
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A DYNAMIC LOW-RANK FAST GAUSSIAN TRANS-
FORM

Anonymous authors
Paper under double-blind review

ABSTRACT

The Fast Gaussian Transform (FGT) enables subquadratic-time multiplication of
an n×n Gaussian kernel matrix Ki,j = exp(−∥xi−xj∥22) with an arbitrary vector
h ∈ Rn, where x1, . . . , xn ∈ Rd are a set of fixed source points. This kernel plays
a central role in machine learning and random feature maps. Nevertheless, in
most modern data analysis applications, datasets are dynamically changing (yet
often have low rank), and recomputing the FGT from scratch in (kernel-based)
algorithms incurs a major computational overhead (≳ n time for a single source
update ∈ Rd). These applications motivate a dynamic FGT algorithm, which
maintains a dynamic set of sources under kernel-density estimation (KDE) queries
in sublinear time while retaining Mat-Vec multiplication accuracy and speed.
Assuming the dynamic data-points xi lie in a (possibly changing) k-dimensional
subspace (k ≤ d), our main result is an efficient dynamic FGT algorithm, sup-
porting the following operations in logO(k)(n/ε) time: (1) Adding or deleting a
source point, and (2) Estimating the “kernel-density” of a query point with re-
spect to sources with ε additive accuracy. The core of the algorithm is a dynamic
data structure for maintaining the projected “interaction rank” between source and
target boxes, decoupled into finite truncation of Taylor and Hermite expansions.

1 INTRODUCTION

The fast Multipole method (FMM) was described as one of the top 10 most important algorithms of
the 20th century (Dongarra & Sullivan, 2000). It is a numerical technique that was originally de-
veloped to speed up calculations of long-range forces for the n-body problem in theoretical physics.
FMM was first introduced in 1987 by Greengard and Rokhlin (Greengard & Rokhlin, 1987), based
on the multipole expansion of the vector Helmholtz equation. By treating the interactions between
far-away basis functions using the FMM, the underlying matrix entries Mij ∈ Rn×n (encoding the
pairwise “interaction” between xi, xj ∈ Rd) need not be explicitly computed nor stored for matrix-
vector operations – This technique allows to improve the naı̈ve O(n2) matrix-vector multiplication
time to quasi-linear time ≈ n · logO(d)(n), with negligible (polynomial-small) additive error.

Since the discovery of FMM in the late 80s, it had a profound impact on scientific computing and has
been extended and applied in many different fields, including physics, mathematics, numerical anal-
ysis and computer science (Greengard & Rokhlin, 1987; Greengard, 1988; Greengard & Rokhlin,
1988; 1989; Greengard, 1990; Greengard & Strain, 1991; Engheta et al., 1992; Greengard, 1994;
Greengard & Rokhlin, 1996; Beatson & Greengard, 1997; Darve, 2000; Yang et al., 2003; 2004;
Martinsson, 2012; Chandrasekaran et al., 2006). To mention just one important example, we note
that FMM plays a key role in efficiently maintaining the SVD of a matrix under low-rank perturba-
tions, based on the Cauchy structure of the perturbed eigenvectors (Gu & Eisenstat, 1994). In the
context of machine learning, the FMM technique can be extended to the evaluation of matrix-vector
products with certain Kernel matrices Ki,j = f (∥xi − xj∥), most notably, the Gaussian Kernel
Ki,j = exp(−∥xi − xj∥22) (Greengard & Strain, 1991). For any query vector q ∈ Rn, the fast
Gaussian transform (FGT) algorithm outputs an arbitrarily-small pointwise additive approximation
to K · q, i.e., a vector z ∈ Rn such that ∥K · q − z∥∞ ≤ ε, in merely n logO(d)(∥q∥1/ε) time,
which is dramatically faster than naı̈ve matrix-vector multiplication (n2) for constant dimension d.
Note that the (poly)logarithmic dependence on 1/ε means that FGT can achieve polynomially-small

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

additive error in quasi-linear time, which is as good as exact computation for all practical purposes.
The crux of FGT is that the n× n matrix K can be stored implicitly, using a clever spectral-analytic
decomposition of the geometrically-decaying pairwise distances (“interaction rank”, more on this
below).

Kernel matrices play a central role in machine learning (Shawe-Taylor & Cristianini, 2004; Rahimi
& Recht, 2008), as they allow to extend convex optimization and learning algorithms to nonlinear
feature spaces and even to non-convex problems (Li & Liang, 2018; Jacot et al., 2018; Du et al.,
2019; Allen-Zhu et al., 2019a;b; Lee et al., 2020). Accordingly, matrix-vector multiplication with
kernel matrices is a basic operation in many ML optimization tasks, such as Kernel PCA and ridge
regression (Alaoui & Mahoney, 2015; Avron et al., 2017a;b; Lee et al., 2020), Gaussian-process re-
gression (GPR) (Rasmussen & Nickisch, 2010), Kernel linear system solvers (via Conjugate Gradi-
ent (Alman et al., 2020)), and in fast implementation of the dynamic “state-space model” (SSM) for
sequence-correlation modeling (which crucially relies on the Multipole method (Gu et al., 2021)), to
mention a few. The related data-structure problem of kernel density estimation of a point (Charikar
& Siminelakis, 2017; Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020;
Zandieh et al., 2023; Alman & Song, 2023) KDE(X, y) = 1

n

∑n
i=1 K(xi, y) has various appli-

cations in data analysis and statistics (Fan & Gijbels, 1996; Schölkopf & Smola, 2002; Schubert
et al., 2014), and is the main subroutine in the implementation of transfer learning using kernels (see
(Charikar & Siminelakis, 2017; Charikar et al., 2020) and references therein, and the Related Work
Section 2 below). As such, speeding up matrix-vector multiplication with kernel matrices, such as
FGT, is an important question in theory and practice.

One drawback of FMM and FGT techniques, however, is that they are static algorithms, i.e., they
assume a fixed set of n data points xi ∈ Rd. By contrast, most aforementioned ML and data anal-
ysis applications are dynamic by nature and need to process rapidly-evolving datasets to maintain
prediction and model accuracy. One example is the renewed interest in online regression (Cohen
et al., 2015; Jiang et al., 2022), motivated by continual learning theory (Parisi et al., 2019). Indeed,
it is becoming increasingly clear that many static optimization algorithms do not capture the require-
ments of real-world applications (Jain et al., 2008; Chen et al., 2020b;a; Song et al., 2021a;b; Xu
et al., 2021; Shrivastava et al., 2021). Notice that changing a single source-point xi ∈ Rd generally
affects an entire row (n distances ∥xi − xj∥) of the matrix K. As such, naively re-computing the
static FGT on the modified set of distances, incurs a prohibitive computational overhead (n ≫ d).
This raises the natural question of whether it is possible to achieve sublinear-time insertion and
deletion of source points, as well as “local” kernel-density estimation (KDE) queries (Charikar &
Siminelakis, 2017; Yang et al., 2003), while maintaining speed and accuracy of matrix-vector mul-
tiplication queries:

Is it possible to ‘dynamize’ the Fast Gaussian Transform, in sublinear time? Can the exponential
dependence on d (Greengard & Strain, 1991) be mitigated if the data-points xi lie in a

k-dimensional subspace of Rd?

The last question is motivated by the recent work of (Cherapanamjeri & Nelson, 2022), who ob-
served that kernel-based methods and algorithms typically involve low-rank datasets, (where the
“intrinsic” dimension is w ≪ d), in which case one could hope to circumvent the exponential de-
pendence on d in the aforementioned (static) FMM algorithm (Greengard & Strain, 1991; Alman
et al., 2020).

1.1 MAIN RESULT

Our main result is an affirmative answer to the above question. We design a fully-dynamic FGT
data structure, supporting polylogarithmic-time updates and “density estimation” queries, while re-
taining quasi-linear time for arbitrary Mat-Vec queries (Kq). More formally, for a set of N “source”
points s1, . . . , sN , the j-th coordinate (Kq)j∈[N] is G(sj) =

∑N
i=1 qi · e−∥sj−si∥2

2/δ , which mea-
sures the kernel-density at sj (“interaction” of sj with the rest of the sources). More generally, for
any “target” point t ∈ Rd, let G(t) :=

∑N
i=1 qi · e−∥t−si∥2

2/δ denote the kernel density of t with
respect to the sources, where each source si is equipped with a charge qi. Our data structure sup-
ports fully-dynamic source updates and density-estimation queries in sublinear time. Observe that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

this immediately implies that entire Mat-Vec queries (K · q) can be computed in quasi-linear time
N1+o(1). The following is our main result:

Theorem 1.1 (Dynamic Low-Rank FGT, Informal version of Theorem F.2). Let B denote a w-
dimensional subspace⊂ Rd. Given a set of source points s, and charges q, there is a (deterministic)
data structure that maintains a fully-dynamic set of N source vectors s1, · · · , sN ∈ B under the
following operations:

• INSERT/DELETE(si ∈ Rd, qi ∈ R) Insert or Delete a source point si ∈ Rd along with its
“charge” qi ∈ R, in logO(w)(∥q∥1/ε) time. The intrinsic subspace B could change as the
source points are updated.

• DENSITY-ESTIMATION(t ∈ B) For any point t ∈ B ⊂ Rd, output the kernel density
of t with respect to the sources, i.e., output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(w)(∥q∥1/ε) time.

We note that when w = d, the costs of our dynamic algorithm match the static FGT algorithm. As
one might expect, our data structure applies to a more general subclass of ‘geometrically-decaying’
kernels Ki,j = f(∥xi − xj∥) (f(tx) ≤ (1− α)tf(x)), see Theorem B.5 for the formal statement of
our main result. It is also noteworthy that our data structure is deterministic, and therefore handles
even adaptive update sequences (Hardt & Woodruff, 2013; Ben-Eliezer et al., 2020; Cherapanamjeri
& Nelson, 2020). This feature is important in adaptive data analysis and in the use of dynamic
data structures for accelerating path-following iterative optimization algorithms (Brand et al., 2020),
where proximity to the original gradient flow (linear) equations is crucial for convergence, hence the
data structure needs to ensure the approximation guarantees hold against any outcome of previous
iterations.

Remark on Dynamization of “Decomposable” Problems A data structure problem P(D, q)
is called decomposable, if a query q to the union of two separate datasets can be recovered
from the two marginal answers of the query on each of them separately, i.e., P(D1 ∪ D2, q) =
g (P(D1, q),P(D2, q)) for some function g. A classic technique in data structures (Bentley &
Saxe, 1980) asserts that decomposable data structure problems can be (partially) dynamized in a
black-box fashion – It is possible to convert any static DS for P into a dynamic one supporting
incremental updates, with an amortized update time tu ∼ (T/N) · log(N), where T is the prepro-
cessing time of building the static data structure, and N is the input size. We can see that Matrix-
Vector multiplication over a field with row-updates to the matrix is a decomposable problem since
(A + B)q = Aq + Bq, and so one might hope that the dynamization of static FMM/FGT methods
is an immediate consequence of decomposability. This reasoning is, unfortunately, incorrect, since
changing even a single input point xi ∈ Rd, perturbs n distances, i.e., an entire row in the kernel
matrix K, and so the aforementioned reduction is prohibitively expensive (yields update time at least
n≫ d for adding/removing a point).

Notation. For a vector x, we use ∥x∥2 to denote its ℓ2-norm, ∥x∥1, ∥x∥0 and ∥x∥∞ for its ℓ1-
norm, ℓ0-norm and ℓ∞-norm. We use Õ(f) to denote f · poly(log f). For a vector x ∈ Rd and a
real number p, we say x ≤ p if xi ≤ p for all i ∈ [d]. We say x ≥ p if there exists an i ∈ [d] such
that xi ≥ p. For a positive integer n, we use [n] to denote a set {1, 2, · · · , n}.

Roadmap. In Section 2, we introduce the related research works. In Section 3, we present the
important techniques used to prove our main result. In Section 4, we make a conclusion for our
work.

2 RELATED WORK

Structured Linear Algebra Multiplying an n × n matrix M by an arbitrary vector q ∈ Rn

generally requires Θ(n2) time, and this is information-theoretically optimal since merely reading
the entries of the matrix requires ∼ n2 operations. Nevertheless, if M has some structure (Õ(n)-
bit description-size), one could hope for quasi-linear time for computing M · q. Kernel matrices

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Kij = f(∥xi − xj∥), which are the subject of this paper, are special cases of such geometric-
analytic structure, as their n2 entries are determined by only ∼ n points in Rd, i.e., O(nd) bits of
information. There is a rich and active body of work in structured linear algebra, exploring various
“algebraic” structures that allow quasi-linear time matrix-vector multiplication, most of which relies
on (novel) extensions of the Fast Fourier Transform (see (Driscoll et al., 1997; Sa et al., 2018; Chen
et al., 2021) and references therein). A key difference between FMMs and the aforementioned FFT-
style line of work is that the latter develops exact Mat-Vec algorithms, whereas FMM techniques
must inevitably resort to (small) approximation, based on the analytic smoothness properties of the
underlying function and metric space (Alman et al., 2020; 2021). This distinction makes the two
lines of work mostly incomparable.

Comparison to LSH-based KDEs A recent line of work due to (Charikar & Siminelakis, 2017;
Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020; Bakshi et al., 2023) de-
velops fast KDE data structures based on locality-sensitive hashing (LSH), which seems possible to
be dynamized naturally (as LSH is dynamic by nature). However, this line of work is incomparable
to FGT, as it solves KDE in the low-accuracy regime, i.e., the runtime dependence on ε of these
works is poly(1/ε) (but polynomial in d), as opposed to FGT (poly log(1/ε) but exponential in d).
Additionally, some work (e.g., (Charikar et al., 2020)) also needs an upper bound of the ground-truth
value µ⋆ = K · q, and the efficiency of their data structure depends on µ

−O(1)
⋆ , while FGT does not

need any prior knowledge of µ⋆.

Kernel Methods in ML Kernel methods can be thought of as instance-based learners: rather than
learning some fixed set of parameters corresponding to the features of their inputs, they instead
“remember” the i-th training example (xi, yi) and learn for it a corresponding weight wi. Prediction
for unlabeled inputs, i.e., those not in the training set, is treated using an application of a similarity
function K (i.e., a kernel) between the unlabeled input x′ and each of the training-set inputs xi.
This framework is one of the main motivations for the development of kernel methods in ML and
high-dimensional statistics (Schölkopf et al., 2002). There are two main themes of research on
kernel methods in the context of machine learning: The first one is focused on understanding the
expressive power and generalization of learning with kernel feature maps (Ng et al., 2002; Schölkopf
et al., 2002; Shawe-Taylor & Cristianini, 2004; Rahimi & Recht, 2008; Hofmann et al., 2008; Jacot
et al., 2018; Du et al., 2019; Yang et al., 2023); The second line is focused on the computational
aspects of kernel-based algorithms (Alman et al., 2020; Brand et al., 2021; Song et al., 2021a;b; Hu
et al., 2022; Alman et al., 2022; Zhang, 2022; Alman & Song, 2023; Deng et al., 2023; Gao et al.,
2023b;a). We refer the reader to these references for a much more thorough overview of these lines
of research and the role of kernels in ML.

3 TECHNICAL OVERVIEW

In Section 3.1, we review the offline FGT algorithm (Greengard & Rokhlin, 1987; Alman et al.,
2020) and analyze the computational costs. In Section 3.2, we illustrate the technique of estimating
G(t) for an arbitrary target vector t ∈ Rd. In Section 3.3, we explain that the data structures support
the dynamic setting where the source vectors are allowed to come and leave. In Section 3.4, we
describe how to extend the data structure to a more general kernel function. In Section 3.5, we show
that if the source and target vectors come from a low dimensional subspace, the data structure can
bypass the curse of dimension. In Section 3.6, we modify the data structure to support the scenario
where the rank of data points varies across iterations.

3.1 OFFLINE FGT ALGORITHM

We first review (Alman et al., 2020)’s offline FGT algorithm. Consider the following easier problem:
given N source vectors s1, . . . , sN ∈ Rd, and M target vectors t1, . . . , tM ∈ Rd, estimate

G(ti) =

N∑
j=1

qj · e−∥ti−sj∥2
2/δ

for any i ∈ [M], in quasi-linear time. Following (Greengard & Strain, 1991; Alman et al., 2020),
our algorithm subdivides B0 = [0, 1]d into smaller boxes with sides of length L = r

√
2δ parallel to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the axes, for a fixed r ≤ 1/2, and then assign each source sj to the box B in which it lies and each
target ti to the box C in which it lies. Note that there are (1/L)d boxes in total. Let N(B) and N(C)
denote the number of non-empty source and target boxes, respectively. For each target box C, we
need to evaluate the total field due to sources in all boxes. Since each box B has side length r

√
2δ,

only a fixed number of source boxes B can contribute more than ∥q∥1ε to the field in a given target
box C, where ε is the precision parameter. Hence, for a target vector in box C, if we only count the
contributions of the source vectors in its (2k+1)d nearest boxes where k is a parameter, it will incur
an error that can be upper bounded as follows:∑

j:∥t−sj∥∞≥kr
√
2δ

|qj | · e−∥t−sj∥2
2/δ ≤ ∥q∥1 · e−2r2k2

(1)

When we take k = log(∥q∥1/ε), this error becomes o(ε). For a single source vector sj ∈ B, its field
Gsj (t) = qj · e−∥t−sj∥2/δ has the following Taylor expansion at tC (the center of C):

Gsj (t) =
∑
β≥0

Bβ(j, C)
(
t− tC√

δ

)β

, (2)

where β ∈ Nd is a multi-index,

Bβ(j, C) = qj ·
(−1)∥β∥1

β!
·Hβ

(
sj − tC√

δ

)
,

and Hβ(x) is the multi-dimensional Hermite function indexed by β (see Definition A.7). We can
also control the truncation error of the first pd terms by ε for p = log(∥q∥1/ε) (see Lemma E.6).
Then, for a fixed source box B, the field can be approximated by∑

β≤p

Cβ(B, C)(
t− tC√

δ
)β ,

where Cβ(B, C) :=
∑

j∈B Bβ(j, C). Hence, for each query point t, we just need to locate its target
box C, and then G(t) can be approximated by:

G̃(t) =
∑

B∈nb(C)

∑
β≤p

Cβ(B, C)
(
t− tC√

δ

)β

=
∑
β≤p

Cβ(C)
(
t− tC√

δ

)β

,

where nb(C) is the set of (2k + 1)d nearest-neighbor of C and

Cβ(C) :=
∑

B∈nb(C)

Cβ(B, C).

Notice that we can further pre-compute Cβ(C) for each target box C and β ≤ p. Then, the running
time for each target point becomes O(pd). For the preprocessing time, notice that each Cβ(B, C)
takes O(NB)-time to compute, where NB is the number of source points in B. Fix a β ≤ p. Consider
the computational cost of Cβ(C) for all target boxes C. Note that each source box can interact with
at most (2k + 1)d target boxes. Therefore, the total running time for computing {Cβ(Cℓ)}ℓ∈[N(C)]

is bounded by O
(
N · (2k + 1)d +M

)
. Then, the total cost of the preprocessing is

O
(
N · (2k + 1)d · pd +M · pd

)
.

By taking p = log(∥q∥1/ε) and k ≤ log(∥q∥1/ε), we get an algorithm with Õd(N + M)-time
for preprocessing and Õd(1)-time for each target point. We note that this algorithm also supports
fast computing Kq for any q ∈ Rd and K ∈ Rn×n with Ki,j = e−∥si−sj∥2

2/δ . Roughly speaking,
for each query vector q, we can build this data structure, and then the i-th coordinate of Kq is just
G(si), which can be computed in poly-logarithmic time. Hence, Kq can be approximately computed
in nearly-linear time with ℓ∞ error at most ε.
Remark 3.1. The kernel bandwidth δ > 0 can be set using standard rules like median heuristic
or cross-validation. For the box length L = r

√
2δ, the parameter r controls the tradeoff between

computational cost and accuracy. We recommend r = 1/2 as it provides a good balance, and the
error bound (see Eq. (1)) scales as exp(−2r2k2) where k is a parameter that controls the number of
neighboring boxes. For the truncation parameter p, we set it to p = log(∥q∥1/ε) to achieve desired
accuracy ε (see Lemma E.6). This parameter can be adjusted dynamically based on observed errors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 ONLINE STATIC KDE DATA STRUCTURE (QUERY-ONLY)

Next, we consider the same static setting, except target queries t ∈ Rd arrive online, and the goal
is to estimate G(t) for an arbitrary vector in sublinear time. To this end, note that if t is con-
tained in a non-empty target box Cℓ, then G(t) can be approximated using pre-computed Cβ(Cℓ)
in poly-logarithmic time. Otherwise, we need to add a new target box CN(C)+1 for t and compute
Cβ(CN(C)+1), which takes time

∑
B∈nb(CN(C)+1)

O(NB). However, this linear scan naı̈vely takes
O(N) time in the worst case. Indeed, looking into the coefficients Cβ(B, C):

Cβ(B, C) =
∑
j∈B

qj ·
(−1)∥β∥1

β!
·Hβ

(
sj − tC√

δ

)
reveals that the source vectors sj are “entangled” with tC , so evaluating Cβ(B, C) brute-forcely for
a new target box C, incurs a linear scan of all source vectors in B. To “disentangle” sj and tC , we
use the Taylor series of Hermite function (Eq. (5)):

Hβ

(
sj − tC√

δ

)
= Hβ

(
sj − sB√

δ
+

sB − tC√
δ

)
=
∑
α≥0

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

Hα+β

(
sB − tC√

δ

)
,

where sB denotes the center of the source box B. Hence, Cβ(B, C) can be re-written as:

Cβ(B, C) =
∑
j∈B

qjg(β)
∑
α≥0

g(α)

(
sj − sB√

δ

)α

Hα+β

(
sB − tC√

δ

)

= g(β)
∑
α≥0

Aα(B)Hα+β

(
sB − tC√

δ

)
,

where g(x) = (−1)∥x∥1/x! and

Aα(B) :=
∑
j∈B

qjg(α)

(
sj − sB√

δ

)α

. (3)

Now, Aα(B) does not rely on the target box and can be pre-computed, hence we can compute
Cβ(B, C) without going over each source vector. However, there is a price for this conversion,
namely, that now Cβ(B, C) involves summing over all α ≥ 0, so we need to somehow truncate
this series while controlling the overall truncation error for G(t), which appears difficult to achieve.
To this end, we observe that this two-step approximation is equivalent to first forming a truncated
Hermite series of e∥t−sj∥2

2/δ at the center of the source box sB, and then transforming all Hermite
expansions into Taylor expansions at the center of a target box tC . More formally, the Hermite
approximation of G(t) is

G(t) =
∑
B

∑
α≤p

(−1)∥α∥1Aα(B)Hα

(
t− sB√

δ

)
+ ErrH(p),

where |ErrH(p)| ≤ ε (see Lemma E.2). Hence, we can Taylor-expand each Hα at tC and get that:

G(t) =
∑

β≤p Cβ(C)
(

t−tC√
δ

)β
+ ErrT (p) + ErrH(p), where |ErrH(p)|+ |ErrT (p)| ≤ ε, (for the

formal argument, see Lemma E.5).

Remark 3.2. The original FGT paper contains a flaw in the error estimation, which was partially
fixed in (Baxter & Roussos, 2002) for the Hermite expansion. Later, (Lee et al., 2005) corrected
the error in both Hermite and Taylor expansions. However, their proofs are brief and use different
notations that are adapted for their dual-tree algorithm. We provide more detailed and user-friendly
proofs for the correct error estimations in Section E. We believe that they are of independent interest
to the community.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This means that, at preprocessing time, it suffices to compute Aα(B) for all source boxes and all
α ≤ p, which takes ∑

k∈[N(B)]

O
(
pd ·NBk

)
= O

(
pd ·N

)
= Õd(N).

time. Then, at query time, given an arbitrary query vector t in a target box C, we compute

Cβ(C) = h(β)
∑

B∈nb(C)

∑
α≤p

Aα(B)Hα+β

(
sB − tC√

δ

)
,

which takes

O
(
d · pd · (2k + 1)d

)
= poly log(n)

time, so long as d = O(1) and ε = n−O(1).

3.3 DYNAMIZATION

Given our (static) representation of points from the last paragraph, dynamizing the above static KDE
data structure now becomes simple. Suppose we add a source vector s in the source box B. We first
update the intermediate variables Aα(B), α ≤ p, which takes O(pd) time. So long as the ℓ1-norm
of the updated charge-vector q remains polynomial in the norm of the previously maintained vector,
namely √

log(∥qnew∥1) > log(∥q∥1),
we show that one source box can only affect (2k + 1)d nearest target box C; otherwise, when the
change is super-polynomial, we rebuild the data structure, but this cost is amortized away. Hence,
we only need to update Cβ(C) for those C ∈ nb(B). Notice that each Cβ(B, C) can be updated in
Od(1) time, so each affected Cβ(C) can also be updated in Od(1) time. Hence, adding a source
vector can be done in time O((2k + 1)dpd) = Õd(1) as before. Deleting a source vector follows
from a similar procedure.

3.4 GENERALIZATION TO FAST-DECAYING KERNELS

We briefly explain how the dynamic FGT data structure generalizes to more general kernel functions
K(s, t) = f(∥s− t∥2) where f satisfies the 3 properties in Definition 3.3 below.
Definition 3.3 (Properties of general kernel function, (Alman et al., 2020)). We define the following
properties of the function f : R→ R+:

• P1: f is non-increasing, i.e., f(x) ≤ f(y) when x ≥ y.

• P2: f is decreasing fast, i.e., f(Θ(log(1/ε))) ≤ ε.

• P3: f ’s Hermite expansion and Taylor expansion are truncateable: the truncation error of
the first (logd(1/ε)) terms in the Hermite and Taylor expansion of K is at most ε.

Remark 3.4. There are many widely-used kernels that satisfy the properties of general kernel func-
tion (Definition 3.3) such as:

• inverse polynomial kernels: K(x, y) = 1/∥x− y∥c2 for constant c > 0,

• exponential kernel: K(x, y) = exp(−∥x− y∥2),

• inverse multiquadric kernel: K(x, y) = 1/
√
∥x− y∥22 + c (Micchelli, 1984; Martinsson,

2012), and

• rational quadratic kernel: K(x, y) = 1/(1 + ∥x− y∥22/α) for α > 0.

The key insight is that these kernels’ fast decay allows truncation of distant interactions, while their
smoothness enables efficient local approximations via series expansions. This broader applicability
significantly extends the practical utility of our dynamic data structure.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

In the general case, Gf (t) =
∑

B
∑

j∈B qjK(sj , t). Similar to the Gaussian kernel case, we can first
show that only near boxes matter: ∑

j:∥t−sj∥∞≥kr

|qj | · f(∥s− t∥2) ≤ ε

by the fast-decreasing property (P2) in Definition 3.3 of f and taking k = O(log(∥q∥1/ε))1. Then,
we can follow the same “decoupling” approach as the Gaussian kernel case to first Hermite expand
Gf (t) at the center of each source box and then Taylor expands each Hermite function at the center
of the target box. In this way, we can show that

Gf (t) ≈
∑
β≤p

Cf,β(C)
(
t− tC√

δ

)β

,

where Cf,β(C) = cβ
∑

B∈nb(C)
∑

α≤p Af,α(B)Hα+β

(
sB−tC√

δ

)
, and the approximation error can be

bounded since f is truncateable. Af,α(B) depends on the kernel function f and can be pre-computed
in the preprocessing. Then, each Cf,β(C) can be computed in poly-logarithmic time. Hence, G(t)
can be approximately computed in poly-logarithmic time for any target vector t.

3.5 HANDLING POINTS FROM LOW-DIMENSIONAL STATIC SPACES

In many practical problems, the data lies in a low dimensional subspace of Rd. We can first project
the data into this subspace and then perform FGT on Rw, where w is the rank. The following lemma
shows that FGT can be performed on the projections of the data.

Lemma 3.5 (Hermite projection lemma in low-dimensional space, informal version of Lemma F.3).
Given B ∈ Rd×w that defines a w-dimensional subspace of Rd, let B⊤B = UΛU⊤ ∈ Rw×w

denote the spectral decomposition where U ∈ Rw×w and a diagonal matrix Λ ∈ Rw×w. We define
P := Λ−1/2U−1B⊤ ∈ Rw×d. Then we have for any t, s ∈ Rd from subspace B, the following
equation holds

e−∥t−s∥2
2/δ =

∑
α≥0

(
√
1/δP(t− s))α

α!
hα(
√

1/δP(t− s)).

By Lemma 3.5, it suffices to divide Rw instead of Rd into boxes and conduct Hermite expansion
and Taylor expansion on the low-dimensional subspace. More specifically, given the initial source
points, we can compute P by SVD or QR decomposition in N ·wω−1-time2, which is of smaller order
than the FGT’s preprocessing time3. Then, we can project each point si ∈ Rd to xi := Psi ∈ Rw

for i ∈ [N]. The remaining procedure in preprocessing is the same as before, but directly working
on the low-dimensional sources {x1, . . . , xN}. In the query phase, consider a target point t in the
subspace. We are supposed to compute G(t) ≈ ∑B

∑
j∈B qj · e−∥t−sj∥2

2/δ. By Lemma 3.5, we

know that G(t) ≈ ∑β≤p Cβ(C)
(

P(t−tC)√
δ

)β
=
∑

β≤p Cβ(C)
(

y−yC√
δ

)β
, where C is the target box

that contains t, y = Pt and yC = PtC projected points. Moreover, for each β ≤ p and target box C,
we have

Cβ(C) =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
P(sB − tC)√

δ

)

=
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
xB − yC√

δ

)
.

1Indeed, by property P2 , f(Θ(log(1/ε′))) ≤ ε′. Taking ε′ := ε/∥q∥1, we get that f(∥s− t∥2) ≤ ε/∥q∥1.
Hence, the summation is at most ε.

2ω ≈ 2.372 is the fast matrix multiplication time exponent.
3In practice, we can run numerical algorithms such as randomized SVD that are very fast for low-rank

matrices.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Similarly, for each α ≤ p and source box B,

Aα(B) =
(−1)∥α∥1

α!

∑
j∈B

qj ·
(
xj − xB√

δ

)α

.

Therefore, each query is equivalent to being conducted in a w-dimensional space using our data
structure, which takes logO(w)(∥q∥1/ε)-time. The update can be done in a similar way in the low-
dimensional space using the procedure described in Section 3.3. Hence, each update (insertion or
deletion) takes logO(w)(∥q∥1/ε).

3.6 HANDLING POINTS FROM LOW-DIMENSIONAL DYNAMIC SPACES

We note that when we add a new source point to the data structure, the intrinsic rank of the data
might change by 1 when the point is not in the subspace. For an inserting source point s, consider
the rank-increasing case, i.e., (I−P)s ̸= 0. Then, this new source point contributes to one new basis
u := (I−P)s

∥(I−P)s∥2
. Also, we can update the projection matrix P by [P u] ∈ R(w+1)×d. However, as

the subspace is changed, we need to maintain the intermediate variables Aα(B), Cβ(C). It is easy to
observe that for the original projected source and target points or boxes, they can easily be “lifted”
to the new subspace by setting zero to the (w + 1)-th coordinate. We show how to update Aα(B)
efficiently. For each source box B and α ≤ p, we have

Anew
(α,0)(B) =

(−1)∥α∥1 · (−1)i
α! · i!

∑
j∈B

qj ·
(
x′
j − x′

B√
δ

)(α,i)

= Aα(B),

where x′
j denotes the lifted point. And Anew

(α,1)(B) = 0 for all i > 0. Similarly, for each target box C,

Cnew
(β,i)(C) =

(−1)∥β∥1(−1)i
β!i!

·
∑
B

∑
α≤p

p∑
j=0

Anew
(α,j)(B)H(α+β,i+j)

(
x′
B − y′C√

δ

)

=
(−1)∥β∥1(−1)i

β!i!
·
∑
B

∑
α≤p

Aα(B)Hα+β

(
xB − yC√

δ

)
· hi(0)

=
(−1)i
i!
· Cβ(C).

Therefore, by enumerating all boxes B, C and indices α, β ≤ p, we can compute Anew
(α,0)(B) and

Cnew
(β,i)(C) in logO(w)(∥q∥1/ε)-time. Then, we just follow the static subspace insertion procedure

to insert the new source point s. In this way, we obtain a data structure that can handle dynamic
low-rank subspaces.

4 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the Fast Gaussian Transform (FGT) in a dynamic setting and propose a
dynamic data structure to maintain the source vectors that support very fast kernel density estimation,
Mat-Vec queries (K·q), as well as updating the source vectors. We further show that the efficiency of
our algorithm can be improved when the data points lie in a low-dimensional subspace. Our results
are especially valuable when FGT is used in real-world applications with rapidly-evolving datasets,
e.g., online regression, federated learning, etc.

One open problem in this direction is, can we compute Kq in O(N)+logO(d)(N/ε) time? Currently,
it takes N logO(d)(N/ε) time even in the static setting. The lower bounds in (Alman et al., 2020)
indicate that this improvement is impossible for some “bad” kernels K which are very non-smooth.
It remains open when K is a Gaussian-like kernel. It might be helpful to apply more complicated
geometric data structures to maintain the interactions between data points. Another open problem
is, can we fast compute Mat-Vec product or KDE for slowly-decaying kernels? The main difficulty
is the current FMM techniques cannot achieve high accuracy when the kernel decays slowly. New
techniques might be required to resolve this problem.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. Advances in Neural Information Processing Systems, 28:775–783, 2015.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019b.

Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint
arXiv:2302.13214, 2023.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 541–552. IEEE, 2020.

Josh Alman, Gary Miller, Timothy Chu, Shyam Narayanan, Mark Sellke, and Zhao Song. Metric
transforms and low rank representations of kernels. In arXiv preprint, 2021.

Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time
preprocessing: Fast neural network training via weight-data correlation preprocessing. arXiv
preprint arXiv:2211.14227, 2022.

Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data
fitting. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (Approx-Random), 2017a.

Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir
Zandieh. Random fourier features for kernel ridge regression: Approximation bounds and statis-
tical guarantees. In International Conference on Machine Learning, pp. 253–262. PMLR, 2017b.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615–626. IEEE, 2018.

Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Subquadratic
algorithms for kernel matrices via kernel density estimation. In The Eleventh International Con-
ference on Learning Representations, 2023.

Bradley John Charles Baxter and George Roussos. A new error estimate of the fast gauss transform.
SIAM Journal on Scientific Computing, 24(1):257–259, 2002.

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. Wavelets, multilevel
methods and elliptic PDEs, 1:1–37, 1997.

Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A framework for adver-
sarially robust streaming algorithms. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
symposium on principles of database systems, pp. 63–80, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic trans-
formation. Journal of Algorithms, 1(4):301–358, 1980.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pp. 775–788, 2020.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS, 2021.

S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for hss representations
via sparse matrices. SIAM J. Matrix Anal. Appl., 29(1):67–81, dec 2006. ISSN 0895-4798. doi:
10.1137/050639028. URL https://doi.org/10.1137/050639028.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp.
1032–1043. IEEE, 2017.

Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 769–792.
IEEE, 2019.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 172–183. IEEE, 2020.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations (ICLR), 2020a.

Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In
defense of smart algorithms over hardware acceleration for large-scale deep learning systems.
Proceedings of Machine Learning and Systems, 2:291–306, 2020b.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. ICLR, 2021.

Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In Thirty-fourth
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for randomized hadamard
transforms with applications. arXiv preprint arXiv:2203.01599, 2022.

Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
Sidford. Uniform sampling for matrix approximation. In Tim Roughgarden (ed.), Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot,
Israel, January 11-13, 2015, pp. 181–190. ACM, 2015. doi: 10.1145/2688073.2688113. URL
https://doi.org/10.1145/2688073.2688113.

Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. An o (n) direct solver for integral
equations on the plane. Applied and Computational Harmonic Analysis, 38(2):284–317, 2015.

Eric Darve. The fast multipole method: numerical implementation. Journal of Computational
Physics 160.1, 2000.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023.

Jack Dongarra and Francis Sullivan. Guest editors’ introduction: The top 10 algorithms. Computing
in Science & Engineering, 2(1):22, 2000.

11

https://doi.org/10.1137/050639028
https://doi.org/10.1145/2688073.2688113

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

James R. Driscoll, Dennis M. Healy Jr., and Daniel N. Rockmore. Fast discrete polynomial trans-
forms with applications to data analysis for distance transitive graphs. SIAM J. Comput., 26(4):
1066–1099, 1997. doi: 10.1137/S0097539792240121. URL https://doi.org/10.1137/
S0097539792240121.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In ICLR, 2019.

Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius Vassiliou. The fast multipole
method for electromagnetic scattering computation. IEEE Transactions on Antennas and Propa-
gation 40, pp. 634–641, 1992.

Jianqing Fan and Irène Gijbels. Local polynomial modelling and its applications. Number 66 in
Monographs on statistics and applied probability series. Chapman & Hall, London [u.a.], 1996.
ISBN 0412983214. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&
IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023b.

Leslie Greengard. The rapid evaluation of potential fields in particle systems. MIT press, 1988.

Leslie Greengard. The numerical solution of the n-body problem. Computers in physics, 4(2):
142–152, 1990.

Leslie Greengard. Fast algorithms for classical physics. Science, 265(5174):909–914, 1994.

Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal of
computational physics, 73(2):325–348, 1987.

Leslie Greengard and Vladimir Rokhlin. The rapid evaluation of potential fields in three dimensions.
Vortex Methods. Springer, Berlin, Heidelberg, pp. 121–141, 1988.

Leslie Greengard and Vladimir Rokhlin. On the evaluation of electrostatic interactions in molecular
modeling. Chemica scripta, 29:139–144, 1989.

Leslie Greengard and Vladimir Rokhlin. An improved fast multipole algorithm in thre dimensions.
., 1996.

Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and Statis-
tical Computing, 12(1):79–94, 1991.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. CoRR, abs/2111.00396, 2021. URL https://arxiv.org/abs/2111.
00396.

Ming Gu and Stanley C. Eisenstat. A stable and efficient algorithm for the rank-one modification of
the symmetric eigenproblem. SIAM Journal on Matrix Analysis and Applications, 15:1266–1276,
1994.

Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory of computing (STOC), pp. 121–130,
2013.

M Hermite. Sur un nouveau développement en série des fonctions. Imprimerie de Gauthier-Villars,
1864.

Einar Hille. A class of reciprocal functions. Annals of Mathematics, pp. 427–464, 1926.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learn-
ing. The annals of statistics, 36(3):1171–1220, 2008.

12

https://doi.org/10.1137/S0097539792240121
https://doi.org/10.1137/S0097539792240121
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2111.00396

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural net-
works in sublinear time. arXiv preprint arXiv:2208.04508, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric learning and fast
similarity search. In NIPS, volume 8, pp. 761–768. Citeseer, 2008.

Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regression. In ICLR,
2022.

Dongryeol Lee, Andrew Moore, and Alexander Gray. Dual-tree fast gauss transforms. Advances in
Neural Information Processing Systems, 18, 2005.

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage score
sampling for neural networks. In NeurIPS, 2020.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In NeurIPS, 2018.

Per-Gunnar Martinsson. Encyclopedia entry on “fast multipole methods”. In University
of Colorado at Boulder. http://amath.colorado.edu/faculty/martinss/2014_
CBMS/Refs/2012_fmm_encyclopedia.pdf, 2012.

Per-Gunnar Martinsson. Fast summation and multipole expansions. Lecture note, 2019.

Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally positive
definite functions. In Approximation theory and spline functions, pp. 143–145. Springer, 1984.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing systems, pp. 849–856, 2002.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Con-
tinual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.
ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2019.01.012. URL https://www.
sciencedirect.com/science/article/pii/S0893608019300231.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Ad-
vances in neural information processing systems, pp. 1177–1184. https://people.eecs.
berkeley.edu/˜brecht/papers/07.rah.rec.nips.pdf, 2008.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (gpml)
toolbox. J. Mach. Learn. Res., 11:3011–3015, 2010. ISSN 1532-4435.

Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged
progress in structured dense matrix vector multiplication. In Artur Czumaj (ed.), Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pp. 1060–
1079. SIAM, 2018.

Bernhard Schölkopf and Alexander J. Smola. Learning with kernels : support vector machines, reg-
ularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press,
2002. URL http://www.worldcat.org/oclc/48970254.

Bernhard Schölkopf, Alexander J Smola, and Francis Bach. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

Erich Schubert, Arthur Zimek, and Hans Peter Kriegel. Generalized outlier detection with flexible
kernel density estimates. In Proceedings of the 2014 SIAM International Conference on Data
Mining, pp. 542–550, 2014.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge univer-
sity press, 2004.

13

http://amath.colorado.edu/faculty/martinss/2014_CBMS/Refs/2012_fmm_encyclopedia.pdf
http://amath.colorado.edu/faculty/martinss/2014_CBMS/Refs/2012_fmm_encyclopedia.pdf
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
http://www.worldcat.org/oclc/48970254

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value iteration via
locality sensitive hashing. arXiv preprint arXiv:2105.08285, 2021.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34, 2021a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural net-
work in subquadratic time. arXiv preprint arXiv:2112.07628, 2021b.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for
some well-known conditional gradient methods using maxip data-structures. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021.

Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved fast gauss
transform and efficient kernel density estimation. In Proceedings Ninth IEEE International Con-
ference on Computer Vision (ICCV). IEEE, 2003.

Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using the im-
proved fast gauss transform. In NIPS, 2004.

Hongru Yang, Ziyu Jiang, Ruizhe Zhang, Zhangyang Wang, and Yingbin Liang. Convergence and
generalization of wide neural networks with large bias, 2023.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and mainte-
nance. Master’s thesis, Carnegie Mellon University, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we provide several notations and definitions about the Fast Multipole
Method. In Section B, we present the formal statement of our main result. In Section C, we present
our data-structures and algorithms. In Section D, we provide a complete and full for our results. In
Section E, we prove several lemmas to control the error. In Section F, we generalize our results to
low dimension subspace setting.

A PRELIMINARIES

We first give a quick overview of the high-level ideas of FMM in Section A.1. In Section A.2, we
provide a complete description and proof of correctness for the fast Gaussian transform, where the
kernel function is the Gaussian kernel. Although a number of researchers have used FMM in the
past, most of the previous papers about FMM either focus on low-dimensional or low-error cases.
We therefore focus on the superconstant-error, high dimensional case, and carefully analyze the joint
dependence on ε and d. We believe that our presentation of the original proof in Section A.2 is thus
of independent interest to the community.

A.1 FMM BACKGROUND

We begin with a description of high-level ideas of the Fast Multipole Method (FMM). Let K :
Rd×Rd → R+ denote a kernel function. The inputs to the FMM are N sources s1, s2, · · · , sN ∈ Rd

and M targets t1, t2, · · · , tM . For each i ∈ [N], source si has associated ‘strength’ qi. Suppose all
sources are in a ‘box’ B and all the targets are in a ‘box’ C. The goal is to evaluate

uj =

N∑
i=1

K(si, tj)qi, ∀j ∈ [M]

Intuitively, if K has some nice property (e.g. smooth), we can hope to approximate K in the following
sense:

K(s, t) ≈
P−1∑
p=0

Bp(s) · Cp(t), s ∈ B, t ∈ C

for some functions Bp, Cp : Rd → R, where P is a small positive integer, usually called the
interaction rank in the literature (Corona et al., 2015; Martinsson, 2019).

Now, we can construct ui in two steps:

vp =
∑
i∈B

Bp(si)qi, ∀p = 0, 1, · · · , P − 1,

and

ũj =

P−1∑
p=0

Cp(tj)vp, ∀i ∈ [M].

Intuitively, as long as B and C are well-separated, then ũj is very good estimation to uj even for
small P , i.e., |ũj − uj | < ε.

Recall that, at the beginning of this section, we assumed that all the sources are in the the same box
B and C. This is not true in general. To deal with this, we can discretize the continuous space into
a batch of boxes B1,B2, · · · and C1, C2, · · · . For a box Bl1 and a box Cl2 , if they are very far apart,
then the interaction between points within them is small, and we can ignore it. If the two boxes are
close, then we deal with them efficiently by truncating the high order expansion terms in K (only
keeping the first logO(d)(1/ε) terms). For each box, we will see that the number of nearby relevant
boxes is at most logO(d)(1/ε).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

Figure 1: An illustration of the source-target boxing our data structure maintains in high dimensional
space, using the “hybrid” of Taylor-Hermite expansions.

A.2 FAST GAUSSIAN TRANSFORM

Given N vectors s1, · · · sN ∈ Rd, M vectors t1, · · · , tM ∈ Rd and a strength vector q ∈ Rn,
Greengard and Strain (Greengard & Strain, 1991) provided a fast algorithm for evaluating discrete
Gauss transform

G(ti) =

N∑
j=1

qje
−∥ti−sj∥2/δ

for all i ∈ [M] in O(M+N) time. In this section, we re-prove the algorithm described in (Greengard
& Strain, 1991), and determine the exact dependence on ε and d in the running time.

Without loss of generality, we can assume that all the sources sj and targets are belonging to the
unit box B0 = [0, 1]d. The reason is, if not, we can shift the origin and rescaling δ.

Let t and s lie in d-dimensional Euclidean space Rd, and consider the Gaussian

e−∥t−s∥2
2 = e−

∑d
i=1(ti−si)

2

We begin with some definitions. One important tool we use is the Hermite polynomial, which is a
well-known class of orthogonal polynomials with respect to Gaussian measure and widely used in
analyzing Gaussian kernels.

Definition A.1 (One-dimensional Hermite polynomial, (Hermite, 1864)). The Hermite polynomials
h̃n : R→ R is defined as follows

h̃n(t) = (−1)net2 d
n

dt
e−t2

The first few Hermite polynomials are:

h̃1(t) = 2t, h̃2(t) = 4t2 − 2, h̃3(t) = 8t3 − 12t, · · ·
Definition A.2 (One-dimensional Hermite function, (Hermite, 1864)). The Hermite functions hn :
R→ R is defined as follows

hn(t) = e−t2 h̃n(t) = (−1)n d
n

dt
e−t2

We use the following Fact to simplify e−(t−s)2/δ .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

inserted points ———–

Figure 2: An illustration of inserting two source points with corresponding interactions to the data
structure.

Fact A.3. For s0 ∈ R and δ > 0, we have

e−(t−s)2/δ =

∞∑
n=0

1

n!
·
(
s− s0√

δ

)n

· hn

(
t− s0√

δ

)
and

e−(t−s)2/δ = e−(t−s0)
2/δ

∞∑
n=0

1

n!
·
(
s− s0√

δ

)n

· h̃n

(
t− s0√

δ

)
.

Lemma A.4 (Cramer’s inequality for one-dimensional, (Hille, 1926)). For any K < 1.09,

|h̃n(t)| ≤ K2n/2
√
n!et

2/2.

Using Cramer’s inequality (Lemma A.4), we have the following standard bound.
Lemma A.5. For any constant K < 1.09, we have

|hn(t)| ≤ K · 2n/2 ·
√
n! · e−t2/2.

Next, we will extend the above definitions and observations to the high dimensional case. To sim-
plify the discussion, we define multi-index notation. A multi-index α = (α1, α2, · · · , αd) is a
d-tuple of nonnegative integers, playing the role of a multi-dimensional index. For any multi-index
α ∈ Rd and any t ∈ Rt, we write

α! =

d∏
i=1

(αi!), tα =

d∏
i=1

tαi
i , Dα = ∂α1

1 ∂α2
2 · · · ∂αd

d .

where ∂i is the differential operator with respect to the i-th coordinate in Rd. For integer p, we say
α ≤ p if αi ≤ p, ∀i ∈ [d]; and we say α ≥ p if αi ≥ p, ∃i ∈ [d]. We use these definitions to
guarantee that {α ≤ p} ∪ {α ≥ p} = Nd.

We can now define multi-dimensional Hermite polynomial:

Definition A.6 (Multi-dimensional Hermite polynomial, (Hermite, 1864)). We define function H̃α :
Rd → R as follows:

H̃α(t) =

d∏
i=1

h̃αi
(ti).

Definition A.7 (Multi-dimensional Hermite function, (Hermite, 1864)). We define function Hα :
Rd → R as follows:

Hα(t) =

d∏
i=1

hαi
(ti).

It is easy to see that Hα(t) = e−∥t∥2
2 · H̃α(t)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

—————– deleted point

r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

Figure 3: An illustration of deleting a source point from the data structure.

The Hermite expansion of a Gaussian in Rd is

e−∥t−s∥2
2 =

∑
α≥0

(t− s0)
α

α!
hα(s− s0). (4)

Cramer’s inequality generalizes to
Lemma A.8 (Cramer’s inequality for multi-dimensional case, (Greengard & Strain, 1991; Alman
et al., 2020)). Let K < (1.09)d, then

|H̃α(t)| ≤ K · e∥t∥2
2/2 · 2∥α∥1/2 ·

√
α!

and

|Hα(t)| ≤ K · e−∥t∥2
2/2 · 2∥α∥1/2 ·

√
α!.

The Taylor series of Hα is

Hα(t) =
∑
β≥0

(t− t0)
β

β!
(−1)∥β∥1Hα+β(t0). (5)

B OUR RESULT

B.1 PROPERTIES OF KERNEL FUNCTION

(Alman et al., 2020) identified the three key properties of kernel functions K(s, t) = f(∥s − t∥2)
which allow sub-quadratic matrix-vector multiplication via the fast Multipole method. Our dynamic
algorithm will work for any kernel satisfying these properties.
Definition B.1 (Properties of general kernel function, restatement of Definition 3.3, (Alman et al.,
2020)). We define the following properties of the function f : R→ R+:

• P1: f is non-increasing, i.e., f(x) ≤ f(y) when x ≥ y.

• P2: f is decreasing fast, i.e., f(Θ(log(1/ε))) ≤ ε.

• P3: f ’s Hermite expansion and Taylor expansion are truncateable: the truncation error of
the first (logd(1/ε)) terms in the Hermite and Taylor expansion of K is at most ε.

Remark B.2. We note that P3 can be replaced with the following more general property:

• P4: K : Rd × Rd → R is {ϕα}α∈Nd -expansionable: there exist constants cα that only
depend on α ∈ Nd and functions ϕα : Rd → R such that

K(s, t) =
∑
α∈Nd

cα · (s− s0)
α · ϕα(t− s0)

for any s0 ∈ Rd and s close to s0. Moreover, the truncation error of the first (logd(1/ε))
terms is ≤ ε.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Informal version of Algorithm 2, 3, 4 and 5.

1: data structure DYNAMICFGT ▷ Theorem B.5
2: members
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: end members

8: procedure UPDATE(s ∈ Rd, q ∈ R) ▷ Informal version of Algorithm 4 and 5
9: Find the box s ∈ Bk

10: Update Aα(Bk) for all α ≤ p
11: Find (2k + 1)d nearest target boxes to Bk, denote by nb(Bk) ▷ k ≤ log(∥q∥1/ε)
12: for Cl ∈ nb(Bk) do
13: Update Cβ(Cl) for all β ≤ p
14: end for
15: end procedure

16: procedure KDE-QUERY(t ∈ Rd) ▷ Informal version of Algorithm 3
17: Find the box t ∈ Ck
18: G̃(t)←∑

β≤p Cβ(Ck)((t− tCk
)/
√
δ)β

19: end procedure
20: end data structure

Remark B.3. Two examples of kernels that satisfy Properties 1 and 2 are:

• K(s, t) = e−α∥s−t∥2

for any α ∈ R+.

• K(s, t) = e−α∥s−t∥2p

for any p ∈ N+.

B.2 DYNAMIC FGT

In this section, we present our main result. We first define the dynamic density-estimation mainte-
nance problem with respect to the Gaussian kernel.
Definition B.4 (Dynamic FGT Problem). We wish to design a data-structure that efficiently supports
any sequence of the following operations:

• INIT(S ⊂ Rd, q ∈ R|S|, ε ∈ R) Let N = |S|. The data structure is given N source points
s1, · · · , sN ∈ Rd with their charge q1, · · · , qN ∈ R.

• INSERT(s ∈ Rd, qs ∈ R) Add the source point s with its charge qs to the point set S.

• DELETE(s ∈ Rd) Delete s (and its charge qs) from the point set S.

• KDE-QUERY(t ∈ Rd) Output G̃ such that G(t)− ε ≤ G̃ ≤ G(t) + ε.

The main result of this paper is a fully-dynamic data structure supporting all of the above operations
in polylogarithmic time:
Theorem B.5 (Dynamic FGT Data Structure). Given N vectors S = {s1, · · · , sN} ⊂ Rd, a number
δ > 0, and a vector q ∈ RN , let G : Rd → R be defined as G(t) =

∑N
i=1 qi · K(si, t) denote the

kernel-density of t with respect to S, where K(si, t) = f(∥si − t∥2) for f satisfying the properties
in Definition 3.3 . There is a dynamic data structure that supports the following operations:

• INIT() (Algorithm 2) Preprocess in N · logO(d)(∥q∥1/ε) time.

• KDE-QUERY(t ∈ Rd) (Algorithm 3) Output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(d)(∥q∥1/ε) time.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• INSERT(s ∈ Rd, qs ∈ R) (Algorithm 4) For any source point s ∈ Rd and its charge qs,
update the data structure by adding this source point in logO(d)(∥q∥1/ε) time.

• DELETE(s ∈ Rd) (Algorithm 5) For any source point s ∈ Rd and its charge qs, update the
data structure by deleting this source point in logO(d)(∥q∥1/ε) time.

• QUERY(q ∈ RN) (Algorithm 3) Output K̃q ∈ RN such that ∥K̃q − Kq∥∞ ≤ ε, where
K ∈ RN×N is defined by Ki,j = K(si, sj) in N logO(d)(∥q∥1/ε) time.

Remark B.6. The QUERY time can be further reduced when the change of the charge vector q is
sparsely changed between two consecutive queries. More specifically, let ∆ := ∥qnew − q∥0 be the
number of changed coordinates of q. Then, QUERY can be done in Õd(∆) time.

C ALGORITHMS

Algorithm 2 This algorithm are the init part of Theorem B.5.

1: data structure DYNAMICFGT ▷ Theorem B.5
2: members
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: end members
8:
9: procedure INIT({sj ∈ Rd, j ∈ [N]}, {qj ∈ R, j ∈ [N]})

10: p← log(∥q∥1/ε)
11: Assign N sources into N(B) boxes B1, . . . ,BN(B) of length r

√
δ

12: Divide space into N(C) boxes C1, . . . , CN(C) of length r
√
δ

13: Set center sBk
, k ∈ [N(B)] of source boxes B1, . . . ,BN(B)

14: Set centers tCk
, k ∈ [N(C)] of target boxes C1, . . . , CN(C)

15: for k ∈ [N(B)] do ▷ Source box Bk with center sBk

16: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [d]
17: Compute

Aα(Bk)←
(−1)∥α∥1

α!

∑
sj∈Bk

qj

(
sj − sBk√

δ

)α

▷ Takes pdN time in total
18: end for
19: end for
20: for k ∈ [N(C)] do ▷ Target box Ck with center tCk

21: Find (2k + 1)d nearest source boxes to Ck, denote by nb(Ck) ▷ k ≤ log(∥q∥1/ε)
22: for β ≤ p do
23: Compute

Cβ(Ck)←
(−1)∥β∥1

β!

∑
Bl∈nb(Ck)

∑
α≤p

Aα(Bl) ·Hα+β

(
sBl
− tCk√
δ

)
▷ Takes N(C) · (2k + 1)ddpd+1 time in total

24: ▷ N(C) ≤ min{(r
√
2δ)−d/2,M}

25: end for
26: end for
27: end procedure
28: end data structure

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 3 This algorithm is the query part of Theorem B.5.

1: data structure DYNAMICFGT
2: procedure KDE-QUERY(t ∈ Rd)
3: Find the box t ∈ Ck
4: Compute ▷ Takes pd time in total

Gp(t)←
∑
β≤p

Cβ(Ck) ·
(
t− tCk√

δ

)β

5: return Gp(t)
6: end procedure
7: procedure QUERY(q ∈ RN)
8: INIT({sj , j ∈ [N]}, q) ▷ Takes Õ(N) time
9: for j ∈ [N] do

10: uj ← LOCAL-QUERY(sj) ▷ ∥u− Kq∥∞ ≤ ε
11: end for
12: return u
13: end procedure
14: end data structure

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 4 This algorithm is the update part of Theorem B.5.

1: data structure DYNAMICFGT ▷ Theorem B.5
2: members ▷ This is exact same as the members in Algorithm 2.
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: end members
8:
9: procedure INSERT(s ∈ Rd, q ∈ R)

10: Find the box s ∈ Bk
11: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [d]
12: Compute

Anew
α (Bk)← Aα(Bk) +

(−1)∥α∥1q

α!
(
s− sBk√

δ
)α

▷ Takes pd time
13: end for
14: Find (2k + 1)d nearest target boxes to Bk, denote by nb(Bk) ▷ k ≤ log(∥q∥1/ε)
15: for Cl ∈ nb(Bk) do
16: for β ≤ p do
17: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (Bk)−Aα(Bk)) ·Hα+β

(
sBk
− tCl√
δ

)
▷ Takes (2k + 1)dpd time

18: end for
19: end for
20: for α ≤ p do
21: Aα(Bk)← Anew

α (Bk) ▷ Takes pd time
22: end for
23: for Cl ∈ nb(Bk) do
24: for β ≤ p do
25: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)dpd time
26: end for
27: end for
28: end procedure
29: end data structure

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 5 This algorithm is another update part of Theorem B.5.

1: data structure DYNAMICFGT
2: members
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: δ ∈ R
8: end members
9:

10: procedure DELETE(s ∈ Rd, q ∈ R)
11: Find the box s ∈ Bk
12: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [d]
13: Compute

Anew
α (Bk)← Aα(Bk)−

(−1)∥α∥1q

α!

(
s− sBk√

δ

)α

▷ Takes pd time
14: end for
15: Find (2k + 1)d nearest target boxes to Bk, denote by nb(Bk) ▷ k ≤ log(∥q∥1/ε)
16: for Cl ∈ nb(Bk) do
17: for β ≤ p do
18: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (Bk)−Aα(Bk)) ·Hα+β

(
sBk
− tCl√
δ

)
▷ Takes (2k + 1)dpd time

19: end for
20: end for
21: for α ≤ p do
22: Aα(Bk)← Anew

α (Bk) ▷ Takes pd time
23: end for
24: for Cl ∈ nb(Bk) do
25: for β ≤ p do
26: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)dpd time
27: end for
28: end for
29: end procedure
30: end data structure

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D ANALYSIS

Proof of Theorem B.5. Correctness of KDE-QUERY. Algorithm 2 accumulates all sources into
truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
Lemma E.5, thus it can approximate the function G(t) by

G(t) =
∑
B

∑
j∈B

qj · e−∥t−sj∥2
2/δ

=
∑
β≤p

Cβ

(
t− tC√

δ

)β

+ ErrT (p) + ErrH(p)

where |ErrH(p)|+ |ErrT (p)| ≤ Q · ε by p = log(∥q∥1/ε),

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
sB − tC√

δ

)
and the coefficients Aα(B) are defined as Eq. (3).

Running time of KDE-QUERY. In line 17, it takes O(pdN) time to compute all the Hermite
expansions, i.e., to compute the coefficients Aα(B) for all α ≤ p and all sources boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pd

coefficients of Cβ is only O(dpd+1) for each box B in the range. Thus, we know for each target box
C, the running time is O((2k + 1)ddpd+1), thus the total time in line 23 is

O(N(C) · (2k + 1)ddpd+1).

Finally we need to evaluate the appropriate Taylor series for each target ti, which can be done in
O(pdM) time in line 4. Putting it all together, Algorithm 2 takes time

O((2k + 1)ddpd+1N(C)) +O(pdN) +O(pdM)

= O
(
(M +N) logO(d)(∥q∥1/ε)

)
.

Correctness of UPDATE. Algorithm 4 and Algorithm 5 maintains Cβ as follows,

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
sB − tC√

δ

)
where Aα(B) is given by

Aα(B) =
(−1)∥α∥1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α

.

Therefore, the correctness follows similarly from Algorithm 2.

Running time of UPDATE. In line 12, it takes O(pd) time to update all the Hermite expansions, i.e.
to update the coefficients Aα(B) for all α ≤ p and all sources boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pd

coefficients of Cβ is only O(dpd+1) for each box Cl ∈ nb(Bk). Thus, thus the total time in line 17
is

O((2k + 1)ddpd+1).

Correctness of QUERY. To compute Kq for a given q ∈ Rd, notice that for any i ∈ [N],

(Kq)i =
N∑
j=1

qj · e−∥si−sj∥2
2/δ

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

= G(si).

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t)
immediately gives the ℓ∞-error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the
query, which takes Õd(N) time. Then, we perform N KDE-Query, each takes Õd(1). Hence, the
total running time is Õd(N).

We note that when the charge vector q is slowly changing, i.e., ∆ := ∥qnew − q∥0 ≤ o(N), we can
UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes Õd(1)

time, it will take Õd(∆) time to update the data structure.

Then, consider computing Kqnew in this setting. We note that each source box can only affect Õd(1)
other target boxes, where the target vectors are just the source vectors in this setting. Hence, there
are at most Õd(∆) boxes whose Cβ is changed. Let S denote the indices of source vectors in these
boxes. Since

G(si) =
∑
β≤p

Cβ(Bk) ·
(
si − sBk√

δ

)β

,

we get that there are at most Õd(∆) coordinates of Kqnew that are significantly changed from Kq,
and we only need to re-compute G(si) for i ∈ S. If we assume that the source vectors are well-
separated, i.e., |S| = O(δ), the total computational cost is Õd(∆).

Therefore, when the change of the charge vector q is sparse, Kq can be computed in sublinear
time.

E ERROR ESTIMATION

This section provides several technical lemma that are used in Appendix D. We first give a definition.
Definition E.1 (Hermite expansion and coefficients). Let B denote a box with center sB ∈ Rd and
side length r

√
2δ with r < 1. If source sj is in box B, we will simply denote as j ∈ B. Then the

Gaussian evaluation from the sources in box B is,

G(t) =
∑
j∈B

qj · e−∥t−sj∥2
2/δ.

The Hermite expansion of G(t) is

G(t) =
∑
α≥0

Aα ·Hα

(
t− sB√

δ

)
, (6)

where the coefficients Aα are defined by

Aα =
1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α

(7)

The rest of this section will present a batch of Lemmas that bound the error of the function truncated
at certain degree of Taylor and Hermite expansion.

We first upper bound the truncation error of Hermite expansion.
Lemma E.2 (Truncated Hermite expansion). Let p denote an integer, let ErrH(p) denote the error
after truncating the series G(t) (as defined in Eq. (6)) after pd terms, i.e.,

ErrH(p) =
∑
α≥p

Aα ·Hα

(
t− sB√

δ

)
. (8)

Then we have

|ErrH(p)| ≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1
2 .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Proof. Using Eq. (4) to expand each Gaussian (see Definition E.1) in the

G(t) =
∑
j∈B

qj · e−∥t−sj∥2
2/δ

into a Hermite series about sB:∑
j∈B

qj
∑
α≥0

1

α!
·
(
sj − sB√

δ

)α

·Hα

(
t− sB√

δ

)
and swap the summation over α and j to obtain the desired form:

∑
α≥0

 1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α
Hα

(
t− sB√

δ

)
=
∑
α≥0

AαHα

(
t− sB√

δ

)
.

Here, the truncation error bound is due to Lemma A.8 and the standard equation for the tail of a
geometric series.

To formally bound the truncation error, we first rewrite the Hermit expansion as follows

e−
∥t−sj∥

2
2

δ =

d∏
i=1

(
p−1∑
ni=1

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

)

+

∞∑
ni=p

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

))
(9)

Notice from Cramer’s inequality (Lemma A.5),

hni

(
ti − (sB)i√

δ

)
≤
√
n! · 2n/2 · e−(ti−(sB)i)

2/2.

Therefore we can use properties of the geometric series (notice (sj)i−(sB)i√
δ

≤ r/
√
2) to bound each

term in the product as follows

p−1∑
ni=1

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

)
≤ 1− rp

1− r
, (10)

and
∞∑

ni=p

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

)
≤ 1√

p!
· rp

1− r
. (11)

Now we come back to bound Eq. (8) as follows

ErrH(p) =
∑
j∈B

qj
∑
α≥p

1

α!
·
(
sj − sB√

δ

)α

·Hα

(
t− sB√

δ

)

≤

∑
j∈B
|qj |

e−
∥t−sj∥

2
2

δ −
d∏

j=1

(
p−1∑
ni=1

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

))
≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where the first step comes from definition, the second step comes from Eq. (9) and the last step
comes from Eq. (10) and Eq. (11) and binomial expansion.

Remark E.3. By Stirling’s formula, it is easy to see that when we take p = log(∥q∥1/ε), this error
will be bounded by ∥q∥1 · ε.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The Lemma E.4 shows how to convert a Hermite expansion at location sB into a Taylor expansion
at location tC . Intuitively, the Taylor series converges rapidly in the box (that has side length r

√
2δ

center around tC , where r ∈ (0, 1)).
Lemma E.4 (Hermite expansion with truncated Taylor expansion). Suppose the Hermite expansion
of G(t) is given by Eq. (6), i.e.,

G(t) =
∑
α≥0

Aα ·Hα

(
t− sB√

δ

)
. (12)

Then, the Taylor expansion of G(t) at an arbitrary point t0 can be written as:

G(t) =
∑
β≥0

Bβ

(
t− t0√

δ

)β

. (13)

where the coefficients Bβ are defined as

Bβ =
(−1)∥β∥1

β!

∑
α≥0

(−1)∥α∥1Aα ·Hα+β

(
sB − t0√

δ

)
. (14)

Let ErrT (p) denote the error by truncating the Taylor expansion after pd terms, in the box C (that
has center at tC and side length r

√
2δ), i.e.,

ErrT (p) =
∑
β≥p

Bβ

(
t− tC√

δ

)β

Then

|ErrT (p)| ≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1/2.

Proof. Each Hermite function in Eq. (12) can be expanded into a Taylor series by means of Eq. (5).
The expansion in Eq. (13) is due to swapping the order of summation.

Next, we will bound the truncation error. Using Eq. (7) for Aα, we can rewrite Bβ :

Bβ =
(−1)∥β∥1

β!

∑
α≥0

(−1)∥α∥1AαHα+β

(
sB − tC√

δ

)

=
(−1)∥β∥1

β!

∑
α≥0

 (−1)∥α∥1

α!

∑
j∈B

qj

(
sj − sB√

δ

)α
Hα+β

(
sB − tC√

δ

)

=
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α≥0

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)
By Eq. (5), the inner sum is the Taylor expansion of Hβ((sj − tC)/

√
δ). Thus

Bβ =
(−1)∥β∥1

β!

∑
j∈B

qj ·Hβ

(
sj − tC√

δ

)
and Cramer’s inequality implies

|Bβ | ≤
1

β!
K ·QB2

∥β∥1/2
√

β! = KQB
2∥β∥1/2

√
β!

.

To formally bound the truncation error, we have

ErrT (p) =
∑
β≥p

Bβ

(
t− tC√

δ

)β

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

≤KQB

(
d∏

i=1

(∞∑
ni=0

1√
ni!

2ni/2

(
t− tC
δ

)ni
)
−

d∏
i=1

(
p−1∑
ni=0

1√
ni!

2ni/2

(
t− tC
δ

)ni
))

≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where the second step uses |Bβ | ≤ KQB
2∥β∥1/2
√
β!

and the rest are similar to those in Lemma E.2.

For designing our algorithm, we would like to make a variant of Lemma E.4 that combines the
truncations of Hermite expansion and Taylor expansion. More specifically, we first truncate the
Taylor expansion of Gp(t), and then truncate the Hermite expansion in Eq. (14) for the coefficients.
Lemma E.5 (Truncated Hermite expansion with truncated Taylor expansion). Let G(t) be defined
as Def E.1. For an integer p, let Gp(t) denote the Hermite expansion of G(t) truncated at p, i.e.,

Gp(t) =
∑
α≤p

AαHα

(
t− sB√

δ

)
.

The Taylor expansion of function Gp(t) at an arbitrary point t0 can be written as:

Gp(t) =
∑
β≥0

Cβ ·
(
t− t0√

δ

)β

,

where the coefficients Cβ are defined as

Cβ =
(−1)∥β∥1

β!

∑
α≤p

(−1)∥α∥1Aα ·Hα+β

(
sB − tC√

δ

)
. (15)

Let ErrT (p) denote the error in truncating the Taylor series after pd terms, in the box C (that has
center tC and side length r

√
2δ), i.e.,

ErrT (p) =
∑
β≥p

Cβ

(
t− tC√

δ

)β

.

Then, we have

|ErrT (p)| ≤
2
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1/2.

Proof. We can write Cβ in the following way:

Cβ =
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α≤p

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)

=
(−1)∥β∥1

β!

∑
j∈B

qj

∑
α≥0

−
∑
α>p

 (−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)

= Bβ −
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α>p

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)
= Bβ + (Cβ −Bβ)

Next, we have

|ErrT (p)| ≤

∣∣∣∣∣∣
∑
β≥p

Bβ

(
t− tC√

δ

)β
∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ) ·
(
t− tC√

δ

)β
∣∣∣∣∣∣ (16)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Using Lemma E.4, we can upper bound the first term in the Eq. (16) by,∣∣∣∣∣∣
∑
β≥p

Bβ

(
t− tC√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

.

Since we can similarly bound Cβ −Bβ as follows

|Cβ −Bβ | ≤
1

β!
K ·QB2

∥β∥1/2
√
β! ≤ KQB

2∥β∥1/2

√
β!

,

we have the same bound for the second term∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ)

(
t− tC√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

.

The proof of the following Lemma is almost identical, but it directly bounds the truncation error of
Taylor expansion of the Gaussian kernel. We omit the proof here.
Lemma E.6 (Truncated Taylor expansion). Let Gsj (t) : Rd → R be defined as

Gsj (t) = qj · e−∥t−sj∥2
2/δ.

The Taylor expansion of Gsj (t) at tC ∈ Rd is:

Gsj (t) =
∑
β≥0

Bβ
(
t− tC√

δ

)β

,

where the coefficients Bβ is defined as

Bβ = qj ·
(−1)∥β∥1

β!
·Hβ

(
sj − tC√

δ

)
and the absolute value of the error (truncation after pd terms) can be upper bounded as

|ErrT (p)| ≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1/2.

F LOW DIMENSION SUBSPACE FGT

In this section, we consider FGT for data in a lower dimensional subspace of Rd. The problem is
formally defined below:
Problem F.1 (Dynamic FGT on a low dimensional set). Let W be a subspace of Rd with dimension
dim(S) = w ≪ d. Given N source points s1, . . . , sN ∈W with charges q1, . . . , qN , and M target
points t1, . . . , tM ∈W , find a dynamic data structure that supports the following operations:

• INSERT/DELETE(si, qi) Insert or Delete a source point si ∈ Rd along with its “charge”
qi ∈ R, in logO(w)(∥q∥1/ε) time.

• DENSITY-ESTIMATION(t ∈ Rd) For any point t ∈ Rd, output the kernel density of t with
respect to the sources, i.e., output G̃ such that G(t)−ε ≤ G̃ ≤ G(t)+ε in logO(w)(∥q∥1/ε)
time.

• QUERY(q ∈ RN) Given an arbitrary query vector q ∈ RN , output K̃q in N ·
logO(w)(∥q∥/ε) time.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Algorithm 6 Initialization of low-dim FGT.

1: data structure DYNAMICFGT
2: members
3: Aα(Bi), i ∈ [N(B)], α ≤ p
4: Cβ(Ci), i ∈ [N(C)], β ≤ p
5: tCi

, i ∈ [N(C)]
6: sBi

, i ∈ [N(B)]
7: end members
8:
9: procedure INIT({sj ∈ Rd, j ∈ [N]}, {qj ∈ R, j ∈ [N]})

10: p← log(∥q∥1/ε)
11: Compute SVD: (U0,Σ, V0)← SVD ((s1, . . . , sN , t1, . . . , tM))
12: ▷

U0ΣV
⊤
0 = (s1, . . . , sN , t1, . . . , tM), U0 ∈ Rd×d,Σ ∈ Rd×(N+M), V0 ∈ R(N+M)×(N+M)

13: Let B ← U0Σ:,1:w ∈ Rd×w ▷ Σ:,1:w denotes the first w columns of Σ
14: Compute the spectral decomposition UΛU⊤ = B⊤B, and let P← Λ−1/2U−1B⊤ ∈ Rw×d

15: for i ∈ [N] and j ∈ [M] do
16: xi ← Psi, yj ← Ptj
17: end for
18: Assign x1, . . . , xN into N(B) boxes B1, . . . ,BN(B) of length r

√
δ

19: Divide Rw into N(C) boxes C1, . . . , CN(C) of length r
√
δ

20: Set center xBi , i ∈ [N(B)] of source boxes B1, . . . ,BN(B)

21: Set centers yCj
, j ∈ [N(C)] of target boxes C1, . . . , CN(C)

22: for l ∈ [N(B)] do ▷ Source box Bl with center sBl

23: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
24: Compute

Aα(Bl)←
(−1)∥α∥1

α!

∑
xj∈Bl

qj

(
xj − xBl√

δ

)α

▷ Takes pwN time in total
25: end for
26: end for
27: for l ∈ [N(C)] do ▷ Target box Cl with center tCl

28: Find (2k + 1)w nearest source boxes to Cl, denote by nb(Cl) ▷ k ≤ log(∥q∥1/ε)
29: for β ≤ p do
30: Compute

Cβ(Cl)←
(−1)∥β∥1

β!

∑
B∈nb(Cl)

∑
α≤p

Aα(B) ·Hα+β

(
xB − yCl√

δ

)
▷ Takes N(C) · (2k + 1)wdpw+1 time in total

31: ▷ N(C) ≤ min{(r
√
2δ)−d/2,M}

32: end for
33: end for
34: end procedure
35: end data structure

We generalize our dynamic data structure to solve Problem F.1, which is stated in the following
theorem. The computational cost of each update or query depends on the intrinsic dimension w
instead of d.

Theorem F.2 (Low Rank Dynamic FGT Data Structure, formal version of Theorem 1.1). Let W be
a subspace of Rd with dimension dim(S) = w ≪ d. Given N source points s1, . . . , sN ∈ W with
charges q1, . . . , qN , and M target points t1, . . . , tM ∈ W , a number δ > 0, and a vector q ∈ RN ,
let G : Rd → R be defined as G(t) =

∑N
i=1 qi · K(si, t) denote the kernel-density of t with respect

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Algorithm 7 This algorithm is the query part of Theorem F.2.

1: data structure DYNAMICFGT
2: procedure KDE-QUERY(t ∈ Rd)
3: Find the box Pt ∈ Cl
4: Compute ▷ Takes pw time in total

Gp(t)←
∑
β≤p

Cβ(Cl) ·
(
P(t− tCl

)√
δ

)β

5: return Gp(t)
6: end procedure
7: procedure QUERY(q ∈ RN)
8: INIT({sj , j ∈ [N]}, q) ▷ Takes Õ(N) time
9: for j ∈ [N] do

10: uj ← LOCAL-QUERY(sj) ▷ ∥u− Kq∥∞ ≤ ε
11: end for
12: return u
13: end procedure
14: end data structure

to S, where K(si, t) = f(∥si − t∥2) for f satisfying the properties in Definition 3.3 . There is a
dynamic data structure that supports the following operations:

• INIT() (Algorithm 6) Preprocess in N · logO(w)(∥q∥1/ε) time.

• KDE-QUERY(t ∈ Rd) (Algorithm 7) Output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(w)(∥q∥1/ε) time.

• INSERT(s ∈ Rd, qs ∈ R) (Algorithm 8) For any source point s ∈ Rd and its charge qs,
update the data structure by adding this source point in logO(w)(∥q∥1/ε) time.

• DELETE(s ∈ Rd) (Algorithm 9) For any source point s ∈ Rd and its charge qs, update the
data structure by deleting this source point in logO(w)(∥q∥1/ε) time.

• QUERY(q ∈ RN) (Algorithm 7) Output K̃q ∈ RN such that ∥K̃q − Kq∥∞ ≤ ε, where
K ∈ RN×N is defined by Ki,j = K(si, sj) in N logO(w)(∥q∥1/ε) time.

F.1 PROJECTION LEMMA

Lemma F.3 (Hermite projection lemma in low-dimensional space, formal version of Lemma 3.5).
Given a subspace B ∈ Rd×w. Let B⊤B = UΛU⊤ ∈ Rw×w denote the spectral decomposition
where U ∈ Rw×w and a diagonal matrix Λ ∈ Rw×w.

We define P = Λ−1/2U−1B⊤ ∈ Rw×d. Then we have for any t, s ∈ Rd from subspace B, the
following equation holds

e−∥t−s∥2
2/δ =

∑
α≥0

(
√
1/δP(t− s))α

α!
hα(
√

1/δP(t− s)).

Proof. First, we know that

Pt = Λ−1/2U−1B⊤t

= Λ−1/2U−1B⊤Bx

= Λ−1/2U−1UΛU⊤x

= Λ−1/2ΛU⊤x

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 8 This algorithm is the update part of Theorem F.2.

1: data structure DYNAMICFGT
2: members ▷ This is exact same as the members in Algorithm 6.
3: Aα(Bi), i ∈ [N(B)], α ≤ p
4: Cβ(Ci), i ∈ [N(C)], β ≤ p
5: tCi , i ∈ [N(C)]
6: sBi , i ∈ [N(B)]
7: end members
8:
9: procedure INSERT(s ∈ Rd, q ∈ R)

10: Find the box s ∈ B
11: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
12: Compute

Anew
α (B)← Aα(B) +

(−1)∥α∥1q

α!
(
P(s− sB)√

δ
)α

▷ Takes pw time
13: end for
14: Find (2k + 1)w nearest target boxes to B, denote by nb(B) ▷ k ≤ log(∥q∥1/ε)
15: for Cl ∈ nb(B) do
16: for β ≤ p do
17: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (B)−Aα(B)) ·Hα+β

(
P(sB − tCl

)√
δ

)
▷ Takes (2k + 1)wpw time

18: end for
19: end for
20: for α ≤ p do
21: Aα(B)← Anew

α (B) ▷ Takes pw time
22: end for
23: for Cl ∈ nb(B) do
24: for β ≤ p do
25: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)wpw time
26: end for
27: end for
28: end procedure
29: end data structure

= Λ1/2U⊤x (17)

where the first step follows from P = Λ−1/2U−1B⊤, the second step follows from t = Bx (since t
is from low dimension, then there is always a vector x), the third step follows B⊤B = UΛU⊤, the
forth step follows U−1U = I , and the last step follows from Λ−1/2Λ = Λ1/2.

Compute the spectral decomposition B⊤B = UΛU⊤, U ∈ Rw×w is the orthonormal basis, Λ =
diag(λ1, . . . , λk) ∈ Rw×w. Let ui ∈ Rw denote the vector that is the transpose of i-th row U ∈
Rw×w. Then we have

e−∥t−s∥2
2/δ = e−(x−y)⊤B⊤B(x−y)/δ

= e−(x−y)⊤UΛU⊤(x−y)/δ

=

w∏
i=1

(∞∑
n=1

1

n!
(
√
λi/δ · u⊤

i (x− y))n · hn(
√

λi/δ · u⊤
i (x− y))

)

=
∑
α≥0

(√
1/δΛ1/2U⊤(x− y)

)α
α!

· hα

(√
1/δΛ1/2U⊤(x− y)

)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 9 This algorithm is another update part of Theorem F.2.

1: data structure DYNAMICFGT
2: members
3: Aα(Bi), i ∈ [N(B)], α ≤ p
4: Cβ(Ci), i ∈ [N(C)], β ≤ p
5: tCi , i ∈ [N(C)]
6: sBi , i ∈ [N(B)]
7: δ ∈ R
8: end members
9:

10: procedure DELETE(s ∈ Rd, q ∈ R)
11: Find the box s ∈ B
12: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
13: Compute

Anew
α (B)← Aα(B)−

(−1)∥α∥1q

α!

(
P(s− sB)√

δ

)α

▷ Takes pw time
14: end for
15: Find (2k + 1)w nearest target boxes to B, denote by nb(B) ▷ k ≤ log(∥q∥1/ε)
16: for Cl ∈ nb(B) do
17: for β ≤ p do
18: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (B)−Aα(B)) ·Hα+β

(
P(sB − tCl

)√
δ

)
▷ Takes (2k + 1)wpw time

19: end for
20: end for
21: for α ≤ p do
22: Aα(B)← Anew

α (B) ▷ Takes pw time
23: end for
24: for Cl ∈ nb(B) do
25: for β ≤ p do
26: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)wpw time
27: end for
28: end for
29: end procedure
30: end data structure

=
∑
α≥0

(√
1/δ · P(t− s)

)α
α!

· hα

(√
1/δ · P(t− s)

)
where the first step follows from changing the basis preserves the ℓ2-distance, the second step fol-
lows from B⊤B = UΛU⊤, and the fifth step follows from Eq. (17).

F.2 PROOF OF MAIN RESULT IN LOW-DIMENSIONAL CASE

Proof of Theorem F.2. Correctness of KDE-QUERY. Algorithm 6 accumulates all sources into
truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
Lemma F.4. Thus it can approximate the function G(t) by

G(t) =
∑
B

∑
j∈B

qj · e−∥t−sj∥2
2/δ

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

=
∑
β≤p

Cβ

(
P(t− tC)√

δ

)β

+ ErrT (p) + ErrH(p)

where |ErrH(p)|+ |ErrT (p)| ≤ Q · ε by p = log(∥q∥1/ε),

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
P(sB − tC)√

δ

)
and the coefficients Aα(B) are defined as Line 24.

Running time of KDE-QUERY. In line 24, it takes O(pwN) time to compute all the Hermite
expansions, i.e., to compute the coefficients Aα(B) for all α ≤ p and all source boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pw

coefficients of Cβ is only O(dpw+1) for each box B in the range. Thus, we know for each target box
C, the running time is O((2k + 1)wdpw+1), thus the total time in line 30 is

O(N(C) · (2k + 1)wdpw+1).

Finally, we need to evaluate the appropriate Taylor series for each target ti, which can be done in
O(pwM) time in line 4. Putting it all together, Algorithm 6 takes time

O((2k + 1)wdpw+1N(C)) +O(pwN) +O(pwM)

= O
(
(M +N) logO(w)(∥q∥1/ε)

)
.

Correctness of UPDATE. Algorithm 8 and Algorithm 9 maintains Cβ as follows,

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
P(sB − tC)√

δ

)
where Aα(B) is given by

Aα(B) =
(−1)∥α∥1

α!

∑
j∈B

qj ·
(
P(sj − sB)√

δ

)α

.

Therefore, the correctness follows similarly from Algorithm 6.

Running time of UPDATE. In line 12, it takes O(pw) time to update all the Hermite expansions,
i.e. to update the coefficients Aα(B) for all α ≤ p and all sources boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pw

coefficients of Cβ is only O(dpw+1) for each box Cl ∈ nb(B). Thus, thus the total time in line 17 is

O((2k + 1)wdpw+1).

Correctness of QUERY. To compute Kq for a given q ∈ Rw, notice that for any i ∈ [N],

(Kq)i =
N∑
j=1

qj · e−∥si−sj∥2
2/δ

= G(si).

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t)
immediately gives the ℓ∞-error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the
query, which takes Õd(N) time. Then, we perform N KDE-Query, each takes Õd(1). Hence, the
total running time is Õd(N).

We note that when the charge vector q is slowly changing, i.e., ∆ := ∥qnew − q∥0 ≤ o(N), we can
UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes Õd(1)

time, it will take Õd(∆) time to update the data structure.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Then, consider computing Kqnew in this setting. We note that each source box can only affect Õd(1)
other target boxes, where the target vectors are just the source vectors in this setting. Hence, there
are at most Õd(∆) boxes whose Cβ is changed. Let S denote the indices of source vectors in these
boxes. Since

G(si) =
∑
β≤p

Cβ(Bk) ·
(
P(si − sBk

)√
δ

)β

,

we get that there are at most Õd(∆) coordinates of Kqnew that are significantly changed from Kq,
and we only need to re-compute G(si) for i ∈ S. If we assume that the source vectors are well-
separated, i.e., |S| = O(δ), the total computational cost is Õd(∆).

Therefore, when the change of the charge vector q is sparse, Kq can be computed in sublinear
time.

Lemma F.4 (Truncated Hermite expansion with truncated Taylor expansion (low dimension version
of Lemma E.5)). Let G(t) be defined as Def E.1. For an integer p, let Gp(t) denote the Hermite
expansion of G(t) truncated at p, i.e.,

Gp(t) =
∑
α≤p

AαHα

(
P(t− sB)√

δ

)
.

The Taylor expansion of function Gp(t) at an arbitrary point t0 can be written as:

Gp(t) =
∑
β≥0

Cβ ·
(
P(t− t0)√

δ

)β

,

where the coefficients Cβ are defined as

Cβ =
(−1)∥β∥1

β!

∑
α≤p

(−1)∥α∥1Aα ·Hα+β

(
P
(sB − tC)√

δ

)
. (18)

Let ErrT (p) denote the error in truncating the Taylor series after pw terms, in the box C (that has
center tC and side length r

√
2δ), i.e.,

ErrT (p) =
∑
β≥p

Cβ

(
P(t− tC)√

δ

)β

.

Then, we have

|ErrT (p)| ≤
2
∑

j∈B |qj |
(1− r)w

w−1∑
l=0

(
w

l

)
(1− rp)l

(
rp√
p!

)w−l

where r ≤ 1/2.

Proof. We can write Cβ in the following way:

Cβ =
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α≤p

(−1)∥α∥1

α!

(
P(sj − sB)√

δ

)α

·Hα+β

(
P(sB − tC)√

δ

)

=
(−1)∥β∥1

β!

∑
j∈B

qj

∑
α≥0

−
∑
α>p

 (−1)∥α∥1

α!

(
P(sj − sB)√

δ

)α

·Hα+β

(
P(sB − tC)√

δ

)

= Bβ −
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α>p

(−1)∥α∥1

α!

(
P(sj − sB)√

δ

)α

·Hα+β

(
P(sB − tC)√

δ

)
= Bβ + (Cβ −Bβ)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Next, we have

|ErrT (p)| ≤

∣∣∣∣∣∣
∑
β≥p

Bβ

(
P(t− tC)√

δ

)β
∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ) ·
(
P(t− tC)√

δ

)β
∣∣∣∣∣∣ (19)

Using Lemma E.4, we can upper bound the first term in the Eq. (19) by,∣∣∣∣∣∣
∑
β≥p

Bβ

(
P(t− tC)√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)w

w−1∑
l=0

(
w

l

)
(1− rp)l

(
rp√
p!

)w−l

.

Since we can similarly bound Cβ −Bβ as follows

|Cβ −Bβ | ≤
1

β!
K ·QB2

∥β∥1/2
√
β! ≤ KQB

2∥β∥1/2

√
β!

,

we have the same bound for the second term∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ)

(
P(t− tC)√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)w

w−1∑
l=0

(
w

l

)
(1− rp)l

(
rp√
p!

)w−l

.

F.3 DYNAMIC LOW-RANK FGT WITH INCREASING RANK

We further give an algorithm for FGT when the low-dimensional subspace is dynamic, i.e., the rank
may increase with data insertions.
Theorem F.5 (Low Rank Dynamic FGT Data Structure). Let W be a subspace of Rd with dimension
dim(S) = w ≪ d. Given N source points s1, . . . , sN ∈W with charges q1, . . . , qN , and M target
points t1, . . . , tM ∈ W , a number δ > 0, and a vector q ∈ RN , let G : Rd → R be defined
as G(t) =

∑N
i=1 qi · K(si, t) denote the kernel-density of t with respect to S, where K(si, t) =

f(∥si− t∥2) for f satisfying the properties in Definition 3.3 . There is a dynamic data structure that
supports the following operations:

• INIT() (Algorithm 6) Preprocess in N · logO(w)(∥q∥1/ε) time.

• KDE-QUERY(t ∈ Rd) (Algorithm 7) Output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(w)(∥q∥1/ε) time.

• INSERT(s ∈ Rd, qs ∈ R) (Algorithm 10) For any source point s ∈ Rd and its charge
qs, update the data structure by adding this source point in logO(w)(∥q∥1/ε) time. The
subspace dimension w may be increased by 1 if s is not in the original subspace.

• QUERY(q ∈ RN) (Algorithm 7) Output K̃q ∈ RN such that ∥K̃q − Kq∥∞ ≤ ε, where
K ∈ RN×N is defined by Ki,j = K(si, sj) in N logO(w)(∥q∥1/ε) time.

Proof. Since Algorithm 10 updates Aα, Cβ in the same way as Algorithm 8, the correctness of
Procedures KDE-QUERY and QUERY follows similarly from Theorem B.5.

Furthermore, SCALE takes O(wd+ (N(B) +N(C)) · pw) time. For the correctness, we know that
the rows of P form an orthonormal basis for the subspace. For a newly inserted point s, if it is not lie
in the subspace, (I−P)s gives a new basis direction. Therefore, we can easily update P by attaching
this vector (after normalization) as a column. Then, we show that the intermediate variables Aα and
Cβ can be correctly updated for the new subspace. For each source box B and each w-tuple α ≤ p,
we have

Anew
(α,0)(B) =

(−1)∥α∥1 · (−1)i
α! · i!

∑
j∈B

qj ·
(
x′
j − x′

B√
δ

)(α,i)

= Aα(B),

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Algorithm 10 This algorithm is the update part of Theorem F.5.

1: data structure DYNAMICFGT
2: members
3: k ∈ N ▷ Rank of span(s1, . . . , sN , t1, . . . , tM)
4: Aα(Bl), l ∈ [N(B)], α ≤ p
5: Cβ(Cl), l ∈ [N(C)], β ≤ p
6: tCl

, l ∈ [N(C)]
7: sBl

, l ∈ [N(B)]
8: P ∈ Rw×d

9: end members
10:
11: procedure INSERT(s ∈ Rd, q ∈ R)
12: SCALE(s, q)
13: Find the box s ∈ B
14: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
15: Compute

Anew
α (B)← Aα(B) +

(−1)∥α∥1q

α!
(
P(s− sB)√

δ
)α

▷ Takes pk time
16: end for
17: Find (2k + 1)w nearest target boxes to B, denote by nb(B) ▷ k ≤ log(∥q∥1/ε)
18: for Cl ∈ nb(B) and β ≤ p do
19: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (B)−Aα(B)) ·Hα+β

(
P(sB − tCl

)√
δ

)
▷ Takes (2k + 1)wpw time

20: end for
21: for α ≤ p do
22: Aα(B)← Anew

α (B) ▷ Takes pw time
23: end for
24: for Cl ∈ nb(B) and β ≤ p do
25: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)wpw time
26: end for
27: end procedure
28: end data structure

where x′
j denotes the “lifted” point in the new subspace. And Anew

(α,i)(B) = 0 for all i > 0, since
(x′

j − x′
B)k+1 = 0. Similarly, for each target box C,

Cnew
(β,i)(C) =

(−1)∥β∥1(−1)i
β!i!

∑
B

∑
α≤p

p∑
j=0

Anew
(α,j)(B)H(α+β,i+j)

(
x′
B − y′C√

δ

)

=
(−1)∥β∥1(−1)i

β!i!

∑
B

∑
α≤p

Aα(B)Hα+β

(
xB − yC√

δ

)
· hi(0)

=
(−1)i
i!

hi(0) · Cβ(C),

where the second step follows from Anew
(α,i)(B) = Aα(B) ·1i=0. Therefore, by enumerating all boxes

B, C and indices α, β ≤ p, we can correctly compute Anew
(α,0)(B) and Cnew

(β,i)(C). Thus, we complete
the proof of the correctness of Algorithm 11.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Algorithm 11 This algorithm is another part of Theorem F.5.

1: data structure DYNAMICFGT
2: members
3: w ∈ N ▷ Rank of span(s1, . . . , sN , t1, . . . , tM)
4: Aα(Bl), l ∈ [N(B)], α ≤ p
5: Cβ(Cl), l ∈ [N(C)], β ≤ p
6: tCl

, l ∈ [N(C)]
7: sBl

, l ∈ [N(B)]
8: P ∈ Rw×d

9: end members
10:
11: procedure SCALE(s ∈ Rd, q ∈ R)
12: if s ∈ span(P) then
13: pass
14: else
15: P← (P, (I − P)s/∥(I − P)s∥2), w ← w + 1
16: for Bl, l ∈ [N(B)] and Cl, l ∈ [N(C)] do
17: sBl

← (sBl
, 0) and tCl

← (tCl
, 0)

18: end for
19: Find the box BN(B)+1 of length r

√
δ containing s and let sBN(B)+1

be its center
20: for α ≤ p ∈ Nw and Bl, l ∈ [N(B)] do
21: A(α,0)(Bl)← Aα(Bl)
22: end for
23: for β ≤ p ∈ Nw, 0 ≤ i ≤ p and Cl, l ∈ [N(C)] do
24: C(β,i)(Cl)← (−1)i

i! hi(0) · Cβ(Cl)
25: end for
26: end if
27: end procedure
28: end data structure

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

38

	Introduction
	Main Result

	Related Work
	Technical Overview
	Offline FGT Algorithm
	Online Static KDE Data Structure (Query-Only)
	Dynamization
	Generalization to Fast-Decaying Kernels
	Handling Points From Low-Dimensional Static Spaces
	Handling Points From Low-Dimensional Dynamic Spaces

	Conclusion and Future Directions
	Preliminaries
	FMM Background
	Fast Gaussian Transform

	Our Result
	Properties of Kernel Function
	Dynamic FGT

	Algorithms
	Analysis
	Error Estimation
	Low Dimension Subspace FGT
	Projection Lemma
	Proof of Main Result in Low-Dimensional Case
	Dynamic Low-Rank FGT with Increasing Rank

