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ABSTRACT

In many applications, we aim to assess the impact of a policy or intervention on
outcomes of interest using retrospective data. This setting is challenging due to
unobserved confounding, which can bias causal estimates. One approach to address
this issue—in statistics, econometrics, and epidemiology—is to use instrumental
variables (IVs) within two-stage regression frameworks. An IV is a variable that
influences the treatment but has no direct effect on the outcome and is independent
of unobserved confounders. However, across many applications, suitable and valid
IVs are difficult to find or may not be available at all. We propose a method for
decomposing the observed variables to find a representation which satisfies the stan-
dard IV assumptions of relevance, exclusion restriction, and unconfoundedness. To
implement this decomposition, we introduce a deep learning model, ZNet, with an
architecture that mirrors the structural causal model of IVs and is compatible with
a wide range of two-stage IV estimators. Our experiments demonstrate that ZNet
can (i) recover ground-truth instruments when they exist and (ii) construct proxy
latent instruments that reduce bias due to unobserved confounding when no explicit
instruments are available. These results suggest that ZNet can be used as a plug-in
module for causal effect estimation in general observational settings, regardless of
whether the (untestable) assumption of unconfoundedness is satisfied.

1 INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard for identifying the causal impact of an
intervention or treatment policy in medicine and beyond (Bothwell et al., 2016). RCTs support
causal conclusions since randomization ensures that treatment assignments are not influenced by
variables which also affect the outcome of interest. However, we often want, or need, to evaluate
treatment effects outside of an RCT. For instance, a clinical trial for some medical interventions can
be unethical, and randomization of social interventions can be infeasible. Thus, there is also growing
need to develop alternative evidence generation methods for settings where RCTs are prohibitively
expensive and time-consuming.

In settings where an RCT is infeasible, it is common to utilize retrospective data along with causal
inference methods that adjust for confounding in real-world treatment assignments. However, in
many real-world datasets, the confounding factors are unobserved and testing for their existence is
impossible (Imbens & Rubin, 2015). For instance, consider the problem of determining the effects
of a newly available consumer AI tool for mobile heart monitoring on cardiovascular health using
electronic health records (EHRs). While EHRs contain numerous variables about an individual’s lab
results, medications, and diagnoses, they may not account for lifestyle factors which influence both
consumer choice to use the product and health outcomes. In this setting, traditional causal inference
methods to determine the efficacy of the tool will produce biased estimates potentially obscuring the
true health impact.

A common approach to account for unobserved confounding used across statistics, econometrics, and
epidemiology is to use an instrumental variable (IV) that does not directly influence the outcome,
but directly affects the treatment, which enables unbiased estimation of causal effects under certain
conditions (Imbens & Rubin, 2015). Classic examples of IVs used in the literature include: in
economics, geographical proximity to a college as an instrument for educational attainment in
estimating the returns of schooling (Card, 1993) and draft lotteries as instruments to study the effect
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of military service on long-term economic outcomes (Angrist, 1990). Genetic factors have been used
as IVs in medicine since gene variants are often highly correlated with risk factors but do not directly
influence outcomes associated with these risk factors (Davey Smith & Ebrahim, 2003; Davey Smith
& Hemani, 2014). While such IVs can enable causal identification, they were all present in the initial
dataset construction and known to the analyst. Moreover, candidate instruments may not be strong
or valid. For example, the use of genetic IVs is challenged by the strength of their correlations with
risk factors (Davies et al., 2015; Burgess et al., 2016), the availability of genetic data in large and
representative populations, and the risk that pleiotropy induces bias in effect estimates (i.e., gene
variants are associated with multiple traits which leaves pathways other than through the considered
risk factor open). Together, this means that appropriate IVs are often hard to find in practice.

In this paper, we consider the construction of IVs automatically from the observed data. Several ex-
isting works select or refine candidate instruments, especially genetic factors, to improve downstream
effect estimation (Kuang et al., 2020; Silva & Shimizu, 2017; Kang et al., 2016; Zhang et al., 2021;
Burgess et al., 2016; Davies et al., 2015). These works do not remove the need for domain expertise
as a candidate IV must be included in the observed data. There is a small body of existing works
which learn variational distributions to construct IV representations from probabilistic associations
(Yuan et al., 2022; Li & Yao, 2024; Cheng et al., 2023; Chou et al., 2024). We combine these efforts
by learning a discriminatory decomposition of the feature space into confounder and instrumental
components through a model architecture that encodes the structural causal model (SCM) of IVs
with ZNet. If there are existing instruments, ZNet can recover representations highly correlated with
these variables. In the absence of existing instruments, ZNet learns a representation that serves as an
instrument. This automated instrument construction can mitigate the need to rely on domain expertise
to circumvent untestable assumptions about unobserved confounders. We demonstrate the ability of
our method to learn suitable and superior instrument representations for causal inference.

2 PRELIMINARIES

Let Y ∈ Y ⊂ R denote a continuous outcome, T ∈ T ⊂ R a treatment variable (discrete or
continuous), and C ∈ X ⊂ Rd a set of observed covariates associated with each unit. The treatment
T has a causal effect on the outcome Y , while the covariates C may influence both T and Y (i.e.,
C confound the relation of primary interest between T and Y ). In addition to these measured con-
founders C, there are unknown or unobserved confounders U , which induce spurious associations by
simultaneously affecting both the treatment and outcome (Fig. 1a.). We assume that the outcome
variable Y is determined by the following SCM:

Y = φ(C, T ) + eY (U), T = ψ(C) + eT (U), (1)

for some unknown functions φ : X × T → Y and ψ : X → T . Following (Hartford et al.,
2017), we assume that the unobserved confounders U influence the outcome Y and the treatment
T additively, via the “error” functions of U, eY and eT , respectively, which we henceforth denote
eY and eT . As a result, the observational and interventional distributions generally differ, i.e.,
E[Y |C, T ] = φ(C, T ) +E[eY |C, T ] ̸= φ(C, T ) +E[eY |C] = E[Y |do(T ), C]. Thus, estimating the
potential outcome associated with T = t would lead to a confounding bias ∆(c, t), where

∆(c, t) = E[Y |C = c, T = t]− E[Y |C = c, do(T ) = t], ∀c, t. (2)

De-confounding with instrumental variables (IVs). A common method for removing the confound-
ing bias ∆(c, t) is to use IV regression. In the classical IV setting, we assume access to an additional
variable Z that is not influenced by the unobserved confounders U , affects the treatment T , and has
no direct effect on the outcome Y (Verbeek, 2004; Angrist et al., 1996). Formally, given a set of
observed confounders C, Z is a valid IV if it satisfies the following conditions 1 :

Unconfoundedness:Z ⊥ eY |C,
Exclusion restriction: Z only enters φ through T
Relevance:Z ̸⊥ T |C.

1The definition we provide here is that of a conditional instrument in order to match DeepIV (Hartford et al.,
2017) the most general downstream IV estimator. Ultimately, we construct Z,C to be independent in addition to
these assumptions so that Z is a IV without conditioning on C as well.
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(a) Causal graph in the presence of  IVs (b) Two-stage framework for counterfactual prediction with IVs

First stage: Treatment model Second stage: Outcome model

Figure 1: Illustration of the IV setting. (a) Causal graph: nodes Z,C, T, U and Y represent the IV,
covariates, treatment, unobserved confounders and outcome, respectively; (b) Two-stage framework
for counterfactual prediction via IVs: Fπ and HΦ are the learned treatment and outcome functions.

Under these conditions, the variable Z can be used in a two-stage regression framework to estimate the
effect of T on Y . Under the additive model in (1), (Hartford et al., 2017) uses the instrument Z to set
up an inverse problem by relating the counterfactual E[Y |do(T ), C] to observable distributions:

E[Y |C,Z] = E[φ(C, T ) + eY |C,Z] = E[φ(C, T )|C,Z] + E[eY |C]

=

∫
E[Y |do(T ), C] dF (T |C,Z). (3)

Thus, with Z, we can estimate the counterfactual E[Y |do(T ), C] by learning models for the two ob-
servable functions E[Y |C,Z] and F (T |C,Z). While this inverse problem is ill-posed, it provides a
practical framework for estimating E[Y |do(T ), C], and identification is possible under certain con-
ditions (Newey & Powell, 2003)2. A typical two-stage regression first fits a model F̂ (T |C,Z), and
then estimates E[Y |do(T ), C] by replacing F (T |C,Z) with F̂ (T |C,Z) in (3) (Fig. 1(b)).

Equation 3 is notably more general than traditional IV regression with linear models. Here we allow
E[eY |C] ̸= 0, i.e. observed confounders can be correlated with unobserved errors. In a two stage
least square regression (TSLS), no endogenous variables can remain for unbiased regression estimates
(Verbeek, 2004). With either framework, we obtain conditional average treatment effects (CATE) and
and average treatment effects (ATE):

CATE(C) = E[Y |do(T ) = 1, C]− E[Y |do(T ) = 0, C]

ATE = E[Y |do(T ) = 1]− E[Y |do(T ) = 0]

3 CONSTRUCTING INSTRUMENTS FROM DATA

Figure 2: Graph for constructed IVs.

To apply the standard two-stage IV framework de-
scribed in Section 2, we typically have access to a
valid instrument Z among a collection of observed
covariates X . In this case, we would set C = X \ Z.
In our set up, instead of Z being some known subset
of the observed variables X , Z is learned from data.
We do not assume that instruments exist as a subset
of the observed data. As illustrated in Figure 2, we
derive from the observed variables X two new sets,
a confounder C and an instrument Z, such that Z
satisfies the three key assumptions listed in Section
2. In the process, we learn a new SCM by learning new structural equations. We construct two
functions (i.e., neural networks) f, g that learn variable sets C = f(X), Z = g(X) from X such that
Y = φ′(C, T ) + eY and T = ψ′(C,Z) + eT with fixed T, Y . This defines a new SCM where the
instrument Z is derived from the observed data X without a priori being known or interpretable and
the relationship between T and Y is unchanged.

Notice that this construction is suitable in general. First, suppose there is a subset of the variables that
can serve as an instrument, Z ⊂ X . Then if we learn g(X) = Z and f(X) = X \ Z, we succeed.
Second, suppose there is a latent instrument learnable from the observed data. For example, imagine

2For example, in the linear case, Two-Stage Least Squares Regression (TSLS) allows for identification of
causal effects.
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the case of an emergency department. Randomly assigned providers have varying propensities to
give treatments from their interpretation of the data observed for any patient but assignment does
not affect outcomes directly. Such providers are assigned and take actions in ways that show up
in the retrospective data: patient visit time, labs and tests run, symptoms listed in notes, etc. The
provider influences X and a representation of this influence might be inferred by g to serve as Z.
However, nothing about the construction of our model requires an a posteriori interpretation of Z.
ZNet constructs an instrument representations even in the absence of true instruments. Sufficient
satisfaction of the three IV conditions allows for IV regression independent of interpretation, and
our derived instruments can be abstract exogenous representations of the feature space. This means
our method can be used without domain knowledge of instrument existence and leverages existing
instrumental variable relationships, should they exist.

The key idea of our proposed method is to force the desired causal dependencies through learned
structural equations, i.e. we learn functions f, g forcing IV conditions to hold with Z = g(X) and
C = f(X). Relevance requires that we learn a variable Z predictive of T . We therefore force
non-zero covariance between g(X) and T . Exclusion restriction requires that all direct influence ofX
on Y be captured by C. This is encouraged by forcing non-zero covariance between f(X) and Y and
zero covariance between f(X) and g(X). The derived IV g(X) will automatically be unconfounded
and independent of the error eY if derived from X which is unconfounded by U . The assumption
that observed variables are not influenced by U is standard to allow for classical IV regression and
straightforward IV generation (Yuan et al., 2022; Li & Yao, 2024; Cheng et al., 2023; Chou et al.,
2024).

To allow for our method to produce an instrument even more generally when X may be influenced
by U , we add an additional constraint inspired by the following observation.

Lemma 1. If Z ∼ N (0, σ2) and Cov(Z, eY − E[eY |X,T ]) = 0, then Cov(Z, eY ) = 0.

Proof. Notice that as E[Z] = 0, we have

0 = Cov(Z, eY − E[eY |X,T ])
= E[Z · (eY − E[eY |X,T ])]− E[Z] · E[(eY − E[eY |X,T ])]
= E[Z · (eY − E[eY |X,T ])]
= E[Z · eY ]− E[Z] · E[eY |X,T ]
= Cov(Z, eY ).

We learn a model for Ŷ = E[Y |X,T ] and compute its residuals as Y − E[Y |X,T ]. Notice Y −
E[Y |X,T ] = Y −φ(X,T )− (E[Y |X,T ]−φ(X,T )) = eY −E[eY |X,T ]. Lemma 1 suggests how
to construct of a loss term which enforces unconfoundedness. Notice that regardless of whether any
existing instruments are normally distributed, if we can construct g(X) = Z ∼ N (0, σ2) to have no
covariance with the residuals eY −E[eY |X,T ], i.e. with Y −E[Y |X,T ], then Z has zero covariance
with eY by Lemma 1. Together, this suggests the following model constraints:

Constraint 1 (Instrumental Unconfoundedness): Cov(g(X), eY ) = 0, Z ∼ N (0, σ2).

Constraint 2 (Exclusion Restriction): Cov(f(X), Y ) > 0, Cov(g(X), f(X)) = 0.

Constraint 3 (Relevance): Cov(T, g(X)) > 0.

4 RELATED WORK

The majority of existing works for learning IVs automate IV selection from observed candidates.
Meaning these works recover existing IVs. ModeIV chooses instruments by looking at clusters of
treatment effects based on weighting the observed variables used as instruments (Hartford et al.,
2021). DIV.VAE uses a variational autoencoder (VAE) approach to disentangle an instrument under
the assumption that a surrogate instrument exists in the data (Cheng et al., 2024). IV.Tetrad (Silva
& Shimizu, 2017) builds strong instruments requiring at least two observed IV candidates. Several
methods for refining IV candidates and estimating causal effects from these candidates can fall into
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this category as well including sisVIVE (Kang et al., 2016), TEDVAE (Zhang et al., 2021) and Ivy
(Kuang et al., 2020) among many others (Davies et al., 2015; Burgess et al., 2016).

Methods to learn IVs were also proposed in the GIV (Wu et al., 2023), AutoIV (Yuan et al., 2022),
VIV (Li & Yao, 2024), DVAE.CIV (Cheng et al., 2023), and GDIV (Chou et al., 2024). GIV generates
a categorical IV with unsupervised expectation-maximization that groups data according to underlying
distributional differences assumed to arise from the aggregation of data from multiple sources. This
automates the idea of using environment as an IV in data coming multiple sources (Schweisthal
et al., 2024). The other methods learn variational distributions. The AutoIV method uses a mutual
information (MI) based loss to generate an abstract IV from observed data by learning variational
distributions (Yuan et al., 2022). VIV, DVAE.CIV, and GDIV use VAEs to learn independent latent
variables that serve as Z,U,C from the observed data Y, T,X , sometimes including an additional
adjustment variable A derived from Y,X . VAEs have shown great success in probabilistic modeling
in general but lack theory to guarantee learning the true causal model and satisfaction of IV conditions.

5 METHODS

Inputs
Learned 

Representations

Second Stage Regression Inputs

Figure 3: ZNet Architecture.

We introduce an architecture which we call
ZNet, a multi-armed multi-loss network (Fig-
ure 3) specifically constructed to enforce Con-
straints 1-3 and learn a new SCM. The network
contains four feed forward neural networks,
Φ, f, g, π: Φ is our model for E[Y |X,T ], f, g
learn to derive the instrumentZ and confounders
C fromX , and π estimates the treatment T from
the derived instrument Z. The losses force net-
works f, g to learn latent representations from
the input observational dataset {X,T, Y } lever-
aging Φ, π. The networks f, g, π,Φ each consist
of two hidden layers, where the activation function can be chosen between ReLU or linear. The
output layers of f, g may use either a linear mapping or a temperature-scaled softmax. From our
trained ZNet, we learn representations for {C,Z} from X and use the existing T, Y to assemble the
dataset {C,Z, T, Y }. We use downstream IV estimators on this data to predict and evaluate treatment
effects across data settings. We compare treatment effect estimation using ZNet to GIV, AutoIV, and
VIV.

5.1 ZNET LOSS TERMS

The ZNet multi-part loss function automates IV generation by forcing Constraints 1-3. We first
consider a Pearson correlation-based (PC) loss, which between any two variables A and B is the ratio
of the covariance between A and B and the product of the standard deviations of each of A and B:

PC(A,B) =
Cov(A,B)

σAσB
. (4)

Each time we seek to minimize covariance, we minimize (PC)2. In contrast, for relationships
we seek to maximize covariance, we minimize 1 − (PC)2. To increase the generality of ZNet
beyond linear settings, we additionally employ a mutual information (MI) based loss, minimized or
maximized in the same respective manner, and approximated using kernel density estimation (KDE)
with Guassian kernels.

Enforcing Constraint 1 (Instrumental Unconfoundedness): To enforce unconfoundedness, we
leverage Lemma 1. We first learn a model Φ to predict Ŷ = Φ(X ⊙ T ) from X and T using mean
squared error (MSE). Then via a loss minimizing the correlation between the error Y − Ŷ and Z, we
encourage zero correlation of Z with eY :

LX,T→Y = α1 ·MSE(Φ(X ⊙ T ), Y ) (5)

LPC
Z ̸→eY = α2 · PC(Y − Ŷ , Z)2 (6)

5
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As LPC
Z ̸→eY

approaches 0, satisfaction of Constraint 1 and thereby instrumental unconfoundedness is
reached. The loss LX,T→Y is trained separately and first.

Enforcing Constraint 2 (Exclusion Restriction): We need C to capture all observed variation in
Y not through T . We discourage Z from being directly predictive of Y , i.e. remove additional
information about Y conditional on C and T , by encouraging C to be highly correlated with Y and
Z to have zero covariance with C, i.e. combining the following two losses encourages Constraint 2
and exclusion restriction by preventing Z from entering φ′:

LPC
C→Y = α3 ·

(
1− PC(C, Y )2

)
+ α4 ·MSE(C, Y ) (7)

LPC
Z⊥C = α5 · PC(C,Z)2 (8)

Enforcing Constraint 3 (Relevance): We enforce relevance of the learned instrument Z to the
treatment variable T by forcing its predictive power and correlation. When T is binary, we have

LPC
Z→T (Z) = α6 ·BCE(π(Z), T ) + α7 · (1− PC(Z, T )2) (9)

using binary cross-entropy (BCE). We would replace BCE by mean squared error (MSE) when the
treatment T is continuous.

Z and C Distribution Losses We use a Kullback-Leibler (KL) divergence loss on each dimension of
Z and C with a mean-zero normal distribution to stabilize Z,C and to force learning Z ∼ N (0, σ2)
for the sake of Lemma 1. We also minimize the average PC across dimensions within C and Z to
encourage the features of the learned representations to be distinct.

5.2 TREATMENT EFFECT ESTIMATION

We use three downstream estimators of treatment effects to demonstrate the ability of ZNet for causal
inference: TSLS, DFIV and DeepIV. Each method takes as input the true treatment term T and our
learned representations C and Z. TSLS is the classical IV estimator. It assumes linear structural
equations and independence of U and X (Imbens & Rubin, 2015; Verbeek, 2004). DeepIV (Hartford
et al., 2017) generalizes TSLS by allowing the model at each stage to be parameterized by a neural
network and X ̸⊥ U . The DFIV estimator is a second leading estimator which allows basis functions
at each stage to be parametrized by neural networks (Xu et al., 2020). We compare our pipeline to
using the true instrument TrueIV, if it exists, and to TARNet (Shalit et al., 2017), a state of the art
treatment effect estimator used in the absence of an IV.

5.3 TRAINING

ZNet training occurs in three stages. First, Φ is trained to predict Y from X and T using the MSE
loss LX,T→Y , i.e. only α1 is non-zero. The Φ network is then frozen. Next f, g are pretrained with
all loss coefficients set to 0 except for α3, α6 to encourage a starting representation for C relevant
to Y and Z relevant to T . Then ZNet (f, g, π) is trained with the full loss to learn the SCM with
{Z,C, T, Y }. In training ZNet, our loss terms are potentially conflicting, so to stabilize training, we
allowed the network to use gradient surgery (Yu et al., 2020).

Hyperparameters, including loss term weights, whether constraints are PC or MI, and the necessity
of gradient surgery, were tuned using Bayesian optimization implemented in Botorch (Balandat et al.,
2020). We perform the optimization in two stages. For each IV generation method (ZNet, AutoIV,
GIV, and VIV), we maximized the instrument’s relevance F-Statistic and minimized the correlation
between learned C and Z using Botorch’s native adaptation of the Noisy Expected Improvement
acquisition function for multi-objective optimization. We then choose the parameter set from the
Pareto front with the highest F-Statistic. We tune the causal inference methods (DeepIV, DFIV,
and TARNet) to simultaneously minimize the MSE of the model’s ATE against a nearest-neighbors
(NN) ATE and the MSE of estimated Y on factual Y, again with the Noisy Expected Improvement
acquisition function. The parameter set is selected from the Pareto front by least NN ATE MSE.
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6 EVALUATION

6.1 DATA GENERATION

For evaluation, we focus on binary treatments, though ZNet could easily be adapted for continuous
settings. We construct multiple semi-synthetic datasets to evaluate ZNet’s ability to predict causal
effects across settings. The IHDP data is a common causal inference benchmark dataset (Hill, 2011).
It is data based on an experiment that studied the effect of home visits during infancy on cognitive
test scores of premature infants. There are 985 individuals and 25 covariates. We build our data from
these covariates, masking some covariates to serve as unobserved confounding. We define three sets
of covariates, X→T , X→Y , and X←U , where we each X→I is the subset of covariates X which
have a causal relationship with the covariate subset I in the arrow’s direction. We create the following
classes of data based on their inclusion of an instrument:

1. Disjoint Candidate: ∃ X→T s.t. X→T ∩X→Y = ∅, X→T ∩X←U = ∅

2. Mixed Candidate: ∃ X̃→T ⊂ X→T s.t. X̃→T ∩X→Y = ∅, X̃→T ∩X←U = ∅

3. Latent Categorical Instrument: ∃ Z, f s.t. f(X→T ) = Z ∈ N+

4. No Candidate ∄ X̃→T ⊆ X→T s.t. X̃→T ∩X→Y = ∅, X̃→T ∩X←U = ∅

For each class, we consider X←U ̸= ∅ and, in the appendix, X←U = ∅. We also consider data
where U = ∅ (i.e. no unobserved confounding). After fixing covariate sets, we choose functions
ϕ, ψ, eY , eT and generate the variables Y, T similar to (Wu et al., 2023) by writing

Y = ϕ(XY , T ) + eY (U) + εY for εY ∼ N (0, .1) (10)
T ∼ Bernoulli(P ) for P = ψ(XT ) + eT (U) + εT for εT ∼ N (0, .1). (11)

We consider a linear and non-linear version of ϕ, ψ for each dataset. Data are split into 60% for
training, 20% for validation, and 20% for testing. All experimental results are that of the test data.

6.2 LEARNING INSTRUMENTS WITH ZNET

0 1 2 3 4
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Figure 4: Normalized confusion ma-
trix demonstrating ZNet recovery of
linear latent categorical instrument.

ZNet successfully recovers existing instruments. In the
Linear Mixed Candidate dataset, there are three vari-
ables X13, X14, X15 ∈ X→T which are instruments.
ZNet chooses to generate a 10-dimensional variable Z
which is correlated with and linearly predicts each of
X13, X14, X15 (Figure 5 a,b). Instrument recovery is due
to the combination of ZNet loss constraints. Upon ablation
of each, recovery deteriorates. We see this in the decreasing
ability to predict the true instruments from that recovered by
the network without each component (Figure 5 c). We see
similar performance in other datasets with candidates and
include a non-linear example in Appendix Figure 7.

ZNet is also able to recover latent instruments. We demonstrate this with our Linear Categorical
Instrument dataset. The true instrument groups the observed data into 5 clusters. ZNet can be seen
to approximately recover these clusters after K-Means and cluster relabeling in Figure 4.

Independent of the existence of an instrument in the observed data, ZNet generates an instrument
representation that is correlated with T , independent of the confounder representation C, independent
of the error in predicting Y , and unconfounded by U . We evaluate the suitability of this instrument
representation empirically. We demonstrate this with our Non-linear No Candidate dataset. The
generated instrument representation is relevant to T , not additionally helpful in predicting Y , and
shows weak correlation to unobserved confounders (Figure 6). We observe strong F-Statistics for T
prediction from generated representations Z and low PC across prohibited relationships between Z
and confounders in the other datasets as well which we report in Appendix Tables 7, 8.
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(a) Univariate correlations between ZNet Z (dim=9) and candidate instruments (X13, X14, X15)

(b) Multivariate correlations between predictions of  

X13, X14, X15 from ZNet Z

(c) Correlations between predictions of  X13, X14, 

X15 from ZNet Z under loss ablations

ZNet Full

Ablate Constraint 1: Unconfoundedness

Ablate Constraint 3: Relevance

Ablate Constraint 2: Exclusion Restriction

Ablate All Constraints

Figure 5: Learned instrument representation is correlated to existing instruments in linear
dataset with mixed instrument candidate. a) Learned instruments scattered against the true
instruments. b) Regression predictions from learned Z dimensions predicting the true instruments
scattered against the true instruments. c) Regression R2 values for predicting the true instrument with
ZNet learned instruments across loss ablation experiments.

Test the hypothesis that 

F-Stat P-Value

Train 0.58 0.446

Val 0.55 0.461

Test 0.06 0.813

(a) Relevance of  the learned instrument representation in the non-linear data with no candidate

(b) Exclusion Restriction of  the same learned instrument (c) Unconfoundedness of  the same learned instrument

Train 0.118

Val 0.098

Test 0.126

Average absolute value of  Pearson correlations between U and Z

Figure 6: Learned instrument representation is valid even in the absence of real instruments
in nonlinear data with no instrument candidate. a) We see learned instruments are relevant
based on calibration plots of regression of T on learned Z. b) Exclusion restriction is satisfied as
representations Z do not improve the prediction of Y after accounting for the treatment and learned
confounders C (F-tests are not significant). c) Learned instrument representations Z show minimal
correlation with the unobserved confounders U .

6.3 CAUSAL INFERENCE WITH ZNET LEARNED REPRESENTATIONS

ZNet learned representations, along with those of AutoIV, GIV, and VIV, can recover ATE and CATE
after a second stage regression, i.e. TSLS, DeepIV, or DFIV. Performance of ZNet is comparable to
using the ground truth instrument, TrueIV, when available, and IV generation generally exceeds that
of TARNet, which ignores confounding, for both ATE, Table 1, and CATE, Appendix Tables 3, 4.
ZNet is on average the highest performing among IV generation methods across comprehensive data
generation processes (Appendix Tables 9, 10). Notably, in the setting of no unobserved confounding
(no U ) without a candidate instrument, ZNet is comparable to TARNet. Given that we cannot
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Dataset Diff Means TARNet IV Method TSLS DeepIV DF IV

Linear Disjoint
True ATE: 0.815

0.054 -0.025 TrueIV -0.002** 0.108 0.132**

ZNet 0.119 0.054* -0.303*

AutoIV -1.393 0.038** -0.964
VIV 0.147 0.123 0.546
GIV -0.620 0.115 0.304

Linear Latent
True ATE: 0.941

-0.539 -0.146 TrueIV -0.524 -0.317 0.042**

ZNet -0.125 -0.136** -0.231
AutoIV -1.315 -0.309 -0.270
VIV -0.082 -0.171* -0.122*

GIV 0.285 -0.234 -0.447

Linear Mixed
True ATE: 0.608

0.407 0.429 TrueIV 0.263** 0.429* 0.369
ZNet 0.437 0.381** 0.655
AutoIV -0.803 0.548 0.270
VIV 1.349 0.637 -0.256*

GIV 1.171 0.525 0.217**

Linear No Candidate (no U )
True ATE: 1.882

-0.296 -0.169 TrueIV – – –
ZNet 2.718 -0.033* -0.336
AutoIV 0.963 -0.017** -0.300*

VIV 0.279 -0.111 -0.107**

GIV 0.137 -0.097 -0.741

Linear No Candidate
True ATE: 0.354

0.657 0.240 TrueIV – – –
ZNet 0.025 0.189* 0.156*

AutoIV -0.028 0.251 0.565
VIV 0.305 0.185* 0.632
GIV -2.614 0.278 -0.031**

Non-linear Disjoint
True ATE: 0.544

0.766 0.324 TrueIV 0.266** 0.272** -0.103**

ZNet 0.524 0.309* 0.147*

AutoIV 1.511 0.389 -0.403
VIV 0.561 0.555 -0.214
GIV 0.697 0.365 1.120

Non-linear Latent
True ATE: 0.333

0.528 0.050 TrueIV 1.381 -0.020 4.762
ZNet 0.152 -0.039 -0.063**

AutoIV -4.809 -0.008** 0.785
VIV 1.790 -0.039 -0.170
GIV -0.235 -0.028 0.084*

Non-linear Mixed
True ATE: 0.558

0.849 0.255 TrueIV 0.477 0.142* -0.156*

ZNet 0.244* 0.218 0.033**

AutoIV 10.821 0.036** 2.079
VIV 0.950 0.408 0.847
GIV -0.981 0.293 0.983

Non-linear No Candidate (no U )
True ATE: 1.429

0.250 -0.068 TrueIV – – –
ZNet -0.528 -0.012** -0.143**

AutoIV -1.806 0.064 -0.257
VIV 0.182** -0.085 -0.209*

GIV 3.389 0.053 -0.665

Non-linear No Candidate
True ATE: 0.435

0.783 0.423 TrueIV – – –
ZNet 0.200* 0.260** 0.049**

AutoIV -25.181 0.720 0.477
VIV 0.898 0.422* 0.404
GIV -0.109 0.640 0.345*

Table 1: Mean error on ATE by dataset and causal inference method across 50 resampled
bootstraps. Smallest errors are bolded. Second smallest are italicized. A single * indicates that the
two best are significantly better than the third best. Two ** indicates that the best is significantly
better than the second best.

assess the existence (or lack thereof) of unobserved confounding in non-synthetic datasets, ZNet’s
performance on these datasets support its translation to real-world settings.

7 DISCUSSION

We present novel methodology for data driven learning of IV representations using deep learning
with superior performance. Our network, ZNet, differs from existing literature generating IVs in its
approach. Existing methods learn variational distributions, while our method learns SCMs. Existing
methods assume that unobserved confounders do not influence the observed data, while our method
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relaxes this assumption. These make our implementation simple and transparent for widespread utility.
We demonstrate that ZNet is able to recover valid instrument representations. In the case of existing
instruments among the observed data, recovered instruments are highly correlated with these variables.
This is shown empirically in cases when the instrument was either observed or latent. Regardless of
the existence of instruments in the data, ZNet shows strong performance predicting treatment effects
across settings of unobserved confounding performing on average better than existing variational
methods for IV generation.

ZNet eliminates the need for domain knowledge of pre-existing IVs by automating instrument repre-
sentations from observed data. We contribute the most comprehensive evaluation of IV generation
for causal inference, which demonstrates the broad utility of IV generation. We present performance
across a comprehensive collection of data generation settings. Since the data generation process
is untestable in practice, these results suggest that ZNet can serve as a plug-in causal inference
estimator. ZNet is high performing across these semi-synthetic settings. Regardless of the existence
of a candidate or a latent instrument, or of unobserved confounding, ZNet can match or exceed the
performance of TARNet and of probabilistic IV generation methods.

Solutions to the ZNet loss minimization problem will always give a representation that serves as
an instrument since IV constraints are explicitly embedded in the loss function. This instrument
can then be used in any downstream instrument regression where satisfying the standard IV criteria
(or, equivalently, ZNet criteria) implies the validity of subsequent causal inference. However, IV
estimation in general is limited by a lack of theoretical guarantees of identifiably in the general
case. This theoretically limits our approach and IV estimation in general. However, strong empirical
results alongside ongoing work to stabilize downstream IV estimators, i.e. (Li et al., 2024), suggest
the value in the increased use of these methods beyond linear settings. We see great potential for
IV estimation in general and our methods in particular with the growing use of unstructured data.
Unstructured data may contain latent or abstract instruments more frequently, as high-dimensional
feature spaces often contain rich information that our approach could learn to extract as instruments.
Our method’s simplicity adds interpretability. Learning SCMs through constraints allows for direct
control over the strength and validity of learned instruments, which elucidates performance in the
absence of theoretical guarantees on downstream causal inference. Due to its lack of assumptions on
the data generation process, ZNet suggests that IV generation presents the potential to strengthen
causal inference and broaden its applicability.

ETHICS STATEMENT

There are no privacy, fairness, security, or other ethics concerns with this work. Large language
models were used for assisting in code production (i.e. aide in plotting results, converting code-
bases for comparison from TensorFlow to PyTorch, implementing MI approximation and developing
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 ADDITIONAL FIGURES

(a) Univariate correlations between ZNet Z (dim=2) 

and candidate instruments (X13, X14, X15)

(b) Multivariate correlations between predictions of  

X13, X14, X15 from ZNet Z

(c) Correlations between predictions of  X13, X14, 

X15 from ZNet Z under loss ablations

ZNet Full

Ablate Constraint 1: Unconfoundedness

Ablate Constraint 3: Relevance

Ablate Constraint 2: Exclusion Restriction

Ablate All Constraints

Figure 7: Learned instrument representation is correlated to existing instruments in non-linear
dataset with mixed instrument candidate in test set. a) Learned instruments against the true
instruments. b) Regression predictions from learned Z dimensions predicting the true instruments. c)
Regression R2 values for predicting the true instrument with ZNet learned instruments across loss
ablation experiments.
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Dataset Method X13 X14 X15

Linear Disjoint

ZNet Full 0.593 0.542 0.691
Ablate Unconfoundedness Constraint 0.629 0.435 0.705
Ablate Exclusion Restriction Constraint 0.666 0.554 0.749
Ablate Relevance Constraint 0.586 0.440 0.542
Ablate All Constraint 0.016 0.023 0.032

Linear Disjoint (no U → X)

ZNet Full 0.784 0.707 0.811
Ablate Unconfoundedness Constraint 0.616 0.453 0.604
Ablate Exclusion Restriction Constraint 0.714 0.514 0.682
Ablate Relevance Constraints 0.271 0.207 0.367
Ablate All Constraints 0.259 0.143 0.124

Linear Mixed

ZNet Full 0.837 0.835 0.838
Ablate Unconfoundedness Constraint 0.255 0.194 0.302
Ablate Exclusion Restriction Constraint 0.355 0.392 0.358
Ablate Relevance Constraint 0.322 0.311 0.329
Ablate All Constraints 0.024 0.054 0.050

Linear Mixed (no U → X)

ZNet Full 0.711 0.624 0.591
Ablate Unconfoundedness Constraint 0.259 0.353 0.228
Ablate Exclusion Restriction Constraint 0.306 0.359 0.411
Ablate All Constraints 0.023 0.018 0.033

Non-linear Disjoint

ZNet Full 0.361 0.387 0.293
Ablate Unconfoundedness Constraint 0.181 0.202 0.283
Ablate Exclusion Restriction Constraint 0.410 0.423 0.442
Ablate Relevance Constraint 0.220 0.213 0.239
Ablate All Constraints 0.092 0.058 0.033

Non-linear Disjoint (no U → X)

ZNet Full 0.532 0.384 0.516
Ablate Unconfoundedness Constraint 0.285 0.175 0.282
Ablate Exclusion Restriction Constraint 0.372 0.414 0.421
Ablate Relevance Constraint 0.009 0.035 0.004
Ablate All Constraints 0.068 0.024 0.045

Non-linear Mixed

ZNet Full 0.767 0.577 0.759
Ablate Unconfoundedness Constraint 0.299 0.357 0.321
Ablate Exclusion Restriction Constraint 0.109 0.064 0.106
Ablate Relevance Constraint 0.164 0.137 0.154
Ablate All Constraints 0.028 0.020 0.017

Non-linear Mixed (no U → X)

ZNet Full 0.209 0.120 0.178
Ablate Unconfoundedness Constraint 0.463 0.273 0.387
Ablate Exclusion Restriction Constraint 0.362 0.242 0.415
Ablate Relevance Constraint 0.369 0.272 0.421
Ablate All Constraints 0.027 0.060 0.036

Table 2: Multivariate R2 for recovering instruments X13, X14, X15 for each dataset and
method.
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No candidate (U influences X)

Latent instrument candidate 
(U influences X)

No candidate (no U influence on X) No candidate (no confounding)

Latent instrument candidate 
(no U influence on X)

Disjoint candidate (U influences X) Disjoint candidate (no U influence on X)

Mixed candidate (U influences X) Mixed candidate (no U influence on X)

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 8: Directed acyclic graphs (DAGs) demonstrating the various data generation processes
on which ZNet is evaluated. Linear and non-linear relationships are constructed for each DAG
giving 18 total datasets for evaluation. Maintext results focus on cases where U influences X as this
is more challenging, more general, and unique to ZNet.
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Dataset TARNet IV Method DeepIV DF IV

Linear Disjoint

0.103 TrueIV 0.223 0.180
ZNet 0.165 0.315
AutoIV 0.113 0.993
VIV 0.236 0.593
GIV 0.209 0.542

Linear Disjoint (no U → X)

0.410 TrueIV 0.394 0.306
ZNet 0.329 0.500
AutoIV 0.432 1.541
VIV 0.439 0.328
GIV 0.499 0.363

Linear Latent

0.170 TrueIV 0.364 0.142
ZNet 0.267 0.236
AutoIV 0.367 0.291
VIV 0.260 0.193
GIV 0.324 0.471

Linear Latent (no U → X)

0.474 TrueIV 0.498 0.153
ZNet 0.472 0.651
AutoIV 0.520 0.328
VIV 0.538 0.372
GIV 0.518 0.861

Linear Mixed

0.435 TrueIV 0.541 0.418
ZNet 0.459 2.182
AutoIV 0.664 0.398
VIV 0.746 0.264
GIV 0.649 0.246

Linear Mixed (no U → X)

0.403 TrueIV 0.500 0.781
ZNet 0.344 0.375
AutoIV 0.793 2.337
VIV 0.561 0.648
GIV 0.493 0.237

Linear No Candidate

0.278 TrueIV – –
ZNet 0.471 0.199
AutoIV 0.357 0.581
VIV 0.389 0.698
GIV 0.336 0.130

Linear No Candidate (no U → X)

0.425 TrueIV – –
ZNet 0.557 0.318
AutoIV 0.569 0.272
VIV 0.666 0.427
GIV 0.471 0.374

Linear No Candidate (no U )

0.193 TrueIV – –
ZNet 0.173 0.431
AutoIV 0.353 0.401
VIV 0.236 0.236
GIV 0.301 0.761

Table 3: PEHE on linear synthetic datasets.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dataset TARNet IV Method DeepIV DF IV

Non-linear Disjoint

0.531 TrueIV 0.539 0.383
ZNet 0.467 0.332
AutoIV 0.585 0.467
VIV 0.727 0.325
GIV 0.550 1.140

Non-linear Disjoint (no U → X)

1.158 TrueIV 0.560 2.098
ZNet 0.748 0.656
AutoIV 0.577 1.262
VIV 0.624 0.727
GIV 0.593 5.709

Non-linear Latent

0.108 TrueIV 0.261 4.784
ZNet 0.198 0.162
AutoIV 0.253 0.866
VIV 0.370 0.348
GIV 0.259 0.197

Non-linear Latent (no U → X)

0.452 TrueIV 0.355 0.218
ZNet 0.264 0.451
AutoIV 0.459 0.796
VIV 0.572 0.459
GIV 0.261 2.703

Non-linear Mixed

0.346 TrueIV 0.326 0.281
ZNet 0.362 0.242
AutoIV 0.446 2.264
VIV 0.694 0.874
GIV 0.439 0.992

Non-linear Mixed (no U → X)

0.756 TrueIV 0.847 0.976
ZNet 0.665 0.669
AutoIV 0.975 0.799
VIV 0.906 0.698
GIV 0.839 1.069

Non-linear No Candidate

0.562 TrueIV – –
ZNet 0.402 0.423
AutoIV 0.788 0.611
VIV 0.588 0.476
GIV 0.712 0.429

Non-linear No Candidate (no U → X)

0.681 TrueIV – –
ZNet 0.960 0.667
AutoIV 0.679 0.586
VIV 0.776 0.551
GIV 0.716 0.604

Non-linear No Candidate (no U )

1.148 TrueIV – –
ZNet 1.157 1.124
AutoIV 1.138 1.056
VIV 1.227 1.082
GIV 1.179 1.152

Table 4: PEHE on non-linear synthetic datasets.
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Dataset Diff Means TARNet IV Method TSLS DeepIV DF IV

Linear Disjoint (no U → X)
True ATE: 0.745

-0.327 -0.311 TrueIV 0.266* -0.264** -0.271*

ZNet -0.356 -0.295* -0.469
AutoIV -0.044 -0.361 -1.454
VIV 0.704 -0.353 -0.074**

GIV -1.456 -0.426 -0.304

Linear Disjoint
True ATE: 0.815

0.054 -0.025 TrueIV -0.002** 0.108 0.132**

ZNet 0.119 0.054* -0.303*

AutoIV -1.393 0.038** -0.964
VIV 0.147 0.123 0.546
GIV -0.620 0.115 0.304

Linear Latent (no U → X)
True ATE: 0.957

-0.498 -0.427 TrueIV -0.171 -0.445 0.068**

ZNet -1.577 -0.406* -0.506
AutoIV 1.505 -0.462 -0.221*

VIV -0.210 -0.476 -0.308
GIV 0.245 -0.372** -0.864

Linear Latent
True ATE: 0.941

-0.539 -0.146 TrueIV -0.524 -0.317 0.042**

ZNet -0.125 -0.136** -0.231
AutoIV -1.315 -0.309 -0.270
VIV -0.082 -0.171* -0.122*

GIV 0.285 -0.234 -0.447

Linear Mixed (no U → X)
True ATE: 1.569

-0.396 -0.297 TrueIV -0.260* -0.304 -0.690
ZNet -0.112* 0.005** -0.165*

AutoIV 3.508 0.226 -1.906
VIV 0.883 -0.100* -0.581
GIV 2.462 -0.461 -0.072**

Linear Mixed
True ATE: 0.608

0.407 0.429 TrueIV 0.263** 0.429* 0.369
ZNet 0.437 0.381** 0.655
AutoIV -0.803 0.548 0.270
VIV 1.349 0.637 -0.256*

GIV 1.171 0.525 0.217**

Linear No Candidate (no U → X)
True ATE: 0.952

-0.062 -0.085 TrueIV – – –
ZNet -0.630 -0.088* -0.214
AutoIV -2.496 -0.110 0.050**

VIV 0.404 0.016* 0.337*

GIV 0.372 -0.175 -0.353

Linear No Candidate (no U )
True ATE: 1.882

-0.296 -0.169 TrueIV – – –
ZNet 2.718 -0.033* -0.336
AutoIV 0.963 -0.017** -0.300*

VIV 0.279 -0.111 -0.107**

GIV 0.137 -0.097 -0.741

Linear No Candidate
True ATE: 0.354

0.657 0.240 TrueIV – – –
ZNet 0.025 0.189* 0.156*

AutoIV -0.028 0.251 0.565
VIV 0.305 0.185* 0.632
GIV -2.614 0.278 -0.031**

Table 5: ATE results on synthetic linear datasets.
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Dataset Diff Means TARNet IV Method TSLS DeepIV DF IV

Non-linear Disjoint (no U → X)
True ATE: 0.919

-0.481 -0.372 TrueIV -0.864 -0.207* 2.097
ZNet -0.514 -0.635 -0.534**

AutoIV -1.676 -0.410 -1.180
VIV -4.066 -0.225 -0.608*

GIV -25.776 -0.196* -5.724

Non-linear Disjoint
True ATE: 0.544

0.766 0.324 TrueIV 0.266** 0.272** -0.103**

ZNet 0.524 0.309* 0.147*

AutoIV 1.511 0.389 -0.403
VIV 0.561 0.555 -0.214
GIV 0.697 0.365 1.120

Non-linear Latent (no U → X)
True ATE: 0.850

-0.316 -0.423 TrueIV -0.479 -0.231 -0.155*

ZNet -0.924 -0.260 -0.370
AutoIV -0.146 -0.232 0.258
VIV -0.605 -0.319 -0.042**

GIV -0.810 -0.238 -2.706

Non-linear Latent
True ATE: 0.333

0.528 0.050 TrueIV 1.381 -0.020 4.762
ZNet 0.152 -0.039 -0.063**

AutoIV -4.809 -0.008** 0.785
VIV 1.790 -0.039 -0.170
GIV -0.235 -0.028 0.084*

Non-linear Mixed (no U → X)
True ATE: 1.777

-0.277 -0.227 TrueIV -0.227* -0.519 -0.723
ZNet -0.443 -0.173* -0.196*

AutoIV 1.033 -0.457 -0.439
VIV 0.438 -0.190* 0.181**

GIV 15.700 -0.334 0.794

Non-linear Mixed
True ATE: 0.558

0.849 0.255 TrueIV 0.477 0.142* -0.156*

ZNet 0.244* 0.218 0.033**

AutoIV 10.821 0.036** 2.079
VIV 0.950 0.408 0.847
GIV -0.981 0.293 0.983

Non-linear No Candidate (no U → X)
True ATE: 0.828

0.174 0.134 TrueIV – – –
ZNet 0.267 0.117* 0.302
AutoIV -0.445 0.069** 0.275*

VIV 0.111 0.164 0.043**

GIV -0.405 0.291 -0.277

Non-linear No Candidate (no U )
True ATE: 1.429

0.250 -0.068 TrueIV – – –
ZNet -0.528 -0.012** -0.143**

AutoIV -1.806 0.064 -0.257
VIV 0.182** -0.085 -0.209*

GIV 3.389 0.053 -0.665

Non-linear No Candidate
True ATE: 0.435

0.783 0.423 TrueIV – – –
ZNet 0.200* 0.260** 0.049**

AutoIV -25.181 0.720 0.477
VIV 0.898 0.422* 0.404
GIV -0.109 0.640 0.345*

Table 6: ATE results on synthetic non-Linear datasets.
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Dataset IV Method
F-Stat(Z,T)
(Relevance)

(Train/Val/Test)

Corr(Z,C)
(Independence)
(Train/Val/Test)

Corr(Z,Y-Yhat)
(Exogeneity)

(Train/Val/Test)

Corr(Z,U)
(Independence)
(Train/Val/Test)

Linear Disjoint

TrueIV 53.566 / 12.507 / 6.603 0.027 / 0.051 / 0.136 0.047 / 0.116 / 0.117 0.030 / 0.062 / 0.045
ZNet 63.617 / 14.699 / 4.927 0.040 / 0.044 / 0.092 0.037 / 0.059 / 0.060 0.140 / 0.175 / 0.088
AutoIV 22.820 / 6.721 / 0.944 0.214 / 0.211 / 0.253 0.000 / 0.000 / 0.000 0.166 / 0.143 / 0.272
VIV 18.407 / 1.497 / 4.065 0.038 / 0.064 / 0.116 0.018 / 0.030 / 0.026 0.036 / 0.035 / 0.085
GIV 1.301 / 0.642 / 6.703 0.135 / 0.114 / 0.161 0.001 / 0.110 / 0.072 0.194 / 0.184 / 0.199

Linear Disjoint (no U → X)

TrueIV 35.681 / 29.173 / 4.562 0.027 / 0.051 / 0.136 0.066 / 0.103 / 0.231 0.018 / 0.038 / 0.065
ZNet 13.524 / 13.151 / 6.735 0.040 / 0.090 / 0.058 0.013 / 0.004 / 0.102 0.022 / 0.050 / 0.095
AutoIV 10.865 / 2.572 / 3.442 0.186 / 0.184 / 0.260 0.000 / 0.000 / 0.000 0.014 / 0.060 / 0.080
VIV 18.639 / 6.582 / 3.192 0.037 / 0.076 / 0.077 0.037 / 0.092 / 0.142 0.060 / 0.053 / 0.052
GIV 0.278 / 0.253 / 0.788 0.148 / 0.161 / 0.195 0.001 / 0.065 / 0.060 0.011 / 0.041 / 0.068

Linear Latent

TrueIV 68.564 / 36.180 / 30.735 0.200 / 0.201 / 0.250 0.027 / 0.007 / 0.046 0.018 / 0.053 / 0.085
ZNet 210.017 / 29.806 / 13.066 0.180 / 0.196 / 0.200 0.035 / 0.034 / 0.089 0.112 / 0.185 / 0.097
AutoIV 47.460 / 21.996 / 22.106 0.263 / 0.256 / 0.271 0.000 / 0.000 / 0.000 0.051 / 0.055 / 0.088
VIV 13.772 / 1.628 / 1.948 0.031 / 0.060 / 0.118 0.022 / 0.017 / 0.109 0.022 / 0.050 / 0.102
GIV 7.756 / 1.936 / 0.007 0.140 / 0.164 / 0.166 0.036 / 0.036 / 0.141 0.021 / 0.066 / 0.046

Linear Latent (no U → X)

TrueIV 68.564 / 36.180 / 30.735 0.204 / 0.212 / 0.266 0.009 / 0.019 / 0.039 0.018 / 0.053 / 0.085
ZNet 25.361 / 9.822 / 10.956 0.042 / 0.053 / 0.146 0.009 / 0.063 / 0.078 0.012 / 0.056 / 0.094
AutoIV 38.894 / 19.722 / 4.108 0.269 / 0.275 / 0.268 0.000 / 0.000 / 0.000 0.023 / 0.073 / 0.116
VIV 23.563 / 13.233 / 5.743 0.023 / 0.047 / 0.134 0.007 / 0.019 / 0.095 0.028 / 0.055 / 0.041
GIV 4.305 / 0.010 / 0.621 0.137 / 0.141 / 0.137 0.003 / 0.057 / 0.065 0.021 / 0.039 / 0.072

Linear Mixed

TrueIV 26.792 / 7.467 / 10.101 0.027 / 0.051 / 0.136 0.176 / 0.120 / 0.272 0.030 / 0.062 / 0.045
ZNet 24.163 / 11.648 / 9.514 0.168 / 0.166 / 0.233 0.016 / 0.025 / 0.101 0.059 / 0.071 / 0.115
AutoIV 77.162 / 20.885 / 12.485 0.236 / 0.243 / 0.287 0.000 / 0.001 / 0.001 0.322 / 0.330 / 0.281
VIV 10.911 / 3.364 / 6.297 0.026 / 0.055 / 0.120 0.037 / 0.027 / 0.058 0.030 / 0.057 / 0.053
GIV 9.928 / 3.886 / 3.115 0.143 / 0.172 / 0.232 0.022 / 0.081 / 0.084 0.060 / 0.124 / 0.008

Linear Mixed (no U → X)

TrueIV 33.874 / 20.091 / 16.317 0.027 / 0.051 / 0.136 0.004 / 0.033 / 0.164 0.018 / 0.038 / 0.065
ZNet 207.114 / 39.401 / 27.046 0.096 / 0.092 / 0.153 0.010 / 0.101 / 0.081 0.014 / 0.049 / 0.090
AutoIV 1.394 / 0.111 / 0.225 0.261 / 0.272 / 0.253 0.000 / 0.000 / 0.000 0.022 / 0.040 / 0.116
VIV 9.804 / 0.683 / 4.310 0.032 / 0.051 / 0.091 0.035 / 0.026 / 0.187 0.041 / 0.062 / 0.122
GIV 9.271 / 0.775 / 0.506 0.148 / 0.143 / 0.152 0.013 / 0.062 / 0.076 0.017 / 0.029 / 0.037

Linear No Candidate

TrueIV – – – –
ZNet 21.299 / 2.298 / 2.315 0.037 / 0.060 / 0.122 0.010 / 0.089 / 0.050 0.223 / 0.228 / 0.247
AutoIV 77.352 / 30.622 / 0.391 0.265 / 0.263 / 0.241 0.000 / 0.000 / 0.000 0.368 / 0.357 / 0.343
VIV 18.753 / 6.859 / 3.228 0.042 / 0.063 / 0.095 0.060 / 0.056 / 0.096 0.065 / 0.076 / 0.090
GIV 3.667 / 1.458 / 0.825 0.138 / 0.158 / 0.166 0.009 / 0.027 / 0.012 0.126 / 0.150 / 0.216

Linear No Candidate (no U → X)

TrueIV – – – –
ZNet 78.441 / 1.012 / 7.704 0.169 / 0.168 / 0.214 0.008 / 0.093 / 0.023 0.056 / 0.061 / 0.088
AutoIV 25.720 / 0.402 / 0.701 0.254 / 0.268 / 0.264 0.000 / 0.000 / 0.000 0.012 / 0.053 / 0.051
VIV 26.796 / 6.537 / 16.852 0.029 / 0.070 / 0.134 0.038 / 0.068 / 0.075 0.048 / 0.069 / 0.071
GIV 0.298 / 0.272 / 0.029 0.200 / 0.193 / 0.197 0.004 / 0.020 / 0.008 0.017 / 0.057 / 0.057

Linear No Candidate (no U )

TrueIV – – – –
ZNet 463.273 / 3.552 / 0.938 0.110 / 0.118 / 0.095 0.074 / 0.015 / 0.083 – / – / –
AutoIV 18.562 / 0.437 / 3.744 0.248 / 0.252 / 0.206 0.000 / 0.000 / 0.000 – / – / –
VIV 15.274 / 7.716 / 4.874 0.030 / 0.062 / 0.103 0.021 / 0.108 / 0.144 – / – / –
GIV 0.055 / 2.459 / 2.216 0.156 / 0.143 / 0.208 0.022 / 0.018 / 0.041 – / – / –

Table 7: Instrument strength and validity on linear synthetic datasets.
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Dataset IV Method
F-Stat(Z,T)
(Relevance)

(Train/Val/Test)

Corr(Z,C)
(Independence)
(Train/Val/Test)

Corr(Z,Y-Yhat)
(Exogeneity)

(Train/Val/Test)

Corr(Z,U)
(Independence)
(Train/Val/Test)

Non-linear Disjoint

TrueIV 41.662 / 12.868 / 4.620 0.027 / 0.051 / 0.136 0.124 / 0.100 / 0.176 0.030 / 0.062 / 0.045
ZNet 28.150 / 12.159 / 19.772 0.067 / 0.077 / 0.111 0.004 / 0.028 / 0.107 0.093 / 0.131 / 0.069
AutoIV 142.891 / 48.571 / 15.159 0.214 / 0.232 / 0.205 0.000 / 0.000 / 0.000 0.327 / 0.287 / 0.357
VIV 16.443 / 1.351 / 10.179 0.038 / 0.054 / 0.111 0.015 / 0.079 / 0.015 0.030 / 0.068 / 0.073
GIV 37.947 / 8.967 / 17.319 0.145 / 0.120 / 0.184 0.021 / 0.027 / 0.045 0.187 / 0.187 / 0.266

Non-linear Disjoint (no U → X)

TrueIV 19.956 / 5.440 / 18.102 0.027 / 0.051 / 0.136 0.014 / 0.014 / 0.133 0.018 / 0.038 / 0.065
ZNet 17.203 / 4.722 / 12.113 0.038 / 0.058 / 0.170 0.013 / 0.065 / 0.075 0.018 / 0.045 / 0.071
AutoIV 5.259 / 3.103 / 1.239 0.225 / 0.224 / 0.233 0.000 / 0.000 / 0.000 0.033 / 0.016 / 0.084
VIV 4.690 / 0.937 / 1.670 0.035 / 0.069 / 0.098 0.004 / 0.070 / 0.128 0.044 / 0.056 / 0.070
GIV 16.805 / 1.806 / 5.565 0.130 / 0.133 / 0.237 0.114 / 0.006 / 0.140 0.035 / 0.071 / 0.036

Non-linear Latent

TrueIV 30.818 / 7.298 / 2.185 0.204 / 0.212 / 0.266 0.005 / 0.011 / 0.052 0.064 / 0.083 / 0.022
ZNet 19.834 / 1.402 / 1.290 0.034 / 0.043 / 0.172 0.004 / 0.014 / 0.070 0.116 / 0.089 / 0.081
AutoIV 76.120 / 14.009 / 0.317 0.212 / 0.192 / 0.205 0.000 / 0.000 / 0.000 0.363 / 0.328 / 0.311
VIV 16.454 / 4.075 / 3.042 0.027 / 0.052 / 0.118 0.018 / 0.061 / 0.024 0.051 / 0.064 / 0.132
GIV 20.388 / 4.855 / 11.145 0.123 / 0.130 / 0.145 0.001 / 0.082 / 0.239 0.226 / 0.266 / 0.328

Non-linear Latent (no U → X)

TrueIV 35.494 / 1.009 / 0.196 0.204 / 0.212 / 0.266 0.002 / 0.030 / 0.050 0.018 / 0.053 / 0.085
ZNet 19.330 / 0.650 / 0.817 0.028 / 0.069 / 0.109 0.012 / 0.038 / 0.139 0.016 / 0.046 / 0.086
AutoIV 43.267 / 1.545 / 0.663 0.239 / 0.257 / 0.234 0.000 / 0.000 / 0.000 0.044 / 0.056 / 0.104
VIV 10.032 / 8.944 / 12.677 0.025 / 0.056 / 0.133 0.034 / 0.094 / 0.142 0.047 / 0.074 / 0.085
GIV 0.302 / 0.010 / 2.774 0.100 / 0.100 / 0.115 0.023 / 0.025 / 0.107 0.037 / 0.056 / 0.064

Non-linear Mixed

TrueIV 39.277 / 14.385 / 6.638 0.027 / 0.051 / 0.136 0.080 / 0.084 / 0.186 0.030 / 0.062 / 0.045
ZNet 81.609 / 27.086 / 14.220 0.037 / 0.038 / 0.140 0.013 / 0.024 / 0.088 0.099 / 0.084 / 0.062
AutoIV 218.811 / 58.758 / 33.881 0.201 / 0.222 / 0.227 0.000 / 0.000 / 0.000 0.345 / 0.301 / 0.358
VIV 13.916 / 7.281 / 4.760 0.021 / 0.070 / 0.132 0.021 / 0.033 / 0.154 0.038 / 0.060 / 0.078
GIV 8.884 / 2.184 / 4.662 0.096 / 0.142 / 0.184 0.055 / 0.098 / 0.017 0.045 / 0.097 / 0.055

Non-linear Mixed (no U → X)

TrueIV 60.302 / 11.847 / 7.502 0.027 / 0.051 / 0.136 0.034 / 0.068 / 0.144 0.018 / 0.038 / 0.065
ZNet 972.072 / 27.721 / 14.899 0.038 / 0.059 / 0.100 0.022 / 0.036 / 0.044 0.038 / 0.029 / 0.032
AutoIV 354.559 / 71.052 / 57.682 0.270 / 0.274 / 0.322 0.000 / 0.000 / 0.000 0.026 / 0.051 / 0.082
VIV 16.785 / 3.347 / 1.459 0.038 / 0.049 / 0.113 0.021 / 0.070 / 0.204 0.048 / 0.073 / 0.081
GIV 3.221 / 5.328 / 0.129 0.153 / 0.171 / 0.180 0.116 / 0.010 / 0.137 0.016 / 0.052 / 0.079

Non-linear No Candidate

TrueIV – – – –
ZNet 15.335 / 4.959 / 1.181 0.067 / 0.102 / 0.222 0.020 / 0.048 / 0.093 0.119 / 0.099 / 0.127
AutoIV 85.371 / 16.582 / 0.149 0.227 / 0.211 / 0.302 0.000 / 0.000 / 0.000 0.205 / 0.165 / 0.243
VIV 18.972 / 3.681 / 5.362 0.025 / 0.054 / 0.113 0.027 / 0.084 / 0.089 0.022 / 0.060 / 0.100
GIV 16.638 / 4.238 / 4.860 0.173 / 0.155 / 0.165 0.059 / 0.031 / 0.010 0.132 / 0.051 / 0.086

Non-linear No Candidate (no U → X)

TrueIV – – – –
ZNet 102.430 / 2.654 / 3.266 0.046 / 0.071 / 0.138 0.010 / 0.056 / 0.057 0.067 / 0.041 / 0.049
AutoIV 99.004 / 21.237 / 14.164 0.192 / 0.186 / 0.252 0.000 / 0.000 / 0.000 0.022 / 0.089 / 0.048
VIV 13.953 / 18.708 / 2.071 0.033 / 0.082 / 0.116 0.043 / 0.035 / 0.100 0.028 / 0.085 / 0.089
GIV 2.033 / 4.684 / 1.203 0.183 / 0.169 / 0.198 0.015 / 0.009 / 0.042 0.025 / 0.024 / 0.080

Non-linear No Candidate (no U )

TrueIV – – – –
ZNet 123.260 / 10.146 / 2.912 0.208 / 0.223 / 0.216 0.117 / 0.107 / 0.166 – / – / –
AutoIV 75.873 / 14.926 / 8.766 0.223 / 0.201 / 0.268 0.000 / 0.000 / 0.000 – / – / –
VIV 16.756 / 8.589 / 9.893 0.032 / 0.062 / 0.114 0.068 / 0.078 / 0.079 – / – / –
GIV 10.804 / 5.268 / 0.193 0.137 / 0.120 / 0.194 0.000 / 0.056 / 0.038 – / – / –

Table 8: Instrument strength and validity on non-linear synthetic datasets.

TSLS DeepIV DFIV
Avg. |Error ATE| (SE) Avg. |Error ATE| (SE) Avg. |Error ATE| (SE)

ZNet 0.550 (0.154) 0.201 (0.040) 0.271 (0.042)
AutoIV 3.305 (1.416) 0.262 (0.050) 0.675 (0.142)
VIV 0.776 (0.222) 0.254 (0.042) 0.316 (0.056)
GIV 3.192 (1.574) 0.285 (0.039) 0.891 (0.319)

Table 9: Comparison of IV methods on average across the 18 different data generation processes.
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DeepIV DFIV
Avg. PEHE (SE) Avg. PEHE (SE)

ZNet 0.470 (0.063) 0.552 (0.111)
AutoIV 0.559 (0.060) 0.882 (0.147)
VIV 0.586 (0.059) 0.491 (0.056)
GIV 0.519 (0.057) 0.999 (0.3106)

Table 10: Comparison of IV methods on average across the 18 different data generation
processes for CATE estimation.
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