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Abstract
Large Language Models (LLMs) have achieved
widespread adoption, yet our understanding of
their behavior remains limited, particularly in
detecting data contamination and hallucinations.
While recently proposed probing techniques pro-
vide insights through activation analysis, they re-
quire “white-box” access to model internals, often
unavailable. Current “gray-box” approaches typ-
ically analyze only the probability of the actual
tokens in the sequence with simple task-specific
heuristics. Importantly, these methods overlook
the rich information contained in the full token dis-
tribution at each processing step. To address these
limitations, we propose that gray-box analysis
should leverage the complete observable output
of LLMs, consisting of both the previously used
token probabilities as well as the complete token
distribution sequences - a unified data type we
term LOS (LLM Output Signature). To this end,
we develop a transformer-based approach to pro-
cess LOS that theoretically guarantees approxima-
tion of existing techniques while enabling more
nuanced analysis. Our approach achieves superior
performance on hallucination and data contamina-
tion detection in gray-box settings, significantly
outperforming existing baselines. Furthermore, it
demonstrates strong transfer capabilities across
datasets and LLMs, suggesting that LOS captures
fundamental patterns in LLM behavior.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities across diverse applications, yet their inter-
nal mechanisms remain poorly understood. This gap in
understanding is particularly relevant in critical tasks like
Hallucination Detection (HD) (Tonmoy et al., 2024; Liu
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et al., 2021; Huang et al., 2023a; Ji et al., 2023; Rawte et al.,
2023) and Data Contamination Detection (DCD) (Brown
et al., 2020; Shi et al., 2023; Zhang et al., 2024), where
determining whether an LLM is fabricating information or
has been exposed to specific training data is crucial for safe
and reliable deployment.

Previous work on LLM analysis has relied heavily on prob-
ing techniques that require restrictive white-box access to
model internals (Belinkov, 2022; Orgad et al., 2024; Hewitt
& Manning, 2019; Hewitt & Liang, 2019; Rateike et al.,
2023). Gray-box methods relax these assumptions by oper-
ating only on LLM outputs. Existing gray-box approaches
typically analyze just the sequence of probabilities assigned
to tokens that appear in the relevant input or output token
sequence – a vector we term Actual Token Probabilities
(ATP) (Guerreiro et al., 2022; Kadavath et al., 2022; Varsh-
ney et al., 2023; Huang et al., 2023b). However, these
methods, often based on heuristics, overlook the informa-
tion contained in the complete Token Distribution Sequence
(TDS) – a matrix holding the next-token probability distri-
bution at each generation step, see Figure 1. This limitation
can mask crucial differences in model behavior even at the
level of a single time step. E.g., consider a model generat-
ing a token with probability 0.5 in two scenarios: in one
case, the remaining next-token probability mass is concen-
trated on a single alternative (0.5, 0.5, 0, ..., 0), while in the
other it is spread across many tokens: (0.5, 0.01, ..., 0.01).
These distributions suggest very different levels of model
uncertainty, yet ATP-based approaches would treat them
identically. Similarly, an ATP value of 0.1 at a certain time
step could indicate either high uncertainty (if it is the high-
est probability in a diffused distribution) or strong evidence
against the token (if it is a low-ranking probability in a
peaked distribution). A recent promising approach (Zhang
et al., 2024) used some TDS information using heuristics,
but a principled framework to utilize this data is still lacking.

Our approach. We argue that a successful gray-box ap-
proach should leverage both ATP and TDS, together forming
what we term the LLM Output Signature (LOS) (Figure 1)
– the complete observable representation of LLM behavior
in the gray-box setup. Instead of relying on heuristics, we
treat LOS as a sequential, high-dimensional and structured
data modality on which we apply principled deep learning
techniques. We propose LOS-NET, a lightweight trans-
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Figure 1: Left: The LLM processes the input “What does the cat chase?” and generates the output “A big mouse”. Right:
The corresponding query/response (“resp.”) Token Distribution Sequences (TDS) and Actual Token Probabilities (ATP),
together constituting the LLM Output Signature (LOS). We propose to analyze LLM behavior by learning directly from this
unified representation.

former encoder1 operating on an effective encoding of ATP,
TDS, and their interactions. We prove that LOS-NET can
approximate a broad class of functions applied to the LOS
of any LLM, subsuming many recent approaches (Guer-
reiro et al., 2022; Kadavath et al., 2022; Varshney et al.,
2023; Huang et al., 2023b; Shi et al., 2023; Zhang et al.,
2024). Our comprehensive empirical study on DCD and
HD demonstrates a substantial information gap between
using the complete LOS and relying solely on ATP. Notably,
LOS-NET improves over all considered baselines across
both tasks, often by a significant margin. Crucially, our
architecture is extremely efficient, with detection times of
≈ 10−5s per instance, making it a compelling approach
for applications such as on-line error detection for guided-
generation. LOS-NET also exhibits promising dataset-level
transfer and strong cross-model generalization, the latter
suggesting its viable application to real-world tasks such as
copyright-infringement detection over closed-source LLMs
(see, e.g., our results on the BookMIA benchmark (Shi et al.,
2023) in Section 5.2).

Contributions are summarized as follows: (1) we introduce
LOS as a suitable representation for analyzing LLM behav-
ior, (2) we develop an effective and a learning framework for
the LOS data modality, (3) we show this unifies and gener-
alizes previous approaches, (4) we demonstrate it achieves
superior performance across models, datasets, and tasks,
and (5) exhibits strong empirical evidence for cross-model
generalization and promising cross-dataset transfer abilities.
The proposed LOS-NET proves effective for both HD and
DCD, and its flexibility suggests broader potential for simi-
lar tasks while paving the way for foundational approaches
to modeling LLM behaviors.

1Around 1M parameters.

2. Related Work
We review background and related work on DCD and HD,
focusing on studies leveraging logits or output probabili-
ties. Given the breadth of research, we highlight the most
relevant works for our setup and refer interested readers to
Appendix C for further details on these tasks.

Data Contamination Detection. Early methods leveraged
model loss (Yeom et al., 2018; Carlini et al., 2019) for
DCD, assuming that models overfit their training data. Later
refinements introduced reference models—independent
LLMs trained on disjoint datasets from a similar distribu-
tion—comparing their scores with the target model (Carlini
et al., 2021; 2022). However, this approach depends on the
availability of a well-matched reference model (similar in
its architecture), which is often impractical. Recently, (Shi
et al., 2023) introduced Min-K%, which flags an input as
contaminated if the log probability of its bottom K tokens
exceeds a predefined threshold. Building on this approach,
(Zhang et al., 2024) proposed Min-K%++, which refines
contamination detection by calibrating the next-token log-
likelihood using the mean and standard deviation of log-
likelihoods across all candidate tokens in the vocabulary.

Hallucination Detection has been studied as a means of
enabling selective intervention, allowing LLMs to prevent
fabricated outputs only when necessary (Snyder et al., 2024;
Yin et al., 2024; Valentin et al., 2024). Recently, (Orgad
et al., 2024) showed that training a classifier on top of LLMs’
hidden states is highly effective for hallucination detection.
However, this method operates under the white-box assump-
tion, requiring full access to the model’s internal compo-
nents. In contrast, our paper explores a more constrained
(gray-box) setting.

Output probability-Based Analysis. Previous works
showed that using log probabilities or raw logits as decision
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Figure 2: LLM processing pipeline. Token sequence s⃗ is
processed by an LLM f , generating full TDSs Xs,Xg for
input s⃗ and response g⃗.

thresholds can be effective for various tasks, including HD
in LLMs (Guerreiro et al., 2022; Varshney et al., 2023), cor-
rectness self-evaluation (Kadavath et al., 2022), uncertainty
estimation (Huang et al., 2023b), and zero shot learning
(Atzmon & Chechik, 2019). However, these approaches
often rely on naive handcrafted thresholding. Other ap-
proaches feed probabilities or logits into classifiers to get
a more refined signal. Mosca et al. (2022) computes logit
differences for texts with and without a given word, training
a classifier to detect adversarial attacks. Wu et al. (2023) in-
troduced LLMDet, which quantifies perplexity scores across
models by analyzing next-token probabilities for selected
n-grams, feeding these into a classifier to detect machine-
generated content. Similarly, Verma et al. (2024) presented
Ghostbuster, which extracts token probabilities using sim-
pler models and trains a linear classifier for the same afore-
mentioned task. Both rely on linear classifiers and overlook
the LLM’s TDS, limiting contextual understanding. In con-
trast, our method fully leverages textual context via the LOS
for a more nuanced analysis.

3. Learning on LLM Output Signatures
3.1. Notation and Problem Formulation

Let f denote a pretrained LLM, and s⃗ refer to a text input
to f consisting of n tokens. When queried with s⃗, the LLM
f produces outputs Xs = f(s⃗), i.e., a matrix in Rn×V of
next-token probabilities for each token in s⃗, where V is the
size of the token vocabulary. We define the LLM response
to be g⃗ consisting of m tokens generated using f ’s outputs
in Xg ∈ Rm×V (and Xs). We refer to Xs or Xg as Token
Distribution Sequences (TDS). See Figure 2. We also define
ps ∈ Rn,pg ∈ Rm, which holds the probabilities associ-
ated with the actual tokens appearing in s⃗, g⃗ respectively.
We denote these as the Actual Token Probabilities (ATP).
Specifically, (ps)i := Xi,v where v ∈ {1, . . . , V } is the
token used in the i+1 place in the sequence s⃗ and similarly
for g⃗. See Figure 1 for an illustration. We call the pairs
(Xs,ps) or (Xg,pg) the LLM Output Signature (LOS). For
DCD, we analyze input sequences using (Xs,ps) since our

interest lies in how the model processes the input text s⃗. In
contrast, for HD, we use (Xg,pg) as we need to analyze
the model’s generated response. We may use (X,p) if the
distinction between the tasks is irrelevant, and use N as the
sequence length.

Problem Statement. LOS elements, along with their as-
sociated annotations depending on the task of interest, can
be gathered into datasets D = {

(
(X,p)i, yi

)
}ℓi=1 where

supervised learning problems can be instantiated. Our goal
in this paper is to propose a neural architecture that can
effectively utilize the complete LOS to solve tasks such as
DCD, HD, or any other classification problem thereon.

3.2. Our Approach

Our approach consists of three main steps. Given an in-
put (X,p): (1) The probability distributions in TDS (X)
are sorted independently and sliced to only include the top
K ones at each time step, obtaining X′ ; (2) A learnable
Rank Encoding RE(X,p) is concatenated to X′ to capture
relative probability information; (3) The resulting represen-
tation is processed by a lightweight transformer architecture,
yielding the desired output. See illustration in Appendix D,
Figure 9. In the remainder of this section, we provide a
detailed explanation of each component.

Preprocessing the token distribution sequences. Uti-
lizing X may pose significant challenges due to three key
factors. (1) Complexity: The vocabulary tensor can be ex-
tremely large in real-world scenarios. For instance, Liang
et al. (2023) (XLM-V) reported a vocabulary size of 1M
tokens, which, for a small batch of documents and popular
context sizes, would already entail processing a tensor of
tens (or hundreds) of GBs. (2) Transferability: Vocabu-
lary size and order may significantly vary between LLMs,
something which can complicate transfer learning – e.g.,
training on one LLM and testing on another with a differ-
ent vocabulary size; (3) Limited Access: In certain LLMs,
such as those released by OpenAI, the output tensor X is
only partially accessible, with APIs only exposing the (log-)
probabilities for a small number of most likely tokens. To
tackle these challenges, we propose selecting, for each row
of X, a fixed number of elements. Specifically, we prepro-
cess X by sorting each row independently and selecting the
top K probabilities, as follows:

X′ = row-sort(X):,:K , (1)

resulting in X′ ∈ RN×K . This approach not only reduces
computational complexity but also provides a standardized
representation that is independent of the vocabulary size
(for an appropriate choice of K). Later, in Section 5, we
will show how our approach can achieve strong empirical
performance even for small values of K. Nevertheless, it is
important to note that this preprocessing step removes the
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alignment of words across the vocabulary dimension. Ex-
ploring methods to retain or effectively utilize this alignment
remains an avenue for future work.

Learnable Rank Encoding. The tensor X′ provides a
comprehensive description of the LLM’s output, but does
not encode an important source of information: the prob-
ability p of the actual tokens appearing in the sequence,
i.e, the ATP. The importance of this feature both in DCD
and HD has already been demonstrated by a large body
of prior work that operated only on this information (Shi
et al., 2023; Guerreiro et al., 2022; Kadavath et al., 2022;
Varshney et al., 2023; Huang et al., 2023b). Taking inspi-
ration from these, we do also include ATPs as inputs to
our architecture. However, we further complement these
probabilities with additional information which allows us to
contextualize them with respect to the whole TDS, i.e., X.
Specifically, we argue that valuable information is encoded
in the rank (position) of the ATP within the vocabulary-
wide (sorted) sequence of token probabilities. This infor-
mation reveals both the model’s generation patterns and
potential mismatches between predicted and actual tokens.
The rank of the i-th token in the sequence is defined as:
ri(X,p) =

∑V
v=1 I(Xi,v > pi), where I(·) is the indicator

function. We encode the rank in a way to make this feature
more amenable for learning, while still maintaining enough
expressivity. Specifically, we first scale the rank between
[−1, 1], obtaining rscaled. Then, we construct the following
learnable rank encoding2,

RE(X,p) = p⊙ rscaled ·w1 + p ·w2, (2)

where ⊙ is the hadamard product, and w1,w2 are learnable
parameters in Rd. As a result, RE(X,p) is in RN×d. Im-
portantly, the multiplication by p makes sure that the rank
encoding and the TDS are in similar scales, especially when
using log probabilities or logits.

Architecture. Given the preprocessed TDS X′ and the de-
veloped rank encodings RE(X,p), we first linearly project
X′, concatenate it with RE(X,p), and then feed it to an
encoder-only transformer T with learnable positional en-
codings, operating in the temporal dimension (Vaswani,
2017):

hθ(X,p) = T
(
X′W

∥∥∥∥RE(X,p)

)
. (3)

Here, W ∈ RK×K′
, ∥ denotes concatenation on the feature

dimension, and θ includes all parameters, w1,w2,W and
the parameters of T . Finally, we pool over the [CLS] token
and obtain output scores via a linear layer. The resulting
model, LOS-NET, is trained with binary cross-entropy loss.

2For certain DC datasets, we used a lookup table for Rank
encoding, where the index corresponds to ri and the value is an
embedding.

4. Generalization of Previous Approaches
Here, we demonstrate that LOS-NET generalizes several
leading existing methods through specific weight configu-
rations. This ensures that our architecture can theoretically
match these methods –while significantly outperforming
them in practice, as shown in our experiments. Proofs are
enclosed in Appendix A. As already mentioned, prior re-
search has introduced various methods for analyzing LLMs
based on their output probabilities (Guerreiro et al., 2022;
Kadavath et al., 2022; Varshney et al., 2023; Huang et al.,
2023b), with many approaches focusing on the ATPs. We
note that many of these methods assume the form of statis-
tics calculated over the whole sequence processed by the
LLM. Recent, more sophisticated approaches aggregate
these probabilities only for some of the tokens in the se-
quence, dynamically chosen based on features computed on
the set of ATPs (Shi et al., 2023; Zhang et al., 2024), as we
illustrate below.

Motivating example: Min-K% Shi et al. (2023). Min-
K% makes predictions on an input text s⃗ based on a
score R calculated as the average of the smallest K% log-
probs: R(s⃗) = 1

|M |
∑

i∈M log(pi), with M = {i | pi <

perc(p,K)} being the set of token indices whose probabili-
ties are in the first K-th percentile of p. We note that it is
instructive to rewrite the scoring equation as:

R(s⃗) =

|s⃗|∑
i=1

token-wise score︷ ︸︸ ︷
log(pi)⌈
K
100 · |s⃗|

⌉ · I
(confidence︷︸︸︷

pi <

adaptive threshold︷ ︸︸ ︷
perc(p,K)

)︸ ︷︷ ︸
gating

. (4)

This highlights a general pattern: that of computing a global
score by aggregating token-wise values meeting a (dynamic)
“acceptance” condition, a form of “gating”. To unify the
aforementioned baselines under a common framework, we
formalize this pattern via a family of functions (see next).

Gated Scoring Functions (GSFs). We define the family
of Gated Scoring Functions (GSF) as the set of functions
scoring LOSs by aggregating token-wise scores across the
input sequence whenever their confidence values exceed a
(possibly adaptive) threshold. GSFs are described in terms
of the following components: (1) A confidence function
κ : RN×k × RN → RN that assigns confidence values to
each token in the sequence; (2) A threshold function T :
RN×k × RN → R that determines an acceptance criterion;
and (3) A weight function g : RN×k × RN → RN that
assigns importance scores to tokens. Given a LOS (X,p),
a GSF computes a global score R(X,p) as follows:

F (X,p)i =

{
g(X′,p)i, if κ(X′,p)i ≥ T (X′,p),

0, otherwise,
(5)

R(X,p) =

N∑
i=1

F (X,p)i, (6)

4
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where X′ is the sorted version of X, as per Equation (1).
The family of GSF is flexible enough to capture previously
proposed gray-box methods, as we show in the following:

Proposition 4.1 (GSFs capture known baselines). Let
B be the set of scoring functions implemented by the
Min/Max/Mean aggregated probability methods (Guerreiro
et al., 2022; Kadavath et al., 2022; Varshney et al., 2023;
Huang et al., 2023b) for HD, as well as the MinK% (Shi
et al., 2023) and MinK%++ (Zhang et al., 2024) methods
for DCD. For any scoring function f ∈ B, there exists a
choice of functions κ, T, g such that the GSF R in Equa-
tion (6), implements f .

It is easy to see, e.g., how MinK% is implemented
as a GSF. For a sequence length of N , it suf-
fices to choose: T (X′,p) = −perc(p,K) =
−
(
sort(p)⌈ K

100 ·N⌉
)
, κ(X′,p) = −p, g(X′,p) =

logp

⌈ K
100 ·N⌉

. Refer to Appendix A for more details on how

other baselines are implemented.

LOS-NET can approximate GSFs and implement known
baselines. As the following results show, our LOS-NET
architecture is theoretically justified from an expressive-
ness standpoint. We start by showing that it can, in fact,
approximate virtually all GSFs of interest.

Proposition 4.2 (LOS-NET can approximate Equation (6)).
Assume maximal possible vocabulary size Vmax and context
size Nmax. Let X ×M ⊆ RNmax×Vmax × RNmax represent a
compact subset in the LOS. For any measurable κ : X ×
M → RNmax , measurable T : X ×M → R, measurable
and integrable weight function g : X ×M → RNmax , and
for any ϵ > 0, there exists a set of parameters θ such that
our model hθ : X × M → R satisfies ∥hθ −R∥L1

< ϵ
where ∥·∥L1

denotes the L1 norm.

To prove this result, we build on existing universality re-
sults on approximating continuous functions with Trans-
formers (Yun et al., 2019), showing that our (generally non-
continuous) target functions can be approximated by con-
tinuous functions. Importantly, Proposition 4.2 implies that,
as long as the LOS space of interest lies within a compact
domain3, our model can approximate the general GSF in
Equation (6) of LOSs for any LLM under mild conditions
on κ, T , and g, potentially generalizing across LLMs (as our
result considers a predefined LOS domain). In Section 5 we
show that our trained models can indeed be applied success-
fully out-of-the-box on LOSs from different LLMs. Note
that Proposition 4.2 cannot be generally extended to L∞
due to the discontinuity of GSFs.

The practical relevance of Proposition 4.2, is underscored
by the following:

3This is inherently satisfied when using probabilities; or via
clamping in the case of logits or log-probs.

Corollary 4.3 (Approximation of Baselines by LOS-NET).
Our architecture, as defined in Equation (3), can arbitrarily
well approximate, in the L1 sense, any of the baseline meth-
ods in B when operating on context and token-vocabulary
of, resp., maximal sizes Nmax and Vmax.

The above states that well-established, successful baselines
from the literature (see class B in Proposition 4.1) can be
approximated by LOS-NET. The proof follows from Propo-
sitions 4.1 and 4.2.

5. Experiments
We assess various aspects of learning with LOS via the
following questions: (Q1) Is learning on LOS an effec-
tive approach for addressing key tasks such as DCD and
HD? Does it outperform baselines? (Sections 5.1 and 5.2);
(Q2) Does our model exhibit transfer capabilities across
LLMs and datasets, suggesting the emergence of universal
patterns in LLM behavior from the perspective of the LOS?
(Section 5.3); (Q3) How important is X in the pair (X,p),
as it is often overlooked? And how impactful is the choice
of the slicing parameter K in Equation (1)? (Appendix B.6).
In the following, we present our main results, and refer to
Appendix B for additional experimental results and details.

General setup. Our experiments focus on the two tasks of
DCD and HD, with hyperparameter K fixed at 1000 unless
stated otherwise (see Equation (1)). In Appendix B.6, we
show that our model is robust to variations in K. To align
with prior work, we use datasets and LLMs from (Shi et al.,
2023; Zhang et al., 2024) for DCD and (Orgad et al., 2024)
for HD, where we also experiment with an additional LLM
(Qwen-2.5-7b-Instruct (Yang et al., 2024)). Further details
are in subsequent sections. We use the area under the ROC
curve (AUC) to evaluate HD and DCD, a standard metric
in this domain (Orgad et al., 2024; Shi et al., 2023; Zhang
et al., 2024), which measures the balance between sensitivity
and specificity. We conduct each experiment across three
different random seeds (when applicable) and report the
mean along with the standard deviation of the results. All
LOS-NET experiments were conducted using the PyTorch
(Paszke et al., 2019) framework on a single NVIDIA L-40
GPU.

Newly introduced learning-based baselines. In addition to
task-specific baselines, we also introduce two novel learning-
based baselines to appreciate the contribution of the TDS:
ATP+R-MLP, ATP+R-TRANSF.. Specifically, we ablate
information about the TDS and only process the ATP and
rank information with an MLP or Transformer backbone.
Formal definitions are in Appendix B.4.

5
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5.1. Hallucination Detection

We follow the setup of Orgad et al. (2024). The objective is
to predict whether an LLM-generated response to a given
input prompt is correct or not. We frame the task within a
gray-box setting, i.e., we assume no access to the LLM’s
internals. We assume no access to external resources – such
as auxiliary LLMs (as in (Ulmer et al., 2024)), mulitple
queries/generations (as in (Orgad et al., 2024; Kuhn et al.,
2023)), or additional contextual cues like token-level an-
notations ((Orgad et al., 2024)). These approaches exhibit
a significantly larger detection latency compared to LOS-
NET, problematic in online applications (refer to Section 5.4
for more detailed run-time analyses and comparisons).

Datasets and LLMs. Following Orgad et al. (2024), we
use three datasets spanning various domains and tasks: Hot-
potQA without context (Yang et al., 2018), IMDB sentiment
analysis (Maas et al., 2011), roles in Movies (Orgad et al.,
2024). Details regarding the annotation process, splits and
dataset sizes are in Appendix B.5.1. As the target LLMs, co-
herently with Orgad et al. (2024), we use Mistral-7b-instruct-
v0.2 (Jiang et al., 2023) (Mis-7b) and LLaMa3-8b-instruct
(Touvron et al., 2023) (L-3-8b), and further experiment with
Qwen-2.5-7b-Instruct (Yang et al., 2024) (Q-2.5-7b).

HD Baselines. (1) Aggregated probabilities/logits: Previ-
ous studies (Guerreiro et al., 2022; Kadavath et al., 2022;
Varshney et al., 2023; Huang et al., 2023b) simply aggre-
gate output token probabilities or logits to score LLM con-
fidence for error detection. These aggregations operate
mean/max/min pooling over the ATP. We refer to them as
Logit/Probas-mean/min/max; (2) P(True): (Kadavath et al.,
2022) found that LLMs show reasonable calibration in as-
sessing their own correctness.

Results. Table 1 presents a comprehensive summary of
results on the LLMs considered in Orgad et al. (2024) (Mis-
7b and L-3-8b). These clearly demonstrate that LOS-NET
outperforms all baselines across all six dataset/LLM com-
binations, often by a significant margin. For instance, on
the IMDB dataset, LOS-NET achieves an AUC improve-
ment of around 32 units over the best baseline for Mis-7b
and 17 over the best baseline for L-3-8b. Our results fur-
ther indicate that ATP learning-based baselines consistently
underperform compared to LOS-NET, underscoring the crit-
ical role of the TDS, X. Our ATP-based learnable baselines
still outperform non-learnable methods in most cases, sug-
gesting that a learning approach relying exclusively on ATP
can still be a viable solution in certain scenarios. Results on
Q-2.5-7b are consistent the above findings, and are deferred
to Appendix B.7.

5.2. Data Contamination Detection

The goal in DCD is to determine if an LLM was trained on
specific data. The raw dataset D = {qi, yi}ℓi=1 contains ℓ
text samples, where qi represents the text and yi indicates
whether it was part of the training data. DCD is often
framed as a Membership Inference Attack (MIA) (Shokri
et al., 2017; Mattern et al., 2023; Shi et al., 2023).

Datasets and LLMs. We use three datasets to assess DCD,
specifically: WikiMIA-32 and WikiMIA-64 (Shi et al.,
2023), as well as BookMIA (Shi et al., 2023). The WikiMIA-
32 and -64 datasets contain excerpts from Wikipedia articles,
consisting of, resp., 32 and 64 words. The distinction be-
tween contaminated and uncontaminated data is determined
by timestamps. As in (Shi et al., 2023; Zhang et al., 2024),
we attack Mamba-1.4b (Gu & Dao, 2023) (M-1.4b), LLaMa-
13b/30b (Touvron et al., 2023) (L-13b/30b), Pythia-6.9b (Bi-
derman et al., 2023) (P-6.9b). BookMIA is a dataset of book
excerpts. Positive members correspond to books known
to be well memorized by certain OpenAI models (Chang
et al., 2023), or otherwise known to (partly) be in pretrain-
ing corpus of other open-source LLMs (Antebi et al., 2025).
Non-members include excerpts from books released after
2023, necessarily absent from the pretraining corpus of
the last ones. Interestingly, this dataset allows us to test
LOS-NET’s DCD capability in a realistic scenario akin to
copyright-infringement detection. We thus propose a new
split that ensures all excerpts from the same book always
appear either in the training or test split (and never in both).
Details are enclosed in Appendix B.5.2. We attack LLMs
considered in (Antebi et al., 2025): LLaMa-13b/30b (Tou-
vron et al., 2023) (L-13b/30b), Pythia-6.9b/12b(Biderman
et al., 2023) (P-6.9b/12b).

DCD Baselines. The Loss approach (Yeom et al., 2018)
directly uses the loss value as the detection score. The
Reference (Ref) method (Carlini et al., 2021) calibrates
the target LLM’s perplexity leveraging a similar reference
model known or supposed not to have memorized text of
interest4. Both Zlib and Lowercase (Carlini et al., 2021)
are also reference-based methods: they utilize zlib compres-
sion entropy and lowercased text perplexity as reference
for normalization. Lastly, Min-K% (Shi et al., 2023) and
Min-K%++ (Zhang et al., 2024) are reference-free methods,
which examine token probabilities and average a subset of
the minimum token scores, or a function thereof, over the
input. For these baselines, we select their hyperparameters
by maximizing performance on the validation set(s).

Results on BookMIA. Refer to Table 2. LOS-NET at-
tains exceptional results, largely surpassing other reference-
free approaches. Among these last ones, ours is the only

4For example for Pythia-12b, a valid reference LLM would be
the smaller Pythia-70M.
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Table 1: Test AUCs for HD over Mis-7b and L3-8b (bold: best method, underlined: second best).

Method HotpotQA IMDB Movies HotpotQA IMDB Movies

Mistral-7b-instruct Llama3-8b-instruct

Logits-mean 61.00 ± 0.20 57.00 ± 0.60 63.00 ± 0.50 65.00 ± 0.20 59.00 ± 1.70 75.00 ± 0.50
Logits-min 61.00 ± 0.30 52.00 ± 0.70 66.00 ± 0.80 67.00 ± 0.80 55.00 ± 1.60 71.00 ± 0.50
Logits-max 53.00 ± 0.80 47.00 ± 0.40 54.00 ± 0.40 59.00 ± 0.50 51.00 ± 0.90 67.00 ± 0.30
Probas-mean 63.00 ± 0.30 54.00 ± 0.80 61.00 ± 0.20 61.00 ± 0.20 73.00 ± 1.50 73.00 ± 0.60
Probas-min 58.00 ± 0.30 51.00 ± 1.00 60.00 ± 0.80 60.00 ± 0.40 57.00 ± 1.60 65.00 ± 0.40
Probas-max 50.00 ± 0.50 48.00 ± 0.40 51.00 ± 0.50 56.00 ± 0.50 49.00 ± 0.80 64.00 ± 0.60
P(True) 54.00 ± 0.60 62.00 ± 0.90 62.00 ± 0.50 55.00 ± 0.50 60.00 ± 0.60 66.00 ± 0.40

ATP+R-MLP 61.36 ± 0.33 88.95 ± 0.40 60.63 ± 0.16 60.09 ± 0.24 85.28 ± 0.49 67.19 ± 0.25
ATP+R-TRANSF. 63.78 ± 0.98 92.30 ± 1.66 62.41 ± 0.22 61.39 ± 1.24 82.56 ± 0.63 64.95 ± 0.68
LOS-NET 73.24 ± 0.28 96.11 ± 0.03 68.59 ± 1.08 72.97 ± 0.41 89.44 ± 0.32 77.04 ± 0.77

Table 2: Test AUCs on BookMIA. ‘P’: Pythia, ‘L’: LLaMa-1 (bold: best method, underlined: second best, pink : reference-
based).

Method / LLM P-6.9b P-12b L-13b L-30b

Loss 67.40 76.27 76.23 89.18
MinK 68.78 77.32 75.36 89.61
MinK++ 66.73 71.76 72.87 80.60

Zlib 50.01 60.84 61.94 80.83
Lowercase 74.97 81.64 67.80 82.18
Ref 89.52 91.93 84.58 94.93

ATP+R-MLP 56.31 ± 1.48 57.18 ± 1.06 66.60 ± 1.05 83.89 ± 0.41
ATP+R-TRANSF. 79.59 ± 0.61 74.77 ± 0.57 74.65 ± 0.79 87.62 ± 0.68
LOS-NET 90.71 ± 0.90 89.43 ± 0.59 91.02 ± 0.15 95.60 ± 0.41

method that can match or outperform even the reference-
LLM-based baselines. Importantly, crucial to such strong
reference-free performance is to access, even partially, the
TDS: our ATP-based learnable methods – which only pro-
cess features for the actual sequence tokens – incur indeed
significant performance drops.

Results on WikiMIA. Due to space limits, the full results
on are provided in Appendix B.8, Table 5. LOS-NET con-
sistently surpasses all baselines across all eight combina-
tions of LLMs and datasets. The second-best method is
MinK%++, followed by MinK%, consistent with the find-
ings of (Zhang et al., 2024).

5.3. Generalization to Other LLMs and Datasets

We further study the possibility to apply our models to set-
tings different from those they were originally trained on.
We focus on two variables: datasets and LLMs. Gener-
alization across datasets was originally studied in (Orgad
et al., 2024) within the scope of HD and in the context of
white-box setups; their relevance lies in the fact that non-
trivial dataset generalization would potentially suggest a
‘universal truthfulness’ representation encoded in the inter-

nal states and/or outputs of an LLM (Orgad et al., 2024;
Marks & Tegmark, 2023; Slobodkin et al., 2023). Inspect-
ing transfer across LLMs is, to the best of our knowledge,
still unexplored. This study is important for learning-based
approaches in applications such as copyright-infringement
detection, where ground-truth labels may be scarce.

Zero Shot Cross-LLM Generalization Capabilities in
DCD. We assess our model’s ability to detect DC in target
LLMs that were unseen during training. Using the Book-
MIA benchmark and the setup described in Section 5.2,
we evaluate our model directly across different LLMs with-
out any fine-tuning. This setup is relevant in cases where
contamination information is not yet available for newly re-
leased LLMs. The results are presented in the heatmap
shown in Figure 3. We observe strong transferability:
in 10/12 cases, our model achieves the best performance
among reference-free approaches, highlighted in bold in
Figure 3. Interestingly, in 3/12 cases, LOS-NET (which is
reference-free) even surpasses reference-based baselines, as
indicated via a superscript of ∗. We also observe particularly
strong transfer across differently sized LLM architectures
within the same family and highlight the surprising positive
transfer from the largest LLaMa to Pythia models.
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Figure 3: BookMIA zero-shot generalization (bold: outper-
forms ref-free baselines, ∗: outperforms ref-based ones).

Transfer Learning across LLMs and Datasets for HD.
Differently than DCD, where zero-shot application of LOS-
NET was successful, for HD we observed non-trivial gener-
alization in the zero-shot setup, however, not sufficient to
surpass the simple probability-based techniques. This led us
to investigate LOS-NET capabilities in a transfer learning
setting, in which we conduct a rapid fine-tuning procedure
on all possible LLM/datasets combinations. Specifically, we
perform a 10-epoch fine-tuning on the target LLM/dataset
(as opposed to 300+ epochs in our standard setting). This
process was measured to take less than a minute. We bench-
mark the fine-tuned model against two baselines. First,
to test for successful transfer, we compare with a LOS-
NET trained from scratch under an identical setup (i.e., 10
epochs). Second, we contrast the fine-tuned model with
the best-reported non-learnable baseline. The test AUC of
our fine-tuned LOS-NET’s are in Figures 4 and 5. Super-
script ‘∗’ indicates the fine-tuned LOS-NET is better than a
counterpart trained from scratch in the same setting, bold
indicates it outperforms the best non-learnable method.

Discussion. First, LOS-NET exhibits solid transferability
in both scenarios. The finetuned models consistently outper-
form their counterparts trained from scratch: 16/18 cases
in both the cross-LLM (Figure 4) and cross-dataset setups
(Figure 5) – see ‘∗’ on the off-diagonal entries. This high-
lights a generally positive transfer of LOS-NET’s learned
representations across datasets and LLMs, and underscores
the suitability of LOS as a data type in capturing generaliz-
able patterns in LLM behaviors. Second, from a practical
perspective, we find that LOS-NET outperforms the best
baseline in 15/18 cases for both the cross-LLM (Figure 4)
and cross-dataset (Figure 5) scenarios – see bold on the
off-diagonal entries. Focusing on the IMDB dataset, when
training on L-3-8b and testing on Mis-7b (Figure 4), our
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Figure 4: Cross-LLM transfer Test AUCs (cols: source
LLMs, rows: target LLMs). Bold: finetuning LOS-NET
outperforms baselines, ∗: it outperforms the same LOS-
NET trained from scratch.

model substantially gains around 27 AUC units over the best
baseline. This result underscores the possibility of trans-
ferring across LLMs. A similar trend is observed in the
cross-dataset setup (Figure 5): on Mis-7b, when training
on HotpotQA or Movies and testing on IMDB, our model
achieves a notable improvement of around 30 AUC units
compared to the best baseline.

5.4. Run-Time Analysis

We conclude this section by discussing our comprehensive
training and inference timings, reported in Appendix B.9
and Table 6. We remark how LOS-NET features an ex-
tremely contained detection latency: ≈ 10−5s per inference
fwd-pass. Training is also efficient, typically completing in
under one hour on a single NVIDIA L-40 GPU, and often
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Figure 5: Cross-dataset transfer Test AUCs (cols: source
data, rows: target data). Bold: finetuning LOS-NET out-
performs baselines, ∗: it outperforms the same LOS-NET
trained from scratch.

taking significantly shorter. To contextualize this computa-
tional efficiency w.r.t. methods relying on multiple prompt-
ing/generations (Orgad et al., 2024; Kuhn et al., 2023), we
measured the generation time of Mistral-7B-Instruct. Aver-
aging over the first 10 samples from the HotpotQA dataset,
we observed an average generation time of 1.93± 0.18 sec-
onds per response on a server equipped with eight NVIDIA
L-40 GPUs. The methods in (Orgad et al., 2024) and (Kuhn
et al., 2023) require 5 and 10 generations per detection, resp.,
rendering their computation overhead around six orders of
magnitude higher than that of LOS-NET.

6. Conclusions
We proposed LOS-NET, an efficient method to detect data
contamination and hallucinations in LLMs by leveraging

their output signatures (LOS), defined as the union of To-
ken Distribution Sequences (TDS) and Actual Token Prob-
abilities (ATP). LOS-NET consists of a lightweight trans-
former with learnable rank encodings applied on the whole
LOS. We proved it unifies and extends existing gray-box
methods under a general framework, and experimentally
showed it outperforms state-of-the-art gray-box methods
across datasets and LLMs. It also exhibited strong general-
ization capabilities of LOS-NET, both across datasets and
across LLMs. Our framework could be applied to other
tasks, such as detecting LLM-generated content. Additional
sources of information can also be incorporated, e.g., in
the absence of latency constraints, it can be interesting to
include “exact-token” flags as proposed by (Orgad et al.,
2024). Last, the LOS can be extended to account for multi-
ple prompting (Kuhn et al., 2023).

Limitations. By operating in a gray-box setting, our ap-
proach is widely applicable, but misses access to predictive
information residing, e.g., in the LLM’s hidden states. Addi-
tionally, we note that sorting the TDS tensor removes word
alignment across the vocabulary, which may be limiting in
some cases.

Impact Statement
By improving the detection of data contamination and hallu-
cinations in Large Language Models, our contribution could
foster the responsible development and use of Generative
AI by enhancing transparency and trustworthiness. Appli-
cations to detecting machine-generated content could also
support reducing the spread of AI-fabricated misinforma-
tion. We also note, however, that our work sheds light on
predictive information contained in the output next-token
probability distributions. This could lead malicious actors to
develop more sophisticated defense mechanisms to MIAs or
lead companies to potentially limit access to LLM outputs,
thus hindering advancements in open research.
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A. Proofs
Proposition A.1 (LOS-NET can approximate Equation (6)). Assume maximal possible vocabulary size Vmax and context size
Nmax. Let X ×M ⊆ RNmax×Vmax ×RNmax represent a compact subset in the LOS. For any measurable κ : X ×M → RNmax ,
measurable T : X ×M → R, measurable and integrable weight function g : X ×M → RNmax , and for any ϵ > 0, there
exists a set of parameters θ such that our model hθ : X ×M → R satisfies ∥hθ −R∥L1

< ϵ where ∥·∥L1
denotes the L1

norm.

Proof. We define D := X ×M. Recall that the target function we want to approximate is the gated scoring function R as
defined in Equation (6), which can be written as follows:

R(x) =

Nmax∑
i=1

I(κ(x)i ≥ T (x)) · g(x)i, (7)

for x ∈ D.

Define f (1) : D → RNmax to be the components of the sum in Equation (7):

f (1)(x)i = I(κ(x)i ≥ T (x)) · g(x)i. (8)

It follows that R(x) =
∑Nmax

i=1 f (1)(x)i.

Step 1: We begin by selecting K = Vmax as a hyperparameter5 and initializing the parameters p1, p2, and W as follows:

p1 = 0, (9)
p2 = 1, (10)
W = IK×K . (11)

As a result, the input to the transformer encoder in our architecture (see Equation (3)) becomes X′||p ∈ RNmax×(Vmax+1).

This simplifies our architecture in Equation (3) to:

hθ(X,p) = T (X′||p). (12)

Step 2: f (1) ∈ L1(D). Define the L1(D) norm for a field F : D → Rn2 as:

∥F∥L1 =

∫
x∈D

∥F(x)∥1 dx =

∫
x∈D

n2∑
i=1

|F(x)i| dx =

n2∑
i=1

∫
x∈D

|F(x)i| dx =

n2∑
i=1

∥F(x)i∥L1 , (13)

where ∥v∥1 =
∑n2

i=1 |vi| is the l1 norm of the vector v.

Next, observe that f (1) ∈ L1(D). To see this, first note that f (1) is measurable. The indicator function is measurable
because the indicator set is the preimage of the measurable function κ(x)− T (x) on the closed set [0,∞). Thus, f (1), being
a product of measurable functions, is measurable. Next, we show that the L1 norm is finite. This is true because f (1) is a
product of the integrable function g and the bounded function 1 on the compact domain D.

Step 3: Approximating f (1) by a continuous field f̃ (1). We need to approximate the field f (1) : D → RNmax by a
continuous field, so that we can apply existing results on approximating continuous functions with Transformers. We state
the following Lemma, saying the continuous fields are dense in L1(D).

Lemma A.2. For any g ∈ L1(D) and any ϵ > 0, there exists a continuous g̃ ∈ L1(D) such that ∥g − g̃∥L1 < ϵ.

Proof. Consider the coordinate functions gi : D → R. Since continuous functions are dense in L1 for scalar valued
functions, we can choose continuous g̃i such that ∥g − g̃∥L1 < ϵ/N . Thus, letting g̃(x) = [g1(x), . . . , gN (x)] ∈ RN , it
holds that ∥g − g̃∥ =

∑N
i=1 ∥gi − g̃i∥ < ϵ.

5For LLMs with a vocabulary size smaller than Vmax, appropriate padding can be applied.
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Thus, we can choose a function f̃ (1) such that, ∥∥∥f (1) − f̃ (1)
∥∥∥ <

ϵ

2Nmax
. (14)

Step 4: Approximating the continuous field f̃ (1) by a transformer model h(1)
θ . We start by restating the following from

(Yun et al., 2019) in our context,

Theorem A.3. Let 1 ≤ p < ∞ and ϵ > 0, then for any given f ∈ FCD, where FCD is the set of all continuous functions that
map a compact domain in Rn×d to Rn×d, there exists a Transformer network (with positional encodings) g : Rn×d → Rn×d

such that we have ∥f − g∥Lp ≤ ϵ.

To apply this theorem in our context, we observe that in our case d := Vmax + 1 and n := Nmax for the input space, and
the domain D ⊆ RNmax×(Vmax+1) is compact. Thus f̃ (1) ∈ FCD (note that the output space dimension in our case is RNmax×1

instead of RNmax×d, but this can be handled using zero-padding). Using p = 1, it holds that there exists a transformer h(1)
θ

s.t.,
∥∥∥h(1)

θ − f̃ (1)
∥∥∥ < ϵ

2Nmax
.

Step 5: Pooling. Our model concludes with a [CLS] token pooling mechanism, which is equivalent in expressiveness to
the standard sum pooling method. Thus, assuming that the final layer of our model is given by h

(1)
θ (x), our model can be

written as follows,

hθ(x) =

Nmax∑
i=1

(
h
(1)
θ (x)i

)
. (15)

Step 6: Approximating the objective function. Intuitively, hθ(x) approximates R(x) because h
(1)
θ (x)i approximates

f (1)(x)i.

We demonstrate this as follows.

∥hθ −R∥L1
=

∥∥∥∥∥
Nmax∑
i=1

(
h
(1)
θ;i

)
−

Nmax∑
i=1

f
(1)
i

∥∥∥∥∥
L1

(16)

≤
Nmax∑
i=1

∥∥∥h(1)
θ;i − f

(1)
i

∥∥∥ (17)

=

Nmax∑
i=1

∥∥∥h(1)
θ;i + (f̃

(1)
i − f̃

(1)
i )− f

(1)
i

∥∥∥ (18)

≤
Nmax∑
i=1

∥∥∥h(1)
θ;i − f̃

(1)
i

∥∥∥+

Nmax∑
i=1

∥∥∥f̃ (1)
i − f

(1)
i

∥∥∥ (19)

We applied the triangle inequality to obtain the two inequalities. Next, note that for a field F : Rn1 → Rn2 , the L1 norm of
any coordinate function is less than the L1 norm of F : ∥Fj∥L1 ≤ ∥F∥L1 for any j ∈ {1, . . . , n2}. This can be seen directly
from the definition of the L1 norm of F . Combining this with our choices of f̃ and hθ shows that:

N∑
i=1

∥∥∥h(1)
θ;i − f̃

(1)
i

∥∥∥+

Nmax∑
i=1

∥∥∥f̃ (1)
i − f

(1)
i

∥∥∥ (20)

<

Nmax∑
i=1

ϵ

2Nmax
+

Nmax∑
i=1

ϵ

2Nmax
(21)

= ϵ. (22)

In total, this means that ∥hθ −R∥L1
< ϵ, so we are done.
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Proposition A.4 (GSFs capture known baselines). Let B be the set of scoring functions implemented by the Min/Max/Mean
aggregated probability methods (Guerreiro et al., 2022; Kadavath et al., 2022; Varshney et al., 2023; Huang et al., 2023b)
for HD, as well as the MinK% (Shi et al., 2023) and MinK%++ (Zhang et al., 2024) methods for DCD. For any scoring
function f ∈ B, there exists a choice of functions κ, T, g such that the GSF R in Equation (6), implements f .

Proof. We will prove the Proposition by defining, for each baseline, the functions implementing components κ, T, g,
assuming no ties in the ATP values p.

Mean Aggregated Probability. This baseline simply outputs the mean across the ATPs p. The following selection of
functions implements it as a GFS:

κ(X′,p) = 1 T (X′,p) = 0 g(X′,p) =
1

N
p

Min Aggregated Probability outputs the min value across the ATPs p. The following selection of functions implements it
as a GFS:

κ(X′,p) = −p T (X′,p) = −min(p) g(X′,p) = p

Max Aggregated Probability outputs the max value across the ATPs p. We simply pick:

κ(X′,p) = p T (X′,p) = max(p) g(X′,p) = p

MinK%. Please refer to Section 4.

MinK%++. Let p̄ = log(p)−µ
σ , be the normalized version of p, with:

µi = EX′
i
[log(X′

i)] =

V∑
v=1

X′
i,v · log(X′

i,v),

σi =
√

EX′
i
[(log(X′

i)− µi)
2] =

√√√√ V∑
v=1

X′
i,v ·

(
log(X′

i,v)− µi

)2
, (23)

Where X′ is given from Equation (1).

The baseline is implemented by setting:

T (X′,p) = −perc(p̄,K) = −
(
sort(p̄)⌈ K

100 ·N⌉
)
,

κ(X′,p) = −p̄, g(X′,p) =
p̄⌈

K
100 ·N

⌉ .
Loss as a Privacy Proxy (Yeom et al., 2018). This method uses the model’s negated loss as a proxy for contamination,
which can be defined as the average of the log ATPs. The method can thus be implemented with:

κ(X′,p) = 1, T (X′,p) = 0, g(X′,p) =
1

N
log(p). (24)

Corollary A.5 (Approximation of Baselines by LOS-NET). Our architecture, as defined in Equation (3), can arbitrarily
well approximate, in the L1 sense, any of the baseline methods in B when operating on context and token-vocabulary of,
resp., maximal sizes Nmax and Vmax.

Proof. To prove Corollary 4.3, it suffices to show the following. First (i), that the baselines can be implemented as in
Equation (6), given their sequence length and vocabulary size satisfy, N ≤ Nmax, V ≤ Vmax, where values in the inputs
for indices larger than N,V are ‘padded’ with e.g., −1. Second (ii), that their implementations are realized with κ, T , and g
which are all measurable, and with g also integrable.
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(i) Let us slightly modify the implementations provided in the Proof for Proposition 4.1 to correctly account for padding
values. Let us conveniently define:

α : R → R, α(x) = 1− ReLU(−x) =

{
1 x ≥ 0

1 + x x < 0

Neff =

Nmax∑
i=1

α(pi) Veff =

Vmax∑
v=1

α(X1,v) (25)

as well as the following function, which will help us ‘manipulate’ the padding value in order not to interfere with the
effective computations required by baselines:

β : R → R, β(x;M,f) =

{
f(x) x ≥ 0

M x = −1
,M > 0. (26)

Mean Aggregated Probability.

κ(X′,p) = 1 T (X′,p) = 0 g(X′,p) =
1

Neff
p ◦ α(p),

where ◦ denotes the hadamard (element-wise) product.

Min Aggregated Probability.

κ(X′,p) = −β(p) T (X′,p) = −min(β(p)) g(X′,p) = p M = 2, f ≡ id.

Max Aggregated Probability.

κ(X′,p) = p T (X′,p) = max(p) g(X′,p) = p

MinK%.

κ(X′,p) = −β(p) T (X′,p) = −
(
sort(β(p))⌈ K

100 ·Neff⌉
)

g(X′,p) =
log(β(p))⌈
K
100 ·Neff

⌉ M = 2, f ≡ id.

where the note the application of β inside the log prevents negative inputs.

MinK%++. Before illustrating how this baseline is implemented, we note the following. In order for the normalization of
log-probs to be well-defined, it is required that: (1) µ is finite, (2) the denominator is greater than 0. As for (1), we note that
null probability values (Xi,v = 0) would be problematic, as they would cause the log function to output −∞. We assume,
in this case, that all probability values lie in [ϵ1, 1], with ϵ1 being a small value such that 0 < ϵ1 < 1. Regarding (2), we
see that the problematic situation would occur in cases where the probability distribution is uniform. We assume to handle
this case by adding a small positive constant ϵ2 > 0 in the denominator, so that the normalization would take the form:
p̄ = log(p)−µ

σ+ϵ2
.

Under these assumptions, we define the following β functions:

β1 = β(·; 2, id.) βi
2 = β(·;−2 log(ϵ1)

ϵ2
, fi), fi(x) =

log(x)− µi⌈
K
100 ·Neff

⌉
σi + ϵ2

where we note that − 2 log(ϵ1)
ϵ2

upper-bounds all the possible values that can be attained by fi’s under our assumptions.

At this point, we observe that the values µi,σi can be correctly obtained as follows, in a way that is not influenced by our
padding scheme:

µi =
∑
v

α(X′
i,v) ·X′

i,v log (β1(X
′
iv)) (27)

σi =

√∑
v

α(X′
i,v) ·X′

i,v (log(β1(X′)i,v)− µi)
2 (28)
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At this point, let β2(p)i = βi
2(pi). We set:

κ(X′,p) = −β2(p) T (X′,p) = −
(
sort(β2(p))⌈ K

100 ·Neff⌉
)

g(X′,p) =
β2(p)⌈
K
100 ·Neff

⌉
and note that the K-th percentile in T is correctly computed despite the padding values due to the specific choice of M in
β2’s.

Loss as a Privacy Proxy (Yeom et al., 2018).

κ(X′,p) = 1, T (X′,p) = 0, g(X′,p) =
1

Neff
log(p). (29)

(ii) We now proceed to show that the implementations above are obtained via measurable functions κ, T , and a measurable
and integrable function g, which completes the proof.

Step 1: Consider a fixed sequence length N ′ ∈ [Nmax] and a fixed vocabulary size V ∈ [Vmax]. When restricted to these
parameters, all relevant functions are continuous. This follows from the fact that each function, when restricted in this
manner, is composed of continuous functions.

Step 2: The input domain for each combination of sequence length N ′ ∈ [Nmax] and vocabulary size V ∈ [Vmax] forms a
compact set, and the union of all of this domains is also compact (as a finite union of compact sets). Moreover, for any two
distinct pairs (N1, V1) and (N2, V2), if either N1 ̸= N2 or V1 ̸= V2, then the corresponding domains are disjoint.

In most of our cases of interest, this follows from the fact that probabilities lie within [0, 1] and that padding is represented
by −1. In other cases, e.g., the application of β, the sets might be different, but remain disjoint and compact.

Thus, by the following lemma, all functions κ, T, g for all baselines are continuous, completing the proof.

Lemma A.6. Let X be a subset of a metric space, which is compact, and can be expressed as a finite disjoint union of
compact subsets Xi indexed by a finite set I , i.e.,

X =
⊔
i∈I

Xi.

Suppose a function f : X → Rn is defined such that for each i ∈ I , there is a continuous function

g(i) : Xi → Rn

satisfying f |Xi
= g(i). Then, f is continuous on X .

The finite disjoint union of compact subsets correspond to all possible sequence lengths (N ′ ∈ Nmax) and vocabulary sizes
(V ′ ∈ Vmax). Below we provide the proof for Lemma A.6.

Proof. Consider any point x ∈ X , and let (x(m)) be a sequence converging to x, in X . We need to show that

f(x(m)) → f(x) as m → ∞.

Since X is a finite disjoint union of compact subsets Xi, there exists an index i∗ such that x ∈ Xi∗ .

Since the subsets Xi are disjoint and compact, there exists a positive minimum separation distance between distinct subsets,
defined as,

δ∗ =
1

2
min
i ̸=j

inf
x∈Xi,y∈Xj

∥x− y∥.

Since each Xi is compact and the index set is finite6, this minimum distance is well-defined and strictly positive.

Because x(m) → x, there exists an integer M such that for all m > M , we have

∥x(m) − x∥ < δ∗.

6https://proofwiki.org/wiki/Distance_between_Disjoint_Compact_Set_and_Closed_Set_in_
Metric_Space_is_Positive#google_vignette
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By the definition of δ∗, this ensures that for sufficiently large m, the sequence x(m) remains in Xi∗ , i.e., x(m) ∈ Xi∗ for all
m > M .

Since f coincides with g(i
∗) on Xi∗ , we have

f(x(m)) = g(i
∗)(x(m)), for all m > M.

By assumption, g(i
∗) is continuous on Xi∗ , so

g(i
∗)(x(m)) → g(i

∗)(x) as m → ∞.

Since f(x) = g(i
∗)(x), it follows that

f(x(m)) → f(x),

which proves that f is continuous at x. Since x was arbitrary, f is continuous on X .

B. Extended Experimental Section
B.1. Experimental Details

Our experiments were conducted using the PyTorch (Paszke et al., 2019) framework (License: BSD), using a single NVIDIA
L-40 GPU for all experiments regarding LOS-NET. We use a fixed batch size of 64 for all the tasks and datasets, and a fixed
value of 8 heads (except for the Movies(Orgad et al., 2024) dataset) in our light-weight transformer encoder for LOS-NET.
Hyperparameter tuning was performed utilizing the Weight and Biases framework (Biewald, 2020) – see Table 3.

B.2. HyperParameters

In this section, we detail the hyperparameter search conducted for our experiments. We use the same hyperparameter grid
for our main model, LOS-NET, and our proposed learning-based baselines, namely, ATP+R-MLP, ATP+R-TRANSF..
Additionally, we note that for a given dataset, we maintained the same grid search approach for all LLMs’ LOSs that we have
trained on. The hyperparameter search configurations for all datasets are presented in Table 3. The grid search optimizes for
the AUC calculated on the validation set.

Table 3: Hyperparameter search grid for LOS-NET.

Dataset Num. layers Learning rate Embedding size Epochs Dropout Weight Decay

HOTPOTQA {1, 2} {0.0001} {128, 256} {300} {0, 0.3} {0, 0.001}
IMDB {1, 2} {0.0001} {128, 256} {300} {0, 0.3} {0, 0.001}
MOVIES {1, 2} {0.0001} {128, 256} {300, 500} {0.0, 0.3, 0.5} {0, , 0.001, 0.005}
WIKIMIA (32/64) {1, 2} {0.0001} {128, 256} {100, 500, 1000} {0, 0.3} {0, 0.001}
BOOKMIA {1, 2} {0.0001} {64, 128} {500} {0, 0.3, 0.5} {0, 0.001}

B.3. Optimizers and Schedulers

For all datasets we employ the AdamW optimizer (Loshchilov, 2017) paired with a Linear scheduler, using a warm up
of 10% of the epochs. We apply an early stopping criterion if there is no improvement in validation performance for 30
consecutive epochs.

B.4. Our Baselines and Rank Encoding

ATP+R-Transf. This baseline is implemented as described in Equation (3), but without incorporating the TDS (X), as
follows:

hθ(X,p) = T (RE(X,p)) , (30)

where T represents an encoder-only transformer architecture (Vaswani, 2017).
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ATP+R-MLP. This baseline is similar to ATP+R-Transf. but replaces the transformer with an MLP. Formally:

hθ(X,p) = MLP (RE(X,p)) , (31)

B.5. Dataset Description

B.5.1. DATASETS FOR HALLUCINATION DETECTION

In this section, we provide an overview of the three datasets used in our hallucination detection analysis; we mostly follow
the framework given in (Orgad et al., 2024) in constructing the datasets. Our aim was to ensure coverage of a wide variety
of tasks, required reasoning skills, and dataset diversity. For each dataset, we highlight its unique contributions and how it
complements the others.

For all datasets, we used a consistent split of 10,000 training samples and 10,000 test samples.

1. HotpotQA (Yang et al., 2018) (License: CC-BY-SA-4.0): This dataset is specifically designed for multi-hop question
answering and includes diverse questions that require reasoning across multiple pieces of information. Each entry
comprises supporting Wikipedia documents that aid in answering the questions. For our analysis, we utilized the
“without context” setting, where questions are posed directly. This setup demands both factual knowledge and reasoning
skills to generate accurate answers.

2. Movies (Orgad et al., 2024) (License: MIT): This dataset checks for factual accuracy in scenarios regarding movies.
LLMs are asked, in particular, who was the actor/actress playing a specific role in a movie of interest. This dataset
contains 7857 test samples.

3. IMDB (originally released with no known license by Maas et al. (2011)): This dataset contains movie reviews designed
for sentiment classification tasks. Following the approach outlined in (Orgad et al., 2024), we applied a one-shot
prompt to guide the large language model (LLM) in using the predefined sentiment labels effectively.

Annotation collection for HD. Specifically, following (Orgad et al., 2024), the dataset D = {(qi, zi)}ℓi=1 contains ℓ
question-answer pairs, where qi are questions and zi are ground-truth answers. For each qi, the model generates a response
ẑi, with predicted answers {ẑi}ℓi=1. The LOS for each response, {(X,p)i}ℓi=1, is saved. Correctness labels yi ∈ {0, 1} are
assigned by comparing ẑi to zi, resulting in the error-detection dataset {(X,p)i, yi}ℓi=1.

LLMs. We consider the following LLMs for our experiments on HD:

1. Mistral-7b-instruct-v0.2 (Jiang et al., 2023) (License: Apache-2.0). Referred to as Mis-7b in the main
text and accessed through the Hugging Face interface at https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3.

2. Llama-3-8b-Instruct (Touvron et al., 2023) (License: Llama-37). Referred to as L-3-8b in the main
text and accessed through the Hugging Face interface at https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct3.

3. Qwen-2.5-7b-Instruct (License: Apache-2.0): Referred to as Q-2.5-7b in the main text and accessed through the
Hugging Face interface at https://huggingface.co/Qwen/Qwen2.5-7B-Instruct.

B.5.2. DATASETS FOR DATA CONTAMINATION DETECTION

BookMIA. (Shi et al., 2023) The original BookMIA data have been obtained from the Hugging Face dataset
swj0419/BookMIA8, accessed via the Hugging Face python datasets API (License: MIT). The dataset totals 9, 870
excerpts from a total of 100 books, of which 50 are labeled as members (positives) and 50 are labeled as non-members
(negatives).

7https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
8https://huggingface.co/datasets/swj0419/BookMIA.
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Throughout all experiments on BookMIA, including the evaluation of baselines, we process only the first 128 words from
each excerpt, originally 512-word long. This expedient allowed for faster LLM inference and lighter data storage at the time
of dataset creation, i.e., the extraction and saving of LLM outputs.

As no standard split is available for this dataset, we proceed by randomly forming training and test sets in the proportions of,
resp., 80% and 20%. To ensure that all excerpts from the same book are in either one of the two sets (and never in both), we
first separate books into two separate lists based on their label, shuffle the obtained lists using a random seed of 42, and
then, for each of the two lists, take the first 80% of books as training books, and the remaining 20% as test books. Training
and test sets are obtained by taking the corresponding excerpts from, respectively, training and test books. After this, we
verified that the obtained sets are both approximately class-balanced (≈ 50% of excerpts in both the training and test sets
are labeled as positives).

In the case of the reference-based baseline, we consider the smallest-sized available counterparts for the respectively attacked
LLMs, namely: Pythia 70M for Pythia models and Llama-1 7B for Llama models. All LLMs are accessed through the
Hugging Face python interface, specifically: EleutherAI/pythia-70m, EleutherAI/pythia-{6.9,12}b9 and
huggyllama/llama-{7,13,30}b10 (License: Llama11).

WikiMIA. WikiMIA(Shi et al., 2023) (License: MIT) is the first benchmark for pre-training data detection, comprising
texts from Wikipedia events. The distinction between training and non-training data is determined by timestamps. WikiMIA
organizes data into splits based on sentence length, enabling fine-grained evaluation. It also considers two settings: original
and paraphrased. The original setting evaluates the detection of verbatim training texts, while the paraphrased setting, where
training texts are rewritten using ChatGPT, assesses detection on paraphrased inputs. In this paper, we consider the original
(non-paraphrased) split and focus on the 32 and 64 split sizes, as they contain the largest number of samples, approximately
750 and 550, respectively. On top of the LLMs attacked in BookMIA, here we also attack Mamba-1.4b (License: Apache-2.0),
accessed via the Hugging Face interface (https://huggingface.co/state-spaces/mamba-1.4b).

B.6. Ablation Study

Existing methods often overlook a critical aspect of LOS. Specifically, they primarily rely on the ATP, p, while neglecting
the TDS, X. In this subsection, we conduct an ablation study to evaluate the significance of the TDS in general, as well as
its size, namely the hyperparameter K introduced in Equation (1).

The Role of the TDS (X). As a case study, we examine both the DCD task on the BookMIA dataset and the HD task across
the three datasets: HotpotQA, IMDB, and Movies. Figures 6 and 7 report a close-up comparison between LOS-NET and
our two proposed baselines, which explicitly neglect the TDS, namely, ATP+R-TRANSF. and ATP+R-MLP. These plots
consistently show how the best-performing model is LOS-NET. In many cases, LOS-NET outperforms the alternatives by a
significant margin, indicating that the information encoded in the TDS (X) is crucial for both tasks. Regarding the two
ATP-based baselines, we report that ATP+R-TRANSF. obtains better performance than ATP+R-MLP in 8 out of 12 cases,
but these improvements do not seem to follow a clear pattern across LLMs and datasets. The only exception is BookMIA,
on which the former architecture outperformed the latter across all the four attacked LLMs.

The hyperparameter K. To evaluate the impact of the hyperparameter K introduced in Equation (1), we conduct a
comprehensive case study focusing on the task of HD.

We experiment with various values of K, specifically K ∈ {10, 50, 100, 500, 1000}, and trained the same selected model
whose results are reported in Table 1 for K = 1000. The corresponding Test AUCs are presented in Figure 8.

From the reported bar plots, we do observe that performances either weakly increase with K (see, e.g., Movies for Q-2.5-7b
or HotpotQA on L-3-8b), or stay approximately constant (see, e.g., IMDB on Mis-7b). In any case, the performance
difference w.r.t. our default setting K = 1000 remains contained. This is a valuable feature, as it unlocks the effective
application of LOS-NET even on non fully open LLMs such as the most recent models released by OpenAI12.

9https://huggingface.co/EleutherAI/pythia-70m (License: Apache-2.0), https://huggingface.co/
EleutherAI/pythia-6.9b, https://huggingface.co/EleutherAI/pythia-12b.

10https://huggingface.co/huggyllama/llama-7b, https://huggingface.co/huggyllama/llama-13b,
https://huggingface.co/huggyllama/llama-30b.

11https://huggingface.co/huggyllama/llama-13b/blob/main/LICENSE, https://huggingface.co/
huggyllama/llama-30b/blob/main/LICENSE

12At the time of writing, OpenAI’s API only gives access to a maximum of 20 top scoring logprobs (https://platform.openai.
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Table 4: Test AUC scores for HD on Qwen-2.5-7b-Instruct (Q-2.5-7b). The best-performing method is in bold, and the
second best is underlined.

Method HotpotQA IMDB Movies

Q-2.5-7b

Logits-mean 66.2 74.8 71.3
Logits-min 59.8 72.1 42.1
Logits-max 60.4 60.7 65.1
Probas-mean 67.5 74.6 74.2
Probas-min 54.4 65.4 44.7
Probas-max 61.8 50.1 72.9

ATP+R-MLP 71.38 ± 0.28 84.69 ± 0.37 78.06 ± 0.45
ATP+R-TRANSF. 69.34 ± 2.04 87.73 ± 0.03 77.37 ± 3.13
LOS-NET 73.71 ± 1.21 88.19 ± 0.88 88.00 ± 0.39

B.7. Results For Hallucination Detection for Qwen-2.5-7b

Table 4 reports results on our three considered HD datasets over LLM Qwen-2.5-7b-Instruct (Q-2.5-7b) (Yang et al., 2024).
We can see LOS-NEToutperforms all non-learnable output-based baselines by large margin, as well as our learnable
baselines ATP+R-TRANSF. and ATP+R-MLP.

B.8. Results On The WikiMIA Dataset

Table 5: Comparison of AUC over four different LLMs, on DCD, over the discussed baselines methods. The best-performing
method is in bold, and the second best is underlined. Reference-based approaches are shaded in pink.

Dataset → WikiMIA - 32 WikiMIA - 64

LLM → P-6.9b L-13b L-30b M-1.4b P-6.9b L-13b L-30b M-1.4b

Loss 63.82 ±2.22 67.45 ±1.57 69.37 ±2.66 60.89 ±1.35 60.59 ±3.50 63.68 ±5.57 66.18 ±4.64 58.46 ±3.69
MinK 66.39 ±2.56 68.08 ±1.45 70.02 ±2.92 63.27 ±1.85 65.07 ±1.80 66.24 ±5.01 68.45 ±4.11 62.46 ±2.75
MinK++ 70.60 ±3.58 84.93 ±1.76 84.46 ±1.43 67.06 ±2.78 71.82 ±3.73 85.66 ±2.25 85.02 ±2.79 67.24 ±4.06

Zlib 64.35 ±3.46 67.70 ±2.25 69.81 ±3.17 62.07 ±3.35 62.59 ±3.38 65.40 ±5.35 67.61 ±4.21 60.59 ±3.73
Lowercase 62.09 ±4.22 64.03 ±6.97 64.31 ±5.18 60.59 ±3.24 58.34 ±4.21 62.63 ±5.05 61.54 ±7.81 57.03 ±2.83
Ref 63.45 ±6.03 57.77 ±5.94 63.55 ±6.69 62.05 ±5.43 62.35 ±4.84 63.07 ±5.09 68.94 ±5.83 60.29 ±4.62

LOS-NET 76.98 ±3.36 93.46 ±1.31 93.76 ±1.56 71.04 ±9.07 76.00 ±5.48 87.86 ±3.73 93.04 ±2.51 79.39 ±2.61

Since WikiMIA does not provide an official training split and our method requires labeled data, we perform 5-fold
cross-validation with training, validation, and testing splits13 and rerun all baselines under the same protocol for a fair
comparison. Results are reported as the mean and standard deviation across folds. For these datasets only, setting the
hyperparameter K = 1000 (recall Equation (1)) led to suboptimal performance in preliminary experiments, thus, we set
K = “Full-Vocabulary”.

As shown in Table 5, LOS-NET consistently surpasses all baseline methods across all eight combinations of LLMs and
datasets. Notably, for L-30b, our model achieves an AUC score that is more than 8 points higher than the best-performing
baseline, MinK%++ for both datasets, demonstrating a substantial improvement. Similarly, for P-6.9b, our model maintains
a steady advantage of approximately 5 AUC for both datasets, further underscoring its robustness. Overall, the second-best
method is MinK%++, followed by MinK%, consistent with the findings of (Zhang et al., 2024).

com/docs/api-reference/completions/create, accessed May 2025.
13We use { 3

5
, 1
5
, 1
5
} as the ratios for training, validation, and testing, respectively.

22

https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create


1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Learning on LLM Output Signatures for Gray-Box Behavior Analysis

Table 6: Comparison of training and detection times of our model LOS-NET across all the DC settings explored in our
paper, as well as HD settings for Mis-7b and L-3-8b. All are measured on a single NVIDIA L-40 GPU.

Task Target LLM Dataset Training Time [h = hours, m
= minutes, s = seconds]

Detection Time (Mean ± Std)
[seconds]

HD

Mis-7b
HotpotQA 9m 19s 3.32× 10−5 ± 1.20× 10−5 s
IMDB 16m 8s 4.05× 10−5 ± 1.83× 10−5 s
Movies 17m 50s 1.95× 10−5 ± 7.24× 10−6 s

L-3-8b
HotpotQA 6m 39s 2.38× 10−5 ± 7.18× 10−6 s
IMDB 4m 23s 3.37× 10−5 ± 1.53× 10−5 s
Movies 11m 34s 3.05× 10−5 ± 1.21× 10−5 s

DCD

L-13b
WikiMIA-32 33m 6s 4.13× 10−5 ± 1.67× 10−6 s
WikiMIA-64 2m 7s 2.67× 10−5 ± 1.12× 10−5 s
BookMIA 7m 32s 3.67× 10−5 ± 8.65× 10−6 s

L-30b
WikiMIA-32 28m 40s 4.05× 10−5 ± 3.10× 10−6 s
WikiMIA-64 5m 8s 4.96× 10−5 ± 2.54× 10−5 s
BookMIA 16m 38s 3.94× 10−5 ± 1.42× 10−5 s

P-6.9
WikiMIA-32 24m 55s 2.91× 10−5 ± 4.41× 10−6 s
WikiMIA-64 26m 13s 3.18× 10−5 ± 1.56× 10−5 s
BookMIA 18m 23s 2.86× 10−5 ± 6.16× 10−6 s

P-12b BookMIA 19m 49s 4.07× 10−5 ± 4.89× 10−6 s

M-1.4b WikiMIA-32 1h 6m 18s 3.87× 10−5 ± 1.27× 10−6 s
WikiMIA-64 1h 16m 51s 3.12× 10−5 ± 1.42× 10−5 s

B.9. LOS-Net Run-Time

In Table 6, we report the wall-clock training times (for the best selected model based on the held-out validation set) and
single-example detection times for LOS-NET for all experiments presented in this paper.
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C. Additional Tasks Background
In this section, we provide some additional background and motivation for the DCD and HD tasks.

Data Contamination Detection. Large-scale pre-training of LLMs typically involves crawling vast amounts of online
data, a common practice to meet their substantial data requirements. However, this approach risks exposing models to
evaluation datasets, potentially compromising our ability to assess their generalization performance accurately (Brown
et al., 2020), or, taking a different perspective, can pose legal and ethical issues when models are accidentally exposed to
copyrighted or sensitive data during training. This phenomenon is typically referred to as Data Contamination. Recently, Li
et al. (2024b) demonstrated that LLMs from the widely used LLaMA (Touvron et al., 2023) and Mistral (Jiang et al., 2023)
model families exhibit significant data contamination, particularly concerning frequently used evaluation datasets.

Hallucination Detection. LLMs’ tendency to generate untrustworthy outputs, commonly known as ”hallucinations,”
remains a significant challenge to their widespread adoption in real-world applications (Tonmoy et al., 2024). To address
this issue, various hallucination mitigation techniques have been proposed, including retrieval-augmented generation (Lewis
et al., 2020; Izacard et al., 2023; Gao et al., 2023), customized fine-tuning (Maynez et al., 2020; Cao et al., 2022; Qiu et al.,
2023), and, inference-time manipulation (Li et al., 2024a; Qiu et al., 2024; Zhao et al., 2024), to name a few. However,
applying these methods to all user-LLM interactions can be computationally expensive. As a more targeted approach,
hallucination detection has been explored to enable selective intervention only when necessary.

General Considerations on Annotations. We consider access to a set of annotations y’s, which we naturally associate
with the corresponding LOS elements. These encode ground-truth labels pertaining to problems of interest, e.g., whether the
input text s⃗ is in the pretraining corpus of f , or whether f hallucinated when generating g⃗ from prompt s⃗. Collecting these
annotations is generally possible, and various strategies could be adopted. For example, for DCD, labels can be gathered
with collaborative efforts testing for text memorization, as studied e.g. in (Chang et al., 2023). We also note that annotations
are immediately (and trivially) available for open-source LLMs with disclosed pretraining corpora such as Pythia (Biderman
et al., 2023). As we demonstrated in Section 5, models trained on annotations available for one LLM can, in some cases, be
transferred and applied to another LLM.

For HD, ground-truth labels can be collected by providing the target LLM with inputs prompting for completion or question
answering on known facts and/or reasoning tasks. Hallucinations or error annotations are derived by comparing the
consistency of the model’s response with known, factually true, or logically correct answers. For further details, refer to
Appendix B.5.1.

D. LOS-Net Visualization
In Figure 9 we provide a visualization of our architecture, LOS-NET .
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Figure 6: Ablation study evaluating the role of the TDS (X) and the ATP (p) on our HD setups, including datasets HotpotQA,
IMDB, Movies, and LLMs L-3-8b, Mis-7b, Q-2.5-7b.
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Figure 7: Ablation study evaluating the role of the TDS (X) and the ATP (p) on BookMIA for Pythia and Llama-1 LLMs.
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Figure 8: Ablation study analyzing the effect of the hyperparameter K introduced in Equation (1).

Row Sort

Rank Encoding

Concat Transformer

SliceX

(X, p)

Figure 9: A visualization of LOS-NET .
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