do(T), C]$ to observable distributions:

$$\begin{aligned} \mathbb{E}[Y|C, Z] &= \mathbb{E}[\varphi(C, T) + e_Y|C, Z] = \mathbb{E}[\varphi(C, T)|C, Z] + \mathbb{E}[e_Y|C] \\ &= \int \mathbb{E}[Y|do(T), C] dF(T|C, Z). \end{aligned} \quad (3)$$

Thus, with Z , we can estimate the counterfactual $\mathbb{E}[Y|do(T), C]$ by learning models for the two observable functions $\mathbb{E}[Y|C, Z]$ and $F(T|C, Z)$. While this inverse problem is *ill-posed*, it provides a practical framework for estimating $\mathbb{E}[Y|do(T), C]$, and identification is possible under certain conditions (Newey & Powell, 2003)². A typical two-stage regression first fits a model $\hat{F}(T|C, Z)$, and then estimates $\mathbb{E}[Y|do(T), C]$ by replacing $F(T|C, Z)$ with $\hat{F}(T|C, Z)$ in (3) (Fig. 1(b)).

Equation 3 is notably more general than traditional IV regression with linear models. Here we allow $\mathbb{E}[e_Y|C] \neq 0$, i.e. observed confounders can be correlated with unobserved errors. In a two stage least square regression (TSLS), no endogenous variables can remain for unbiased regression estimates (Verbeek, 2004). With either framework, we obtain conditional average treatment effects (CATE) and average treatment effects (ATE):

$$\begin{aligned} \text{CATE}(C) &= \mathbb{E}[Y|do(T) = 1, C] - \mathbb{E}[Y|do(T) = 0, C] \\ \text{ATE} &= \mathbb{E}[Y|do(T) = 1] - \mathbb{E}[Y|do(T) = 0] \end{aligned}$$

3 CONSTRUCTING INSTRUMENTS FROM DATA

To apply the standard two-stage IV framework described in Section 2, we typically have access to a valid instrument Z among a collection of observed covariates X . In this case, we would set $C = X \setminus Z$. In our set up, instead of Z being some known subset of the observed variables X , Z is learned from data. We do not assume that instruments exist as a subset of the observed data. As illustrated in Figure 2, we derive from the observed variables X two new sets, a confounder C and an instrument Z , such that Z satisfies the three key assumptions listed in Section

2. In the process, we learn a new SCM by learning new structural equations. We construct two functions (i.e., neural networks) f, g that learn variable sets $C = f(X)$, $Z = g(X)$ from X such that $Y = \varphi'(C, T) + e_Y$ and $T = \psi'(C, Z) + e_T$ with fixed T, Y . This defines a new SCM where the instrument Z is derived from the observed data X without *a priori* being known or interpretable and the relationship between T and Y is unchanged.

Notice that this construction is suitable in general. First, suppose there is a subset of the variables that can serve as an instrument, $Z \subset X$. Then if we learn $g(X) = Z$ and $f(X) = X \setminus Z$, we succeed. Second, suppose there is a latent instrument learnable from the observed data. For example, imagine

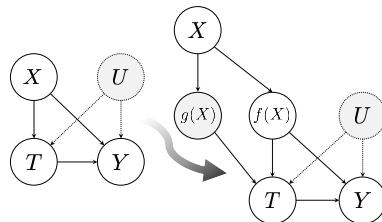


Figure 2: **Graph for constructed IVs.**

²For example, in the linear case, Two-Stage Least Squares Regression (TSLS) allows for identification of causal effects.

162 the case of an emergency department. Randomly assigned providers have varying propensities to
 163 give treatments from their interpretation of the data observed for any patient but assignment does
 164 not affect outcomes directly. Such providers are assigned and take actions in ways that show up
 165 in the retrospective data: patient visit time, labs and tests run, symptoms listed in notes, etc. The
 166 provider influences X and a representation of this influence might be inferred by g to serve as Z .
 167 However, nothing about the construction of our model requires an *a posteriori* interpretation of Z .
 168 **ZNet constructs an instrument representations even in the absence of true instruments.** Sufficient
 169 satisfaction of the three IV conditions allows for IV regression independent of **interpretation**, and
 170 our derived instruments can be abstract exogenous representations of the feature space. This means
 171 our method can be used without domain knowledge **of instrument existence** and leverages existing
 172 **instrumental variable relationships, should they exist.**

173 The key idea of our proposed method is to force the desired causal dependencies through learned
 174 structural equations, i.e. we learn functions f, g forcing IV conditions to hold with $Z = g(X)$ and
 175 $C = f(X)$. Relevance requires that we learn a variable Z predictive of T . We therefore force
 176 non-zero covariance between $g(X)$ and T . Exclusion restriction requires that all direct influence of X
 177 on Y be captured by C . This is encouraged by forcing non-zero covariance between $f(X)$ and Y and
 178 zero covariance between $f(X)$ and $g(X)$. The derived IV $g(X)$ will automatically be unconfounded
 179 and independent of the error e_Y if derived from X which is unconfounded by U . The assumption
 180 that observed variables are not influenced by U is standard to allow for classical IV regression and
 181 straightforward IV generation (Yuan et al., 2022; Li & Yao, 2024; Cheng et al., 2023; Chou et al.,
 182 2024).

183 To allow for our method to produce an instrument even more generally when X may be influenced
 184 by U , we add an additional constraint inspired by the following observation.

185 **Lemma 1.** *If $Z \sim \mathcal{N}(0, \sigma^2)$ and $\text{Cov}(Z, e_Y - \mathbb{E}[e_Y|X, T]) = 0$, then $\text{Cov}(Z, e_Y) = 0$.*

186 *Proof.* Notice that as $\mathbb{E}[Z] = 0$, we have

$$\begin{aligned} 0 &= \text{Cov}(Z, e_Y - \mathbb{E}[e_Y|X, T]) \\ &= \mathbb{E}[Z \cdot (e_Y - \mathbb{E}[e_Y|X, T])] - \mathbb{E}[Z] \cdot \mathbb{E}[(e_Y - \mathbb{E}[e_Y|X, T])] \\ &= \mathbb{E}[Z \cdot (e_Y - \mathbb{E}[e_Y|X, T])] \\ &= \mathbb{E}[Z \cdot e_Y] - \mathbb{E}[Z] \cdot \mathbb{E}[e_Y|X, T] \\ &= \text{Cov}(Z, e_Y). \end{aligned}$$

□

197 We learn a model for $\hat{Y} = \mathbb{E}[Y|X, T]$ and compute its residuals as $Y - \mathbb{E}[Y|X, T]$. Notice $Y -$
 198 $\mathbb{E}[Y|X, T] = Y - \varphi(X, T) - (E[Y|X, T] - \varphi(X, T)) = e_Y - \mathbb{E}[e_Y|X, T]$. **Lemma 1** suggests how
 199 to construct of a loss term which enforces unconfoundedness. Notice that regardless of whether any
 200 existing instruments are normally distributed, if we can construct $g(X) = Z \sim \mathcal{N}(0, \sigma^2)$ to have no
 201 covariance with the residuals $e_Y - \mathbb{E}[e_Y|X, T]$, i.e. with $Y - \mathbb{E}[Y|X, T]$, then Z has zero covariance
 202 with e_Y by Lemma 1. Together, this suggests the following model constraints:

203 **Constraint 1 (Instrumental Unconfoundedness):** $\text{Cov}(g(X), e_Y) = 0, Z \sim \mathcal{N}(0, \sigma^2)$.

204 **Constraint 2 (Exclusion Restriction):** $\text{Cov}(f(X), Y) > 0, \text{Cov}(g(X), f(X)) = 0$.

205 **Constraint 3 (Relevance):** $\text{Cov}(T, g(X)) > 0$.

208 4 RELATED WORK

210 The majority of existing works for learning IVs automate IV selection from observed candidates.
 211 Meaning these works recover existing IVs. ModeIV chooses instruments by looking at clusters of
 212 treatment effects based on weighting the observed variables used as instruments (Hartford et al.,
 213 2021). DIV.VAE uses a variational autoencoder (VAE) approach to disentangle an instrument under
 214 the assumption that a surrogate instrument exists in the data (Cheng et al., 2024). IV.Tetrad (Silva
 215 & Shimizu, 2017) builds strong instruments requiring at least two observed IV candidates. Several
 methods for refining IV candidates and estimating causal effects from these candidates can fall into

216 this category as well including sisVIVE (Kang et al., 2016), TEDVAE (Zhang et al., 2021) and Ivy
 217 (Kuang et al., 2020) among many others (Davies et al., 2015; Burgess et al., 2016).
 218

219 Methods to learn IVs were also proposed in the GIV (Wu et al., 2023), AutoIV (Yuan et al., 2022),
 220 VIV (Li & Yao, 2024), DVAE.CIV (Cheng et al., 2023), and GDIV (Chou et al., 2024). GIV generates
 221 a categorical IV with unsupervised expectation-maximization that groups data according to underlying
 222 distributional differences assumed to arise from the aggregation of data from multiple sources. This
 223 automates the idea of using environment as an IV in data coming from multiple sources (Schweisthal
 224 et al., 2024). The other methods learn variational distributions. The AutoIV method uses a mutual
 225 information (MI) based loss to generate an abstract IV from observed data by learning variational
 226 distributions (Yuan et al., 2022). VIV, DVAE.CIV, and GDIV use VAEs to learn independent latent
 227 variables that serve as Z, U, C from the observed data Y, T, X , sometimes including an additional
 228 adjustment variable A derived from Y, X . VAEs have shown great success in probabilistic modeling
 229 in general but lack theory to guarantee learning the true causal model and satisfaction of IV conditions.
 230

5 METHODS

232 We introduce an architecture which we call
 233 ZNet, a multi-armed multi-loss network (Figure 3) specifically constructed to enforce Con-
 234 straints 1-3 and learn a new SCM. The network
 235 contains four feed forward neural networks,
 236 Φ, f, g, π : Φ is our model for $\mathbb{E}[Y|X, T]$, f, g
 237 learn to derive the instrument Z and confounders
 238 C from X , and π estimates the treatment T from
 239 the derived instrument Z . The losses force net-
 240 works f, g to learn latent representations from
 241 the input observational dataset $\{X, T, Y\}$ lever-
 242 aging Φ, π . The networks f, g, π, Φ each consist
 243 of two hidden layers, where the activation function can be chosen between ReLU or linear. The
 244 output layers of f, g may use either a linear mapping or a temperature-scaled softmax. From our
 245 trained ZNet, we learn representations for $\{C, Z\}$ from X and use the existing T, Y to assemble the
 246 dataset $\{C, Z, T, Y\}$. We use downstream IV estimators on this data to predict and evaluate treatment
 247 effects across data settings. We compare treatment effect estimation using ZNet to GIV, AutoIV, and
 248 VIV.
 249

5.1 ZNET LOSS TERMS

250 The ZNet multi-part loss function automates IV generation by forcing Constraints 1-3. We **first**
 251 **consider** a Pearson correlation-based (PC) loss, which between any two variables A and B is the ratio
 252 of the covariance between A and B and the product of the standard deviations of each of A and B :
 253

$$PC(A, B) = \frac{\text{Cov}(A, B)}{\sigma_A \sigma_B}. \quad (4)$$

254 Each time we seek to minimize covariance, we minimize $(PC)^2$. In contrast, for relationships
 255 we seek to maximize covariance, we minimize $1 - (PC)^2$. To increase the generality of ZNet
 256 beyond linear settings, we **additionally employ** a mutual information (MI) based loss, **minimized or**
 257 **maximized in the same respective manner, and approximated** using kernel density estimation (KDE)
 258 with Gaussian kernels.

259 **Enforcing Constraint 1 (Instrumental Unconfoundedness):** **To enforce unconfoundedness, we**
 260 **leverage Lemma 1.** We **first** learn a model Φ to predict $\hat{Y} = \Phi(X \odot T)$ from X and T using mean
 261 squared error (MSE). **Then via a loss minimizing** the correlation between the error $Y - \hat{Y}$ and Z , **we**
 262 **encourage zero correlation of Z with e_Y :**

$$L_{X, T \rightarrow Y} = \alpha_1 \cdot MSE(\Phi(X \odot T), Y) \quad (5)$$

$$L_{Z \nparallel e_Y}^{PC} = \alpha_2 \cdot PC(Y - \hat{Y}, Z)^2 \quad (6)$$

270 As $L_{Z \not\perp \not\rightarrow Y}^{PC}$ approaches 0, satisfaction of Constraint 1 and thereby instrumental unconfoundedness is
 271 reached. The loss $L_{X,T \rightarrow Y}$ is trained separately and first.
 272

273 **Enforcing Constraint 2 (Exclusion Restriction):** We need C to capture all observed variation in
 274 Y not through T . We discourage Z from being directly predictive of Y , i.e. remove additional
 275 information about Y conditional on C and T , by encouraging C to be highly correlated with Y and
 276 Z to have zero covariance with C , i.e. combining the following two losses encourages Constraint 2
 277 and exclusion restriction by preventing Z from entering φ' :
 278

$$L_{C \rightarrow Y}^{PC} = \alpha_3 \cdot (1 - PC(C, Y)^2) + \alpha_4 \cdot MSE(C, Y) \quad (7)$$

$$L_{Z \perp C}^{PC} = \alpha_5 \cdot PC(C, Z)^2 \quad (8)$$

282 **Enforcing Constraint 3 (Relevance):** We enforce relevance of the learned instrument Z to the
 283 treatment variable T by forcing its predictive power and correlation. When T is binary, we have
 284

$$L_{Z \rightarrow T}^{PC}(Z) = \alpha_6 \cdot BCE(\pi(Z), T) + \alpha_7 \cdot (1 - PC(Z, T)^2) \quad (9)$$

288 using binary cross-entropy (BCE). We would replace BCE by mean squared error (MSE) when the
 289 treatment T is continuous.

290 **Z and C Distribution Losses** We use a Kullback-Leibler (KL) divergence loss on each dimension of
 291 Z and C with a mean-zero normal distribution to stabilize Z, C and to force learning $Z \sim \mathcal{N}(0, \sigma^2)$
 292 for the sake of Lemma 1. We also minimize the average PC across dimensions within C and Z to
 293 encourage the features of the learned representations to be distinct.

295 5.2 TREATMENT EFFECT ESTIMATION

297 We use three downstream estimators of treatment effects to demonstrate the ability of ZNet for causal
 298 inference: TSLS, DFIV and DeepIV. Each method takes as input the true treatment term T and our
 299 learned representations C and Z . TSLS is the classical IV estimator. It assumes linear structural
 300 equations and independence of U and X (Imbens & Rubin, 2015; Verbeek, 2004). DeepIV (Hartford
 301 et al., 2017) generalizes TSLS by allowing the model at each stage to be parameterized by a neural
 302 network and $X \not\perp U$. The DFIV estimator is a second leading estimator which allows basis functions
 303 at each stage to be parametrized by neural networks (Xu et al., 2020). We compare our pipeline to
 304 using the true instrument *TrueIV*, if it exists, and to TARNet (Shalit et al., 2017), a state of the art
 305 treatment effect estimator used in the absence of an IV.

307 5.3 TRAINING

309 ZNet training occurs in three stages. First, Φ is trained to predict Y from X and T using the MSE
 310 loss $L_{X,T \rightarrow Y}$, i.e. only α_1 is non-zero. The Φ network is then frozen. Next f, g are pretrained with
 311 all loss coefficients set to 0 except for α_3, α_6 to encourage a starting representation for C relevant
 312 to Y and Z relevant to T . Then ZNet (f, g, π) is trained with the full loss to learn the SCM with
 313 $\{Z, C, T, Y\}$. In training ZNet, our loss terms are potentially conflicting, so to stabilize training, we
 314 allowed the network to use gradient surgery (Yu et al., 2020).

315 Hyperparameters, including loss term weights, whether constraints are PC or MI, and the necessity
 316 of gradient surgery, were tuned using Bayesian optimization implemented in Botorch (Balandat et al.,
 317 2020). We perform the optimization in two stages. For each IV generation method (ZNet, AutoIV,
 318 GIV, and VIV), we maximized the instrument's relevance F-Statistic and minimized the correlation
 319 between learned C and Z using Botorch's native adaptation of the Noisy Expected Improvement
 320 acquisition function for multi-objective optimization. We then choose the parameter set from the
 321 Pareto front with the highest F-Statistic. We tune the causal inference methods (DeepIV, DFIV,
 322 and TARNet) to simultaneously minimize the MSE of the model's ATE against a nearest-neighbors
 323 (NN) ATE and the MSE of estimated Y on factual Y , again with the Noisy Expected Improvement
 acquisition function. The parameter set is selected from the Pareto front by least NN ATE MSE.

324

6 EVALUATION

325

6.1 DATA GENERATION

326 For evaluation, we focus on binary treatments, though ZNet could easily be adapted for continuous
 327 settings. We construct multiple semi-synthetic datasets to evaluate ZNet’s ability to predict causal
 328 effects across settings. The **IHDP** data is a common causal inference benchmark dataset (Hill, 2011).
 329 It is data based on an experiment that studied the effect of home visits during infancy on cognitive
 330 test scores of premature infants. There are 985 individuals and 25 covariates. We build our data from
 331 these covariates, masking some covariates to serve as unobserved confounding. We define three sets
 332 of covariates, $X \rightarrow T$, $X \rightarrow Y$, and $X \leftarrow U$, where we each $X \rightarrow I$ is the subset of covariates X which
 333 have a causal relationship with the covariate subset I in the arrow’s direction. We create the following
 334 classes of data based on their inclusion of an instrument:
 335

- 336 1. **Disjoint Candidate:** $\exists X \rightarrow T$ s.t. $X \rightarrow T \cap X \rightarrow Y = \emptyset, X \rightarrow T \cap X \leftarrow U = \emptyset$
- 337 2. **Mixed Candidate:** $\exists \tilde{X} \rightarrow T \subset X \rightarrow T$ s.t. $\tilde{X} \rightarrow T \cap X \rightarrow Y = \emptyset, \tilde{X} \rightarrow T \cap X \leftarrow U = \emptyset$
- 338 3. **Latent Categorical Instrument:** $\exists Z, f$ s.t. $f(X \rightarrow T) = Z \in \mathbb{N}^+$
- 339 4. **No Candidate** $\# \tilde{X} \rightarrow T \subseteq X \rightarrow T$ s.t. $\tilde{X} \rightarrow T \cap X \rightarrow Y = \emptyset, \tilde{X} \rightarrow T \cap X \leftarrow U = \emptyset$

340 For each class, we consider $X \leftarrow U \neq \emptyset$ and, in the appendix, $X \leftarrow U = \emptyset$. We also consider data
 341 where $U = \emptyset$ (i.e. no unobserved confounding). After fixing covariate sets, we choose functions
 342 ϕ, ψ, e_Y, e_T and generate the variables Y, T similar to (Wu et al., 2023) by writing
 343

$$344 Y = \phi(X_Y, T) + e_Y(U) + \varepsilon_Y \text{ for } \varepsilon_Y \sim \mathcal{N}(0, .1) \quad (10)$$

$$345 T \sim \text{Bernoulli}(P) \text{ for } P = \psi(X_T) + e_T(U) + \varepsilon_T \text{ for } \varepsilon_T \sim \mathcal{N}(0, .1). \quad (11)$$

346 We consider a linear and non-linear version of ϕ, ψ for each dataset. Data are split into 60% for
 347 training, 20% for validation, and 20% for testing. All experimental results are that of the test data.

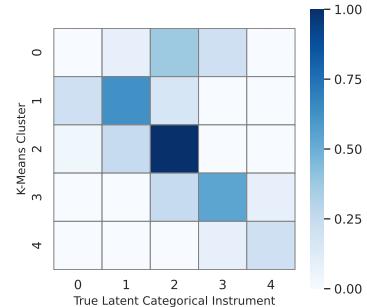
348

6.2 LEARNING INSTRUMENTS WITH ZNET

349 ZNet successfully recovers existing instruments. In the
 350 **Linear Mixed Candidate** dataset, there are three vari-
 351 ables $X_{13}, X_{14}, X_{15} \in X \rightarrow T$ which are instruments.
 352 ZNet chooses to generate a 10-dimensional variable Z
 353 which is correlated with and linearly predicts each of
 354 X_{13}, X_{14}, X_{15} (Figure 5 a,b). Instrument recovery is due
 355 to the combination of ZNet loss constraints. Upon ablation
 356 of each, recovery deteriorates. We see this in the decreasing
 357 ability to predict the true instruments from that recovered by
 358 the network without each component (Figure 5 c). We see
 359 similar performance in other datasets with candidates and
 360 include a non-linear example in Appendix Figure 7.

361 ZNet is also able to recover latent instruments. We demon-
 362 strate this with our **Linear Categorical**
 363 **Instrument** dataset. The true instrument groups the observed data into 5 clusters. ZNet can be seen
 364 to approximately recover these clusters after K-Means and cluster relabeling in Figure 4.

365 Independent of the existence of an instrument in the observed data, ZNet generates an instrument
 366 representation that is correlated with T , independent of the confounder representation C , independent
 367 of the error in predicting Y , and unconfounded by U . We evaluate the suitability of this instrument
 368 representation empirically. We demonstrate this with our **Non-linear No Candidate** dataset. The
 369 generated instrument representation is relevant to T , not additionally helpful in predicting Y , and
 370 shows weak correlation to unobserved confounders (Figure 6). We observe strong F-Statistics for T
 371 prediction from generated representations Z and low PC across prohibited relationships between Z
 372 and confounders in the other datasets as well which we report in Appendix Tables 7, 8.



373 **Figure 4: Normalized confusion ma-**
 374 **trix demonstrating ZNet recovery of**
 375 **linear latent categorical instrument.**

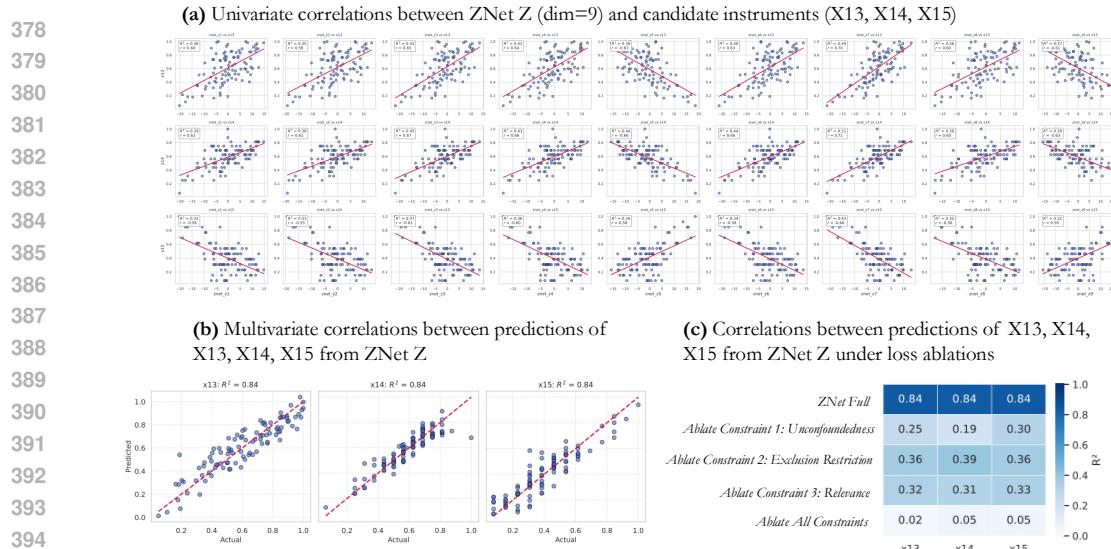


Figure 5: Learned instrument representation is correlated to existing instruments in linear dataset with mixed instrument candidate. a) Learned instruments scattered against the true instruments. b) Regression predictions from learned Z dimensions predicting the true instruments scattered against the true instruments. c) Regression R^2 values for predicting the true instrument with ZNet learned instruments across loss ablation experiments.

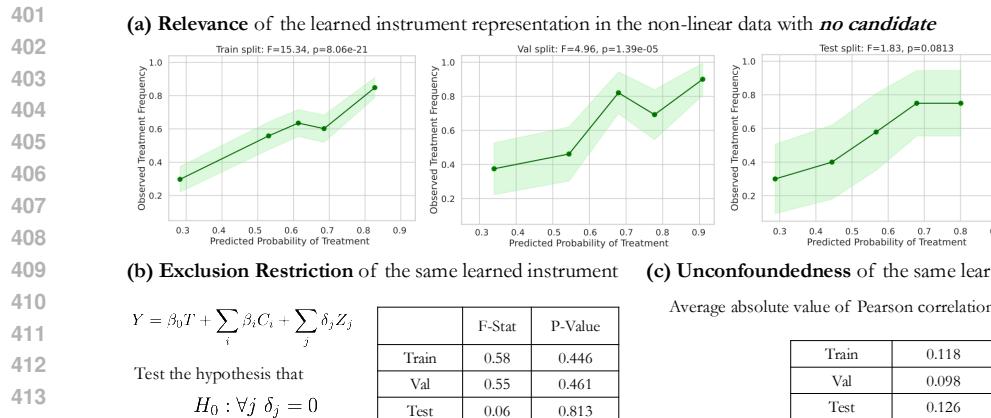


Figure 6: Learned instrument representation is valid even in the absence of real instruments in nonlinear data with no instrument candidate. a) We see learned instruments are *relevant* based on calibration plots of regression of T on learned Z . b) Exclusion restriction is satisfied as representations Z do not improve the prediction of Y after accounting for the treatment and learned confounders C (F-tests are not significant). c) Learned instrument representations Z show minimal correlation with the unobserved confounders U .

6.3 CAUSAL INFERENCE WITH ZNET LEARNED REPRESENTATIONS

ZNet learned representations, along with those of AutoIV, GIV, and VIV, can recover ATE and CATE after a second stage regression, i.e. TSLS, DeepIV, or DFIV. Performance of ZNet is comparable to using the ground truth instrument, TrueIV, when available, and IV generation generally exceeds that of TARNet, which ignores confounding, for both ATE, Table 1, and CATE, Appendix Tables 3, 4. **ZNet is on average the highest performing among IV generation methods across comprehensive data generation processes (Appendix Tables 9, 10).** Notably, in the setting of no unobserved confounding (no U) without a candidate instrument, ZNet is comparable to TARNet. Given that we cannot

432	Dataset	Diff Means	TARNet	IV Method	TSLS	DeepIV	DF IV
433	Linear Disjoint	0.054	-0.025	TrueIV ZNet AutoIV VIV GIV	-0.002 ^{**} <i>0.119</i> -1.393 0.147 -0.620	0.108 <i>0.054</i> [*] 0.038 ^{**} 0.123 0.115	0.132 ^{**} -0.303 [*] -0.964 0.546 0.304
434	True ATE: 0.815						
435	Linear Latent	-0.539	-0.146	TrueIV ZNet AutoIV VIV GIV	-0.524 <i>-0.125</i> -1.315 -0.082 0.285	-0.317 -0.136 ^{**} -0.309 <i>-0.171</i> [*] -0.234	0.042 ^{**} -0.231 -0.270 -0.122 [*] -0.447
436	True ATE: 0.941						
437	Linear Mixed	0.407	0.429	TrueIV ZNet AutoIV VIV GIV	0.263 ^{**} <i>0.437</i> -0.803 1.349 1.171	0.429 [*] 0.381 ^{**} 0.548 0.637 0.525	0.369 0.655 0.270 -0.256 [*] 0.217 ^{**}
438	True ATE: 0.608						
439	Linear No Candidate (no U)	-0.296	-0.169	TrueIV ZNet AutoIV VIV GIV	- 2.718 0.963 0.279 0.137	- <i>-0.033</i> [*] -0.017 ^{**} -0.111 -0.097	- -0.336 -0.300 [*] -0.107 ^{**} -0.741
440	True ATE: 1.882						
441	Linear No Candidate	0.657	0.240	TrueIV ZNet AutoIV VIV GIV	- 0.025 -0.028 0.305 -2.614	- <i>0.189</i> [*] 0.251 0.185 [*] 0.278	- 0.156 [*] 0.565 0.632 [*] -0.031 ^{**}
442	True ATE: 0.354						
443	Non-linear Disjoint	0.766	0.324	TrueIV ZNet AutoIV VIV GIV	0.266 ^{**} <i>0.524</i> 1.511 0.561 0.697	0.272 ^{**} <i>0.309</i> [*] 0.389 0.555 0.365	-0.103 ^{**} <i>0.147</i> [*] -0.403 -0.214 1.120
444	True ATE: 0.544						
445	Non-linear Latent	0.528	0.050	TrueIV ZNet AutoIV VIV GIV	1.381 0.152 -4.809 1.790 -0.235	-0.020 -0.039 -0.008 ^{**} -0.039 -0.028	4.762 <i>-0.063</i> ^{**} 0.785 -0.170 [*] <i>0.084</i> [*]
446	True ATE: 0.333						
447	Non-linear Mixed	0.849	0.255	TrueIV ZNet AutoIV VIV GIV	0.477 0.244 [*] 10.821 0.950 -0.981	<i>0.142</i> [*] 0.218 0.036 ^{**} 0.408 0.293	-0.156 [*] <i>0.033</i> ^{**} 2.079 0.847 0.983
448	True ATE: 0.558						
449	Non-linear No Candidate (no U)	0.250	-0.068	TrueIV ZNet AutoIV VIV GIV	- -0.528 -1.806 0.182 ^{**} 3.389	- -0.012 ^{**} 0.064 -0.085 0.053	- -0.143 ^{**} -0.257 -0.209 [*] -0.665
450	True ATE: 1.429						
451	Non-linear No Candidate	0.783	0.423	TrueIV ZNet AutoIV VIV GIV	- <i>0.200</i> [*] -25.181 0.898 -0.109	- 0.260 ^{**} 0.720 <i>0.422</i> [*] 0.640	- 0.049 ^{**} 0.477 0.404 <i>0.345</i> [*]
452	True ATE: 0.435						

473 Table 1: **Mean error on ATE by dataset and causal inference method across 50 resampled**
474 **bootstraps.** Smallest errors are **bolded**. Second smallest are *italicized*. A single * indicates that the
475 two best are significantly better than the third best. Two ** indicates that the best is significantly
476 better than the second best.

477 assess the existence (or lack thereof) of unobserved confounding in non-synthetic datasets, ZNet’s
478 performance on these datasets support its translation to real-world settings.

480 7 DISCUSSION

483 We present novel methodology for data driven learning of IV representations using deep learning
484 with superior performance. Our network, ZNet, differs from existing literature generating IVs in its
485 approach. Existing methods learn variational distributions, while our method learns SCMs. Existing
486 methods assume that unobserved confounders do not influence the observed data, while our method

486 relaxes this assumption. These make our implementation simple and transparent for widespread utility.
 487 We demonstrate that ZNet is able to recover valid instrument representations. In the case of existing
 488 instruments among the observed data, recovered instruments are highly correlated with these variables.
 489 This is shown empirically in cases when the instrument was either observed or latent. Regardless of
 490 the existence of instruments in the data, ZNet shows strong performance predicting treatment effects
 491 across settings of unobserved confounding performing on average better than existing variational
 492 methods for IV generation.

493 ZNet eliminates the need for domain knowledge of pre-existing IVs by automating instrument repre-
 494 sentations from observed data. We contribute the most comprehensive evaluation of IV generation
 495 for causal inference, which demonstrates the broad utility of IV generation. We present performance
 496 across a comprehensive collection of data generation settings. Since the data generation process
 497 is untestable in practice, these results suggest that ZNet can serve as a plug-in causal inference
 498 estimator. ZNet is high performing across these semi-synthetic settings. Regardless of the existence
 499 of a candidate or a latent instrument, or of unobserved confounding, ZNet can match or exceed the
 500 performance of TARNet and of probabilistic IV generation methods.

501 Solutions to the ZNet loss minimization problem will always give a representation that serves as
 502 an instrument since IV constraints are explicitly embedded in the loss function. This instrument
 503 can then be used in any downstream instrument regression where satisfying the standard IV criteria
 504 (or, equivalently, ZNet criteria) implies the validity of subsequent causal inference. However, IV
 505 estimation in general is limited by a lack of theoretical guarantees of identifiability in the general
 506 case. This theoretically limits our approach and IV estimation in general. However, strong empirical
 507 results alongside ongoing work to stabilize downstream IV estimators, i.e. (Li et al., 2024), suggest
 508 the value in the increased use of these methods beyond linear settings. We see great potential for
 509 IV estimation in general and our methods in particular with the growing use of unstructured data.
 510 Unstructured data may contain latent or abstract instruments more frequently, as high-dimensional
 511 feature spaces often contain rich information that our approach could learn to extract as instruments.
 512 Our method's simplicity adds interpretability. Learning SCMs through constraints allows for direct
 513 control over the strength and validity of learned instruments, which elucidates performance in the
 514 absence of theoretical guarantees on downstream causal inference. Due to its lack of assumptions on
 515 the data generation process, ZNet suggests that IV generation presents the potential to strengthen
 516 causal inference and broaden its applicability.

517 ETHICS STATEMENT

519 There are no privacy, fairness, security, or other ethics concerns with this work. Large language
 520 models were used for assisting in code production (i.e. aide in plotting results, converting code-
 521 bases for comparison from TensorFlow to PyTorch, implementing MI approximation and developing
 522 Bayesian tuning) and literature review.

524 REPRODUCIBILITY STATEMENT

526 We make our results reproducible by providing all details of their construction and associated
 527 assumptions in the paper. Moreover, all code to generate models, synthetic data, and experiments
 528 will be made public upon publication.

531 REFERENCES

532 Joshua D. Angrist. Lifetime earnings and the vietnam era draft lottery: Evidence from social security
 533 administrative records. *American Economic Review*, 80(3):313–336, 1990.

535 Joshua D. Angrist, Guido W. Imbens, and Donald B. Rubin. Identification of causal effects using
 536 instrumental variables. *Journal of the American Statistical Association*, 91(434):444–455, 1996.
 537 ISSN 01621459. URL <http://www.jstor.org/stable/2291629>.

538 Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
 539 drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo

540 Bayesian Optimization. In *Advances in Neural Information Processing Systems 33*, 2020. URL
 541 <http://arxiv.org/abs/1910.06403>.
 542

543 Laura E. Bothwell, Jeremy A. Greene, Scott H. Podolsky, and David S. Jones. Assessing the gold
 544 standard — lessons from the history of rcts. *New England Journal of Medicine*, 374(22):2175–
 545 2181, 2016. doi: 10.1056/NEJMms1604593. URL <https://www.nejm.org/doi/full/10.1056/NEJMms1604593>.
 546

547 Stephen Burgess, Frank Dudbridge, and Simon G Thompson. Combining information on multiple
 548 instrumental variables in mendelian randomization: comparison of allele score and summarized
 549 data methods. *Statistics in medicine*, 35(11):1880–1906, 2016.
 550

551 David Card. Using geographic variation in college proximity to estimate the return to schooling,
 552 1993.
 553

554 Debo Cheng, Ziqi Xu, Jiuyong Li, Lin Liu, Thuc Duy Le, and Jixue Liu. Learning conditional
 555 instrumental variable representation for causal effect estimation. In *Joint European Conference on
 556 Machine Learning and Knowledge Discovery in Databases*, pp. 525–540. Springer, 2023.
 557

558 Debo Cheng, Jiuyong Li, Lin Liu, Ziqi Xu, Weijia Zhang, Jixue Liu, and Thuc Duy Le. Disentangled
 559 representation learning for causal inference with instruments. *IEEE Transactions on Neural
 560 Networks and Learning Systems*, 2024.

561 Jingyuan Chou, Jiangzhuo Chen, and Madhav Marathe. Estimate causal effects of entangled treatment
 562 on graphs using disentangled instrumental variables. In *2024 IEEE International Conference on
 563 Big Data (BigData)*, pp. 1260–1267. IEEE, 2024.

564 George Davey Smith and Shah Ebrahim. ‘mendelian randomization’: can genetic epidemiology
 565 contribute to understanding environmental determinants of disease? *International journal of
 566 epidemiology*, 32(1):1–22, 2003.

567 George Davey Smith and Gibran Hemani. Mendelian randomization: genetic anchors for causal
 568 inference in epidemiological studies. *Human molecular genetics*, 23(R1):R89–R98, 2014.
 569

570 Neil M Davies, Stephanie von Hinke Kessler Scholder, Helmut Farbmacher, Stephen Burgess, Frank
 571 Windmeijer, and George Davey Smith. The many weak instruments problem and mendelian
 572 randomization. *Statistics in medicine*, 34(3):454–468, 2015.

573 Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep iv: A flexible approach
 574 for counterfactual prediction. In *International Conference on Machine Learning*, pp. 1414–1423.
 575 PMLR, 2017.

576 Jason S Hartford, Victor Veitch, Dhanya Sridhar, and Kevin Leyton-Brown. Valid causal inference
 577 with (some) invalid instruments. In *International Conference on Machine Learning*, pp. 4096–4106.
 578 PMLR, 2021.

579 Jennifer L Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational
 580 and Graphical Statistics*, 20(1):217–240, 2011.

581 Guido W. Imbens and Donald B. Rubin. *Causal Inference for Statistics, Social, and Biomedical
 582 Sciences: An Introduction*. Cambridge University Press, 2015.

583 Hyunseung Kang, Anru Zhang, T Tony Cai, and Dylan S Small. Instrumental variables estimation
 584 with some invalid instruments and its application to mendelian randomization. *Journal of the
 585 American statistical Association*, 111(513):132–144, 2016.

586 Zhaobin Kuang, Frederic Sala, Nimit Sohoni, Sen Wu, Aldo Córdova-Palomera, Jared Dunnmon,
 587 James Priest, and Christopher Re. Ivy: Instrumental variable synthesis for causal inference. In Silvia
 588 Chiappa and Roberto Calandra (eds.), *Proceedings of the Twenty Third International Conference
 589 on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*,
 590 pp. 398–410. PMLR, 26–28 Aug 2020. URL <https://proceedings.mlr.press/v108/kuang20a.html>.
 591

594 Xinshu Li and Lina Yao. Distribution-conditioned adversarial variational autoencoder for valid
 595 instrumental variable generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 596 volume 38, pp. 13664–13672, 2024.

597

598 Zihao Li, Hui Lan, Vasilis Syrgkanis, Mengdi Wang, and Masatoshi Uehara. Regularized deepiv with
 599 model selection, 2024. URL <https://arxiv.org/abs/2403.04236>.

600 Whitney K Newey and James L Powell. Instrumental variable estimation of nonparametric models.
 601 *Econometrica*, 71(5):1565–1578, 2003.

602

603 Jonas Schweisthal, Dennis Frauen, Mihaela Van Der Schaar, and Stefan Feuerriegel. Meta-learners for
 604 partially-identified treatment effects across multiple environments. In Ruslan Salakhutdinov, Zico
 605 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 606 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 607 *Proceedings of Machine Learning Research*, pp. 43967–43985. PMLR, 21–27 Jul 2024. URL
 608 <https://proceedings.mlr.press/v235/schweisthal24a.html>.

609 Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: general-
 610 ization bounds and algorithms, 2017. URL <https://arxiv.org/abs/1606.03976>.

611 Ricardo Silva and Shohei Shimizu. Learning instrumental variables with structural and non-
 612 gaussianity assumptions. *Journal of Machine Learning Research*, 18(120):1–49, 2017.

613

614 Marno Verbeek. *A Guide to Modern Econometrics*. John Wiley Sons Ltd, 2004.

615

616 Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Minqin Zhu, Yuxuan Liu, Bo Li, Furui Liu, Zhihua Wang,
 617 and Fei Wu. Learning instrumental variable from data fusion for treatment effect estimation. In
 618 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 10324–10332, 2023.

619 Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, and Arthur Gretton.
 620 Learning deep features in instrumental variable regression. *arXiv preprint arXiv:2010.07154*,
 621 2020.

622 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
 623 Gradient surgery for multi-task learning. In *Proceedings of the 34th International Conference on
 624 Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates
 625 Inc. ISBN 9781713829546.

626

627 Junkun Yuan, Anpeng Wu, Kun Kuang, Bo Li, Runze Wu, Fei Wu, and Lanfen Lin. Auto iv:
 628 Counterfactual prediction via automatic instrumental variable decomposition. *ACM Trans. Knowl.
 629 Discov. Data*, 16(4), January 2022. ISSN 1556-4681. doi: 10.1145/3494568.

630 Weijia Zhang, Lin Liu, and Jiuyong Li. Treatment effect estimation with disentangled latent factors.
 631 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 10923–10930,
 632 2021.

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

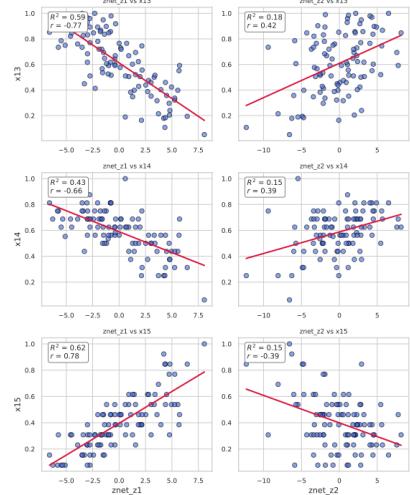
A APPENDIX / SUPPLEMENTAL MATERIAL

650
651

A.1 ADDITIONAL FIGURES

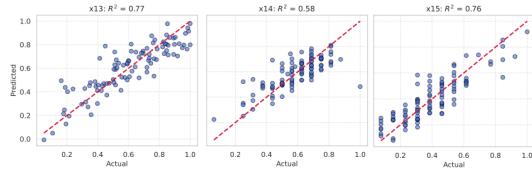
652

(a) Univariate correlations between ZNet Z (dim=2) and candidate instruments (X13, X14, X15)



653

(b) Multivariate correlations between predictions of X13, X14, X15 from ZNet Z



654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

Figure 7: **Learned instrument representation is correlated to existing instruments in non-linear dataset with mixed instrument candidate in test set.** a) Learned instruments against the true instruments. b) Regression predictions from learned Z dimensions predicting the true instruments. c) Regression R^2 values for predicting the true instrument with ZNet learned instruments across loss ablation experiments.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

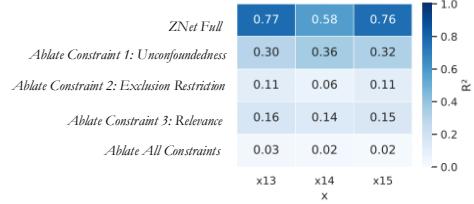
698

699

700

701

(c) Correlations between predictions of X13, X14, X15 from ZNet Z under loss ablations

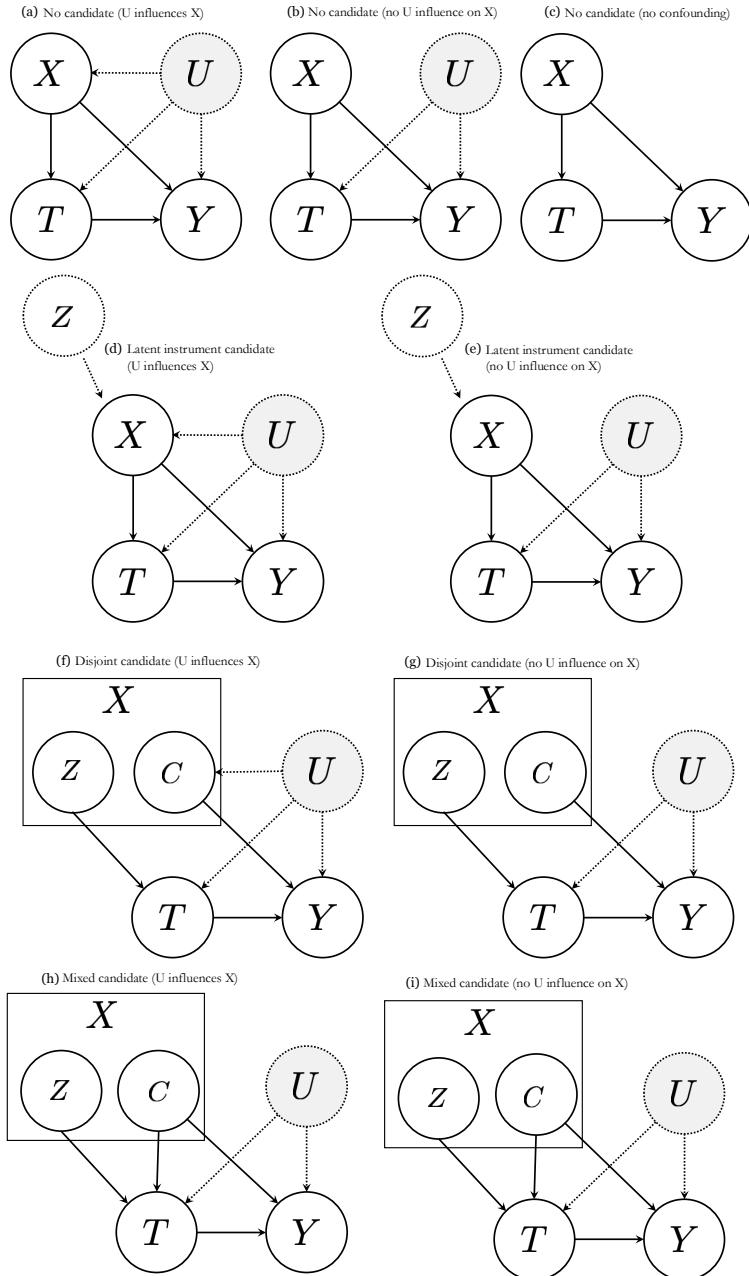


702
703
704
705
706
707
708
709

Dataset	Method	X13	X14	X15
Linear Disjoint	ZNet Full	0.593	0.542	0.691
	Ablate Unconfoundedness Constraint	0.629	0.435	0.705
	Ablate Exclusion Restriction Constraint	0.666	0.554	0.749
	Ablate Relevance Constraint	0.586	0.440	0.542
	Ablate All Constraint	0.016	0.023	0.032
Linear Disjoint (no $U \rightarrow X$)	ZNet Full	0.784	0.707	0.811
	Ablate Unconfoundedness Constraint	0.616	0.453	0.604
	Ablate Exclusion Restriction Constraint	0.714	0.514	0.682
	Ablate Relevance Constraints	0.271	0.207	0.367
	Ablate All Constraints	0.259	0.143	0.124
Linear Mixed	ZNet Full	0.837	0.835	0.838
	Ablate Unconfoundedness Constraint	0.255	0.194	0.302
	Ablate Exclusion Restriction Constraint	0.355	0.392	0.358
	Ablate Relevance Constraint	0.322	0.311	0.329
	Ablate All Constraints	0.024	0.054	0.050
Linear Mixed (no $U \rightarrow X$)	ZNet Full	0.711	0.624	0.591
	Ablate Unconfoundedness Constraint	0.259	0.353	0.228
	Ablate Exclusion Restriction Constraint	0.306	0.359	0.411
	Ablate All Constraints	0.023	0.018	0.033
	ZNet Full	0.361	0.387	0.293
Non-linear Disjoint	Ablate Unconfoundedness Constraint	0.181	0.202	0.283
	Ablate Exclusion Restriction Constraint	0.410	0.423	0.442
	Ablate Relevance Constraint	0.220	0.213	0.239
	Ablate All Constraints	0.092	0.058	0.033
	ZNet Full	0.532	0.384	0.516
Non-linear Disjoint (no $U \rightarrow X$)	Ablate Unconfoundedness Constraint	0.285	0.175	0.282
	Ablate Exclusion Restriction Constraint	0.372	0.414	0.421
	Ablate Relevance Constraint	0.009	0.035	0.004
	Ablate All Constraints	0.068	0.024	0.045
	ZNet Full	0.767	0.577	0.759
Non-linear Mixed	Ablate Unconfoundedness Constraint	0.299	0.357	0.321
	Ablate Exclusion Restriction Constraint	0.109	0.064	0.106
	Ablate Relevance Constraint	0.164	0.137	0.154
	Ablate All Constraints	0.028	0.020	0.017
	ZNet Full	0.209	0.120	0.178
Non-linear Mixed (no $U \rightarrow X$)	Ablate Unconfoundedness Constraint	0.463	0.273	0.387
	Ablate Exclusion Restriction Constraint	0.362	0.242	0.415
	Ablate Relevance Constraint	0.369	0.272	0.421
	Ablate All Constraints	0.027	0.060	0.036

747
748 Table 2: **Multivariate R^2 for recovering instruments X_{13}, X_{14}, X_{15} for each dataset and
749 method.**
750
751
752
753
754
755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780



804 Figure 8: **Directed acyclic graphs (DAGs) demonstrating the various data generation processes**
805 **on which ZNet is evaluated.** Linear and non-linear relationships are constructed for each DAG
806 giving 18 total datasets for evaluation. Maintext results focus on cases where U influences X as this
807 is more challenging, more general, and unique to ZNet.

808
809

Dataset	TARNet	IV Method	DeepIV	DF IV
Linear Disjoint	0.103	TrueIV	0.223	0.180
		ZNet	0.165	0.315
		AutoIV	0.113	0.993
		VIV	0.236	0.593
		GIV	0.209	0.542
Linear Disjoint (no $U \rightarrow X$)	0.410	TrueIV	0.394	0.306
		ZNet	0.329	0.500
		AutoIV	0.432	1.541
		VIV	0.439	0.328
		GIV	0.499	0.363
Linear Latent	0.170	TrueIV	0.364	0.142
		ZNet	0.267	0.236
		AutoIV	0.367	0.291
		VIV	0.260	0.193
		GIV	0.324	0.471
Linear Latent (no $U \rightarrow X$)	0.474	TrueIV	0.498	0.153
		ZNet	0.472	0.651
		AutoIV	0.520	0.328
		VIV	0.538	0.372
		GIV	0.518	0.861
Linear Mixed	0.435	TrueIV	0.541	0.418
		ZNet	0.459	2.182
		AutoIV	0.664	0.398
		VIV	0.746	0.264
		GIV	0.649	0.246
Linear Mixed (no $U \rightarrow X$)	0.403	TrueIV	0.500	0.781
		ZNet	0.344	0.375
		AutoIV	0.793	2.337
		VIV	0.561	0.648
		GIV	0.493	0.237
Linear No Candidate	0.278	TrueIV	–	–
		ZNet	0.471	0.199
		AutoIV	0.357	0.581
		VIV	0.389	0.698
		GIV	0.336	0.130
Linear No Candidate (no $U \rightarrow X$)	0.425	TrueIV	–	–
		ZNet	0.557	0.318
		AutoIV	0.569	0.272
		VIV	0.666	0.427
		GIV	0.471	0.374
Linear No Candidate (no U)	0.193	TrueIV	–	–
		ZNet	0.173	0.431
		AutoIV	0.353	0.401
		VIV	0.236	0.236
		GIV	0.301	0.761

Table 3: PEHE on linear synthetic datasets.

Dataset	TARNet	IV Method	DeepIV	DF IV
Non-linear Disjoint	0.531	TrueIV	0.539	0.383
		ZNet	0.467	0.332
		AutoIV	0.585	0.467
		VIV	0.727	0.325
		GIV	0.550	1.140
Non-linear Disjoint (no $U \rightarrow X$)	1.158	TrueIV	0.560	2.098
		ZNet	0.748	0.656
		AutoIV	0.577	1.262
		VIV	0.624	0.727
		GIV	0.593	5.709
Non-linear Latent	0.108	TrueIV	0.261	4.784
		ZNet	0.198	0.162
		AutoIV	0.253	0.866
		VIV	0.370	0.348
		GIV	0.259	0.197
Non-linear Latent (no $U \rightarrow X$)	0.452	TrueIV	0.355	0.218
		ZNet	0.264	0.451
		AutoIV	0.459	0.796
		VIV	0.572	0.459
		GIV	0.261	2.703
Non-linear Mixed	0.346	TrueIV	0.326	0.281
		ZNet	0.362	0.242
		AutoIV	0.446	2.264
		VIV	0.694	0.874
		GIV	0.439	0.992
Non-linear Mixed (no $U \rightarrow X$)	0.756	TrueIV	0.847	0.976
		ZNet	0.665	0.669
		AutoIV	0.975	0.799
		VIV	0.906	0.698
		GIV	0.839	1.069
Non-linear No Candidate	0.562	TrueIV	–	–
		ZNet	0.402	0.423
		AutoIV	0.788	0.611
		VIV	0.588	0.476
		GIV	0.712	0.429
Non-linear No Candidate (no $U \rightarrow X$)	0.681	TrueIV	–	–
		ZNet	0.960	0.667
		AutoIV	0.679	0.586
		VIV	0.776	0.551
		GIV	0.716	0.604
Non-linear No Candidate (no U)	1.148	TrueIV	–	–
		ZNet	1.157	1.124
		AutoIV	1.138	1.056
		VIV	1.227	1.082
		GIV	1.179	1.152

Table 4: PEHE on non-linear synthetic datasets.

918	919	920	921	922	Dataset	Diff Means	TARNet	IV Method	TSLS	DeepIV	DF IV
923				924		-0.327	-0.311	TrueIV	0.266*	-0.264 **	-0.271*
925	Linear Disjoint (no $U \rightarrow X$)			926	True ATE: 0.745			ZNet	-0.356	-0.295*	-0.469
927				928				AutoIV	-0.044	-0.361	-1.454
929				930				VIV	0.704	-0.353	-0.074 **
931	Linear Disjoint			932				GIV	-1.456	-0.426	-0.304
933				934		0.054	-0.025	TrueIV	-0.002 **	0.108	0.132 **
935	True ATE: 0.815			936				ZNet	0.119	0.054*	-0.303*
937				938				AutoIV	-1.393	0.038 **	-0.964
939	Linear Latent (no $U \rightarrow X$)			940	True ATE: 0.957			VIV	0.147	0.123	0.546
941				942				GIV	-0.620	0.115	0.304
943				944		-0.498	-0.427	TrueIV	-0.171	-0.445	0.068 **
945	Linear Latent			946	True ATE: 0.941			ZNet	-1.577	-0.406*	-0.506
947				948				AutoIV	1.505	-0.462	-0.221*
949				950				VIV	-0.210	-0.476	-0.308
951	Linear Mixed (no $U \rightarrow X$)			952	True ATE: 1.569			GIV	0.245	-0.372 **	-0.864
953				954							
955				956		-0.539	-0.146	TrueIV	-0.524	-0.317	0.042 **
957	Linear Mixed			958	True ATE: 0.608			ZNet	-0.125	-0.136 **	-0.231
959				960				AutoIV	-1.315	-0.309	-0.270
961				962				VIV	-0.082	-0.171*	-0.122*
963	Linear No Candidate (no $U \rightarrow X$)			964	True ATE: 0.608			GIV	0.285	-0.234	-0.447
965				966							
967	Linear No Candidate (no $U \rightarrow X$)			968	True ATE: 0.952						
969				970							
971											

Table 5: ATE results on synthetic linear datasets.

972	Dataset	Diff Means	TARNet	IV Method	TSLS	DeepIV	DF IV
973		-0.481	-0.372	TrueIV	-0.864	-0.207*	2.097
974	Non-linear Disjoint (no $U \rightarrow X$)			ZNet	-0.514	-0.635	-0.534**
975	True ATE: 0.919			AutoIV	-1.676	-0.410	-1.180
976				VIV	-4.066	-0.225	-0.608*
977				GIV	-25.776	-0.196*	-5.724
978		0.766	0.324	TrueIV	0.266**	0.272**	-0.103**
979	Non-linear Disjoint			ZNet	0.524	0.309*	0.147*
980	True ATE: 0.544			AutoIV	1.511	0.389	-0.403
981				VIV	0.561	0.555	-0.214
982				GIV	0.697	0.365	1.120
983		-0.316	-0.423	TrueIV	-0.479	-0.231	-0.155*
984	Non-linear Latent (no $U \rightarrow X$)			ZNet	-0.924	-0.260	-0.370
985	True ATE: 0.850			AutoIV	-0.146	-0.232	0.258
986				VIV	-0.605	-0.319	-0.042**
987				GIV	-0.810	-0.238	-2.706
988		0.528	0.050	TrueIV	1.381	-0.020	4.762
989	Non-linear Latent			ZNet	0.152	-0.039	-0.063**
990	True ATE: 0.333			AutoIV	-4.809	-0.008**	0.785
991				VIV	1.790	-0.039	-0.170
992				GIV	-0.235	-0.028	0.084*
993		-0.277	-0.227	TrueIV	-0.227*	-0.519	-0.723
994	Non-linear Mixed (no $U \rightarrow X$)			ZNet	-0.443	-0.173*	-0.196*
995	True ATE: 1.777			AutoIV	1.033	-0.457	-0.439
996				VIV	0.438	-0.190*	0.181**
997				GIV	15.700	-0.334	0.794
998		0.849	0.255	TrueIV	0.477	0.142*	-0.156*
999	Non-linear Mixed			ZNet	0.244*	0.218	0.033**
1000	True ATE: 0.558			AutoIV	10.821	0.036**	2.079
1001				VIV	0.950	0.408	0.847
1002				GIV	-0.981	0.293	0.983
1003		0.174	0.134	TrueIV	-	-	-
1004	Non-linear No Candidate (no $U \rightarrow X$)			ZNet	0.267	0.117*	0.302
1005	True ATE: 0.828			AutoIV	-0.445	0.069**	0.275*
1006				VIV	0.111	0.164	0.043**
1007				GIV	-0.405	0.291	-0.277
1008		0.250	-0.068	TrueIV	-	-	-
1009	Non-linear No Candidate (no U)			ZNet	-0.528	-0.012**	-0.143**
1010	True ATE: 1.429			AutoIV	-1.806	0.064	-0.257
1011				VIV	0.182**	-0.085	-0.209*
1012				GIV	3.389	0.053	-0.665
1013		0.783	0.423	TrueIV	-	-	-
1014	Non-linear No Candidate			ZNet	0.200*	0.260**	0.049**
1015	True ATE: 0.435			AutoIV	-25.181	0.720	0.477
1016				VIV	0.898	0.422*	0.404
1017				GIV	-0.109	0.640	0.345*
1018							
1019							
1020							

Table 6: ATE results on synthetic non-Linear datasets.

1026	Dataset	IV Method	F-Stat(Z,T) (Relevance) (Train/Val/Test)	Corr(Z,C) (Independence) (Train/Val/Test)	Corr(Z,Y-Yhat) (Exogeneity) (Train/Val/Test)	Corr(Z,U) (Independence) (Train/Val/Test)
1027		TrueIV	53.566 / 12.507 / 6.603	0.027 / 0.051 / 0.136	0.047 / 0.116 / 0.117	0.030 / 0.062 / 0.045
1028		ZNet	63.617 / 14.699 / 4.927	0.040 / 0.044 / 0.092	0.037 / 0.059 / 0.060	0.140 / 0.175 / 0.088
1029	Linear Disjoint	AutoIV	22.820 / 6.721 / 0.944	0.214 / 0.211 / 0.253	0.000 / 0.000 / 0.000	0.166 / 0.143 / 0.272
1030		VIV	18.407 / 1.497 / 4.065	0.038 / 0.064 / 0.116	0.018 / 0.030 / 0.026	0.036 / 0.035 / 0.085
1031		GIV	1.301 / 0.642 / 6.703	0.135 / 0.114 / 0.161	0.001 / 0.110 / 0.072	0.194 / 0.184 / 0.199
1032		TrueIV	35.681 / 29.173 / 4.562	0.027 / 0.051 / 0.136	0.066 / 0.103 / 0.231	0.018 / 0.038 / 0.065
1033		ZNet	13.524 / 13.151 / 6.735	0.040 / 0.090 / 0.058	0.013 / 0.004 / 0.102	0.022 / 0.050 / 0.095
1034	Linear Disjoint (no $U \rightarrow X$)	AutoIV	10.865 / 2.572 / 3.442	0.186 / 0.184 / 0.260	0.000 / 0.000 / 0.000	0.014 / 0.060 / 0.080
1035		VIV	18.639 / 6.582 / 3.192	0.037 / 0.076 / 0.077	0.037 / 0.092 / 0.142	0.060 / 0.053 / 0.052
1036		GIV	0.278 / 0.253 / 0.788	0.148 / 0.161 / 0.195	0.001 / 0.065 / 0.060	0.011 / 0.041 / 0.068
1037		TrueIV	68.564 / 36.180 / 30.735	0.200 / 0.201 / 0.250	0.027 / 0.007 / 0.046	0.018 / 0.053 / 0.085
1038	Linear Latent	ZNet	210.017 / 29.806 / 13.066	0.180 / 0.196 / 0.200	0.035 / 0.034 / 0.089	0.112 / 0.185 / 0.097
1039		AutoIV	47.460 / 21.996 / 22.106	0.263 / 0.256 / 0.271	0.000 / 0.000 / 0.000	0.051 / 0.055 / 0.088
1040		VIV	13.772 / 1.628 / 1.948	0.031 / 0.060 / 0.118	0.022 / 0.017 / 0.109	0.022 / 0.050 / 0.102
1041		GIV	7.756 / 1.936 / 0.007	0.140 / 0.164 / 0.166	0.036 / 0.036 / 0.141	0.021 / 0.066 / 0.046
1042		TrueIV	68.564 / 36.180 / 30.735	0.204 / 0.212 / 0.266	0.009 / 0.019 / 0.039	0.018 / 0.053 / 0.085
1043	Linear Latent (no $U \rightarrow X$)	ZNet	25.361 / 9.822 / 10.956	0.042 / 0.053 / 0.146	0.009 / 0.063 / 0.078	0.012 / 0.056 / 0.094
1044		AutoIV	38.894 / 19.722 / 4.108	0.269 / 0.275 / 0.268	0.000 / 0.000 / 0.000	0.023 / 0.073 / 0.116
1045		VIV	23.563 / 13.233 / 5.743	0.023 / 0.047 / 0.134	0.007 / 0.019 / 0.095	0.028 / 0.055 / 0.041
1046		GIV	4.305 / 0.010 / 0.621	0.137 / 0.141 / 0.137	0.003 / 0.057 / 0.065	0.021 / 0.039 / 0.072
1047		TrueIV	26.792 / 7.467 / 10.101	0.027 / 0.051 / 0.136	0.176 / 0.120 / 0.272	0.030 / 0.062 / 0.045
1048	Linear Mixed	ZNet	24.163 / 11.648 / 9.514	0.168 / 0.166 / 0.233	0.016 / 0.025 / 0.101	0.059 / 0.071 / 0.115
1049		AutoIV	77.162 / 20.885 / 12.485	0.236 / 0.243 / 0.287	0.000 / 0.001 / 0.001	0.322 / 0.330 / 0.281
1050		VIV	10.911 / 3.364 / 6.297	0.026 / 0.055 / 0.120	0.037 / 0.027 / 0.058	0.030 / 0.057 / 0.053
1051		GIV	9.928 / 3.886 / 3.115	0.143 / 0.172 / 0.232	0.022 / 0.081 / 0.084	0.060 / 0.124 / 0.008
1052		TrueIV	33.874 / 20.091 / 16.317	0.027 / 0.051 / 0.136	0.004 / 0.033 / 0.164	0.018 / 0.038 / 0.065
1053	Linear Mixed (no $U \rightarrow X$)	ZNet	207.114 / 39.401 / 27.046	0.096 / 0.092 / 0.153	0.010 / 0.101 / 0.081	0.014 / 0.049 / 0.090
1054		AutoIV	1.394 / 0.111 / 0.225	0.261 / 0.272 / 0.253	0.000 / 0.000 / 0.000	0.022 / 0.040 / 0.116
1055		VIV	9.804 / 0.683 / 4.310	0.032 / 0.051 / 0.091	0.035 / 0.026 / 0.187	0.041 / 0.062 / 0.122
1056		GIV	9.271 / 0.775 / 0.506	0.148 / 0.143 / 0.152	0.013 / 0.062 / 0.076	0.017 / 0.029 / 0.037
1057		TrueIV	—	—	—	—
1058	Linear No Candidate	ZNet	21.299 / 2.298 / 2.315	0.037 / 0.060 / 0.122	0.010 / 0.089 / 0.050	0.223 / 0.228 / 0.247
1059		AutoIV	77.352 / 30.622 / 0.391	0.265 / 0.263 / 0.241	0.000 / 0.000 / 0.000	0.368 / 0.357 / 0.343
1060		VIV	18.753 / 6.859 / 3.228	0.042 / 0.063 / 0.095	0.060 / 0.056 / 0.096	0.065 / 0.076 / 0.090
1061		GIV	3.667 / 1.458 / 0.825	0.138 / 0.158 / 0.166	0.009 / 0.027 / 0.012	0.126 / 0.150 / 0.216
1062		TrueIV	—	—	—	—
1063	Linear No Candidate (no $U \rightarrow X$)	ZNet	78.441 / 1.012 / 7.704	0.169 / 0.168 / 0.214	0.008 / 0.093 / 0.023	0.056 / 0.061 / 0.088
1064		AutoIV	25.720 / 0.402 / 0.701	0.254 / 0.268 / 0.264	0.000 / 0.000 / 0.000	0.012 / 0.053 / 0.051
1065		VIV	26.796 / 6.537 / 16.852	0.029 / 0.070 / 0.134	0.038 / 0.068 / 0.075	0.048 / 0.069 / 0.071
1066		GIV	0.298 / 0.272 / 0.029	0.200 / 0.193 / 0.197	0.004 / 0.020 / 0.008	0.017 / 0.057 / 0.057
1067		TrueIV	—	—	—	—
1068	Linear No Candidate (no U)	ZNet	463.273 / 3.552 / 0.938	0.110 / 0.118 / 0.095	0.074 / 0.015 / 0.083	— / — / —
1069		AutoIV	18.562 / 0.437 / 3.744	0.248 / 0.252 / 0.206	0.000 / 0.000 / 0.000	— / — / —
1070		VIV	15.274 / 7.716 / 4.874	0.030 / 0.062 / 0.103	0.021 / 0.108 / 0.144	— / — / —
1071		GIV	0.055 / 2.459 / 2.216	0.156 / 0.143 / 0.208	0.022 / 0.018 / 0.041	— / — / —

Table 7: **Instrument strength and validity on linear synthetic datasets.**

1080	Dataset	IV Method	F-Stat(Z,T) (Relevance)	Corr(Z,C) (Independence)	Corr(Z,Y-Yhat) (Exogeneity)	Corr(Z,U) (Independence)
1081			(Train/Val/Test)	(Train/Val/Test)	(Train/Val/Test)	(Train/Val/Test)
1082	Non-linear Disjoint	TrueIV	41.662 / 12.868 / 4.620	0.027 / 0.051 / 0.136	0.124 / 0.100 / 0.176	0.030 / 0.062 / 0.045
1083		ZNet	28.150 / 12.159 / 19.772	0.067 / 0.077 / 0.111	0.004 / 0.028 / 0.107	0.093 / 0.131 / 0.069
1084		AutoIV	142.891 / 48.571 / 15.159	0.214 / 0.232 / 0.205	0.000 / 0.000 / 0.000	0.327 / 0.287 / 0.357
1085		VIV	16.443 / 1.351 / 10.179	0.038 / 0.054 / 0.111	0.015 / 0.079 / 0.015	0.030 / 0.068 / 0.073
1086		GIV	37.947 / 8.967 / 17.319	0.145 / 0.120 / 0.184	0.021 / 0.027 / 0.045	0.187 / 0.187 / 0.266
1087	Non-linear Disjoint (no $U \rightarrow X$)	TrueIV	19.956 / 5.440 / 18.102	0.027 / 0.051 / 0.136	0.014 / 0.014 / 0.133	0.018 / 0.038 / 0.065
1088		ZNet	17.203 / 4.722 / 12.113	0.038 / 0.058 / 0.170	0.013 / 0.065 / 0.075	0.018 / 0.045 / 0.071
1089		AutoIV	5.259 / 3.103 / 1.239	0.225 / 0.224 / 0.233	0.000 / 0.000 / 0.000	0.033 / 0.016 / 0.084
1090		VIV	4.690 / 0.937 / 1.670	0.035 / 0.069 / 0.098	0.004 / 0.070 / 0.128	0.044 / 0.056 / 0.070
1091		GIV	16.805 / 1.806 / 5.565	0.130 / 0.133 / 0.237	0.114 / 0.006 / 0.140	0.035 / 0.071 / 0.036
1092	Non-linear Latent	TrueIV	30.818 / 7.298 / 2.185	0.204 / 0.212 / 0.266	0.005 / 0.011 / 0.052	0.064 / 0.083 / 0.022
1093		ZNet	19.834 / 1.402 / 1.290	0.034 / 0.043 / 0.172	0.004 / 0.014 / 0.070	0.116 / 0.089 / 0.081
1094		AutoIV	76.120 / 14.009 / 0.317	0.212 / 0.192 / 0.205	0.000 / 0.000 / 0.000	0.363 / 0.328 / 0.311
1095		VIV	16.454 / 4.075 / 3.042	0.027 / 0.052 / 0.118	0.018 / 0.061 / 0.024	0.051 / 0.064 / 0.132
1096		GIV	20.388 / 4.855 / 11.145	0.123 / 0.130 / 0.145	0.001 / 0.082 / 0.239	0.226 / 0.266 / 0.328
1097	Non-linear Latent (no $U \rightarrow X$)	TrueIV	35.494 / 1.009 / 0.196	0.204 / 0.212 / 0.266	0.002 / 0.030 / 0.050	0.018 / 0.053 / 0.085
1098		ZNet	19.330 / 0.650 / 0.817	0.028 / 0.069 / 0.109	0.012 / 0.038 / 0.139	0.016 / 0.046 / 0.086
1099		AutoIV	43.267 / 1.545 / 0.663	0.239 / 0.257 / 0.234	0.000 / 0.000 / 0.000	0.044 / 0.056 / 0.104
1100		VIV	10.032 / 8.944 / 12.677	0.025 / 0.056 / 0.133	0.034 / 0.094 / 0.142	0.047 / 0.074 / 0.085
1101		GIV	0.302 / 0.010 / 2.774	0.100 / 0.100 / 0.115	0.023 / 0.025 / 0.107	0.037 / 0.056 / 0.064
1102	Non-linear Mixed	TrueIV	39.277 / 14.385 / 6.638	0.027 / 0.051 / 0.136	0.080 / 0.084 / 0.186	0.030 / 0.062 / 0.045
1103		ZNet	81.609 / 27.086 / 14.220	0.037 / 0.038 / 0.140	0.013 / 0.024 / 0.088	0.099 / 0.084 / 0.062
1104		AutoIV	218.811 / 58.758 / 33.881	0.201 / 0.222 / 0.227	0.000 / 0.000 / 0.000	0.345 / 0.301 / 0.358
1105		VIV	13.916 / 7.281 / 4.760	0.021 / 0.070 / 0.132	0.021 / 0.033 / 0.154	0.038 / 0.060 / 0.078
1106		GIV	8.884 / 2.184 / 4.662	0.096 / 0.142 / 0.184	0.055 / 0.098 / 0.017	0.045 / 0.097 / 0.055
1107	Non-linear Mixed (no $U \rightarrow X$)	TrueIV	60.302 / 11.847 / 7.502	0.027 / 0.051 / 0.136	0.034 / 0.068 / 0.144	0.018 / 0.038 / 0.065
1108		ZNet	972.072 / 27.721 / 14.899	0.038 / 0.059 / 0.100	0.022 / 0.036 / 0.044	0.038 / 0.029 / 0.032
1109		AutoIV	354.559 / 71.052 / 57.682	0.270 / 0.274 / 0.322	0.000 / 0.000 / 0.000	0.026 / 0.051 / 0.082
1110		VIV	16.785 / 3.347 / 1.459	0.038 / 0.049 / 0.113	0.021 / 0.070 / 0.204	0.048 / 0.073 / 0.081
1111		GIV	3.221 / 5.328 / 0.129	0.153 / 0.171 / 0.180	0.116 / 0.010 / 0.137	0.016 / 0.052 / 0.079
1112	Non-linear No Candidate	TrueIV	—	—	—	—
1113		ZNet	15.335 / 4.959 / 1.181	0.067 / 0.102 / 0.222	0.020 / 0.048 / 0.093	0.119 / 0.099 / 0.127
1114		AutoIV	85.371 / 16.582 / 0.149	0.227 / 0.211 / 0.302	0.000 / 0.000 / 0.000	0.205 / 0.165 / 0.243
1115		VIV	18.972 / 3.681 / 5.362	0.025 / 0.054 / 0.113	0.027 / 0.084 / 0.089	0.022 / 0.060 / 0.100
1116		GIV	16.638 / 4.238 / 4.860	0.173 / 0.155 / 0.165	0.059 / 0.031 / 0.010	0.132 / 0.051 / 0.086
1117	Non-linear No Candidate (no $U \rightarrow X$)	TrueIV	—	—	—	—
1118		ZNet	102.430 / 2.654 / 3.266	0.046 / 0.071 / 0.138	0.010 / 0.056 / 0.057	0.067 / 0.041 / 0.049
1119		AutoIV	99.004 / 21.237 / 14.164	0.192 / 0.186 / 0.252	0.000 / 0.000 / 0.000	0.022 / 0.089 / 0.048
1120		VIV	13.953 / 18.708 / 2.071	0.033 / 0.082 / 0.116	0.043 / 0.035 / 0.100	0.028 / 0.085 / 0.089
1121		GIV	2.033 / 4.684 / 1.203	0.183 / 0.169 / 0.198	0.015 / 0.009 / 0.042	0.025 / 0.024 / 0.080
1122	Non-linear No Candidate (no U)	TrueIV	—	—	—	—
1123		ZNet	123.260 / 10.146 / 2.912	0.208 / 0.223 / 0.216	0.117 / 0.107 / 0.166	— / — / —
1124		AutoIV	75.873 / 14.926 / 8.766	0.223 / 0.201 / 0.268	0.000 / 0.000 / 0.000	— / — / —
1125		VIV	16.756 / 8.589 / 9.893	0.032 / 0.062 / 0.114	0.068 / 0.078 / 0.079	— / — / —
1126		GIV	10.804 / 5.268 / 0.193	0.137 / 0.120 / 0.194	0.000 / 0.056 / 0.038	— / — / —

Table 8: **Instrument strength and validity on non-linear synthetic datasets.**Table 9: **Comparison of IV methods on average across the 18 different data generation processes.**

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156

	DeepIV	DFIV
	Avg. PEHE (SE)	Avg. PEHE (SE)
ZNet	0.470 (0.063)	0.552 (0.111)
AutoIV	0.559 (0.060)	0.882 (0.147)
VIV	0.586 (0.059)	0.491 (0.056)
GIV	0.519 (0.057)	0.999 (0.3106)

1163
 1164 Table 10: **Comparison of IV methods on average across the 18 different data generation**
 1165 **processes for CATE estimation.**

1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187