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ABSTRACT

Drug target interaction (DTI) prediction is a cornerstone of computational drug
discovery, enabling rational design, repurposing, and mechanistic insights. While
deep learning has advanced DTI modeling, existing approaches primarily rely
on SMILES–protein pairs and fail to exploit the rich multimodal information
available for small molecules and proteins. We introduce GRAM-DTI, a pre-
training framework that integrates multimodal molecular and protein inputs into
unified representations. GRAM-DTI extends volume-based contrastive learning
to four modalities, capturing higher-order semantic alignment beyond conven-
tional pairwise approaches. To handle modality informativeness, we propose
adaptive modality dropout, dynamically regulating each modality’s contribution
during pre-training. Additionally, IC50 activity measurements, when available,
are incorporated as weak supervision to ground representations in biologically
meaningful interaction strengths. Experiments on four publicly available datasets
demonstrate that GRAM-DTI consistently outperforms state-of-the-art baselines.
Our results highlight the benefits of higher-order multimodal alignment, adaptive
modality utilization, and auxiliary supervision for robust and generalizable DTI
prediction.

1 INTRODUCTION

Drug target interaction (DTI) prediction is a central challenge in computational drug discovery, un-
derpinning applications in rational drug design, repurposing of approved drugs, and elucidation of
mechanisms of action (Vefghi et al., 2025). Traditional experimental screening, though reliable, is
prohibitively expensive and cannot feasibly cover the vast chemical and proteomic search space.
Computational methods therefore play an increasingly critical role in prioritizing candidate drug–
protein pairs for experimental validation, accelerating discovery pipelines and reducing cost (Pana-
handeh & Mansouri, 2025; Liao et al., 2025).

DTI prediction methods have evolved from similarity-based and network-based heuristics to ma-
chine learning and, more recently, deep learning approaches (Shi et al., 2024; Panahandeh & Man-
souri, 2025). Early methods relied on molecular similarity or interaction propagation but struggled
with generalization. Modern neural models, including graph neural networks and sequence-based
architectures now dominate, learning directly from raw SMILES and amino acid sequences (Peng
et al., 2024; Zhao et al., 2025; Liu et al., 2025; Xia et al., 2023). However, these approaches remain
largely restricted to SMILES–protein pairs, overlooking the richer multimodal information available
for molecules and proteins that could yield more robust and generalizable interaction predictions.

While multimodal pre-training has been recently explored by few works for DTI prediction (Lu
et al., 2025; Ye et al., 2021; Chen et al., 2020), existing approaches suffer from three limitations.
Firstly, they rely on pairwise contrastive learning anchored to a single modality. Such schemes can-
not capture higher-order interdependencies as the number of modalities increases (Cicchetti et al.,
2024). Secondly, they assume all modalities are equally informative, ignoring that data sources
often differ in quality, completeness, and relevance across samples and training stages. Static fu-
sion can therefore lead to suboptimal representations when dominant but less informative modalities
overshadow complementary signals. Finally, valuable supervision signals such as IC50 activity mea-
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Figure 1: Overview of GRAM-DTI architecture. Left: pretraining phase with volume-based multi-
modal alignment across four modalities (SMILES, text, HTA, protein sequences). The framework
uses gradient-informed adaptive modality selection to dynamically regulate modality contributions
during training. Right: downstream task prediction.

surements are publicly available for a subset of drug–protein pairs, yet they remain unutilized during
pre-training despite their direct biological relevance for DTI prediction task.

To address these gaps, we propose GRAM-DTI, a novel multimodal pre-training framework specif-
ically tailored for downstream DTI prediction task (see Fig. 1). To this end, we curate a high quality
multimodal dataset consisting of diverse protein and small molecule modalities and adapt the re-
cent volume-based contrastive learning strategies from other domains (Cicchetti et al., 2024; Jiang
et al., 2025a) for geometric alignment of these modalities. Unlike traditional contrastive learning
techniques, this offers a theoretically principled and scalable approach for aligning multiple modal-
ities. Beyond volume based contrastive learning, our framework is novel in its flexibility to learn
to dynamically weight each modality based on its informativeness during pre-training while also
supporting activity-based labels as auxiliary supervisory signals, when available. Our main contri-
butions are as follows.

• We introduce GRAM-DTI, a pre-training framework for DTI that integrates multimodal
small molecule protein modalities into a unified representation with volume-based con-
trastive learning.

• We introduce adaptive modality dropout, dynamically regulating modality contributions
during pre-training to prevent dominant but less informative modalities from overwhelming
complementary signals.

• We leverage IC50 activity measurements as additional weak auxiliary supervision, ground-
ing learned representations in biologically meaningful drug–target interactions.

• We demonstrate state-of-the-art performance across four public datasets and multiple eval-
uation settings relevant for real-world drug discovery applications.

2 RELATED WORKS

Multimodal Molecular Representation Learning Recent advancements in molecular represen-
tation learning have shifted towards integrating multiple data modalities to enhance predictive per-
formance. For instance, frameworks like TRIDENT (Jiang et al., 2025a) combine SMILES strings,
hierarchical taxonomic annotations, and functional text of small molecules to capture richer molec-
ular semantics. These approaches leverage contrastive learning pretraining to align diverse data
sources, which improvs generalization across various molecular downstream tasks even in the ab-
sence of fully paired datasets. Beyond TRIDENT, several molecular foundation models have been
introduced, including MolFM (Luo et al., 2023) and MolCA (Liu et al., 2023), which integrate
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molecular graphs, textual descriptions, and domain-specific annotations into unified representations.
These works highlight the broader trend of leveraging multimodal pre-training to construct general-
purpose molecular representations.

Drug–Target Interaction (DTI) Prediction DTI prediction has traditionally relied on unimodal
representations, such as SMILES strings for drugs and amino acid sequences for proteins. Early
deep learning models such as DeepDTA (Öztürk et al., 2018), MT-DTI (Shin et al., 2019), and
TransformerCPI (Chen et al., 2020) demonstrated the effectiveness of sequence-based architectures
for interaction prediction. Beyond sequence-based methods, more recent work has explored graph
neural networks and SE(3)-equivariant geometric deep learning models, such as GraphDTA (Nguyen
et al., 2021) and EquiBind (Stärk et al., 2022), which leverage spatial and structural information of
drugs and proteins to enhance binding affinity prediction. In parallel, knowledge graph–based meth-
ods such as NeoDTI (Wan et al., 2019) and Hetionet-based repurposing frameworks (Himmelstein
et al., 2017) exploit biomedical networks to capture higher-order relations among drugs, targets, and
diseases. More recently, multimodal approaches have been proposed to better capture the complex-
ity of drug–target interactions. For example, MDTips (Xia et al., 2023) integrates knowledge graphs,
gene expression profiles, and structural information, while MGNDTI (Peng et al., 2024) employs a
multimodal graph neural network to improve robustness and generalization. Another emerging di-
rection is pre-training with large-scale unlabeled data to mitigate the scarcity of labeled DTI pairs.
For instance, DTIAM (Lu et al., 2025) introduces separate pretraining for drug and target modalities
before merging the learned representations for DTI prediction.

Modality Dropout Modality dropout techniques have been proposed to enhance the robustness of
multimodal models by preventing over-reliance on any single modality. For instance, the Learnable
Irrelevant Modality Dropout (IMD) method (Alfasly et al., 2022) selectively drops irrelevant modal-
ities during training, improving performance in multimodal action recognition tasks. Additionally,
approaches like aggressive modality dropout have been shown to mitigate negative co-learning ef-
fects and enhance model accuracy in multimodal settings (Magal et al., 2025). Beyond dropout,
adaptive fusion mechanisms have also been investigated. Cross-attention and gating strategies (Tsai
et al., 2019; Peng et al., 2024; Mollaysa et al., 2025) dynamically regulate modality contributions,
while tensor fusion methods (Zadeh et al., 2017) capture higher-order interactions across modali-
ties. These ideas inform the design of adaptive strategies in molecular contexts, where modality
informativeness often varies across data sources and training stages.

Unlike existing works, our GRAM-DTI framework captures higher-order semantic relationships
beyond simple pairwise alignment/fusion. Furthermore, to the best of our knowledge, we are the
first to explore strategies for adaptive modality dropout in the context of DTI prediction.

3 METHODOLOGY

Building upon recent advances (Cicchetti et al., 2024; Jiang et al., 2025b) in volume-based modal-
ity alignment for effective representation learning, we extend the foundational concept of volume
loss (Cicchetti et al., 2024), originally formulated for audio-video-text data, to the domain of protein-
small molecule interactions. We aim to learn a unified embedding space that: 1) captures semantic
relationships across modalities; 2) remains robust when modalities vary in informativenes; and 3)
improves downstream DTI prediction task.

Formally, assume a pretraining dataset D = {(xs
i , x

t
i, x

h
i , x

p
i , δ

IC50
yi

)}Ni=1, where xs
i , xt

i, x
h
i , and

xp
i denote the SMILES sequence, textual description of molecule, hierarchical taxonomic anno-

tation (HTA) (Jiang et al., 2025b) of molecule, and protein sequence, respectively. The variable
δIC50
yi

indicates the IC50 activity class yIC50
i if a measured IC50 value is available for the pro-

tein–molecule pair (xp
i , x

s
i ), and 0 otherwise. As illustrated in Fig. 1, we employ pre-trained en-

coders Ei (MolFormer (Ross et al., 2022) for SMILES, MolT5 (Edwards et al., 2022) for text
and HTA, and ESM-2 (Lin et al., 2023) for proteins) to obtain initial modality-specific embed-
dings. To keep pre-training efficient and scalable, we freeze the backbone encoders and train
lightweight neural projectors Fm

ϕ that map each modality embedding into a shared representation
space where they are semantically aligned. The resulting projected embeddings are denoted fm,
where m ∈ {SMILES, text, HTA, protein}.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 GRAMIAN VOLUME-BASED MULTIMODAL ALIGNMENT

In contrast to traditional multimodal representation learning approaches which have been known to
fail in capturing the complex interdependencies among three or more modalities (Cicchetti et al.,
2024; Jiang et al., 2025b), volume loss uses Gramian volume-based alignment of modailities ensur-
ing semantic coherence across all modalities simultaneously.

Gramian Volume Given embeddings fs
i , f

t
i , f

h
i , f

p
i ∈ Rd that are learned from the four modali-

ties xs
i , x

t
i, x

h
i , x

p
i respectively, we first normalize them such that ∥fm

i ∥2 = 1. We can then construct
the Gram matrix G ∈ R4×4 where

Gkj = ⟨fk
i , f

j
i ⟩, k, j ∈ {s, t, h, p} (1)

The 4-dimensional volume spanned by these embedded vectors is equal to the square root of the
determinat of the Gramian matrix (Cicchetti et al., 2024): V (fs

i , f
t
i , f

h
i , f

p
i ) =

√
det(G). From

multimodal alignment perspective, smaller volume intuitively suggests stronger semantic alignment,
as the embeddings occupy a more compact and cohesive subspace and vice-versa.

Volume-Based Contrastive Loss Given the Gramian volume, contrastive objective is cast as vol-
ume minimization/maximization. As proposed in (Cicchetti et al., 2024), to construct negative pairs,
we chose an anchor modality a ∈ {s, t, h, p} as one of the four modalities. Therefore, for a batch of
B samples, the contrastive loss on their learned embeddings is defined as follows:

L→vol = −
1

B

B∑
i=1

log
exp(−V (ai, f

t
i , f

h
i , f

p
i )/τ)∑B′

j=1 exp(−V (aj , f t
i , f

h
i , f

p
i ))/τ)

, (2)

where, for example, the first modality fs
i is chosen as the anchor ai, negative pairs are con-

structed by permuting the anchor, and τ is the temperature parameter. We also add the
reverse loss (w.r.t. negative pairs construction) to ensure symmetric alignment: L←vol =

− 1
B

∑B
i=1 log

exp(−V (ai,f
t
i ,f

h
i ,fp

i )/τ)∑B′
j=1 exp(−V (ai,ft

j ,f
h
j ,fp

j ))/τ)
. The combined volume-based loss is

Lvol =
1

2
(L→vol + L←vol) (3)

.

3.2 GRADIENT-INFORMED ADAPTIVE MODALITY SELECTION

While volume-based contrastive loss treats all modalities equally, different modalities may vary in
quality and relevance, with contributions that change during training. Static fusion strategies risk
either underutilizing weaker modalities or overfitting to dominant ones. We propose a gradient-
informed modality dropout mechanism that dynamically adapts modality usage based on their in-
stantaneous contribution to the loss function.

Gradient Contribution Analysis Assume Lt̃ denotes mini-batch loss at training step t̃. We mea-
sure the importance of modality m ∈ {s, t, h, p} by the magnitude of the gradient with respect to its
embedding:

gmt̃ =

∥∥∥∥∥ ∂Lt̃

∂fm
t̃

∥∥∥∥∥
2

(4)

where fm
t̃
∈ Rd is the learned embedding of modality m at gradient step t̃. To avoid noisy decisions,

we track the history of gradient contributions over the past K steps: ḡm
t̃

=
∑K−1

k=0 αkgm
t̃−k∑K−1

k=0 αk
, where

α ∈ (0, 1) is an exponential decay factor which yields a smooth, temporally discounted importance
score for each modality.

Adaptive Modality Dropping Strategy We employ a principled adaptive strategy that con-
siders both the magnitude and variance of gradient contributions. Let µt̃ = 1

4

∑
m ḡm

t̃
and

σt̃ =
√

1
4

∑
m(ḡm

t̃
− µt̃)

2 denote the mean and standard deviation of weighted gradients across
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modalities at the current gradient step t̃. We will drop a modality from the volume based contrastive
loss calculation with a probability of pdrop, which is a hyperparameter. The criteria to drop a modality
is defined as follows:

m
(t̃)
drop =


argmaxm ḡm

t̃
if dominance detected, e.g., ḡm

t̃
> µt̃ + λσσt̃,

argminm ḡm
t̃

otherwise,
none with probability (1− pdrop).

(5)

where λσ = 1.5 is the threshold multiplier. This means that we adaptively drop modalities based on
two criteria: 1) Dominance prevention: if a modality’s contribution is much larger than others, we
drop it to avoid overfitting; 2) Low-contribution pruning: Otherwise, we drop the modality with the
smallest gradient contribution to encourage use of more informative signals. This dynamic selection
balances stability and diversity, ensuring all modalities remain engaged throughout training.

3.3 WEAK SUPERVISION THROUGH IC50 ACTIVITY MEASURE

As the IC50 values for wide range of protein-small molecule pairs are availabe on public data sources
such as BindingDB (Gilson et al., 2016), we introduce an additional classification task as an auxiliary
objective during pre-training. However, IC50 labels are not available for all possible protein-small
molecule pairs, this task provides only weak supervisory signal during pre-training when IC50 in-
formation is available. We train a classifier F IC50

ϕ to predict the IC50 class from the learned embed-
dings of all four modalities: f fused = [fs; f t; fh; fp] ∈ R4d. Note that IC50 values are continuous,
but given the inherent challenges of IC50 regression, including heterogeneous value distributions,
wide dynamic ranges spanning several orders of magnitude, and noisy measurements (Qureshi et al.,
2015; Bavi et al., 2016; Ashraf et al., 2023), we formulate the problem as a three-class classification
task by employing discretizations on IC50 values (see Appendix A).

However, this discretizations comes with class-imbalance described in Appendix A. To address this
issue, we employ a weighted cross-entropy loss:

LIC50 = − 1

|S|
∑
i∈S

wyi log p(yi|f fused
i ), (6)

where S denotes the set of samples with valid IC50 annotations, and class weights are computed as:
wc = Ntotal

C·Nc
, where Ntotal being the total number of samples, C the number of classes, and Nc the

number of samples in class c.

Auxiliary Bimodal Contrastive Loss As the downstream task involves protein and molecule em-
beddings only, to emphasize alignment between these two, we also explicitly incorporate traditional
pairwise contrastive losses between SMILES and protein modalities:Lbi =

1
2 (Ls→p+Lp→s) where

Ls→p and Lp→s follow the standard CLIP-style contrastive formulation (Radford et al., 2021).

3.4 UNIFIED TRAINING OBJECTIVE

The complete training objective integrates all components with appropriate weighting:

Ltotal = λ1Lvol + λ2Lbi + λ3LIC50 (7)

where λ1, λ2, λ3 are hyperparameters. Note thatLvol andLbi are applied on all the training instances
while LIC50 are only applied for pairs of protein and molecule with valid IC50 annotations. For
gradient-based dropping of a modality in volume contrastive loss, we use L = λ2Lbi +λ3LIC50. See
Appendix C for details on model architecture and parameters.

4 EXPERIMENTS

4.1 DATASET

For pre-training, we employ the multimodal molecular dataset from TRIDENT (Jiang et al., 2025b),
consisting of 47,269 triplets of SMILES, text descriptions, and HTA annotations. We extend this
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dataset by integrating protein binding information from BindingDB (Gilson et al., 2016), creating
quadruplets of ⟨SMILES, Text, HTA, Protein⟩ with IC50 measurements when available. To prevent
data leakage, we removed overlapping (SMILES, protein) pairs from our downstream evaluation
datasets. The final pretraining dataset contains 6,545 unique molecules and 4,418 proteins, forming
50,968 quadruplets, of which 16,035 include quantitative IC50 measurements for auxiliary super-
vision. See Appendix B for detailed dataset construction and statistics. Ideally, we would remove
any drug or target that appears in the downstream tasks from the pretraining corpus. However, given
the number of downstream tasks we evaluate, this would leave too little data for effective pretrain-
ing. Consequently, we only exclude overlaps at the (SMILES, protein) pair level. To verify that our
method does not memorize entity-specific patterns, we perform an overlap analysis on the Activation
dataset; results are provided in appendix E.3.

We evaluated our approach on four benchmark datasets from the DTIAM framework (Lu et al.,
2025). These datasets cover two types of prediction tasks: drug-target interaction (DTI) prediction
using the Yamanishi 08 and Hetionet datasets, and mechanism of action (MoA) prediction using
the Activation and Inhibition datasets. 1) Activation dataset obtained from the Therapeutic Target
Database (TTD) (Zhou et al., 2022), containing 1,426 drugs, 281 targets, and 1,913 known activation
interactions. 2) Yamanishi 08 originally introduced by (Yamanishi et al., 2008) consists of four
sub-datasets: G-Protein Coupled Receptors, Ion Channels, Nuclear Receptors, and Enzymes. We
use the combined dataset constructed by (Ye et al., 2021), containing 791 drugs, 989 targets, and
5,127 known DTIs. 3) Hetionet dataset constructed by (Himmelstein et al., 2017), which integrated
biomedical data from 29 public resources, comprising 1,384 drugs, 5,763 targets, and 49,942 DTIs.
4) Inhibition dataset derived from TTD (Zhou et al., 2022), containing 14,049 drugs, 1,088 targets,
and 21,055 known inhibition interactions. For detailed dataset statistics, see Appendix Table 3.

Pre-training Our four-modal contrastive learning framework employs a two-stage training
pipeline designed for computational efficiency and scalability. In the first stage, we extract em-
beddings using domain-specific pre-trained encoders: MoLFormer-XL (Ross et al., 2022) for
SMILES sequences, MolT5 (Edwards et al., 2022) for textual descriptions and HTA annotations,
and ESM2 (Lin et al., 2023) for protein sequences. In the second stage, we train lightweight pro-
jection networks that map these modality-specific embeddings into a unified representation space,
where volume-based contrastive alignment is performed using distributed training across multiple
GPUs. The complete training procedure, including our novel gradient-informed adaptive modality
dropout strategy, is detailed in Algorithms 1 and 2 in the Appendix.

Notably, we deliberately excludeLvol from the gradient computation for modality dropping. Instead,
we use Lbi and LIC50 to assess modality importance for two key reasons. First, the bimodal con-
trastive loss and IC50 loss provide stable, interpretable signals about each modality’s contribution
without creating computational circularity. Second, IC50 values, though sparsely available, of-
fer biologically meaningful supervision that directly reflects protein-molecule interaction strength,
making the gradients from LIC50 particularly valuable for identifying which modalities are most
important for drug-target activity prediction. Comprehensive training configuration details are pro-
vided in Appendix C. In Table 4, we present the network architecture along with the hyperparameter
values used in our experiments. In Tables 6, 7, 8, and in Figure 4, we also provide the sensitivity
analysis with respect to the hyperparameters.

We construct negative samples using an anchor point (Eq. 2); in each negative sample only a single
modality is altered while the remaining modalities remain aligned. We hypothesize this is the most
challenging negative sample scenario, since the model must distinguish the positive case, where all
modalities are aligned, from a negative case in which all but one modality are aligned. To assess
alternative strategies, we also evaluate an aggressive multi-domain negative sampling scheme in
which negative samples are formed by varying multiple modalities simultaneously. The results are
presented in Appendix section C.6.

Downstream task In the DTI and MoA prediction task, the objective is to determine whether a
given drug-target pair interacts, which constitutes a binary classification problem. Note that ex-
isting datasets only include those pairs that interacts (positive class). Following standard practice
(Lu et al., 2025), we generated negative samples using a 1:10 ratio with positive samples for all
datasets. To evaluate the model’s generalization performance, we employed three different data
splitting strategies for train-test division: 1) warm start: The data is split based on protein-molecule

6
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Table 1: Mean performance comparison between GRAM-DTI and state-of-the-art baselines on DTI
and MoA prediction tasks across multiple datasets and data splitting scenarios. GRAM-DTI demon-
strates superior performance in most evaluation settings. † indicates reproduced results; other results
are from baseline papers. Bold denotes best performance.
Data Metric Scenario CPL-GNN MPNN-CNN TransformerCPI KGE-NFM DTIAM † GRAM-DTI Data AI-DTI DTIAM † GRAM-DTI

Ya
m

an
is

hi
08

AUPR
Warm start 0.431 0.816 0.802 0.817 0.901±0.0085 0.904±0.0079

A
ct

iv
at

io
n

0.583 0.623±0.0245 0.642±0.0221
Drug cold start 0.167 0.408 0.410 0.341 0.439±0.0580 0.440±0.0662 0.550 0.611±0.0252 0.628±0.0222
Target cold start 0.380 0.602 0.646 0.761 0.844±0.0350 0.849±0.0312 0.219 0.391±0.0320 0.450±0.0374

AUROC
Warm start 0.821 0.952 0.953 0.948 0.967±0.0050 0.977±0.0042 0.888 0.903±0.0088 0.914±0.0078
Drug cold start 0.629 0.797 0.767 0.779 0.818±0.0255 0.828±0.0285 0.879 0.907±0.0076 0.913±0.0068
Target cold start 0.800 0.856 0.870 0.923 0.941±0.0180 0.955±0.0155 0.652 0.792±0.0240 0.834±0.0258

H
et

io
ne

t AUPR
Warm start 0.441 0.734 - 0.789 0.879±0.0095 0.859±0.0082

In
hi

bi
tio

n

0.840 0.845±0.0070 0.785±0.0061
Drug cold start 0.219 0.453 - 0.391 0.514±0.0680 0.529±0.0626 0.830 0.731±0.0045 0.756±0.0034
Target cold start 0.433 0.470 - 0.651 0.625±0.0210 0.626±0.0239 0.215 0.445±0.0620 0.464±0.0559

AUROC
Warm start 0.810 0.956 - 0.968 0.957±0.0015 0.981±0.0011 0.952 0.954±0.0025 0.949±0.0018
Drug cold start 0.685 0.831 - 0.803 0.752±0.0355 0.855±0.0385 0.948 0.921±0.0028 0.940±0.0018
Target cold start 0.810 0.858 - 0.915 0.917±0.0090 0.921±0.0079 0.605 0.819±0.0205 0.823±0.0028

pairs, ensuring that no common pairs appear in both the training and test sets. 2) drug cold start:
This split is performed at the molecule level, guaranteeing that no drug in the test set is present in
the training set. 3) target cold start: Similar to the above, but split at the protein level, meaning
no protein in the test set is seen during training. These three settings allow us to assess how well
the model performs when faced with unseen molecule-protein pairs, unseen molecules, or unseen
proteins, respectively. For evaluation, we followed the cross-validation protocols established in the
original DTIAM framework (Lu et al., 2025): 10-fold cross-validation for DTI prediction tasks (Ya-
manishi 08 and Hetionet datasets) and 5-fold cross-validation for MoA prediction tasks (Activation
and Inhibition datasets). Note that we generated negative samples at a 1:10 ratio relative to positive
samples across all datasets, to ensure consistency with baseline methods and a fair comparison. Ad-
ditional results with varying negative-sample ratios are provided in Appendix E.4, illustrating how
our model performance changes as the ratio is adjusted.

4.2 EXPERIMENTAL RESULTS

We evaluated GRAM-DTI against state-of-the-art models across multiple benchmark datasets to
demonstrate its effectiveness. For DTI prediction tasks, Table 1 presents a comparison with five
baselines: CPL-GNN (Tsubaki et al., 2019), MPNN-CNN (Gilmer et al., 2017), TransformerCPI
(Chen et al., 2020), and KGE-NFM (Ye et al., 2021) and DTIAM (Lu et al., 2025), on the Yaman-
ishi 08 and Hetionet datasets. For MoA prediction tasks, we compared GRAM-DTI against two
baselines: AI-DTI (Lee et al., 2023) and DTIAM (Lu et al., 2025) on the Activation and Inhibition
datasets. The different baseline sets reflect the distinct methodological approaches and evaluation
standards established for DTI and MoA prediction in the computational drug discovery community
and follows prior works (Lu et al., 2025; Panahandeh & Mansouri, 2025).

GRAM-DTI demonstrates strong performance across benchmark datasets, with particularly notable
gains in target cold start scenarios. For DTI tasks, our method achieves substantial improvements on
Yamanishi 08 in both warm start and target/drug cold start settings. On the larger Hetionet dataset,
GRAM-DTI outperforms most baselines across multiple evaluation scenarios. For MoA prediction,
GRAM-DTI consistently surpasses baselines on the Activation dataset, especially under target cold
start conditions. On the Inhibition dataset, while GRAM-DTI does not outperform existing baselines
in warm start and drug cold start settings, it exhibits excellent performance in target cold start.

Overall, GRAM-DTI outperforms state-of-the-art baselines in nearly all evaluation settings—10 out
of 12 for DTI and 8 out of 12 for MoA tasks. Its strongest gains emerge on smaller datasets (Yaman-
ishi 08 and Activation), where pre-training provides the greatest benefit under limited supervision,
thus validating its potential for real-world drug discovery applications with limited available labeled
data. On larger datasets (Hetionet and Inhibition), GRAM-DTI remains on par with or outperforms
strong baselines, particularly in cold start conditions. These results highlight the robustness and gen-
eralizability of our multimodal alignment framework, especially when extending to novel proteins.

4.3 ZERO-SHOT RETRIEVAL TASK

In addition to predicting drug–target interactions, an important aspect of evaluating our model’s
effectiveness is its ability to accurately retrieve relevant molecules or proteins based on a given query.
The retrieval task assesses the model’s capacity to learn meaningful, high-quality representations
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Table 2: Zero-shot retrieval performance comparison between GRAM-DTI and DTIAM baseline
across four datasets. Results show Recall@K metrics for bidirectional retrieval tasks: S→P and
P→S. GRAM-DTI demonstrates superior retrieval capability across most scenarios and datasets
using only pretrained representations. Bold denotes best performance.

Direction Metric Yamanishi 08 Hetionet Activation Inhibition
DTIAM GRAM-DTI DTIAM GRAM-DTI DTIAM GRAM-DTI DTIAM GRAM-DTI

S→ P
R@1 0.0038±0.0004 0.0465±0.0027 0.0043±0.0002 0.0331±0.0038 0.0028±0.0002 0.0136±0.0011 0.0004±0.0000 0.0055±0.0003
R@10 0.0341±0.0042 0.1691±0.0084 0.0434±0.0051 0.1340±0.0025 0.0266±0.0037 0.1020±0.0067 0.0097±0.0006 0.0337±0.0011
R@100 0.1960±0.0181 0.4449±0.0075 0.2066±0.0109 0.3616±0.0063 0.3184±0.0229 0.5688±0.0172 0.1036±0.0104 0.1994±0.0018

P→ S
R@1 0.0040±0.0002 0.0742±0.0120 0.0404±0.0028 0.0236±0.0010 0.0071±0.0008 0.0370±0.0069 0.0000±0.0000 0.0221±0.0061
R@10 0.0849±0.0089 0.2465±0.0256 0.1319±0.0095 0.1049±0.0055 0.0463±0.0050 0.2454±0.0142 0.0028±0.0004 0.0819±0.0065
R@100 0.3670±0.0186 0.5540±0.0148 0.3632±0.0474 0.3841±0.0082 0.2206±0.0264 0.6029±0.0231 0.0588±0.0049 0.2325±0.0094

that preserve semantic relationships across different modalities. This task is particularly relevant
for applications such as drug repurposing and target identification (Luo et al., 2016; Pushpakom
et al., 2019), where retrieving similar compounds or proteins can guide experimental validation and
discovery.

To evaluate the retrieval capability of GRAM-DTI, we conduct a series of experiments across the
same four datasets. For each dataset, we formulate two retrieval scenarios: (i) retrieving proteins
given a drug query (S→P), and (ii) retrieving drugs given a protein query (P→S). Using the learned
representations directly from our pre-training framework without any additional training, we com-
pute similarity scores between query and candidate items. The performance is measured using
standard metrics, including Recall@K (R@1, R@10, R@100), which indicate the proportion of
relevant items retrieved within the top-K results.

The results, summarized in Table 2, demonstrate that our method outperforms DTIAM (the best
baseline from DTI and MoA experiments in Table 1) across nearly all datasets and metrics. No-
tably, the superior performance in R@1 and R@10 indicates that our model effectively captures the
semantic relationships necessary for accurate retrieval, highlighting the quality of the learned mul-
timodal representations. These strong zero-shot retrieval results provide compelling evidence that
our multimodal pretraining framework successfully learns meaningful drug-target representations
that generalize well beyond the specific downstream prediction tasks. More detailed experimental
results can be found in Appendix E.
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Figure 2: Ablation study results on the Activation dataset across five experimental configurations
and three data splitting scenarios. The full GRAM-DTI model (Exp 1) outperforms variants with
removed components in most cases, demonstrating the synergistic contribution of each training ob-
jective component.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDY

Note that our main pre-training objective consists of three components (see Eq.7). To evaluate
the contribution of each component, we conducted a comprehensive ablation study, comparing the
performance of our model with each component systematically removed. We conduct five ablation
experiments to evaluate the contribution of each component. Exp 1 uses the full objective with
modality dropout applied on volume loss calculation, i.e., L = Ltotal, which is the same as our
GRAM-DTI setup. Exp 2 pre-trains without volume loss, using L = λ2Lbi + λ3LIC50. Exp 3
pre-trains without traditional pairwise contrastive loss, employing L = λ1Lvol + λ3LIC50. Exp 4
pre-trains without IC50 supervision, usingL = λ1Lvol+λ2Lbi. Finally, Exp 5 uses the full objective
but without modality dropout. The ablation study results on Activation dataset is presented in Figure
2 while the same for Yamanishi 08 dataset is reported in Appendix Figure 5. Across all setups, the
full GRAM-DTI model (Exp 1) with all components enabled generally outperforms other variants
where one component is removed.

Impact of Gramian Volume-Based Alignment. Gramian volume-based alignment provides sub-
stantial benefits across most evaluation scenarios. Comparing it (Exp 1) with the variant excluding
volume loss (Exp 2) reveals consistent improvements across the majority of metrics, particularly in
challenging scenarios like target cold start where models must generalize to previously unseen pro-
teins. The volume-based approach effectively captures higher-order relationships among the four
modalities that cannot be achieved through pairwise alignments alone, leading to more robust mul-
timodal representations.

Impact of IC50 Auxiliary Supervision and Contrastive Loss. Incorporating IC50 auxiliary su-
pervision consistently improves performance across most evaluation scenarios (with the exception
of Activation target cold start) as seen by comparing Exp 1 with Exp 4 (without IC50 supervision).
Same conclusion holds when comparing Exp 1 with Exp 3, which suggests that the bimodal con-
trastive loss also ensures robust drug-protein alignment and complements volume-based alignment.
Together, these components capture both molecular activity principles and critical drug-protein re-
lationships for effective prediction.

Impact of Adaptive Modality Dropout. Removing adaptive modality dropout (Exp 5), we see
in figure 2, the performance consistently deteriorates, often by a large margin, compared to the
no-dropout setting. By dynamically regulating modality contributions during training, the adaptive
dropout prevents dominant modalities from overwhelming complementary signals while ensuring all
modalities remain engaged. This prevents overfitting to specific modality combinations, ultimately
leading to more generalizable representations. To further validate this design choice, we compared
our probabilistic dropout strategy against ”soft” weighting alternatives (e.g., weighted-modality gra-
dients). Results (see Appendix E.6) demonstrate that our ”hard” dropout strategy provides a stronger
regularization effect and superior downstream performance.

Impact of Molecular Encoder Strength. To assess the modularity of our framework, we evalu-
ated GRAM-DTI using more advanced molecular encoders, specifically Uni-Mol2 (Ji et al., 2024)
and BioT5+ (Pei et al., 2024), in place of MolFormer. As detailed in Appendix E.7, we observe that
stronger encoders yield further performance gains, confirming that GRAM-DTI effectively leverages
improvements in upstream foundation models.

Multimodal Embedding Evolution To visualize how GRAM-DTI learns unified representations,
we examine embedding evolution across training epochs using t-SNE on 3,000 randomly sampled
quadruplets (Figure 3). Initially, the four modalities form distinct, separate clusters. As training pro-
gresses, volume-based alignment gradually transforms rigid modality boundaries into semantically
integrated representations while preserving modality-specific structures. By epoch 40, embeddings
show substantial cross-modal integration where instances cluster by semantic relationships rather
than purely by modality type. This evolution pattern provides visual evidence that our approach
successfully balances cross-modal alignment with modality-specific information retention, support-
ing the quantitative improvements observed in downstream tasks. Additional analyses with varying
sample sizes are provided in Appendix F.1.
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Figure 3: Evolution of multimodal embeddings during GRAM-DTI pre-training visualized using
t-SNE on 3,000 samples. Four modalities (SMILES, Text, HTA, Protein) progressively align from
separate clusters to semantically integrated representations, demonstrating effective volume-based
multimodal alignment.

Impact of missing modalities during pre-taining Bringing in as many relevant modalities in the
pretraining would help learn better representation for the corresponding downstream task. However,
what if during training, not all the modalities are available? We investigated this question by consid-
ering scenario where certain modality is not available during pretraining. The results are presented in
Appendix section E.2. Moreover, we can extend pretraining to include samples with missing modal-
ities, which would substantially increase the size of our training set. To assess whether all modalities
are beneficial, our current pretraining phase includes only samples in which all four modalities are
present, a choice that significantly limits the dataset. As a proof of concept, we evaluated whether
including samples with only a subset of modalities improves downstream performance. The results,
presented in Appendix E.5, indicate a promising direction: incorporating partial-modality samples
can expand the pretraining corpus and may enhance model performance.

4.5 FALSE NEGATIVE CASE ANALYSIS

To understand better when the modal fails to predict drug target activity, we first systematically
identified the top 10 ”hardest” false negatives in the Activation dataset—pairs where the model
predicted a strong negative signal despite a positive ground truth label. These are listed in table
22 in the appendix section E.8. From this list, we performed a detailed case study on Rank: Drug
D03XIS (R-568) targeting T92076 (CASR). Our analysis suggests this prediction difficulty likely
stems from the unique and complex biology of this pair, which is statistically rare in typical drug-
target datasets: This case may be challenging because CASR is a Class C GPCR, fundamentally
different from the Class A GPCRs that dominate drug databases. Three key factors may contribute
to the prediction difficulty: (1) CASR has a large extracellular Venus flytrap domain, contrasting
with the compact transmembrane binding pockets typical of Class A GPCRs; (2) it functions as an
obligate homodimer with complex inter-protomer allosteric signaling; (3) R-568 acts as a positive
allosteric modulator rather than a traditional orthosteric agonist. The prediction difficulty may reflect
the biological rarity of Class C GPCR allosteric modulators in drug discovery.

5 CONCLUSION

We presented GRAM-DTI, a multimodal pretraining framework that extends volume-based con-
trastive learning to four modalities with gradient-informed adaptive modality dropout and IC50
auxiliary supervision. Evaluation across four benchmark datasets shows GRAM-DTI consistently
outperforms baselines, particularly in cold start scenarios. Ablation studies (Appendix section 4.4)
confirm synergistic contributions of each component. These results highlight the potential of mul-
timodal pretraining for drug discovery, where integrating diverse data sources leads to more robust
prediction models. Currently, the need to construct complete quadruplets ⟨SMILES, Text, HTA,
Protein⟩ and remove overlapping (protein, SMILES) pairs with the downstream task has limited the
scale of our pre-training dataset, restricting the diversity of molecules and proteins. To fully unlock
the potential of GRAM-DTI and improve generalization to unseen molecular and protein targets, ex-
panding the pre-training corpus will be crucial. In addition, incorporating protein-related modalities
beyond sequence information could further enhance performance.
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A IC50 VALUES DISCRETIZATIONS

Given the inherent challenges of IC50 regression—including heterogeneous value distributions,
wide dynamic ranges spanning several orders of magnitude, and noisy measurements—we for-
mulate the problem as a three-class classification task. The IC50 values are discretized based on
pharmaceutical relevance thresholds:

IC50 class =


0 if IC50 < 10µM (effective)
1 if 10µM ≤ IC50 ≤ 1000µM (moderate)
2 if IC50 > 1000µM (ineffective)

(8)

This discretization strategy aligns with established drug discovery practices (Qureshi et al., 2015;
Bavi et al., 2016; Ashraf et al., 2023) where compounds with IC50 < 10µM are considered highly
active, those between 10 − 1000µM show moderate activity, and those > 1000µM are typically
considered inactive.

B DATASET

Pretraining Data Our pretraining dataset builds upon the high-quality multimodal molecular
dataset from TRIDENT (Jiang et al., 2025b), which provides comprehensive molecular represen-
tations through the integration of SMILES strings, natural language descriptions, and Hierarchical
Taxonomic Annotations (HTA). The original TRIDENT dataset contains 47,269 carefully curated
⟨SMILES, Text, HTA⟩ triplets sourced from PubChem, where each molecule is annotated across 32
diverse taxonomic classification systems.

To enable protein-molecule interaction modeling, we extended this dataset by incorporating binding
affinity information from BindingDB, a comprehensive database of measured binding affinities for
protein-molecule interactions. We mapped molecules from the TRIDENT dataset to BindingDB
entries using molecular identifiers, creating 5-tuples of the form ⟨SMILES, Text, HTA, Protein,
IC50⟩. This integration combines the rich semantic and structural information from TRIDENT with
quantitative binding affinity measurements, providing a unified multimodal representation that cap-
tures both molecular properties and protein-molecule interactions. Following standard practices in
molecular property prediction, we implemented careful data filtering to prevent information leak-
age between pretraining and downstream evaluation. Specifically, we removed all SMILES-protein
binding pairs that appear in our downstream task datasets to ensure fair evaluation and prevent over-
fitting to specific molecular-protein combinations seen during pretraining.

After filtering, 6,545 unique molecules have associated protein binding information. Considering
that each molecule can interact with multiple proteins, this results in a total of 50,968 quadruplets
⟨Protein, SMILES, Text, HTA⟩, covering 4,418 unique proteins. Among these quadruplets, 16,035
entries include quantitative IC50 measurements, providing high-quality binding affinity annotations
for modeling.

Downstream Task Datasets We evaluated our approach on four benchmark datasets (see Table 3)
from the DTIAM framework (Lu et al., 2025), covering drug-target interaction (DTI) prediction and
mechanism of action (MoA) prediction tasks. 1) Activation dataset obtained from the Therapeutic
Target Database (TTD) (Zhou et al., 2022), containing 1,426 drugs, 281 targets, and 1,913 known
activation interactions. 2) Yamanishi 08 originally introduced by (Yamanishi et al., 2008) and
consists of four sub-datasets: G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear
Receptors (NR), and Enzymes (E). We use the combined dataset constructed by (Ye et al., 2021),
containing 791 drugs, 989 targets, and 5,127 known DTIs. 3) Hetionet dataset constructed by
(Himmelstein et al., 2017), which integrated biomedical data from 29 public resources, comprising
1,384 drugs, 5,763 targets, and 49,942 DTIs. 4) Inhibition dataset also derived from TTD (Zhou
et al., 2022), containing 14,049 drugs, 1,088 targets, and 21,055 known inhibition interactions.

The MoA refers to how a drug works on its target to produce the desired effects, which involve
two major roles: activation and inhibition mechanisms. Distinguishing the activation and inhibition
MoA between drugs and targets is critical and challenging in the drug discovery and development
process, as well as their clinical applications Zhang et al. (2023).
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Table 3: Statistics of downstream task datasets for binary classification. Known Interactions repre-
sents the number of positive drug-target binding pairs, while Total Samples includes both positive
samples and 10 times negative samples generated following standard practice.

Dataset Task Type Drugs Targets Known Interactions Total Samples
Yamanishi 08 DTI 791 989 5,127 56,397
Hetionet DTI 1,384 5,763 49,942 549,362
Activation MoA 1,426 281 1,913 21,043
Inhibition MoA 14,049 1,088 21,055 231,605

C PRE-TRAINING SETUP AND ARCHITECTURAL DETAILS

C.1 PRE-TRAINING INFRASTRUCTURE

Our four-modal contrastive learning framework employs a two-stage training pipeline. First, we
extract embeddings from domain-specific pre-trained models (MoLFormer-XL (Ross et al., 2022)
for SMILES, MolT5(Edwards et al., 2022) for text/HTA, ESM2 (Lin et al., 2023) for proteins).
Second, we train projection networks and the GRAM4Modal loss using distributed training across
multiple GPUs. The complete training procedure is detailed in Algorithm 1, which incorporates our
gradient-based modality dropping strategy (Algorithm 2).

Notably, we deliberately exclude Lvol from the gradient computation for modality dropping to avoid
circular dependency, where the volume loss computation would depend on gradients derived from
that same computation. Instead, we use L = λ2Lbi +λ3LIC50 to assess modality importance for two
key reasons: 1) Avoiding circular dependency: The bimodal contrastive loss and IC50 loss provide
stable, interpretable signals about each modality’s contribution without creating computational cir-
cularity; 2) Leveraging weak supervision: IC50 values, though sparsely available, offer biologically
meaningful supervision that directly reflects protein-molecule interaction strength. The gradients
from LIC50 thus provide valuable information about which modalities are most important for pre-
dicting drug-target activity, making them suitable signals for adaptive modality selection. Table 4
provides comprehensive training configuration details.

Algorithm 1 Four-Modal Contrastive Learning with Gradient-based Modality Dropping
Require: Pre-computed embeddings {xs

i , x
t
i, x

h
i , x

p
i }

Require: Drop probability pdrop, temperature τ

Ensure: Projected features {fs, f t, fh, fp}
1: fm ← Fm

ϕ (Em(xm)) for m ∈ {s, t, h, p}
2: fm ← ∥fm∥2 = 1 for all modalities
3: d← GradientBasedDrop({fm},L, pdrop)
4: if d.should drop = False then
5: Vf ← GRAM4Modal(fp, {fs

all, f
t
all, f

h
all})

6: Vr ← GRAM4Modal(fp
all, {fs, f t, fh})T

7: else
8: ma ← d.anchor modality
9: {m1,m2} ← remaining modalities \ {ma}

10: Vf ← GRAM3Modal(fma , {fm1

all , fm2

all })
11: Vr ← GRAM3Modal(fma

all , {fm1 , fm2})T
12: end if
13: Sf ← −Vf/τ , Sr ← −Vr/τ
14: Lvol ← 1

2 [L
→
vol + L←vol]

15: return Ltotal = λ1Lvol + λ2Lbi + λ3LIC50

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 MODEL ARCHITECTURE

The projection networks Fm
ϕ map pre-computed embeddings to a unified 512-dimensional space.

Each projection consists of three linear layers with GELU activations, layer normalization, and
dropout (rate=0.1). The IC50 classification head F IC50

ϕ concatenates all four modality features
f fused = [fs; f t; fh; fp] and predicts binding affinity classes through a two-layer MLP with dropout
(rate=0.3). The pre-trained encoder specifications are detailed in Table 5. All encoders Em are
frozen during training to leverage their pre-trained representations while only fine-tuning the pro-
jection networks Fm

ϕ for computational efficiency.

Table 4: Training Configuration Parameters
Parameter Configuration
Hardware Multi-GPU NVIDIA (CUDA)
Training framework PyTorch DDP, NCCL
Batch size 1280 per GPU
Learning rate 1× 10−4 (Adam)
Epochs 40
Temperature τ 0.07
Drop probability pdrop 0.8
Gradient history length K 5
Decay factor α 0.9
Threshold multiplier λσ 1.5
Loss weights λ1, λ2, λ3 1.0, 1.0, 1.0
Label smoothing 0.1

Algorithm 2 Gradient-based Adaptive Modality Dropping
Require: Features {fm}m∈{s,t,h,p}, current loss Lt̃, drop probability pdrop
Require: Gradient history length K, decay factor α, threshold λσ = 1.5
Ensure: Drop decision {should drop, mdrop, anchor modality}

1: if random() > pdrop or not training then
2: return {False, none, protein}
3: end if
4: for m ∈ {s, t, h, p} do
5: gm

t̃
←

∥∥∥ ∂Lt̃

∂fm
t̃

∥∥∥
2

6: Update gradient history for modality m
7: end for
8: for m ∈ {s, t, h, p} do

9: ḡm
t̃
←

∑K−1
k=0 αkgm

t̃−k∑K−1
k=0 αk

10: end for
11: µt̃ ← 1

4

∑
m ḡm

t̃
, σt̃ ←

√
1
4

∑
m(ḡm

t̃
− µt̃)

2

12: for m ∈ {s, t, h, p} do
13: if ḡm

t̃
> µt̃ + λσσt̃ then

14: m
(t̃)
drop ← m; break

15: end if
16: end for
17: if m(t̃)

drop not found then

18: m
(t̃)
drop ← argminm ḡm

t̃
19: end if
20: manchor ← random choice({s, t, h, p} \ {m(t̃)

drop})
21: return {True, m(t̃)

drop, manchor}
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Table 5: Pre-trained Encoder Specifications
Modality Model Em Output Dim
SMILES (xs) MoLFormer-XL-both-10pct 768
Text (xt) MolT5-base 768
HTA (xh) MolT5-base (shared) 768
Protein (xp) ESM2 t33 650M UR50D 1280

C.3 COMPUTATIONAL EFFICIENCY

Our method is highly efficient because we freeze the large encoder backbones (ESM2, MolFormer,
MolT5) and only train the lightweight projection layers. This significantly reduces computational
and memory overhead.

• Hardware: All experiments were conducted on a single A6000 GPU.
• Peak Memory: The peak GPU memory usage during pretraining is only 0.12 GB*.
• Batch Size: We use a large batch size of 1280.
• Pretraining Speed:Each pretraining epoch takes approximately **3 seconds** to complete.

This demonstrates that our method is not memory-intensive and is computationally very efficient.

C.4 HYPERPARAMETER TUNING AND SENSITIVITY ANALYSIS

We tuned the hyperparameters for the pretrained model and eventually set the final optimal values
as: λσ = 1.5, λ1 = 1, λ2 = 1, λ3 = 1,K = 5 as presented in table 4. To further analysis the model
performance sensitivity with respect to each parameters, we investigated the impact of the each
parameters value on the downstream task. In table 6, 7 and 8 we show the result on the Activation
dataset when we change the parameters value from the optimal values that are used in our final
model. These results demonstrate that our model’s performance is stable within a reasonable range
of these hyperparameters, with our chosen settings providing a robust and effective performance.

Table 6: Downstream-task performance on the Activation dataset: sensitivity to changes in hyper-
parameter values from the optimal setting, evaluated under the Warm-start setup. The row in bold
indicates the optimal hyperparameter values used during pretraining and the corresponding down-
stream performance.

λ1 λ2 λ3 gradient std multiplier λσ gradient history length K AUPRC AUROC

1 1 1 1.5 5 0.6424 0.9142
0.5 1 1 1.5 5 0.6449 0.9125
1 0.5 1 1.5 5 0.6237 0.9175
1 1 0.5 1.5 5 0.6326 0.9102
1 1 1 2 5 0.6340 0.9014
1 1 1 1.5 10 0.6155 0.9130

Table 7: Downstream-task performance on the Activation dataset: sensitivity to changes in hyper-
parameter values from the optimal setting, evaluated under the Drug cold start setup.

λ1 λ2 λ3 gradient std multiplier gradient history length AUPRC AUROC

1 1 1 1.5 5 0.6278 0.9125
0.5 1 1 1.5 5 0.6404 0.9129
1 0.5 1 1.5 5 0.6299 0.9107
1 1 0.5 1.5 5 0.6152 0.9114
1 1 1 2 5 0.6183 0.9009
1 1 1 1.5 10 0.6156 0.9103
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Table 8: Downstream-task performance on the Activation dataset: sensitivity to changes in hyper-
parameter values from the optimal setting, evaluated under the Target cold start setup.

λ1 λ2 λ3 gradient std multiplier gradient history length AUPRC AUROC

1 1 1 1.5 5 0.4497 0.8335
0.5 1 1 1.5 5 0.4394 0.8224
1 0.5 1 1.5 5 0.4274 0.8190
1 1 0.5 1.5 5 0.4571 0.8273
1 1 1 2 5 0.4286 0.8270
1 1 1 1.5 10 0.4343 0.8295
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Figure 4: Effect of gradient optimization parameters on model performance. AUPRC and AUROC
scores are shown for varying gradient standard deviation multiplier (left) and gradient history length
(right) across three data split scenarios: drug cold split, protein (drug) cold split, and warm split.
Error bars indicate standard deviation.

To further demonstrate the impact of the gradient std multiplier and gradient history length param-
eters on model performance, we conducted a sensitivity analysis. We fixed all other parameters
and varied either gradient std multiplier or gradient history length to observe how performance
changed. The sensitivity graphs are shown in Figure 4. For the ”Activation” dataset:

• gradient std multiplier: Increasing this parameter until a certain range had a stable effect
on performance. Beyond this point, AUPRC for warm and drug cold starts began to drop,
while protein cold start AUPRC remained stable. Simultaneously, AUROC for drug and
warm starts decreased, while protein cold start AUROC increased.

• gradient history length: Model performance was relatively stable with respect to its value
increase across all evaluation setups.

C.5 VOLUME COMPUTATION DETAILS

The GRAM4Modal and GRAM3Modal functions compute volumes using Gram matrix determi-
nants. For anchor features fa and target features {f t1 , f t2 , f t3}, the 4×4 Gram matrix G has entries
Gkj = ⟨fk, f j⟩. The volume is computed as V =

√
|det(G)|, then converted to similarity via

negative volume scaling: S = −V/τ .

Algorithm 2 implements our gradient-informed adaptive modality selection strategy, which main-
tains consistency between forward L→vol and reverse L←vol contrastive computations by using a single
drop decision per forward pass.

C.6 NEGATIVE SAMPLING STRATEGIES

We construct negative samples by fixing all but one modality, producing hard negatives in which
only a single modality is mismatched while the remaining modalities are aligned. This single-
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modality perturbation yields a more challenging learning signal, as the model must distinguish the
fully aligned positive case from near-aligned negatives. To assess alternative strategies, we also
evaluate an aggressive multi-domain negative-sampling scheme in which multiple modalities are
perturbed simultaneously. Specifically, for each sample i in batch B, we generate negative samples
by permuting all modalities. Results on the Activation dataset comparing cross-negative sampling to
the current strategy under the volume-loss pretraining setting are reported in Table 9 and Table 10.

Table 9: Model performance comparison on activation dataset in terms of AUROC when using
different negative sample strategies: Cross-Negative vs Current-Negative (Mean±Std).

Split Type Cross-Negative Current-Negative

Warm start 0.9142±0.0071 0.9142±0.0078
Drug cold start 0.9164±0.0093 0.9125±0.0068
Target cold start 0.8388±0.0272 0.8335±0.0258

Table 10: Model performance comparison on activation dataset in terms of AUPR when using dif-
ferent negative sample strategies: Cross-Negative vs Current-Negative (Mean±Std).

Split Type Cross-Negative Current-Negative

Warm start 0.6326±0.0232 0.6424±0.0221
Drug cold start 0.6239±0.0245 0.6278±0.0222
Target cold start 0.4618±0.0313 0.4497±0.0374

C.7 SENSITIVITY TO BATCH SIZE AND IN-BATCH NEGATIVES

Our method uses the standard in-batch negative formulation: for a batch of size N , each sample
uses the other N − 1 samples as negatives. We do not use stabilization techniques such as memory
banks. To test sensitivity, we varied the per-GPU batch size from 32 up to 512. The main paper
results used a batch size of 1280. As expected, performance generally improves with larger batch
sizes, since more in-batch negatives benefit the contrastive and volume losses. The corresponding
results are shown in table 11 and 12.

Table 11: AUROC Performance vs. Batch Size (Activation Dataset)
Batch Size Warm Start Drug Cold Start Target Cold Start

32 0.901 0.906 0.819
128 0.905 0.906 0.821
512 0.916 0.918 0.839
1280 0.914 0.913 0.834

Note that the 512 batch size results are very close to the 1280 results, suggesting performance may
begin to saturate beyond batch size 512.

C.8 DOWNSTREAM TASK ARCHITECTURE

For drug-target interaction (DTI) prediction evaluation, we employ a lightweight classification archi-
tecture that leverages the pre-trained embeddings from our four-modal framework. The downstream
architecture is detailed in Algorithm 3 and uses only the drug (SMILES) and protein modalities
relevant for binding prediction.
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Table 12: AUPRC Performance vs. Batch Size (Activation Dataset)
Batch Size Warm Start Drug Cold Start Target Cold Start

32 0.615 0.607 0.432
128 0.625 0.619 0.438
512 0.642 0.629 0.458
1280 0.642 0.628 0.450

Algorithm 3 Drug-Target Interaction Prediction
Require: Pre-trained embeddings fs, fp ∈ R512

Require: Drug-protein pair (xs
i , x

p
j ), binding label yij ∈ {0, 1}

Ensure: Binding prediction ŷij
1: fs

i ← FROZEN(F s
ϕ(Es(x

s
i ))) {Use pre-trained SMILES embedding}

2: fp
j ← FROZEN(F p

ϕ (Ep(x
p
j ))) {Use pre-trained protein embedding}

3: f concat ← [fs
i ; f

p
j ] ∈ R1024 {Concatenate embeddings}

4: h1 ← ReLU(Linear1024→512(f
concat))

5: h1 ← Dropout0.3(h1)
6: h2 ← ReLU(Linear512→256(h1))
7: h2 ← Dropout0.3(h2)
8: logits← Linear256→2(h2)
9: ŷij ← argmax(softmax(logits))

10: return ŷij

C.9 EVALUATION METRICS

We employ five standard binary classification metrics to comprehensively assess DTI prediction
performance. Given the confusion matrix with true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), the metrics are defined as follows:

Area Under ROC Curve (AUROC) AUROC measures the model’s ability to discriminate be-
tween positive and negative classes across all classification thresholds:

AUROC =

∫ 1

0

TPR(FPR−1(t)) dt (9)

where TPR = TP
TP+FN and FPR = FP

FP+TN .

Area Under Precision-Recall Curve (AUPRC) AUPRC is particularly informative for imbal-
anced datasets and measures performance across different precision-recall trade-offs:

AUPRC =

∫ 1

0

Precision(Recall−1(t)) dt (10)

where Precision = TP
TP+FP and Recall = TP

TP+FN .

Sensitivity (Recall) Sensitivity measures the proportion of actual positive cases correctly identi-
fied:

Sensitivity =
TP

TP + FN
(11)

F1-Score F1-score provides the harmonic mean of precision and recall, balancing both measures:

F1 = 2 · Precision× Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(12)

Accuracy Accuracy measures the overall proportion of correct predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)
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D ABLATION STUDY

To complement the ablation study presented in Section 4.5 on the Activation dataset, we provide
additional comprehensive ablation experiments on the Yamanishi 08 dataset in Figure ??. This
additional evaluation allows us to assess the generalizability of our component contributions across
different datasets and task characteristics.

D.1 EXPERIMENTAL SETUP

The ablation study on Yamanishi 08 follows the same experimental configuration as described in
Section 4.5, evaluating five distinct setups:

• Exp 1: Full GRAM-DTI model with all components and adaptive modality dropout
• Exp 2: Training without Gramian volume-based loss (L = λ2Lbi + λ3LIC50)
• Exp 3: Training without bimodal contrastive loss (L = λ1Lvol + λ3LIC50)
• Exp 4: Training without IC50 auxiliary supervision (L = λ1Lvol + λ2Lbi)
• Exp 5: Training with full objective but without adaptive modality dropout

D.2 RESULTS ANALYSIS

The results on Yamanishi 08, shown in Figure 5, demonstrate consistent patterns with those observed
on the Activation dataset, confirming the robustness of our design choices across different datasets.

Consistent Superior Performance of Full Model: Across all three data splitting scenarios (warm
start, drug cold start, target cold start) and five evaluation metrics (AUROC, AUPRC, Sensitivity,
F1, Accuracy), the full GRAM-DTI model (Exp 1) generally achieves the highest performance,
demonstrating the synergistic benefit of all proposed components.

1. The volume-based multimodal alignment provides substantial benefits over traditional pair-
wise approaches

2. Adaptive modality dropout prevents overfitting and improves generalization
3. IC50 auxiliary supervision enhances biological relevance of learned representations
4. The synergistic combination of all components yields optimal performance

These consistent findings across different datasets and evaluation scenarios validate the generaliz-
ability of our GRAM-DTI framework design principles.

E ADDITIONAL EXPERIMENTAL DETAILS

Table 13: Performance metrics with standard deviations for GRAM-DTI across all evaluation
datasets and data splitting scenarios. Results are reported as mean ± standard deviation across cross-
validation folds.

Dataset Split Type AUROC ↑ AUPRC↑ Sensitivity↑ F1 ↑ Accuracy ↑

Yamanishi 08
warm start 0.9771±0.0042 0.9036±0.0079 0.7954±0.0152 0.8353±0.0096 0.9715±0.0015
drug cold start 0.8279±0.0285 0.4404±0.0662 0.2020±0.0575 0.3090±0.0693 0.9193±0.0134
target cold start 0.9553±0.0155 0.8494±0.0312 0.7189±0.0453 0.7840±0.0285 0.9643±0.0042

Hetionet
warm start 0.9808±0.0011 0.8586±0.0082 0.7580±0.0085 0.7891±0.0065 0.9632±0.0010
drug cold start 0.8550±0.0385 0.5291±0.0626 0.2981±0.0645 0.4227±0.0619 0.9273±0.0131
target cold start 0.9210±0.0079 0.6258±0.0239 0.4569±0.0448 0.5502±0.0319 0.9325±0.0038

Activation
warm start 0.9142±0.0078 0.6424±0.0221 0.5155±0.0240 0.5950±0.0075 0.9364±0.0026
drug cold start 0.9125±0.0068 0.6278±0.0222 0.5135±0.0349 0.5879±0.0186 0.9347±0.0030
target cold start 0.8335±0.0258 0.4497±0.0374 0.2451±0.0591 0.3447±0.0620 0.9168±0.0104

Inhibition
warm start 0.9491±0.0018 0.7849±0.0061 0.6588±0.0109 0.7202±0.0061 0.9535±0.0013
drug cold start 0.9398±0.0018 0.7555±0.0034 0.5949±0.0176 0.6801±0.0081 0.9492±0.0011
target cold start 0.8234±0.0218 0.4641±0.0559 0.2584±0.0827 0.3687±0.0872 0.9220±0.0087
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Figure 5: Ablation study results on the Yamanishi 08 dataset across five experimental configurations
and three data splitting scenarios. The full GRAM-DTI model (Exp 1) consistently outperforms
variants with removed components across most metrics and scenarios, demonstrating the robust
contribution of each training objective component. Results complement those shown in Figure 2
(Activation dataset) and confirm the generalizability of our design choices across different DTI
prediction benchmarks.

E.1 STANDARD DEVIATION RESULTS FOR MAIN PERFORMANCE COMPARISON

Table 13 provides comprehensive performance statistics for GRAM-DTI, including standard devi-
ations across all evaluation metrics, datasets, and data splitting scenarios. These detailed statistics
demonstrate the stability and reliability of our approach across cross-validation folds.

E.2 PERFORMANCE ANALYSIS WHEN CERTAIN MODALITIES ARE MISSING AT PRETRAINING
TIME

Bringing in as many relevant modalities in the pretraining would help learn better representation
for the corresponding downstream task. However, what if during training, not all the modalities
are available? We investigated this question by considering scenario where certain modality is not
available during pretraining. For drug-target interaction tasks, the drug and protein modalities are
crucial. If either is unavailable during pretraining, the model cannot learn joint embeddings for in-
teracting pairs. if for one the missing modality, what one can do is use only the embedding obtained
from original encoders (ESM2/molformer) without further fine tuning it with the contrastive learn-
ing, this scenario will effectively falls back to a regime similar to DTIAM, where drug and protein
embeddings are learned separately. This highlights a key strength of GRAM-DTI: by pretraining
with both modalities present, it learns aligned embeddings that improve downstream performance.
For auxiliary modalities such as functional descriptors and HTA:

• If both are missing during pretraining, this is equivalent to the ablation study (Exp2), where
the volume-loss component is removed (as those two modality anticipate in the training
through volume loss). In this case, we observe a slight decrease in performance, indicating
that these modalities provide useful signals for alignment.

• If only one is missing, as shown in Table 14 and 15 the model still benefits from the avail-
able modality, with a moderate drop in performance. This demonstrates that GRAM-DTI
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can gracefully handle partial modality availability, but full multi-modal pretraining yields
the strongest embeddings.

Table 14: Model performance on the Activation dataset in terms of AUROC for different modality
configurations: 3-mod-no-text: all modality except functional descriptors are available during pre-
training, 3-mod-no-HTA: all modality except HTA are available during pretraining , 4-mod: all four
modalities are avail bel during pretraining (current setup).

Split Type 3-mod-no-text 3-mod-no-HTA 4-mod

Warm start 0.907 0.901 0.914
Drug cold start 0.907 0.903 0.913
Target cold start 0.828 0.821 0.834

Table 15: Model performance on the Activation dataset in terms of AUPRC for different modality
configurations: 3-mod-no-text: all modality except functional descriptors are available during pre-
training, 3-mod-no-HTA: all modality except HTA are available during pretraining , 4-mod: all four
modalities are avail bel during pretraining (current setup).

Split Type 3-mod-no-text 3-mod-no-HTA 4-mod

Warm start 0.609 0.606 0.642
Drug cold start 0.615 0.611 0.628
Target cold start 0.437 0.440 0.450

E.3 OVERLAP OF ENTITIES ANALYSIS BETWEEN PRETRAINING AND DOWNSTREAM TASK

To verify that our method does not memorize entity-specific patterns, we conducted an overlap
analysis on the Activation dataset between pretraining and downstream task dataset (Other datasets
are shown in Table 17). The results revealed 236 overlapping proteins and 314 overlapping SMILES.
We removed all pairs containing these overlapping entities from the pretraining data, resulting in
6,065 exact (SMILES, protein) pairs removed (11.9% of pretraining data). The results are shown in
Table 16. Despite removing nearly 12% of the pretraining data, the performance drops are modest

Table 16: Performance before and after cleaning on the Activation dataset.
Split Type Metric Before Cleaning After Cleaning ∆

Warm Start AUROC 0.914 0.901 -0.013
AUPRC 0.642 0.613 -0.029

Drug Cold Start AUROC 0.913 0.905 -0.008
AUPRC 0.628 0.624 -0.004

Target Cold Start AUROC 0.834 0.795 -0.039
AUPRC 0.450 0.389 -0.061

across all splits (0.01-0.03). This demonstrates that our model’s strong performance is not primarily
driven by memorizing exact pairs, and further validates our cold-start claims:

• Entity overlap contributes to performance but is not the dominant factor

• The 4-modal learning framework captures transferable molecular representations rather
than memorizing specific entity combinations

• Drug cold-start generalization is particularly robust (∆ AUROC = -0.008), showing mini-
mal sensitivity to entity overlap
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Table 17: Overlap analysis between pretraining and downstream datasets.
Dataset Total Pairs Overlapping Percentage Proteins SMILES

activation 50,968 6,065 11.90% 236 314
Hetionet 50,968 42,242 82.88% 1,936 853
inhibition 50,968 36,372 71.36% 860 1,382
yamanishi 08 50,968 20,223 39.68% 556 344

E.4 MODEL PERFORMANCE SENSITIVITY TO THE NEGATIVE-SAMPLE RATIO IN THE
DOWNSTREAM TASK

All baselines generate negative samples at a 1:10 ratio relative to positive samples across datasets;
to ensure a fair comparison, we adopt the same setup. To evaluate sensitivity to this choice, we also
report results using alternative negative-sample ratios. In table 18, we show our model performance
as well as best baseline (DTIAM) on the Activation dataset when negative samples are generated at
various ratio with respect to positive samples.

Table 18: Performance Comparison of GRAM-DTI and Baseline on Activation Dataset under Dif-
ferent Ratios

Ratio Split Type Method AUROC AUPRC Precision Recall

1:1

Warm Start GRAM-DTI 0.862 0.850 0.813 0.835
DTIAM 0.855 0.841 0.764 0.822

Drug Cold Start GRAM-DTI 0.853 0.843 0.822 0.818
DTIAM 0.831 0.829 0.794 0.882

Target Cold Start GRAM-DTI 0.790 0.784 0.788 0.691
DTIAM 0.740 0.737 0.705 0.656

1:5

Warm Start GRAM-DTI 0.893 0.688 0.751 0.634
DTIAM 0.888 0.674 0.704 0.609

Drug Cold Start GRAM-DTI 0.888 0.674 0.742 0.616
DTIAM 0.870 0.654 0.739 0.712

Target Cold Start GRAM-DTI 0.818 0.559 0.680 0.412
DTIAM 0.792 0.509 0.566 0.365

1:10

Warm Start GRAM-DTI 0.914 0.642 0.697 0.502
DTIAM 0.903 0.623 0.670 0.540

Drug Cold Start GRAM-DTI 0.913 0.628 0.692 0.491
DTIAM 0.907 0.611 0.725 0.583

Target Cold Start GRAM-DTI 0.834 0.450 0.638 0.260
DTIAM 0.792 0.391 0.533 0.293

E.5 HANDLING PARTIAL-MODALITY DATA DURING PRETRAINING

we can extend pretraining to include samples with missing modalities, which would substantially
increase the size of our training set. To assess whether all modalities are beneficial, our current
pretraining phase includes only samples in which all four modalities are present, a choice that sig-
nificantly limits the dataset. As a proof of concept, we evaluated whether including samples with
only a subset of modalities improves downstream performance. From the pretraining dataset we
created:

• Fully Observed (80%): 80% of the original data, kept unchanged.
• Partially Observed (20%): the remaining 20% where we randomly dropped one modality.

We compared training on only the 80% fully-observed subset vs. training on the full 100% dataset
(80% full + 20% partial) using a masked-volume loss for the partial samples. This simulates the
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setup suggested by the reviewer and shows how pretraining can be expanded when some modalities
are missing at random.

Table 19: Performance with Partial-Modality (“Masked-Volume”) Training
Split Type Metric Fully Observed Only (80% data) Full + Partial (100% data)

Warm Start AUROC 0.905 0.912
AUPRC 0.627 0.634

Drug Cold Start AUROC 0.903 0.907
AUPRC 0.613 0.615

Target Cold Start AUROC 0.791 0.828
AUPRC 0.422 0.437

As the table 19 shows, incorporating the 20% partial data via masked-volume training improves
performance across all metrics and splits, with a notable improvement on the Target Cold Start
(AUROC 0.828 vs. 0.791).

E.6 ANALYSIS OF DROPOUT VS. WEIGHTING STRATEGIES

To validate our Gradient-Informed Modality Dropout strategy, we compared it against two alterna-
tive “soft” balancing mechanisms on the Activation dataset:

• Weighted-Modality Gradients: Instead of dropping a modality, we scale its gradient by
the inverse of its norm with probability pdrop.

• Standard Weighted Loss: We assign learnable weights to each modality’s loss term to
balance contributions without dropout.

As shown in Table 20, our probabilistic dropout strategy achieves the best performance. We hypoth-
esize that probabilistically removing modalities forces the model to find alternative distinct paths for
reasoning in the joint embedding space, acting as a stronger regularizer than soft weighting.

Table 20: Comparison of Modality Balancing Strategies on the Activation Dataset. Our hard dropout
strategy outperforms soft weighting approaches.

Strategy Split Type AUROC AUPRC

Gradient-Informed Dropout (Ours)
Warm Start 0.914 0.642

Drug Cold Start 0.913 0.628
Target Cold Start 0.834 0.450

Weighted Gradients
Warm Start 0.909 0.618

Drug Cold Start 0.910 0.624
Protein Cold Start 0.828 0.445

Standard Weighted Loss
Warm Start 0.901 0.621

Drug Cold Start 0.892 0.619
Target Cold Start 0.814 0.440

E.7 EXPERIMENTS WITH STRONGER MOLECULAR ENCODERS

Our default GRAM-DTI implementation uses MolFormer for computational efficiency. To demon-
strate the framework’s extensibility, we replaced MolFormer with two larger, more advanced en-
coders: Uni-Mol2 (84M parameters) and BioT5+. As shown in Table 21, utilizing stronger encoders
consistently improves performance across all splits, particularly in the challenging target Cold start
scenario. It shows that stronger encoders yield consistently better results.
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Table 21: Sensitivity analysis using advanced molecular encoders on the Activation dataset
Encoder Split Type AUROC AUPRC

MolFormer (Original)
Warm Start 0.9142 0.6424

Drug Cold Start 0.9125 0.6278
Target Cold Start 0.8335 0.4497

Uni-Mol2 (84M)
Warm Start 0.9280 0.6768

Drug Cold Start 0.9270 0.6658
Target Cold Start 0.8642 0.4848

BioT5+
Warm Start 0.9273 0.6828

Drug Cold Start 0.9254 0.6840
Target Cold Start 0.8577 0.4805

E.8 FALSE NEGATIVE CASE ANALYSIS

To understand where the model fails, we systematically identified the top “hardest” false negatives
in the Activation dataset—pairs where the model predicted a strong negative signal despite a positive
ground truth label. These are listed in table 22 below:

Table 22: Top-10 False Negative Pairs (Drug ID & Target ID)
Rank Drug ID Target ID

1 D0NY1R T36075
2 D08FKH T12475
3 D0G2VT T59604
4 D0JB3H T88505
5 D0L5WA T28893
6 D0K8NR T72458
7 D03LQC T52522
8 D03XIS T92076
9 D07QAK T28893

10 D0AJ2T T88505

E.9 MOA TASK ADDITIONAL BASELINES

To extend the set of baselines beyond those used in the DTIAM study for the MoA task, we included
two additional methods: DeepDTA (Öztürk et al., 2018) and GraphDTA (Nguyen et al., 2021).
Although DTIAM remains the strongest baseline overall, our model GRAM-DTI achieves superior
performance in most evaluation settings. The results are shown in the table 23.

E.10 SIGNIFICANCE TEST

We ran one-sided Welch t-tests to assess whether GRAM-DTI outperforms DTIAM (the strongest
baseline). Tests were computed from summary statistics (means and standard deviations) using n=10
(10 folds) for Yamanishi 08 and Hetionet dataset and n=5 (5 folds) for Activation and Inhibition
dataset with the one-sided hypothesis H1: GRAM-DTI > DTIAM. Table 24 and Table 25 report
the corresponding p values for the MoA and DTI tasks, respectively, and Tables 26 and 27 show
the zero-shot retrieval results. Cells highlighted in light blue indicate the better method in each
row. Note that we performed a total of 48 tests. To control for multiple comparisons we applied a
Bonferroni correction and used an adjusted significance threshold of: padjusted = 0.05

48 ≈ 0.00104,
rather than the conventional p = 0.05. p-values highlighted in light blue indicate p < 0.00104.
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Table 23: Performance comparison between GRAM-DTI and state-of-the-art baselines (DeepDTA,
GraphDTA, AI-DTI, DTIAM) on MoA prediction tasks across multiple datasets and data splitting
scenario. GRAM-DTI demonstrates superior performance in most evaluation settings. † indicates
reproduced results; other results are from baseline papers. Bold denotes best performance.

Data Metric Scenario DeepDTA† GraphDTA† AI-DTI DTIAM† GRAM-DTI

A
ct

iv
at

io
n AUPR

Warm Start 0.246±0.0232 0.282±0.0240 0.583 0.623±0.0245 0.642±0.0221
Drug Cold Start 0.255±0.0209 0.298±0.0195 0.550 0.611±0.0252 0.628±0.0222
Cold Start 0.109±0.0163 0.124±0.0175 0.219 0.391±0.0320 0.450±0.0374

AUROC
Warm Start 0.759±0.0200 0.784±0.0185 0.888 0.903±0.0088 0.914±0.0078
Drug Cold Start 0.765±0.0059 0.796±0.0062 0.879 0.907±0.0076 0.913±0.0068
Cold Start 0.573±0.0241 0.588±0.0255 0.652 0.792±0.0240 0.834±0.0258

In
hi

bi
tio

n AUPR
Warm Start 0.542±0.0195 0.585±0.0280 0.840 0.845±0.0070 0.785±0.0061
Drug Cold Start 0.531±0.0170 0.592±0.0195 0.830 0.731±0.0045 0.756±0.0034
Cold Start 0.265±0.0210 0.284±0.0312 0.215 0.445±0.0620 0.464±0.0559

AUROC
Warm Start 0.854±0.0105 0.872±0.0098 0.952 0.954±0.0025 0.949±0.0018
Drug Cold Start 0.849±0.0185 0.876±0.0115 0.948 0.921±0.0028 0.940±0.0018
Cold Start 0.635±0.0220 0.649±0.0117 0.605 0.819±0.0205 0.823±0.0028

Table 24: Significance test on the MoA task: means (± std) and one-sided p-values for H1: GRAM
> DTIAM (independent Welch test). One-sided p-values with p < 0.00104 are highlighted in light
blue.

Dataset Metric Scenario DTIAM (µ± σ) GRAM (µ± σ) one-sided p value

A
ct

iv
at

io
n AUPR

Warm start 0.623± 0.0245 0.642± 0.0221 0.1171
Drug cold start 0.611± 0.0252 0.628± 0.0222 0.1455
Target cold start 0.391± 0.0320 0.450± 0.0374 0.0143

AUROC
Warm start 0.903± 0.0088 0.914± 0.0078 0.0352
Drug cold start 0.907± 0.0076 0.913± 0.0068 0.1126
Target cold start 0.792± 0.0240 0.834± 0.0258 0.0144

In
hi

bi
tio

n AUPR
Warm start 0.845± 0.0070 0.785± 0.0061 1.0000
Drug cold start 0.731± 0.0045 0.756± 0.0034 < 0.0001
Target cold start 0.445± 0.0620 0.464± 0.0559 0.3123

AUROC
Warm start 0.954± 0.0025 0.949± 0.0018 0.9961
Drug cold start 0.921± 0.0028 0.940± 0.0018 < 0.0001
Target cold start 0.819± 0.0205 0.823± 0.0028 0.3435

E.11 ZERO-SHOT RETRIEVAL TASK METHODOLOGY

This section provides detailed methodology for the zero-shot retrieval experiments presented in
Section 4.3 of the main text.

E.11.1 TASK FORMULATION

The zero-shot retrieval task evaluates GRAM-DTI’s ability to identify relevant drug-target pairs us-
ing only the learned multimodal representations, without any task-specific fine-tuning. We formulate
two complementary retrieval scenarios:

• Drug-to-Protein Retrieval (S→P): Given a query drug (SMILES representation), retrieve
the most relevant target proteins from a candidate set.

• Protein-to-Drug Retrieval (P→S): Given a query protein (sequence representation), re-
trieve the most relevant drugs from a candidate set.

E.11.2 EXPERIMENTAL SETUP

For each dataset, we construct retrieval queries and candidate pools as follows:
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Table 25: Significance test on the DTA task: means (± std) and one-sided p-values for H1: GRAM
> DTIAM (independent Welch test). One-sided p-values with p < 0.00104 are highlighted in light
blue.

Dataset Metric Scenario DTIAM (µ± σ) GRAM (µ± σ) one-sided p value

Ya
m

an
is

hi
08

AUPR
Warm start 0.901± 0.0085 0.904± 0.0079 0.2122
Drug cold start 0.439± 0.0580 0.440± 0.0662 0.4859
Target cold start 0.844± 0.0350 0.849± 0.0312 0.3700

AUROC
Warm start 0.967± 0.0050 0.977± 0.0042 < 0.0001
Drug cold start 0.818± 0.0255 0.828± 0.0285 0.2096
Target cold start 0.941± 0.0180 0.955± 0.0155 0.0395

H
et

io
ne

t AUPR
Warm start 0.879± 0.0095 0.859± 0.0082 0.9984
Drug cold start 0.514± 0.0680 0.529± 0.0626 0.3070
Target cold start 0.625± 0.0210 0.626± 0.0239 0.4610

AUROC
Warm start 0.957± 0.0015 0.981± 0.0011 < 0.0001
Drug cold start 0.752± 0.0355 0.855± 0.0385 < 0.0001
Target cold start 0.917± 0.0090 0.921± 0.0079 0.1525

Table 26: Significance test on Zero-shot retrieval task (Yamanishi 08 and Hetionet): one-sided
Welch t-test (H1: GRAM > DTIAM), values p < 0.00104 are highlighted.

Direction Metric Yamanishi 08 Hetionet
DTIAM GRAM p DTIAM GRAM p

S→P
R@1 0.0038± 0.0004 0.0465± 0.0027 < 0.0001 0.0043± 0.0002 0.0331± 0.0038 < 0.0001
R@10 0.0341± 0.0042 0.1691± 0.0084 < 0.0001 0.0434± 0.0051 0.1340± 0.0025 < 0.0001
R@100 0.1960± 0.0181 0.4449± 0.0075 < 0.0001 0.2066± 0.0109 0.3616± 0.0063 < 0.0001

P→S
R@1 0.0040± 0.0002 0.0742± 0.0120 < 0.0001 0.0404± 0.0028 0.0236± 0.0010 1.0000
R@10 0.0849± 0.0089 0.2465± 0.0256 < 0.0001 0.1319± 0.0095 0.1049± 0.0055 1.0000
R@100 0.3670± 0.0186 0.5540± 0.0148 < 0.0001 0.3632± 0.0474 0.3841± 0.0082 0.1900

Table 27: Significance test on Zero-shot retrieval task (Activation and Inhibition): One-sided Welch
t-test (H1: GRAM > DTIAM), p < 0.00104 values are highlighted.

Direction Metric Activation Inhibition
DTIAM GRAM p DTIAM GRAM p

S→P
R@1 0.0028± 0.0002 0.0136± 0.0011 < 0.0001 0.0004± 0.0000 0.0055± 0.0003 < 0.0001
R@10 0.0266± 0.0037 0.1020± 0.0067 < 0.0001 0.0097± 0.0006 0.0337± 0.0011 < 0.0001
R@100 0.3184± 0.0229 0.5688± 0.0172 < 0.0001 0.1036± 0.0104 0.1994± 0.0018 < 0.0001

P→S
R@1 0.0071± 0.0008 0.0370± 0.0069 < 0.0001 0.0000± 0.0000 0.0221± 0.0061 < 0.0001
R@10 0.0463± 0.0050 0.2454± 0.0142 < 0.0001 0.0028± 0.0004 0.0819± 0.0065 < 0.0001
R@100 0.2206± 0.0264 0.6029± 0.0231 < 0.0001 0.0588± 0.0049 0.2325± 0.0094 < 0.0001

Query and Candidate Construction:

• For each known drug-target interaction (di, pj) in the data set, we treat di as a query and
all proteins in the dataset as candidates for S→P retrieval

• Similarly, we treat pj as a query and all drugs as candidates for P→S retrieval

• Ground truth relevance is determined by known interactions in the original datasets

Embedding Generation: We generate embeddings using the pre-trained GRAM-DTI framework:

• SMILES sequences are encoded using MoLFormer-XL, producing 768-dimensional repre-
sentations

• Protein sequences are encoded using ESM-2, producing 1280-dimensional representations

• Both modalities are projected to a shared 512-dimensional space using trained projectors
from the multimodal pre-training phase

• All embeddings are L2-normalized for cosine similarity computation
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Similarity Computation: We compute cosine similarity between query and candidate representa-
tions using the projected embeddings:

sim(q, c) =
fq · fc
∥fq∥∥fc∥

(14)

where fq and fc are the normalized projected embeddings for query q and candidate c, respectively.

Ranking and Evaluation:

1. For each query, we rank all candidates by their similarity scores in descending order
2. We evaluate retrieval performance using standard ranking metrics:

• Recall@1 (R@1): Proportion of queries where the top-ranked candidate is relevant
• Recall@10 (R@10): Proportion of queries where at least one relevant item appears

in the top-10 results
• Recall@100 (R@100): Proportion of queries where at least one relevant item appears

in the top-100 results

E.11.3 RETRIEVAL TASK ILLUSTRATION

Figure 6 illustrates the zero-shot retrieval evaluation process. Given a query protein pj , the model
computes cosine similarities with all candidate drugs in the dataset and ranks them by similarity
scores. Retrieval metrics (R@1, R@10, R@100) measure whether known positive drug-target in-
teractions appear within the top-k ranked candidates.

pj di di+1di-1

Query Candidates

sim (q,c)

R@1

R@10

R@100

Figure 6: Illustration of zero-shot retrieval evaluation. A query protein pj is compared against
all candidate drugs {di−1, di, di+1, ...} using cosine similarity of learned embeddings. Recall@k
metrics evaluate whether any known positive interactions appear in the top-k retrieved candidates.

E.11.4 IMPLEMENTATION DETAILS

Model Architecture: We utilize the same encoder architectures and projector networks as in the
main pre-training framework:

• SMILES projector: 768 → 768 → 512 → 512 (with GELU, LayerNorm, Dropout)
• Protein projector: 1280 → 768 → 512 → 512 (with GELU, LayerNorm, Dropout)

Batch Processing: Due to computational constraints, embeddings are generated in batches of 16
sequences to manage memory usage while maintaining efficiency.

No Additional Training: Critically, no additional training or fine-tuning is performed for the re-
trieval task. We use the representations learned during the multimodal pre-training phase directly,
demonstrating the quality of the learned representations.

Evaluation Protocol: Following standard practice in information retrieval, we compute metrics
across all queries in each dataset and report average performance. The evaluation uses only positive
interactions from the retrieval datasets, ensuring fair assessment of the model’s ability to identify
true drug-target relationships.
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Figure 7: Embedding evolution analysis with 500 randomly sampled quadruplets, showing clear
progression from separate modality clusters to integrated semantic representations.
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Figure 8: Embedding evolution analysis with 3,000 samples, demonstrating consistent patterns with
reduced noise and clearer semantic sub-structures.

The strong performance of GRAM-DTI in this zero-shot setting (Table 2 in main text) demonstrates
that our volume-based multimodal alignment successfully learns semantically meaningful represen-
tations that capture drug-target relationships without task-specific supervision.

F COMPREHENSIVE MULTIMODAL EMBEDDING EVOLUTION
ANALYSIS

This section provides a comprehensive analysis of how GRAM-DTI learns unified multimodal rep-
resentations across different sample sizes and training epochs. We examine embedding evolution
patterns to understand the dynamics of volume-based multimodal alignment and validate the effec-
tiveness of our adaptive modality dropout mechanism.

F.1 EXPERIMENTAL SETUP

We conducted embedding evolution analysis across multiple scales to ensure robustness of our ob-
servations:

• Sample sizes: 500, 3,000, and 5,000 randomly selected quadruplets
• Training epochs: Initial state (epoch 0), 10, 20, 30, and 40
• Visualization method: t-SNE with perplexity=30, max iter=1000
• Preprocessing: L2 normalization of projected embeddings, standardization per modality

For each epoch, we extracted embeddings from the four modalities using their respective pre-
trained encoders (MolFormer-XL for SMILES, MolT5 for Text/HTA, ESM-2 for Protein), applied
the trained projection layers to map into the unified 512-dimensional space, and performed t-SNE
visualization.

G LARGE LANGUAGE MODELS USAGE STATEMENT

We only used Large Language Models to correct grammars and polish the writing.
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Figure 9: Embedding evolution analysis with 5,000 samples (shown in main text), providing optimal
balance of detail and computational efficiency.
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