A DYNAMIC LOW-RANK FAST GAUSSIAN TRANS-FORM

Anonymous authorsPaper under double-blind review

ABSTRACT

The Fast Gaussian Transform (FGT) enables subquadratic-time multiplication of an $n \times n$ Gaussian kernel matrix $\mathsf{K}_{i,j} = \exp(-\|x_i - x_j\|_2^2)$ with an arbitrary vector $h \in \mathbb{R}^n$, where $x_1, \dots, x_n \in \mathbb{R}^d$ are a set of fixed source points. This kernel plays a central role in machine learning and random feature maps. Nevertheless, in most modern data analysis applications, datasets are dynamically changing (yet often have low rank), and recomputing the FGT from scratch in (kernel-based) algorithms incurs a major computational overhead ($\gtrsim n$ time for a single source update $\in \mathbb{R}^d$). These applications motivate a dynamic FGT algorithm, which maintains a dynamic set of sources under kernel-density estimation (KDE) queries in sublinear time while retaining Mat-Vec multiplication accuracy and speed.

Assuming the dynamic data-points x_i lie in a (possibly changing) k-dimensional subspace ($k \leq d$), our main result is an efficient dynamic FGT algorithm, supporting the following operations in $\log^{O(k)}(n/\varepsilon)$ time: (1) Adding or deleting a source point, and (2) Estimating the "kernel-density" of a query point with respect to sources with ε additive accuracy. The core of the algorithm is a dynamic data structure for maintaining the *projected* "interaction rank" between source and target boxes, decoupled into finite truncation of Taylor and Hermite expansions.

1 Introduction

The fast Multipole method (FMM) was described as one of the top 10 most important algorithms of the 20th century (Dongarra & Sullivan, 2000). It is a numerical technique that was originally developed to speed up calculations of long-range forces for the n-body problem in theoretical physics. FMM was first introduced in 1987 by Greengard and Rokhlin (Greengard & Rokhlin, 1987), based on the multipole expansion of the vector Helmholtz equation. By treating the interactions between far-away basis functions using the FMM, the underlying matrix entries $M_{ij} \in \mathbb{R}^{n \times n}$ (encoding the pairwise "interaction" between $x_i, x_j \in \mathbb{R}^d$) need not be explicitly computed nor stored for matrix-vector operations – This technique allows to improve the naïve $O(n^2)$ matrix-vector multiplication time to quasi-linear time $\approx n \cdot \log^{O(d)}(n)$, with negligible (polynomial-small) additive error.

Since the discovery of FMM in the late 80s, it had a profound impact on scientific computing and has been extended and applied in many different fields, including physics, mathematics, numerical analysis and computer science (Greengard & Rokhlin, 1987; Greengard, 1988; Greengard & Rokhlin, 1988; 1989; Greengard, 1990; Greengard & Strain, 1991; Engheta et al., 1992; Greengard, 1994; Greengard & Rokhlin, 1996; Beatson & Greengard, 1997; Darve, 2000; Yang et al., 2003; 2004; Martinsson, 2012; Chandrasekaran et al., 2006). To mention just one important example, we note that FMM plays a key role in efficiently maintaining the SVD of a matrix under low-rank perturbations, based on the Cauchy structure of the perturbed eigenvectors (Gu & Eisenstat, 1994). In the context of machine learning, the FMM technique can be extended to the evaluation of matrix-vector products with certain Kernel matrices $K_{i,j} = f(\|x_i - x_j\|)$, most notably, the Gaussian Kernel $K_{i,j} = \exp(-\|x_i - x_j\|_2^2)$ (Greengard & Strain, 1991). For any query vector $q \in \mathbb{R}^n$, the fast Gaussian transform (FGT) algorithm outputs an arbitrarily-small pointwise additive approximation to $K \cdot q$, i.e., a vector $z \in \mathbb{R}^n$ such that $\|K \cdot q - z\|_{\infty} \le \varepsilon$, in merely $n \log^{O(d)}(\|q\|_1/\varepsilon)$ time, which is dramatically faster than naïve matrix-vector multiplication (n^2) for constant dimension d. Note that the (poly)logarithmic dependence on $1/\varepsilon$ means that FGT can achieve polynomially-small

additive error in quasi-linear time, which is as good as exact computation for all practical purposes. The crux of FGT is that the $n \times n$ matrix K can be stored *implicitly*, using a clever spectral-analytic decomposition of the geometrically-decaying pairwise distances ("interaction rank", more on this below).

Kernel matrices play a central role in machine learning (Shawe-Taylor & Cristianini, 2004; Rahimi & Recht, 2008), as they allow to extend convex optimization and learning algorithms to nonlinear feature spaces and even to non-convex problems (Li & Liang, 2018; Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019a;b; Lee et al., 2020). Accordingly, matrix-vector multiplication with kernel matrices is a basic operation in many ML optimization tasks, such as Kernel PCA and ridge regression (Alaoui & Mahoney, 2015; Avron et al., 2017a;b; Lee et al., 2020), Gaussian-process regression (GPR) (Rasmussen & Nickisch, 2010), Kernel linear system solvers (via Conjugate Gradient (Alman et al., 2020)), and in fast implementation of the dynamic "state-space model" (SSM) for sequence-correlation modeling (which crucially relies on the Multipole method (Gu et al., 2021)), to mention a few. The related data-structure problem of kernel density estimation of a point (Charikar & Siminelakis, 2017; Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020; Zandieh et al., 2023; Alman & Song, 2023) $\mathsf{KDE}(X,y) = \frac{1}{n} \sum_{i=1}^{n} \mathsf{K}(x_i,y)$ has various applications in data analysis and statistics (Fan & Gijbels, 1996; Schölkopf & Smola, 2002; Schubert et al., 2014), and is the main subroutine in the implementation of transfer learning using kernels (see (Charikar & Siminelakis, 2017; Charikar et al., 2020) and references therein, and the Related Work Section 2 below). As such, speeding up matrix-vector multiplication with kernel matrices, such as FGT, is an important question in theory and practice.

One drawback of FMM and FGT techniques, however, is that they are static algorithms, i.e., they assume a fixed set of n data points $x_i \in \mathbb{R}^d$. By contrast, most aforementioned ML and data analysis applications are dynamic by nature and need to process rapidly-evolving datasets to maintain prediction and model accuracy. One example is the renewed interest in $online\ regression$ (Cohen et al., 2015; Jiang et al., 2022), motivated by $continual\ learning$ theory (Parisi et al., 2019). Indeed, it is becoming increasingly clear that many static optimization algorithms do not capture the requirements of real-world applications (Jain et al., 2008; Chen et al., 2020b;a; Song et al., 2021a;b; Xu et al., 2021; Shrivastava et al., 2021). Notice that changing a single source-point $x_i \in \mathbb{R}^d$ generally affects an $entire\ row\ (n\ distances\ \|x_i-x_j\|)$ of the matrix K. As such, naively re-computing the static FGT on the modified set of distances, incurs a prohibitive computational overhead $(n \gg d)$. This raises the natural question of whether it is possible to achieve sublinear-time insertion and deletion of source points, as well as "local" $kernel-density\ estimation\ (KDE)$ queries (Charikar & Siminelakis, 2017; Yang et al., 2003), while maintaining speed and accuracy of matrix-vector multiplication queries:

Is it possible to 'dynamize' the Fast Gaussian Transform, in sublinear time? Can the exponential dependence on d (Greengard & Strain, 1991) be mitigated if the data-points x_i lie in a k-dimensional subspace of \mathbb{R}^d ?

The last question is motivated by the recent work of (Cherapanamjeri & Nelson, 2022), who observed that kernel-based methods and algorithms typically involve *low-rank* datasets, (where the "intrinsic" dimension is $w \ll d$), in which case one could hope to circumvent the exponential dependence on d in the aforementioned (static) FMM algorithm (Greengard & Strain, 1991; Alman et al., 2020).

1.1 MAIN RESULT

Our main result is an affirmative answer to the above question. We design a fully-dynamic FGT data structure, supporting polylogarithmic-time updates and "density estimation" queries, while retaining quasi-linear time for arbitrary Mat-Vec queries (Kq). More formally, for a set of N "source" points s_1,\ldots,s_N , the j-th coordinate $(\mathsf{K}q)_{j\in[N]}$ is $G(s_j)=\sum_{i=1}^N q_i\cdot e^{-\|s_j-s_i\|_2^2/\delta}$, which measures the kernel-density at s_j ("interaction" of s_j with the rest of the sources). More generally, for any "target" point $t\in\mathbb{R}^d$, let $G(t):=\sum_{i=1}^N q_i\cdot e^{-\|t-s_i\|_2^2/\delta}$ denote the kernel density of t with respect to the sources, where each source s_i is equipped with a charge q_i . Our data structure supports fully-dynamic source updates and density-estimation queries in sublinear time. Observe that

this immediately implies that entire Mat-Vec queries $(K \cdot q)$ can be computed in quasi-linear time $N^{1+o(1)}$. The following is our main result:

Theorem 1.1 (Dynamic Low-Rank FGT, Informal version of Theorem F.2). Let \mathcal{B} denote a w-dimensional subspace $\subset \mathbb{R}^d$. Given a set of source points s, and charges q, there is a (deterministic) data structure that maintains a fully-dynamic set of N source vectors $s_1, \dots, s_N \in \mathcal{B}$ under the following operations:

- INSERT/DELETE $(s_i \in \mathbb{R}^d, q_i \in \mathbb{R})$ Insert or Delete a source point $s_i \in \mathbb{R}^d$ along with its "charge" $q_i \in \mathbb{R}$, in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time. The intrinsic subspace \mathcal{B} could change as the source points are updated.
- DENSITY-ESTIMATION $(t \in \mathcal{B})$ For any point $t \in \mathcal{B} \subset \mathbb{R}^d$, output the kernel density of t with respect to the sources, i.e., output \widetilde{G} such that $G(t) \varepsilon \leq \widetilde{G} \leq G(t) + \varepsilon$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.

We note that when w=d, the costs of our dynamic algorithm match the statistic FGT algorithm. As one might expect, our data structure applies to a more general subclass of 'geometrically-decaying' kernels $\mathsf{K}_{i,j} = f(\|x_i - x_j\|)$ ($f(tx) \leq (1-\alpha)^t f(x)$), see Theorem B.5 for the formal statement of our main result. It is also noteworthy that our data structure is deterministic, and therefore handles even *adaptive* update sequences (Hardt & Woodruff, 2013; Ben-Eliezer et al., 2020; Cherapanamjeri & Nelson, 2020). This feature is important in adaptive data analysis and in the use of dynamic data structures for accelerating *path-following* iterative optimization algorithms (Brand et al., 2020), where proximity to the original gradient flow (linear) equations is crucial for convergence, hence the data structure needs to ensure the approximation guarantees hold against *any* outcome of previous iterations.

Remark on Dynamization of "Decomposable" Problems A data structure problem $\mathbf{P}(D,q)$ is called decomposable, if a query q to the union of two separate datasets can be recovered from the two marginal answers of the query on each of them separately, i.e., $\mathbf{P}(D_1 \cup D_2, q) = g\left(\mathbf{P}(D_1,q),\mathbf{P}(D_2,q)\right)$ for some function g. A classic technique in data structures (Bentley & Saxe, 1980) asserts that decomposable data structure problems can be (partially) dynamized in a black-box fashion – It is possible to convert any static DS for \mathbf{P} into a dynamic one supporting incremental updates, with an amortized update time $t_u \sim (T/N) \cdot \log(N)$, where T is the preprocessing time of building the static data structure, and N is the input size. We can see that Matrix-Vector multiplication over a field with row-updates to the matrix is a decomposable problem since (A+B)q = Aq + Bq, and so one might hope that the dynamization of static FMM/FGT methods is an immediate consequence of decomposability. This reasoning is, unfortunately, incorrect, since changing even a single input point $x_i \in \mathbb{R}^d$, perturbs n distances, i.e., an entire row in the kernel matrix K, and so the aforementioned reduction is prohibitively expensive (yields update time at least $n \gg d$ for adding/removing a point).

Notation. For a vector x, we use $\|x\|_2$ to denote its ℓ_2 -norm, $\|x\|_1$, $\|x\|_0$ and $\|x\|_\infty$ for its ℓ_1 -norm, ℓ_0 -norm and ℓ_∞ -norm. We use $\widetilde{O}(f)$ to denote $f \cdot \operatorname{poly}(\log f)$. For a vector $x \in \mathbb{R}^d$ and a real number p, we say $x \leq p$ if $x_i \leq p$ for all $i \in [d]$. We say $x \geq p$ if there exists an $i \in [d]$ such that $x_i \geq p$. For a positive integer n, we use [n] to denote a set $\{1, 2, \dots, n\}$.

Roadmap. In Section 2, we introduce the related research works. In Section 3, we present the important techniques used to prove our main result. In Section 4, we make a conclusion for our work.

2 RELATED WORK

Structured Linear Algebra Multiplying an $n \times n$ matrix M by an arbitrary vector $q \in \mathbb{R}^n$ generally requires $\Theta(n^2)$ time, and this is information-theoretically optimal since merely reading the entries of the matrix requires $\sim n^2$ operations. Nevertheless, if M has some *structure* $(\widetilde{O}(n)$ -bit description-size), one could hope for quasi-linear time for computing $M \cdot q$. Kernel matrices

 $\mathsf{K}_{ij} = f(\|x_i - x_j\|)$, which are the subject of this paper, are special cases of such *geometric*-analytic structure, as their n^2 entries are determined by only $\sim n$ points in \mathbb{R}^d , i.e., O(nd) bits of information. There is a rich and active body of work in *structured linear algebra*, exploring various "algebraic" structures that allow quasi-linear time matrix-vector multiplication, most of which relies on (novel) extensions of the *Fast Fourier Transform* (see (Driscoll et al., 1997; Sa et al., 2018; Chen et al., 2021) and references therein). A key difference between FMMs and the aforementioned FFT-style line of work is that the latter develops *exact* Mat-Vec algorithms, whereas FMM techniques must inevitably resort to (small) approximation, based on the *analytic* smoothness properties of the underlying function and metric space (Alman et al., 2020; 2021). This distinction makes the two lines of work mostly incomparable.

Comparison to LSH-based KDEs A recent line of work due to (Charikar & Siminelakis, 2017; Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020; Bakshi et al., 2023) develops fast KDE data structures based on *locality-sensitive hashing* (LSH), which seems possible to be dynamized naturally (as LSH is dynamic by nature). However, this line of work is incomparable to FGT, as it solves KDE in the *low-accuracy* regime, i.e., the runtime dependence on ε of these works is $\operatorname{poly}(1/\varepsilon)$ (but polynomial in d), as opposed to FGT ($\operatorname{poly}\log(1/\varepsilon)$) but exponential in d). Additionally, some work (e.g., (Charikar et al., 2020)) also needs an upper bound of the ground-truth value $\mu_{\star} = \mathrm{K} \cdot q$, and the efficiency of their data structure depends on $\mu_{\star}^{-O(1)}$, while FGT does not need any prior knowledge of μ_{\star} .

Kernel Methods in ML Kernel methods can be thought of as instance-based learners: rather than learning some fixed set of parameters corresponding to the features of their inputs, they instead "remember" the i-th training example (x_i, y_i) and learn for it a corresponding weight w_i . Prediction for unlabeled inputs, i.e., those not in the training set, is treated using an application of a *similarity* function K (i.e., a kernel) between the unlabeled input x' and each of the training-set inputs x_i . This framework is one of the main motivations for the development of kernel methods in ML and high-dimensional statistics (Schölkopf et al., 2002). There are two main themes of research on kernel methods in the context of machine learning: The first one is focused on understanding the expressive power and generalization of learning with kernel feature maps (Ng et al., 2002; Schölkopf et al., 2002; Shawe-Taylor & Cristianini, 2004; Rahimi & Recht, 2008; Hofmann et al., 2008; Jacot et al., 2018; Du et al., 2019; Yang et al., 2023); The second line is focused on the *computational* aspects of kernel-based algorithms (Alman et al., 2020; Brand et al., 2021; Song et al., 2021a;b; Hu et al., 2022; Alman et al., 2022; Zhang, 2022; Alman & Song, 2023; Deng et al., 2023; Gao et al., 2023b;a). We refer the reader to these references for a much more thorough overview of these lines of research and the role of kernels in ML.

3 TECHNICAL OVERVIEW

In Section 3.1, we review the *offline* FGT algorithm (Greengard & Rokhlin, 1987; Alman et al., 2020) and analyze the computational costs. In Section 3.2, we illustrate the technique of estimating G(t) for an arbitrary target vector $t \in \mathbb{R}^d$. In Section 3.3, we explain that the data structures support the dynamic setting where the source vectors are allowed to come and leave. In Section 3.4, we describe how to extend the data structure to a more general kernel function. In Section 3.5, we show that if the source and target vectors come from a low dimensional subspace, the data structure can bypass the curse of dimension. In Section 3.6, we modify the data structure to support the scenario where the rank of data points varies across iterations.

3.1 OFFLINE FGT ALGORITHM

We first review (Alman et al., 2020)'s offline FGT algorithm. Consider the following easier problem: given N source vectors $s_1, \ldots, s_N \in \mathbb{R}^d$, and M target vectors $t_1, \ldots, t_M \in \mathbb{R}^d$, estimate

$$G(t_i) = \sum_{i=1}^{N} q_j \cdot e^{-\|t_i - s_j\|_2^2/\delta}$$

for any $i \in [M]$, in quasi-linear time. Following (Greengard & Strain, 1991; Alman et al., 2020), our algorithm subdivides $B_0 = [0, 1]^d$ into smaller boxes with sides of length $L = r\sqrt{2\delta}$ parallel to

the axes, for a fixed $r \leq 1/2$, and then assign each source s_j to the box $\mathcal B$ in which it lies and each target t_i to the box $\mathcal C$ in which it lies. Note that there are $(1/L)^d$ boxes in total. Let N(B) and N(C) denote the number of non-empty source and target boxes, respectively. For each target box $\mathcal C$, we need to evaluate the total field due to sources in all boxes. Since each box $\mathcal B$ has side length $r\sqrt{2\delta}$, only a fixed number of source boxes $\mathcal B$ can contribute more than $\|q\|_1\varepsilon$ to the field in a given target box $\mathcal C$, where ε is the precision parameter. Hence, for a target vector in box $\mathcal C$, if we only count the contributions of the source vectors in its $(2k+1)^d$ nearest boxes where k is a parameter, it will incur an error that can be upper bounded as follows:

$$\sum_{j:\|t-s_j\|_{\infty} \ge kr\sqrt{2\delta}} |q_j| \cdot e^{-\|t-s_j\|_2^2/\delta} \le \|q\|_1 \cdot e^{-2r^2k^2}$$
 (1)

When we take $k = \log(\|q\|_1/\varepsilon)$, this error becomes $o(\varepsilon)$. For a single source vector $s_j \in \mathcal{B}$, its field $G_{s_i}(t) = q_j \cdot e^{-\|t-s_j\|^2/\delta}$ has the following Taylor expansion at $t_{\mathcal{C}}$ (the center of \mathcal{C}):

$$G_{s_j}(t) = \sum_{\beta > 0} \mathcal{B}_{\beta}(j, \mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}}\right)^{\beta}, \tag{2}$$

where $\beta \in \mathbb{N}^d$ is a multi-index,

$$\mathcal{B}_{\beta}(j,\mathcal{C}) = q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_{\beta} \left(\frac{s_j - t_{\mathcal{C}}}{\sqrt{\delta}} \right),$$

and $H_{\beta}(x)$ is the multi-dimensional Hermite function indexed by β (see Definition A.7). We can also control the truncation error of the first p^d terms by ε for $p = \log(\|q\|_1/\varepsilon)$ (see Lemma E.6). Then, for a fixed source box \mathcal{B} , the field can be approximated by

$$\sum_{\beta < p} C_{\beta}(\mathcal{B}, \mathcal{C}) (\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}})^{\beta},$$

where $C_{\beta}(\mathcal{B}, \mathcal{C}) := \sum_{j \in \mathcal{B}} \mathcal{B}_{\beta}(j, \mathcal{C})$. Hence, for each query point t, we just need to locate its target box \mathcal{C} , and then G(t) can be approximated by:

$$\widetilde{G}(t) = \sum_{\mathcal{B} \in \mathsf{nb}(\mathcal{C})} \sum_{\beta \leq p} C_{\beta}(\mathcal{B}, \mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta} = \sum_{\beta \leq p} C_{\beta}(\mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta},$$

where nb(C) is the set of $(2k+1)^d$ nearest-neighbor of C and

$$C_{\beta}(\mathcal{C}) := \sum_{\mathcal{B} \in \mathsf{nb}(\mathcal{C})} C_{\beta}(\mathcal{B}, \mathcal{C}).$$

Notice that we can further pre-compute $C_{\beta}(\mathcal{C})$ for each target box \mathcal{C} and $\beta \leq p$. Then, the running time for each target point becomes $O(p^d)$. For the preprocessing time, notice that each $C_{\beta}(\mathcal{B},\mathcal{C})$ takes $O(N_{\mathcal{B}})$ -time to compute, where $N_{\mathcal{B}}$ is the number of source points in \mathcal{B} . Fix a $\beta \leq p$. Consider the computational cost of $C_{\beta}(\mathcal{C})$ for all target boxes \mathcal{C} . Note that each source box can interact with at most $(2k+1)^d$ target boxes. Therefore, the total running time for computing $\{C_{\beta}(\mathcal{C}_{\ell})\}_{\ell \in [N(C)]}$ is bounded by $O(N \cdot (2k+1)^d + M)$. Then, the total cost of the preprocessing is

$$O\left(N\cdot(2k+1)^d\cdot p^d+M\cdot p^d\right).$$

By taking $p=\log(\|q\|_1/\varepsilon)$ and $k\leq \log(\|q\|_1/\varepsilon)$, we get an algorithm with $\widetilde{O}_d(N+M)$ -time for preprocessing and $\widetilde{O}_d(1)$ -time for each target point. We note that this algorithm also supports fast computing Kq for any $q\in\mathbb{R}^d$ and K $\in\mathbb{R}^{n\times n}$ with $\mathsf{K}_{i,j}=e^{-\|s_i-s_j\|_2^2/\delta}$. Roughly speaking, for each query vector q, we can build this data structure, and then the i-th coordinate of Kq is just $G(s_i)$, which can be computed in poly-logarithmic time. Hence, Kq can be approximately computed in nearly-linear time with ℓ_∞ error at most ε .

Remark 3.1. The kernel bandwidth $\delta > 0$ can be set using standard rules like median heuristic or cross-validation. For the box length $L = r\sqrt{2\delta}$, the parameter r controls the tradeoff between computational cost and accuracy. We recommend r = 1/2 as it provides a good balance, and the error bound (see Eq. (1)) scales as $\exp(-2r^2k^2)$ where k is a parameter that controls the number of neighboring boxes. For the truncation parameter p, we set it to $p = \log(\|q\|_1/\varepsilon)$ to achieve desired accuracy ε (see Lemma E.6). This parameter can be adjusted dynamically based on observed errors.

3.2 Online Static KDE Data Structure (Query-Only)

Next, we consider the same static setting, except target queries $t \in \mathbb{R}^d$ arrive online, and the goal is to estimate G(t) for an arbitrary vector in *sublinear* time. To this end, note that if t is contained in a non-empty target box \mathcal{C}_ℓ , then G(t) can be approximated using pre-computed $C_\beta(\mathcal{C}_\ell)$ in poly-logarithmic time. Otherwise, we need to add a new target box $\mathcal{C}_{N(C)+1}$ for t and compute $C_\beta(\mathcal{C}_{N(C)+1})$, which takes time $\sum_{\mathcal{B}\in\mathsf{nb}(\mathcal{C}_{N(C)+1})} O(N_\mathcal{B})$. However, this linear scan naïvely takes O(N) time in the worst case. Indeed, looking into the coefficients $C_\beta(\mathcal{B},\mathcal{C})$:

$$C_{\beta}(\mathcal{B}, \mathcal{C}) = \sum_{j \in \mathcal{B}} q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_{\beta} \left(\frac{s_j - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

reveals that the source vectors s_j are "entangled" with $t_{\mathcal{C}}$, so evaluating $C_{\beta}(\mathcal{B}, \mathcal{C})$ brute-forcely for a new target box \mathcal{C} , incurs a linear scan of all source vectors in \mathcal{B} . To "disentangle" s_j and $t_{\mathcal{C}}$, we use the Taylor series of Hermite function (Eq. (5)):

$$\begin{split} H_{\beta}\left(\frac{s_{j}-t_{\mathcal{C}}}{\sqrt{\delta}}\right) &= H_{\beta}\left(\frac{s_{j}-s_{\mathcal{B}}}{\sqrt{\delta}} + \frac{s_{\mathcal{B}}-t_{\mathcal{C}}}{\sqrt{\delta}}\right) \\ &= \sum_{\alpha \geq 0} \frac{(-1)^{\|\alpha\|_{1}}}{\alpha!} \left(\frac{s_{j}-s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha} H_{\alpha+\beta}\left(\frac{s_{\mathcal{B}}-t_{\mathcal{C}}}{\sqrt{\delta}}\right), \end{split}$$

where $s_{\mathcal{B}}$ denotes the center of the source box \mathcal{B} . Hence, $C_{\beta}(\mathcal{B}, \mathcal{C})$ can be re-written as:

$$C_{\beta}(\mathcal{B}, \mathcal{C}) = \sum_{j \in \mathcal{B}} q_{j} g(\beta) \sum_{\alpha \geq 0} g(\alpha) \left(\frac{s_{j} - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha} H_{\alpha + \beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$
$$= g(\beta) \sum_{\alpha \geq 0} A_{\alpha}(\mathcal{B}) H_{\alpha + \beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right),$$

where $g(x) = (-1)^{\|x\|_1}/x!$ and

$$A_{\alpha}(\mathcal{B}) := \sum_{j \in \mathcal{B}} q_j g(\alpha) \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha}. \tag{3}$$

Now, $A_{\alpha}(\mathcal{B})$ does not rely on the target box and can be pre-computed, hence we can compute $C_{\beta}(\mathcal{B},\mathcal{C})$ without going over each source vector. However, there is a price for this conversion, namely, that now $C_{\beta}(\mathcal{B},\mathcal{C})$ involves summing over all $\alpha \geq 0$, so we need to somehow truncate this series while controlling the overall truncation error for G(t), which appears difficult to achieve. To this end, we observe that this two-step approximation is equivalent to first forming a truncated Hermite series of $e^{\|t-s_j\|_2^2/\delta}$ at the center of the source box $s_{\mathcal{B}}$, and then transforming all Hermite expansions into Taylor expansions at the center of a *target* box $t_{\mathcal{C}}$. More formally, the Hermite approximation of G(t) is

$$G(t) = \sum_{\mathcal{B}} \sum_{\alpha \le p} (-1)^{\|\alpha\|_1} A_{\alpha}(\mathcal{B}) H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right) + \operatorname{Err}_{H}(p),$$

where $|\mathrm{Err}_H(p)| \leq \varepsilon$ (see Lemma E.2). Hence, we can Taylor-expand each H_α at $t_\mathcal{C}$ and get that: $G(t) = \sum_{\beta \leq p} C_\beta(\mathcal{C}) \left(\frac{t-t_\mathcal{C}}{\sqrt{\delta}}\right)^\beta + \mathrm{Err}_T(p) + \mathrm{Err}_H(p)$, where $|\mathrm{Err}_H(p)| + |\mathrm{Err}_T(p)| \leq \varepsilon$, (for the formal argument, see Lemma E.5).

Remark 3.2. The original FGT paper contains a flaw in the error estimation, which was partially fixed in (Baxter & Roussos, 2002) for the Hermite expansion. Later, (Lee et al., 2005) corrected the error in both Hermite and Taylor expansions. However, their proofs are brief and use different notations that are adapted for their dual-tree algorithm. We provide more detailed and user-friendly proofs for the correct error estimations in Section E. We believe that they are of independent interest to the community.

This means that, at preprocessing time, it suffices to compute $A_{\alpha}(\mathcal{B})$ for all source boxes and all $\alpha \leq p$, which takes

$$\sum_{k \in [N(B)]} O\left(p^d \cdot N_{\mathcal{B}_k}\right) = O\left(p^d \cdot N\right) = \widetilde{O}_d(N).$$

time. Then, at query time, given an arbitrary query vector t in a target box \mathcal{C} , we compute

$$C_{\beta}(\mathcal{C}) = h(\beta) \sum_{\mathcal{B} \in \mathsf{nb}(\mathcal{C})} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha + \beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right),$$

which takes

$$O\left(d \cdot p^d \cdot (2k+1)^d\right) = \text{poly}\log(n)$$

time, so long as d = O(1) and $\varepsilon = n^{-O(1)}$.

3.3 DYNAMIZATION

Given our (static) representation of points from the last paragraph, dynamizing the above static KDE data structure now becomes simple. Suppose we add a source vector s in the source box \mathcal{B} . We first update the intermediate variables $A_{\alpha}(\mathcal{B}), \alpha \leq p$, which takes $O(p^d)$ time. So long as the ℓ_1 -norm of the updated charge-vector q remains polynomial in the norm of the previously maintained vector, namely

$$\sqrt{\log(\|q^{\text{new}}\|_1)} > \log(\|q\|_1),$$

we show that one source box can only affect $(2k+1)^d$ nearest target box \mathcal{C} ; otherwise, when the change is super-polynomial, we rebuild the data structure, but this cost is amortized away. Hence, we only need to update $C_{\beta}(\mathcal{C})$ for those $\mathcal{C} \in \mathsf{nb}(\mathcal{B})$. Notice that each $C_{\beta}(\mathcal{B},\mathcal{C})$ can be updated in $O_d(1)$ time, so each affected $C_{\beta}(\mathcal{C})$ can also be updated in $O_d(1)$ time. Hence, adding a source vector can be done in time $O((2k+1)^d p^d) = \widetilde{O}_d(1)$ as before. Deleting a source vector follows from a similar procedure.

3.4 GENERALIZATION TO FAST-DECAYING KERNELS

We briefly explain how the dynamic FGT data structure generalizes to more general kernel functions $K(s,t) = f(\|s-t\|_2)$ where f satisfies the 3 properties in Definition 3.3 below.

Definition 3.3 (Properties of general kernel function, (Alman et al., 2020)). We define the following properties of the function $f: \mathbb{R} \to \mathbb{R}_+$:

- **P1:** f is non-increasing, i.e., $f(x) \le f(y)$ when $x \ge y$.
- **P2:** f is decreasing fast, i.e., $f(\Theta(\log(1/\varepsilon))) < \varepsilon$.
- P3: f's Hermite expansion and Taylor expansion are truncateable: the truncation error of the first $(\log^d(1/\varepsilon))$ terms in the Hermite and Taylor expansion of K is at most ε .

Remark 3.4. There are many widely-used kernels that satisfy the properties of general kernel function (Definition 3.3) such as:

- inverse polynomial kernels: $K(x,y) = 1/||x-y||_2^c$ for constant c > 0,
- exponential kernel: $K(x,y) = \exp(-\|x-y\|_2)$,
- inverse multiquadric kernel: $K(x,y) = 1/\sqrt{\|x-y\|_2^2 + c}$ (Micchelli, 1984; Martinsson, 2012), and
- rational quadratic kernel: $K(x,y) = 1/(1 + ||x-y||_2^2/\alpha)$ for $\alpha > 0$.

The key insight is that these kernels' fast decay allows truncation of distant interactions, while their smoothness enables efficient local approximations via series expansions. This broader applicability significantly extends the practical utility of our dynamic data structure.

In the general case, $G_f(t) = \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \mathsf{K}(s_j, t)$. Similar to the Gaussian kernel case, we can first show that only near boxes matter:

$$\sum_{j:||t-s_j||_{\infty} \ge kr} |q_j| \cdot f(||s-t||_2) \le \varepsilon$$

by the fast-decreasing property (**P2**) in Definition 3.3 of f and taking $k = O(\log(\|q\|_1/\varepsilon))^1$. Then, we can follow the same "decoupling" approach as the Gaussian kernel case to first Hermite expand $G_f(t)$ at the center of each source box and then Taylor expands each Hermite function at the center of the target box. In this way, we can show that

$$G_f(t) pprox \sum_{\beta < p} C_{f,\beta}(\mathcal{C}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta},$$

where $C_{f,\beta}(\mathcal{C}) = c_{\beta} \sum_{\mathcal{B} \in \mathsf{nb}(\mathcal{C})} \sum_{\alpha \leq p} A_{f,\alpha}(\mathcal{B}) H_{\alpha+\beta}\left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}}\right)$, and the approximation error can be bounded since f is truncateable. $A_{f,\alpha}(\mathcal{B})$ depends on the kernel function f and can be pre-computed in the preprocessing. Then, each $C_{f,\beta}(\mathcal{C})$ can be computed in poly-logarithmic time. Hence, G(t) can be approximately computed in poly-logarithmic time for any target vector t.

3.5 HANDLING POINTS FROM LOW-DIMENSIONAL STATIC SPACES

In many practical problems, the data lies in a low dimensional subspace of \mathbb{R}^d . We can first project the data into this subspace and then perform FGT on \mathbb{R}^w , where w is the rank. The following lemma shows that FGT can be performed on the projections of the data.

Lemma 3.5 (Hermite projection lemma in low-dimensional space, informal version of Lemma F.3). Given $\mathcal{B} \in \mathbb{R}^{d \times w}$ that defines a w-dimensional subspace of \mathbb{R}^d , let $\mathcal{B}^\top \mathcal{B} = U \Lambda U^\top \in \mathbb{R}^{w \times w}$ denote the spectral decomposition where $U \in \mathbb{R}^{w \times w}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{w \times w}$. We define $P := \Lambda^{-1/2} U^{-1} \mathcal{B}^\top \in \mathbb{R}^{w \times d}$. Then we have for any $t, s \in \mathbb{R}^d$ from subspace \mathcal{B} , the following equation holds

$$e^{-\|t-s\|_2^2/\delta} = \sum_{\alpha \ge 0} \frac{(\sqrt{1/\delta \mathsf{P}(t-s)})^{\alpha}}{\alpha!} h_{\alpha}(\sqrt{1/\delta \mathsf{P}(t-s)}).$$

By Lemma 3.5, it suffices to divide \mathbb{R}^w instead of \mathbb{R}^d into boxes and conduct Hermite expansion and Taylor expansion on the low-dimensional subspace. More specifically, given the initial source points, we can compute P by SVD or QR decomposition in $N \cdot w^{\omega^{-1}}$ -time², which is of smaller order than the FGT's preprocessing time³. Then, we can project each point $s_i \in \mathbb{R}^d$ to $x_i := \mathsf{P} s_i \in \mathbb{R}^w$ for $i \in [N]$. The remaining procedure in preprocessing is the same as before, but directly working on the low-dimensional sources $\{x_1,\ldots,x_N\}$. In the query phase, consider a target point t in the subspace. We are supposed to compute $G(t) \approx \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t-s_j\|_2^2/\delta}$. By Lemma 3.5, we

know that $G(t) \approx \sum_{\beta \leq p} C_{\beta}(\mathcal{C}) \left(\frac{\mathsf{P}(t-t_{\mathcal{C}})}{\sqrt{\delta}}\right)^{\beta} = \sum_{\beta \leq p} C_{\beta}(\mathcal{C}) \left(\frac{y-y_{\mathcal{C}}}{\sqrt{\delta}}\right)^{\beta}$, where \mathcal{C} is the target box that contains $t,y = \mathsf{P}t$ and $y_{\mathcal{C}} = \mathsf{P}t_{\mathcal{C}}$ projected points. Moreover, for each $\beta \leq p$ and target box \mathcal{C} , we have

$$C_{\beta}(\mathcal{C}) = \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}})}{\sqrt{\delta}} \right)$$
$$= \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{x_{\mathcal{B}} - y_{\mathcal{C}}}{\sqrt{\delta}} \right).$$

¹Indeed, by property **P2**, $f(\Theta(\log(1/\varepsilon'))) \le \varepsilon'$. Taking $\varepsilon' := \varepsilon/\|q\|_1$, we get that $f(\|s-t\|_2) \le \varepsilon/\|q\|_1$. Hence, the summation is at most ε .

 $^{^2\}omega \approx 2.372$ is the fast matrix multiplication time exponent.

³In practice, we can run numerical algorithms such as randomized SVD that are very fast for low-rank matrices.

Similarly, for each $\alpha \leq p$ and source box \mathcal{B} ,

$$A_{\alpha}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x_j - x_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha}.$$

Therefore, each query is equivalent to being conducted in a w-dimensional space using our data structure, which takes $\log^{O(w)}(\|q\|_1/\varepsilon)$ -time. The update can be done in a similar way in the low-dimensional space using the procedure described in Section 3.3. Hence, each update (insertion or deletion) takes $\log^{O(w)}(\|q\|_1/\varepsilon)$.

3.6 HANDLING POINTS FROM LOW-DIMENSIONAL DYNAMIC SPACES

We note that when we add a new source point to the data structure, the intrinsic rank of the data might change by 1 when the point is not in the subspace. For an inserting source point s, consider the rank-increasing case, i.e., $(I-\mathsf{P})s \neq 0$. Then, this new source point contributes to one new basis $u := \frac{(I-\mathsf{P})s}{\|(I-\mathsf{P})s\|_2}$. Also, we can update the projection matrix P by $[\mathsf{P} \quad u] \in \mathbb{R}^{(w+1)\times d}$. However, as the subspace is changed, we need to maintain the intermediate variables $A_\alpha(\mathcal{B})$, $C_\beta(\mathcal{C})$. It is easy to observe that for the original projected source and target points or boxes, they can easily be "lifted" to the new subspace by setting zero to the (w+1)-th coordinate. We show how to update $A_\alpha(\mathcal{B})$ efficiently. For each source box \mathcal{B} and $\alpha \leq p$, we have

$$A_{(\alpha,0)}^{\mathsf{new}}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1} \cdot (-1)^i}{\alpha! \cdot i!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x_j' - x_{\mathcal{B}}'}{\sqrt{\delta}}\right)^{(\alpha,i)} = A_{\alpha}(\mathcal{B}),$$

where x_j' denotes the lifted point. And $A_{(\alpha,1)}^{\mathsf{new}}(\mathcal{B}) = 0$ for all i > 0. Similarly, for each target box \mathcal{C} ,

$$\begin{split} C^{\mathsf{new}}_{(\beta,i)}(\mathcal{C}) &= \frac{(-1)^{\|\beta\|_1}(-1)^i}{\beta!i!} \cdot \sum_{\mathcal{B}} \sum_{\alpha \leq p} \sum_{j=0}^p A^{\mathsf{new}}_{(\alpha,j)}(\mathcal{B}) H_{(\alpha+\beta,i+j)} \left(\frac{x_{\mathcal{B}}' - y_{\mathcal{C}}'}{\sqrt{\delta}} \right) \\ &= \frac{(-1)^{\|\beta\|_1}(-1)^i}{\beta!i!} \cdot \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{x_{\mathcal{B}} - y_{\mathcal{C}}}{\sqrt{\delta}} \right) \cdot h_i(0) \\ &= \frac{(-1)^i}{i!} \cdot C_{\beta}(\mathcal{C}). \end{split}$$

Therefore, by enumerating all boxes \mathcal{B},\mathcal{C} and indices $\alpha,\beta\leq p$, we can compute $A_{(\alpha,0)}^{\mathrm{new}}(\mathcal{B})$ and $C_{(\beta,i)}^{\mathrm{new}}(\mathcal{C})$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$ -time. Then, we just follow the static subspace insertion procedure to insert the new source point s. In this way, we obtain a data structure that can handle dynamic low-rank subspaces.

4 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the Fast Gaussian Transform (FGT) in a dynamic setting and propose a dynamic data structure to maintain the source vectors that support very fast kernel density estimation, Mat-Vec queries $(K \cdot q)$, as well as updating the source vectors. We further show that the efficiency of our algorithm can be improved when the data points lie in a low-dimensional subspace. Our results are especially valuable when FGT is used in real-world applications with rapidly-evolving datasets, e.g., online regression, federated learning, etc.

One open problem in this direction is, can we compute Kq in $O(N) + \log^{O(d)}(N/\varepsilon)$ time? Currently, it takes $N\log^{O(d)}(N/\varepsilon)$ time even in the static setting. The lower bounds in (Alman et al., 2020) indicate that this improvement is impossible for some "bad" kernels K which are very non-smooth. It remains open when K is a Gaussian-like kernel. It might be helpful to apply more complicated geometric data structures to maintain the interactions between data points. Another open problem is, can we fast compute Mat-Vec product or KDE for slowly-decaying kernels? The main difficulty is the current FMM techniques cannot achieve high accuracy when the kernel decays slowly. New techniques might be required to resolve this problem.

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications. We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions, and complete proofs in the appendix. The main text states each theorem clearly and refers to the detailed proofs. No external data or software is required.

REFERENCES

- Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical guarantees. *Advances in Neural Information Processing Systems*, 28:775–783, 2015.
- Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via overparameterization. In *ICML*, 2019a.
 - Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural networks. In *NeurIPS*, 2019b.
 - Josh Alman and Zhao Song. Fast attention requires bounded entries. *arXiv preprint arXiv:2302.13214*, 2023.
 - Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 541–552. IEEE, 2020.
 - Josh Alman, Gary Miller, Timothy Chu, Shyam Narayanan, Mark Sellke, and Zhao Song. Metric transforms and low rank representations of kernels. In *arXiv preprint*, 2021.
 - Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time preprocessing: Fast neural network training via weight-data correlation preprocessing. *arXiv* preprint arXiv:2211.14227, 2022.
 - Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data fitting. *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Approx-Random)*, 2017a.
 - Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir Zandieh. Random fourier features for kernel ridge regression: Approximation bounds and statistical guarantees. In *International Conference on Machine Learning*, pp. 253–262. PMLR, 2017b.
 - Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 615–626. IEEE, 2018.
 - Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Subquadratic algorithms for kernel matrices via kernel density estimation. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Bradley John Charles Baxter and George Roussos. A new error estimate of the fast gauss transform. *SIAM Journal on Scientific Computing*, 24(1):257–259, 2002.
 - Rick Beatson and Leslie Greengard. A short course on fast multipole methods. *Wavelets, multilevel methods and elliptic PDEs*, 1:1–37, 1997.
 - Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In *Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems*, pp. 63–80, 2020.

- Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic transformation. *Journal of Algorithms*, 1(4):301–358, 1980.
 - Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs in nearly linear time. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC)*, pp. 775–788, 2020.
 - Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized) neural networks in near-linear time. In *ITCS*, 2021.
 - S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for hss representations via sparse matrices. *SIAM J. Matrix Anal. Appl.*, 29(1):67–81, dec 2006. ISSN 0895-4798. doi: 10.1137/050639028. URL https://doi.org/10.1137/050639028.
 - Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimensions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1032–1043. IEEE, 2017.
 - Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 769–792. IEEE, 2019.
 - Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 172–183. IEEE, 2020.
 - Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient neural network training. In *International Conference on Learning Representations (ICLR)*, 2020a.
 - Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In defense of smart algorithms over hardware acceleration for large-scale deep learning systems. *Proceedings of Machine Learning and Systems*, 2:291–306, 2020b.
 - Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re. Pixelated butterfly: Simple and efficient sparse training for neural network models. *ICLR*, 2021.
 - Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In *Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS)*, 2020.
 - Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for randomized hadamard transforms with applications. *arXiv preprint arXiv:2203.01599*, 2022.
 - Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In Tim Roughgarden (ed.), *Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015*, pp. 181–190. ACM, 2015. doi: 10.1145/2688073.2688113. URL https://doi.org/10.1145/2688073.2688113.
 - Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. An o (n) direct solver for integral equations on the plane. *Applied and Computational Harmonic Analysis*, 38(2):284–317, 2015.
 - Eric Darve. The fast multipole method: numerical implementation. *Journal of Computational Physics 160.1*, 2000.
 - Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsification algorithms for over-parameterized feature dimension. *arxiv preprint: arxiv 2304.03426*, 2023.
 - Jack Dongarra and Francis Sullivan. Guest editors' introduction: The top 10 algorithms. *Computing in Science & Engineering*, 2(1):22, 2000.

James R. Driscoll, Dennis M. Healy Jr., and Daniel N. Rockmore. Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. *SIAM J. Comput.*, 26(4): 1066–1099, 1997. doi: 10.1137/S0097539792240121. URL https://doi.org/10.1137/S0097539792240121.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-parameterized neural networks. In *ICLR*, 2019.

- Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius Vassiliou. The fast multipole method for electromagnetic scattering computation. *IEEE Transactions on Antennas and Propagation 40*, pp. 634–641, 1992.
- Jianqing Fan and Irène Gijbels. Local polynomial modelling and its applications. Number 66 in Monographs on statistics and applied probability series. Chapman & Hall, London [u.a.], 1996. ISBN 0412983214. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy.
- Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. *arXiv preprint arXiv:2303.16504*, 2023a.
- Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. *arXiv preprint* arXiv:2305.04701, 2023b.
- Leslie Greengard. The rapid evaluation of potential fields in particle systems. MIT press, 1988.
- Leslie Greengard. The numerical solution of the *n*-body problem. *Computers in physics*, 4(2): 142–152, 1990.
 - Leslie Greengard. Fast algorithms for classical physics. Science, 265(5174):909–914, 1994.
 - Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. *Journal of computational physics*, 73(2):325–348, 1987.
- Leslie Greengard and Vladimir Rokhlin. The rapid evaluation of potential fields in three dimensions. *Vortex Methods. Springer, Berlin, Heidelberg*, pp. 121–141, 1988.
- Leslie Greengard and Vladimir Rokhlin. On the evaluation of electrostatic interactions in molecular modeling. *Chemica scripta*, 29:139–144, 1989.
- Leslie Greengard and Vladimir Rokhlin. An improved fast multipole algorithm in thre dimensions. ., 1996.
- Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and Statistical Computing, 12(1):79–94, 1991.
- Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. *CoRR*, abs/2111.00396, 2021. URL https://arxiv.org/abs/2111.00396.
- Ming Gu and Stanley C. Eisenstat. A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. *SIAM Journal on Matrix Analysis and Applications*, 15:1266–1276, 1994.
- Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In *Proceedings of the forty-fifth annual ACM symposium on Theory of computing (STOC)*, pp. 121–130, 2013.
- M Hermite. Sur un nouveau développement en série des fonctions. Imprimerie de Gauthier-Villars, 1864.
- Einar Hille. A class of reciprocal functions. *Annals of Mathematics*, pp. 427–464, 1926.
 - Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learning. *The annals of statistics*, 36(3):1171–1220, 2008.

654

655

656

657

658 659

660

661

662

663

665

666

667

668

669 670

671

672

673 674

675

676

677

678

679

680 681

682

683

684

685

686 687

688

689

690 691

692

693

694

695

696 697

699

700

- 648 Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural net-649 works in sublinear time. arXiv preprint arXiv:2208.04508, 2022. 650
- Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in neural information processing systems, pp. 8571– 652 8580, 2018. 653
 - Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric learning and fast similarity search. In NIPS, volume 8, pp. 761–768. Citeseer, 2008.
 - Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regression. In *ICLR*, 2022.
 - Dongryeol Lee, Andrew Moore, and Alexander Gray. Dual-tree fast gauss transforms. Advances in Neural Information Processing Systems, 18, 2005.
 - Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage score sampling for neural networks. In *NeurIPS*, 2020.
 - Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. In NeurIPS, 2018.
 - Per-Gunnar Martinsson. Encyclopedia entry on "fast multipole methods". In *University* of Colorado at Boulder. http://amath.colorado.edu/faculty/martinss/2014_ CBMS/Refs/2012_fmm_encyclopedia.pdf, 2012.
 - Per-Gunnar Martinsson. Fast summation and multipole expansions. Lecture note, 2019.
 - Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. In Approximation theory and spline functions, pp. 143–145. Springer, 1984.
 - Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems, pp. 849–856, 2002.
 - German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2019.01.012. URL https://www. sciencedirect.com/science/article/pii/S0893608019300231.
 - Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in neural information processing systems, pp. 1177-1184. https://people.eecs. berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf, 2008.
 - Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (gpml) toolbox. J. Mach. Learn. Res., 11:3011-3015, 2010. ISSN 1532-4435.
 - Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged progress in structured dense matrix vector multiplication. In Artur Czumaj (ed.), Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pp. 1060– 1079. SIAM, 2018.
 - Bernhard Schölkopf and Alexander J. Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press, 2002. URL http://www.worldcat.org/oclc/48970254.
 - Bernhard Schölkopf, Alexander J Smola, and Francis Bach. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002.
 - Erich Schubert, Arthur Zimek, and Hans Peter Kriegel. Generalized outlier detection with flexible kernel density estimates. In Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 542–550, 2014.
 - John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university press, 2004.

- Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value iteration via locality sensitive hashing. *arXiv preprint arXiv:2105.08285*, 2021.
 - Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized neural networks? *Advances in Neural Information Processing Systems*, 34, 2021a.
 - Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network in subquadratic time. *arXiv preprint arXiv:2112.07628*, 2021b.
 - Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for some well-known conditional gradient methods using maxip data-structures. *Advances in Neural Information Processing Systems (NeurIPS)*, 34, 2021.
 - Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved fast gauss transform and efficient kernel density estimation. In *Proceedings Ninth IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2003.
 - Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using the improved fast gauss transform. In *NIPS*, 2004.
 - Hongru Yang, Ziyu Jiang, Ruizhe Zhang, Zhangyang Wang, and Yingbin Liang. Convergence and generalization of wide neural networks with large bias, 2023.
 - Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via kernel density estimation. *arXiv preprint arXiv:2302.02451*, 2023.
 - Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance. Master's thesis, Carnegie Mellon University, 2022.

Appendix

Roadmap. In Section A, we provide several notations and definitions about the Fast Multipole Method. In Section B, we present the formal statement of our main result. In Section C, we present our data-structures and algorithms. In Section D, we provide a complete and full for our results. In Section E, we prove several lemmas to control the error. In Section F, we generalize our results to low dimension subspace setting.

A PRELIMINARIES

We first give a quick overview of the high-level ideas of FMM in Section A.1. In Section A.2, we provide a complete description and proof of correctness for the fast Gaussian transform, where the kernel function is the Gaussian kernel. Although a number of researchers have used FMM in the past, most of the previous papers about FMM either focus on low-dimensional or low-error cases. We therefore focus on the superconstant-error, high dimensional case, and carefully analyze the joint dependence on ε and d. We believe that our presentation of the original proof in Section A.2 is thus of independent interest to the community.

A.1 FMM BACKGROUND

We begin with a description of high-level ideas of the Fast Multipole Method (FMM). Let $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ denote a kernel function. The inputs to the FMM are N sources $s_1, s_2, \cdots, s_N \in \mathbb{R}^d$ and M targets t_1, t_2, \cdots, t_M . For each $i \in [N]$, source s_i has associated 'strength' q_i . Suppose all sources are in a 'box' \mathcal{B} and all the targets are in a 'box' \mathcal{C} . The goal is to evaluate

$$u_j = \sum_{i=1}^{N} \mathsf{K}(s_i, t_j) q_i, \quad \forall j \in [M]$$

Intuitively, if K has some nice property (e.g. smooth), we can hope to approximate K in the following sense:

$$\mathsf{K}(s,t) pprox \sum_{p=0}^{P-1} B_p(s) \cdot C_p(t), \quad s \in \mathcal{B}, t \in \mathcal{C}$$

for some functions $B_p, C_p : \mathbb{R}^d \to \mathbb{R}$, where P is a small positive integer, usually called the *interaction rank* in the literature (Corona et al., 2015; Martinsson, 2019).

Now, we can construct u_i in two steps:

$$v_p = \sum_{i \in \mathcal{B}} B_p(s_i)q_i, \quad \forall p = 0, 1, \cdots, P-1,$$

and

$$\widetilde{u}_j = \sum_{p=0}^{P-1} C_p(t_j) v_p, \quad \forall i \in [M].$$

Intuitively, as long as \mathcal{B} and \mathcal{C} are well-separated, then \widetilde{u}_j is very good estimation to u_j even for small P, i.e., $|\widetilde{u}_j - u_j| < \varepsilon$.

Recall that, at the beginning of this section, we assumed that all the sources are in the the same box \mathcal{B} and \mathcal{C} . This is not true in general. To deal with this, we can discretize the continuous space into a batch of boxes $\mathcal{B}_1, \mathcal{B}_2, \cdots$ and $\mathcal{C}_1, \mathcal{C}_2, \cdots$. For a box \mathcal{B}_{l_1} and a box \mathcal{C}_{l_2} , if they are very far apart, then the interaction between points within them is small, and we can ignore it. If the two boxes are close, then we deal with them efficiently by truncating the high order expansion terms in K (only keeping the first $\log^{\mathcal{O}(d)}(1/\varepsilon)$ terms). For each box, we will see that the number of nearby relevant boxes is at most $\log^{\mathcal{O}(d)}(1/\varepsilon)$.

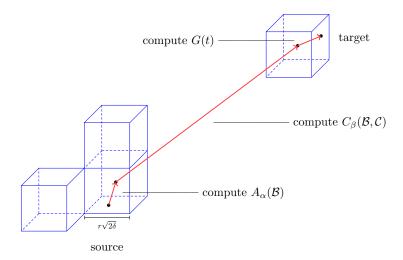


Figure 1: An illustration of the source-target boxing our data structure maintains in high dimensional space, using the "hybrid" of Taylor-Hermite expansions.

A.2 FAST GAUSSIAN TRANSFORM

Given N vectors $s_1, \dots s_N \in \mathbb{R}^d$, M vectors $t_1, \dots, t_M \in \mathbb{R}^d$ and a strength vector $q \in \mathbb{R}^n$, Greengard and Strain (Greengard & Strain, 1991) provided a fast algorithm for evaluating discrete Gauss transform

$$G(t_i) = \sum_{j=1}^{N} q_j e^{-\|t_i - s_j\|^2 / \delta}$$

for all $i \in [M]$ in O(M+N) time. In this section, we re-prove the algorithm described in (Greengard & Strain, 1991), and determine the exact dependence on ε and d in the running time.

Without loss of generality, we can assume that all the sources s_j and targets are belonging to the unit box $\mathcal{B}_0 = [0,1]^d$. The reason is, if not, we can shift the origin and rescaling δ .

Let t and s lie in d-dimensional Euclidean space \mathbb{R}^d , and consider the Gaussian

$$e^{-\|t-s\|_2^2} = e^{-\sum_{i=1}^d (t_i - s_i)^2}$$

We begin with some definitions. One important tool we use is the Hermite polynomial, which is a well-known class of orthogonal polynomials with respect to Gaussian measure and widely used in analyzing Gaussian kernels.

Definition A.1 (One-dimensional Hermite polynomial, (Hermite, 1864)). *The Hermite polynomials* $\widetilde{h}_n : \mathbb{R} \to \mathbb{R}$ *is defined as follows*

$$\widetilde{h}_n(t) = (-1)^n e^{t^2} \frac{\mathrm{d}^n}{\mathrm{d}t} e^{-t^2}$$

The first few Hermite polynomials are:

$$\widetilde{h}_1(t) = 2t, \ \widetilde{h}_2(t) = 4t^2 - 2, \ \widetilde{h}_3(t) = 8t^3 - 12t, \ \cdots$$

Definition A.2 (One-dimensional Hermite function, (Hermite, 1864)). *The Hermite functions* $h_n : \mathbb{R} \to \mathbb{R}$ *is defined as follows*

$$h_n(t) = e^{-t^2} \tilde{h}_n(t) = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}t} e^{-t^2}$$

We use the following Fact to simplify $e^{-(t-s)^2/\delta}$.

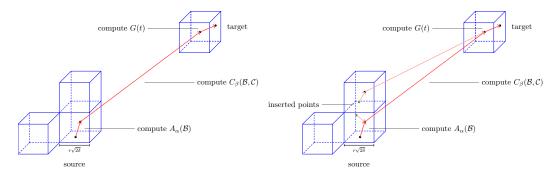


Figure 2: An illustration of inserting two source points with corresponding interactions to the data structure.

Fact A.3. For $s_0 \in \mathbb{R}$ and $\delta > 0$, we have

$$e^{-(t-s)^2/\delta} = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \left(\frac{s-s_0}{\sqrt{\delta}}\right)^n \cdot h_n\left(\frac{t-s_0}{\sqrt{\delta}}\right)$$

and

$$e^{-(t-s)^2/\delta} = e^{-(t-s_0)^2/\delta} \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \left(\frac{s-s_0}{\sqrt{\delta}}\right)^n \cdot \widetilde{h}_n\left(\frac{t-s_0}{\sqrt{\delta}}\right).$$

Lemma A.4 (Cramer's inequality for one-dimensional, (Hille, 1926)). For any K < 1.09,

$$|\tilde{h}_n(t)| \le K2^{n/2} \sqrt{n!} e^{t^2/2}$$
.

Using Cramer's inequality (Lemma A.4), we have the following standard bound.

Lemma A.5. For any constant K < 1.09, we have

$$|h_n(t)| \le K \cdot 2^{n/2} \cdot \sqrt{n!} \cdot e^{-t^2/2}.$$

Next, we will extend the above definitions and observations to the high dimensional case. To simplify the discussion, we define multi-index notation. A multi-index $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_d)$ is a d-tuple of nonnegative integers, playing the role of a multi-dimensional index. For any multi-index $\alpha\in\mathbb{R}^d$ and any $t\in\mathbb{R}^t$, we write

$$\alpha! = \prod_{i=1}^{d} (\alpha_i!), \quad t^{\alpha} = \prod_{i=1}^{d} t_i^{\alpha_i}, \quad D^{\alpha} = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_d^{\alpha_d}.$$

where ∂_i is the differential operator with respect to the *i*-th coordinate in \mathbb{R}^d . For integer p, we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [d]$; and we say $\alpha \geq p$ if $\alpha_i \geq p, \exists i \in [d]$. We use these definitions to guarantee that $\{\alpha \leq p\} \cup \{\alpha \geq p\} = \mathbb{N}^d$.

We can now define multi-dimensional Hermite polynomial:

Definition A.6 (Multi-dimensional Hermite polynomial, (Hermite, 1864)). We define function \widetilde{H}_{α} : $\mathbb{R}^d \to \mathbb{R}$ as follows:

$$\widetilde{H}_{\alpha}(t) = \prod_{i=1}^{d} \widetilde{h}_{\alpha_i}(t_i).$$

Definition A.7 (Multi-dimensional Hermite function, (Hermite, 1864)). We define function H_{α} : $\mathbb{R}^d \to \mathbb{R}$ as follows:

$$H_{\alpha}(t) = \prod_{i=1}^{d} h_{\alpha_i}(t_i).$$

It is easy to see that $H_{lpha}(t) = e^{-\|t\|_2^2} \cdot \widetilde{H}_{lpha}(t)$

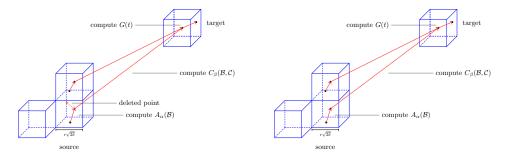


Figure 3: An illustration of deleting a source point from the data structure.

The Hermite expansion of a Gaussian in \mathbb{R}^d is

$$e^{-\|t-s\|_2^2} = \sum_{\alpha \ge 0} \frac{(t-s_0)^{\alpha}}{\alpha!} h_{\alpha}(s-s_0).$$
 (4)

Cramer's inequality generalizes to

Lemma A.8 (Cramer's inequality for multi-dimensional case, (Greengard & Strain, 1991; Alman et al., 2020)). Let $K < (1.09)^d$, then

$$|\widetilde{H}_{\alpha}(t)| \le K \cdot e^{\|t\|_{2}^{2}/2} \cdot 2^{\|\alpha\|_{1}/2} \cdot \sqrt{\alpha!}$$

and

$$|H_{\alpha}(t)| \le K \cdot e^{-\|t\|_{2}^{2}/2} \cdot 2^{\|\alpha\|_{1}/2} \cdot \sqrt{\alpha!}.$$

The Taylor series of H_{α} is

$$H_{\alpha}(t) = \sum_{\beta > 0} \frac{(t - t_0)^{\beta}}{\beta!} (-1)^{\|\beta\|_1} H_{\alpha + \beta}(t_0).$$
 (5)

B OUR RESULT

B.1 Properties of Kernel Function

(Alman et al., 2020) identified the three key properties of kernel functions $K(s,t) = f(\|s-t\|_2)$ which allow sub-quadratic matrix-vector multiplication via the fast Multipole method. Our dynamic algorithm will work for any kernel satisfying these properties.

Definition B.1 (Properties of general kernel function, restatement of Definition 3.3, (Alman et al., 2020)). We define the following properties of the function $f : \mathbb{R} \to \mathbb{R}_+$:

- **P1:** f is non-increasing, i.e., $f(x) \le f(y)$ when $x \ge y$.
- **P2:** f is decreasing fast, i.e., $f(\Theta(\log(1/\varepsilon))) \le \varepsilon$.
- P3: f's Hermite expansion and Taylor expansion are truncateable: the truncation error of the first $(\log^d(1/\varepsilon))$ terms in the Hermite and Taylor expansion of K is at most ε .

Remark B.2. We note that P3 can be replaced with the following more general property:

• **P4:** K : $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is $\{\phi_\alpha\}_{\alpha \in \mathbb{N}^d}$ -expansionable: there exist constants c_α that only depend on $\alpha \in \mathbb{N}^d$ and functions $\phi_\alpha : \mathbb{R}^d \to \mathbb{R}$ such that

$$\mathsf{K}(s,t) = \sum_{\alpha \in \mathbb{N}^d} c_\alpha \cdot (s - s_0)^\alpha \cdot \phi_\alpha(t - s_0)$$

for any $s_0 \in \mathbb{R}^d$ and s close to s_0 . Moreover, the truncation error of the first $(\log^d(1/\varepsilon))$ terms is $\leq \varepsilon$.

972 **Algorithm 1** Informal version of Algorithm 2, 3, 4 and 5. 973 1: data structure DYNAMICFGT ⊳ Theorem B.5 974 2: members 975 3: $A_{\alpha}(\mathcal{B}_k), k \in [N(B)], \alpha \leq p$ 976 4: $C_{\beta}(\mathcal{C}_k), k \in [N(C)], \beta \leq p$ 977 5: $t_{\mathcal{C}_k}, k \in [N(C)]$ 978 $s_{\mathcal{B}_k}, k \in [N(B)]$ 6: 979 7: end members 980 8: **procedure** UPDATE $(s \in \mathbb{R}^d, q \in \mathbb{R})$ ▶ Informal version of Algorithm 4 and 5 981 9. Find the box $s \in \mathcal{B}_k$ 982 Update $A_{\alpha}(\mathcal{B}_k)$ for all $\alpha \leq p$ 10: 983 Find $(2k+1)^d$ nearest target boxes to \mathcal{B}_k , denote by $\mathsf{nb}(\mathcal{B}_k)$ 11: $\triangleright k \leq \log(\|q\|_1/\varepsilon)$ 984 for $C_l \in \mathsf{nb}(\mathcal{B}_k)$ do 12: 985 13: Update $C_{\beta}(\mathcal{C}_l)$ for all $\beta < p$ 986 end for 14: 987 15: end procedure 988 989 16: **procedure** KDE-QUERY $(t \in \mathbb{R}^d)$ ▶ Informal version of Algorithm 3 17: Find the box $t \in \mathcal{C}_k$ 990 $G(t) \leftarrow \sum_{\beta \leq p} C_{\beta}(C_k)((t - t_{C_k})/\sqrt{\delta})^{\beta}$ 991 19: end procedure 992 20: end data structure 993

Remark B.3. Two examples of kernels that satisfy Properties 1 and 2 are:

```
• K(s,t) = e^{-\alpha \|s-t\|^2} for any \alpha \in \mathbb{R}_+.
```

•
$$K(s,t) = e^{-\alpha ||s-t||^{2p}}$$
 for any $p \in \mathbb{N}_+$.

B.2 DYNAMIC FGT

994 995

997

998 999

1000 1001

1002 1003

1004

1007

1008

1009 1010

1011

1012 1013

1014 1015

1016

1017

1018

1020 1021

1022

1023 1024

1025

In this section, we present our main result. We first define the dynamic density-estimation maintenance problem with respect to the Gaussian kernel.

Definition B.4 (Dynamic FGT Problem). We wish to design a data-structure that efficiently supports any sequence of the following operations:

- INIT $(S \subset \mathbb{R}^d, q \in \mathbb{R}^{|S|}, \varepsilon \in \mathbb{R})$ Let N = |S|. The data structure is given N source points $s_1, \dots, s_N \in \mathbb{R}^d$ with their charge $q_1, \dots, q_N \in \mathbb{R}$.
- INSERT $(s \in \mathbb{R}^d, q_s \in \mathbb{R})$ Add the source point s with its charge q_s to the point set S.
- DELETE $(s \in \mathbb{R}^d)$ Delete s (and its charge q_s) from the point set S.
- KDE-QUERY $(t \in \mathbb{R}^d)$ Output \widetilde{G} such that $G(t) \varepsilon \leq \widetilde{G} \leq G(t) + \varepsilon$.

The main result of this paper is a fully-dynamic data structure supporting all of the above operations in *polylogarithmic* time:

Theorem B.5 (Dynamic FGT Data Structure). Given N vectors $S = \{s_1, \dots, s_N\} \subset \mathbb{R}^d$, a number $\delta > 0$, and a vector $q \in \mathbb{R}^N$, let $G : \mathbb{R}^d \to \mathbb{R}$ be defined as $G(t) = \sum_{i=1}^N q_i \cdot \mathsf{K}(s_i, t)$ denote the kernel-density of t with respect to S, where $\mathsf{K}(s_i, t) = f(\|s_i - t\|_2)$ for f satisfying the properties in Definition 3.3. There is a dynamic data structure that supports the following operations:

- INIT() (Algorithm 2) Preprocess in $N \cdot \log^{O(d)}(\|q\|_1/\varepsilon)$ time.
- KDE-QUERY $(t \in \mathbb{R}^d)$ (Algorithm 3) Output \widetilde{G} such that $G(t) \varepsilon \leq \widetilde{G} \leq G(t) + \varepsilon$ in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.

- INSERT $(s \in \mathbb{R}^d, q_s \in \mathbb{R})$ (Algorithm 4) For any source point $s \in \mathbb{R}^d$ and its charge q_s , update the data structure by adding this source point in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.
- DELETE $(s \in \mathbb{R}^d)$ (Algorithm 5) For any source point $s \in \mathbb{R}^d$ and its charge q_s , update the data structure by deleting this source point in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.
- QUERY $(q \in \mathbb{R}^N)$ (Algorithm 3) Output $\widetilde{\mathsf{K}q} \in \mathbb{R}^N$ such that $\|\widetilde{\mathsf{K}q} \mathsf{K}q\|_{\infty} \leq \varepsilon$, where $K \in \mathbb{R}^{N \times N}$ is defined by $K_{i,j} = K(s_i, s_j)$ in $N \log^{O(d)}(\|q\|_1/\varepsilon)$ time.

Remark B.6. The QUERY time can be further reduced when the change of the charge vector q is sparsely changed between two consecutive queries. More specifically, let $\Delta := \|q^{\mathrm{new}} - q\|_0$ be the number of changed coordinates of q. Then, QUERY can be done in $O_d(\Delta)$ time.

ALGORITHMS

1026

1027

1028

1029

1030 1031

1032

1033 1034

1035

1036

1037 1038

1039 1040

1079

Algorithm 2 This algorithm are the init part of Theorem B.5.

```
1041
1042
                1: data structure DYNAMICFGT
                                                                                                                                                              ▶ Theorem B.5
                2: members
1044
                3: A_{\alpha}(\mathcal{B}_k), k \in [N(B)], \alpha \leq p
1045
                4: C_{\beta}(\mathcal{C}_k), k \in [N(C)], \beta \leq p
1046
                5: t_{\mathcal{C}_k}, k \in [N(C)]
                6: s_{\mathcal{B}_k}, k \in [N(B)]
1047
                7: end members
1048
1049
                     procedure INIT(\{s_j \in \mathbb{R}^d, j \in [N]\}, \{q_j \in \mathbb{R}, j \in [N]\})
                9:
1050
                            p \leftarrow \log(\|q\|_1/\varepsilon)
               10:
1051
                            Assign N sources into N(B) boxes \mathcal{B}_1, \dots, \mathcal{B}_{N(B)} of length r\sqrt{\delta}
              11:
1052
                            Divide space into N(C) boxes C_1, \ldots, C_{N(C)} of length r\sqrt{\delta}
              12:
1053
              13:
                            Set center s_{\mathcal{B}_k}, k \in [N(B)] of source boxes \mathcal{B}_1, \dots, \mathcal{B}_{N(B)}
1054
                            Set centers t_{\mathcal{C}_k}, k \in [N(C)] of target boxes \mathcal{C}_1, \ldots, \mathcal{C}_{N(C)}
              14:
1055
              15:
                            for k \in [N(B)] do
                                                                                                                                \triangleright Source box \mathcal{B}_k with center s_{\mathcal{B}_k}
1056
                                                                                                                             \triangleright we say \alpha \leq p if \alpha_i \leq p, \forall i \in [\tilde{d}]
                                  for \alpha \leq p do
              16:
1057
              17:
                                         Compute
                                                              A_{\alpha}(\mathcal{B}_k) \leftarrow \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{s_{\cdot} \in \mathcal{B}_k} q_j \left(\frac{s_j - s_{\mathcal{B}_k}}{\sqrt{\delta}}\right)^{\alpha}
1061
1062
                                                                                                                                           \triangleright Takes p^d N time in total
              18:
                                  end for
1064
              19:
                            end for
1065
                            for k \in [N(C)] do
              20:
                                                                                                                                  \triangleright Target box \mathcal{C}_k with center t_{\mathcal{C}_k}
              21:
                                  Find (2k+1)^d nearest source boxes to C_k, denote by \mathsf{nb}(C_k)
                                                                                                                                                       \triangleright k \leq \log(\|q\|_1/\varepsilon)
1067
                                  for \beta \leq p do
              22:
1068
              23:
                                         Compute
1069
                                              C_{\beta}(\mathcal{C}_k) \leftarrow \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}_l \in \mathsf{nb}(\mathcal{C}_k)} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}_l) \cdot H_{\alpha+\beta} \left( \frac{s_{\mathcal{B}_l} - t_{\mathcal{C}_k}}{\sqrt{\delta}} \right)
1070
1071
1072
                                                                                                           \qquad \qquad \text{Takes } N(C) \cdot (2k+1)^d dp^{d+1} \text{ time in total} \\ > N(C) \leq \min\{(r\sqrt{2\delta})^{-d/2}, M\} 
              24:
1074
              25:
                                  end for
1075
                            end for
              26:
              27: end procedure
              28: end data structure
1078
```

```
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
            Algorithm 3 This algorithm is the query part of Theorem B.5.
1099
             1: data structure DYNAMICFGT
1100
             2: procedure KDE-QUERY(t \in \mathbb{R}^d)
1101
             3:
                       Find the box t \in \mathcal{C}_k
1102
                                                                                                                        \triangleright Takes p^d time in total
             4:
                       Compute
1103
                                                          G_p(t) \leftarrow \sum_{\beta < p} C_{\beta}(\mathcal{C}_k) \cdot \left(\frac{t - t_{\mathcal{C}_k}}{\sqrt{\delta}}\right)^{\beta}
1104
1105
1106
                       return G_p(t)
1107
             5:
             6: end procedure
1108
             7: procedure QUERY(q \in \mathbb{R}^N)
1109
                                                                                                                             \triangleright Takes \widetilde{O}(N) time
                       \begin{split} & \text{Init}(\{s_j, j \in [N]\}, q) \\ & \text{for } j \in [N] \text{ do} \end{split}
             8:
1110
             9:
1111
                                                                                                                              ||u - \mathsf{K}q||_{\infty} \le \varepsilon
            10:
                            u_j \leftarrow \text{LOCAL-QUERY}(s_j)
            11:
                       end for
1113
            12:
                       return u
1114
            13: end procedure
1115
            14: end data structure
1116
1117
```

```
1136
1137
1138
1139
1140
1141
1142
1143
              Algorithm 4 This algorithm is the update part of Theorem B.5.
1144
                1: data structure DYNAMICFGT
                                                                                                                                                        ⊳ Theorem B.5
1145
                2: members
                                                                                           ▶ This is exact same as the members in Algorithm 2.
1146
                          A_{\alpha}(\mathcal{B}_k), k \in [N(B)], \alpha \leq p
                4:
                          C_{\beta}(\mathcal{C}_k), k \in [N(C)], \beta \leq p
1148
                          t_{\mathcal{C}_k}, k \in [N(C)]
                5:
1149
                           s_{\mathcal{B}_k}, k \in [N(B)]
                7: end members
1150
                9: procedure Insert(s \in \mathbb{R}^d, q \in \mathbb{R})
1152
              10:
                           Find the box s \in \mathcal{B}_k
1153
                                                                                                                        \triangleright we say \alpha \leq p if \alpha_i \leq p, \forall i \in [d]
                           for \alpha \leq p do
              11:
1154
                                 Compute
              12:
1155
                                                          A_{\alpha}^{\text{new}}(\mathcal{B}_k) \leftarrow A_{\alpha}(\mathcal{B}_k) + \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} (\frac{s - s_{\mathcal{B}_k}}{\sqrt{\delta}})^{\alpha}
1156
1157
                                                                                                                                                      \triangleright Takes p^d time
1158
1159
              13:
                           Find (2k+1)^d nearest target boxes to \mathcal{B}_k, denote by \mathsf{nb}(\mathcal{B}_k)
                                                                                                                                                 \triangleright k \leq \log(\|q\|_1/\varepsilon)
              14:
1160
                           for C_l \in \mathsf{nb}(\mathcal{B}_k) do
              15:
1161
                                 for \beta \leq p do
              16:
1162
              17:
                                       Compute
1163
1164
                             C_{\beta}^{\text{new}}(\mathcal{C}_l) \leftarrow C_{\beta}(\mathcal{C}_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} \left( A_{\alpha}^{\text{new}}(\mathcal{B}_k) - A_{\alpha}(\mathcal{B}_k) \right) \cdot H_{\alpha+\beta} \left( \frac{s_{\mathcal{B}_k} - t_{\mathcal{C}_l}}{\sqrt{\delta}} \right)
1165
1166
1167
                                                                                                                                      \triangleright Takes (2k+1)^d p^d time
1168
                                 end for
              18:
1169
              19:
                           end for
1170
              20:
                           for \alpha \leq p do
                                                                                                                                                       \triangleright Takes p^d time
                                 A_{\alpha}(\mathcal{B}_k) \leftarrow A_{\alpha}^{\text{new}}(\mathcal{B}_k)
1171
              21:
              22:
                           end for
1172
              23:
                           for C_l \in \mathsf{nb}(\mathcal{B}_k) do
1173
                                 for \beta \leq p do
              24:
1174
                                       C_{\beta}(\mathcal{C}_l) \leftarrow C_{\beta}^{\text{new}}(\mathcal{C}_l)
                                                                                                                                      \triangleright Takes (2k+1)^d p^d time
              25:
1175
              26:
1176
              27:
                           end for
1177
              28: end procedure
1178
              29: end data structure
1179
1180
```

```
1190
1191
1192
1193
1194
1195
1196
              Algorithm 5 This algorithm is another update part of Theorem B.5.
1197
                1: data structure DYNAMICFGT
1198
                2: members
1199
                           A_{\alpha}(\mathcal{B}_k), k \in [N(B)], \alpha \leq p
                3:
1200
                           C_{\beta}(\mathcal{C}_k), k \in [N(C)], \beta \leq p
                4:
1201
                           t_{\mathcal{C}_k}, k \in [N(C)]
                5:
1202
                           s_{\mathcal{B}_k}, k \in [N(B)]
                6:
1203
                7:
                           \delta \in \mathbb{R}
1204
                8: end members
1206
              10: procedure DELETE(s \in \mathbb{R}^d, q \in \mathbb{R})
1207
              11:
                            Find the box s \in \mathcal{B}_k
1208
                            for \alpha \leq p do
                                                                                                                            \triangleright we say \alpha \leq p if \alpha_i \leq p, \forall i \in [d]
              12:
1209
              13:
                                  Compute
                                                          A_{\alpha}^{\text{new}}(\mathcal{B}_k) \leftarrow A_{\alpha}(\mathcal{B}_k) - \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} \left( \frac{s - s_{\mathcal{B}_k}}{\sqrt{\delta}} \right)^{\alpha}
1210
1211
1212
                                                                                                                                                            \triangleright Takes p^d time
1213
                            end for
              14:
1214
                            Find (2k+1)^d nearest target boxes to \mathcal{B}_k, denote by \mathsf{nb}(\mathcal{B}_k)
                                                                                                                                                      \triangleright k \leq \log(\|q\|_1/\varepsilon)
              15:
1215
                            for C_l \in \mathsf{nb}(\mathcal{B}_k) do
              16:
1216
                                  for \beta \leq p do
              17:
1217
                                        Compute
1218
                              C_{\beta}^{\text{new}}(\mathcal{C}_l) \leftarrow C_{\beta}(\mathcal{C}_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \le n} \left( A_{\alpha}^{\text{new}}(\mathcal{B}_k) - A_{\alpha}(\mathcal{B}_k) \right) \cdot H_{\alpha+\beta} \left( \frac{s_{\mathcal{B}_k} - t_{\mathcal{C}_l}}{\sqrt{\delta}} \right)
1219
1221
                                                                                                                                          \triangleright Takes (2k+1)^d p^d time
1222
              19:
                                  end for
1223
                            end for
              20:
1224
                            for \alpha \leq p do
              21:
1225
                                  A_{\alpha}(\bar{\mathcal{B}}_k) \leftarrow A_{\alpha}^{\text{new}}(\mathcal{B}_k)
                                                                                                                                                            \triangleright Takes p^d time
              22:
1226
              23:
                            end for
1227
              24:
                            for C_l \in \mathsf{nb}(\mathcal{B}_k) do
1228
              25:
                                  for \beta \leq p do
                                         C_{\beta}(\mathcal{C}_l) \leftarrow C_{\beta}^{\text{new}}(\mathcal{C}_l)
                                                                                                                                           \triangleright Takes (2k+1)^d p^d time
1229
              26:
1230
              27:
                                  end for
1231
              28:
                            end for
1232
              29: end procedure
              30: end data structure
1233
1234
```

D ANALYSIS

Proof of Theorem B.5. Correctness of KDE-QUERY. Algorithm 2 accumulates all sources into truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via Lemma E.5, thus it can approximate the function G(t) by

$$G(t) = \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2/\delta}$$
$$= \sum_{\beta \le n} C_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}}\right)^{\beta} + \operatorname{Err}_T(p) + \operatorname{Err}_H(p)$$

where $|\operatorname{Err}_H(p)| + |\operatorname{Err}_T(p)| \le Q \cdot \varepsilon$ by $p = \log(\|q\|_1/\varepsilon)$,

$$C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha < p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

and the coefficients $A_{\alpha}(\mathcal{B})$ are defined as Eq. (3).

Running time of KDE-QUERY. In line 17, it takes $O(p^dN)$ time to compute all the Hermite expansions, i.e., to compute the coefficients $A_{\alpha}(\mathcal{B})$ for all $\alpha \leq p$ and all sources boxes \mathcal{B} .

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^d coefficients of C_{β} is only $O(dp^{d+1})$ for each box \mathcal{B} in the range. Thus, we know for each target box \mathcal{C} , the running time is $O((2k+1)^d dp^{d+1})$, thus the total time in line 23 is

$$O(N(C) \cdot (2k+1)^d dp^{d+1})$$

Finally we need to evaluate the appropriate Taylor series for each target t_i , which can be done in $O(p^d M)$ time in line 4. Putting it all together, Algorithm 2 takes time

$$O((2k+1)^{d} dp^{d+1} N(C)) + O(p^{d} N) + O(p^{d} M)$$

= $O((M+N) \log^{O(d)} (\|q\|_{1}/\varepsilon))$.

Correctness of UPDATE. Algorithm 4 and Algorithm 5 maintains C_{β} as follows,

$$C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \le n} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

where $A_{\alpha}(\mathcal{B})$ is given by

$$A_{\alpha}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha}.$$

Therefore, the correctness follows similarly from Algorithm 2.

Running time of UPDATE. In line 12, it takes $O(p^d)$ time to update all the Hermite expansions, i.e. to update the coefficients $A_{\alpha}(\mathcal{B})$ for all $\alpha \leq p$ and all sources boxes \mathcal{B} .

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^d coefficients of C_β is only $O(dp^{d+1})$ for each box $C_l \in \mathsf{nb}(\mathcal{B}_k)$. Thus, thus the total time in line 17 is

$$O((2k+1)^d dp^{d+1}).$$

Correctness of QUERY. To compute Kq for a given $q \in \mathbb{R}^d$, notice that for any $i \in [N]$,

$$(\mathsf{K}q)_i = \sum_{j=1}^N q_j \cdot e^{-\|s_i - s_j\|_2^2/\delta}$$

$$=G(s_i).$$

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t) immediately gives the ℓ_{∞} -error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the query, which takes $\widetilde{O}_d(N)$ time. Then, we perform N KDE-Query, each takes $\widetilde{O}_d(1)$. Hence, the total running time is $\widetilde{O}_d(N)$.

We note that when the charge vector q is slowly changing, i.e., $\Delta := \|q^{\text{new}} - q\|_0 \le o(N)$, we can UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes $\widetilde{O}_d(1)$ time, it will take $\widetilde{O}_d(\Delta)$ time to update the data structure.

Then, consider computing K q^{new} in this setting. We note that each source box can only affect $\widetilde{O}_d(1)$ other target boxes, where the target vectors are just the source vectors in this setting. Hence, there are at most $\widetilde{O}_d(\Delta)$ boxes whose C_β is changed. Let $\mathcal S$ denote the indices of source vectors in these boxes. Since

$$G(s_i) = \sum_{\beta \le p} C_{\beta}(\mathcal{B}_k) \cdot \left(\frac{s_i - s_{\mathcal{B}_k}}{\sqrt{\delta}}\right)^{\beta},$$

we get that there are at most $\widetilde{O}_d(\Delta)$ coordinates of $\mathsf{K}q^{\mathrm{new}}$ that are significantly changed from $\mathsf{K}q$, and we only need to re-compute $G(s_i)$ for $i \in \mathcal{S}$. If we assume that the source vectors are well-separated, i.e., $|\mathcal{S}| = O(\delta)$, the total computational cost is $\widetilde{O}_d(\Delta)$.

Therefore, when the change of the charge vector q is sparse, Kq can be computed in sublinear time.

E ERROR ESTIMATION

This section provides several technical lemma that are used in Appendix D. We first give a definition. **Definition E.1** (Hermite expansion and coefficients). Let \mathcal{B} denote a box with center $s_{\mathcal{B}} \in \mathbb{R}^d$ and side length $r\sqrt{2\delta}$ with r<1. If source s_j is in box \mathcal{B} , we will simply denote as $j\in\mathcal{B}$. Then the Gaussian evaluation from the sources in box \mathcal{B} is,

$$G(t) = \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2/\delta}.$$

The Hermite expansion of G(t) is

$$G(t) = \sum_{\alpha \ge 0} A_{\alpha} \cdot H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right), \tag{6}$$

where the coefficients A_{α} are defined by

$$A_{\alpha} = \frac{1}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha} \tag{7}$$

The rest of this section will present a batch of Lemmas that bound the error of the function truncated at certain degree of Taylor and Hermite expansion.

We first upper bound the truncation error of Hermite expansion.

Lemma E.2 (Truncated Hermite expansion). Let p denote an integer, let $\operatorname{Err}_H(p)$ denote the error after truncating the series G(t) (as defined in Eq. (6)) after p^d terms, i.e.,

$$\operatorname{Err}_{H}(p) = \sum_{\alpha > p} A_{\alpha} \cdot H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right). \tag{8}$$

Then we have

$$|\operatorname{Err}_{H}(p)| \leq \frac{\sum_{j \in \mathcal{B}} |q_{j}|}{(1-r)^{d}} \sum_{k=0}^{d-1} {d \choose k} (1-r^{p})^{k} \left(\frac{r^{p}}{\sqrt{p!}}\right)^{d-k}$$

where $r \leq \frac{1}{2}$.

Proof. Using Eq. (4) to expand each Gaussian (see Definition E.1) in the

$$G(t) = \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2/\delta}$$

into a Hermite series about $s_{\mathcal{B}}$:

$$\sum_{j \in \mathcal{B}} q_j \sum_{\alpha > 0} \frac{1}{\alpha!} \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha} \cdot H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right)$$

and swap the summation over α and j to obtain the desired form:

$$\sum_{\alpha \geq 0} \left(\frac{1}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{s_j - s_{\mathcal{B}}}{\sqrt{\delta}} \right)^{\alpha} \right) H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right) = \sum_{\alpha \geq 0} A_{\alpha} H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right).$$

Here, the truncation error bound is due to Lemma A.8 and the standard equation for the tail of a geometric series.

To formally bound the truncation error, we first rewrite the Hermit expansion as follows

$$e^{-\frac{\|t-s_j\|_2^2}{\delta}} = \prod_{i=1}^d \left(\sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) + \sum_{n_i=p}^{\infty} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \right)$$
(9)

Notice from Cramer's inequality (Lemma A.5),

$$h_{n_i}\left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}}\right) \le \sqrt{n!} \cdot 2^{n/2} \cdot e^{-(t_i - (s_{\mathcal{B}})_i)^2/2}.$$

Therefore we can use properties of the geometric series (notice $\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \le r/\sqrt{2}$) to bound each term in the product as follows

$$\sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \le \frac{1 - r^p}{1 - r}, \tag{10}$$

and

$$\sum_{n_i=n}^{\infty} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_{\mathcal{B}})_i}{\sqrt{\delta}} \right) \le \frac{1}{\sqrt{p!}} \cdot \frac{r^p}{1 - r}. \tag{11}$$

Now we come back to bound Eq. (8) as follows

$$\operatorname{Err}_{H}(p) = \sum_{j \in \mathcal{B}} q_{j} \sum_{\alpha \geq p} \frac{1}{\alpha!} \cdot \left(\frac{s_{j} - s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha} \cdot H_{\alpha}\left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}}\right)$$

$$\leq \left(\sum_{j \in \mathcal{B}} |q_{j}|\right) \left(e^{-\frac{\|t - s_{j}\|_{2}^{2}}{\delta}} - \prod_{j=1}^{d} \left(\sum_{n_{i}=1}^{p-1} \frac{1}{n_{i}!} \left(\frac{(s_{j})_{i} - (s_{\mathcal{B}})_{i}}{\sqrt{\delta}}\right)^{n_{i}} h_{n_{i}}\left(\frac{t_{i} - (s_{\mathcal{B}})_{i}}{\sqrt{\delta}}\right)\right)\right)$$

$$\leq \frac{\sum_{j \in \mathcal{B}} |q_{j}|}{(1 - r)^{d}} \sum_{j=1}^{d-1} {d \choose k} (1 - r^{p})^{k} \left(\frac{r^{p}}{\sqrt{p!}}\right)^{d-k}$$

where the first step comes from definition, the second step comes from Eq. (9) and the last step comes from Eq. (10) and Eq. (11) and binomial expansion.

Remark E.3. By Stirling's formula, it is easy to see that when we take $p = \log(\|q\|_1/\varepsilon)$, this error will be bounded by $\|q\|_1 \cdot \varepsilon$.

The Lemma E.4 shows how to convert a Hermite expansion at location $s_{\mathcal{B}}$ into a Taylor expansion at location $t_{\mathcal{C}}$. Intuitively, the Taylor series converges rapidly in the box (that has side length $r\sqrt{2\delta}$ center around $t_{\mathcal{C}}$, where $r \in (0,1)$).

Lemma E.4 (Hermite expansion with truncated Taylor expansion). Suppose the Hermite expansion of G(t) is given by Eq. (6), i.e.,

$$G(t) = \sum_{\alpha > 0} A_{\alpha} \cdot H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right). \tag{12}$$

Then, the Taylor expansion of G(t) at an arbitrary point t_0 can be written as:

$$G(t) = \sum_{\beta > 0} B_{\beta} \left(\frac{t - t_0}{\sqrt{\delta}} \right)^{\beta}. \tag{13}$$

where the coefficients B_{β} are defined as

$$B_{\beta} = \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\alpha \geq 0} (-1)^{\|\alpha\|_{1}} A_{\alpha} \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{0}}{\sqrt{\delta}} \right). \tag{14}$$

Let $\operatorname{Err}_T(p)$ denote the error by truncating the Taylor expansion after p^d terms, in the box C (that has center at t_C and side length $r\sqrt{2\delta}$), i.e.,

$$\operatorname{Err}_T(p) = \sum_{\beta > p} B_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta}$$

Then

$$|\operatorname{Err}_T(p)| \le \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} {d \choose k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}}\right)^{d-k}$$

where r < 1/2.

Proof. Each Hermite function in Eq. (12) can be expanded into a Taylor series by means of Eq. (5). The expansion in Eq. (13) is due to swapping the order of summation.

Next, we will bound the truncation error. Using Eq. (7) for A_{α} , we can rewrite B_{β} :

$$B_{\beta} = \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\alpha \geq 0} (-1)^{\|\alpha\|_{1}} A_{\alpha} H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}}\right)$$

$$= \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\alpha \geq 0} \left(\frac{(-1)^{\|\alpha\|_{1}}}{\alpha!} \sum_{j \in \mathcal{B}} q_{j} \left(\frac{s_{j} - s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha}\right) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}}\right)$$

$$= \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{j \in \mathcal{B}} q_{j} \sum_{\alpha \geq 0} \frac{(-1)^{\|\alpha\|_{1}}}{\alpha!} \left(\frac{s_{j} - s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha} \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}}\right)$$

By Eq. (5), the inner sum is the Taylor expansion of $H_{\beta}((s_j - t_{\mathcal{C}})/\sqrt{\delta})$. Thus

$$B_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{i \in \mathcal{B}} q_j \cdot H_{\beta} \left(\frac{s_j - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

and Cramer's inequality implies

$$|B_{\beta}| \le \frac{1}{\beta!} K \cdot Q_B 2^{\|\beta\|_1/2} \sqrt{\beta!} = K Q_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}}.$$

To formally bound the truncation error, we have

$$\operatorname{Err}_T(p) = \sum_{\beta > p} B_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta}$$

$$\leq KQ_B \left(\prod_{i=1}^d \left(\sum_{n_i=0}^\infty \frac{1}{\sqrt{n_i!}} 2^{n_i/2} \left(\frac{t - t_{\mathcal{C}}}{\delta} \right)^{n_i} \right) - \prod_{i=1}^d \left(\sum_{n_i=0}^{p-1} \frac{1}{\sqrt{n_i!}} 2^{n_i/2} \left(\frac{t - t_{\mathcal{C}}}{\delta} \right)^{n_i} \right) \right)$$

$$\leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1 - r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1 - r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}$$

where the second step uses $|B_{\beta}| \leq KQ_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}}$ and the rest are similar to those in Lemma E.2. \square

For designing our algorithm, we would like to make a variant of Lemma E.4 that combines the truncations of Hermite expansion and Taylor expansion. More specifically, we first truncate the Taylor expansion of $G_p(t)$, and then truncate the Hermite expansion in Eq. (14) for the coefficients.

Lemma E.5 (Truncated Hermite expansion with truncated Taylor expansion). Let G(t) be defined as Def E.1. For an integer p, let $G_p(t)$ denote the Hermite expansion of G(t) truncated at p, i.e.,

$$G_p(t) = \sum_{\alpha \le p} A_{\alpha} H_{\alpha} \left(\frac{t - s_{\mathcal{B}}}{\sqrt{\delta}} \right).$$

The Taylor expansion of function $G_p(t)$ at an arbitrary point t_0 can be written as:

$$G_p(t) = \sum_{\beta > 0} C_{\beta} \cdot \left(\frac{t - t_0}{\sqrt{\delta}}\right)^{\beta},$$

where the coefficients C_{β} are defined as

$$C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \le n} (-1)^{\|\alpha\|_1} A_{\alpha} \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}} \right). \tag{15}$$

Let $\operatorname{Err}_T(p)$ denote the error in truncating the Taylor series after p^d terms, in the box \mathcal{C} (that has center $t_{\mathcal{C}}$ and side length $r\sqrt{2\delta}$), i.e.,

$$\operatorname{Err}_T(p) = \sum_{\beta > p} C_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta}.$$

Then, we have

$$|\operatorname{Err}_{T}(p)| \leq \frac{2\sum_{j \in \mathcal{B}} |q_{j}|}{(1-r)^{d}} \sum_{k=0}^{d-1} {d \choose k} (1-r^{p})^{k} \left(\frac{r^{p}}{\sqrt{p!}}\right)^{d-k}$$

where $r \leq 1/2$.

Proof. We can write C_{β} in the following way:

$$C_{\beta} = \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{j \in \mathcal{B}} q_{j} \sum_{\alpha \leq p} \frac{(-1)^{\|\alpha\|_{1}}}{\alpha!} \left(\frac{s_{j} - s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha} \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}}\right)$$

$$= \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{j \in \mathcal{B}} q_{j} \left(\sum_{\alpha \geq 0} - \sum_{\alpha > p}\right) \frac{(-1)^{\|\alpha\|_{1}}}{\alpha!} \left(\frac{s_{j} - s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha} \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}}\right)$$

$$= B_{\beta} - \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{j \in \mathcal{B}} q_{j} \sum_{\alpha > p} \frac{(-1)^{\|\alpha\|_{1}}}{\alpha!} \left(\frac{s_{j} - s_{\mathcal{B}}}{\sqrt{\delta}}\right)^{\alpha} \cdot H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_{\mathcal{C}}}{\sqrt{\delta}}\right)$$

$$= B_{\beta} + (C_{\beta} - B_{\beta})$$

Next, we have

$$|\operatorname{Err}_{T}(p)| \leq \left| \sum_{\beta \geq p} B_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta} \right| + \left| \sum_{\beta \geq p} (C_{\beta} - B_{\beta}) \cdot \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta} \right|$$
 (16)

Using Lemma E.4, we can upper bound the first term in the Eq. (16) by,

$$\left| \sum_{\beta \geq p} B_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta} \right| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1 - r)^d} \sum_{k=0}^{d-1} {d \choose k} (1 - r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}.$$

Since we can similarly bound $C_{\beta} - B_{\beta}$ as follows

$$|C_{\beta} - B_{\beta}| \le \frac{1}{\beta!} K \cdot Q_B 2^{\|\beta\|_1/2} \sqrt{\beta!} \le K Q_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}},$$

we have the same bound for the second term

$$\left| \sum_{\beta \geq p} (C_{\beta} - B_{\beta}) \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta} \right| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1 - r)^d} \sum_{k=0}^{d-1} {d \choose k} (1 - r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}.$$

The proof of the following Lemma is almost identical, but it directly bounds the truncation error of Taylor expansion of the Gaussian kernel. We omit the proof here.

Lemma E.6 (Truncated Taylor expansion). Let $G_{s_i}(t) : \mathbb{R}^d \to \mathbb{R}$ be defined as

$$G_{s_j}(t) = q_j \cdot e^{-\|t - s_j\|_2^2/\delta}.$$

The Taylor expansion of $G_{s_i}(t)$ at $t_{\mathcal{C}} \in \mathbb{R}^d$ is:

$$G_{s_j}(t) = \sum_{\beta > 0} \mathcal{B}_{\beta} \left(\frac{t - t_{\mathcal{C}}}{\sqrt{\delta}} \right)^{\beta},$$

where the coefficients B_{β} is defined as

$$B_{\beta} = q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_{\beta} \left(\frac{s_j - t_{\mathcal{C}}}{\sqrt{\delta}} \right)$$

and the absolute value of the error (truncation after p^d terms) can be upper bounded as

$$|\operatorname{Err}_T(p)| \le \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} {d \choose k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}}\right)^{d-k}$$

where $r \leq 1/2$.

F LOW DIMENSION SUBSPACE FGT

In this section, we consider FGT for data in a lower dimensional subspace of \mathbb{R}^d . The problem is formally defined below:

Problem F.1 (Dynamic FGT on a low dimensional set). Let W be a subspace of \mathbb{R}^d with dimension $\dim(S) = w \ll d$. Given N source points $s_1, \ldots, s_N \in W$ with charges q_1, \ldots, q_N , and M target points $t_1, \ldots, t_M \in W$, find a dynamic data structure that supports the following operations:

- INSERT/DELETE (s_i, q_i) Insert or Delete a source point $s_i \in \mathbb{R}^d$ along with its "charge" $q_i \in \mathbb{R}$, in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- DENSITY-ESTIMATION $(t \in \mathbb{R}^d)$ For any point $t \in \mathbb{R}^d$, output the kernel density of t with respect to the sources, i.e., output \widetilde{G} such that $G(t) \varepsilon \leq \widetilde{G} \leq G(t) + \varepsilon$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- Query $(q \in \mathbb{R}^N)$ Given an arbitrary query vector $q \in \mathbb{R}^N$, output $\widetilde{\mathsf{K}q}$ in $N \cdot \log^{O(w)}(\|q\|/\varepsilon)$ time.

```
Algorithm 6 Initialization of low-dim FGT.
1567
                1: data structure DYNAMICFGT
1568
                2: members
1569
                3: A_{\alpha}(\mathcal{B}_i), i \in [N(B)], \alpha \leq p
1570
                4: C_{\beta}(\mathcal{C}_i), i \in [N(C)], \beta \leq p
1571
                5: t_{\mathcal{C}_i}, i \in [N(C)]
1572
                6: s_{\mathcal{B}_i}, i \in [N(B)]
                7: end members
1574
                9: procedure INIT(\{s_j \in \mathbb{R}^d, j \in [N]\}, \{q_j \in \mathbb{R}, j \in [N]\})
1575
               10:
1576
                            Compute SVD: (U_0, \Sigma, V_0) \leftarrow \text{SVD}((s_1, \dots, s_N, t_1, \dots, t_M))
               11:
1578
                      U_0 \Sigma V_0^\top = (s_1, \dots, s_N, t_1, \dots, t_M), U_0 \in \mathbb{R}^{d \times d}, \Sigma \in \mathbb{R}^{d \times (N+M)}, V_0 \in \mathbb{R}^{(N+M) \times (N+M)} \\ \text{Let } B \leftarrow U_0 \Sigma_{:,1:w} \in \mathbb{R}^{d \times w} \\ \rhd \Sigma_{::1:w} \text{ denotes the first } w \text{ columns}
                                                                                                                    \triangleright \Sigma_{:,1:w} denotes the first w columns of \Sigma
               13:
1580
                            Compute the spectral decomposition U\Lambda U^{\top} = B^{\top}B, and let P \leftarrow \Lambda^{-1/2}U^{-1}B^{\top} \in \mathbb{R}^{w \times d}
               14:
1581
               15:
                            for i \in [N] and j \in [M] do
1582
                                    x_i \leftarrow \mathsf{P} s_i, y_i \leftarrow \mathsf{P} t_i
               16:
               17:
                            Assign x_1, \ldots, x_N into N(B) boxes \mathcal{B}_1, \ldots, \mathcal{B}_{N(B)} of length r\sqrt{\delta}
               18:
1585
                            Divide \mathbb{R}^w into N(C) boxes \mathcal{C}_1, \dots, \mathcal{C}_{N(C)} of length r\sqrt{\delta}
               19:
               20:
                            Set center x_{\mathcal{B}_i}, i \in [N(B)] of source boxes \mathcal{B}_1, \dots, \mathcal{B}_{N(B)}
1587
               21:
                            Set centers y_{\mathcal{C}_j}, j \in [N(C)] of target boxes \mathcal{C}_1, \dots, \mathcal{C}_{N(C)}
1588
               22:
                            for l \in [N(B)] do
                                                                                                                                     \triangleright Source box \mathcal{B}_l with center s_{\mathcal{B}_l}
               23:
                                   for \alpha \leq p do
                                                                                                                               \triangleright we say \alpha \leq p if \alpha_i \leq p, \forall i \in [w]
               24:
                                          Compute
1591
                                                                 A_{\alpha}(\mathcal{B}_{l}) \leftarrow \frac{(-1)^{\|\alpha\|_{1}}}{\alpha!} \sum_{x_{i} \in \mathcal{B}_{l}} q_{j} \left(\frac{x_{j} - x_{\mathcal{B}_{l}}}{\sqrt{\delta}}\right)^{\alpha}
1592
1593
1594
                                                                                                                                              \triangleright Takes p^w N time in total
               25:
                                   end for
1596
                            end for
               26:
1597
                            for l \in [N(C)] do
                                                                                                                                       \triangleright Target box \mathcal{C}_l with center t_{\mathcal{C}_l}
               27:
1598
                                   Find (2k+1)^w nearest source boxes to C_l, denote by \mathsf{nb}(C_l)
                                                                                                                                                            \triangleright k \leq \log(\|q\|_1/\varepsilon)
               28:
1599
                                   for \beta \leq p do
               29:
                                          Compute
               30:
                                                  C_{\beta}(\mathcal{C}_{l}) \leftarrow \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\mathcal{B} \subset \mathcal{A}(\mathcal{C}_{l})} \sum_{\alpha \leq \pi} A_{\alpha}(\mathcal{B}) \cdot H_{\alpha+\beta} \left( \frac{x_{\mathcal{B}} - y_{\mathcal{C}_{l}}}{\sqrt{\delta}} \right)
1604

ightharpoonup Takes N(C) \cdot (2k+1)^w dp^{w+1} time in total
                                                                                                                                \triangleright N(C) < \min\{(r\sqrt{2\delta})^{-d/2}, M\}
               31:
               32:
                                   end for
1608
               33:
                            end for
               34: end procedure
1609
               35: end data structure
1610
1611
```

We generalize our dynamic data structure to solve Problem F.1, which is stated in the following theorem. The computational cost of each update or query depends on the intrinsic dimension w instead of d.

1612

1614

1615

1616

1617

1618

1619

Theorem F.2 (Low Rank Dynamic FGT Data Structure, formal version of Theorem 1.1). Let W be a subspace of \mathbb{R}^d with dimension $\dim(S) = w \ll d$. Given N source points $s_1, \ldots, s_N \in W$ with charges q_1, \ldots, q_N , and M target points $t_1, \ldots, t_M \in W$, a number $\delta > 0$, and a vector $q \in \mathbb{R}^N$, let $G : \mathbb{R}^d \to \mathbb{R}$ be defined as $G(t) = \sum_{i=1}^N q_i \cdot \mathsf{K}(s_i, t)$ denote the kernel-density of t with respect

Algorithm 7 This algorithm is the query part of Theorem F.2.

```
1: data structure DYNAMICFGT
2: procedure KDE-QUERY(t \in \mathbb{R}^d)
      Find the box Pt \in C_l
```

1624 4: Compute 1625

1620

1621

1623

1630

1634

1635

1638 1639 1640

1641

1642 1643

1644

1645 1646

1647

1648

1651

1654

1655 1656

1657 1658

1659

1661

1662

1663 1664

1665 1666

1668

1672

1673

 \triangleright Takes p^w time in total

 \triangleright Takes $\widetilde{O}(N)$ time

 $||u - \mathsf{K}q||_{\infty} \le \varepsilon$

$$G_p(t) \leftarrow \sum_{\beta \leq p} C_{\beta}(\mathcal{C}_l) \cdot \left(\frac{\mathsf{P}(t - t_{\mathcal{C}_l})}{\sqrt{\delta}}\right)^{\beta}$$

```
return G_p(t)
6: end procedure
```

7: **procedure** QUERY $(q \in \mathbb{R}^N)$

8: $INIT(\{s_j, j \in [N]\}, q)$ 9:

for $j \in [N]$ do 10:

 $u_i \leftarrow \text{Local-Query}(s_i)$ 11:

return u

13: end procedure

14: end data structure

to S, where $K(s_i,t)=f(\|s_i-t\|_2)$ for f satisfying the properties in Definition 3.3. There is a dynamic data structure that supports the following operations:

- INIT() (Algorithm 6) Preprocess in $N \cdot \log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- KDE-QUERY $(t \in \mathbb{R}^d)$ (Algorithm 7) Output \widetilde{G} such that $G(t) \varepsilon \leq \widetilde{G} \leq G(t) + \varepsilon$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- INSERT $(s \in \mathbb{R}^d, q_s \in \mathbb{R})$ (Algorithm 8) For any source point $s \in \mathbb{R}^d$ and its charge q_s , update the data structure by adding this source point in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- DELETE $(s \in \mathbb{R}^d)$ (Algorithm 9) For any source point $s \in \mathbb{R}^d$ and its charge q_s , update the data structure by deleting this source point in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- QUERY $(q \in \mathbb{R}^N)$ (Algorithm 7) Output $\widetilde{\mathsf{K}q} \in \mathbb{R}^N$ such that $\|\widetilde{\mathsf{K}q} \mathsf{K}q\|_{\infty} \leq \varepsilon$, where $K \in \mathbb{R}^{N \times N}$ is defined by $K_{i,j} = K(s_i, s_j)$ in $N \log^{O(w)}(\|q\|_1/\varepsilon)$ time.

PROJECTION LEMMA

Lemma F.3 (Hermite projection lemma in low-dimensional space, formal version of Lemma 3.5). Given a subspace $B \in \mathbb{R}^{d \times w}$. Let $B^{\top}B = U\Lambda U^{\top} \in \mathbb{R}^{w \times \overline{w}}$ denote the spectral decomposition where $U \in \mathbb{R}^{w \times w}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{w \times w}$.

We define $P = \Lambda^{-1/2}U^{-1}B^{\top} \in \mathbb{R}^{w \times d}$. Then we have for any $t, s \in \mathbb{R}^d$ from subspace B, the following equation holds

$$e^{-\|t-s\|_2^2/\delta} = \sum_{\alpha \ge 0} \frac{(\sqrt{1/\delta}\mathsf{P}(t-s))^{\alpha}}{\alpha!} h_{\alpha}(\sqrt{1/\delta}\mathsf{P}(t-s)).$$

Proof. First, we know that

$$\begin{split} \mathsf{P}t &= \Lambda^{-1/2} U^{-1} B^\top t \\ &= \Lambda^{-1/2} U^{-1} B^\top B x \\ &= \Lambda^{-1/2} U^{-1} U \Lambda U^\top x \\ &= \Lambda^{-1/2} \Lambda U^\top x \end{split}$$

```
1674
              Algorithm 8 This algorithm is the update part of Theorem F.2.
1675
                1: data structure DYNAMICFGT
1676
                2: members
                                                                                           ▶ This is exact same as the members in Algorithm 6.
1677
                3:
                           A_{\alpha}(\mathcal{B}_i), i \in [N(B)], \alpha \leq p
1678
                           C_{\beta}(C_i), i \in [N(C)], \beta \leq p
1679
                5:
                           t_{\mathcal{C}_i}, i \in [N(C)]
                           s_{\mathcal{B}_i}, i \in [N(B)]
                6:
1681
                7: end members
1682
                9: procedure Insert(s \in \mathbb{R}^d, q \in \mathbb{R})
1683
                           Find the box s \in \mathcal{B}
              10:
1684
                           for \alpha \leq p do
                                                                                                                        \triangleright we say \alpha \leq p if \alpha_i \leq p, \forall i \in [w]
              11:
1685
              12:
                                 Compute
1686
                                                           A_{\alpha}^{\text{new}}(\mathcal{B}) \leftarrow A_{\alpha}(\mathcal{B}) + \frac{(-1)^{\|\alpha\|_1}q}{\alpha!} (\frac{\mathsf{P}(s-s_{\mathcal{B}})}{\sqrt{\delta}})^{\alpha}
1687
1688
                                                                                                                                                      \triangleright Takes p^w time
1689
              13:
                           end for
                           Find (2k+1)^w nearest target boxes to \mathcal{B}, denote by \mathsf{nb}(\mathcal{B})
              14:
                                                                                                                                                  \triangleright k \leq \log(\|q\|_1/\varepsilon)
                           for C_l \in \mathsf{nb}(\mathcal{B}) do
              15:
                                 for \beta \leq p do
              16:
1693
                                       Compute
              17:
1694
1695
                             C_{\beta}^{\text{new}}(\mathcal{C}_{l}) \leftarrow C_{\beta}(\mathcal{C}_{l}) + \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\alpha \leq p} \left( A_{\alpha}^{\text{new}}(\mathcal{B}) - A_{\alpha}(\mathcal{B}) \right) \cdot H_{\alpha+\beta} \left( \frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}_{l}})}{\sqrt{\delta}} \right)
1696
1698
                                                                                                                                     \triangleright Takes (2k+1)^w p^w time
              18:
                                 end for
1700
              19:
                           end for
                           \text{for }\alpha \leq p \text{ do}
              20:
1701
                                 A_{\alpha}(\mathcal{B}) \leftarrow A_{\alpha}^{\text{new}}(\mathcal{B})
                                                                                                                                                       \triangleright Takes p^w time
              21:
1702
              22:
                           end for
1703
                           for C_l \in \mathsf{nb}(\mathcal{B}) do
              23:
1704
              24:
                                 for \beta \leq p do
1705
                                       C_{\beta}(\mathcal{C}_l) \leftarrow C_{\beta}^{\text{new}}(\mathcal{C}_l)
                                                                                                                                     \triangleright Takes (2k+1)^w p^w time
              25:
                                 end for
              26:
1707
              27:
                           end for
1708
              28: end procedure
1709
              29: end data structure
1710
1711
                                                                                = \Lambda^{1/2} U^{\top} x
1712
                                                                                                                                                                           (17)
1713
              where the first step follows from P = \Lambda^{-1/2}U^{-1}B^{\top}, the second step follows from t = Bx (since t
1714
              is from low dimension, then there is always a vector x), the third step follows B^{T}B = U\Lambda U^{T}, the
1715
              forth step follows U^{-1}U = I, and the last step follows from \Lambda^{-1/2}\Lambda = \Lambda^{1/2}.
1716
              Compute the spectral decomposition B^{\top}B = U\Lambda U^{\top}, U \in \mathbb{R}^{w \times w} is the orthonormal basis, \Lambda =
1717
              \operatorname{diag}(\lambda_1,\ldots,\lambda_k)\in\mathbb{R}^{w\times w}. Let u_i\in\mathbb{R}^w denote the vector that is the transpose of i-th row U\in
1718
              \mathbb{R}^{w \times w}. Then we have
1719
                               e^{-\|t-s\|_2^2/\delta} = e^{-(x-y)^\top B^\top B(x-y)/\delta}
1720
                                                   -\rho^{-(x-y)^{\top}}U\Lambda U^{\top}(x-y)/\delta
1722
                                                  = \prod_{i=1}^{w} \left( \sum_{n=1}^{\infty} \frac{1}{n!} (\sqrt{\lambda_i/\delta} \cdot u_i^{\top} (x-y))^n \cdot h_n (\sqrt{\lambda_i/\delta} \cdot u_i^{\top} (x-y)) \right)
1723
1724
                                                  = \sum_{\alpha > 0} \frac{\left(\sqrt{1/\delta}\Lambda^{1/2}U^{\top}(x-y)\right)^{\alpha}}{\alpha!} \cdot h_{\alpha}\left(\sqrt{1/\delta}\Lambda^{1/2}U^{\top}(x-y)\right)
1726
1727
```

1728 **Algorithm 9** This algorithm is another update part of Theorem F.2. 1729 1: data structure DYNAMICFGT 1730 2: members 1731 3: $A_{\alpha}(\mathcal{B}_i), i \in [N(B)], \alpha \leq p$ 1732 $C_{\beta}(C_i), i \in [N(C)], \beta \le p$ 1733 5: $t_{\mathcal{C}_i}, i \in [N(C)]$ 1734 $s_{\mathcal{B}_i}, i \in [N(B)]$ 6: 1735 7: $\delta \in \mathbb{R}$ 8: end members 1736 1737 10: **procedure** DELETE $(s \in \mathbb{R}^d, q \in \mathbb{R})$ 1738 Find the box $s \in \mathcal{B}$ 1739 12: for $\alpha \leq p$ do \triangleright we say $\alpha < p$ if $\alpha_i < p, \forall i \in [w]$ 1740 Compute 13: 1741 $A_{\alpha}^{\text{new}}(\mathcal{B}) \leftarrow A_{\alpha}(\mathcal{B}) - \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} \left(\frac{\mathsf{P}(s - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^{\alpha}$ 1742 1743 \triangleright Takes p^w time 1744 end for 14: 1745 Find $(2k+1)^w$ nearest target boxes to \mathcal{B} , denote by $\mathsf{nb}(\mathcal{B})$ $\triangleright k \le \log(\|q\|_1/\varepsilon)$ 15: 1746 for $C_l \in \mathsf{nb}(\mathcal{B})$ do 1747 17: for $\beta \leq p$ do 1748 Compute 18: 1749 $C_{\beta}^{\text{new}}(\mathcal{C}_{l}) \leftarrow C_{\beta}(\mathcal{C}_{l}) + \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\alpha \leq n} \left(A_{\alpha}^{\text{new}}(\mathcal{B}) - A_{\alpha}(\mathcal{B}) \right) \cdot H_{\alpha+\beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}_{l}})}{\sqrt{\delta}} \right)$ 1750 1751 1752 1753 \triangleright Takes $(2k+1)^w p^w$ time 1754 end for 19: 20: end for 1755 $\text{for }\alpha \leq p \text{ do}$ 1756 21: $A_{\alpha}(\mathcal{B}) \leftarrow A_{\alpha}^{\text{new}}(\mathcal{B})$ \triangleright Takes p^w time 22: 1757 23: end for 1758 for $C_l \in \mathsf{nb}(\mathcal{B})$ do 24: 1759 $\begin{array}{c} \mathbf{for} \ \beta \leq p \ \mathbf{do} \\ C_{\beta}(\mathcal{C}_l) \leftarrow C_{\beta}^{\mathrm{new}}(\mathcal{C}_l) \end{array}$ 25: \triangleright Takes $(2k+1)^w p^w$ time 26: 1761 27: end for 1762 end for 1763 29: end procedure 1764 30: end data structure 1765 1766 1767 1768

$$= \sum_{\alpha \geq 0} \frac{\left(\sqrt{1/\delta} \cdot \mathsf{P}(t-s)\right)^{\alpha}}{\alpha!} \cdot h_{\alpha} \left(\sqrt{1/\delta} \cdot \mathsf{P}(t-s)\right)$$

where the first step follows from changing the basis preserves the ℓ_2 -distance, the second step follows from $B^{\top}B = U\Lambda U^{\top}$, and the fifth step follows from Eq. (17).

F.2 PROOF OF MAIN RESULT IN LOW-DIMENSIONAL CASE

176917701771

1772

177317741775

1776

1777

1778

17791780

1781

Proof of Theorem F.2. Correctness of KDE-QUERY. Algorithm 6 accumulates all sources into truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via Lemma F.4. Thus it can approximate the function G(t) by

$$G(t) = \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|_2^2/\delta}$$

1782
1783
$$= \sum_{\beta \le p} C_{\beta} \left(\frac{\mathsf{P}(t - t_{\mathcal{C}})}{\sqrt{\delta}} \right)^{\beta} + \mathrm{Err}_{T}(p) + \mathrm{Err}_{H}(p)$$
1784

where $|\operatorname{Err}_H(p)| + |\operatorname{Err}_T(p)| \le Q \cdot \varepsilon$ by $p = \log(\|q\|_1/\varepsilon)$,

$$C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha < p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}})}{\sqrt{\delta}} \right)$$

and the coefficients $A_{\alpha}(\mathcal{B})$ are defined as Line 24.

Running time of KDE-QUERY. In line 24, it takes $O(p^w N)$ time to compute all the Hermite expansions, i.e., to compute the coefficients $A_{\alpha}(\mathcal{B})$ for all $\alpha \leq p$ and all source boxes \mathcal{B} .

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^w coefficients of C_{β} is only $O(dp^{w+1})$ for each box \mathcal{B} in the range. Thus, we know for each target box \mathcal{C} , the running time is $O((2k+1)^w dp^{w+1})$, thus the total time in line 30 is

$$O(N(C) \cdot (2k+1)^w dp^{w+1}).$$

Finally, we need to evaluate the appropriate Taylor series for each target t_i , which can be done in $O(p^w M)$ time in line 4. Putting it all together, Algorithm 6 takes time

$$O((2k+1)^{w}dp^{w+1}N(C)) + O(p^{w}N) + O(p^{w}M)$$

= $O((M+N)\log^{O(w)}(\|q\|_{1}/\varepsilon))$.

Correctness of UPDATE. Algorithm 8 and Algorithm 9 maintains C_{β} as follows,

$$C_{\beta} = \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha < p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}})}{\sqrt{\delta}} \right)$$

where $A_{\alpha}(\mathcal{B})$ is given by

$$A_{\alpha}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{\mathsf{P}(s_j - s_{\mathcal{B}})}{\sqrt{\delta}}\right)^{\alpha}.$$

Therefore, the correctness follows similarly from Algorithm 6.

Running time of UPDATE. In line 12, it takes $O(p^w)$ time to update all the Hermite expansions, i.e. to update the coefficients $A_{\alpha}(\mathcal{B})$ for all $\alpha \leq p$ and all sources boxes \mathcal{B} .

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^w coefficients of C_{β} is only $O(dp^{w+1})$ for each box $C_l \in \mathsf{nb}(\mathcal{B})$. Thus, thus the total time in line 17 is

$$O((2k+1)^w dp^{w+1}).$$

Correctness of QUERY. To compute Kq for a given $q \in \mathbb{R}^w$, notice that for any $i \in [N]$,

$$(\mathsf{K}q)_i = \sum_{j=1}^N q_j \cdot e^{-\|s_i - s_j\|_2^2/\delta}$$

= $G(s_i)$.

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t) immediately gives the ℓ_{∞} -error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the query, which takes $\widetilde{O}_d(N)$ time. Then, we perform N KDE-Query, each takes $\widetilde{O}_d(1)$. Hence, the total running time is $\widetilde{O}_d(N)$.

We note that when the charge vector q is slowly changing, i.e., $\Delta := \|q^{\text{new}} - q\|_0 \le o(N)$, we can UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes $\widetilde{O}_d(1)$ time, it will take $\widetilde{O}_d(\Delta)$ time to update the data structure.

Then, consider computing $\mathsf{K}q^{\mathrm{new}}$ in this setting. We note that each source box can only affect $\widetilde{O}_d(1)$ other target boxes, where the target vectors are just the source vectors in this setting. Hence, there are at most $\widetilde{O}_d(\Delta)$ boxes whose C_β is changed. Let $\mathcal S$ denote the indices of source vectors in these boxes. Since

$$G(s_i) = \sum_{\beta \le n} C_{\beta}(\mathcal{B}_k) \cdot \left(\frac{\mathsf{P}(s_i - s_{\mathcal{B}_k})}{\sqrt{\delta}}\right)^{\beta},$$

we get that there are at most $\widetilde{O}_d(\Delta)$ coordinates of $\mathsf{K}q^{\mathrm{new}}$ that are significantly changed from $\mathsf{K}q$, and we only need to re-compute $G(s_i)$ for $i \in \mathcal{S}$. If we assume that the source vectors are well-separated, i.e., $|\mathcal{S}| = O(\delta)$, the total computational cost is $\widetilde{O}_d(\Delta)$.

Therefore, when the change of the charge vector q is sparse, Kq can be computed in sublinear time.

Lemma F.4 (Truncated Hermite expansion with truncated Taylor expansion (low dimension version of Lemma E.5)). Let G(t) be defined as Def E.1. For an integer p, let $G_p(t)$ denote the Hermite expansion of G(t) truncated at p, i.e.,

$$G_p(t) = \sum_{\alpha \le p} A_{\alpha} H_{\alpha} \left(\frac{\mathsf{P}(t - s_{\mathcal{B}})}{\sqrt{\delta}} \right).$$

The Taylor expansion of function $G_p(t)$ at an arbitrary point t_0 can be written as:

$$G_p(t) = \sum_{\beta > 0} C_{\beta} \cdot \left(\frac{\mathsf{P}(t - t_0)}{\sqrt{\delta}}\right)^{\beta},$$

where the coefficients C_{β} are defined as

$$C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \le p} (-1)^{\|\alpha\|_1} A_{\alpha} \cdot H_{\alpha+\beta} \left(\mathsf{P} \frac{(s_{\mathcal{B}} - t_{\mathcal{C}})}{\sqrt{\delta}} \right). \tag{18}$$

Let $\operatorname{Err}_T(p)$ denote the error in truncating the Taylor series after p^w terms, in the box \mathcal{C} (that has center $t_{\mathcal{C}}$ and side length $r\sqrt{2\delta}$), i.e.,

$$\operatorname{Err}_T(p) = \sum_{\beta > p} C_{\beta} \left(\frac{\mathsf{P}(t - t_{\mathcal{C}})}{\sqrt{\delta}} \right)^{\beta}.$$

Then, we have

$$|\operatorname{Err}_{T}(p)| \leq \frac{2\sum_{j \in \mathcal{B}} |q_{j}|}{(1-r)^{w}} \sum_{l=0}^{w-1} {w \choose l} (1-r^{p})^{l} \left(\frac{r^{p}}{\sqrt{p!}}\right)^{w-l}$$

where $r \leq 1/2$.

Proof. We can write C_{β} in the following way:

$$\begin{split} C_{\beta} &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \sum_{\alpha \leq p} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{\mathsf{P}(s_j - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^{\alpha} \cdot H_{\alpha + \beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}})}{\sqrt{\delta}} \right) \\ &= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \left(\sum_{\alpha \geq 0} - \sum_{\alpha > p} \right) \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{\mathsf{P}(s_j - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^{\alpha} \cdot H_{\alpha + \beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}})}{\sqrt{\delta}} \right) \\ &= B_{\beta} - \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \sum_{\alpha > p} \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \left(\frac{\mathsf{P}(s_j - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^{\alpha} \cdot H_{\alpha + \beta} \left(\frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}})}{\sqrt{\delta}} \right) \\ &= B_{\beta} + (C_{\beta} - B_{\beta}) \end{split}$$

Next, we have

$$|\operatorname{Err}_{T}(p)| \leq \left| \sum_{\beta \geq p} B_{\beta} \left(\frac{\mathsf{P}(t - t_{\mathcal{C}})}{\sqrt{\delta}} \right)^{\beta} \right| + \left| \sum_{\beta \geq p} (C_{\beta} - B_{\beta}) \cdot \left(\frac{\mathsf{P}(t - t_{\mathcal{C}})}{\sqrt{\delta}} \right)^{\beta} \right| \tag{19}$$

Using Lemma E.4, we can upper bound the first term in the Eq. (19) by,

$$\left| \sum_{\beta \geq p} B_{\beta} \left(\frac{\mathsf{P}(t - t_{\mathcal{C}})}{\sqrt{\delta}} \right)^{\beta} \right| \leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1 - r)^w} \sum_{l = 0}^{w - 1} \binom{w}{l} (1 - r^p)^l \left(\frac{r^p}{\sqrt{p!}} \right)^{w - l}.$$

Since we can similarly bound $C_{\beta} - B_{\beta}$ as follows

$$|C_{\beta} - B_{\beta}| \le \frac{1}{\beta!} K \cdot Q_B 2^{\|\beta\|_1/2} \sqrt{\beta!} \le K Q_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}},$$

we have the same bound for the second term

$$\left| \sum_{\beta \geq p} (C_{\beta} - B_{\beta}) \left(\frac{\mathsf{P}(t - t_{\mathcal{C}})}{\sqrt{\delta}} \right)^{\beta} \right| \leq \left| \frac{\sum_{j \in \mathcal{B}} |q_{j}|}{(1 - r)^{w}} \sum_{l = 0}^{w - 1} {w \choose l} (1 - r^{p})^{l} \left(\frac{r^{p}}{\sqrt{p!}} \right)^{w - l}.$$

F.3 DYNAMIC LOW-RANK FGT WITH INCREASING RANK

We further give an algorithm for FGT when the low-dimensional subspace is dynamic, i.e., the rank may increase with data insertions.

Theorem F.5 (Low Rank Dynamic FGT Data Structure). Let W be a subspace of \mathbb{R}^d with dimension $\dim(S) = w \ll d$. Given N source points $s_1, \ldots, s_N \in W$ with charges q_1, \ldots, q_N , and M target points $t_1, \ldots, t_M \in W$, a number $\delta > 0$, and a vector $q \in \mathbb{R}^N$, let $G : \mathbb{R}^d \to \mathbb{R}$ be defined as $G(t) = \sum_{i=1}^N q_i \cdot \mathsf{K}(s_i, t)$ denote the kernel-density of t with respect to S, where $\mathsf{K}(s_i, t) = f(\|s_i - t\|_2)$ for f satisfying the properties in Definition 3.3. There is a dynamic data structure that supports the following operations:

- INIT() (Algorithm 6) Preprocess in $N \cdot \log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- KDE-QUERY $(t \in \mathbb{R}^d)$ (Algorithm 7) Output \widetilde{G} such that $G(t) \varepsilon \leq \widetilde{G} \leq G(t) + \varepsilon$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- INSERT $(s \in \mathbb{R}^d, q_s \in \mathbb{R})$ (Algorithm 10) For any source point $s \in \mathbb{R}^d$ and its charge q_s , update the data structure by adding this source point in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time. The subspace dimension w may be increased by l if s is not in the original subspace.
- QUERY $(q \in \mathbb{R}^N)$ (Algorithm 7) Output $\widetilde{\mathsf{K}q} \in \mathbb{R}^N$ such that $\|\widetilde{\mathsf{K}q} \mathsf{K}q\|_{\infty} \leq \varepsilon$, where $\mathsf{K} \in \mathbb{R}^{N \times N}$ is defined by $\mathsf{K}_{i,j} = \mathsf{K}(s_i, s_j)$ in $N \log^{O(w)}(\|q\|_1/\varepsilon)$ time.

Proof. Since Algorithm 10 updates A_{α}, C_{β} in the same way as Algorithm 8, the correctness of Procedures KDE-QUERY and QUERY follows similarly from Theorem B.5.

Furthermore, SCALE takes $O(wd + (N(B) + N(C)) \cdot p^w)$ time. For the correctness, we know that the rows of P form an orthonormal basis for the subspace. For a newly inserted point s, if it is not lie in the subspace, (I-P)s gives a new basis direction. Therefore, we can easily update P by attaching this vector (after normalization) as a column. Then, we show that the intermediate variables A_α and C_β can be correctly updated for the new subspace. For each source box $\mathcal B$ and each w-tuple $\alpha \leq p$, we have

$$A_{(\alpha,0)}^{\mathrm{new}}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1} \cdot (-1)^i}{\alpha! \cdot i!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x_j' - x_\mathcal{B}'}{\sqrt{\delta}}\right)^{(\alpha,i)} = A_\alpha(\mathcal{B}),$$

1984

1986

1987 1988 1989

1993

1997

```
1944
              Algorithm 10 This algorithm is the update part of Theorem F.5.
1945
                1: data structure DYNAMICFGT
                2: members
1947
                                                                                                                    \triangleright Rank of span(s_1,\ldots,s_N,t_1,\ldots,t_M)
                3:
                           k \in \mathbb{N}
1948
                            A_{\alpha}(\mathcal{B}_l), l \in [N(B)], \alpha \leq p
                4:
1949
                5:
                           C_{\beta}(\mathcal{C}_l), l \in [N(C)], \beta \leq p
1950
                           t_{\mathcal{C}_l}, l \in [N(C)]
                6:
1951
                7:
                            s_{\mathcal{B}_l}, l \in [N(B)]
                            \mathsf{P} \in \mathbb{R}^{w \times d}
1952
1953
                9: end members
              10:
1954
              11: procedure Insert(s \in \mathbb{R}^d, q \in \mathbb{R})
1955
                            SCALE(s,q)
              12:
                            Find the box s \in \mathcal{B}
              13:
1957
                                                                                                                             \triangleright we say \alpha \leq p if \alpha_i \leq p, \forall i \in [w]
              14:
                            for \alpha \leq p do
1958
              15:
                                  Compute
                                                             A_{\alpha}^{\text{new}}(\mathcal{B}) \leftarrow A_{\alpha}(\mathcal{B}) + \frac{(-1)^{\|\alpha\|_1} q}{\alpha!} (\frac{\mathsf{P}(s-s_{\mathcal{B}})}{\sqrt{\delta}})^{\alpha}
                                                                                                                                                              \triangleright Takes p^k time
                            end for
1963
              16:
              17:
                            Find (2k+1)^w nearest target boxes to \mathcal{B}, denote by \mathsf{nb}(\mathcal{B})
                                                                                                                                                        \triangleright k < \log(\|q\|_1/\varepsilon)
1964
              18:
                            for C_l \in \mathsf{nb}(\mathcal{B}) and \beta \leq p do
1965
              19:
                                  Compute
1966
1967
                              C_{\beta}^{\text{new}}(\mathcal{C}_{l}) \leftarrow C_{\beta}(\mathcal{C}_{l}) + \frac{(-1)^{\|\beta\|_{1}}}{\beta!} \sum_{\alpha \leq n} \left( A_{\alpha}^{\text{new}}(\mathcal{B}) - A_{\alpha}(\mathcal{B}) \right) \cdot H_{\alpha+\beta} \left( \frac{\mathsf{P}(s_{\mathcal{B}} - t_{\mathcal{C}_{l}})}{\sqrt{\delta}} \right)
1968
1969
1970
                                                                                                                                           \triangleright Takes (2k+1)^w p^w time
1971
                            end for
              20:
1972
                           21:
                                                                                                                                                             \triangleright Takes p^w time
              22:
              23:
                            for C_l \in \mathsf{nb}(\mathcal{B}) and \beta \leq p do
              24:
1975
                                  C_{\beta}(\mathcal{C}_l) \leftarrow C_{\beta}^{\text{new}}(\mathcal{C}_l)
              25:
                                                                                                                                           \triangleright Takes (2k+1)^w p^w time
              26:
                            end for
              27: end procedure
              28: end data structure
1979
```

where x_j' denotes the "lifted" point in the new subspace. And $A_{(\alpha,i)}^{\text{new}}(\mathcal{B}) = 0$ for all i > 0, since $(x_j' - x_{\mathcal{B}}')_{k+1} = 0$. Similarly, for each target box \mathcal{C} ,

$$\begin{split} C^{\mathsf{new}}_{(\beta,i)}(\mathcal{C}) = & \frac{(-1)^{\|\beta\|_1} (-1)^i}{\beta! i!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} \sum_{j=0}^p A^{\mathsf{new}}_{(\alpha,j)}(\mathcal{B}) H_{(\alpha+\beta,i+j)} \left(\frac{x_{\mathcal{B}}' - y_{\mathcal{C}}'}{\sqrt{\delta}} \right) \\ = & \frac{(-1)^{\|\beta\|_1} (-1)^i}{\beta! i!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_{\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{x_{\mathcal{B}} - y_{\mathcal{C}}}{\sqrt{\delta}} \right) \cdot h_i(0) \\ = & \frac{(-1)^i}{i!} h_i(0) \cdot C_{\beta}(\mathcal{C}), \end{split}$$

where the second step follows from $A_{(\alpha,i)}^{\text{new}}(\mathcal{B}) = A_{\alpha}(\mathcal{B}) \cdot \mathbf{1}_{i=0}$. Therefore, by enumerating all boxes \mathcal{B}, \mathcal{C} and indices $\alpha, \beta \leq p$, we can correctly compute $A_{(\alpha,0)}^{\text{new}}(\mathcal{B})$ and $C_{(\beta,i)}^{\text{new}}(\mathcal{C})$. Thus, we complete the proof of the correctness of Algorithm 11.

20262027

20282029

2048204920502051

Algorithm 11 This algorithm is another part of Theorem F.5.

```
1999
                1: data structure DYNAMICFGT
2000
                2: members
2001
                                                                                                                    \triangleright Rank of span(s_1,\ldots,s_N,t_1,\ldots,t_M)
                3:
                           w \in \mathbb{N}
2002
                            A_{\alpha}(\mathcal{B}_l), l \in [N(B)], \alpha \leq p
                4:
2003
                5:
                            C_{\beta}(\mathcal{C}_l), l \in [N(C)], \beta \leq p
2004
                            t_{\mathcal{C}_l}, l \in [N(C)]
                6:
                            s_{\mathcal{B}_l}, l \in [N(B)]
2005
                7:
                            \mathbf{P} \in \mathbb{R}^{w \times d}
2006
                8:
                9: end members
2007
               10:
2008
               11: procedure SCALE(s \in \mathbb{R}^d, q \in \mathbb{R})
2009
                            if s \in \operatorname{span}(P) then
               12:
2010
                                   pass
               13:
2011
               14:
                            else
2012
                                  \begin{array}{l} \mathsf{P} \leftarrow (\mathsf{P}, (I-\mathsf{P})s/\|(I-\mathsf{P})s\|_2), w \leftarrow w+1 \\ \mathbf{for} \ \mathcal{B}_l, l \in [N(B)] \ \mathrm{and} \ \mathcal{C}_l, l \in [N(C)] \ \mathbf{do} \end{array}
               15:
2013
               16:
2014
               17:
                                         s_{\mathcal{B}_l} \leftarrow (s_{\mathcal{B}_l}, 0) and t_{\mathcal{C}_l} \leftarrow (t_{\mathcal{C}_l}, 0)
2015
               18:
2016
                                  Find the box \mathcal{B}_{N(B)+1} of length r\sqrt{\delta} containing s and let s_{\mathcal{B}_{N(B)+1}} be its center
               19:
2017
               20:
                                   for \alpha \leq p \in \mathbb{N}^w and \mathcal{B}_l, l \in [N(B)] do
2018
                                         A_{(\alpha,0)}(\mathcal{B}_l) \leftarrow A_{\alpha}(\mathcal{B}_l)
              21:
2019
                                   end for
               22:
                                   for \beta \leq p \in \mathbb{N}^w, 0 \leq i \leq p and C_l, l \in [N(C)] do
2020
              23:
                                         C_{(\beta,i)}(\mathcal{C}_l) \leftarrow \frac{(-1)^i}{i!} h_i(0) \cdot C_{\beta}(\mathcal{C}_l)
2021
              24:
                                   end for
2022
              25:
2023
               26:
                            end if
               27: end procedure
2024
               28: end data structure
2025
```

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not contribute to idea creation or writing, and the authors take full responsibility for this paper's content.