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Abstract

The growing demand for efficient deep learning has positioned dataset distillation
as a pivotal technique for compressing training dataset while preserving model
performance. However, existing inner-loop optimization methods for dataset dis-
tillation typically rely on random truncation strategies, which lack flexibility and
often yield suboptimal results. In this work, we observe that neural networks
exhibit distinct learning dynamics across different training stages—early, middle,
and late—making random truncation ineffective. To address this limitation, we
propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel
framework that dynamically adapts both truncation positions and window sizes
according to intrinsic gradient behavior. AT-BPTT introduces three key compo-
nents: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an
adaptive window sizing strategy based on gradient variation, and (3) a low-rank
Hessian approximation to reduce computational overhead. Extensive experiments
on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT
achieves state-of-the-art performance, improving accuracy by an average of 6.16%
over baseline methods. Moreover, our approach accelerates inner-loop optimization
by 3.9 × while saving 63% memory cost.

1 Introduction

The unprecedented success of deep learning [14, 18] has been fundamentally driven by the availability
of large-scale datasets and computational resources. However, this data-centric paradigm poses
scalability challenges, particularly in storage efficiency, computational overhead, and environmental
sustainability [5, 33, 20]. These limitations have catalyzed the emergence of dataset distillation
[45, 53, 10, 48, 19] (DD) as a transformative approach to data-efficient learning. By synthesizing
compact surrogate datasets that preserve the essential characteristics of their original counterparts,
DD enables efficient model training without compromising performance.

Dataset distillation is inherently formulated as a bilevel optimization problem [36, 9], consisting of
inner-loop and outer-loop optimization. The outer-loop optimizes the synthetic dataset to minimize
discrepancies between models trained on distilled and original data, and the inner-loop simulates the
training dynamics of a neural network on the distilled dataset [9]. Previous DD methods focus on
approximating the outer-loop to directly align the final performance metric [53, 51, 24, 2, 6, 17, 12,
22]. However, outer-loop methods typically rely on surrogate objectives or heuristic measures to
indirectly capture the effects of inner-loop training, thereby failing to accurately reflect the model’s
training dynamics. Popular inner-loop optimization techniques, such as Backpropagation Through
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Figure 1: Hypothesis verification for the influence of truncation strategies and window size. (a)(b)(c)
show experiments where the preliminary or post truncation positions are implemented at early, middle
and late stages, respectively, and (d)(e)(f) present experiments where the window size is changed
after fixing the truncation position. For example, Early-Preliminary in (a) means that randomly select
preliminary phase (0-100) timesteps in early training stage (0-200 epochs).

Time (BPTT) [46] and its truncated variants (T-BPTT [31], RaT-BPTT [9]), adopt rigid truncation
strategies to partially address performance bottlenecks. Nevertheless, these methods uniformly apply
fixed or random truncation across all training stages, disregarding the distinct learning patterns of
neural networks: early stages prioritize simple patterns and later stages refine complex features [1].
Consequently, the rigid truncation of learning trajectories limits model performance.

To address these limitations, we posit that automatic adjustment of truncation strategies across
distinct training stages could better align with the intrinsic learning dynamics of deep neural networks
(DNNs) [1]. We verify this perspective through a controlled variable experiment, which partitions
the training process into three stages, and selects preliminary or post timesteps unfolding in each
epoch as the truncation position. Our experimental analysis reveals three critical findings: (1) early-
stage truncation of preliminary timesteps yields a 2.9% improvement in test accuracy (Fig. 1a), (2)
middle-stage performance demonstrates negligible sensitivity to truncation position (∆ < 0.3%,
Fig. 1b), and (3) late-stage prioritization of post timesteps enhances accuracy by 1.8% (Fig. 1c). These
results substantiate the suboptimality of random truncation approaches, and motivate the formulation
of a secondary perspective: adaptive window sizing could simultaneously optimize computational
efficiency and gradient preservation. Subsequent experiments with fixed optimal truncation positions
(Fig. 1d-f) demonstrate that a larger window in the early stage achieves a 2.5% accuracy gain, while
the middle- and late-stage variations show insignificant impacts (∆ < 0.2%). These hypotheses and
their validation are detailed in Section 4.1.

Based on the above observation, we propose an effective DD method called Automatic Truncated
Backpropagation Through Time (AT-BPTT). This method integrates three key mechanisms: dynamic
truncation position, adaptive window size and low-rank Hessian approximation. Dynamic truncation
position employs gradient magnitudes to probabilistically determine better truncation timesteps
across different training stages. Adaptive window size leverages the magnitudes of gradient variation
to modulate the truncation window, ensuring that critical gradient information is retained when
fluctuations are high. Low-rank Hessian approximation addresses the computational time and storage
cost issues of Hessian matrix calculation in second-order optimization. Extensive experiments
illustrate that AT-BPTT achieves state-of-the-art (SOTA) performance on CIFAR-10 [15], CIFAR-100
[15], Tiny-ImageNet [16] and ImageNet-1K [29], outperforming the leading inner-loop method by
an average of 6.16% while delivering a 3.9 × faster training speed and a 63% memory reduction.

2 Related Work

Dataset distillation is proposed with the aim of generating a compact synthetic dataset that effectively
substitutes for the original dataset. Dataset distillation can be formulated as a bilevel optimization
problem, with current mainstream approaches broadly categorized into outer-loop optimization
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methods (data matching methods) and inner-loop optimization methods (meta-learning methods).
Outer-loop optimization methods achieve dataset distillation by aligning surrogate objectives between
the original and synthetic datasets. Gradient matching [51] aligns the gradients of synthetic and
original data during training to mimic the optimization behavior of the original dataset. Trajectory
matching [2, 6, 12, 22, 4] aligns parameter trajectories throughout the training process, overcoming
the short-term matching limitations of gradient matching. Distribution matching [41, 52, 44] aligns
distributions in the feature space, circumventing the complexity of bilevel optimization. However,
outer-loop methods rely on surrogate models to indirectly capture the effects of inner-loop training,
failing to accurately reflect the true training dynamics of the model.

Inner-loop optimization methods treat the synthetic dataset as hyperparameters, minimizing the
risk of models trained on synthetic data on the target dataset. A prominent inner-loop approach is
Backpropagation Through Time [46], which simulates the model training process by performing
multi-step gradient descent in the inner loop and optimizes the synthetic data in the outer loop
to achieve dataset distillation. Subsequently, T-BPTT [31] improves distillation performance by
truncating the unrolled time steps. Recently, RaT-BPTT [9] employs a random truncation strategy
to enhance BPTT’s distillation performance, partially reducing computational costs. However, its
random truncation strategy fails to align with the learning characteristics of deep neural networks,
limiting its performance.

Besides optimization-based techniques, there are several other DD methods. Diffusion-based methods
[35, 3] generate compact samples that capture key features of the original dataset by optimizing
representations in the latent space or directly adjusting the diffusion process, excelling in high-quality
image generation and high-resolution tasks. Decoupled optimization methods [47, 32, 38] decompose
the complex distillation process into independently optimizable subtasks, reducing computational
complexity and enhancing the capability to handle large-scale datasets.

3 Preliminary

Dataset distillation [9] aims to compress a large training set D into a smaller set S such that training
on S achieves comparable performance to training on D. The process involves a bilevel formulation:

min
S
L(θT (S),D) s.t. θT (S) = A(θ0,S, T ), (1)

where A represents the inner-loop learner over T steps with initialization θ0 and synthetic dataset S .

Backpropagation Through Time (BPTT). BPTT [46] is the standard method for solving bilevel
optimization in reverse mode. When A follows gradient descent with learning rate α, the meta-
gradient with respect to every unrolling learning trajectory is computed using the chain rule:

GBPTT = −α∂L(θT (S),D)
∂θ

T−1∑
i=1

T−1∏
j=i+1

[1− αHj ]gi, (2)

where Hj =
∂2L(θj(S),D)

∂θ2 represents the Hessian matrix at timestep j, and gi =
∂L(θi(S),D)

∂θ∂S denotes
the value with respect to the parameter θ and the mixed partial derivatives of S at timestep i. The
detailed derivation of the formula is shown in the Appendix A.

Truncated BPTT (T-BPTT). To alleviate the memory burden, T-BPTT [31] propagates gradients
through a smaller unrolling window of M steps instead of the full trajectory:

GT−BPTT = −α∂L(θT (S),D)
∂θ

T−1∑
i=T−M

T−1∏
j=i+1

[1− αHj ]gi. (3)

This truncation omits the first T −M + 1 terms, reducing the number of Hessian products.

Random Truncated BPTT (RaT-BPTT). RaT-BPTT [9] extends T-BPTT by randomly positioning
the truncated window along every unrolling learning trajectory in the training process. The meta-
gradient of RaT-BPTT with random truncation at position N is:

GRaT−BPTT = −α∂L(θN (S),D)
∂θ

N−1∑
i=N−M

T−1∏
j=i+1

[1− αHj ]gi, (4)

which differs from T-BPTT by randomly sampling M timesteps and omitting shared Hessian products.
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4 Methodology

4.1 Hypothesis Verification

We challenge the practice of applying random truncation uniformly across the entire training process
in RaT-BPTT [9] based on two key observations. First, it is well established that deep neural networks
(DNNs) tend to learn simple patterns during the early training stages before progressively acquiring
more complex patterns [1]. Second, T-BPTT [31] exclusively utilizes the last T −M + 1 timesteps
of each epoch, while the impact of restricting updates to early timesteps remains unexplored. These
observations motivate our Hypothesis I: Might sampling specific timesteps from distinct stages lead
to better performance, rather than uniformly applying random truncation?

To verify this hypothesis, we partition the epochs throughout the training process into three equal
stages (early, middle, and late stages) while bisecting the timesteps within the unfolding learning
trajectory for every epoch (preliminary and post phases). Our validation involves controlled ex-
periments where we randomly truncate either preliminary or post timesteps during the early stage,
maintaining standard RaT-BPTT implementation in subsequent two stages. Similar validations are
implemented on the middle and late training stages. The experiments are conducted on the CIFAR-10
[15] dataset using the ConvNets architecture. Our experimental results shown in Fig. 1a-c reveal
three key observations: (1) preliminary phase truncation in early stage enhances validation accuracy
by an average of 2.9%; (2) middle stage shows negligible performance variance (∆ < 0.5%) between
phase choices; (3) post phase selection in late stage demonstrates 1.8% accuracy improvement. These
findings not only validate our initial hypothesis but also raise a new Hypothesis II: Can dynamically
adjusting the truncation window size further enhance distillation performance?

To further investigate the impact of truncation window size, we adopt a roughly adaptive truncation
strategy based on the experiments mentioned above: selecting preliminary timesteps during the early
training stage, applying random truncation in the middle stage, and seclecting post timesteps in the
late stage. Subsequently, we conduct experiments in which each stage alternated between using the
original window (used in RaT-BPTT), a larger window, and a smaller window (modifying the original
window size by ±10 timesteps). As shown in Fig. 1d–f, large window leads to a 2.5% accuracy
improvement in the early stage, while variations in window size during the middle and late stages
have a negligible effect (∆ < 0.2%). Based on these, we conclude that selecting appropriately sized
truncation windows for specific timesteps at different training stages yields better performance.

4.2 Automatic Truncated BPTT

Building on the above findings, we propose an Automatic Truncated Backpropagation Through Time
(AT-BPTT) framework designed to optimize the inner-loop for dataset distillation. This automatic
mechanism consists of three components: dynamic truncation position, adaptive window size and a
low-rank Hessian approximation, as shown in Fig. 3.

Post

Timestep

Figure 2: Illustration of the gradient
and gradient variation average magnitudes
each timestep during training process. The
entire timesteps are roughly averaged into
preliminary and post phases.

Dynamic Truncation Position. The experimental val-
idation of Hypothesis I raises a question: How to estab-
lish an evaluation metric that enables staged truncation
of timesteps during different training stages? Our analy-
sis begins with the gradient accumulation mechanism ex-
pressed in Eqn. 4, which reveals that parameter updates
represent cumulative contributions from all timestep gra-
dients, with each timestep’s influence modulated by its
temporal position and subsequent gradient dynamics. To
quantify these temporal effects, we record gradient mag-
nitudes across all timesteps during training iterations,
with averages visualized in Fig. 2. It is observed that gra-
dient updates are initially large but gradually diminish
as timesteps progress. Interestingly, this observation and
the verification of Hypothesis I align with Arpit et al.
[1]’s seminal work on deep learning dynamics: DNNs
tend to learn simple, easily identifiable patterns during
the early stages of training before progressively shifting toward more complex and fine-grained
patterns in later stages. This is attributable to that simple patterns often dominate the data and exhibit
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Figure 3: Overall framework of our proposed AT-BPTT. The distilled data flows through our patch-
wise semantic preservation module in the inner-loop optimization. The dynamic truncation position
and adaptive window size then jointly optimize inner-loop training dynamics. The low-rank Hessian
approximation is utilized to reduce computational cost.

high saliency, allowing large gradient updates in the preliminary phase to align effectively with these
patterns, leading to rapid performance improvement in the early stage. Although the gradients of
timesteps in the post phase are smaller, they play a crucial role in fine-tuning the network, ultimately
leading to significant performance gains in the late stage.

This staged behavior suggests the gradient magnitude serves as an intrinsic metric for training
stage identification. We thus formalize our truncation probability mechanism through temperature-
controlled softmax normalization:

Ptrunc(t) =
exp(∥∇θLt∥2/τ)∑T
i=1 exp(∥∇θLi∥2/τ)

, (5)

where τ represents the annealing temperature parameter. Therefore, we define a three-stage strategy
to determine dynamic truncation positions: (1) In the early stage, each timestep at t is selected as a
truncation position with probability Ptrunc(t); (2) In the middle stage, truncation is applied randomly;
(3) In the late stage, the probability of each timestep is 1−Ptrunc(t)

T−1 :

Ptrunc(t) =


exp(∥∇θLt∥2/τ)∑T
i=1 exp(∥∇θLi∥2/τ)

, if Early Stage,

1/T, if Middle Stage,
1− exp(∥∇θLt∥2/τ)∑T

i=1
exp(∥∇θLi∥2/τ)

T−1 , if Late Stage.

(6)

Adaptive Window Size. Based on the three-stage framework, we further propose an adaptive window
size mechanism to address Hypothesis II. Revisiting Eqn.4, conventional inner-loop optimizations
employ fixed window size truncation to reduce computational overhead by partial Hessian matrix
computation. This Hessian matrix, obtained via second-order differentiation of the loss function,
captures the temporal variations in gradients across different timesteps. We thus record the gradient
variation magnitude |∥∇θLt∥2 − ∥∇θLt−1∥2| at each timestep during training as visualized in Fig. 3.
This reveals a type of staged pattern: early training stages exhibit high-magnitude oscillatory gradients,
while middle and late stages demonstrate stabilized gradient variations.

This observation aligns with Hypothesis II verification experiments, suggesting that substantial gra-
dient variations indicate active adjustment of model decision boundaries at corresponding timesteps.
To obtain an adaptive window size aligned with gradient variation magnitude, we introduce a
temperature-controlled soft normalization of gradient variations to obtain the size weight η(t) at t:

η(t) =
exp(|∥∇θLt∥2 − ∥∇θLt−1∥2| /τ)∑T
i=1 exp (|∥∇θLi∥2 − ∥∇θLi−1∥2| /τ)

. (7)

The adaptive window size W ∗(t) at timestep t is then computed through linear transformation of the
original window size W in RaT-BPTT: W ∗(t) = W − d+ 2d · η(t) with a range of [W − d,W + d]
and d≫ 0. This adaptive adjustment enables the model to automatically allocate larger windows for
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timesteps with significant gradient variations while contracting windows for stable phases, achieving
better balance between computational efficiency and model performance.

Threshold-guided Stage Transition. In contrast to the rough equal partitioning for hypothesis
verification in Section 4.1, we adopt a threshold-guided stage transition approach to stably switch
between early, middle, and late training stages. Since the convergence of optimization processes in
visual tasks is ultimately determined by the trend in model performance metrics, we utilize accuracy
variation at each timestep to automatically regulate training stages. We define the accuracy variation
as: ∆At = At −At−1. Two zero-initialized counters Cearly−middle and Cmiddle−late are defined to
record the number of times ∆At < M and ∆At < N , respectively. The rule from early to middle
stage and from middle to late stage are:

Cearly−middle =

T1∑
t=1

1(∆At < M) ≥ X, Cmiddle−late =

T2∑
t=T1+1

1(∆At < N) ≥ Y, (8)

where 1(·) denotes the indicator function that returns 1 if the condition is satisfied and 0 otherwise.
This mechanism triggers stage transition when either: (1) X times of accuracy variation fall below M
for early-to-middle transition, or (2) Y times fall below N for middle-to-late transition. The accuracy
variation reflects model learning dynamics, and employing multiple threshold evaluations effectively
mitigates training noise, thereby ensuring stable transitions.

4.3 Low-Rank Hessian Approximation

In addition to random truncation, RaT-BPTT’s unfolding learning trajectory approach also suffers
from high computational overhead. This primarily stems from the frequent computation of implicit
Hessian matrix products in Eqn. 4, which are required for evaluating inner-loop optimization perfor-
mance. Therefore, we introduce a low-rank Hessian approximation (LRHA) to reduce both time and
memory complexity while preserving the gradient direction by leveraging the low-rank structure of
the Hessian matrix. Given the Hessian at timestep j, we approximate it by a rank-kj factorization:

H̃j = UjΣjV
⊤
j ≈ Hj , (9)

where Uj , Vj ∈ Rd×kj and Σj ∈ Rkj×kj . We adaptively determine kj based on the normalized
gradient magnitude, with a lower bound:

kj = max

(
kmin,

⌊
kmax ·

∥∇θLj∥2
maxi≤j ∥∇θLi∥2

⌋)
, (10)

where kmax = 0.1 d and kmin > 0 ensures numerical stability. Instead of materializing Hj , we
apply randomized singular value decomposition (SVD) using Hessian-vector products (HVP) and
QR factorization:

Y (0) = HVP(Hj ,Ωj), Ωj ∼ N (0, I),

Y (q) = HVP
(
Hj , H

⊤
j Y (q−1)

)
, q = 1, 2, (11)

Qj , Rj = QR(Y (2)), Bj = Q⊤
j HjQj , Ũj ,Σj , Vj = SVD(Bj).

We then reconstruct new H̃j :
H̃j = (QjŨj) · Σj · (QjVj)

⊤. (12)

The final meta-gradient of AT-BPTT is formulated as:

GAT-BPTT = −α∂L(θN (S),D)
∂θ

=

N−1∑
i=N−W∗(t)

T−1∏
j=i+1

[1− αH̃j ] · Ptrunc(i)gi. (13)

Let p denote the dimensionality of the model parameter vector. Through our proposed LRHA, the
time and memory complexity drop from O(p2) to O(p kj + k3j ) and from O(p2) to O(2pkj + k2j ),
respectively, greatly reducing computational resource consumption.
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4.4 Patch-wise Semantic Preservation

To address the poor performance of inner-loop DD on high-resolution datasets, we propose a
lightweight patch-wise semantic preservation (PSP) to enhance generalization capability. Given an
input image x ∈ RH×W×3, we split it into n× n non-overlapping patches:

P = {xij |xij = x[i · s : (i+ 1) · s, j · s : (j + 1) · s], s = ⌊H/n⌋} (14)

where n controls the granularity of local processing and we set n = 4. Each patch xij is independently
distilled using AT-BPTT to generate local synthetic prototypes:

Sij = AT-BPTT(xij , θlocal), (15)

where θlocal denotes the parameters of the local distillation network applied to each patch. To
ensure semantic coherence, we perform prototype centroid matching against the global prototype set
Sglobal = {Sij}ni,j=1:

Lalign =
∑
i,j

∥µ(Sij)− µ(Sglobal)∥2, (16)

where µ(·) calculates the prototype centroid. The final objective combines original distillation loss
and alignment loss: Ltotal = LAT-BPTT + λLalign, where λ balances the two objectives.

5 Experiments

5.1 Experimental Setup

Dataset. We adhere to the conventional procedure adopted in dataset distillation [9]. We select
three standard datasets: CIFAR-10 [15] (10 classes, 32×32), CIFAR-100 [15] (100 classes, 32×32),
and Tiny-ImageNet [16] (200 classes, 64×64). To further show the effectiveness of AT-BPTT on
high-resolution images, we scale up the dataset to ImageNet-1K [29] (1,000 classes, 224×224). For
CIFAR-10 and CIFAR-100, we distill datasets with 1, 10, and 50 images per class (IPC = 1, 10, 50),
while for Tiny-ImageNet and ImageNet-1K, we use 1 and 10 images per class (IPC = 1, 10).

Baselines. We compare our AT-BPTT with the most representative baselines categorized into two
distinct paradigms: one category contains methods that approximate or optimize the outer-loop of
bilevel optimization, and the other category includes methods that directly improve the inner-loop of
bilevel optimization. More details on baseline methods are introduced in Appendix B.

Implementation Details. Following Rat-BPTT [9], we employ standardized convolutional neural
network [11] (CNN) architectures with depth adapted to dataset specifications: a 3-layer CNN (Conv-
3) for CIFAR-10/CIFAR-100 synthetic datasets, and a 4-layer CNN (Conv-4) for Tiny-ImageNet and
high-resolution ImageNet-1K datasets. More hyperparameter settings are detailed in Appendix B.

5.2 Comparison with Previous Methods

Tab. 1 demonstrates that the proposed AT-BPTT framework establishes new state-of-the-art perfor-
mance on three benchmark datasets (CIFAR-10 [15], CIFAR-100 [15], and Tiny-ImageNet [16]),
outperforming existing inner-loop and outer-loop optimization approaches by a significant margin.
Most remarkably, AT-BPTT achieves an average accuracy gain of 6.16% over RaT-BPTT, the SOTA
inner-loop DD method. This substantial improvement in low-resolution image distillation stems from
the combination of our novel dynamic truncation strategy and adaptive window size mechanism,
which collectively enhance the model’s capacity to capture multi-level feature correlations through
dynamically adjusted learning trajectories. The visualizations of these synthetic datasets are shown in
Appendix F.

For the high-resolution dataset ImageNet-1K, Tab. 1 shows that AT-BPTT also exhibits superior
competitiveness compared to leading methods, achieving 30.6% accuracy under the IPC=10 setting.
This exceptional performance is attributed to the transformative role of PSP segmentation strategy,
which effectively transfers AT-BPTT’s strengths in low-resolution domains to high-resolution scenar-
ios. These results not only confirm AT-BPTT’s capability in processing high-resolution data but also
highlight the scalability of the PSP strategy for more advanced high-resolution applications. More
experimental results are provided in Appendix C.
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Table 1: Comparison with the SOTA baseline dataset distillation methods. Following previous
methods, the ConvNet used for distillation are Conv-3 on CIFAR-10 [15] and CIFAR-100 [15],
Conv-4 on Tiny-ImageNet [16] and ImageNet-1K [29]. Each reported result is the average of 5
experiments. Entries with “-” are absent due to scalability problems.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet-1K

Img/class(IPC) 1 10 50 1 10 50 1 10 1 10

Outer-loop Optimization
DSA [53] 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4 6.6±0.2 14.4±2.0 1.1±0.7 3.2±0.3
CAFE [41] 30.3±1.1 46.3±0.6 55.5±0.6 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
MTT [2] 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 8.8±0.3 23.2±0.2 - -

TESLA [6] 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 - - 7.7±1.0 17.8±0.5
DATM [12] 46.9±0.5 66.8±0.2 76.1±0.3 27.9±0.2 47.2±0.4 55.0±0.2 17.1±0.3 31.1±0.3 - -
ATT [22] 48.3±1.0 67.7±0.6 74.5±0.9 26.1±0.5 44.2±0.8 51.2±0.2 11.0±0.4 25.8±0.7 4.7±1.4 8.7±1.0
MCT [54] 48.5±0.2 66.0±0.3 72.3±0.3 24.5±0.5 42.5±0.5 46.8±0.2 9.6±0.5 22.6±0.8 - -
NCFM [44] 49.5±0.3 71.8±0.3 77.4±0.3 34.4±0.5 48.7±0.3 54.7±0.2 18.2±0.5 26.8±0.6 - -

Inner-loop Optimization
BPTT [46] 49.1±0.6 62.4±0.4 70.5±0.4 21.3±0.6 34.7±0.5 - - - 1.1±0.7 2.3±0.9
FRePO [55] 45.6±0.1 63.5±0.1 70.7±0.1 26.3±0.1 41.3±0.1 41.5±0.1 16.9±0.1 22.4±0.1 - -
RCIG [24] 49.6±1.2 66.8±0.3 - 35.5±0.7 - - 22.4±0.3 - - -

RaT-BPTT [9] 53.2±0.7 69.4±0.4 75.3±0.3 35.3±0.4 47.5±0.2 50.6±0.2 20.1±0.3 24.4±0.2 5.2±1.1 13.0±0.9
Teddy [49] 30.1±1.4 53.0±0.5 66.1±0.4 13.5±0.4 33.4±0.7 49.4±0.5 - - - 34.1±0.8

Ours 54.4±0.6 72.4±0.3 78.7±0.2 36.9±0.5 49.0±0.6 55.9±0.1 24.3±0.4 32.7±0.5 14.7±0.7 30.6±0.3

Full dataset 84.8 56.2 37.6 33.8

5.3 Computational Efficiency Comparison
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Figure 4: Comparison of performance,
GPU memory usage, and speedup between
the SOTA DD methods and our AT-BPTT.

To evaluate the computational efficiency of our approach,
we compare the average GPU memory consumption and
training time among three leading data distillation meth-
ods: DATM [12], RaT-BPTT [9], and our proposed AT-
BPTT. All experiments are conducted on NVIDIA A800
GPUs with IPC setting of 1, 10, and 50. As demonstrated
in Fig. 4, AT-BPTT achieves superior computational
efficiency while maintaining competitive performance,
delivering a 63% reduction in memory usage and a 3.9×
speedup compared to RaT-BPTT. These results under-
score the exceptional scalability and practical viability
of our method for real-world deployment.

5.4 Ablation Study

Component Combination Evaluation. In this section, we evaluate the individual and combined
contributions of three performance components: dynamic truncation position (DTP), adaptive window
size (AWS), and patch-wise semantic preservation (PSP). Ablation studies are conducted under the
IPC=10 setting across CIFAR-10/100 [15], Tiny-ImageNet [16] and ImageNet-1K [29]. Tab. 2 shows
that the integrated application of DTP and AWS yields a combined optimization effect, resulting in a
2.8% accuracy improvement, which surpasses the sum of the individual contributions. This arises
from the complementary information processing mechanisms of DTP and AWS, which enhance
the model’s ability to capture key features of the original dataset. Regarding the PSP component,
Tab. 2 reveals that its accuracy improvement is marginal on CIFAR-10/100 yet it is substantial on two
datasets with higher resolution. When combined with DTP and AWS, it leads to remarkable gains of
8.3% and 17.6%. This is attributed to PSP’s ability to segment high-resolution images into smaller
patches, thereby fully leveraging AT-BPTT’s strengths across various resolutions.

Stage Transition Threshold Analysis. To achieve precise control over stage transitions during model
training, we study four critical hyperparameters: M (the accuracy variation threshold in the early
stage), X (the counter threshold for early stage), N (the accuracy variation threshold in the middle
stage), and Y (the counter threshold for middle stage). Through experiments with the CIFAR-10 [15]
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Table 2: Ablation study for the contribution of differ-
ent components in our framework. The improvements
denoted by red numbers are with respect to baseline.

DTP AWS PSP CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet-1K

× × × 69.4 47.5 24.4 13.0
✓ × × 70.7 (↑ 1.3) 48.1 (↑ 0.6) 27.3 (↑ 2.9) 19.7 (↑ 6.7)
× ✓ × 70.2 (↑ 0.8) 47.9 (↑ 0.4) 26.6 (↑ 2.2) 17.9 (↑ 4.9)
× × ✓ 69.5 (↑ 0.1) 47.8 (↑ 0.3) 25.4 (↑ 1.0) 17.2 (↑ 4.2)
✓ ✓ × 72.2 (↑ 2.8) 48.7 (↑ 1.2) 30.1 (↑ 6.7) 23.4 (↑ 13.4)
✓ ✓ ✓ 72.4 (↑ 3.0) 49.0 (↑ 1.5) 32.7 (↑ 8.3) 30.6 (↑ 17.6)

Table 3: Ablation study for d corresponding
to window size. The improvements denoted
by red numbers are with respect to baseline.

d Accuracy (%) Time (hours) Memory (GB)

0 70.56 4.9 5.34
5 71.43 (↑ 0.87) 5.1 (↑ 0.2) 5.62 (↑ 0.28)
10 72.44 (↑ 1.88) 5.5 (↑ 0.6) 6.14 (↑ 0.80)
15 72.76 (↑ 2.2) 5.8 (↑ 0.9) 7.38 (↑ 2.04)
20 72.95 (↑ 2.39) 6.2 (↑ 1.3) 9.16 (↑ 3.82)

 69.21 70.84 71.96 71.14 71.03 69.99

69.72 70.93 71.58  71.87 71.46 70.46 

70.03 70.12 71.72 72.34 71.77 71.23

69.52 70.88 71.61 71.83 71.52 70.89

69.16 70.42 70.87 71.01 70.92 70.53

68.59 69.22 69.55 69.83 69.44 69.141.
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Figure 5: Ablation study for the stage transition threshold. The left and right matrices reflect the
effect of X and M , and Y and N on the accuracy, respectively. Darker colored squares indicate
higher accuracy under the synergistic influence of horizontal and vertical coordinates.

under IPC=10, we identify that suboptimal parameter configurations induce two failure modes: the
plateaus in the initial training phase or too early transition to the final stage, both of which disrupt
the staged paradigm and cause substantial performance degradation. Fig. 5 demonstrates optimal
parameterization when X corresponds to 5% of total training epochs and Y to 4%, with M=1.5 and
N=1.0. This configuration achieves balanced stage duration distribution, stable convergence patterns,
and better AT-BPTT performance.

Window Size Analysis. The hyperparameter d in Section 4.2 governs the adjustment range of
the truncation window, demonstrating a trade-off between model performance and computational
efficiency. We conduct an ablation study on CIFAR-10 [15] with IPC=10 and quantitatively assess
the dual effects of varying d values. As Tab.3 shows, progressive increases in d simultaneously
enhance test accuracy and computational demands. Notably, compared to the baseline (d = 0),
d = 10 achieves a 1.88% accuracy improvement with modest resource increments, with only 0.6
hours additional training time and 0.8 GB GPU memory usage. However, when d > 10, the accuracy
gains diminish while the computational cost rises substantially. This mainly stems from the need
for longer timesteps and the corresponding exponential growth in the dimensionality of the Hessian
matrix as d increases. Based on a trade-off analysis between performance gains and computational
costs, we set the value of d to 10 and report the results obtained with this setting. More ablation
studies are provided in Appendix C.

6 Conclusion

This paper proposes AT-BPTT, a novel dataset distillation framework that optimizes inner-loop
training through staged adaptation. Our analysis reveals that neural networks prioritize distinct
learning patterns across training stages, necessitating adaptive truncation mechanisms. AT-BPTT
resolves this by dynamically aligning truncation positions with gradient magnitude distributions,
adjusting window sizes based on gradient stability, and reducing computational cost by low-rank
Hessian approximation. The experiments across four benchmark datasets confirm that our method
significantly outperforms existing dataset distillation method, achieving superior accuracy with
efficient training. Furthermore, the formalization of gradient dynamics as a stage indicator provides a
theoretical foundation for future research in bilevel optimization. Future work will focus on extending
AT-BPTT to recurrent architectures and federated learning scenarios.

9



Acknowledgments

This work is supported in part by the Natural Science Foundation of Sichuan Province (Grant No.
2025ZNSFSC1464), the China Postdoctoral Science Foundation (Grant No. 2024M760357), the
Postdoctoral Fellowship Program of CPSF (Grant No. GZB20240115), the Sichuan Science and
Technology Program (granted No. 2024ZDZX0011), the Fundamental Research Funds for the
Central Universities No.ZYGX2025XJ042 and the Natural Science Foundation of China (Grant No.
62406057).

References
[1] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,

A. C. Courville, Y. Bengio, and S. Lacoste-Julien. A closer look at memorization in deep
networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, ICML, volume 70 of Proceedings of Machine Learning Research, pages
233–242. PMLR, 2017.

[2] G. Cazenavette, T. Wang, A. Torralba, A. A. Efros, and J. Zhu. Dataset distillation by matching
training trajectories. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, pages 10708–10717. IEEE, 2022.

[3] M. Chen, J. Du, B. Huang, Y. Wang, X. Zhang, and W. Wang. Influence-guided diffusion for
dataset distillation. In The Thirteenth International Conference on Learning Representations,
ICLR, 2025.

[4] Y. Chen, G. Chen, M. Zhang, W. Guan, and L. Nie. Curriculum coarse-to-fine selection for
high-ipc dataset distillation. CoRR, abs/2503.18872, 2025.

[5] J. Cui, R. Wang, S. Si, and C. Hsieh. DC-BENCH: dataset condensation benchmark. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, 2022.

[6] J. Cui, R. Wang, S. Si, and C. Hsieh. Scaling up dataset distillation to imagenet-1k with constant
memory. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors,
International Conference on Machine Learning, ICML, volume 202 of Proceedings of Machine
Learning Research, pages 6565–6590. PMLR, 2023.

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT, pages 4171–4186.
Association for Computational Linguistics, 2019.

[8] J. Du, Y. Jiang, V. Y. F. Tan, J. T. Zhou, and H. Li. Minimizing the accumulated trajectory
error to improve dataset distillation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR, pages 3749–3758. IEEE, 2023.

[9] Y. Feng, R. Vedantam, and J. Kempe. Embarrassingly simple dataset distillation. In 12th
International Conference on Learning Representations, ICLR, 2024.

[10] J. Geng, Z. Chen, Y. Wang, H. Woisetschlaeger, S. Schimmler, R. Mayer, Z. Zhao, and C. Rong.
A survey on dataset distillation: Approaches, applications and future directions. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pages
6610–6618. ijcai.org, 2023.

[11] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 4367–4375.
Computer Vision Foundation / IEEE Computer Society, 2018.

[12] Z. Guo, K. Wang, G. Cazenavette, H. Li, K. Zhang, and Y. You. Towards lossless dataset
distillation via difficulty-aligned trajectory matching. In The Twelfth International Conference
on Learning Representations, ICLR, 2024.

10



[13] J. Howard and S. Gugger. Fastai: a layered api for deep learning. Information, 11(2):108, 2020.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In F. R. Bach and D. M. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, ICML, volume 37, pages 448–456, 2015.

[15] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical
report Citeseer, 2009.

[16] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. Technical Report, 7(7):3, 2015.

[17] Y. Lee and H. W. Chung. Selmatch: Effectively scaling up dataset distillation via selection-based
initialization and partial updates by trajectory matching. In Forty-first International Conference
on Machine Learning, ICML, 2024.

[18] S. Lei and D. Tao. A comprehensive survey of dataset distillation. IEEE Trans. Pattern Anal.
Mach. Intell., 46(1):17–32, 2024.

[19] M. Li, D. Zhang, Q. Dong, X. Xie, and K. Qin. Adaptive dataset quantization. In AAAI-25,
pages 12093–12101, 2025.

[20] M. Li, D. Zhang, T. He, X. Xie, Y. Li, and K. Qin. Towards effective data-free knowledge
distillation via diverse diffusion augmentation. In Proceedings of the 32nd ACM International
Conference on Multimedia, MM, pages 4416–4425, 2024.

[21] Z. Li, Z. Guo, W. Zhao, T. Zhang, Z. Cheng, S. Khaki, K. Zhang, A. Sajedi, K. N. Plataniotis,
K. Wang, and Y. You. Prioritize alignment in dataset distillation. CoRR, abs/2408.03360, 2024.

[22] D. Liu, J. Gu, H. Cao, C. Trinitis, and M. Schulz. Dataset distillation by automatic training
trajectories. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol, editors,
Computer Vision - ECCV, volume 15145 of Lecture Notes in Computer Science, pages 334–351.
Springer, 2024.

[23] N. Loo, R. M. Hasani, A. Amini, and D. Rus. Efficient dataset distillation using random feature
approximation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, 2022.

[24] N. Loo, R. M. Hasani, M. Lechner, and D. Rus. Dataset distillation with convexified implicit
gradients. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors,
International Conference on Machine Learning, ICML, volume 202 of Proceedings of Machine
Learning Research, pages 22649–22674. PMLR, 2023.

[25] Y. Ma, K. Qin, and S. Liang. Beta-LR: Interpretable logical reasoning based on beta distribution.
In Findings of the Association for Computational Linguistics: NAACL 2024, 2024.

[26] A. Maekawa, N. Kobayashi, K. Funakoshi, and M. Okumura. Dataset distillation with attention
labels for fine-tuning BERT. In A. Rogers, J. L. Boyd-Graber, and N. Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), ACL, pages 119–127. Association for Computational Linguistics,
2023.

[27] A. Maekawa, S. Kosugi, K. Funakoshi, and M. Okumura. Dilm: Distilling dataset into
language model for text-level dataset distillation. In K. Duh, H. Gómez-Adorno, and S. Bethard,
editors, Findings of the Association for Computational Linguistics: NAACL, pages 3138–3153.
Association for Computational Linguistics, 2024.

[28] T. Nguyen, R. Novak, L. Xiao, and J. Lee. Dataset distillation with infinitely wide convolutional
networks. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, pages 5186–5198, 2021.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition
challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

11



[30] A. Sajedi, S. Khaki, L. Z. Liu, E. Amjadian, Y. A. Lawryshyn, and K. N. Plataniotis. Data-to-
model distillation: Data-efficient learning framework. In European Conference on Computer
Vision, pages 438–457, 2024.

[31] A. Shaban, C. Cheng, N. Hatch, and B. Boots. Truncated back-propagation for bilevel opti-
mization. In K. Chaudhuri and M. Sugiyama, editors, The 22nd International Conference on
Artificial Intelligence and Statistics, AISTATS, volume 89 of Proceedings of Machine Learning
Research, pages 1723–1732. PMLR, 2019.

[32] Z. Shen, A. Sherif, Z. Yin, and S. Shao. DELT: A simple diversity-driven earlylate training for
dataset distillation. CoRR, abs/2411.19946, 2024.

[33] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR, 2015.

[34] D. Su, J. Hou, W. Gao, Y. Tian, and B. Tang. Dˆ 4: Dataset distillation via disentangled
diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5809–5818, 2024.

[35] D. Su, J. Hou, W. Gao, Y. Tian, and B. Tang. D4m: Dataset distillation via disentangled
diffusion model. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR,
pages 5809–5818. IEEE, 2024.

[36] P. Sun, B. Shi, D. Yu, and T. Lin. On the diversity and realism of distilled dataset: An efficient
dataset distillation paradigm. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR, pages 9390–9399. IEEE, 2024.

[37] Y. Tao, L. Kong, A. Kan, and L. Callot. Textual dataset distillation via language model
embedding. In Y. Al-Onaizan, M. Bansal, and Y. Chen, editors, Findings of the Association
for Computational Linguistics: EMNLP, pages 12557–12569. Association for Computational
Linguistics, 2024.

[38] M. Tran, T. Le, X. Le, T. Do, and D. Phung. Enhancing dataset distillation via non-critical
region refinement. CoRR, abs/2503.18267, 2025.

[39] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In 7th International
Conference on Learning Representations, ICLR, 2019.

[40] K. Wang, Z. Li, Z.-Q. Cheng, S. Khaki, A. Sajedi, R. Vedantam, K. N. Plataniotis, A. Hauptmann,
and Y. You. Emphasizing discriminative features for dataset distillation in complex scenarios.
arXiv preprint arXiv:2410.17193, 2024.

[41] K. Wang, B. Zhao, X. Peng, Z. Zhu, S. Yang, S. Wang, G. Huang, H. Bilen, X. Wang, and
Y. You. CAFE: learning to condense dataset by aligning features. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, pages 12186–12195. IEEE, 2022.

[42] R. Wang, S. Liang, Q. Chen, Y. Huang, M. Li, Y. Ma, D. Zhang, K. Qin, and M.-F. Leung.
Graphcogent: Mitigating llms’ working memory constraints via multi-agent collaboration in
complex graph understanding, 2025.

[43] R. Wang, S. Liang, Q. Chen, J. Zhang, and K. Qin. Graphtool-instruction: Revolutionizing graph
reasoning in llms through decomposed subtask instruction. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, V.1, KDD, pages 1492–1503,
2025.

[44] S. Wang, Y. Yang, Z. Liu, C. Sun, X. Hu, C. He, and L. Zhang. Dataset distillation with neural
characteristic function: A minmax perspective. CoRR, abs/2502.20653, 2025.

[45] T. Wang, J. Zhu, A. Torralba, and A. A. Efros. Dataset distillation. CoRR, abs/1811.10959,
2018.

12



[46] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proc. IEEE,
78(10):1550–1560, 1990.

[47] Z. Yin, E. P. Xing, and Z. Shen. Squeeze, recover and relabel: Dataset condensation at imagenet
scale from A new perspective. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Processing Systems, 2023.

[48] R. Yu, S. Liu, and X. Wang. Dataset distillation: A comprehensive review. IEEE Trans. Pattern
Anal. Mach. Intell., 46(1):150–170, 2024.

[49] R. Yu, S. Liu, J. Ye, and X. Wang. Teddy: Efficient large-scale dataset distillation via taylor-
approximated matching. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and
G. Varol, editors, Computer Vision - ECCV, volume 15104 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2024.

[50] X. Zhang, J. J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, pages 649–657, 2015.

[51] B. Zhao and H. Bilen. Dataset condensation with differentiable siamese augmentation. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML, volume 139 of Proceedings of Machine Learning Research, pages 12674–
12685. PMLR, 2021.

[52] B. Zhao and H. Bilen. Dataset condensation with distribution matching. In IEEE/CVF Winter
Conference on Applications of Computer Vision, WACV, pages 6503–6512. IEEE, 2023.

[53] B. Zhao, K. R. Mopuri, and H. Bilen. Dataset condensation with gradient matching. In 9th
International Conference on Learning Representations, ICLR, 2021.

[54] W. Zhong, H. Tang, Q. Zheng, M. Xu, Y. Hu, and L. Nie. Towards stable and storage-efficient
dataset distillation: Matching convexified trajectory. CoRR, abs/2406.19827, 2024.

[55] Y. Zhou, E. Nezhadarya, and J. Ba. Dataset distillation using neural feature regression. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, 2022.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions of AT-BPTT,
including dynamic truncation positions, adaptive window sizing, low-rank Hessian approxi-
mation, and patch-wise semantic preservation.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix E discusses limitations: (1) computational overhead due to inner-
loop unrolling, and (2) reliance on simple CNN architectures. Future work directions address
these limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Theoretical derivations for BPTT and meta-gradient computation are provided
in Appendix A. Assumptions and proofs are included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details (data preprocessing, hyperparameters, architectures)
are described in Section 5 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Experiments use publicly available datasets (CIFAR-10, ImageNet-1K, etc.),
which are standard benchmarks.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training protocols, hyperparameters, and dataset splits are detailed in Section 5
and Tab. 4.

Guidelines:
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material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: GPU memory usage and training time are compared in Fig. 4. Experiments
were conducted on NVIDIA A800 GPUs in Section 5.
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didn’t make it into the paper).

9. Code of ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

[Yes]

Justification: Appendix G states compliance with NeurIPS ethics guidelines. No human
subjects, sensitive data, or fairness concerns are involved.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix H discusses positive impacts (privacy-preserving ML) and potential
risks (misuse of generative models), with mitigation suggestions.

Guidelines:
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There is no new asset like datasets or platforms proposed in this work.

Guidelines:
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well as details about compensation (if any)?

Answer: [NA]

Justification: The work does not involve human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects research is conducted.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Answer: [NA]
Justification: LLMs are not used in the methodology or experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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Algorithm 1: Automatic Truncated Backpropagation Through Time
Input: Training dataset D, model parameters θ, total training timesteps T .
Params: Accuracy variation thresholds M,N , transition counters X,Y , temperature

parameter τ .
1 Initialize zero-initialized counters C1, C2.
2 for t = 1, 2, ..., T do
3 Segment images through patch-wise semantic preservation.
4 Compute accuracy variation ∆At = At −At−1.
5 Update counters: C1 ← C1 + 1(∆At < M), C2 ← C2 + 1(∆At < N).
6 if C1 ≥ X then
7 Switch to Middle Stage.
8 if C2 ≥ Y then
9 Switch to Late Stage.

10 Compute gradient magnitude ∥∇θLt∥2.
11 Computes probability Ptrunc(t).
12 Adjust window size W ∗(t) computed with d.
13 Compute GAT-BPTT through low-rank Hessian approximation.
14 Compute inner-loop loss L(θT (S).
15 Update model: θt+1 ← θt − α∇θLt.
16 Compute outer-loop loss Lmeta on validation set.
17 Compute meta-gradient∇SLmeta.
18 Update distilled dataset: S ← S − α′∇SLmeta.

Output: Distilled dataset S.

A The Mathematical Derivation for Equation.2 in Main Text

We minimize the test loss L(θT (S),D), where θT (S)is the model parameter obtained through inner
optimization on the synthetic dataset S. Update parameters via gradient descent:

θt+1 = θt − α∇θL(θt,S), (17)
for T steps, resulting in θT (S). The goal of BPTT is to compute the gradient of the outer loss with
respect to S, i.e., the meta-gradient ∂L

∂S . We express θT as the result of T updates from the initial
parameters θ0 :

θT = θ0 − α

T−1∑
t=0

∇θL(θt(S),S). (18)

The meta-gradient is decomposed into:
∂L
∂S

=
∂L
∂θT︸︷︷︸

Outer gradient

· ∂θT
∂S︸︷︷︸

Inner gradient propagation

. (19)

We then expand the parameter update process recursively:

∂θt+1

∂S
=

∂θt
∂S
− α

[
∂

∂S
∇θL(θt,S)

]
=

∂θt
∂S
− α

∇2
θL(θt,S) ·

∂θt
∂S︸ ︷︷ ︸

Hessian term

+∇θ∇SL(θt,S)︸ ︷︷ ︸
Mixed derivative term

 . (20)

We expand the recursion into an explicit summation:

∂θT
∂S

= −α
T−1∑
t=0

T−1∏
j=t+1

[
1− α

∂2L(θj(S),S)
∂θ2

]
· ∂

2L(θt(S),S)
∂θ∂S

. (21)

The final BPTT Meta-Gradient is formulated as:

GBPTT = −α∂L(θT (S),D)
∂θT

T−1∑
t=0

T−1∏
j=t+1

[
1− α

∂2L(θj(S),S)
∂θ2

]
· ∂

2L(θt(S),S)
∂θ∂S

. (22)
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B More Implementation details

To validate the effectiveness of our method while ensuring experimental rigor, we employ a controlled
variable approach in designing the experimental protocol. The critical experimental parameters and
configurations are rigorously aligned with those of RaT-BPTT [9], specifically encompassing essential
aspects including data preprocessing procedures, model convergence acceleration mechanisms,
gradient explosion mitigation strategies, and label processing methodologies. Each reported result is
the average of 5 experiments..

Data Preprocessing. In the experimental setup, all datasets were subjected to a unified geometric
augmentation strategy comprising random rotation and horizontal flipping operations. The augmented
data subsequently underwent ZCA whitening processing with a regularization coefficient λ = 0.1.
For synthetic data preprocessing, the initial data generation was performed through a Gaussian
distribution-based random initialization method, followed by normalization operations to ensure
numerical distribution consistency.

Model Convergence Acceleration Mechanisms. During the distillation stage, three acceleration
strategies are implemented to enhance optimization efficiency: (1) An Exponential Moving Average
(EMA) technique is adopted to accelerate model convergence while improving stability and general-
ization capabilities; (2) The Higher framework is employed for efficient meta-gradient computation;
(3) An Adam optimizer with learning rate α = 0.001 is utilized for precise inner-loop updates.

Gradient Explosion Mitigation and Label Processing. To address the issue of gradient explosion,
our methodology incorporates a meta gradient clipping strategy while ensuring gradient stability
through sufficiently large batch sizes for each dataset. Consistent with the experimental configuration
of RaT-BPTT, our approach maintains architectural coherence by employing raw positive real-value
representations rather than implementing normalization on label probability distributions.

Hyperparameter Settings. In the experiments, several hyperparameters require tuning, as they
directly influence the distillation performance of the method. Accordingly, we detail the hyperparam-
eter settings used for performance evaluation in the main text as presented in the Tab. 4. Specifically,
window denotes the initial window size, totwindow represents the total number of unrolled time steps,
d controls the range of the truncation window size, lr indicates the learning rate, architecture refers
to the adopted network architecture, batch size determines the number of training samples used in a
single parameter update, and epoch specifies the number of iterations.

Table 4: Description of Hyperparameters in Experiments.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet-1K

window 40 60 100 120
totwindow 200 200 300 400

d 10 20 40 50
lr 0.001 0.001 0.0003 0.0001

architecture ConvNet3 ConvNet3 ConvNet4 ConvNet5
batch size 1000 1000 500 250

epoch 600 600 1000 1000

C More Experimental Results

C.1 Hypothesis Verification on Tiny-ImageNet

We conduct similar verification experiments on Tiny-ImageNet [16]. As shown in Fig. 6, the Tiny-
ImageNet exhibits three-stage characteristics consistent with CIFAR-10: (1) During the early stage,
models preferencely select preliminary truncation positions with larger window sizes; (2) middle
stage demonstrates limited performance sensitivity to variations in both truncation positions and
window sizes; (3) In the late stage, models shift preference towards post truncation positions while
window size adjustments show diminishing impact. This cross-dataset consistency substantiates
the generalizability of our findings and confirms the effectiveness of the AT-BPTT across diverse
datasets.
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Figure 6: Hypothesis verification for the truncation strategies and window size on Tiny-ImageNet
[16]. (a)(b)(c) show experiments where the preliminary or post truncation positions are implemented
at early, middle and late stages, respectively, and (d)(e)(f) present experiments where the window
size is changed after fixing the truncation position. For example, Early-Preliminary in (a) means that
randomly select preliminary phase (0-100) timesteps in early training stage (0-200 epochs).

Table 5: Computational efficiency and performance comparison with low-rank Hessian approximation
(LRHA) on CIFAR-10 when IPC=10.

Method GPU Memory (GB) Training Time (h) Accuracy (%) Memory Saving Speedup
RaT-BPTT [9] 18.9 21.6 69.4 – 1.0×
AT-BPTT (w/o LRHA) 15.3 18.4 72.7 19.0% 1.17×
AT-BPTT (w/ LRHA) 6.94 5.5 72.4 63.3% 3.9×

C.2 Impact of Low-Rank Hessian Approximation

To rigorously evaluate the impact of our low-rank Hessian approximation (LRHA) mechanism, we
conduct controlled experiments comparing three configurations on CIFAR-10 with IPC=10: (1)
Baseline RaT-BPTT with full Hessian computation, (2) AT-BPTT without LRHA, and (3) Full AT-
BPTT with LRHA enabled. All experiments are performed on NVIDIA A800 GPUs with identical
hyperparameters and ConvNet-3 architecture. The results in Tab. 5 demonstrate that LRHA provides
substantial computational benefits while preserving model performance.

C.3 Generalization Experiments on Wide Networks

Previous studies [55, 24] have sought to narrow the discrepancy between proxy training environments
and real training scenarios by adopting wider network architectures. Notably, the RaT-BPTT [9]
method similarly employs a paradigm of training on narrow networks while evaluating on wide
networks (4 times wider ConvNet). This study systematically evaluates the performance of AT-
BPTT under wide network architectures through experiments. Experimental results as shown in
Tab.6 demonstrate that AT-BPTT maintains its comprehensive leading advantage over RaT-BPTT
in wide network configurations, outperforming RaT-BPTT by an average of 3.4%. Compared with
narrow network configurations, AT-BPTT achieves measurable performance improvements in wide
architectures. This outcome successfully validates prior hypotheses and directly stems from AT-
BPTT’s phased training strategy with dynamically adjusted windows, confirming the effectiveness of
its adaptive mechanism.

C.4 Comparison with Diffusion Model-Based Methods

In addition to optimization methods based on the inner- and outer-loop, generative model-based
methods have been developed for synthesizing compact datasets. These methods leverage Generative
Adversarial Networks (GANs) or diffusion models to produce high-quality synthetic data, gaining
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Table 6: Comparison with the baseline dataset distillation methods on wide networks. The improve-
ments denoted by red numbers are with respect to our baseline RaT-BPTT*. Each reported result is
the average of 5 experiments.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet AVG

Img/class(IPC) 1 10 50 1 10 50 1 10

KIP* [28] 49.9±0.2 62.7±0.3 68.6±0.2 15.7±0.2 28.3±0.1 - - - -
RFAD* [23] 53.6±1.2 66.3±0.5 71.1±0.4 26.3±1.1 33.0±0.3 - - - -
FRePO* [55] 46.8±0.7 65.5±0.6 71.7±0.2 28.7±0.1 42.5±0.2 44.3±0.2 15.4±0.3 25.4±0.2 42.5
RCIG* [24] 53.9±1.0 69.1±0.4 73.5±0.3 39.3±0.4 44.1±0.4 46.7±0.1 25.6±0.5 29.4±0.9 47.7

RaT-BPTT* [9] 54.1±0.4 71.0±0.2 75.4±0.2 36.5±1.0 47.9±0.2 51.0±0.6 20.3±0.9 24.9±1.3 47.6
Ours* 55.6±0.3 71.8±0.2 78.7±0.2 37.2±0.5 49.9±0.7 54.7±0.2 26.8±0.8 33.4±0.6 51.0
∆% +1.5 +0.8 +3.3 +0.7 +2.0 +3.7 +6.5 +8.5 +3.4

significant popularity and advancements in recent years. We select two leading diffusion model-based
methods, D4M [34] and D2M [30], as baselines and evaluate the distillation performance of AT-BPTT
under identical experimental settings. As shown in Tab. 7, AT-BPTT maintains a leading position
in distillation performance, achieving a average of 6.7% performance improvement across various
datasets.

Table 7: Comparison with decoupled optimization-based distillation methods using CIFAR-10/100
and Tiny-ImageNet datasets, with bolded values indicating the highest test accuracy.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

Img/class(IPC) 1 10 50 1 10 50 1 10 50

D4M [34] - 56.2 72.8 - 45.0 48.8 - - 46.8
D2M [30] 50.2 67.8 74.4 29.8 46.6 51.2 16.7 26.1 30.1

Ours 54.4 72.4 78.7 36.9 49.0 55.9 24.3 32.7 48.7

C.5 Comparison with Baseline on Other Datasets

To further demonstrate the effectiveness of AT-BPTT on high-resolution dataset, we conduct experi-
ments on ImageNet subsets [13], including ImageNette, ImageWoof, ImageMeow, and ImageFruit.
The experiments compare AT-BPTT with baseline methods, including Random MTT [2], RDED [36],
FTD [8], DATM [12], EDF [40], and NCFM [44]. As presented in the Tab. 8, AT-BPTT consistently
achieves the highest accuracy across all datasets and IPC settings, for example, attaining 79.1% on
ImageNet (IPC=10) and 47.6% on ImageFruit (IPC=1). These results significantly outperform leading
methods, demonstrating that AT-BPTT exhibits superior generalization and performance stability
across diverse datasets and data scales. This advantage is particularly pronounced in data-constrained
scenarios (IPC=1), underscoring its efficacy in image classification tasks.

Table 8: Comparison with baseline methods using ImageNette, ImageWoof, ImageMeow, and
ImageFruit dataset [13], with bolded values indicating the highest test accuracy.

Dataset ImageNette ImageWoof ImageMeow ImageFruit

Img/class(IPC) 1 10 1 10 1 10 1 10

Random [53] 23.5 47.7 14.2 27.0 13.8 29.0 13.2 21.4
MTT [2] 47.7 63.0 28.6 35.8 30.7 40.4 26.6 40.3
RDED [36] 33.8 63.2 18.5 40.6 - - - -
FTD [8] 52.2 67.7 30.1 38.8 33.8 43.3 29.1 44.9
DATM [12] 52.5 68.9 30.4 40.5 34.0 48.9 30.9 45.5
EDF [40] 52.6 71.0 30.8 41.8 34.5 52.6 32.8 46.2
NCFM [44] 53.4 77.6 27.2 48.4 34.6 58.2 29.2 44.8

Ours 55.5 79.1 31.8 49.8 36.0 60.8 34.1 47.6

C.6 Experiments on Language Tasks

To assess AT-BPTT’s generalization capability for language tasks, we evaluate our method on
three standard text classification benchmarks: SST-2 [39], MNLI-m [39], and AGNews [50]. As
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demonstrated in Table 9, AT-BPTT achieves consistent improvements over existing textual dataset
distillation approaches, with an average accuracy gain of 3.2% across all evaluated datasets. The
results demonstrate that our method is also effective on non-visual datasets.

Table 9: Comparison with the SOTA textual dataset distillation methods on BERT [7] across SST-2
[39], MNLI-m [39], and AGNews [50].

Dataset SST-2[39] MNLI-m[39] AGNews[50]

Img/class(IPC) 1 10 50 1 10 50 1 10 50

DDAL [26] 64.5 69.7 73.5 34.1 38.8 41.5 26.1 28.9 34.2
DiLM [27] 72.5 76.3 80.3 39.7 44.8 48.7 27.8 30.9 36.5

DaLLME [37] 72.3 77.5 80.9 42.7 47.2 51.4 27.6 30.8 36.6
Ours 73.2 79.4 82.4 44.9 48.1 53.2 28.8 31.1 39.3

Full dataset 92.7 86.7 94.6

D Difficulty Sample Conjecture

Our theoretical analysis reveals the learning characteristics of deep neural networks (DNN) [1]:
during the initial training stage, the networks tend to rapidly capture easily identifiable simple patterns
in data, while progressively shifting their focus to more complex and fine-grained feature repre-
sentations as training advances. This discovery aligns theoretically with the data difficulty scoring
mechanism proposed in PAD [21] based on the trajectories matching framework [2]. Specifically,
the PAD innovatively introduces a difficulty scoring function that effectively quantifies the learning
complexity of data samples for DNNs, thereby establishing a dynamic curriculum learning mech-
anism. Through intelligent scheduling strategies, this mechanism gradually introduces samples of
increasing difficulty during expert trajectory training, demonstrating inherent consistency with the
phased training paradigm of the AT-BPTT algorithm.

Building upon these theoretical connections, we propose the following hypothetical improvement:
systematically ordering the original dataset through the difficulty scoring function and combining it
with a phased progressive training strategy to construct a stepwise learning path from low-difficulty
to high-difficulty samples. We suggest focusing on low-scoring samples during the initial training
stage and progressively incorporating high-scoring complex samples as model capability improves.
This structured knowledge progression mechanism is expected to establish a more refined model
learning paradigm, thereby enhancing overall training effectiveness. The development of a more
sophisticated and refined data preprocessing framework presents a promising direction for further
investigation, which constitutes one of our key research priorities in future studies.

E Discussion

Although we evaluate AT-BPTT in the context of dataset distillation, the proposed algorithm is
generally applicable to a broad range of bilevel optimization problems that involve unrolled gradient-
based inner loops. In particular, AT-BPTT can serve as a drop-in replacement for standard or
truncated BPTT in applications such as meta-learning, logical reasoning [25], tool learning [43],
agent [42], differentiable neural architecture search (NAS), and personalized federated learning.
These applications often rely on fixed-length unrolling or heuristic truncation strategies, which can
be suboptimal or inefficient. In contrast, AT-BPTT adaptively adjusts both the truncation points and
the weighting of intermediate gradients based on the optimization landscape, potentially leading to
improved stability, reduced memory and compute costs, and better overall performance. We believe
AT-BPTT offers a principled and generalizable framework for efficient bilevel optimization, and we
leave its integration into these broader domains as promising directions for future work.

AT-BPTT also has some drawbacks that need to be addressed. First, this inner-loop optimization
inevitably involves unfolding the learning trajectory during training. Although we have simplified
the computation of the Hessian matrix product using a low-rank Hessian approximation method, the
computational cost remains significant, leading to higher time complexity compared to NCFM [44].
Second, our base network is still limited to relatively simple models like CNNs, results in practical
limitations. Therefore, our future work will focus on improving the computational efficiency of
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the algorithm or combining the inner- and outer-loop optimization to reduce the unfolding of the
learning trajectory, and exploring the implementation of our algorithm on larger-scale models, such
as diffusion models and transformers.

F Visualizations of Distilled Dataset

In this section, we present visualizations of the distilled datasets obtained from various datasets. The
IPC of the presented datasets is uniformly set to 10, with Fig. 7 illustrating the visualization results
on CIFAR-10, respectively.

Figure 7: Visualization results of our proposed method for CIFAR-10 [15] with IPC=10.

G Ethical Statement

This research proposes a general optimization algorithm for bilevel problems that improves the
efficiency and adaptability of truncated backpropagation through time. The work was conducted
with integrity, transparency, and academic rigor. No human subjects, sensitive data, or personally
identifiable information were involved. The method does not raise concerns regarding fairness, bias,
or misuse in its current form. We have also ensured reproducibility by providing full methodological
details and plan to release code under an open-source license upon publication.
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H Broader Impacts

This paper introduces an adaptive and efficient method for truncated gradient backpropagation in
bilevel optimization, which has the potential to significantly reduce computational costs in a range of
machine learning applications, including meta-learning, federated learning, neural architecture search,
and dataset distillation. The positive societal impact includes making advanced machine learning
more accessible and sustainable by lowering the hardware and energy requirements of training large
models. This aligns with ongoing efforts in the community to improve the environmental footprint of
ML research.

27


	Introduction
	Related Work
	Preliminary
	Methodology
	Hypothesis Verification
	Automatic Truncated BPTT
	Low-Rank Hessian Approximation
	Patch-wise Semantic Preservation

	Experiments
	Experimental Setup
	Comparison with Previous Methods
	Computational Efficiency Comparison
	Ablation Study

	Conclusion
	The Mathematical Derivation for Equation.2 in Main Text
	More Implementation details
	More Experimental Results
	Hypothesis Verification on Tiny-ImageNet
	Impact of Low-Rank Hessian Approximation
	Generalization Experiments on Wide Networks
	Comparison with Diffusion Model-Based Methods
	Comparison with Baseline on Other Datasets
	Experiments on Language Tasks

	Difficulty Sample Conjecture
	Discussion
	Visualizations of Distilled Dataset
	Ethical Statement
	Broader Impacts

