

000 001 002 003 004 005 006 007 008 009 010 A DYNAMIC LOW-RANK FAST GAUSSIAN TRANS- FORM

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 The *Fast Gaussian Transform* (FGT) enables subquadratic-time multiplication of
 012 an $n \times n$ Gaussian kernel matrix $K_{i,j} = \exp(-\|x_i - x_j\|_2^2)$ with an arbitrary vector
 013 $h \in \mathbb{R}^n$, where $x_1, \dots, x_n \in \mathbb{R}^d$ are a set of *fixed* source points. This kernel plays
 014 a central role in machine learning and random feature maps. Nevertheless, in
 015 most modern data analysis applications, datasets are dynamically changing (yet
 016 often have low rank), and recomputing the FGT from scratch in (kernel-based)
 017 algorithms incurs a major computational overhead ($\gtrsim n$ time for a single source
 018 update $\in \mathbb{R}^d$). These applications motivate a *dynamic FGT* algorithm, which
 019 maintains a dynamic set of sources under *kernel-density estimation* (KDE) queries
 020 in *sublinear time* while retaining Mat-Vec multiplication accuracy and speed.

021 Assuming the dynamic data-points x_i lie in a (possibly changing) k -dimensional
 022 subspace ($k \leq d$), our main result is an efficient dynamic FGT algorithm, sup-
 023 porting the following operations in $\log^{O(k)}(n/\varepsilon)$ time: (1) Adding or deleting a
 024 source point, and (2) Estimating the “kernel-density” of a query point with re-
 025 spect to sources with ε additive accuracy. The core of the algorithm is a dynamic
 026 data structure for maintaining the *projected* “interaction rank” between source and
 027 target boxes, decoupled into finite truncation of Taylor and Hermite expansions.

029 1 INTRODUCTION

031 The fast Multipole method (FMM) was described as one of the top 10 most important algorithms of
 032 the 20th century (Dongarra & Sullivan, 2000). It is a numerical technique that was originally de-
 033 veloped to speed up calculations of long-range forces for the n -body problem in theoretical physics.
 034 FMM was first introduced in 1987 by Greengard and Rokhlin (Greengard & Rokhlin, 1987), based
 035 on the multipole expansion of the vector Helmholtz equation. By treating the interactions between
 036 far-away basis functions using the FMM, the underlying matrix entries $M_{ij} \in \mathbb{R}^{n \times n}$ (encoding the
 037 pairwise “interaction” between $x_i, x_j \in \mathbb{R}^d$) need not be explicitly computed nor stored for matrix-
 038 vector operations – This technique allows to improve the naïve $O(n^2)$ matrix-vector multiplication
 039 time to quasi-linear time $\approx n \cdot \log^{O(d)}(n)$, with negligible (polynomial-small) additive error.

040 Since the discovery of FMM in the late 80s, it had a profound impact on scientific computing and has
 041 been extended and applied in many different fields, including physics, mathematics, numerical anal-
 042 ysis and computer science (Greengard & Rokhlin, 1987; Greengard, 1988; Greengard & Rokhlin,
 043 1988; 1989; Greengard, 1990; Greengard & Strain, 1991; Engheta et al., 1992; Greengard, 1994;
 044 Greengard & Rokhlin, 1996; Beatson & Greengard, 1997; Darve, 2000; Yang et al., 2003; 2004;
 045 Martinsson, 2012; Chandrasekaran et al., 2006). To mention just one important example, we note
 046 that FMM plays a key role in efficiently maintaining the SVD of a matrix under low-rank perturba-
 047 tions, based on the Cauchy structure of the perturbed eigenvectors (Gu & Eisenstat, 1994). In the
 048 context of machine learning, the FMM technique can be extended to the evaluation of matrix-vector
 049 products with certain *Kernel matrices* $K_{i,j} = f(\|x_i - x_j\|)$, most notably, the *Gaussian Kernel*
 050 $K_{i,j} = \exp(-\|x_i - x_j\|_2^2)$ (Greengard & Strain, 1991). For any query vector $q \in \mathbb{R}^n$, the *fast*
 051 *Gaussian transform* (FGT) algorithm outputs an arbitrarily-small *pointwise additive* approximation
 052 to $K \cdot q$, i.e., a vector $z \in \mathbb{R}^n$ such that $\|K \cdot q - z\|_\infty \leq \varepsilon$, in merely $n \log^{O(d)}(\|q\|_1/\varepsilon)$ time,
 053 which is dramatically faster than naïve matrix-vector multiplication (n^2) for constant dimension d .
 Note that the (poly)logarithmic dependence on $1/\varepsilon$ means that FGT can achieve *polynomially-small*

054 additive error in quasi-linear time, which is as good as exact computation for all practical purposes.
 055 The crux of FGT is that the $n \times n$ matrix \mathbf{K} can be stored *implicitly*, using a clever spectral-analytic
 056 decomposition of the geometrically-decaying pairwise distances (“interaction rank”, more on this
 057 below).

058 Kernel matrices play a central role in machine learning (Shawe-Taylor & Cristianini, 2004; Rahimi
 059 & Recht, 2008), as they allow to extend convex optimization and learning algorithms to nonlinear
 060 feature spaces and even to non-convex problems (Li & Liang, 2018; Jacot et al., 2018; Du et al.,
 061 2019; Allen-Zhu et al., 2019a;b; Lee et al., 2020). Accordingly, matrix-vector multiplication with
 062 kernel matrices is a basic operation in many ML optimization tasks, such as Kernel PCA and ridge
 063 regression (Alaoui & Mahoney, 2015; Avron et al., 2017a;b; Lee et al., 2020), Gaussian-process re-
 064 gression (GPR) (Rasmussen & Nickisch, 2010), Kernel linear system solvers (via Conjugate Gradi-
 065 ent (Alman et al., 2020)), and in fast implementation of the dynamic “state-space model” (SSM) for
 066 sequence-correlation modeling (which crucially relies on the Multipole method (Gu et al., 2021)), to
 067 mention a few. The related data-structure problem of *kernel density estimation* of a point (Charikar
 068 & Siminelakis, 2017; Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020;
 069 Zandieh et al., 2023; Alman & Song, 2023) $\text{KDE}(X, y) = \frac{1}{n} \sum_{i=1}^n \mathbf{K}(x_i, y)$ has various appli-
 070 cations in data analysis and statistics (Fan & Gijbels, 1996; Schölkopf & Smola, 2002; Schubert
 071 et al., 2014), and is the main subroutine in the implementation of transfer learning using kernels (see
 072 (Charikar & Siminelakis, 2017; Charikar et al., 2020) and references therein, and the Related Work
 073 Section 2 below). As such, speeding up matrix-vector multiplication with kernel matrices, such as
 074 FGT, is an important question in theory and practice.

075 One drawback of FMM and FGT techniques, however, is that they are *static* algorithms, i.e., they
 076 assume a *fixed* set of n data points $x_i \in \mathbb{R}^d$. By contrast, most aforementioned ML and data anal-
 077 ysis applications are *dynamic* by nature and need to process rapidly-evolving datasets to maintain
 078 prediction and model accuracy. One example is the renewed interest in *online regression* (Cohen
 079 et al., 2015; Jiang et al., 2022), motivated by *continual learning* theory (Parisi et al., 2019). Indeed,
 080 it is becoming increasingly clear that many static optimization algorithms do not capture the require-
 081 ments of real-world applications (Jain et al., 2008; Chen et al., 2020b;a; Song et al., 2021a;b; Xu
 082 et al., 2021; Shrivastava et al., 2021). Notice that changing a single source-point $x_i \in \mathbb{R}^d$ generally
 083 affects an *entire row* (n distances $\|x_i - x_j\|$) of the matrix \mathbf{K} . As such, naively re-computing the
 084 static FGT on the modified set of distances, incurs a prohibitive computational overhead ($n \gg d$).
 085 This raises the natural question of whether it is possible to achieve *sublinear*-time insertion and
 086 deletion of source points, as well as “local” *kernel-density estimation* (KDE) queries (Charikar &
 087 Siminelakis, 2017; Yang et al., 2003), while maintaining speed and accuracy of matrix-vector mul-
 088 tiplication queries:

089 *Is it possible to ‘dynamize’ the Fast Gaussian Transform, in sublinear time? Can the exponential
 090 dependence on d (Greengard & Strain, 1991) be mitigated if the data-points x_i lie in a
 091 k -dimensional subspace of \mathbb{R}^d ?*

092 The last question is motivated by the recent work of (Cherapanamjeri & Nelson, 2022), who ob-
 093 served that kernel-based methods and algorithms typically involve *low-rank* datasets, (where the
 094 “intrinsic” dimension is $w \ll d$), in which case one could hope to circumvent the exponential de-
 095 pendence on d in the aforementioned (static) FMM algorithm (Greengard & Strain, 1991; Alman
 096 et al., 2020).

099 1.1 MAIN RESULT

100 Our main result is an affirmative answer to the above question. We design a fully-dynamic FGT
 101 data structure, supporting *polylogarithmic*-time updates and “density estimation” queries, while re-
 102 taining quasi-linear time for arbitrary Mat-Vec queries ($\mathbf{K}q$). More formally, for a set of N “source”
 103 points s_1, \dots, s_N , the j -th coordinate $(\mathbf{K}q)_{j \in [N]}$ is $G(s_j) = \sum_{i=1}^N q_i \cdot e^{-\|s_j - s_i\|_2^2 / \delta}$, which mea-
 104 sures the kernel-density at s_j (“interaction” of s_j with the rest of the sources). More generally, for
 105 any “target” point $t \in \mathbb{R}^d$, let $G(t) := \sum_{i=1}^N q_i \cdot e^{-\|t - s_i\|_2^2 / \delta}$ denote the *kernel density* of t with
 106 respect to the sources, where each source s_i is equipped with a *charge* q_i . Our data structure sup-
 107 ports fully-dynamic source updates and density-estimation queries in *sublinear* time. Observe that

108 this immediately implies that entire Mat-Vec queries ($\mathbf{K} \cdot \mathbf{q}$) can be computed in quasi-linear time
 109 $N^{1+o(1)}$. The following is our main result:
 110

111 **Theorem 1.1** (Dynamic Low-Rank FGT, Informal version of Theorem F.2). *Let \mathcal{B} denote a w -
 112 dimensional subspace $\subset \mathbb{R}^d$. Given a set of source points s , and charges q , there is a (deterministic)
 113 data structure that maintains a fully-dynamic set of N source vectors $s_1, \dots, s_N \in \mathcal{B}$ under the
 114 following operations:*

- 115 • **INSERT/DELETE**($s_i \in \mathbb{R}^d, q_i \in \mathbb{R}$) *Insert or Delete a source point $s_i \in \mathbb{R}^d$ along with its
 116 “charge” $q_i \in \mathbb{R}$, in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time. The intrinsic subspace \mathcal{B} could change as the
 117 source points are updated.*
- 118 • **DENSITY-ESTIMATION**($t \in \mathcal{B}$) *For any point $t \in \mathcal{B} \subset \mathbb{R}^d$, output the kernel density
 119 of t with respect to the sources, i.e., output \tilde{G} such that $G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon$ in
 120 $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.*

123 We note that when $w = d$, the costs of our dynamic algorithm match the [static](#) FGT algorithm. As
 124 one might expect, our data structure applies to a more general subclass of ‘geometrically-decaying’
 125 kernels $K_{i,j} = f(\|x_i - x_j\|)$ ($f(tx) \leq (1 - \alpha)^t f(x)$), see Theorem B.5 for the formal statement of
 126 our main result. It is also noteworthy that our data structure is deterministic, and therefore handles
 127 even *adaptive* update sequences (Hardt & Woodruff, 2013; Ben-Eliezer et al., 2020; Cherapanamjeri
 128 & Nelson, 2020). This feature is important in adaptive data analysis and in the use of dynamic
 129 data structures for accelerating *path-following* iterative optimization algorithms (Brand et al., 2020),
 130 where proximity to the original gradient flow (linear) equations is crucial for convergence, hence the
 131 data structure needs to ensure the approximation guarantees hold against *any* outcome of previous
 132 iterations.

133 **Remark on Dynamization of “Decomposable” Problems** A data structure problem $\mathbf{P}(D, q)$
 134 is called *decomposable*, if a query q to the *union* of two separate datasets can be recovered
 135 from the two *marginal* answers of the query on each of them separately, i.e., $\mathbf{P}(D_1 \cup D_2, q) =$
 136 $g(\mathbf{P}(D_1, q), \mathbf{P}(D_2, q))$ for some function g . A classic technique in data structures (Bentley &
 137 Saxe, 1980) asserts that decomposable data structure problems can be (partially) dynamized in a
 138 *black-box* fashion – It is possible to convert any *static* DS for \mathbf{P} into a dynamic one supporting
 139 incremental updates, with an amortized update time $t_u \sim (T/N) \cdot \log(N)$, where T is the prepro-
 140 cessing time of building the static data structure, and N is the input size. We can see that Matrix-
 141 Vector multiplication over a field with row-updates to the matrix is a decomposable problem since
 142 $(A + B)q = Aq + Bq$, and so one might hope that the dynamization of static FMM/FGT methods
 143 is an immediate consequence of decomposability. This reasoning is, unfortunately, incorrect, since
 144 changing even a *single* input point $x_i \in \mathbb{R}^d$, perturbs n distances, i.e., an entire *row* in the kernel
 145 matrix \mathbf{K} , and so the aforementioned reduction is prohibitively expensive (yields update time at least
 146 $n \gg d$ for adding/removing a point).

147 **Notation.** For a vector x , we use $\|x\|_2$ to denote its ℓ_2 -norm, $\|x\|_1$, $\|x\|_0$ and $\|x\|_\infty$ for its ℓ_1 -
 148 norm, ℓ_0 -norm and ℓ_∞ -norm. We use $\tilde{O}(f)$ to denote $f \cdot \text{poly}(\log f)$. For a vector $x \in \mathbb{R}^d$ and a
 149 real number p , we say $x \leq p$ if $x_i \leq p$ for all $i \in [d]$. We say $x \geq p$ if there exists an $i \in [d]$ such
 150 that $x_i \geq p$. For a positive integer n , we use $[n]$ to denote a set $\{1, 2, \dots, n\}$.

152 **Roadmap.** In Section 2, we introduce the related research works. In Section 3, we present the
 153 important techniques used to prove our main result. In Section 4, we make a conclusion for our
 154 work.

156 2 RELATED WORK

158 **Structured Linear Algebra** Multiplying an $n \times n$ matrix M by an arbitrary vector $q \in \mathbb{R}^n$
 159 generally requires $\Theta(n^2)$ time, and this is information-theoretically optimal since merely reading
 160 the entries of the matrix requires $\sim n^2$ operations. Nevertheless, if M has some *structure* ($\tilde{O}(n)$ -
 161 bit description-size), one could hope for quasi-linear time for computing $M \cdot q$. Kernel matrices

$K_{ij} = f(\|x_i - x_j\|)$, which are the subject of this paper, are special cases of such *geometric-analytic* structure, as their n^2 entries are determined by only $\sim n$ points in \mathbb{R}^d , i.e., $O(nd)$ bits of information. There is a rich and active body of work in *structured linear algebra*, exploring various “algebraic” structures that allow quasi-linear time matrix-vector multiplication, most of which relies on (novel) extensions of the *Fast Fourier Transform* (see (Driscoll et al., 1997; Sa et al., 2018; Chen et al., 2021) and references therein). A key difference between FMMs and the aforementioned FFT-style line of work is that the latter develops *exact* Mat-Vec algorithms, whereas FMM techniques must inevitably resort to (small) approximation, based on the *analytic* smoothness properties of the underlying function and metric space (Alman et al., 2020; 2021). This distinction makes the two lines of work mostly incomparable.

Comparison to LSH-based KDEs A recent line of work due to (Charikar & Siminelakis, 2017; Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020; Bakshi et al., 2023) develops fast KDE data structures based on *locality-sensitive hashing* (LSH), which seems possible to be dynamized naturally (as LSH is dynamic by nature). However, this line of work is incomparable to FGT, as it solves KDE in the *low-accuracy* regime, i.e., the runtime dependence on ε of these works is $\text{poly}(1/\varepsilon)$ (but polynomial in d), as opposed to FGT ($\text{poly log}(1/\varepsilon)$ but exponential in d). Additionally, some work (e.g., (Charikar et al., 2020)) also needs an upper bound of the ground-truth value $\mu_* = K \cdot q$, and the efficiency of their data structure depends on $\mu_*^{-O(1)}$, while FGT does not need any prior knowledge of μ_* .

Kernel Methods in ML Kernel methods can be thought of as instance-based learners: rather than learning some fixed set of parameters corresponding to the features of their inputs, they instead “remember” the i -th training example (x_i, y_i) and learn for it a corresponding weight w_i . Prediction for unlabeled inputs, i.e., those not in the training set, is treated using an application of a *similarity* function K (i.e., a kernel) between the unlabeled input x' and each of the training-set inputs x_i . This framework is one of the main motivations for the development of kernel methods in ML and high-dimensional statistics (Schölkopf et al., 2002). There are two main themes of research on kernel methods in the context of machine learning: The first one is focused on understanding the expressive power and generalization of learning with kernel feature maps (Ng et al., 2002; Schölkopf et al., 2002; Shawe-Taylor & Cristianini, 2004; Rahimi & Recht, 2008; Hofmann et al., 2008; Jacot et al., 2018; Du et al., 2019; Yang et al., 2023); The second line is focused on the *computational* aspects of kernel-based algorithms (Alman et al., 2020; Brand et al., 2021; Song et al., 2021a;b; Hu et al., 2022; Alman et al., 2022; Zhang, 2022; Alman & Song, 2023; Deng et al., 2023; Gao et al., 2023b;a). We refer the reader to these references for a much more thorough overview of these lines of research and the role of kernels in ML.

3 TECHNICAL OVERVIEW

In Section 3.1, we review the *offline* FGT algorithm (Greengard & Rokhlin, 1987; Alman et al., 2020) and analyze the computational costs. In Section 3.2, we illustrate the technique of estimating $G(t)$ for an arbitrary target vector $t \in \mathbb{R}^d$. In Section 3.3, we explain that the data structures support the dynamic setting where the source vectors are allowed to come and leave. In Section 3.4, we describe how to extend the data structure to a more general kernel function. In Section 3.5, we show that if the source and target vectors come from a low dimensional subspace, the data structure can bypass the curse of dimension. In Section 3.6, we modify the data structure to support the scenario where the rank of data points varies across iterations.

3.1 OFFLINE FGT ALGORITHM

We first review (Alman et al., 2020)’s offline FGT algorithm. Consider the following easier problem: given N source vectors $s_1, \dots, s_N \in \mathbb{R}^d$, and M target vectors $t_1, \dots, t_M \in \mathbb{R}^d$, estimate

$$G(t_i) = \sum_{j=1}^N q_j \cdot e^{-\|t_i - s_j\|_2^2 / \delta}$$

for any $i \in [M]$, in quasi-linear time. Following (Greengard & Strain, 1991; Alman et al., 2020), our algorithm subdivides $B_0 = [0, 1]^d$ into smaller boxes with sides of length $L = r\sqrt{2\delta}$ parallel to

the axes, for a fixed $r \leq 1/2$, and then assign each source s_j to the box \mathcal{B} in which it lies and each target t_i to the box \mathcal{C} in which it lies. Note that there are $(1/L)^d$ boxes in total. Let $N(\mathcal{B})$ and $N(\mathcal{C})$ denote the number of non-empty source and target boxes, respectively. For each target box \mathcal{C} , we need to evaluate the total field due to sources in all boxes. Since each box \mathcal{B} has side length $r\sqrt{2\delta}$, only a fixed number of source boxes \mathcal{B} can contribute more than $\|q\|_1\varepsilon$ to the field in a given target box \mathcal{C} , where ε is the precision parameter. Hence, for a target vector in box \mathcal{C} , if we only count the contributions of the source vectors in its $(2k+1)^d$ nearest boxes where k is a parameter, it will incur an error that can be upper bounded as follows:

$$\sum_{j: \|t-s_j\|_\infty \geq kr\sqrt{2\delta}} |q_j| \cdot e^{-\|t-s_j\|_2^2/\delta} \leq \|q\|_1 \cdot e^{-2r^2k^2} \quad (1)$$

When we take $k = \log(\|q\|_1/\varepsilon)$, this error becomes $o(\varepsilon)$. For a single source vector $s_j \in \mathcal{B}$, its field $G_{s_j}(t) = q_j \cdot e^{-\|t-s_j\|_2^2/\delta}$ has the following Taylor expansion at $t_{\mathcal{C}}$ (the center of \mathcal{C}):

$$G_{s_j}(t) = \sum_{\beta \geq 0} \mathcal{B}_\beta(j, \mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^\beta, \quad (2)$$

where $\beta \in \mathbb{N}^d$ is a multi-index,

$$\mathcal{B}_\beta(j, \mathcal{C}) = q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_\beta \left(\frac{s_j - t_{\mathcal{C}}}{\sqrt{\delta}} \right),$$

and $H_\beta(x)$ is the multi-dimensional Hermite function indexed by β (see Definition A.7). We can also control the truncation error of the first p^d terms by ε for $p = \log(\|q\|_1/\varepsilon)$ (see Lemma E.6). Then, for a fixed source box \mathcal{B} , the field can be approximated by

$$\sum_{\beta \leq p} C_\beta(\mathcal{B}, \mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^\beta,$$

where $C_\beta(\mathcal{B}, \mathcal{C}) := \sum_{j \in \mathcal{B}} \mathcal{B}_\beta(j, \mathcal{C})$. Hence, for each query point t , we just need to locate its target box \mathcal{C} , and then $G(t)$ can be approximated by:

$$\tilde{G}(t) = \sum_{\mathcal{B} \in \text{nb}(\mathcal{C})} \sum_{\beta \leq p} C_\beta(\mathcal{B}, \mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^\beta = \sum_{\beta \leq p} C_\beta(\mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^\beta,$$

where $\text{nb}(\mathcal{C})$ is the set of $(2k+1)^d$ nearest-neighbor of \mathcal{C} and

$$C_\beta(\mathcal{C}) := \sum_{\mathcal{B} \in \text{nb}(\mathcal{C})} C_\beta(\mathcal{B}, \mathcal{C}).$$

Notice that we can further pre-compute $C_\beta(\mathcal{C})$ for each target box \mathcal{C} and $\beta \leq p$. Then, the running time for each target point becomes $O(p^d)$. For the preprocessing time, notice that each $C_\beta(\mathcal{B}, \mathcal{C})$ takes $O(N_{\mathcal{B}})$ -time to compute, where $N_{\mathcal{B}}$ is the number of source points in \mathcal{B} . Fix a $\beta \leq p$. Consider the computational cost of $C_\beta(\mathcal{C})$ for all target boxes \mathcal{C} . Note that each source box can interact with at most $(2k+1)^d$ target boxes. Therefore, the total running time for computing $\{C_\beta(\mathcal{C}_\ell)\}_{\ell \in [N(\mathcal{C})]}$ is bounded by $O(N \cdot (2k+1)^d + M)$. Then, the total cost of the preprocessing is

$$O(N \cdot (2k+1)^d \cdot p^d + M \cdot p^d).$$

By taking $p = \log(\|q\|_1/\varepsilon)$ and $k \leq \log(\|q\|_1/\varepsilon)$, we get an algorithm with $\tilde{O}_d(N + M)$ -time for preprocessing and $\tilde{O}_d(1)$ -time for each target point. We note that this algorithm also supports fast computing $\mathbf{K}q$ for any $q \in \mathbb{R}^d$ and $\mathbf{K} \in \mathbb{R}^{n \times n}$ with $\mathbf{K}_{i,j} = e^{-\|s_i - s_j\|_2^2/\delta}$. Roughly speaking, for each query vector q , we can build this data structure, and then the i -th coordinate of $\mathbf{K}q$ is just $G(s_i)$, which can be computed in poly-logarithmic time. Hence, $\mathbf{K}q$ can be approximately computed in nearly-linear time with ℓ_∞ error at most ε .

Remark 3.1. *The kernel bandwidth $\delta > 0$ can be set using standard rules like median heuristic or cross-validation. For the box length $L = r\sqrt{2\delta}$, the parameter r controls the tradeoff between computational cost and accuracy. We recommend $r = 1/2$ as it provides a good balance, and the error bound (see Eq. (1)) scales as $\exp(-2r^2k^2)$ where k is a parameter that controls the number of neighboring boxes. For the truncation parameter p , we set it to $p = \log(\|q\|_1/\varepsilon)$ to achieve desired accuracy ε (see Lemma E.6). This parameter can be adjusted dynamically based on observed errors.*

270 3.2 ONLINE STATIC KDE DATA STRUCTURE (QUERY-ONLY)
271

272 Next, we consider the same static setting, except target queries $t \in \mathbb{R}^d$ arrive online, and the goal
273 is to estimate $G(t)$ for an arbitrary vector in *sublinear* time. To this end, note that if t is con-
274 tained in a non-empty target box \mathcal{C}_ℓ , then $G(t)$ can be approximated using pre-computed $C_\beta(\mathcal{C}_\ell)$
275 in poly-logarithmic time. Otherwise, we need to add a new target box $\mathcal{C}_{N(C)+1}$ for t and compute
276 $C_\beta(\mathcal{C}_{N(C)+1})$, which takes time $\sum_{\mathcal{B} \in \text{nb}(\mathcal{C}_{N(C)+1})} O(N_{\mathcal{B}})$. However, this linear scan naively takes
277 $O(N)$ time in the worst case. Indeed, looking into the coefficients $C_\beta(\mathcal{B}, \mathcal{C})$:

$$278 \quad C_\beta(\mathcal{B}, \mathcal{C}) = \sum_{j \in \mathcal{B}} q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_\beta \left(\frac{s_j - t_c}{\sqrt{\delta}} \right)$$

282 reveals that the source vectors s_j are “entangled” with t_c , so evaluating $C_\beta(\mathcal{B}, \mathcal{C})$ brute-force for
283 a new target box \mathcal{C} , incurs a linear scan of all source vectors in \mathcal{B} . To “disentangle” s_j and t_c , we
284 use the Taylor series of Hermite function (Eq. (5)):

$$285 \quad H_\beta \left(\frac{s_j - t_c}{\sqrt{\delta}} \right) = H_\beta \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} + \frac{s_{\mathcal{B}} - t_c}{\sqrt{\delta}} \right)$$

$$286 \quad = \sum_{\alpha \geq 0} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^\alpha H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_c}{\sqrt{\delta}} \right),$$

291 where $s_{\mathcal{B}}$ denotes the center of the source box \mathcal{B} . Hence, $C_\beta(\mathcal{B}, \mathcal{C})$ can be re-written as:

$$293 \quad C_\beta(\mathcal{B}, \mathcal{C}) = \sum_{j \in \mathcal{B}} q_j g(\beta) \sum_{\alpha \geq 0} g(\alpha) \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^\alpha H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_c}{\sqrt{\delta}} \right)$$

$$294 \quad = g(\beta) \sum_{\alpha \geq 0} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_c}{\sqrt{\delta}} \right),$$

299 where $g(x) = (-1)^{\|x\|_1} / x!$ and

$$300 \quad A_\alpha(\mathcal{B}) := \sum_{j \in \mathcal{B}} q_j g(\alpha) \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^\alpha. \quad (3)$$

303 Now, $A_\alpha(\mathcal{B})$ does not rely on the target box and can be pre-computed, hence we can compute
304 $C_\beta(\mathcal{B}, \mathcal{C})$ without going over each source vector. However, there is a price for this conversion,
305 namely, that now $C_\beta(\mathcal{B}, \mathcal{C})$ involves summing over all $\alpha \geq 0$, so we need to somehow truncate
306 this series while controlling the overall truncation error for $G(t)$, which appears difficult to achieve.
307 To this end, we observe that this two-step approximation is equivalent to first forming a truncated
308 Hermite series of $e^{\|t - s_j\|_2^2 / \delta}$ at the center of the source box $s_{\mathcal{B}}$, and then transforming all Hermite
309 expansions into Taylor expansions at the center of a *target* box t_c . More formally, the Hermite
310 approximation of $G(t)$ is

$$312 \quad G(t) = \sum_{\mathcal{B}} \sum_{\alpha \leq p} (-1)^{\|\alpha\|_1} A_\alpha(\mathcal{B}) H_\alpha \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right) + \text{Err}_H(p),$$

315 where $|\text{Err}_H(p)| \leq \varepsilon$ (see Lemma E.2). Hence, we can Taylor-expand each H_α at t_c and get that:

316 $G(t) = \sum_{\beta \leq p} C_\beta(\mathcal{C}) \left(\frac{t - t_c}{\sqrt{\delta}} \right)^\beta + \text{Err}_T(p) + \text{Err}_H(p)$, where $|\text{Err}_H(p)| + |\text{Err}_T(p)| \leq \varepsilon$, (for the
317 formal argument, see Lemma E.5).

319 **Remark 3.2.** *The original FGT paper contains a flaw in the error estimation, which was partially
320 fixed in (Baxter & Roussos, 2002) for the Hermite expansion. Later, (Lee et al., 2005) corrected
321 the error in both Hermite and Taylor expansions. However, their proofs are brief and use different
322 notations that are adapted for their dual-tree algorithm. We provide more detailed and user-friendly
323 proofs for the correct error estimations in Section E. We believe that they are of independent interest
to the community.*

324 This means that, at preprocessing time, it suffices to compute $A_\alpha(\mathcal{B})$ for all source boxes and all
 325 $\alpha \leq p$, which takes

$$327 \sum_{k \in [N(\mathcal{B})]} O(p^d \cdot N_{\mathcal{B}_k}) = O(p^d \cdot N) = \tilde{O}_d(N).$$

329 time. Then, at query time, given an arbitrary query vector t in a target box \mathcal{C} , we compute

$$331 C_\beta(\mathcal{C}) = h(\beta) \sum_{\mathcal{B} \in \text{nb}(\mathcal{C})} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right),$$

333 which takes

$$335 O(d \cdot p^d \cdot (2k+1)^d) = \text{poly log}(n)$$

336 time, so long as $d = O(1)$ and $\varepsilon = n^{-O(1)}$.

338 3.3 DYNAMIZATION

340 Given our (static) representation of points from the last paragraph, dynamizing the above static KDE
 341 data structure now becomes simple. Suppose we add a source vector s in the source box \mathcal{B} . We first
 342 update the intermediate variables $A_\alpha(\mathcal{B})$, $\alpha \leq p$, which takes $O(p^d)$ time. So long as the ℓ_1 -norm
 343 of the updated charge-vector q remains polynomial in the norm of the previously maintained vector,
 344 namely

$$345 \sqrt{\log(\|q^{\text{new}}\|_1)} > \log(\|q\|_1),$$

347 we show that one source box can only affect $(2k+1)^d$ nearest target box \mathcal{C} ; otherwise, when the
 348 change is super-polynomial, we rebuild the data structure, but this cost is amortized away. Hence,
 349 we only need to update $C_\beta(\mathcal{C})$ for those $\mathcal{C} \in \text{nb}(\mathcal{B})$. Notice that each $C_\beta(\mathcal{B}, \mathcal{C})$ can be updated in
 350 $O_d(1)$ time, so each affected $C_\beta(\mathcal{C})$ can also be updated in $O_d(1)$ time. Hence, adding a source
 351 vector can be done in time $O((2k+1)^d p^d) = \tilde{O}_d(1)$ as before. Deleting a source vector follows
 352 from a similar procedure.

353 3.4 GENERALIZATION TO FAST-DECAYING KERNELS

355 We briefly explain how the dynamic FGT data structure generalizes to more general kernel functions
 356 $K(s, t) = f(\|s - t\|_2)$ where f satisfies the 3 properties in Definition 3.3 below.

358 **Definition 3.3** (Properties of general kernel function, (Alman et al., 2020)). *We define the following
 359 properties of the function $f : \mathbb{R} \rightarrow \mathbb{R}_+$:*

- 360 • **P1:** f is non-increasing, i.e., $f(x) \leq f(y)$ when $x \geq y$.
- 361 • **P2:** f is decreasing fast, i.e., $f(\Theta(\log(1/\varepsilon))) \leq \varepsilon$.
- 362 • **P3:** f 's Hermite expansion and Taylor expansion are truncatable: the truncation error of
 363 the first $(\log^d(1/\varepsilon))$ terms in the Hermite and Taylor expansion of K is at most ε .

366 **Remark 3.4.** *There are many widely-used kernels that satisfy the properties of general kernel func-
 367 tion (Definition 3.3) such as:*

- 368 • *inverse polynomial kernels:* $K(x, y) = 1/\|x - y\|_2^c$ for constant $c > 0$,
- 369 • *exponential kernel:* $K(x, y) = \exp(-\|x - y\|_2)$,
- 370 • *inverse multiquadric kernel:* $K(x, y) = 1/\sqrt{\|x - y\|_2^2 + c}$ (Micchelli, 1984; Martinsson,
 371 2012), and
- 372 • *rational quadratic kernel:* $K(x, y) = 1/(1 + \|x - y\|_2^2/\alpha)$ for $\alpha > 0$.

376 *The key insight is that these kernels' fast decay allows truncation of distant interactions, while their
 377 smoothness enables efficient local approximations via series expansions. This broader applicability
 378 significantly extends the practical utility of our dynamic data structure.*

378 In the general case, $G_f(t) = \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \mathsf{K}(s_j, t)$. Similar to the Gaussian kernel case, we can first
 379 show that only near boxes matter:
 380

$$381 \sum_{j: \|t - s_j\|_\infty \geq kr} |q_j| \cdot f(\|s - t\|_2) \leq \varepsilon$$

$$382$$

$$383$$

384 by the fast-decreasing property **(P2)** in Definition 3.3 of f and taking $k = O(\log(\|q\|_1/\varepsilon))$ ¹. Then,
 385 we can follow the same “decoupling” approach as the Gaussian kernel case to first Hermite expand
 386 $G_f(t)$ at the center of each source box and then Taylor expands each Hermite function at the center
 387 of the target box. In this way, we can show that

$$388 G_f(t) \approx \sum_{\beta \leq p} C_{f,\beta}(\mathcal{C}) \left(\frac{t - tc}{\sqrt{\delta}} \right)^\beta,$$

$$389$$

$$390$$

391 where $C_{f,\beta}(\mathcal{C}) = c_\beta \sum_{\mathcal{B} \in \text{nb}(\mathcal{C})} \sum_{\alpha \leq p} A_{f,\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - tc}{\sqrt{\delta}} \right)$, and the approximation error can be
 392 bounded since f is truncatable. $A_{f,\alpha}(\mathcal{B})$ depends on the kernel function f and can be pre-computed
 393 in the preprocessing. Then, each $C_{f,\beta}(\mathcal{C})$ can be computed in poly-logarithmic time. Hence, $G(t)$
 394 can be approximately computed in poly-logarithmic time for any target vector t .
 395

397 3.5 HANDLING POINTS FROM LOW-DIMENSIONAL STATIC SPACES

398 In many practical problems, the data lies in a low dimensional subspace of \mathbb{R}^d . We can first project
 399 the data into this subspace and then perform FGT on \mathbb{R}^w , where w is the rank. The following lemma
 400 shows that FGT can be performed on the projections of the data.

401 **Lemma 3.5** (Hermite projection lemma in low-dimensional space, informal version of Lemma F.3).
 402 *Given $\mathcal{B} \in \mathbb{R}^{d \times w}$ that defines a w -dimensional subspace of \mathbb{R}^d , let $\mathcal{B}^\top \mathcal{B} = U \Lambda U^\top \in \mathbb{R}^{w \times w}$
 403 denote the spectral decomposition where $U \in \mathbb{R}^{w \times w}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{w \times w}$. We define
 404 $\mathsf{P} := \Lambda^{-1/2} U^{-1} \mathcal{B}^\top \in \mathbb{R}^{w \times d}$. Then we have for any $t, s \in \mathbb{R}^d$ from subspace \mathcal{B} , the following
 405 equation holds*

$$406 e^{-\|t-s\|_2^2/\delta} = \sum_{\alpha \geq 0} \frac{(\sqrt{1/\delta} \mathsf{P}(t-s))^\alpha}{\alpha!} h_\alpha(\sqrt{1/\delta} \mathsf{P}(t-s)).$$

$$407$$

$$408$$

$$409$$

410 By Lemma 3.5, it suffices to divide \mathbb{R}^w instead of \mathbb{R}^d into boxes and conduct Hermite expansion
 411 and Taylor expansion on the low-dimensional subspace. More specifically, given the initial source
 412 points, we can compute P by SVD or QR decomposition in $N \cdot w^{\omega-1}$ -time², which is of smaller order
 413 than the FGT’s preprocessing time³. Then, we can project each point $s_i \in \mathbb{R}^d$ to $x_i := \mathsf{P} s_i \in \mathbb{R}^w$
 414 for $i \in [N]$. The remaining procedure in preprocessing is the same as before, but directly working
 415 on the low-dimensional sources $\{x_1, \dots, x_N\}$. In the query phase, consider a target point t in the
 416 subspace. We are supposed to compute $G(t) \approx \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t-s_j\|_2^2/\delta}$. By Lemma 3.5, we
 417 know that $G(t) \approx \sum_{\beta \leq p} C_\beta(\mathcal{C}) \left(\frac{\mathsf{P}(t - tc)}{\sqrt{\delta}} \right)^\beta = \sum_{\beta \leq p} C_\beta(\mathcal{C}) \left(\frac{y - yc}{\sqrt{\delta}} \right)^\beta$, where \mathcal{C} is the target box
 418 that contains t , $y = \mathsf{P} t$ and $yc = \mathsf{P} tc$ projected points. Moreover, for each $\beta \leq p$ and target box \mathcal{C} ,
 419 we have

$$420 C_\beta(\mathcal{C}) = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - tc)}{\sqrt{\delta}} \right)$$

$$421$$

$$422$$

$$423$$

$$424$$

$$425$$

$$426$$

$$427$$

$$428$$

$$429$$

$$430$$

$$431$$

$$432$$

$$433$$

$$434$$

$$435$$

$$436$$

$$437$$

$$438$$

$$439$$

$$440$$

$$441$$

$$442$$

$$443$$

$$444$$

$$445$$

$$446$$

$$447$$

$$448$$

$$449$$

$$450$$

$$451$$

$$452$$

$$453$$

$$454$$

$$455$$

$$456$$

$$457$$

$$458$$

$$459$$

$$460$$

$$461$$

$$462$$

$$463$$

$$464$$

$$465$$

$$466$$

$$467$$

$$468$$

$$469$$

$$470$$

$$471$$

$$472$$

$$473$$

$$474$$

$$475$$

$$476$$

$$477$$

$$478$$

$$479$$

$$480$$

$$481$$

$$482$$

$$483$$

$$484$$

$$485$$

$$486$$

$$487$$

$$488$$

$$489$$

$$490$$

$$491$$

$$492$$

$$493$$

$$494$$

$$495$$

$$496$$

$$497$$

$$498$$

$$499$$

$$500$$

$$501$$

$$502$$

$$503$$

$$504$$

$$505$$

$$506$$

$$507$$

$$508$$

$$509$$

$$510$$

$$511$$

$$512$$

$$513$$

$$514$$

$$515$$

$$516$$

$$517$$

$$518$$

$$519$$

$$520$$

$$521$$

$$522$$

$$523$$

$$524$$

$$525$$

$$526$$

$$527$$

$$528$$

$$529$$

$$530$$

$$531$$

$$532$$

$$533$$

$$534$$

$$535$$

$$536$$

$$537$$

$$538$$

$$539$$

$$540$$

$$541$$

$$542$$

$$543$$

$$544$$

$$545$$

$$546$$

$$547$$

$$548$$

$$549$$

$$550$$

$$551$$

$$552$$

$$553$$

$$554$$

$$555$$

$$556$$

$$557$$

$$558$$

$$559$$

$$560$$

$$561$$

$$562$$

$$563$$

$$564$$

$$565$$

$$566$$

$$567$$

$$568$$

$$569$$

$$570$$

$$571$$

$$572$$

$$573$$

$$574$$

$$575$$

$$576$$

$$577$$

$$578$$

$$579$$

$$580$$

$$581$$

$$582$$

$$583$$

$$584$$

$$585$$

$$586$$

$$587$$

$$588$$

$$589$$

$$590$$

$$591$$

$$592$$

$$593$$

$$594$$

$$595$$

$$596$$

$$597$$

$$598$$

$$599$$

$$600$$

$$601$$

$$602$$

$$603$$

$$604$$

$$605$$

$$606$$

$$607$$

$$608$$

$$609$$

$$610$$

$$611$$

$$612$$

$$613$$

$$614$$

$$615$$

$$616$$

$$617$$

$$618$$

$$619$$

$$620$$

$$621$$

$$622$$

$$623$$

$$624$$

$$625$$

$$626$$

$$627$$

$$628$$

$$629$$

$$630$$

$$631$$

$$632$$

$$633$$

$$634$$

$$635$$

$$636$$

$$637$$

$$638$$

$$639$$

$$640$$

$$641$$

$$642$$

$$643$$

$$644$$

$$645$$

$$646$$

$$647$$

$$648$$

$$649$$

$$650$$

$$651$$

$$652$$

$$653$$

$$654$$

$$655$$

$$656$$

$$657$$

$$658$$

$$659$$

$$660$$

$$661$$

$$662$$

$$663$$

$$664$$

$$665$$

$$666$$

$$667$$

$$668$$

$$669$$

$$670$$

$$671$$

$$672$$

$$673$$

$$674$$

$$675$$

$$676$$

$$677$$

$$678$$

$$679$$

$$680$$

$$681$$

$$682$$

$$683$$

$$684$$

$$685$$

$$686$$

$$687$$

$$688$$

$$689$$

$$690$$

$$691$$

$$692$$

$$693$$

$$694$$

$$695$$

$$696$$

$$697$$

$$698$$

$$699$$

$$700$$

$$701$$

$$702$$

$$703$$

$$704$$

$$705$$

$$706$$

$$707$$

$$708$$

$$709$$

$$710$$

$$711$$

$$712$$

$$713$$

$$714$$

$$715$$

$$716$$

$$717$$

$$718$$

$$719$$

$$720$$

$$721$$

$$722$$

$$723$$

$$724$$

$$725$$

$$726$$

$$727$$

$$728$$

$$729$$

$$730$$

$$731$$

$$732$$

$$733$$

$$734$$

$$735$$

$$736$$

$$737$$

$$738$$

$$739$$

$$740$$

$$741$$

$$742$$

$$743$$

$$744$$

$$745$$

$$746$$

$$747$$

$$748$$

$$749$$

$$750$$

$$751$$

$$752$$

$$753$$

$$754$$

$$755$$

$$756$$

$$757$$

$$758$$

$$759$$

$$760$$

$$761$$

$$762$$

$$763$$

$$764$$

$$765$$

$$766$$

$$767$$

$$768$$

$$769$$

$$770$$

$$771$$

$$772$$

$$773$$

$$774$$

$$775$$

$$776$$

$$777$$

$$778$$

$$779$$

$$780$$

$$781$$

$$782$$

$$783$$

$$784$$

$$785$$

$$786$$

$$787$$

$$788$$

$$789$$

$$790$$

$$791$$

$$792$$

$$793$$

$$794$$

$$795$$

$$796$$

$$797$$

$$798$$

$$799$$

$$800$$

$$801$$

$$802$$

$$803$$

$$804$$

$$805$$

$$806$$

$$807$$

$$808$$

$$809$$

$$810$$

$$811$$

$$812$$

$$813$$

$$814$$

$$815$$

$$816$$

$$817$$

$$818$$

$$819$$

$$820$$

$$821$$

$$822$$

$$823$$

$$824$$

$$825$$

$$826$$

$$827$$

$$828$$

$$829$$

$$830$$

$$831$$

$$832$$

$$833$$

$$834$$

$$835$$

$$836$$

$$837$$

$$838$$

$$839$$

$$840$$

$$841$$

$$842$$

$$843$$

$$844$$

$$845$$

$$846$$

$$847$$

$$848$$

$$849$$

$$850$$

$$851$$

$$852$$

$$853$$

$$854$$

$$855$$

$$856$$

$$857$$

$$858$$

$$859$$

$$860$$

$$861$$

$$862$$

$$863$$

$$864$$

$$865$$

$$866$$

$$867$$

$$868$$

$$869$$

$$870$$

$$871$$

$$872$$

$$873$$

$$874$$

$$875$$

$$876$$

$$877$$

$$878$$

$$879$$

$$880$$

$$881$$

$$882$$

$$883$$

$$884$$

$$885$$

$$886$$

$$887$$

$$888$$

$$889$$

$$890$$

$$891$$

$$892$$

$$893$$

$$894$$

$$895$$

$$896$$

$$897$$

$$898$$

$$899$$

$$900$$

$$901$$

$$902$$

$$903$$

$$904$$

$$905$$

$$906$$

$$907$$

$$908$$

$$909$$

$$910$$

$$911$$

$$912$$

$$913$$

$$914$$

$$915$$

$$916$$

$$917$$

$$918$$

$$919$$

$$920$$

$$921$$

$$922$$

$$923$$

$$924$$

$$925$$

$$926$$

$$927$$

$$928$$

$$929$$

$$930$$

$$931$$

$$932$$

$$933$$

$$934$$

$$935$$

$$936$$

$$937$$

$$938$$

$$939$$

$$940$$

$$941$$

$$942$$

$$943$$

$$944$$

$$945$$

$$946$$

$$947$$

$$948$$

$$949$$

$$950$$

$$951$$

$$952$$

$$953$$

$$954$$

$$955$$

$$956$$

$$957$$

$$958$$

$$959$$

$$960$$

$$961$$

$$962$$

$$963$$

$$964$$

$$965$$

$$966$$

$$967$$

$$968$$

$$969$$

$$970$$

$$971$$

$$972$$

$$973$$

$$974$$

$$975$$

$$976$$

$$977$$

$$978$$

$$979$$

$$980$$

$$981$$

$$982$$

$$983$$

$$984$$

$$985$$

$$986$$

$$987$$

$$988$$

$$989$$

$$990$$

$$991$$

$$992$$

$$993$$

$$994$$

$$995$$

$$996$$

$$997$$

$$998$$

$$999$$

$$1000$$

$$1001$$

$$1002$$

$$1003$$

$$1004$$

$$1005$$

$$1006$$

$$1007$$

$$1008$$

$$1009$$

$$1010$$

$$1011$$

$$1012$$

$$1013$$

$$1014$$

$$1015$$

$$1016$$

$$1017$$

$$1018$$

$$1019$$

$$1020$$

$$1021$$

$$1022$$

$$1023$$

$$1024$$

$$1025$$

$$1026$$

$$1027$$

$$1028$$

$$1029$$

$$1030$$

$$1031$$

$$1032$$

$$1033$$

$$1034$$

$$1035$$

$$1036$$

$$1037$$

$$1038$$

$$1039$$

$$1040$$

$$1041$$

$$1042$$

$$1043$$

$$1044$$

$$1045$$

$$1046$$

$$1047$$

$$1048$$

$$1049$$

$$1050$$

$$1051$$

$$1052$$

$$1053$$

$$1054$$

$$1055$$

$$1056$$

$$1057$$

$$1058$$

$$1059$$

$$1060$$

$$1061$$

$$1062$$

$$1063$$

$$1064$$

$$1065$$

$$1066$$

$$1067$$

$$1068$$

$$1069$$

$$1070$$

$$1071$$

$$1072$$

$$1073$$

$$1074$$

$$1075$$

$$1076$$

$$1077$$

$$1078$$

$$1079$$

$$1080$$

$$1081$$

$$1082$$

$$1083$$

$$1084$$

$$1085$$

$$1086$$

$$1087$$

$$1088$$

$$1089$$

$$1090$$

$$1091$$

$$1092$$

$$1093$$

$$1094$$

$$1095$$

$$1096$$

$$1097$$

$$1098$$

$$1099$$

$$1100$$

$$1101$$

$$1102$$

$$1103$$

$$1104$$

$$1105$$

$$1106$$

$$1107$$

$$1108$$

$$1109$$

$$1110$$

$$1111$$

$$1112$$

$$1113$$

$$1114$$

$$1115$$

$$1116$$

$$1117$$

$$1118$$

$$1119$$

$$1120$$

$$1121$$

$$1122$$

$$1123$$

$$1124$$

$$1125$$

$$1126$$

$$1127$$

$$1128$$

$$1129$$

$$1130$$

$$1131$$

$$1132$$

$$1133$$

$$1134$$

$$1135$$

$$1136$$

$$1137$$

$$1138$$

$$1139$$

$$1140$$

$$1141$$

$$1142$$

$$1143$$

$$1144$$

$$1145$$

$$1146$$

$$1147$$

$$1148$$

$$1149$$

$$1150$$

$$1151$$

$$1152$$

$$1153$$

$$1154$$

$$1155$$

$$1156$$

$$1157$$

$$1158$$

$$1159$$

$$1160$$

$$1161$$

$$1162$$

$$1163$$

$$1164$$

$$1165$$

$$1166$$

$$1167$$

$$1168$$

$$11$$

432 Similarly, for each $\alpha \leq p$ and source box \mathcal{B} ,

$$434 \quad A_\alpha(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x_j - x_{\mathcal{B}}}{\sqrt{\delta}} \right)^\alpha.$$

437 Therefore, each query is equivalent to being conducted in a w -dimensional space using our data
438 structure, which takes $\log^{O(w)}(\|q\|_1/\varepsilon)$ -time. The update can be done in a similar way in the low-
439 dimensional space using the procedure described in Section 3.3. Hence, each update (insertion or
440 deletion) takes $\log^{O(w)}(\|q\|_1/\varepsilon)$.

442 3.6 HANDLING POINTS FROM LOW-DIMENSIONAL DYNAMIC SPACES

444 We note that when we add a new source point to the data structure, the intrinsic rank of the data
445 might change by 1 when the point is not in the subspace. For an inserting source point s , consider
446 the rank-increasing case, i.e., $(I - P)s \neq 0$. Then, this new source point contributes to one new basis
447 $u := \frac{(I - P)s}{\|(I - P)s\|_2}$. Also, we can update the projection matrix P by $[P \ u] \in \mathbb{R}^{(w+1) \times d}$. However, as
448 the subspace is changed, we need to maintain the intermediate variables $A_\alpha(\mathcal{B}), C_\beta(\mathcal{C})$. It is easy to
449 observe that for the original projected source and target points or boxes, they can easily be “lifted”
450 to the new subspace by setting zero to the $(w + 1)$ -th coordinate. We show how to update $A_\alpha(\mathcal{B})$
451 efficiently. For each source box \mathcal{B} and $\alpha \leq p$, we have

$$452 \quad A_{(\alpha,0)}^{\text{new}}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1} \cdot (-1)^i}{\alpha! \cdot i!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x'_j - x'_{\mathcal{B}}}{\sqrt{\delta}} \right)^{(\alpha,i)} = A_\alpha(\mathcal{B}),$$

455 where x'_j denotes the lifted point. And $A_{(\alpha,1)}^{\text{new}}(\mathcal{B}) = 0$ for all $i > 0$. Similarly, for each target box \mathcal{C} ,

$$457 \quad C_{(\beta,i)}^{\text{new}}(\mathcal{C}) = \frac{(-1)^{\|\beta\|_1} (-1)^i}{\beta! i!} \cdot \sum_{\mathcal{B}} \sum_{\alpha \leq p} \sum_{j=0}^p A_{(\alpha,j)}^{\text{new}}(\mathcal{B}) H_{(\alpha+\beta,i+j)} \left(\frac{x'_{\mathcal{B}} - y'_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

$$460 \quad = \frac{(-1)^{\|\beta\|_1} (-1)^i}{\beta! i!} \cdot \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{x_{\mathcal{B}} - y_{\mathcal{C}}}{\sqrt{\delta}} \right) \cdot h_i(0)$$

$$463 \quad = \frac{(-1)^i}{i!} \cdot C_\beta(\mathcal{C}).$$

465 Therefore, by enumerating all boxes \mathcal{B}, \mathcal{C} and indices $\alpha, \beta \leq p$, we can compute $A_{(\alpha,0)}^{\text{new}}(\mathcal{B})$ and
466 $C_{(\beta,i)}^{\text{new}}(\mathcal{C})$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$ -time. Then, we just follow the static subspace insertion procedure
467 to insert the new source point s . In this way, we obtain a data structure that can handle dynamic
468 low-rank subspaces.

470 4 CONCLUSION AND FUTURE DIRECTIONS

473 In this paper, we study the Fast Gaussian Transform (FGT) in a dynamic setting and propose a
474 dynamic data structure to maintain the source vectors that support very fast kernel density estimation,
475 Mat-Vec queries ($K \cdot q$), as well as updating the source vectors. We further show that the efficiency of
476 our algorithm can be improved when the data points lie in a low-dimensional subspace. Our results
477 are especially valuable when FGT is used in real-world applications with rapidly-evolving datasets,
478 e.g., online regression, federated learning, etc.

479 One open problem in this direction is, can we compute Kq in $O(N) + \log^{O(d)}(N/\varepsilon)$ time? Currently,
480 it takes $N \log^{O(d)}(N/\varepsilon)$ time even in the static setting. The lower bounds in (Alman et al., 2020)
481 indicate that this improvement is impossible for some “bad” kernels K which are very non-smooth.
482 It remains open when K is a Gaussian-like kernel. It might be helpful to apply more complicated
483 geometric data structures to maintain the interactions between data points. Another open problem
484 is, can we fast compute Mat-Vec product or KDE for slowly-decaying kernels? The main difficulty
485 is the current FMM techniques cannot achieve high accuracy when the kernel decays slowly. New
techniques might be required to resolve this problem.

486
487
ETHIC STATEMENT488
489
490
491
This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.492
493
REPRODUCIBILITY STATEMENT494
495
496
497
We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.498
499
REFERENCES500
501
Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. *Advances in Neural Information Processing Systems*, 28:775–783, 2015.
502
503
Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In *ICML*, 2019a.
504
505
Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In *NeurIPS*, 2019b.
506
507
508
Josh Alman and Zhao Song. Fast attention requires bounded entries. *arXiv preprint*
arXiv:2302.13214, 2023.
509
510
511
Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In *2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS)*, pp. 541–552. IEEE, 2020.
512
513
514
Josh Alman, Gary Miller, Timothy Chu, Shyam Narayanan, Mark Sellke, and Zhao Song. Metric
transforms and low rank representations of kernels. In *arXiv preprint*, 2021.
515
516
517
Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time
preprocessing: Fast neural network training via weight-data correlation preprocessing. *arXiv
preprint arXiv:2211.14227*, 2022.
518
519
520
Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data
fitting. *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (Approx-Random)*, 2017a.
521
522
523
Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir
Zandieh. Random fourier features for kernel ridge regression: Approximation bounds and statis-
tical guarantees. In *International Conference on Machine Learning*, pp. 253–262. PMLR, 2017b.
524
525
526
Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In *2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS)*, pp. 615–626. IEEE, 2018.
527
528
529
Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Subquadratic
algorithms for kernel matrices via kernel density estimation. In *The Eleventh International Con-
ference on Learning Representations*, 2023.
530
531
532
Bradley John Charles Baxter and George Roussos. A new error estimate of the fast gauss transform.
SIAM Journal on Scientific Computing, 24(1):257–259, 2002.
533
534
535
Rick Beatson and Leslie Greengard. A short course on fast multipole methods. *Wavelets, multilevel
methods and elliptic PDEs*, 1:1–37, 1997.
536
537
538
Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A framework for adver-
sarially robust streaming algorithms. In *Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
symposium on principles of database systems*, pp. 63–80, 2020.

540 Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic trans-
 541 formation. *Journal of Algorithms*, 1(4):301–358, 1980.
 542

543 Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
 544 in nearly linear time. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of*
 545 *Computing (STOC)*, pp. 775–788, 2020.

546 Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
 547 neural networks in near-linear time. In *ITCS*, 2021.

548

549 S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for hss representations
 550 via sparse matrices. *SIAM J. Matrix Anal. Appl.*, 29(1):67–81, dec 2006. ISSN 0895-4798. doi:
 551 10.1137/050639028. URL <https://doi.org/10.1137/050639028>.

552

553 Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
 554 sions. In *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*, pp.
 555 1032–1043. IEEE, 2017.

556

557 Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In
 558 *2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)*, pp. 769–792.
 559 IEEE, 2019.

560

561 Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
 562 through density constrained near neighbor search. In *2020 IEEE 61st Annual Symposium on*
 563 *Foundations of Computer Science (FOCS)*, pp. 172–183. IEEE, 2020.

564

565 Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
 566 Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
 567 neural network training. In *International Conference on Learning Representations (ICLR)*, 2020a.

568

569 Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In
 570 defense of smart algorithms over hardware acceleration for large-scale deep learning systems.
 571 *Proceedings of Machine Learning and Systems*, 2:291–306, 2020b.

572

573 Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
 574 Pixelated butterfly: Simple and efficient sparse training for neural network models. *ICLR*, 2021.

575

576 Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In *Thirty-fourth*
 577 *Conference on Neural Information Processing Systems (NeurIPS)*, 2020.

578

579 Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for randomized hadamard
 580 transforms with applications. *arXiv preprint arXiv:2203.01599*, 2022.

581

582 Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
 583 Sidford. Uniform sampling for matrix approximation. In Tim Roughgarden (ed.), *Proceedings*
 584 *of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot,*
 585 *Israel, January 11-13, 2015*, pp. 181–190. ACM, 2015. doi: 10.1145/2688073.2688113. URL
 586 <https://doi.org/10.1145/2688073.2688113>.

587

588 Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. An $\mathcal{O}(n)$ direct solver for integral
 589 equations on the plane. *Applied and Computational Harmonic Analysis*, 38(2):284–317, 2015.

590

591 Eric Darve. The fast multipole method: numerical implementation. *Journal of Computational*
 592 *Physics* 160.1, 2000.

593

594 Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
 595 fication algorithms for over-parameterized feature dimension. *arxiv preprint: arxiv 2304.03426*,
 596 2023.

597

598 Jack Dongarra and Francis Sullivan. Guest editors’ introduction: The top 10 algorithms. *Computing*
 599 *in Science & Engineering*, 2(1):22, 2000.

594 James R. Driscoll, Dennis M. Healy Jr., and Daniel N. Rockmore. Fast discrete polynomial trans-
 595 forms with applications to data analysis for distance transitive graphs. *SIAM J. Comput.*, 26(4):
 596 1066–1099, 1997. doi: 10.1137/S0097539792240121. URL <https://doi.org/10.1137/S0097539792240121>.

598 Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
 599 over-parameterized neural networks. In *ICLR*, 2019.

601 Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius Vassiliou. The fast multipole
 602 method for electromagnetic scattering computation. *IEEE Transactions on Antennas and Propa-*
 603 *gation* 40, pp. 634–641, 1992.

604 Jianqing Fan and Irène Gijbels. *Local polynomial modelling and its applications*. Number 66 in
 605 Monographs on statistics and applied probability series. Chapman & Hall, London [u.a.], 1996.
 606 ISBN 0412983214. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy.

607 Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
 608 *arXiv preprint arXiv:2303.16504*, 2023a.

609 Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. *arXiv preprint*
 610 *arXiv:2305.04701*, 2023b.

611 Leslie Greengard. *The rapid evaluation of potential fields in particle systems*. MIT press, 1988.

612 Leslie Greengard. The numerical solution of the n -body problem. *Computers in physics*, 4(2):
 613 142–152, 1990.

614 Leslie Greengard. Fast algorithms for classical physics. *Science*, 265(5174):909–914, 1994.

615 Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. *Journal of*
 616 *computational physics*, 73(2):325–348, 1987.

617 Leslie Greengard and Vladimir Rokhlin. The rapid evaluation of potential fields in three dimensions.
 618 *Vortex Methods*. Springer, Berlin, Heidelberg, pp. 121–141, 1988.

619 Leslie Greengard and Vladimir Rokhlin. On the evaluation of electrostatic interactions in molecular
 620 modeling. *Chemica scripta*, 29:139–144, 1989.

621 Leslie Greengard and Vladimir Rokhlin. An improved fast multipole algorithm in three dimensions.
 622 .., 1996.

623 Leslie Greengard and John Strain. The fast gauss transform. *SIAM Journal on Scientific and Statis-*
 624 *tical Computing*, 12(1):79–94, 1991.

625 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
 626 tured state spaces. *CoRR*, abs/2111.00396, 2021. URL <https://arxiv.org/abs/2111.00396>.

627 Ming Gu and Stanley C. Eisenstat. A stable and efficient algorithm for the rank-one modification of
 628 the symmetric eigenproblem. *SIAM Journal on Matrix Analysis and Applications*, 15:1266–1276,
 629 1994.

630 Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In *Pro-*
 631 *ceedings of the forty-fifth annual ACM symposium on Theory of computing (STOC)*, pp. 121–130,
 632 2013.

633 M Hermite. *Sur un nouveau développement en série des fonctions*. Imprimerie de Gauthier-Villars,
 634 1864.

635 Einar Hille. A class of reciprocal functions. *Annals of Mathematics*, pp. 427–464, 1926.

636 Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learn-
 637 ing. *The annals of statistics*, 36(3):1171–1220, 2008.

648 Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural net-
 649 works in sublinear time. *arXiv preprint arXiv:2208.04508*, 2022.

650

651 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 652 eralization in neural networks. In *Advances in neural information processing systems*, pp. 8571–
 653 8580, 2018.

654 Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric learning and fast
 655 similarity search. In *NIPS*, volume 8, pp. 761–768. Citeseer, 2008.

656

657 Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regression. In *ICLR*,
 658 2022.

659

660 Dongryeol Lee, Andrew Moore, and Alexander Gray. Dual-tree fast gauss transforms. *Advances in
 Neural Information Processing Systems*, 18, 2005.

661

662 Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage score
 663 sampling for neural networks. In *NeurIPS*, 2020.

664

665 Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
 666 descent on structured data. In *NeurIPS*, 2018.

667

668 Per-Gunnar Martinsson. Encyclopedia entry on “fast multipole methods”. In *University
 of Colorado at Boulder*. http://amath.colorado.edu/faculty/martinss/2014_CBMS/Refs/2012_fmm_encyclopedia.pdf, 2012.

669

670 Per-Gunnar Martinsson. Fast summation and multipole expansions. Lecture note, 2019.

671

672 Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally positive
 673 definite functions. In *Approximation theory and spline functions*, pp. 143–145. Springer, 1984.

674

675 Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
 676 In *Advances in neural information processing systems*, pp. 849–856, 2002.

677

678 German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with neural networks: A review. *Neural Networks*, 113:54–71, 2019.
 679 ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2019.01.012>. URL <https://www.sciencedirect.com/science/article/pii/S0893608019300231>.

680

681 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Ad-
 682 vances in neural information processing systems*, pp. 1177–1184. <https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf>, 2008.

683

684 Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (gpml)
 685 toolbox. *J. Mach. Learn. Res.*, 11:3011–3015, 2010. ISSN 1532-4435.

686

687 Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged
 688 progress in structured dense matrix vector multiplication. In Artur Czumaj (ed.), *Proceedings
 689 of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, (SODA), pp. 1060–
 690 1079. SIAM, 2018.

691

692 Bernhard Schölkopf and Alexander J. Smola. *Learning with kernels : support vector machines, reg-
 693 ularization, optimization, and beyond*. Adaptive computation and machine learning. MIT Press,
 694 2002. URL <http://www.worldcat.org/oclc/48970254>.

695

696 Bernhard Schölkopf, Alexander J Smola, and Francis Bach. *Learning with kernels: support vector
 machines, regularization, optimization, and beyond*. MIT press, 2002.

697

698 Erich Schubert, Arthur Zimek, and Hans Peter Kriegel. Generalized outlier detection with flexible
 699 kernel density estimates. In *Proceedings of the 2014 SIAM International Conference on Data
 Mining*, pp. 542–550, 2014.

700

701 John Shawe-Taylor and Nello Cristianini. *Kernel methods for pattern analysis*. Cambridge univer-
 sity press, 2004.

702 Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value iteration via
703 locality sensitive hashing. *arXiv preprint arXiv:2105.08285*, 2021.
704

705 Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
706 neural networks? *Advances in Neural Information Processing Systems*, 34, 2021a.
707

708 Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural net-
709 work in subquadratic time. *arXiv preprint arXiv:2112.07628*, 2021b.
710

711 Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for
712 some well-known conditional gradient methods using maxip data-structures. *Advances in Neural
Information Processing Systems (NeurIPS)*, 34, 2021.
713

714 Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved fast gauss
715 transform and efficient kernel density estimation. In *Proceedings Ninth IEEE International Con-
ference on Computer Vision (ICCV)*. IEEE, 2003.
716

717 Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using the im-
718 proved fast gauss transform. In *NIPS*, 2004.
719

720 Hongru Yang, Ziyu Jiang, Ruizhe Zhang, Zhangyang Wang, and Yingbin Liang. Convergence and
721 generalization of wide neural networks with large bias, 2023.
722

723 Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
724 via kernel density estimation. *arXiv preprint arXiv:2302.02451*, 2023.
725

726 Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and mainte-
727 nance. Master’s thesis, Carnegie Mellon University, 2022.
728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Appendix

758 **Roadmap.** In Section A, we provide several notations and definitions about the Fast Multipole
 759 Method. In Section B, we present the formal statement of our main result. In Section C, we present
 760 our data-structures and algorithms. In Section D, we provide a complete and full for our results. In
 761 Section E, we prove several lemmas to control the error. In Section F, we generalize our results to
 762 low dimension subspace setting.

764 A PRELIMINARIES

766 We first give a quick overview of the high-level ideas of FMM in Section A.1. In Section A.2, we
 767 provide a complete description and proof of correctness for the fast Gaussian transform, where the
 768 kernel function is the Gaussian kernel. Although a number of researchers have used FMM in the
 769 past, most of the previous papers about FMM either focus on low-dimensional or low-error cases.
 770 We therefore focus on the superconstant-error, high dimensional case, and carefully analyze the joint
 771 dependence on ε and d . We believe that our presentation of the original proof in Section A.2 is thus
 772 of independent interest to the community.

774 A.1 FMM BACKGROUND

776 We begin with a description of high-level ideas of the Fast Multipole Method (FMM). Let $K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_+$ denote a kernel function. The inputs to the FMM are N sources $s_1, s_2, \dots, s_N \in \mathbb{R}^d$
 777 and M targets t_1, t_2, \dots, t_M . For each $i \in [N]$, source s_i has associated ‘strength’ q_i . Suppose all
 778 sources are in a ‘box’ \mathcal{B} and all the targets are in a ‘box’ \mathcal{C} . The goal is to evaluate

$$780 \quad u_j = \sum_{i=1}^N K(s_i, t_j) q_i, \quad \forall j \in [M]$$

784 Intuitively, if K has some nice property (e.g. smooth), we can hope to approximate K in the following
 785 sense:

$$786 \quad K(s, t) \approx \sum_{p=0}^{P-1} B_p(s) \cdot C_p(t), \quad s \in \mathcal{B}, t \in \mathcal{C}$$

789 for some functions $B_p, C_p : \mathbb{R}^d \rightarrow \mathbb{R}$, where P is a small positive integer, usually called the
 790 *interaction rank* in the literature (Corona et al., 2015; Martinsson, 2019).

792 Now, we can construct u_i in two steps:

$$793 \quad v_p = \sum_{i \in \mathcal{B}} B_p(s_i) q_i, \quad \forall p = 0, 1, \dots, P-1,$$

796 and

$$798 \quad \tilde{u}_j = \sum_{p=0}^{P-1} C_p(t_j) v_p, \quad \forall i \in [M].$$

801 Intuitively, as long as \mathcal{B} and \mathcal{C} are well-separated, then \tilde{u}_j is very good estimation to u_j even for
 802 small P , i.e., $|\tilde{u}_j - u_j| < \varepsilon$.

804 Recall that, at the beginning of this section, we assumed that all the sources are in the the same box
 805 \mathcal{B} and \mathcal{C} . This is not true in general. To deal with this, we can discretize the continuous space into
 806 a batch of boxes $\mathcal{B}_1, \mathcal{B}_2, \dots$ and $\mathcal{C}_1, \mathcal{C}_2, \dots$. For a box \mathcal{B}_{l_1} and a box \mathcal{C}_{l_2} , if they are very far apart,
 807 then the interaction between points within them is small, and we can ignore it. If the two boxes are
 808 close, then we deal with them efficiently by truncating the high order expansion terms in K (only
 809 keeping the first $\log^{O(d)}(1/\varepsilon)$ terms). For each box, we will see that the number of nearby relevant
 boxes is at most $\log^{O(d)}(1/\varepsilon)$.

Figure 1: An illustration of the source-target boxing our data structure maintains in high dimensional space, using the ‘hybrid’ of Taylor-Hermite expansions.

A.2 FAST GAUSSIAN TRANSFORM

Given N vectors $s_1, \dots, s_N \in \mathbb{R}^d$, M vectors $t_1, \dots, t_M \in \mathbb{R}^d$ and a strength vector $q \in \mathbb{R}^n$, Greengard and Strain (Greengard & Strain, 1991) provided a fast algorithm for evaluating discrete Gauss transform

$$G(t_i) = \sum_{j=1}^N q_j e^{-\|t_i - s_j\|^2/\delta}$$

for all $i \in [M]$ in $O(M+N)$ time. In this section, we re-prove the algorithm described in (Greengard & Strain, 1991), and determine the exact dependence on ε and d in the running time.

Without loss of generality, we can assume that all the sources s_j and targets are belonging to the unit box $\mathcal{B}_0 = [0, 1]^d$. The reason is, if not, we can shift the origin and rescaling δ .

Let t and s lie in d -dimensional Euclidean space \mathbb{R}^d , and consider the Gaussian

$$e^{-\|t-s\|_2^2} = e^{-\sum_{i=1}^d (t_i - s_i)^2}$$

We begin with some definitions. One important tool we use is the Hermite polynomial, which is a well-known class of orthogonal polynomials with respect to Gaussian measure and widely used in analyzing Gaussian kernels.

Definition A.1 (One-dimensional Hermite polynomial, (Hermite, 1864)). *The Hermite polynomials $\tilde{h}_n : \mathbb{R} \rightarrow \mathbb{R}$ is defined as follows*

$$\tilde{h}_n(t) = (-1)^n e^{t^2} \frac{d^n}{dt^n} e^{-t^2}$$

The first few Hermite polynomials are:

$$\tilde{h}_1(t) = 2t, \tilde{h}_2(t) = 4t^2 - 2, \tilde{h}_3(t) = 8t^3 - 12t, \dots$$

Definition A.2 (One-dimensional Hermite function, (Hermite, 1864)). *The Hermite functions $h_n : \mathbb{R} \rightarrow \mathbb{R}$ is defined as follows*

$$h_n(t) = e^{-t^2} \tilde{h}_n(t) = (-1)^n \frac{d^n}{dt^n} e^{-t^2}$$

We use the following Fact to simplify $e^{-(t-s)^2/\delta}$.

Figure 2: An illustration of inserting two source points with corresponding interactions to the data structure.

Fact A.3. For $s_0 \in \mathbb{R}$ and $\delta > 0$, we have

$$e^{-(t-s)^2/\delta} = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \left(\frac{s-s_0}{\sqrt{\delta}} \right)^n \cdot h_n \left(\frac{t-s_0}{\sqrt{\delta}} \right)$$

and

$$e^{-(t-s)^2/\delta} = e^{-(t-s_0)^2/\delta} \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \left(\frac{s-s_0}{\sqrt{\delta}} \right)^n \cdot \tilde{h}_n \left(\frac{t-s_0}{\sqrt{\delta}} \right).$$

Lemma A.4 (Cramer's inequality for one-dimensional, (Hille, 1926)). For any $K < 1.09$,

$$|\tilde{h}_n(t)| \leq K 2^{n/2} \sqrt{n!} e^{t^2/2}.$$

Using Cramer's inequality (Lemma A.4), we have the following standard bound.

Lemma A.5. For any constant $K < 1.09$, we have

$$|h_n(t)| \leq K \cdot 2^{n/2} \cdot \sqrt{n!} \cdot e^{-t^2/2}.$$

Next, we will extend the above definitions and observations to the high dimensional case. To simplify the discussion, we define multi-index notation. A multi-index $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d)$ is a d -tuple of nonnegative integers, playing the role of a multi-dimensional index. For any multi-index $\alpha \in \mathbb{R}^d$ and any $t \in \mathbb{R}^d$, we write

$$\alpha! = \prod_{i=1}^d (\alpha_i!), \quad t^\alpha = \prod_{i=1}^d t_i^{\alpha_i}, \quad D^\alpha = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_d^{\alpha_d}.$$

where ∂_i is the differential operator with respect to the i -th coordinate in \mathbb{R}^d . For integer p , we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [d]$; and we say $\alpha \geq p$ if $\alpha_i \geq p, \exists i \in [d]$. We use these definitions to guarantee that $\{\alpha \leq p\} \cup \{\alpha \geq p\} = \mathbb{N}^d$.

We can now define multi-dimensional Hermite polynomial:

Definition A.6 (Multi-dimensional Hermite polynomial, (Hermite, 1864)). We define function $\tilde{H}_\alpha : \mathbb{R}^d \rightarrow \mathbb{R}$ as follows:

$$\tilde{H}_\alpha(t) = \prod_{i=1}^d \tilde{h}_{\alpha_i}(t_i).$$

Definition A.7 (Multi-dimensional Hermite function, (Hermite, 1864)). We define function $H_\alpha : \mathbb{R}^d \rightarrow \mathbb{R}$ as follows:

$$H_\alpha(t) = \prod_{i=1}^d h_{\alpha_i}(t_i).$$

It is easy to see that $H_\alpha(t) = e^{-\|t\|_2^2} \cdot \tilde{H}_\alpha(t)$

Figure 3: An illustration of deleting a source point from the data structure.

The Hermite expansion of a Gaussian in \mathbb{R}^d is

$$e^{-\|t-s\|_2^2} = \sum_{\alpha \geq 0} \frac{(t-s_0)^\alpha}{\alpha!} h_\alpha(s-s_0). \quad (4)$$

Cramer's inequality generalizes to

Lemma A.8 (Cramer's inequality for multi-dimensional case, (Greengard & Strain, 1991; Alman et al., 2020)). *Let $K < (1.09)^d$, then*

$$|\tilde{H}_\alpha(t)| \leq K \cdot e^{\|t\|_2^2/2} \cdot 2^{\|\alpha\|_1/2} \cdot \sqrt{\alpha!}$$

and

$$|H_\alpha(t)| \leq K \cdot e^{-\|t\|_2^2/2} \cdot 2^{\|\alpha\|_1/2} \cdot \sqrt{\alpha!}.$$

The Taylor series of H_α is

$$H_\alpha(t) = \sum_{\beta \geq 0} \frac{(t-t_0)^\beta}{\beta!} (-1)^{\|\beta\|_1} H_{\alpha+\beta}(t_0). \quad (5)$$

B OUR RESULT

B.1 PROPERTIES OF KERNEL FUNCTION

(Alman et al., 2020) identified the three key properties of kernel functions $K(s, t) = f(\|s - t\|_2)$ which allow sub-quadratic matrix-vector multiplication via the fast Multipole method. Our dynamic algorithm will work for any kernel satisfying these properties.

Definition B.1 (Properties of general kernel function, restatement of Definition 3.3, (Alman et al., 2020)). *We define the following properties of the function $f : \mathbb{R} \rightarrow \mathbb{R}_+$:*

- **P1:** *f is non-increasing, i.e., $f(x) \leq f(y)$ when $x \geq y$.*
- **P2:** *f is decreasing fast, i.e., $f(\Theta(\log(1/\varepsilon))) \leq \varepsilon$.*
- **P3:** *f's Hermite expansion and Taylor expansion are truncateable: the truncation error of the first $(\log^d(1/\varepsilon))$ terms in the Hermite and Taylor expansion of K is at most ε .*

Remark B.2. *We note that P3 can be replaced with the following more general property:*

- **P4:** *$K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ is $\{\phi_\alpha\}_{\alpha \in \mathbb{N}^d}$ -expansionable: there exist constants c_α that only depend on $\alpha \in \mathbb{N}^d$ and functions $\phi_\alpha : \mathbb{R}^d \rightarrow \mathbb{R}$ such that*

$$K(s, t) = \sum_{\alpha \in \mathbb{N}^d} c_\alpha \cdot (s - s_0)^\alpha \cdot \phi_\alpha(t - s_0)$$

for any $s_0 \in \mathbb{R}^d$ and s close to s_0 . Moreover, the truncation error of the first $(\log^d(1/\varepsilon))$ terms is $\leq \varepsilon$.

972 **Algorithm 1** Informal version of Algorithm 2, 3, 4 and 5.

973 1: **data structure** DYNAMICFGT ▷ Theorem B.5

974 2: **members**

975 3: $A_\alpha(\mathcal{B}_k), k \in [N(B)], \alpha \leq p$

976 4: $C_\beta(\mathcal{C}_k), k \in [N(C)], \beta \leq p$

977 5: $t_{\mathcal{C}_k}, k \in [N(C)]$

978 6: $s_{\mathcal{B}_k}, k \in [N(B)]$

979 7: **end members**

980

981 8: **procedure** UPDATE($s \in \mathbb{R}^d, q \in \mathbb{R}$) ▷ Informal version of Algorithm 4 and 5

982 9: Find the box $s \in \mathcal{B}_k$

983 10: Update $A_\alpha(\mathcal{B}_k)$ for all $\alpha \leq p$

984 11: Find $(2k+1)^d$ nearest target boxes to \mathcal{B}_k , denote by $\text{nb}(\mathcal{B}_k)$ $k \leq \log(\|q\|_1/\varepsilon)$

985 12: **for** $\mathcal{C}_l \in \text{nb}(\mathcal{B}_k)$ **do**

986 13: Update $C_\beta(\mathcal{C}_l)$ for all $\beta \leq p$

987 14: **end for**

988 15: **end procedure**

989

990 16: **procedure** KDE-QUERY($t \in \mathbb{R}^d$) ▷ Informal version of Algorithm 3

991 17: Find the box $t \in \mathcal{C}_k$

992 18: $\tilde{G}(t) \leftarrow \sum_{\beta \leq p} C_\beta(\mathcal{C}_k)((t - t_{\mathcal{C}_k})/\sqrt{\delta})^\beta$

993 19: **end procedure**

994 20: **end data structure**

Remark B.3. Two examples of kernels that satisfy Properties 1 and 2 are:

- $K(s, t) = e^{-\alpha \|s-t\|^2}$ for any $\alpha \in \mathbb{R}_+$.
- $K(s, t) = e^{-\alpha \|s-t\|^{2p}}$ for any $p \in \mathbb{N}_+$.

B.2 DYNAMIC FGT

In this section, we present our main result. We first define the dynamic density-estimation maintenance problem with respect to the Gaussian kernel.

Definition B.4 (Dynamic FGT Problem). *We wish to design a data-structure that efficiently supports any sequence of the following operations:*

- **INIT**($S \subset \mathbb{R}^d, q \in \mathbb{R}^{|S|}, \varepsilon \in \mathbb{R}$) *Let $N = |S|$. The data structure is given N source points $s_1, \dots, s_N \in \mathbb{R}^d$ with their charge $q_1, \dots, q_N \in \mathbb{R}$.*
- **INSERT**($s \in \mathbb{R}^d, q_s \in \mathbb{R}$) *Add the source point s with its charge q_s to the point set S .*
- **DELETE**($s \in \mathbb{R}^d$) *Delete s (and its charge q_s) from the point set S .*
- **KDE-QUERY**($t \in \mathbb{R}^d$) *Output \tilde{G} such that $G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon$.*

The main result of this paper is a fully-dynamic data structure supporting all of the above operations in *polylogarithmic* time:

Theorem B.5 (Dynamic FGT Data Structure). *Given N vectors $S = \{s_1, \dots, s_N\} \subset \mathbb{R}^d$, a number $\delta > 0$, and a vector $q \in \mathbb{R}^N$, let $G : \mathbb{R}^d \rightarrow \mathbb{R}$ be defined as $G(t) = \sum_{i=1}^N q_i \cdot K(s_i, t)$ denote the kernel-density of t with respect to S , where $K(s_i, t) = f(\|s_i - t\|_2)$ for f satisfying the properties in Definition 3.3. There is a dynamic data structure that supports the following operations:*

- **INIT()** (*Algorithm 2*) *Preprocess in $N \cdot \log^{O(d)}(\|q\|_1/\varepsilon)$ time.*
- **KDE-QUERY($t \in \mathbb{R}^d$)** (*Algorithm 3*) *Output \tilde{G} such that $G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon$ in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.*

1026 • $\text{INSERT}(s \in \mathbb{R}^d, q_s \in \mathbb{R})$ (Algorithm 4) For any source point $s \in \mathbb{R}^d$ and its charge q_s ,
 1027 update the data structure by adding this source point in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.
 1028
 1029 • $\text{DELETE}(s \in \mathbb{R}^d)$ (Algorithm 5) For any source point $s \in \mathbb{R}^d$ and its charge q_s , update the
 1030 data structure by deleting this source point in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.
 1031
 1032 • $\text{QUERY}(q \in \mathbb{R}^N)$ (Algorithm 3) Output $\widetilde{\mathbf{K}q} \in \mathbb{R}^N$ such that $\|\widetilde{\mathbf{K}q} - \mathbf{K}q\|_\infty \leq \varepsilon$, where
 1033 $\mathbf{K} \in \mathbb{R}^{N \times N}$ is defined by $\mathbf{K}_{i,j} = \mathbf{K}(s_i, s_j)$ in $N \log^{O(d)}(\|q\|_1/\varepsilon)$ time.

1034 **Remark B.6.** The QUERY time can be further reduced when the change of the charge vector q is
 1035 sparsely changed between two consecutive queries. More specifically, let $\Delta := \|q^{\text{new}} - q\|_0$ be the
 1036 number of changed coordinates of q . Then, QUERY can be done in $\tilde{O}_d(\Delta)$ time.

C ALGORITHMS

1041 **Algorithm 2** This algorithm are the init part of Theorem B.5.

1042 1: **data structure** DYNAMICFGT ▷ Theorem B.5
 1043 2: **members**
 1044 3: $A_\alpha(\mathcal{B}_k), k \in [N(B)], \alpha \leq p$
 1045 4: $C_\beta(\mathcal{C}_k), k \in [N(C)], \beta \leq p$
 1046 5: $t_{\mathcal{C}_k}, k \in [N(C)]$
 1047 6: $s_{\mathcal{B}_k}, k \in [N(B)]$
 1048 7: **end members**
 1049 8:
 1050 9: **procedure** INIT($\{s_j \in \mathbb{R}^d, j \in [N]\}, \{q_j \in \mathbb{R}, j \in [N]\}$)
 1051 10: $p \leftarrow \log(\|q\|_1/\varepsilon)$
 1052 11: Assign N sources into $N(B)$ boxes $\mathcal{B}_1, \dots, \mathcal{B}_{N(B)}$ of length $r\sqrt{\delta}$
 1053 12: Divide space into $N(C)$ boxes $\mathcal{C}_1, \dots, \mathcal{C}_{N(C)}$ of length $r\sqrt{\delta}$
 1054 13: Set center $s_{\mathcal{B}_k}, k \in [N(B)]$ of source boxes $\mathcal{B}_1, \dots, \mathcal{B}_{N(B)}$
 1055 14: Set centers $t_{\mathcal{C}_k}, k \in [N(C)]$ of target boxes $\mathcal{C}_1, \dots, \mathcal{C}_{N(C)}$
 1056 15: **for** $k \in [N(B)]$ **do** ▷ Source box \mathcal{B}_k with center $s_{\mathcal{B}_k}$
 1057 **for** $\alpha \leq p$ **do** ▷ we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [d]$
 1058 Compute
 1059
$$A_\alpha(\mathcal{B}_k) \leftarrow \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{s_j \in \mathcal{B}_k} q_j \left(\frac{s_j - s_{\mathcal{B}_k}}{\sqrt{\delta}} \right)^\alpha$$

 1060 ▷ Takes $p^d N$ time in total
 1061
 1062 18: **end for**
 1063 19: **end for**
 1064 20: **for** $k \in [N(C)]$ **do** ▷ Target box \mathcal{C}_k with center $t_{\mathcal{C}_k}$
 1065 Find $(2k+1)^d$ nearest source boxes to \mathcal{C}_k , denote by $\text{nb}(\mathcal{C}_k)$ ▷ $k \leq \log(\|q\|_1/\varepsilon)$
 1066 **for** $\beta \leq p$ **do**
 1067 Compute
 1068
$$C_\beta(\mathcal{C}_k) \leftarrow \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}_l \in \text{nb}(\mathcal{C}_k)} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}_l) \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}_l} - t_{\mathcal{C}_k}}{\sqrt{\delta}} \right)$$

 1069 ▷ Takes $N(C) \cdot (2k+1)^d p^{d+1}$ time in total
 1070 ▷ $N(C) \leq \min\{(r\sqrt{2\delta})^{-d/2}, M\}$
 1071
 1072 24: **end for**
 1073 25: **end for**
 1074 26: **end for**
 1075 27: **end procedure**
 1076 28: **end data structure**

1134
1135
1136
1137
1138
1139
1140
1141
1142

Algorithm 4 This algorithm is the update part of Theorem B.5.

1: **data structure** DYNAMICFGT ▷ Theorem B.5
 2: **members** ▷ This is exact same as the members in Algorithm 2.
 3: $A_\alpha(\mathcal{B}_k), k \in [N(B)], \alpha \leq p$
 4: $C_\beta(\mathcal{C}_k), k \in [N(C)], \beta \leq p$
 5: $t_{\mathcal{C}_k}, k \in [N(C)]$
 6: $s_{\mathcal{B}_k}, k \in [N(B)]$
 7: **end members**
 8:
 9: **procedure** INSERT($s \in \mathbb{R}^d, q \in \mathbb{R}$)
 10: Find the box $s \in \mathcal{B}_k$
 11: **for** $\alpha \leq p$ **do** ▷ we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [d]$
 12: Compute

$$A_\alpha^{\text{new}}(\mathcal{B}_k) \leftarrow A_\alpha(\mathcal{B}_k) + \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} \left(\frac{s - s_{\mathcal{B}_k}}{\sqrt{\delta}} \right)^\alpha$$
▷ Takes p^d time
 13: **end for**
 14: Find $(2k + 1)^d$ nearest target boxes to \mathcal{B}_k , denote by $\text{nb}(\mathcal{B}_k)$ ▷ $k \leq \log(\|q\|_1/\varepsilon)$
 15: **for** $\mathcal{C}_l \in \text{nb}(\mathcal{B}_k)$ **do**
 16: **for** $\beta \leq p$ **do**
 17: Compute

$$C_\beta^{\text{new}}(\mathcal{C}_l) \leftarrow C_\beta(\mathcal{C}_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (A_\alpha^{\text{new}}(\mathcal{B}_k) - A_\alpha(\mathcal{B}_k)) \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}_k} - t_{\mathcal{C}_l}}{\sqrt{\delta}} \right)$$
▷ Takes $(2k + 1)^d p^d$ time
 18: **end for**
 19: **end for**
 20: **for** $\alpha \leq p$ **do**
 21: $A_\alpha(\mathcal{B}_k) \leftarrow A_\alpha^{\text{new}}(\mathcal{B}_k)$ ▷ Takes p^d time
 22: **end for**
 23: **for** $\mathcal{C}_l \in \text{nb}(\mathcal{B}_k)$ **do**
 24: **for** $\beta \leq p$ **do**
 25: $C_\beta(\mathcal{C}_l) \leftarrow C_\beta^{\text{new}}(\mathcal{C}_l)$ ▷ Takes $(2k + 1)^d p^d$ time
 26: **end for**
 27: **end for**
 28: **end procedure**
 29: **end data structure**

1180
1181
1182
1183
1184
1185
1186
1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Algorithm 5 This algorithm is another update part of Theorem B.5.

1197

```

1: data structure DYNAMICFGT
2: members
3:    $A_\alpha(\mathcal{B}_k), k \in [N(B)], \alpha \leq p$ 
4:    $C_\beta(\mathcal{C}_k), k \in [N(C)], \beta \leq p$ 
5:    $t_{\mathcal{C}_k}, k \in [N(C)]$ 
6:    $s_{\mathcal{B}_k}, k \in [N(B)]$ 
7:    $\delta \in \mathbb{R}$ 
8: end members
9:
10: procedure DELETE( $s \in \mathbb{R}^d, q \in \mathbb{R}$ )
11:   Find the box  $s \in \mathcal{B}_k$ 
12:   for  $\alpha \leq p$  do ▷ we say  $\alpha \leq p$  if  $\alpha_i \leq p, \forall i \in [d]$ 
13:     Compute
14:     
$$A_\alpha^{\text{new}}(\mathcal{B}_k) \leftarrow A_\alpha(\mathcal{B}_k) - \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} \left( \frac{s - s_{\mathcal{B}_k}}{\sqrt{\delta}} \right)^\alpha$$
 ▷ Takes  $p^d$  time
15:   end for
16:   Find  $(2k + 1)^d$  nearest target boxes to  $\mathcal{B}_k$ , denote by  $\text{nb}(\mathcal{B}_k)$  ▷  $k \leq \log(\|q\|_1/\varepsilon)$ 
17:   for  $\mathcal{C}_l \in \text{nb}(\mathcal{B}_k)$  do
18:     for  $\beta \leq p$  do
19:       Compute
20:       
$$C_\beta^{\text{new}}(\mathcal{C}_l) \leftarrow C_\beta(\mathcal{C}_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (A_\alpha^{\text{new}}(\mathcal{B}_k) - A_\alpha(\mathcal{B}_k)) \cdot H_{\alpha+\beta} \left( \frac{s_{\mathcal{B}_k} - t_{\mathcal{C}_l}}{\sqrt{\delta}} \right)$$
 ▷ Takes  $(2k + 1)^d p^d$  time
21:     end for
22:   end for
23:    $A_\alpha(\mathcal{B}_k) \leftarrow A_\alpha^{\text{new}}(\mathcal{B}_k)$  ▷ Takes  $p^d$  time
24:   for  $\mathcal{C}_l \in \text{nb}(\mathcal{B}_k)$  do
25:     for  $\beta \leq p$  do
26:        $C_\beta(\mathcal{C}_l) \leftarrow C_\beta^{\text{new}}(\mathcal{C}_l)$  ▷ Takes  $(2k + 1)^d p^d$  time
27:     end for
28:   end for
29: end procedure
30: end data structure

```

1234

1235

1236

1237

1238

1239

1240

1241

1242 **D ANALYSIS**
 1243

1244 *Proof of Theorem B.5. Correctness of KDE-QUERY.* Algorithm 2 accumulates all sources into
 1245 truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
 1246 Lemma E.5, thus it can approximate the function $G(t)$ by
 1247

$$1248 \quad G(t) = \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2 / \delta} \\ 1249 \\ 1250 \quad = \sum_{\beta \leq p} C_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta} + \text{Err}_T(p) + \text{Err}_H(p)$$

1253 where $|\text{Err}_H(p)| + |\text{Err}_T(p)| \leq Q \cdot \varepsilon$ by $p = \log(\|q\|_1 / \varepsilon)$,
 1254

$$1255 \quad C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

1258 and the coefficients $A_{\alpha}(\mathcal{B})$ are defined as Eq. (3).

1259 **Running time of KDE-QUERY.** In line 17, it takes $O(p^d N)$ time to compute all the Hermite
 1260 expansions, i.e., to compute the coefficients $A_{\alpha}(\mathcal{B})$ for all $\alpha \leq p$ and all sources boxes \mathcal{B} .
 1261

1262 Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^d
 1263 coefficients of C_{β} is only $O(dp^{d+1})$ for each box \mathcal{B} in the range. Thus, we know for each target box
 1264 \mathcal{C} , the running time is $O((2k+1)^d dp^{d+1})$, thus the total time in line 23 is

$$1265 \quad O(N(C) \cdot (2k+1)^d dp^{d+1}).$$

1267 Finally we need to evaluate the appropriate Taylor series for each target t_i , which can be done in
 1268 $O(p^d M)$ time in line 4. Putting it all together, Algorithm 2 takes time
 1269

$$1270 \quad O((2k+1)^d dp^{d+1} N(C)) + O(p^d N) + O(p^d M) \\ 1271 \\ 1272 \quad = O((M+N) \log^{O(d)}(\|q\|_1 / \varepsilon)).$$

1273 **Correctness of UPDATE.** Algorithm 4 and Algorithm 5 maintains C_{β} as follows,
 1274

$$1275 \quad C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

1278 where $A_{\alpha}(\mathcal{B})$ is given by
 1279

$$1280 \quad A_{\alpha}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha}.$$

1283 Therefore, the correctness follows similarly from Algorithm 2.

1284 **Running time of UPDATE.** In line 12, it takes $O(p^d)$ time to update all the Hermite expansions, i.e.
 1285 to update the coefficients $A_{\alpha}(\mathcal{B})$ for all $\alpha \leq p$ and all sources boxes \mathcal{B} .
 1286

1287 Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^d
 1288 coefficients of C_{β} is only $O(dp^{d+1})$ for each box $\mathcal{C}_l \in \text{nb}(\mathcal{B}_k)$. Thus, thus the total time in line 17
 1289 is

$$1290 \quad O((2k+1)^d dp^{d+1}).$$

1292 **Correctness of QUERY.** To compute $\mathbf{K}q$ for a given $q \in \mathbb{R}^d$, notice that for any $i \in [N]$,
 1293

$$1294 \quad (\mathbf{K}q)_i = \sum_{j=1}^N q_j \cdot e^{-\|s_i - s_j\|_2^2 / \delta}$$

$$= G(s_i).$$

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for $G(t)$ immediately gives the ℓ_∞ -error guarantee for $\mathbf{K}q$.

Running time of QUERY. We first build the data structure with the charge vector q given in the query, which takes $\tilde{O}_d(N)$ time. Then, we perform N KDE-Query, each takes $\tilde{O}_d(1)$. Hence, the total running time is $\tilde{O}_d(N)$.

We note that when the charge vector q is slowly changing, i.e., $\Delta := \|q^{\text{new}} - q\|_0 \leq o(N)$, we can UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes $\tilde{O}_d(1)$ time, it will take $\tilde{O}_d(\Delta)$ time to update the data structure.

Then, consider computing $\mathbf{K}q^{\text{new}}$ in this setting. We note that each source box can only affect $\tilde{O}_d(1)$ other target boxes, where the target vectors are just the source vectors in this setting. Hence, there are at most $\tilde{O}_d(\Delta)$ boxes whose C_β is changed. Let \mathcal{S} denote the indices of source vectors in these boxes. Since

$$G(s_i) = \sum_{\beta \leq p} C_\beta(\mathcal{B}_k) \cdot \left(\frac{s_i - s_{\mathcal{B}_k}}{\sqrt{\delta}} \right)^\beta,$$

we get that there are at most $\tilde{O}_d(\Delta)$ coordinates of $\mathbf{K}q^{\text{new}}$ that are significantly changed from $\mathbf{K}q$, and we only need to re-compute $G(s_i)$ for $i \in \mathcal{S}$. If we assume that the source vectors are well-separated, i.e., $|\mathcal{S}| = O(\delta)$, the total computational cost is $\tilde{O}_d(\Delta)$.

Therefore, when the change of the charge vector q is sparse, $\mathbf{K}q$ can be computed in sublinear time. \square

E ERROR ESTIMATION

This section provides several technical lemma that are used in Appendix D. We first give a definition.

Definition E.1 (Hermite expansion and coefficients). *Let \mathcal{B} denote a box with center $s_{\mathcal{B}} \in \mathbb{R}^d$ and side length $r\sqrt{2\delta}$ with $r < 1$. If source s_j is in box \mathcal{B} , we will simply denote as $j \in \mathcal{B}$. Then the Gaussian evaluation from the sources in box \mathcal{B} is,*

$$G(t) = \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2 / \delta}.$$

The Hermite expansion of $G(t)$ is

$$G(t) = \sum_{\alpha \geq 0} A_\alpha \cdot H_\alpha \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right), \quad (6)$$

where the coefficients A_α are defined by

$$A_\alpha = \frac{1}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^\alpha \quad (7)$$

The rest of this section will present a batch of Lemmas that bound the error of the function truncated at certain degree of Taylor and Hermite expansion.

We first upper bound the truncation error of Hermite expansion.

Lemma E.2 (Truncated Hermite expansion). *Let p denote an integer; let $\text{Err}_H(p)$ denote the error after truncating the series $G(t)$ (as defined in Eq. (6)) after p^d terms, i.e.,*

$$\text{Err}_H(p) = \sum_{\alpha \geq p} A_\alpha \cdot H_\alpha \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right). \quad (8)$$

Then we have

$$|\text{Err}_H(p)| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}$$

where $r \leq \frac{1}{2}$.

1350 *Proof.* Using Eq. (4) to expand each Gaussian (see Definition E.1) in the
 1351

$$1352 \quad G(t) = \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2 / \delta}$$

$$1353$$

1354 into a Hermite series about $s_{\mathcal{B}}$:

$$1355$$

$$1356 \quad \sum_{j \in \mathcal{B}} q_j \sum_{\alpha \geq 0} \frac{1}{\alpha!} \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha} \cdot H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right)$$

$$1357$$

$$1358$$

1359 and swap the summation over α and j to obtain the desired form:

$$1360$$

$$1361 \quad \sum_{\alpha \geq 0} \left(\frac{1}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha} \right) H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right) = \sum_{\alpha \geq 0} A_{\alpha} H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right).$$

$$1362$$

$$1363$$

1364 Here, the truncation error bound is due to Lemma A.8 and the standard equation for the tail of a
 1365 geometric series.

1366 To formally bound the truncation error, we first rewrite the Hermit expansion as follows

$$1367$$

$$1368 \quad e^{-\frac{\|t - s_j\|_2^2}{\delta}} = \prod_{i=1}^d \left(\sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \right. \\ 1369 \quad \left. + \sum_{n_i=p}^{\infty} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \right) \quad (9)$$

$$1370$$

$$1371$$

$$1372$$

$$1373$$

1374 Notice from Cramer's inequality (Lemma A.5),

$$1375$$

$$1376 \quad h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \leq \sqrt{n_i!} \cdot 2^{n_i/2} \cdot e^{-(t_i - (s_{\mathcal{B}})_i)^2/2}.$$

$$1377$$

1378 Therefore we can use properties of the geometric series (notice $\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \leq r/\sqrt{2}$) to bound each
 1379 term in the product as follows

$$1380$$

$$1381 \quad \sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \leq \frac{1 - r^p}{1 - r}, \quad (10)$$

$$1382$$

$$1383$$

1384 and

$$1385 \quad \sum_{n_i=p}^{\infty} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \leq \frac{1}{\sqrt{p!}} \cdot \frac{r^p}{1 - r}. \quad (11)$$

$$1386$$

$$1387$$

1388 Now we come back to bound Eq. (8) as follows

$$1389$$

$$1390 \quad \text{Err}_H(p) = \sum_{j \in \mathcal{B}} q_j \sum_{\alpha \geq p} \frac{1}{\alpha!} \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha} \cdot H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right) \\ 1391 \quad \leq \left(\sum_{j \in \mathcal{B}} |q_j| \right) \left(e^{-\frac{\|t - s_j\|_2^2}{\delta}} - \prod_{j=1}^d \left(\sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \right) \right) \\ 1392 \quad \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1 - r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1 - r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}$$

$$1393$$

$$1394$$

$$1395$$

$$1396$$

$$1397$$

$$1398$$

1399 where the first step comes from definition, the second step comes from Eq. (9) and the last step
 1400 comes from Eq. (10) and Eq. (11) and binomial expansion.

$$1401 \quad \square$$

$$1402$$

1403 **Remark E.3.** By Stirling's formula, it is easy to see that when we take $p = \log(\|q\|_1/\varepsilon)$, this error
 1404 will be bounded by $\|q\|_1 \cdot \varepsilon$.

The Lemma E.4 shows how to convert a Hermite expansion at location s_B into a Taylor expansion at location t_C . Intuitively, the Taylor series converges rapidly in the box (that has side length $r\sqrt{2\delta}$ center around t_C , where $r \in (0, 1)$).

Lemma E.4 (Hermite expansion with truncated Taylor expansion). *Suppose the Hermite expansion of $G(t)$ is given by Eq. (6), i.e.,*

$$G(t) = \sum_{\alpha \geq 0} A_\alpha \cdot H_\alpha \left(\frac{t - s_B}{\sqrt{\delta}} \right). \quad (12)$$

Then, the Taylor expansion of $G(t)$ at an arbitrary point t_0 can be written as:

$$G(t) = \sum_{\beta \geq 0} B_\beta \left(\frac{t - t_0}{\sqrt{\delta}} \right)^\beta. \quad (13)$$

where the coefficients B_β are defined as

$$B_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \geq 0} (-1)^{\|\alpha\|_1} A_\alpha \cdot H_{\alpha+\beta} \left(\frac{s_B - t_0}{\sqrt{\delta}} \right). \quad (14)$$

Let $\text{Err}_T(p)$ denote the error by truncating the Taylor expansion after p^d terms, in the box \mathcal{C} (that has center at t_C and side length $r\sqrt{2\delta}$), i.e.,

$$\text{Err}_T(p) = \sum_{\beta \geq p} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta$$

Then

$$|\text{Err}_T(p)| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}$$

where $r \leq 1/2$.

Proof. Each Hermite function in Eq. (12) can be expanded into a Taylor series by means of Eq. (5). The expansion in Eq. (13) is due to swapping the order of summation.

Next, we will bound the truncation error. Using Eq. (7) for A_α , we can rewrite B_β :

$$\begin{aligned} B_\beta &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \geq 0} (-1)^{\|\alpha\|_1} A_\alpha H_{\alpha+\beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right) \\ &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \geq 0} \left(\frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha \right) H_{\alpha+\beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right) \\ &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \sum_{\alpha \geq 0} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha+\beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right) \end{aligned}$$

By Eq. (5), the inner sum is the Taylor expansion of $H_\beta((s_j - t_C)/\sqrt{\delta})$. Thus

$$B_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \cdot H_\beta \left(\frac{s_j - t_C}{\sqrt{\delta}} \right)$$

and Cramer's inequality implies

$$|B_\beta| \leq \frac{1}{\beta!} K \cdot Q_B 2^{\|\beta\|_1/2} \sqrt{\beta!} = K Q_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}}.$$

To formally bound the truncation error, we have

$$\text{Err}_T(p) = \sum_{\beta \geq p} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta$$

$$\begin{aligned}
&\leq KQ_B \left(\prod_{i=1}^d \left(\sum_{n_i=0}^{\infty} \frac{1}{\sqrt{n_i!}} 2^{n_i/2} \left(\frac{t-t_C}{\delta} \right)^{n_i} \right) - \prod_{i=1}^d \left(\sum_{n_i=0}^{p-1} \frac{1}{\sqrt{n_i!}} 2^{n_i/2} \left(\frac{t-t_C}{\delta} \right)^{n_i} \right) \right) \\
&\leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}
\end{aligned}$$

where the second step uses $|B_\beta| \leq KQ_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}}$ and the rest are similar to those in Lemma E.2. \square

For designing our algorithm, we would like to make a variant of Lemma E.4 that combines the truncations of Hermite expansion and Taylor expansion. More specifically, we first truncate the Taylor expansion of $G_p(t)$, and then truncate the Hermite expansion in Eq. (14) for the coefficients.

Lemma E.5 (Truncated Hermite expansion with truncated Taylor expansion). *Let $G(t)$ be defined as Def E.1. For an integer p , let $G_p(t)$ denote the Hermite expansion of $G(t)$ truncated at p , i.e.,*

$$G_p(t) = \sum_{\alpha \leq p} A_\alpha H_\alpha \left(\frac{t-s_B}{\sqrt{\delta}} \right).$$

The Taylor expansion of function $G_p(t)$ at an arbitrary point t_0 can be written as:

$$G_p(t) = \sum_{\beta \geq 0} C_\beta \cdot \left(\frac{t-t_0}{\sqrt{\delta}} \right)^\beta,$$

where the coefficients C_β are defined as

$$C_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (-1)^{\|\alpha\|_1} A_\alpha \cdot H_{\alpha+\beta} \left(\frac{s_B-t_C}{\sqrt{\delta}} \right). \quad (15)$$

Let $\text{Err}_T(p)$ denote the error in truncating the Taylor series after p^d terms, in the box \mathcal{C} (that has center t_C and side length $r\sqrt{2\delta}$), i.e.,

$$\text{Err}_T(p) = \sum_{\beta \geq p} C_\beta \left(\frac{t-t_C}{\sqrt{\delta}} \right)^\beta.$$

Then, we have

$$|\text{Err}_T(p)| \leq \frac{2 \sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}$$

where $r \leq 1/2$.

Proof. We can write C_β in the following way:

$$\begin{aligned}
C_\beta &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \sum_{\alpha \leq p} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{s_j-s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha+\beta} \left(\frac{s_B-t_C}{\sqrt{\delta}} \right) \\
&= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \left(\sum_{\alpha \geq 0} - \sum_{\alpha > p} \right) \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{s_j-s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha+\beta} \left(\frac{s_B-t_C}{\sqrt{\delta}} \right) \\
&= B_\beta - \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \sum_{\alpha > p} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{s_j-s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha+\beta} \left(\frac{s_B-t_C}{\sqrt{\delta}} \right) \\
&= B_\beta + (C_\beta - B_\beta)
\end{aligned}$$

Next, we have

$$|\text{Err}_T(p)| \leq \left| \sum_{\beta \geq p} B_\beta \left(\frac{t-t_C}{\sqrt{\delta}} \right)^\beta \right| + \left| \sum_{\beta \geq p} (C_\beta - B_\beta) \cdot \left(\frac{t-t_C}{\sqrt{\delta}} \right)^\beta \right| \quad (16)$$

1512 Using Lemma E.4, we can upper bound the first term in the Eq. (16) by,
 1513

$$1514 \quad 1515 \quad 1516 \quad \left| \sum_{\beta \geq p} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta \right| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}.$$

1517 Since we can similarly bound $C_\beta - B_\beta$ as follows
 1518

$$1519 \quad 1520 \quad |C_\beta - B_\beta| \leq \frac{1}{\beta!} K \cdot Q_B 2^{\|\beta\|_1/2} \sqrt{\beta!} \leq K Q_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}},$$

1521 we have the same bound for the second term
 1522

$$1523 \quad 1524 \quad 1525 \quad \left| \sum_{\beta \geq p} (C_\beta - B_\beta) \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta \right| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}.$$

□

1529 The proof of the following Lemma is almost identical, but it directly bounds the truncation error of
 1530 Taylor expansion of the Gaussian kernel. We omit the proof here.

1531 **Lemma E.6** (Truncated Taylor expansion). *Let $G_{s_j}(t) : \mathbb{R}^d \rightarrow \mathbb{R}$ be defined as*

$$1532 \quad 1533 \quad G_{s_j}(t) = q_j \cdot e^{-\|t - s_j\|_2^2/\delta}.$$

1534 The Taylor expansion of $G_{s_j}(t)$ at $t_C \in \mathbb{R}^d$ is:
 1535

$$1536 \quad 1537 \quad 1538 \quad G_{s_j}(t) = \sum_{\beta \geq 0} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta,$$

1539 where the coefficients B_β is defined as
 1540

$$1541 \quad 1542 \quad B_\beta = q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_\beta \left(\frac{s_j - t_C}{\sqrt{\delta}} \right)$$

1543 and the absolute value of the error (truncation after p^d terms) can be upper bounded as
 1544

$$1545 \quad 1546 \quad 1547 \quad |\text{Err}_T(p)| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}$$

1548 where $r \leq 1/2$.
 1549

1550 F LOW DIMENSION SUBSPACE FGT 1551

1552 In this section, we consider FGT for data in a lower dimensional subspace of \mathbb{R}^d . The problem is
 1553 formally defined below:

1555 **Problem F.1** (Dynamic FGT on a low dimensional set). *Let W be a subspace of \mathbb{R}^d with dimension
 1556 $\dim(S) = w \ll d$. Given N source points $s_1, \dots, s_N \in W$ with charges q_1, \dots, q_N , and M target
 1557 points $t_1, \dots, t_M \in W$, find a dynamic data structure that supports the following operations:*

- 1558 • **INSERT/DELETE**(s_i, q_i) *Insert or Delete a source point $s_i \in \mathbb{R}^d$ along with its “charge”
 1559 $q_i \in \mathbb{R}$, in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.*
- 1560 • **DENSITY-ESTIMATION**($t \in \mathbb{R}^d$) *For any point $t \in \mathbb{R}^d$, output the kernel density of t with
 1561 respect to the sources, i.e., output \tilde{G} such that $G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$
 1562 time.*
- 1563 • **QUERY**($q \in \mathbb{R}^N$) *Given an arbitrary query vector $q \in \mathbb{R}^N$, output $\tilde{K}q$ in $N \cdot$
 1564 $\log^{O(w)}(\|q\|/\varepsilon)$ time.*

1566 **Algorithm 6** Initialization of low-dim FGT.

1567 1: **data structure** DYNAMICFGT

1568 2: **members**

1569 3: $A_\alpha(\mathcal{B}_i), i \in [N(B)], \alpha \leq p$

1570 4: $C_\beta(\mathcal{C}_i), i \in [N(C)], \beta \leq p$

1571 5: $t_{\mathcal{C}_i}, i \in [N(C)]$

1572 6: $s_{\mathcal{B}_i}, i \in [N(B)]$

1573 7: **end members**

1574 8:

1575 9: **procedure** INIT($\{s_j \in \mathbb{R}^d, j \in [N]\}, \{q_j \in \mathbb{R}, j \in [N]\}$)

1576 10: $p \leftarrow \log(\|q\|_1/\varepsilon)$

1577 11: Compute SVD: $(U_0, \Sigma, V_0) \leftarrow \text{SVD}((s_1, \dots, s_N, t_1, \dots, t_M))$

1578 12: $U_0 \Sigma V_0^\top = (s_1, \dots, s_N, t_1, \dots, t_M), U_0 \in \mathbb{R}^{d \times d}, \Sigma \in \mathbb{R}^{d \times (N+M)}, V_0 \in \mathbb{R}^{(N+M) \times (N+M)}$

1579 13: Let $B \leftarrow U_0 \Sigma_{:,1:w} \in \mathbb{R}^{d \times w}$ ▷ $\Sigma_{:,1:w}$ denotes the first w columns of Σ

1580 14: Compute the spectral decomposition $U \Lambda U^\top = B^\top B$, and let $P \leftarrow \Lambda^{-1/2} U^{-1} B^\top \in \mathbb{R}^{w \times d}$

1581 15: **for** $i \in [N]$ and $j \in [M]$ **do**

1582 16: $x_i \leftarrow P s_i, y_j \leftarrow P t_j$

1583 17: **end for**

1584 18: Assign x_1, \dots, x_N into $N(B)$ boxes $\mathcal{B}_1, \dots, \mathcal{B}_{N(B)}$ of length $r\sqrt{\delta}$

1585 19: Divide \mathbb{R}^w into $N(C)$ boxes $\mathcal{C}_1, \dots, \mathcal{C}_{N(C)}$ of length $r\sqrt{\delta}$

1586 20: Set center $x_{\mathcal{B}_i}, i \in [N(B)]$ of source boxes $\mathcal{B}_1, \dots, \mathcal{B}_{N(B)}$

1587 21: Set centers $y_{\mathcal{C}_j}, j \in [N(C)]$ of target boxes $\mathcal{C}_1, \dots, \mathcal{C}_{N(C)}$

1588 22: **for** $l \in [N(B)]$ **do** ▷ Source box \mathcal{B}_l with center $s_{\mathcal{B}_l}$

1589 23: **for** $\alpha \leq p$ **do** ▷ we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [w]$

1590 24: Compute

1591 25:
$$A_\alpha(\mathcal{B}_l) \leftarrow \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{x_j \in \mathcal{B}_l} q_j \left(\frac{x_j - x_{\mathcal{B}_l}}{\sqrt{\delta}} \right)^\alpha$$
 ▷ Takes $p^w N$ time in total

1592 26: **end for**

1593 27: **end for**

1594 28: **for** $l \in [N(C)]$ **do** ▷ Target box \mathcal{C}_l with center $t_{\mathcal{C}_l}$

1595 29: Find $(2k+1)^w$ nearest source boxes to \mathcal{C}_l , denote by $\text{nb}(\mathcal{C}_l)$ ▷ $k \leq \log(\|q\|_1/\varepsilon)$

1596 30: **for** $\beta \leq p$ **do**

1597 31: Compute

1598 32:
$$C_\beta(\mathcal{C}_l) \leftarrow \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B} \in \text{nb}(\mathcal{C}_l)} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) \cdot H_{\alpha+\beta} \left(\frac{x_{\mathcal{B}} - y_{\mathcal{C}_l}}{\sqrt{\delta}} \right)$$
 ▷ Takes $N(C) \cdot (2k+1)^w dp^{w+1}$ time in total

1599 33: $\triangleright N(C) \leq \min\{(r\sqrt{2\delta})^{-d/2}, M\}$

1600 34: **end procedure**

1601 35: **end data structure**

1611

1612

1613 We generalize our dynamic data structure to solve Problem F.1, which is stated in the following

1614 theorem. The computational cost of each update or query depends on the intrinsic dimension w

1615 instead of d .

1616

1617 **Theorem F.2** (Low Rank Dynamic FGT Data Structure, formal version of Theorem 1.1). *Let W be*

1618 *a subspace of \mathbb{R}^d with dimension $\dim(S) = w \ll d$. Given N source points $s_1, \dots, s_N \in W$ with*

1619 *charges q_1, \dots, q_N , and M target points $t_1, \dots, t_M \in W$, a number $\delta > 0$, and a vector $q \in \mathbb{R}^N$,*

1620 *let $G : \mathbb{R}^d \rightarrow \mathbb{R}$ be defined as $G(t) = \sum_{i=1}^N q_i \cdot K(s_i, t)$ denote the kernel-density of t with respect*

1620 **Algorithm 7** This algorithm is the query part of Theorem F.2.

1621 1: **data structure** DYNAMICFGT

1622 2: **procedure** KDE-QUERY($t \in \mathbb{R}^d$)

1623 3: Find the box $Pt \in \mathcal{C}_l$

1624 4: Compute ▷ Takes p^w time in total

1625

1626 5: $G_p(t) \leftarrow \sum_{\beta \leq p} C_\beta(\mathcal{C}_l) \cdot \left(\frac{P(t - t_{\mathcal{C}_l})}{\sqrt{\delta}} \right)^\beta$

1627

1628 6: **end procedure**

1629 7: **procedure** QUERY($q \in \mathbb{R}^N$) ▷ Takes $\tilde{O}(N)$ time

1630 8: INIT($\{s_j, j \in [N]\}, q$)

1631 9: **for** $j \in [N]$ **do**

1632 10: $u_j \leftarrow \text{LOCAL-QUERY}(s_j)$ ▷ $\|u - Kq\|_\infty \leq \varepsilon$

1633 11: **end for**

1634 12: **return** u

1635 13: **end procedure**

1636 14: **end data structure**

1639

1640 to S , where $K(s_i, t) = f(\|s_i - t\|_2)$ for f satisfying the properties in Definition 3.3. There is a

1641 dynamic data structure that supports the following operations:

1642

- 1643 • INIT() (Algorithm 6) Preprocess in $N \cdot \log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- 1644
- 1645 • KDE-QUERY($t \in \mathbb{R}^d$) (Algorithm 7) Output \tilde{G} such that $G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon$ in
- 1646 $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- 1647
- 1648 • INSERT($s \in \mathbb{R}^d, q_s \in \mathbb{R}$) (Algorithm 8) For any source point $s \in \mathbb{R}^d$ and its charge q_s ,
- 1649 update the data structure by adding this source point in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- 1650
- 1651 • DELETE($s \in \mathbb{R}^d$) (Algorithm 9) For any source point $s \in \mathbb{R}^d$ and its charge q_s , update the
- 1652 data structure by deleting this source point in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- 1653
- 1654 • QUERY($q \in \mathbb{R}^N$) (Algorithm 7) Output $\tilde{K}q \in \mathbb{R}^N$ such that $\|\tilde{K}q - Kq\|_\infty \leq \varepsilon$, where
- 1655 $K \in \mathbb{R}^{N \times N}$ is defined by $K_{i,j} = K(s_i, s_j)$ in $N \log^{O(w)}(\|q\|_1/\varepsilon)$ time.

1656 F.1 PROJECTION LEMMA

1657

1658 **Lemma F.3** (Hermite projection lemma in low-dimensional space, formal version of Lemma 3.5).

1659 Given a subspace $B \in \mathbb{R}^{d \times w}$. Let $B^\top B = U \Lambda U^\top \in \mathbb{R}^{w \times w}$ denote the spectral decomposition

1660 where $U \in \mathbb{R}^{w \times w}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{w \times w}$.

1661 We define $P = \Lambda^{-1/2} U^{-1} B^\top \in \mathbb{R}^{w \times d}$. Then we have for any $t, s \in \mathbb{R}^d$ from subspace B , the

1662 following equation holds

1663

$$e^{-\|t-s\|_2^2/\delta} = \sum_{\alpha \geq 0} \frac{(\sqrt{1/\delta} P(t-s))^\alpha}{\alpha!} h_\alpha(\sqrt{1/\delta} P(t-s)).$$

1664 *Proof.* First, we know that

$$\begin{aligned} Pt &= \Lambda^{-1/2} U^{-1} B^\top t \\ &= \Lambda^{-1/2} U^{-1} B^\top B x \\ &= \Lambda^{-1/2} U^{-1} U \Lambda U^\top x \\ &= \Lambda^{-1/2} \Lambda U^\top x \end{aligned}$$

1674 **Algorithm 8** This algorithm is the update part of Theorem F.2.

1675 1: **data structure** DYNAMICFGT

1676 2: **members** ▷ This is exact same as the members in Algorithm 6.

1677 3: $A_\alpha(\mathcal{B}_i), i \in [N(\mathcal{B})], \alpha \leq p$

1678 4: $C_\beta(\mathcal{C}_i), i \in [N(\mathcal{C})], \beta \leq p$

1679 5: $t_{\mathcal{C}_i}, i \in [N(\mathcal{C})]$

1680 6: $s_{\mathcal{B}_i}, i \in [N(\mathcal{B})]$

1681 7: **end members**

1682 8:

1683 9: **procedure** INSERT($s \in \mathbb{R}^d, q \in \mathbb{R}$)

1684 10: Find the box $s \in \mathcal{B}$

1685 11: **for** $\alpha \leq p$ **do** ▷ we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [w]$

1686 12: Compute

1687
$$A_\alpha^{\text{new}}(\mathcal{B}) \leftarrow A_\alpha(\mathcal{B}) + \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} \left(\frac{\mathsf{P}(s - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^\alpha$$

1688 ▷ Takes p^w time

1689 13: **end for**

1690 14: Find $(2k + 1)^w$ nearest target boxes to \mathcal{B} , denote by $\text{nb}(\mathcal{B})$ ▷ $k \leq \log(\|q\|_1/\varepsilon)$

1691 15: **for** $\mathcal{C}_l \in \text{nb}(\mathcal{B})$ **do**

1692 16: **for** $\beta \leq p$ **do**

1693 17: Compute

1694
$$C_\beta^{\text{new}}(\mathcal{C}_l) \leftarrow C_\beta(\mathcal{C}_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (A_\alpha^{\text{new}}(\mathcal{B}) - A_\alpha(\mathcal{B})) \cdot H_{\alpha+\beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}_l})}{\sqrt{\delta}} \right)$$

1695 ▷ Takes $(2k + 1)^w p^w$ time

1696 18: **end for**

1697 19: **end for**

1698 20: **for** $\alpha \leq p$ **do** ▷ Takes p^w time

1699 21: $A_\alpha(\mathcal{B}) \leftarrow A_\alpha^{\text{new}}(\mathcal{B})$

1700 22: **end for**

1701 23: **for** $\mathcal{C}_l \in \text{nb}(\mathcal{B})$ **do**

1702 24: **for** $\beta \leq p$ **do**

1703 25: $C_\beta(\mathcal{C}_l) \leftarrow C_\beta^{\text{new}}(\mathcal{C}_l)$ ▷ Takes $(2k + 1)^w p^w$ time

1704 26: **end for**

1705 27: **end for**

1706 28: **end procedure**

1707 29: **end data structure**

$$= \Lambda^{1/2} U^\top x \quad (17)$$

1713 where the first step follows from $P = \Lambda^{-1/2}U^{-1}B^\top$, the second step follows from $t = Bx$ (since t
1714 is from low dimension, then there is always a vector x), the third step follows $B^\top B = U\Lambda U^\top$, the
1715 forth step follows $U^{-1}U = I$, and the last step follows from $\Lambda^{-1/2}\Lambda = \Lambda^{1/2}$.
1716

1717 Compute the spectral decomposition $B^\top B = U\Lambda U^\top$, $U \in \mathbb{R}^{w \times w}$ is the orthonormal basis, $\Lambda =$
 1718 $\text{diag}(\lambda_1, \dots, \lambda_k) \in \mathbb{R}^{w \times w}$. Let $u_i \in \mathbb{R}^w$ denote the vector that is the transpose of i -th row $U \in$
 1719 $\mathbb{R}^{w \times w}$. Then we have

$$\begin{aligned}
e^{-\|t-s\|_2^2/\delta} &= e^{-(x-y)^\top B^\top B(x-y)/\delta} \\
&= e^{-(x-y)^\top U\Lambda U^\top(x-y)/\delta} \\
&= \prod_{i=1}^w \left(\sum_{n=1}^{\infty} \frac{1}{n!} (\sqrt{\lambda_i/\delta} \cdot u_i^\top (x-y))^n \cdot h_n(\sqrt{\lambda_i/\delta} \cdot u_i^\top (x-y)) \right) \\
&= \sum_{\alpha \geq 0} \frac{\left(\sqrt{1/\delta} \Lambda^{1/2} U^\top (x-y) \right)^\alpha}{\alpha!} \cdot h_\alpha \left(\sqrt{1/\delta} \Lambda^{1/2} U^\top (x-y) \right)
\end{aligned}$$

1728 **Algorithm 9** This algorithm is another update part of Theorem F.2.

1729
1730 1: **data structure** DYNAMICFGT
1731 2: **members**
1732 3: $A_\alpha(\mathcal{B}_i), i \in [N(\mathcal{B})], \alpha \leq p$
1733 4: $C_\beta(\mathcal{C}_i), i \in [N(\mathcal{C})], \beta \leq p$
1734 5: $t_{\mathcal{C}_i}, i \in [N(\mathcal{C})]$
1735 6: $s_{\mathcal{B}_i}, i \in [N(\mathcal{B})]$
1736 7: $\delta \in \mathbb{R}$
1737 8: **end members**
1738 9:
1739 10: **procedure** DELETE($s \in \mathbb{R}^d, q \in \mathbb{R}$)
1740 11: Find the box $s \in \mathcal{B}$
1741 12: **for** $\alpha \leq p$ **do** ▷ we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [w]$
1742 13: Compute
1743
$$A_\alpha^{\text{new}}(\mathcal{B}) \leftarrow A_\alpha(\mathcal{B}) - \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} \left(\frac{\mathsf{P}(s - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^\alpha$$
 ▷ Takes p^w time
1744 14: **end for**
1745 15: Find $(2k+1)^w$ nearest target boxes to \mathcal{B} , denote by $\text{nb}(\mathcal{B})$ ▷ $k \leq \log(\|q\|_1/\varepsilon)$
1746 16: **for** $\mathcal{C}_l \in \text{nb}(\mathcal{B})$ **do**
1747 17: **for** $\beta \leq p$ **do**
1748 18: Compute
1749
$$C_\beta^{\text{new}}(\mathcal{C}_l) \leftarrow C_\beta(\mathcal{C}_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (A_\alpha^{\text{new}}(\mathcal{B}) - A_\alpha(\mathcal{B})) \cdot H_{\alpha+\beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}_l})}{\sqrt{\delta}} \right)$$
 ▷ Takes $(2k+1)^w p^w$ time
1750 19: **end for**
1751 20: **end for**
1752 21: **for** $\alpha \leq p$ **do**
1753 22: $A_\alpha(\mathcal{B}) \leftarrow A_\alpha^{\text{new}}(\mathcal{B})$ ▷ Takes p^w time
1754 23: **end for**
1755 24: **for** $\mathcal{C}_l \in \text{nb}(\mathcal{B})$ **do**
1756 25: **for** $\beta \leq p$ **do**
1757 26: $C_\beta(\mathcal{C}_l) \leftarrow C_\beta^{\text{new}}(\mathcal{C}_l)$ ▷ Takes $(2k+1)^w p^w$ time
1758 27: **end for**
1759 28: **end for**
1760 29: **end procedure**
1761 30: **end data structure**

$$= \sum_{\alpha \geq 0} \frac{\left(\sqrt{1/\delta} \cdot \mathsf{P}(t - s) \right)^\alpha}{\alpha!} \cdot h_\alpha \left(\sqrt{1/\delta} \cdot \mathsf{P}(t - s) \right)$$

1771 where the first step follows from changing the basis preserves the ℓ_2 -distance, the second step fol-
1772 lows from $B^\top B = U \Lambda U^\top$, and the fifth step follows from Eq. (17). □
1773

1774 F.2 PROOF OF MAIN RESULT IN LOW-DIMENSIONAL CASE

1775 *Proof of Theorem F.2. Correctness of KDE-QUERY.* Algorithm 6 accumulates all sources into
1776 truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
1777 Lemma F.4. Thus it can approximate the function $G(t)$ by

$$1780 G(t) = \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2 / \delta}$$

$$= \sum_{\beta \leq p} C_\beta \left(\frac{P(t - t_C)}{\sqrt{\delta}} \right)^\beta + \text{Err}_T(p) + \text{Err}_H(p)$$

where $|\text{Err}_H(p)| + |\text{Err}_T(p)| \leq Q \cdot \varepsilon$ by $p = \log(\|q\|_1/\varepsilon)$,

$$C_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{P(s_{\mathcal{B}} - t_C)}{\sqrt{\delta}} \right)$$

and the coefficients $A_\alpha(\mathcal{B})$ are defined as Line 24.

Running time of KDE-QUERY. In line 24, it takes $O(p^w N)$ time to compute all the Hermite expansions, i.e., to compute the coefficients $A_\alpha(\mathcal{B})$ for all $\alpha \leq p$ and all source boxes \mathcal{B} .

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^w coefficients of C_β is only $O(dp^{w+1})$ for each box \mathcal{B} in the range. Thus, we know for each target box \mathcal{C} , the running time is $O((2k+1)^w dp^{w+1})$, thus the total time in line 30 is

$$O(N(C) \cdot (2k+1)^w dp^{w+1}).$$

Finally, we need to evaluate the appropriate Taylor series for each target t_i , which can be done in $O(p^w M)$ time in line 4. Putting it all together, Algorithm 6 takes time

$$\begin{aligned} & O((2k+1)^w dp^{w+1} N(C)) + O(p^w N) + O(p^w M) \\ &= O((M+N) \log^{O(w)}(\|q\|_1/\varepsilon)). \end{aligned}$$

Correctness of UPDATE. Algorithm 8 and Algorithm 9 maintains C_β as follows,

$$C_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{P(s_{\mathcal{B}} - t_C)}{\sqrt{\delta}} \right)$$

where $A_\alpha(\mathcal{B})$ is given by

$$A_\alpha(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{P(s_j - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^\alpha.$$

Therefore, the correctness follows similarly from Algorithm 6.

Running time of UPDATE. In line 12, it takes $O(p^w)$ time to update all the Hermite expansions, i.e. to update the coefficients $A_\alpha(\mathcal{B})$ for all $\alpha \leq p$ and all sources boxes \mathcal{B} .

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^w coefficients of C_β is only $O(dp^{w+1})$ for each box $\mathcal{C}_l \in \text{nb}(\mathcal{B})$. Thus, thus the total time in line 17 is

$$O((2k+1)^w dp^{w+1}).$$

Correctness of QUERY. To compute $\mathbf{K}q$ for a given $q \in \mathbb{R}^w$, notice that for any $i \in [N]$,

$$\begin{aligned} (\mathbf{K}q)_i &= \sum_{j=1}^N q_j \cdot e^{-\|s_i - s_j\|_2^2/\delta} \\ &= G(s_i). \end{aligned}$$

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for $G(t)$ immediately gives the ℓ_∞ -error guarantee for $\mathbf{K}q$.

Running time of QUERY. We first build the data structure with the charge vector q given in the query, which takes $\tilde{O}_d(N)$ time. Then, we perform N KDE-Query, each takes $\tilde{O}_d(1)$. Hence, the total running time is $\tilde{O}_d(N)$.

We note that when the charge vector q is slowly changing, i.e., $\Delta := \|q^{\text{new}} - q\|_0 \leq o(N)$, we can UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes $\tilde{O}_d(1)$ time, it will take $\tilde{O}_d(\Delta)$ time to update the data structure.

Then, consider computing $\mathbf{K}q^{\text{new}}$ in this setting. We note that each source box can only affect $\tilde{O}_d(1)$ other target boxes, where the target vectors are just the source vectors in this setting. Hence, there are at most $\tilde{O}_d(\Delta)$ boxes whose C_β is changed. Let \mathcal{S} denote the indices of source vectors in these boxes. Since

$$G(s_i) = \sum_{\beta \leq p} C_\beta(\mathcal{B}_k) \cdot \left(\frac{\mathbf{P}(s_i - s_{\mathcal{B}_k})}{\sqrt{\delta}} \right)^\beta,$$

we get that there are at most $\tilde{O}_d(\Delta)$ coordinates of $\mathbf{K}q^{\text{new}}$ that are significantly changed from $\mathbf{K}q$, and we only need to re-compute $G(s_i)$ for $i \in \mathcal{S}$. If we assume that the source vectors are well-separated, i.e., $|\mathcal{S}| = O(\delta)$, the total computational cost is $\tilde{O}_d(\Delta)$.

Therefore, when the change of the charge vector q is sparse, $\mathbf{K}q$ can be computed in sublinear time. \square

Lemma F.4 (Truncated Hermite expansion with truncated Taylor expansion (low dimension version of Lemma E.5)). *Let $G(t)$ be defined as Def E.1. For an integer p , let $G_p(t)$ denote the Hermite expansion of $G(t)$ truncated at p , i.e.,*

$$G_p(t) = \sum_{\alpha \leq p} A_\alpha H_\alpha \left(\frac{\mathbf{P}(t - s_{\mathcal{B}})}{\sqrt{\delta}} \right).$$

The Taylor expansion of function $G_p(t)$ at an arbitrary point t_0 can be written as:

$$G_p(t) = \sum_{\beta \geq 0} C_\beta \cdot \left(\frac{\mathbf{P}(t - t_0)}{\sqrt{\delta}} \right)^\beta,$$

where the coefficients C_β are defined as

$$C_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (-1)^{\|\alpha\|_1} A_\alpha \cdot H_{\alpha+\beta} \left(\frac{\mathbf{P}(s_{\mathcal{B}} - t_C)}{\sqrt{\delta}} \right). \quad (18)$$

Let $\text{Err}_T(p)$ denote the error in truncating the Taylor series after p^w terms, in the box \mathcal{C} (that has center t_C and side length $r\sqrt{2\delta}$), i.e.,

$$\text{Err}_T(p) = \sum_{\beta \geq p} C_\beta \left(\frac{\mathbf{P}(t - t_C)}{\sqrt{\delta}} \right)^\beta.$$

Then, we have

$$|\text{Err}_T(p)| \leq \frac{2 \sum_{j \in \mathcal{B}} |q_j|}{(1-r)^w} \sum_{l=0}^{w-1} \binom{w}{l} (1-r^p)^l \left(\frac{r^p}{\sqrt{p!}} \right)^{w-l}$$

where $r \leq 1/2$.

Proof. We can write C_β in the following way:

$$\begin{aligned} C_\beta &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \sum_{\alpha \leq p} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{\mathbf{P}(s_j - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha+\beta} \left(\frac{\mathbf{P}(s_{\mathcal{B}} - t_C)}{\sqrt{\delta}} \right) \\ &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \left(\sum_{\alpha \geq 0} - \sum_{\alpha > p} \right) \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{\mathbf{P}(s_j - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha+\beta} \left(\frac{\mathbf{P}(s_{\mathcal{B}} - t_C)}{\sqrt{\delta}} \right) \\ &= B_\beta - \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \sum_{\alpha > p} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{\mathbf{P}(s_j - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha+\beta} \left(\frac{\mathbf{P}(s_{\mathcal{B}} - t_C)}{\sqrt{\delta}} \right) \\ &= B_\beta + (C_\beta - B_\beta) \end{aligned}$$

1890 Next, we have

$$1892 |\text{Err}_T(p)| \leq \left| \sum_{\beta \geq p} B_\beta \left(\frac{\mathbb{P}(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| + \left| \sum_{\beta \geq p} (C_\beta - B_\beta) \cdot \left(\frac{\mathbb{P}(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| \quad (19)$$

1895 Using Lemma E.4, we can upper bound the first term in the Eq. (19) by,

$$1897 \left| \sum_{\beta \geq p} B_\beta \left(\frac{\mathbb{P}(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^w} \sum_{l=0}^{w-1} \binom{w}{l} (1-r^p)^l \left(\frac{r^p}{\sqrt{p!}} \right)^{w-l}.$$

1900 Since we can similarly bound $C_\beta - B_\beta$ as follows

$$1902 |C_\beta - B_\beta| \leq \frac{1}{\beta!} K \cdot Q_B 2^{\|\beta\|_1/2} \sqrt{\beta!} \leq K Q_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}},$$

1904 we have the same bound for the second term

$$1906 \left| \sum_{\beta \geq p} (C_\beta - B_\beta) \left(\frac{\mathbb{P}(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^w} \sum_{l=0}^{w-1} \binom{w}{l} (1-r^p)^l \left(\frac{r^p}{\sqrt{p!}} \right)^{w-l}.$$

1909 \square

1911 F.3 DYNAMIC LOW-RANK FGT WITH INCREASING RANK

1913 We further give an algorithm for FGT when the low-dimensional subspace is dynamic, i.e., the rank
1914 may increase with data insertions.

1915 **Theorem F.5** (Low Rank Dynamic FGT Data Structure). *Let W be a subspace of \mathbb{R}^d with dimension
1916 $\dim(S) = w \ll d$. Given N source points $s_1, \dots, s_N \in W$ with charges q_1, \dots, q_N , and M target
1917 points $t_1, \dots, t_M \in W$, a number $\delta > 0$, and a vector $q \in \mathbb{R}^N$, let $G : \mathbb{R}^d \rightarrow \mathbb{R}$ be defined
1918 as $G(t) = \sum_{i=1}^N q_i \cdot K(s_i, t)$ denote the kernel-density of t with respect to S , where $K(s_i, t) =$
1919 $f(\|s_i - t\|_2)$ for f satisfying the properties in Definition 3.3. There is a dynamic data structure that
1920 supports the following operations:*

- 1922 • INIT() (Algorithm 6) Preprocess in $N \cdot \log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- 1923 • KDE-QUERY($t \in \mathbb{R}^d$) (Algorithm 7) Output \tilde{G} such that $G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon$ in
1924 $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- 1925 • INSERT($s \in \mathbb{R}^d, q_s \in \mathbb{R}$) (Algorithm 10) For any source point $s \in \mathbb{R}^d$ and its charge
1926 q_s , update the data structure by adding this source point in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time. The
1927 subspace dimension w may be increased by 1 if s is not in the original subspace.
- 1928 • QUERY($q \in \mathbb{R}^N$) (Algorithm 7) Output $\tilde{K}q \in \mathbb{R}^N$ such that $\|\tilde{K}q - Kq\|_\infty \leq \varepsilon$, where
1929 $K \in \mathbb{R}^{N \times N}$ is defined by $K_{i,j} = K(s_i, s_j)$ in $N \log^{O(w)}(\|q\|_1/\varepsilon)$ time.

1933 *Proof.* Since Algorithm 10 updates A_α, C_β in the same way as Algorithm 8, the correctness of
1934 Procedures KDE-QUERY and QUERY follows similarly from Theorem B.5.

1936 Furthermore, SCALE takes $O(wd + (N(B) + N(C)) \cdot p^w)$ time. For the correctness, we know that
1937 the rows of P form an orthonormal basis for the subspace. For a newly inserted point s , if it is not lie
1938 in the subspace, $(I - P)s$ gives a new basis direction. Therefore, we can easily update P by attaching
1939 this vector (after normalization) as a column. Then, we show that the intermediate variables A_α and
1940 C_β can be correctly updated for the new subspace. For each source box \mathcal{B} and each w -tuple $\alpha \leq p$,
1941 we have

$$1942 A_{(\alpha,0)}^{\text{new}}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1} \cdot (-1)^i}{\alpha! \cdot i!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x'_j - x'_{\mathcal{B}}}{\sqrt{\delta}} \right)^{(\alpha,i)} = A_\alpha(\mathcal{B}),$$

where x'_j denotes the “lifted” point in the new subspace. And $A_{(\alpha, i)}^{\text{new}}(\mathcal{B}) = 0$ for all $i > 0$, since $(x'_j - x'_B)_{k+1} = 0$. Similarly, for each target box \mathcal{C} ,

$$\begin{aligned}
C_{(\beta, i)}^{\text{new}}(\mathcal{C}) &= \frac{(-1)^{\|\beta\|_1}(-1)^i}{\beta!i!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} \sum_{j=0}^p A_{(\alpha, j)}^{\text{new}}(\mathcal{B}) H_{(\alpha + \beta, i+j)} \left(\frac{x'_{\mathcal{B}} - y'_{\mathcal{C}}}{\sqrt{\delta}} \right) \\
&= \frac{(-1)^{\|\beta\|_1}(-1)^i}{\beta!i!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha + \beta} \left(\frac{x_{\mathcal{B}} - y_{\mathcal{C}}}{\sqrt{\delta}} \right) \cdot h_i(0) \\
&= \frac{(-1)^i}{i!} h_i(0) \cdot C_{\beta}(\mathcal{C}),
\end{aligned}$$

where the second step follows from $A_{(\alpha, i)}^{\text{new}}(\mathcal{B}) = A_\alpha(\mathcal{B}) \cdot \mathbf{1}_{i=0}$. Therefore, by enumerating all boxes \mathcal{B}, \mathcal{C} and indices $\alpha, \beta \leq p$, we can correctly compute $A_{(\alpha, 0)}^{\text{new}}(\mathcal{B})$ and $C_{(\beta, i)}^{\text{new}}(\mathcal{C})$. Thus, we complete the proof of the correctness of Algorithm 11. \square

1998 **Algorithm 11** This algorithm is another part of Theorem F.5.

1999 1: **data structure** DYNAMICFGT

2000 2: **members**

2001 3: $w \in \mathbb{N}$ ▷ Rank of span($s_1, \dots, s_N, t_1, \dots, t_M$)

2002 4: $A_\alpha(\mathcal{B}_l), l \in [N(B)], \alpha \leq p$

2003 5: $C_\beta(\mathcal{C}_l), l \in [N(C)], \beta \leq p$

2004 6: $t_{\mathcal{C}_l}, l \in [N(C)]$

2005 7: $s_{\mathcal{B}_l}, l \in [N(B)]$

2006 8: $P \in \mathbb{R}^{w \times d}$

2007 9: **end members**

2008 10:

2009 11: **procedure** SCALE($s \in \mathbb{R}^d, q \in \mathbb{R}$)

2010 12: **if** $s \in \text{span}(P)$ **then**

2011 13: **pass**

2012 14: **else**

2013 15: $P \leftarrow (P, (I - P)s / \| (I - P)s \|_2)$, $w \leftarrow w + 1$

2014 16: **for** $\mathcal{B}_l, l \in [N(B)]$ and $\mathcal{C}_l, l \in [N(C)]$ **do**

2015 17: $s_{\mathcal{B}_l} \leftarrow (s_{\mathcal{B}_l}, 0)$ and $t_{\mathcal{C}_l} \leftarrow (t_{\mathcal{C}_l}, 0)$

2016 18: **end for**

2017 19: Find the box $\mathcal{B}_{N(B)+1}$ of length $r\sqrt{\delta}$ containing s and let $s_{\mathcal{B}_{N(B)+1}}$ be its center

2018 20: **for** $\alpha \leq p \in \mathbb{N}^w$ and $\mathcal{B}_l, l \in [N(B)]$ **do**

2019 21: $A_{(\alpha, 0)}(\mathcal{B}_l) \leftarrow A_\alpha(\mathcal{B}_l)$

2020 22: **end for**

2021 23: **for** $\beta \leq p \in \mathbb{N}^w, 0 \leq i \leq p$ and $\mathcal{C}_l, l \in [N(C)]$ **do**

2022 24: $C_{(\beta, i)}(\mathcal{C}_l) \leftarrow \frac{(-1)^i}{i!} h_i(0) \cdot C_\beta(\mathcal{C}_l)$

2023 25: **end for**

2024 26: **end if**

2025 27: **end procedure**

2026 28: **end data structure**

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not contribute to idea creation or writing, and the authors take full responsibility for this paper's content.