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ABSTRACT

The Fast Gaussian Transform (FGT) enables subquadratic-time multiplication of
an n×n Gaussian kernel matrix Ki,j = exp(−∥xi−xj∥22) with an arbitrary vector
h ∈ Rn, where x1, . . . , xn ∈ Rd are a set of fixed source points. This kernel plays
a central role in machine learning and random feature maps. Nevertheless, in
most modern data analysis applications, datasets are dynamically changing (yet
often have low rank), and recomputing the FGT from scratch in (kernel-based)
algorithms incurs a major computational overhead (≳ n time for a single source
update ∈ Rd). These applications motivate a dynamic FGT algorithm, which
maintains a dynamic set of sources under kernel-density estimation (KDE) queries
in sublinear time while retaining Mat-Vec multiplication accuracy and speed.
Assuming the dynamic data-points xi lie in a (possibly changing) k-dimensional
subspace (k ≤ d), our main result is an efficient dynamic FGT algorithm, sup-
porting the following operations in logO(k)(n/ε) time: (1) Adding or deleting a
source point, and (2) Estimating the “kernel-density” of a query point with re-
spect to sources with ε additive accuracy. The core of the algorithm is a dynamic
data structure for maintaining the projected “interaction rank” between source and
target boxes, decoupled into finite truncation of Taylor and Hermite expansions.

1 INTRODUCTION

The fast Multipole method (FMM) was described as one of the top 10 most important algorithms of
the 20th century (Dongarra & Sullivan, 2000). It is a numerical technique that was originally de-
veloped to speed up calculations of long-range forces for the n-body problem in theoretical physics.
FMM was first introduced in 1987 by Greengard and Rokhlin (Greengard & Rokhlin, 1987), based
on the multipole expansion of the vector Helmholtz equation. By treating the interactions between
far-away basis functions using the FMM, the underlying matrix entries Mij ∈ Rn×n (encoding the
pairwise “interaction” between xi, xj ∈ Rd) need not be explicitly computed nor stored for matrix-
vector operations – This technique allows to improve the naı̈ve O(n2) matrix-vector multiplication
time to quasi-linear time ≈ n · logO(d)(n), with negligible (polynomial-small) additive error.

Since the discovery of FMM in the late 80s, it had a profound impact on scientific computing and has
been extended and applied in many different fields, including physics, mathematics, numerical anal-
ysis and computer science (Greengard & Rokhlin, 1987; Greengard, 1988; Greengard & Rokhlin,
1988; 1989; Greengard, 1990; Greengard & Strain, 1991; Engheta et al., 1992; Greengard, 1994;
Greengard & Rokhlin, 1996; Beatson & Greengard, 1997; Darve, 2000; Yang et al., 2003; 2004;
Martinsson, 2012; Chandrasekaran et al., 2006). To mention just one important example, we note
that FMM plays a key role in efficiently maintaining the SVD of a matrix under low-rank perturba-
tions, based on the Cauchy structure of the perturbed eigenvectors (Gu & Eisenstat, 1994). In the
context of machine learning, the FMM technique can be extended to the evaluation of matrix-vector
products with certain Kernel matrices Ki,j = f (∥xi − xj∥), most notably, the Gaussian Kernel
Ki,j = exp(−∥xi − xj∥22) (Greengard & Strain, 1991). For any query vector q ∈ Rn, the fast
Gaussian transform (FGT) algorithm outputs an arbitrarily-small pointwise additive approximation
to K · q, i.e., a vector z ∈ Rn such that ∥K · q − z∥∞ ≤ ε, in merely n logO(d)(∥q∥1/ε) time,
which is dramatically faster than naı̈ve matrix-vector multiplication (n2) for constant dimension d.
Note that the (poly)logarithmic dependence on 1/ε means that FGT can achieve polynomially-small
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additive error in quasi-linear time, which is as good as exact computation for all practical purposes.
The crux of FGT is that the n× n matrix K can be stored implicitly, using a clever spectral-analytic
decomposition of the geometrically-decaying pairwise distances (“interaction rank”, more on this
below).

Kernel matrices play a central role in machine learning (Shawe-Taylor & Cristianini, 2004; Rahimi
& Recht, 2008), as they allow to extend convex optimization and learning algorithms to nonlinear
feature spaces and even to non-convex problems (Li & Liang, 2018; Jacot et al., 2018; Du et al.,
2019; Allen-Zhu et al., 2019a;b; Lee et al., 2020). Accordingly, matrix-vector multiplication with
kernel matrices is a basic operation in many ML optimization tasks, such as Kernel PCA and ridge
regression (Alaoui & Mahoney, 2015; Avron et al., 2017a;b; Lee et al., 2020), Gaussian-process re-
gression (GPR) (Rasmussen & Nickisch, 2010), Kernel linear system solvers (via Conjugate Gradi-
ent (Alman et al., 2020)), and in fast implementation of the dynamic “state-space model” (SSM) for
sequence-correlation modeling (which crucially relies on the Multipole method (Gu et al., 2021)), to
mention a few. The related data-structure problem of kernel density estimation of a point (Charikar
& Siminelakis, 2017; Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020;
Zandieh et al., 2023; Alman & Song, 2023) KDE(X, y) = 1

n

∑n
i=1 K(xi, y) has various appli-

cations in data analysis and statistics (Fan & Gijbels, 1996; Schölkopf & Smola, 2002; Schubert
et al., 2014), and is the main subroutine in the implementation of transfer learning using kernels (see
(Charikar & Siminelakis, 2017; Charikar et al., 2020) and references therein, and the Related Work
Section 2 below). As such, speeding up matrix-vector multiplication with kernel matrices, such as
FGT, is an important question in theory and practice.

One drawback of FMM and FGT techniques, however, is that they are static algorithms, i.e., they
assume a fixed set of n data points xi ∈ Rd. By contrast, most aforementioned ML and data anal-
ysis applications are dynamic by nature and need to process rapidly-evolving datasets to maintain
prediction and model accuracy. One example is the renewed interest in online regression (Cohen
et al., 2015; Jiang et al., 2022), motivated by continual learning theory (Parisi et al., 2019). Indeed,
it is becoming increasingly clear that many static optimization algorithms do not capture the require-
ments of real-world applications (Jain et al., 2008; Chen et al., 2020b;a; Song et al., 2021a;b; Xu
et al., 2021; Shrivastava et al., 2021). Notice that changing a single source-point xi ∈ Rd generally
affects an entire row (n distances ∥xi − xj∥) of the matrix K. As such, naively re-computing the
static FGT on the modified set of distances, incurs a prohibitive computational overhead (n ≫ d).
This raises the natural question of whether it is possible to achieve sublinear-time insertion and
deletion of source points, as well as “local” kernel-density estimation (KDE) queries (Charikar &
Siminelakis, 2017; Yang et al., 2003), while maintaining speed and accuracy of matrix-vector mul-
tiplication queries:

Is it possible to ‘dynamize’ the Fast Gaussian Transform, in sublinear time? Can the exponential
dependence on d (Greengard & Strain, 1991) be mitigated if the data-points xi lie in a

k-dimensional subspace of Rd?

The last question is motivated by the recent work of (Cherapanamjeri & Nelson, 2022), who ob-
served that kernel-based methods and algorithms typically involve low-rank datasets, (where the
“intrinsic” dimension is w ≪ d), in which case one could hope to circumvent the exponential de-
pendence on d in the aforementioned (static) FMM algorithm (Greengard & Strain, 1991; Alman
et al., 2020).

1.1 MAIN RESULT

Our main result is an affirmative answer to the above question. We design a fully-dynamic FGT
data structure, supporting polylogarithmic-time updates and “density estimation” queries, while re-
taining quasi-linear time for arbitrary Mat-Vec queries (Kq). More formally, for a set of N “source”
points s1, . . . , sN , the j-th coordinate (Kq)j∈[N ] is G(sj) =

∑N
i=1 qi · e−∥sj−si∥2

2/δ , which mea-
sures the kernel-density at sj (“interaction” of sj with the rest of the sources). More generally, for
any “target” point t ∈ Rd, let G(t) :=

∑N
i=1 qi · e−∥t−si∥2

2/δ denote the kernel density of t with
respect to the sources, where each source si is equipped with a charge qi. Our data structure sup-
ports fully-dynamic source updates and density-estimation queries in sublinear time. Observe that
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this immediately implies that entire Mat-Vec queries (K · q) can be computed in quasi-linear time
N1+o(1). The following is our main result:

Theorem 1.1 (Dynamic Low-Rank FGT, Informal version of Theorem F.2). Let B denote a w-
dimensional subspace⊂ Rd. Given a set of source points s, and charges q, there is a (deterministic)
data structure that maintains a fully-dynamic set of N source vectors s1, · · · , sN ∈ B under the
following operations:

• INSERT/DELETE(si ∈ Rd, qi ∈ R) Insert or Delete a source point si ∈ Rd along with its
“charge” qi ∈ R, in logO(w)(∥q∥1/ε) time. The intrinsic subspace B could change as the
source points are updated.

• DENSITY-ESTIMATION(t ∈ B) For any point t ∈ B ⊂ Rd, output the kernel density
of t with respect to the sources, i.e., output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(w)(∥q∥1/ε) time.

We note that when w = d, the costs of our dynamic algorithm match the statistic FGT algorithm. As
one might expect, our data structure applies to a more general subclass of ‘geometrically-decaying’
kernels Ki,j = f(∥xi − xj∥) (f(tx) ≤ (1− α)tf(x)), see Theorem B.5 for the formal statement of
our main result. It is also noteworthy that our data structure is deterministic, and therefore handles
even adaptive update sequences (Hardt & Woodruff, 2013; Ben-Eliezer et al., 2020; Cherapanamjeri
& Nelson, 2020). This feature is important in adaptive data analysis and in the use of dynamic
data structures for accelerating path-following iterative optimization algorithms (Brand et al., 2020),
where proximity to the original gradient flow (linear) equations is crucial for convergence, hence the
data structure needs to ensure the approximation guarantees hold against any outcome of previous
iterations.

Remark on Dynamization of “Decomposable” Problems A data structure problem P(D, q)
is called decomposable, if a query q to the union of two separate datasets can be recovered
from the two marginal answers of the query on each of them separately, i.e., P(D1 ∪ D2, q) =
g (P(D1, q),P(D2, q)) for some function g. A classic technique in data structures (Bentley &
Saxe, 1980) asserts that decomposable data structure problems can be (partially) dynamized in a
black-box fashion – It is possible to convert any static DS for P into a dynamic one supporting
incremental updates, with an amortized update time tu ∼ (T/N) · log(N), where T is the prepro-
cessing time of building the static data structure, and N is the input size. We can see that Matrix-
Vector multiplication over a field with row-updates to the matrix is a decomposable problem since
(A + B)q = Aq + Bq, and so one might hope that the dynamization of static FMM/FGT methods
is an immediate consequence of decomposability. This reasoning is, unfortunately, incorrect, since
changing even a single input point xi ∈ Rd, perturbs n distances, i.e., an entire row in the kernel
matrix K, and so the aforementioned reduction is prohibitively expensive (yields update time at least
n≫ d for adding/removing a point).

Notation. For a vector x, we use ∥x∥2 to denote its ℓ2-norm, ∥x∥1, ∥x∥0 and ∥x∥∞ for its ℓ1-
norm, ℓ0-norm and ℓ∞-norm. We use Õ(f) to denote f · poly(log f). For a vector x ∈ Rd and a
real number p, we say x ≤ p if xi ≤ p for all i ∈ [d]. We say x ≥ p if there exists an i ∈ [d] such
that xi ≥ p. For a positive integer n, we use [n] to denote a set {1, 2, · · · , n}.

Roadmap. In Section 2, we introduce the related research works. In Section 3, we present the
important techniques used to prove our main result. In Section 4, we make a conclusion for our
work.

2 RELATED WORK

Structured Linear Algebra Multiplying an n × n matrix M by an arbitrary vector q ∈ Rn

generally requires Θ(n2) time, and this is information-theoretically optimal since merely reading
the entries of the matrix requires ∼ n2 operations. Nevertheless, if M has some structure (Õ(n)-
bit description-size), one could hope for quasi-linear time for computing M · q. Kernel matrices
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Kij = f(∥xi − xj∥), which are the subject of this paper, are special cases of such geometric-
analytic structure, as their n2 entries are determined by only ∼ n points in Rd, i.e., O(nd) bits of
information. There is a rich and active body of work in structured linear algebra, exploring various
“algebraic” structures that allow quasi-linear time matrix-vector multiplication, most of which relies
on (novel) extensions of the Fast Fourier Transform (see (Driscoll et al., 1997; Sa et al., 2018; Chen
et al., 2021) and references therein). A key difference between FMMs and the aforementioned FFT-
style line of work is that the latter develops exact Mat-Vec algorithms, whereas FMM techniques
must inevitably resort to (small) approximation, based on the analytic smoothness properties of the
underlying function and metric space (Alman et al., 2020; 2021). This distinction makes the two
lines of work mostly incomparable.

Comparison to LSH-based KDEs A recent line of work due to (Charikar & Siminelakis, 2017;
Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020; Bakshi et al., 2023) de-
velops fast KDE data structures based on locality-sensitive hashing (LSH), which seems possible to
be dynamized naturally (as LSH is dynamic by nature). However, this line of work is incomparable
to FGT, as it solves KDE in the low-accuracy regime, i.e., the runtime dependence on ε of these
works is poly(1/ε) (but polynomial in d), as opposed to FGT (poly log(1/ε) but exponential in d).
Additionally, some work (e.g., (Charikar et al., 2020)) also needs an upper bound of the ground-truth
value µ⋆ = K · q, and the efficiency of their data structure depends on µ

−O(1)
⋆ , while FGT does not

need any prior knowledge of µ⋆.

Kernel Methods in ML Kernel methods can be thought of as instance-based learners: rather than
learning some fixed set of parameters corresponding to the features of their inputs, they instead
“remember” the i-th training example (xi, yi) and learn for it a corresponding weight wi. Prediction
for unlabeled inputs, i.e., those not in the training set, is treated using an application of a similarity
function K (i.e., a kernel) between the unlabeled input x′ and each of the training-set inputs xi.
This framework is one of the main motivations for the development of kernel methods in ML and
high-dimensional statistics (Schölkopf et al., 2002). There are two main themes of research on
kernel methods in the context of machine learning: The first one is focused on understanding the
expressive power and generalization of learning with kernel feature maps (Ng et al., 2002; Schölkopf
et al., 2002; Shawe-Taylor & Cristianini, 2004; Rahimi & Recht, 2008; Hofmann et al., 2008; Jacot
et al., 2018; Du et al., 2019; Yang et al., 2023); The second line is focused on the computational
aspects of kernel-based algorithms (Alman et al., 2020; Brand et al., 2021; Song et al., 2021a;b; Hu
et al., 2022; Alman et al., 2022; Zhang, 2022; Alman & Song, 2023; Deng et al., 2023; Gao et al.,
2023b;a). We refer the reader to these references for a much more thorough overview of these lines
of research and the role of kernels in ML.

3 TECHNICAL OVERVIEW

In Section 3.1, we review the offline FGT algorithm (Greengard & Rokhlin, 1987; Alman et al.,
2020) and analyze the computational costs. In Section 3.2, we illustrate the technique of estimating
G(t) for an arbitrary target vector t ∈ Rd. In Section 3.3, we explain that the data structures support
the dynamic setting where the source vectors are allowed to come and leave. In Section 3.4, we
describe how to extend the data structure to a more general kernel function. In Section 3.5, we show
that if the source and target vectors come from a low dimensional subspace, the data structure can
bypass the curse of dimension. In Section 3.6, we modify the data structure to support the scenario
where the rank of data points varies across iterations.

3.1 OFFLINE FGT ALGORITHM

We first review (Alman et al., 2020)’s offline FGT algorithm. Consider the following easier problem:
given N source vectors s1, . . . , sN ∈ Rd, and M target vectors t1, . . . , tM ∈ Rd, estimate

G(ti) =

N∑
j=1

qj · e−∥ti−sj∥2
2/δ

for any i ∈ [M ], in quasi-linear time. Following (Greengard & Strain, 1991; Alman et al., 2020),
our algorithm subdivides B0 = [0, 1]d into smaller boxes with sides of length L = r

√
2δ parallel to

4
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the axes, for a fixed r ≤ 1/2, and then assign each source sj to the box B in which it lies and each
target ti to the box C in which it lies. Note that there are (1/L)d boxes in total. Let N(B) and N(C)
denote the number of non-empty source and target boxes, respectively. For each target box C, we
need to evaluate the total field due to sources in all boxes. Since each box B has side length r

√
2δ,

only a fixed number of source boxes B can contribute more than ∥q∥1ε to the field in a given target
box C, where ε is the precision parameter. Hence, for a target vector in box C, if we only count the
contributions of the source vectors in its (2k+1)d nearest boxes where k is a parameter, it will incur
an error that can be upper bounded as follows:∑

j:∥t−sj∥∞≥kr
√
2δ

|qj | · e−∥t−sj∥2
2/δ ≤ ∥q∥1 · e−2r2k2

(1)

When we take k = log(∥q∥1/ε), this error becomes o(ε). For a single source vector sj ∈ B, its field
Gsj (t) = qj · e−∥t−sj∥2/δ has the following Taylor expansion at tC (the center of C):

Gsj (t) =
∑
β≥0

Bβ(j, C)
(
t− tC√

δ

)β

, (2)

where β ∈ Nd is a multi-index,

Bβ(j, C) = qj ·
(−1)∥β∥1

β!
·Hβ

(
sj − tC√

δ

)
,

and Hβ(x) is the multi-dimensional Hermite function indexed by β (see Definition A.7). We can
also control the truncation error of the first pd terms by ε for p = log(∥q∥1/ε) (see Lemma E.6).
Then, for a fixed source box B, the field can be approximated by∑

β≤p

Cβ(B, C)(
t− tC√

δ
)β ,

where Cβ(B, C) :=
∑

j∈B Bβ(j, C). Hence, for each query point t, we just need to locate its target
box C, and then G(t) can be approximated by:

G̃(t) =
∑

B∈nb(C)

∑
β≤p

Cβ(B, C)
(
t− tC√

δ

)β

=
∑
β≤p

Cβ(C)
(
t− tC√

δ

)β

,

where nb(C) is the set of (2k + 1)d nearest-neighbor of C and

Cβ(C) :=
∑

B∈nb(C)

Cβ(B, C).

Notice that we can further pre-compute Cβ(C) for each target box C and β ≤ p. Then, the running
time for each target point becomes O(pd). For the preprocessing time, notice that each Cβ(B, C)
takes O(NB)-time to compute, where NB is the number of source points in B. Fix a β ≤ p. Consider
the computational cost of Cβ(C) for all target boxes C. Note that each source box can interact with
at most (2k + 1)d target boxes. Therefore, the total running time for computing {Cβ(Cℓ)}ℓ∈[N(C)]

is bounded by O
(
N · (2k + 1)d +M

)
. Then, the total cost of the preprocessing is

O
(
N · (2k + 1)d · pd +M · pd

)
.

By taking p = log(∥q∥1/ε) and k ≤ log(∥q∥1/ε), we get an algorithm with Õd(N + M)-time
for preprocessing and Õd(1)-time for each target point. We note that this algorithm also supports
fast computing Kq for any q ∈ Rd and K ∈ Rn×n with Ki,j = e−∥si−sj∥2

2/δ . Roughly speaking,
for each query vector q, we can build this data structure, and then the i-th coordinate of Kq is just
G(si), which can be computed in poly-logarithmic time. Hence, Kq can be approximately computed
in nearly-linear time with ℓ∞ error at most ε.
Remark 3.1. The kernel bandwidth δ > 0 can be set using standard rules like median heuristic
or cross-validation. For the box length L = r

√
2δ, the parameter r controls the tradeoff between

computational cost and accuracy. We recommend r = 1/2 as it provides a good balance, and the
error bound (see Eq. (1)) scales as exp(−2r2k2) where k is a parameter that controls the number of
neighboring boxes. For the truncation parameter p, we set it to p = log(∥q∥1/ε) to achieve desired
accuracy ε (see Lemma E.6). This parameter can be adjusted dynamically based on observed errors.
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3.2 ONLINE STATIC KDE DATA STRUCTURE (QUERY-ONLY)

Next, we consider the same static setting, except target queries t ∈ Rd arrive online, and the goal
is to estimate G(t) for an arbitrary vector in sublinear time. To this end, note that if t is con-
tained in a non-empty target box Cℓ, then G(t) can be approximated using pre-computed Cβ(Cℓ)
in poly-logarithmic time. Otherwise, we need to add a new target box CN(C)+1 for t and compute
Cβ(CN(C)+1), which takes time

∑
B∈nb(CN(C)+1)

O(NB). However, this linear scan naı̈vely takes
O(N) time in the worst case. Indeed, looking into the coefficients Cβ(B, C):

Cβ(B, C) =
∑
j∈B

qj ·
(−1)∥β∥1

β!
·Hβ

(
sj − tC√

δ

)
reveals that the source vectors sj are “entangled” with tC , so evaluating Cβ(B, C) brute-forcely for
a new target box C, incurs a linear scan of all source vectors in B. To “disentangle” sj and tC , we
use the Taylor series of Hermite function (Eq. (5)):

Hβ

(
sj − tC√

δ

)
= Hβ

(
sj − sB√

δ
+

sB − tC√
δ

)
=
∑
α≥0

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

Hα+β

(
sB − tC√

δ

)
,

where sB denotes the center of the source box B. Hence, Cβ(B, C) can be re-written as:

Cβ(B, C) =
∑
j∈B

qjg(β)
∑
α≥0

g(α)

(
sj − sB√

δ

)α

Hα+β

(
sB − tC√

δ

)

= g(β)
∑
α≥0

Aα(B)Hα+β

(
sB − tC√

δ

)
,

where g(x) = (−1)∥x∥1/x! and

Aα(B) :=
∑
j∈B

qjg(α)

(
sj − sB√

δ

)α

. (3)

Now, Aα(B) does not rely on the target box and can be pre-computed, hence we can compute
Cβ(B, C) without going over each source vector. However, there is a price for this conversion,
namely, that now Cβ(B, C) involves summing over all α ≥ 0, so we need to somehow truncate
this series while controlling the overall truncation error for G(t), which appears difficult to achieve.
To this end, we observe that this two-step approximation is equivalent to first forming a truncated
Hermite series of e∥t−sj∥2

2/δ at the center of the source box sB, and then transforming all Hermite
expansions into Taylor expansions at the center of a target box tC . More formally, the Hermite
approximation of G(t) is

G(t) =
∑
B

∑
α≤p

(−1)∥α∥1Aα(B)Hα

(
t− sB√

δ

)
+ ErrH(p),

where |ErrH(p)| ≤ ε (see Lemma E.2). Hence, we can Taylor-expand each Hα at tC and get that:

G(t) =
∑

β≤p Cβ(C)
(

t−tC√
δ

)β
+ ErrT (p) + ErrH(p), where |ErrH(p)|+ |ErrT (p)| ≤ ε, (for the

formal argument, see Lemma E.5).

Remark 3.2. The original FGT paper contains a flaw in the error estimation, which was partially
fixed in (Baxter & Roussos, 2002) for the Hermite expansion. Later, (Lee et al., 2005) corrected
the error in both Hermite and Taylor expansions. However, their proofs are brief and use different
notations that are adapted for their dual-tree algorithm. We provide more detailed and user-friendly
proofs for the correct error estimations in Section E. We believe that they are of independent interest
to the community.
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This means that, at preprocessing time, it suffices to compute Aα(B) for all source boxes and all
α ≤ p, which takes ∑

k∈[N(B)]

O
(
pd ·NBk

)
= O

(
pd ·N

)
= Õd(N).

time. Then, at query time, given an arbitrary query vector t in a target box C, we compute

Cβ(C) = h(β)
∑

B∈nb(C)

∑
α≤p

Aα(B)Hα+β

(
sB − tC√

δ

)
,

which takes

O
(
d · pd · (2k + 1)d

)
= poly log(n)

time, so long as d = O(1) and ε = n−O(1).

3.3 DYNAMIZATION

Given our (static) representation of points from the last paragraph, dynamizing the above static KDE
data structure now becomes simple. Suppose we add a source vector s in the source box B. We first
update the intermediate variables Aα(B), α ≤ p, which takes O(pd) time. So long as the ℓ1-norm
of the updated charge-vector q remains polynomial in the norm of the previously maintained vector,
namely √

log(∥qnew∥1) > log(∥q∥1),
we show that one source box can only affect (2k + 1)d nearest target box C; otherwise, when the
change is super-polynomial, we rebuild the data structure, but this cost is amortized away. Hence,
we only need to update Cβ(C) for those C ∈ nb(B). Notice that each Cβ(B, C) can be updated in
Od(1) time, so each affected Cβ(C) can also be updated in Od(1) time. Hence, adding a source
vector can be done in time O((2k + 1)dpd) = Õd(1) as before. Deleting a source vector follows
from a similar procedure.

3.4 GENERALIZATION TO FAST-DECAYING KERNELS

We briefly explain how the dynamic FGT data structure generalizes to more general kernel functions
K(s, t) = f(∥s− t∥2) where f satisfies the 3 properties in Definition 3.3 below.
Definition 3.3 (Properties of general kernel function, (Alman et al., 2020)). We define the following
properties of the function f : R→ R+:

• P1: f is non-increasing, i.e., f(x) ≤ f(y) when x ≥ y.

• P2: f is decreasing fast, i.e., f(Θ(log(1/ε))) ≤ ε.

• P3: f ’s Hermite expansion and Taylor expansion are truncateable: the truncation error of
the first (logd(1/ε)) terms in the Hermite and Taylor expansion of K is at most ε.

Remark 3.4. There are many widely-used kernels that satisfy the properties of general kernel func-
tion (Definition 3.3) such as:

• inverse polynomial kernels: K(x, y) = 1/∥x− y∥c2 for constant c > 0,

• exponential kernel: K(x, y) = exp(−∥x− y∥2),

• inverse multiquadric kernel: K(x, y) = 1/
√
∥x− y∥22 + c (Micchelli, 1984; Martinsson,

2012), and

• rational quadratic kernel: K(x, y) = 1/(1 + ∥x− y∥22/α) for α > 0.

The key insight is that these kernels’ fast decay allows truncation of distant interactions, while their
smoothness enables efficient local approximations via series expansions. This broader applicability
significantly extends the practical utility of our dynamic data structure.
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In the general case, Gf (t) =
∑

B
∑

j∈B qjK(sj , t). Similar to the Gaussian kernel case, we can first
show that only near boxes matter: ∑

j:∥t−sj∥∞≥kr

|qj | · f(∥s− t∥2) ≤ ε

by the fast-decreasing property (P2) in Definition 3.3 of f and taking k = O(log(∥q∥1/ε))1. Then,
we can follow the same “decoupling” approach as the Gaussian kernel case to first Hermite expand
Gf (t) at the center of each source box and then Taylor expands each Hermite function at the center
of the target box. In this way, we can show that

Gf (t) ≈
∑
β≤p

Cf,β(C)
(
t− tC√

δ

)β

,

where Cf,β(C) = cβ
∑

B∈nb(C)
∑

α≤p Af,α(B)Hα+β

(
sB−tC√

δ

)
, and the approximation error can be

bounded since f is truncateable. Af,α(B) depends on the kernel function f and can be pre-computed
in the preprocessing. Then, each Cf,β(C) can be computed in poly-logarithmic time. Hence, G(t)
can be approximately computed in poly-logarithmic time for any target vector t.

3.5 HANDLING POINTS FROM LOW-DIMENSIONAL STATIC SPACES

In many practical problems, the data lies in a low dimensional subspace of Rd. We can first project
the data into this subspace and then perform FGT on Rw, where w is the rank. The following lemma
shows that FGT can be performed on the projections of the data.

Lemma 3.5 (Hermite projection lemma in low-dimensional space, informal version of Lemma F.3).
Given B ∈ Rd×w that defines a w-dimensional subspace of Rd, let B⊤B = UΛU⊤ ∈ Rw×w

denote the spectral decomposition where U ∈ Rw×w and a diagonal matrix Λ ∈ Rw×w. We define
P := Λ−1/2U−1B⊤ ∈ Rw×d. Then we have for any t, s ∈ Rd from subspace B, the following
equation holds

e−∥t−s∥2
2/δ =

∑
α≥0

(
√
1/δP(t− s))α

α!
hα(
√

1/δP(t− s)).

By Lemma 3.5, it suffices to divide Rw instead of Rd into boxes and conduct Hermite expansion
and Taylor expansion on the low-dimensional subspace. More specifically, given the initial source
points, we can compute P by SVD or QR decomposition in N ·wω−1-time2, which is of smaller order
than the FGT’s preprocessing time3. Then, we can project each point si ∈ Rd to xi := Psi ∈ Rw

for i ∈ [N ]. The remaining procedure in preprocessing is the same as before, but directly working
on the low-dimensional sources {x1, . . . , xN}. In the query phase, consider a target point t in the
subspace. We are supposed to compute G(t) ≈ ∑B

∑
j∈B qj · e−∥t−sj∥2

2/δ. By Lemma 3.5, we

know that G(t) ≈ ∑β≤p Cβ(C)
(

P(t−tC)√
δ

)β
=
∑

β≤p Cβ(C)
(

y−yC√
δ

)β
, where C is the target box

that contains t, y = Pt and yC = PtC projected points. Moreover, for each β ≤ p and target box C,
we have

Cβ(C) =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
P(sB − tC)√

δ

)

=
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
xB − yC√

δ

)
.

1Indeed, by property P2 , f(Θ(log(1/ε′))) ≤ ε′. Taking ε′ := ε/∥q∥1, we get that f(∥s− t∥2) ≤ ε/∥q∥1.
Hence, the summation is at most ε.

2ω ≈ 2.372 is the fast matrix multiplication time exponent.
3In practice, we can run numerical algorithms such as randomized SVD that are very fast for low-rank

matrices.
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Similarly, for each α ≤ p and source box B,

Aα(B) =
(−1)∥α∥1

α!

∑
j∈B

qj ·
(
xj − xB√

δ

)α

.

Therefore, each query is equivalent to being conducted in a w-dimensional space using our data
structure, which takes logO(w)(∥q∥1/ε)-time. The update can be done in a similar way in the low-
dimensional space using the procedure described in Section 3.3. Hence, each update (insertion or
deletion) takes logO(w)(∥q∥1/ε).

3.6 HANDLING POINTS FROM LOW-DIMENSIONAL DYNAMIC SPACES

We note that when we add a new source point to the data structure, the intrinsic rank of the data
might change by 1 when the point is not in the subspace. For an inserting source point s, consider
the rank-increasing case, i.e., (I−P)s ̸= 0. Then, this new source point contributes to one new basis
u := (I−P)s

∥(I−P)s∥2
. Also, we can update the projection matrix P by [P u] ∈ R(w+1)×d. However, as

the subspace is changed, we need to maintain the intermediate variables Aα(B), Cβ(C). It is easy to
observe that for the original projected source and target points or boxes, they can easily be “lifted”
to the new subspace by setting zero to the (w + 1)-th coordinate. We show how to update Aα(B)
efficiently. For each source box B and α ≤ p, we have

Anew
(α,0)(B) =

(−1)∥α∥1 · (−1)i
α! · i!

∑
j∈B

qj ·
(
x′
j − x′

B√
δ

)(α,i)

= Aα(B),

where x′
j denotes the lifted point. And Anew

(α,1)(B) = 0 for all i > 0. Similarly, for each target box C,

Cnew
(β,i)(C) =

(−1)∥β∥1(−1)i
β!i!

·
∑
B

∑
α≤p

p∑
j=0

Anew
(α,j)(B)H(α+β,i+j)

(
x′
B − y′C√

δ

)

=
(−1)∥β∥1(−1)i

β!i!
·
∑
B

∑
α≤p

Aα(B)Hα+β

(
xB − yC√

δ

)
· hi(0)

=
(−1)i
i!
· Cβ(C).

Therefore, by enumerating all boxes B, C and indices α, β ≤ p, we can compute Anew
(α,0)(B) and

Cnew
(β,i)(C) in logO(w)(∥q∥1/ε)-time. Then, we just follow the static subspace insertion procedure

to insert the new source point s. In this way, we obtain a data structure that can handle dynamic
low-rank subspaces.

4 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the Fast Gaussian Transform (FGT) in a dynamic setting and propose a
dynamic data structure to maintain the source vectors that support very fast kernel density estimation,
Mat-Vec queries (K·q), as well as updating the source vectors. We further show that the efficiency of
our algorithm can be improved when the data points lie in a low-dimensional subspace. Our results
are especially valuable when FGT is used in real-world applications with rapidly-evolving datasets,
e.g., online regression, federated learning, etc.

One open problem in this direction is, can we compute Kq in O(N)+logO(d)(N/ε) time? Currently,
it takes N logO(d)(N/ε) time even in the static setting. The lower bounds in (Alman et al., 2020)
indicate that this improvement is impossible for some “bad” kernels K which are very non-smooth.
It remains open when K is a Gaussian-like kernel. It might be helpful to apply more complicated
geometric data structures to maintain the interactions between data points. Another open problem
is, can we fast compute Mat-Vec product or KDE for slowly-decaying kernels? The main difficulty
is the current FMM techniques cannot achieve high accuracy when the kernel decays slowly. New
techniques might be required to resolve this problem.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. CoRR, abs/2111.00396, 2021. URL https://arxiv.org/abs/2111.
00396.

Ming Gu and Stanley C. Eisenstat. A stable and efficient algorithm for the rank-one modification of
the symmetric eigenproblem. SIAM Journal on Matrix Analysis and Applications, 15:1266–1276,
1994.

Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory of computing (STOC), pp. 121–130,
2013.
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Appendix
Roadmap. In Section A, we provide several notations and definitions about the Fast Multipole
Method. In Section B, we present the formal statement of our main result. In Section C, we present
our data-structures and algorithms. In Section D, we provide a complete and full for our results. In
Section E, we prove several lemmas to control the error. In Section F, we generalize our results to
low dimension subspace setting.

A PRELIMINARIES

We first give a quick overview of the high-level ideas of FMM in Section A.1. In Section A.2, we
provide a complete description and proof of correctness for the fast Gaussian transform, where the
kernel function is the Gaussian kernel. Although a number of researchers have used FMM in the
past, most of the previous papers about FMM either focus on low-dimensional or low-error cases.
We therefore focus on the superconstant-error, high dimensional case, and carefully analyze the joint
dependence on ε and d. We believe that our presentation of the original proof in Section A.2 is thus
of independent interest to the community.

A.1 FMM BACKGROUND

We begin with a description of high-level ideas of the Fast Multipole Method (FMM). Let K :
Rd×Rd → R+ denote a kernel function. The inputs to the FMM are N sources s1, s2, · · · , sN ∈ Rd

and M targets t1, t2, · · · , tM . For each i ∈ [N ], source si has associated ‘strength’ qi. Suppose all
sources are in a ‘box’ B and all the targets are in a ‘box’ C. The goal is to evaluate

uj =

N∑
i=1

K(si, tj)qi, ∀j ∈ [M ]

Intuitively, if K has some nice property (e.g. smooth), we can hope to approximate K in the following
sense:

K(s, t) ≈
P−1∑
p=0

Bp(s) · Cp(t), s ∈ B, t ∈ C

for some functions Bp, Cp : Rd → R, where P is a small positive integer, usually called the
interaction rank in the literature (Corona et al., 2015; Martinsson, 2019).

Now, we can construct ui in two steps:

vp =
∑
i∈B

Bp(si)qi, ∀p = 0, 1, · · · , P − 1,

and

ũj =

P−1∑
p=0

Cp(tj)vp, ∀i ∈ [M ].

Intuitively, as long as B and C are well-separated, then ũj is very good estimation to uj even for
small P , i.e., |ũj − uj | < ε.

Recall that, at the beginning of this section, we assumed that all the sources are in the the same box
B and C. This is not true in general. To deal with this, we can discretize the continuous space into
a batch of boxes B1,B2, · · · and C1, C2, · · · . For a box Bl1 and a box Cl2 , if they are very far apart,
then the interaction between points within them is small, and we can ignore it. If the two boxes are
close, then we deal with them efficiently by truncating the high order expansion terms in K (only
keeping the first logO(d)(1/ε) terms). For each box, we will see that the number of nearby relevant
boxes is at most logO(d)(1/ε).
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r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

Figure 1: An illustration of the source-target boxing our data structure maintains in high dimensional
space, using the “hybrid” of Taylor-Hermite expansions.

A.2 FAST GAUSSIAN TRANSFORM

Given N vectors s1, · · · sN ∈ Rd, M vectors t1, · · · , tM ∈ Rd and a strength vector q ∈ Rn,
Greengard and Strain (Greengard & Strain, 1991) provided a fast algorithm for evaluating discrete
Gauss transform

G(ti) =

N∑
j=1

qje
−∥ti−sj∥2/δ

for all i ∈ [M ] in O(M+N) time. In this section, we re-prove the algorithm described in (Greengard
& Strain, 1991), and determine the exact dependence on ε and d in the running time.

Without loss of generality, we can assume that all the sources sj and targets are belonging to the
unit box B0 = [0, 1]d. The reason is, if not, we can shift the origin and rescaling δ.

Let t and s lie in d-dimensional Euclidean space Rd, and consider the Gaussian

e−∥t−s∥2
2 = e−

∑d
i=1(ti−si)

2

We begin with some definitions. One important tool we use is the Hermite polynomial, which is a
well-known class of orthogonal polynomials with respect to Gaussian measure and widely used in
analyzing Gaussian kernels.

Definition A.1 (One-dimensional Hermite polynomial, (Hermite, 1864)). The Hermite polynomials
h̃n : R→ R is defined as follows

h̃n(t) = (−1)net2 d
n

dt
e−t2

The first few Hermite polynomials are:

h̃1(t) = 2t, h̃2(t) = 4t2 − 2, h̃3(t) = 8t3 − 12t, · · ·
Definition A.2 (One-dimensional Hermite function, (Hermite, 1864)). The Hermite functions hn :
R→ R is defined as follows

hn(t) = e−t2 h̃n(t) = (−1)n d
n

dt
e−t2

We use the following Fact to simplify e−(t−s)2/δ .
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r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

inserted points ———–

Figure 2: An illustration of inserting two source points with corresponding interactions to the data
structure.

Fact A.3. For s0 ∈ R and δ > 0, we have

e−(t−s)2/δ =

∞∑
n=0

1

n!
·
(
s− s0√

δ

)n

· hn

(
t− s0√

δ

)
and

e−(t−s)2/δ = e−(t−s0)
2/δ

∞∑
n=0

1

n!
·
(
s− s0√

δ

)n

· h̃n

(
t− s0√

δ

)
.

Lemma A.4 (Cramer’s inequality for one-dimensional, (Hille, 1926)). For any K < 1.09,

|h̃n(t)| ≤ K2n/2
√
n!et

2/2.

Using Cramer’s inequality (Lemma A.4), we have the following standard bound.
Lemma A.5. For any constant K < 1.09, we have

|hn(t)| ≤ K · 2n/2 ·
√
n! · e−t2/2.

Next, we will extend the above definitions and observations to the high dimensional case. To sim-
plify the discussion, we define multi-index notation. A multi-index α = (α1, α2, · · · , αd) is a
d-tuple of nonnegative integers, playing the role of a multi-dimensional index. For any multi-index
α ∈ Rd and any t ∈ Rt, we write

α! =

d∏
i=1

(αi!), tα =

d∏
i=1

tαi
i , Dα = ∂α1

1 ∂α2
2 · · · ∂αd

d .

where ∂i is the differential operator with respect to the i-th coordinate in Rd. For integer p, we say
α ≤ p if αi ≤ p, ∀i ∈ [d]; and we say α ≥ p if αi ≥ p, ∃i ∈ [d]. We use these definitions to
guarantee that {α ≤ p} ∪ {α ≥ p} = Nd.

We can now define multi-dimensional Hermite polynomial:

Definition A.6 (Multi-dimensional Hermite polynomial, (Hermite, 1864)). We define function H̃α :
Rd → R as follows:

H̃α(t) =

d∏
i=1

h̃αi
(ti).

Definition A.7 (Multi-dimensional Hermite function, (Hermite, 1864)). We define function Hα :
Rd → R as follows:

Hα(t) =

d∏
i=1

hαi
(ti).

It is easy to see that Hα(t) = e−∥t∥2
2 · H̃α(t)
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r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

—————– deleted point

r
√
2δ

—————– compute Aα(B)

—————– compute Cβ(B, C)

compute G(t) —————–

source

target

Figure 3: An illustration of deleting a source point from the data structure.

The Hermite expansion of a Gaussian in Rd is

e−∥t−s∥2
2 =

∑
α≥0

(t− s0)
α

α!
hα(s− s0). (4)

Cramer’s inequality generalizes to
Lemma A.8 (Cramer’s inequality for multi-dimensional case, (Greengard & Strain, 1991; Alman
et al., 2020)). Let K < (1.09)d, then

|H̃α(t)| ≤ K · e∥t∥2
2/2 · 2∥α∥1/2 ·

√
α!

and

|Hα(t)| ≤ K · e−∥t∥2
2/2 · 2∥α∥1/2 ·

√
α!.

The Taylor series of Hα is

Hα(t) =
∑
β≥0

(t− t0)
β

β!
(−1)∥β∥1Hα+β(t0). (5)

B OUR RESULT

B.1 PROPERTIES OF KERNEL FUNCTION

(Alman et al., 2020) identified the three key properties of kernel functions K(s, t) = f(∥s − t∥2)
which allow sub-quadratic matrix-vector multiplication via the fast Multipole method. Our dynamic
algorithm will work for any kernel satisfying these properties.
Definition B.1 (Properties of general kernel function, restatement of Definition 3.3, (Alman et al.,
2020)). We define the following properties of the function f : R→ R+:

• P1: f is non-increasing, i.e., f(x) ≤ f(y) when x ≥ y.

• P2: f is decreasing fast, i.e., f(Θ(log(1/ε))) ≤ ε.

• P3: f ’s Hermite expansion and Taylor expansion are truncateable: the truncation error of
the first (logd(1/ε)) terms in the Hermite and Taylor expansion of K is at most ε.

Remark B.2. We note that P3 can be replaced with the following more general property:

• P4: K : Rd × Rd → R is {ϕα}α∈Nd -expansionable: there exist constants cα that only
depend on α ∈ Nd and functions ϕα : Rd → R such that

K(s, t) =
∑
α∈Nd

cα · (s− s0)
α · ϕα(t− s0)

for any s0 ∈ Rd and s close to s0. Moreover, the truncation error of the first (logd(1/ε))
terms is ≤ ε.
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Algorithm 1 Informal version of Algorithm 2, 3, 4 and 5.

1: data structure DYNAMICFGT ▷ Theorem B.5
2: members
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: end members

8: procedure UPDATE(s ∈ Rd, q ∈ R) ▷ Informal version of Algorithm 4 and 5
9: Find the box s ∈ Bk

10: Update Aα(Bk) for all α ≤ p
11: Find (2k + 1)d nearest target boxes to Bk, denote by nb(Bk) ▷ k ≤ log(∥q∥1/ε)
12: for Cl ∈ nb(Bk) do
13: Update Cβ(Cl) for all β ≤ p
14: end for
15: end procedure

16: procedure KDE-QUERY(t ∈ Rd) ▷ Informal version of Algorithm 3
17: Find the box t ∈ Ck
18: G̃(t)←∑

β≤p Cβ(Ck)((t− tCk
)/
√
δ)β

19: end procedure
20: end data structure

Remark B.3. Two examples of kernels that satisfy Properties 1 and 2 are:

• K(s, t) = e−α∥s−t∥2

for any α ∈ R+.

• K(s, t) = e−α∥s−t∥2p

for any p ∈ N+.

B.2 DYNAMIC FGT

In this section, we present our main result. We first define the dynamic density-estimation mainte-
nance problem with respect to the Gaussian kernel.
Definition B.4 (Dynamic FGT Problem). We wish to design a data-structure that efficiently supports
any sequence of the following operations:

• INIT(S ⊂ Rd, q ∈ R|S|, ε ∈ R) Let N = |S|. The data structure is given N source points
s1, · · · , sN ∈ Rd with their charge q1, · · · , qN ∈ R.

• INSERT(s ∈ Rd, qs ∈ R) Add the source point s with its charge qs to the point set S.

• DELETE(s ∈ Rd) Delete s (and its charge qs) from the point set S.

• KDE-QUERY(t ∈ Rd) Output G̃ such that G(t)− ε ≤ G̃ ≤ G(t) + ε.

The main result of this paper is a fully-dynamic data structure supporting all of the above operations
in polylogarithmic time:
Theorem B.5 (Dynamic FGT Data Structure). Given N vectors S = {s1, · · · , sN} ⊂ Rd, a number
δ > 0, and a vector q ∈ RN , let G : Rd → R be defined as G(t) =

∑N
i=1 qi · K(si, t) denote the

kernel-density of t with respect to S, where K(si, t) = f(∥si − t∥2) for f satisfying the properties
in Definition 3.3 . There is a dynamic data structure that supports the following operations:

• INIT() (Algorithm 2) Preprocess in N · logO(d)(∥q∥1/ε) time.

• KDE-QUERY(t ∈ Rd) (Algorithm 3) Output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(d)(∥q∥1/ε) time.
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• INSERT(s ∈ Rd, qs ∈ R) (Algorithm 4) For any source point s ∈ Rd and its charge qs,
update the data structure by adding this source point in logO(d)(∥q∥1/ε) time.

• DELETE(s ∈ Rd) (Algorithm 5) For any source point s ∈ Rd and its charge qs, update the
data structure by deleting this source point in logO(d)(∥q∥1/ε) time.

• QUERY(q ∈ RN ) (Algorithm 3) Output K̃q ∈ RN such that ∥K̃q − Kq∥∞ ≤ ε, where
K ∈ RN×N is defined by Ki,j = K(si, sj) in N logO(d)(∥q∥1/ε) time.

Remark B.6. The QUERY time can be further reduced when the change of the charge vector q is
sparsely changed between two consecutive queries. More specifically, let ∆ := ∥qnew − q∥0 be the
number of changed coordinates of q. Then, QUERY can be done in Õd(∆) time.

C ALGORITHMS

Algorithm 2 This algorithm are the init part of Theorem B.5.

1: data structure DYNAMICFGT ▷ Theorem B.5
2: members
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: end members
8:
9: procedure INIT({sj ∈ Rd, j ∈ [N ]}, {qj ∈ R, j ∈ [N ]})

10: p← log(∥q∥1/ε)
11: Assign N sources into N(B) boxes B1, . . . ,BN(B) of length r

√
δ

12: Divide space into N(C) boxes C1, . . . , CN(C) of length r
√
δ

13: Set center sBk
, k ∈ [N(B)] of source boxes B1, . . . ,BN(B)

14: Set centers tCk
, k ∈ [N(C)] of target boxes C1, . . . , CN(C)

15: for k ∈ [N(B)] do ▷ Source box Bk with center sBk

16: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [d]
17: Compute

Aα(Bk)←
(−1)∥α∥1

α!

∑
sj∈Bk

qj

(
sj − sBk√

δ

)α

▷ Takes pdN time in total
18: end for
19: end for
20: for k ∈ [N(C)] do ▷ Target box Ck with center tCk

21: Find (2k + 1)d nearest source boxes to Ck, denote by nb(Ck) ▷ k ≤ log(∥q∥1/ε)
22: for β ≤ p do
23: Compute

Cβ(Ck)←
(−1)∥β∥1

β!

∑
Bl∈nb(Ck)

∑
α≤p

Aα(Bl) ·Hα+β

(
sBl
− tCk√
δ

)
▷ Takes N(C) · (2k + 1)ddpd+1 time in total

24: ▷ N(C) ≤ min{(r
√
2δ)−d/2,M}

25: end for
26: end for
27: end procedure
28: end data structure
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Algorithm 3 This algorithm is the query part of Theorem B.5.

1: data structure DYNAMICFGT
2: procedure KDE-QUERY(t ∈ Rd)
3: Find the box t ∈ Ck
4: Compute ▷ Takes pd time in total

Gp(t)←
∑
β≤p

Cβ(Ck) ·
(
t− tCk√

δ

)β

5: return Gp(t)
6: end procedure
7: procedure QUERY(q ∈ RN )
8: INIT({sj , j ∈ [N ]}, q) ▷ Takes Õ(N) time
9: for j ∈ [N ] do

10: uj ← LOCAL-QUERY(sj) ▷ ∥u− Kq∥∞ ≤ ε
11: end for
12: return u
13: end procedure
14: end data structure
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Algorithm 4 This algorithm is the update part of Theorem B.5.

1: data structure DYNAMICFGT ▷ Theorem B.5
2: members ▷ This is exact same as the members in Algorithm 2.
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: end members
8:
9: procedure INSERT(s ∈ Rd, q ∈ R)

10: Find the box s ∈ Bk
11: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [d]
12: Compute

Anew
α (Bk)← Aα(Bk) +

(−1)∥α∥1q

α!
(
s− sBk√

δ
)α

▷ Takes pd time
13: end for
14: Find (2k + 1)d nearest target boxes to Bk, denote by nb(Bk) ▷ k ≤ log(∥q∥1/ε)
15: for Cl ∈ nb(Bk) do
16: for β ≤ p do
17: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (Bk)−Aα(Bk)) ·Hα+β

(
sBk
− tCl√
δ

)
▷ Takes (2k + 1)dpd time

18: end for
19: end for
20: for α ≤ p do
21: Aα(Bk)← Anew

α (Bk) ▷ Takes pd time
22: end for
23: for Cl ∈ nb(Bk) do
24: for β ≤ p do
25: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)dpd time
26: end for
27: end for
28: end procedure
29: end data structure
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Algorithm 5 This algorithm is another update part of Theorem B.5.

1: data structure DYNAMICFGT
2: members
3: Aα(Bk), k ∈ [N(B)], α ≤ p
4: Cβ(Ck), k ∈ [N(C)], β ≤ p
5: tCk

, k ∈ [N(C)]
6: sBk

, k ∈ [N(B)]
7: δ ∈ R
8: end members
9:

10: procedure DELETE(s ∈ Rd, q ∈ R)
11: Find the box s ∈ Bk
12: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [d]
13: Compute

Anew
α (Bk)← Aα(Bk)−

(−1)∥α∥1q

α!

(
s− sBk√

δ

)α

▷ Takes pd time
14: end for
15: Find (2k + 1)d nearest target boxes to Bk, denote by nb(Bk) ▷ k ≤ log(∥q∥1/ε)
16: for Cl ∈ nb(Bk) do
17: for β ≤ p do
18: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (Bk)−Aα(Bk)) ·Hα+β

(
sBk
− tCl√
δ

)
▷ Takes (2k + 1)dpd time

19: end for
20: end for
21: for α ≤ p do
22: Aα(Bk)← Anew

α (Bk) ▷ Takes pd time
23: end for
24: for Cl ∈ nb(Bk) do
25: for β ≤ p do
26: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)dpd time
27: end for
28: end for
29: end procedure
30: end data structure
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D ANALYSIS

Proof of Theorem B.5. Correctness of KDE-QUERY. Algorithm 2 accumulates all sources into
truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
Lemma E.5, thus it can approximate the function G(t) by

G(t) =
∑
B

∑
j∈B

qj · e−∥t−sj∥2
2/δ

=
∑
β≤p

Cβ

(
t− tC√

δ

)β

+ ErrT (p) + ErrH(p)

where |ErrH(p)|+ |ErrT (p)| ≤ Q · ε by p = log(∥q∥1/ε),

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
sB − tC√

δ

)
and the coefficients Aα(B) are defined as Eq. (3).

Running time of KDE-QUERY. In line 17, it takes O(pdN) time to compute all the Hermite
expansions, i.e., to compute the coefficients Aα(B) for all α ≤ p and all sources boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pd

coefficients of Cβ is only O(dpd+1) for each box B in the range. Thus, we know for each target box
C, the running time is O((2k + 1)ddpd+1), thus the total time in line 23 is

O(N(C) · (2k + 1)ddpd+1).

Finally we need to evaluate the appropriate Taylor series for each target ti, which can be done in
O(pdM) time in line 4. Putting it all together, Algorithm 2 takes time

O((2k + 1)ddpd+1N(C)) +O(pdN) +O(pdM)

= O
(
(M +N) logO(d)(∥q∥1/ε)

)
.

Correctness of UPDATE. Algorithm 4 and Algorithm 5 maintains Cβ as follows,

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
sB − tC√

δ

)
where Aα(B) is given by

Aα(B) =
(−1)∥α∥1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α

.

Therefore, the correctness follows similarly from Algorithm 2.

Running time of UPDATE. In line 12, it takes O(pd) time to update all the Hermite expansions, i.e.
to update the coefficients Aα(B) for all α ≤ p and all sources boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pd

coefficients of Cβ is only O(dpd+1) for each box Cl ∈ nb(Bk). Thus, thus the total time in line 17
is

O((2k + 1)ddpd+1).

Correctness of QUERY. To compute Kq for a given q ∈ Rd, notice that for any i ∈ [N ],

(Kq)i =
N∑
j=1

qj · e−∥si−sj∥2
2/δ

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

= G(si).

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t)
immediately gives the ℓ∞-error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the
query, which takes Õd(N) time. Then, we perform N KDE-Query, each takes Õd(1). Hence, the
total running time is Õd(N).

We note that when the charge vector q is slowly changing, i.e., ∆ := ∥qnew − q∥0 ≤ o(N), we can
UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes Õd(1)

time, it will take Õd(∆) time to update the data structure.

Then, consider computing Kqnew in this setting. We note that each source box can only affect Õd(1)
other target boxes, where the target vectors are just the source vectors in this setting. Hence, there
are at most Õd(∆) boxes whose Cβ is changed. Let S denote the indices of source vectors in these
boxes. Since

G(si) =
∑
β≤p

Cβ(Bk) ·
(
si − sBk√

δ

)β

,

we get that there are at most Õd(∆) coordinates of Kqnew that are significantly changed from Kq,
and we only need to re-compute G(si) for i ∈ S. If we assume that the source vectors are well-
separated, i.e., |S| = O(δ), the total computational cost is Õd(∆).

Therefore, when the change of the charge vector q is sparse, Kq can be computed in sublinear
time.

E ERROR ESTIMATION

This section provides several technical lemma that are used in Appendix D. We first give a definition.
Definition E.1 (Hermite expansion and coefficients). Let B denote a box with center sB ∈ Rd and
side length r

√
2δ with r < 1. If source sj is in box B, we will simply denote as j ∈ B. Then the

Gaussian evaluation from the sources in box B is,

G(t) =
∑
j∈B

qj · e−∥t−sj∥2
2/δ.

The Hermite expansion of G(t) is

G(t) =
∑
α≥0

Aα ·Hα

(
t− sB√

δ

)
, (6)

where the coefficients Aα are defined by

Aα =
1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α

(7)

The rest of this section will present a batch of Lemmas that bound the error of the function truncated
at certain degree of Taylor and Hermite expansion.

We first upper bound the truncation error of Hermite expansion.
Lemma E.2 (Truncated Hermite expansion). Let p denote an integer, let ErrH(p) denote the error
after truncating the series G(t) (as defined in Eq. (6)) after pd terms, i.e.,

ErrH(p) =
∑
α≥p

Aα ·Hα

(
t− sB√

δ

)
. (8)

Then we have

|ErrH(p)| ≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1
2 .

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Proof. Using Eq. (4) to expand each Gaussian (see Definition E.1) in the

G(t) =
∑
j∈B

qj · e−∥t−sj∥2
2/δ

into a Hermite series about sB:∑
j∈B

qj
∑
α≥0

1

α!
·
(
sj − sB√

δ

)α

·Hα

(
t− sB√

δ

)
and swap the summation over α and j to obtain the desired form:

∑
α≥0

 1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α
Hα

(
t− sB√

δ

)
=
∑
α≥0

AαHα

(
t− sB√

δ

)
.

Here, the truncation error bound is due to Lemma A.8 and the standard equation for the tail of a
geometric series.

To formally bound the truncation error, we first rewrite the Hermit expansion as follows

e−
∥t−sj∥

2
2

δ =

d∏
i=1

(
p−1∑
ni=1

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

)

+

∞∑
ni=p

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

))
(9)

Notice from Cramer’s inequality (Lemma A.5),

hni

(
ti − (sB)i√

δ

)
≤
√
n! · 2n/2 · e−(ti−(sB)i)

2/2.

Therefore we can use properties of the geometric series (notice (sj)i−(sB)i√
δ

≤ r/
√
2) to bound each

term in the product as follows

p−1∑
ni=1

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

)
≤ 1− rp

1− r
, (10)

and
∞∑

ni=p

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

)
≤ 1√

p!
· rp

1− r
. (11)

Now we come back to bound Eq. (8) as follows

ErrH(p) =
∑
j∈B

qj
∑
α≥p

1

α!
·
(
sj − sB√

δ

)α

·Hα

(
t− sB√

δ

)

≤

∑
j∈B
|qj |

e−
∥t−sj∥

2
2

δ −
d∏

j=1

(
p−1∑
ni=1

1

ni!

(
(sj)i − (sB)i√

δ

)ni

hni

(
ti − (sB)i√

δ

))
≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where the first step comes from definition, the second step comes from Eq. (9) and the last step
comes from Eq. (10) and Eq. (11) and binomial expansion.

Remark E.3. By Stirling’s formula, it is easy to see that when we take p = log(∥q∥1/ε), this error
will be bounded by ∥q∥1 · ε.
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The Lemma E.4 shows how to convert a Hermite expansion at location sB into a Taylor expansion
at location tC . Intuitively, the Taylor series converges rapidly in the box (that has side length r

√
2δ

center around tC , where r ∈ (0, 1)).
Lemma E.4 (Hermite expansion with truncated Taylor expansion). Suppose the Hermite expansion
of G(t) is given by Eq. (6), i.e.,

G(t) =
∑
α≥0

Aα ·Hα

(
t− sB√

δ

)
. (12)

Then, the Taylor expansion of G(t) at an arbitrary point t0 can be written as:

G(t) =
∑
β≥0

Bβ

(
t− t0√

δ

)β

. (13)

where the coefficients Bβ are defined as

Bβ =
(−1)∥β∥1

β!

∑
α≥0

(−1)∥α∥1Aα ·Hα+β

(
sB − t0√

δ

)
. (14)

Let ErrT (p) denote the error by truncating the Taylor expansion after pd terms, in the box C (that
has center at tC and side length r

√
2δ), i.e.,

ErrT (p) =
∑
β≥p

Bβ

(
t− tC√

δ

)β

Then

|ErrT (p)| ≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1/2.

Proof. Each Hermite function in Eq. (12) can be expanded into a Taylor series by means of Eq. (5).
The expansion in Eq. (13) is due to swapping the order of summation.

Next, we will bound the truncation error. Using Eq. (7) for Aα, we can rewrite Bβ :

Bβ =
(−1)∥β∥1

β!

∑
α≥0

(−1)∥α∥1AαHα+β

(
sB − tC√

δ

)

=
(−1)∥β∥1

β!

∑
α≥0

 (−1)∥α∥1

α!

∑
j∈B

qj

(
sj − sB√

δ

)α
Hα+β

(
sB − tC√

δ

)

=
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α≥0

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)
By Eq. (5), the inner sum is the Taylor expansion of Hβ((sj − tC)/

√
δ). Thus

Bβ =
(−1)∥β∥1

β!

∑
j∈B

qj ·Hβ

(
sj − tC√

δ

)
and Cramer’s inequality implies

|Bβ | ≤
1

β!
K ·QB2

∥β∥1/2
√

β! = KQB
2∥β∥1/2

√
β!

.

To formally bound the truncation error, we have

ErrT (p) =
∑
β≥p

Bβ

(
t− tC√

δ

)β
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≤KQB

(
d∏

i=1

( ∞∑
ni=0

1√
ni!

2ni/2

(
t− tC
δ

)ni
)
−

d∏
i=1

(
p−1∑
ni=0

1√
ni!

2ni/2

(
t− tC
δ

)ni
))

≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where the second step uses |Bβ | ≤ KQB
2∥β∥1/2
√
β!

and the rest are similar to those in Lemma E.2.

For designing our algorithm, we would like to make a variant of Lemma E.4 that combines the
truncations of Hermite expansion and Taylor expansion. More specifically, we first truncate the
Taylor expansion of Gp(t), and then truncate the Hermite expansion in Eq. (14) for the coefficients.
Lemma E.5 (Truncated Hermite expansion with truncated Taylor expansion). Let G(t) be defined
as Def E.1. For an integer p, let Gp(t) denote the Hermite expansion of G(t) truncated at p, i.e.,

Gp(t) =
∑
α≤p

AαHα

(
t− sB√

δ

)
.

The Taylor expansion of function Gp(t) at an arbitrary point t0 can be written as:

Gp(t) =
∑
β≥0

Cβ ·
(
t− t0√

δ

)β

,

where the coefficients Cβ are defined as

Cβ =
(−1)∥β∥1

β!

∑
α≤p

(−1)∥α∥1Aα ·Hα+β

(
sB − tC√

δ

)
. (15)

Let ErrT (p) denote the error in truncating the Taylor series after pd terms, in the box C (that has
center tC and side length r

√
2δ), i.e.,

ErrT (p) =
∑
β≥p

Cβ

(
t− tC√

δ

)β

.

Then, we have

|ErrT (p)| ≤
2
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1/2.

Proof. We can write Cβ in the following way:

Cβ =
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α≤p

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)

=
(−1)∥β∥1

β!

∑
j∈B

qj

∑
α≥0

−
∑
α>p

 (−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)

= Bβ −
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α>p

(−1)∥α∥1

α!

(
sj − sB√

δ

)α

·Hα+β

(
sB − tC√

δ

)
= Bβ + (Cβ −Bβ)

Next, we have

|ErrT (p)| ≤

∣∣∣∣∣∣
∑
β≥p

Bβ

(
t− tC√

δ

)β
∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ) ·
(
t− tC√

δ

)β
∣∣∣∣∣∣ (16)
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Using Lemma E.4, we can upper bound the first term in the Eq. (16) by,∣∣∣∣∣∣
∑
β≥p

Bβ

(
t− tC√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

.

Since we can similarly bound Cβ −Bβ as follows

|Cβ −Bβ | ≤
1

β!
K ·QB2

∥β∥1/2
√
β! ≤ KQB

2∥β∥1/2

√
β!

,

we have the same bound for the second term∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ)

(
t− tC√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

.

The proof of the following Lemma is almost identical, but it directly bounds the truncation error of
Taylor expansion of the Gaussian kernel. We omit the proof here.
Lemma E.6 (Truncated Taylor expansion). Let Gsj (t) : Rd → R be defined as

Gsj (t) = qj · e−∥t−sj∥2
2/δ.

The Taylor expansion of Gsj (t) at tC ∈ Rd is:

Gsj (t) =
∑
β≥0

Bβ
(
t− tC√

δ

)β

,

where the coefficients Bβ is defined as

Bβ = qj ·
(−1)∥β∥1

β!
·Hβ

(
sj − tC√

δ

)
and the absolute value of the error (truncation after pd terms) can be upper bounded as

|ErrT (p)| ≤
∑

j∈B |qj |
(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

where r ≤ 1/2.

F LOW DIMENSION SUBSPACE FGT

In this section, we consider FGT for data in a lower dimensional subspace of Rd. The problem is
formally defined below:
Problem F.1 (Dynamic FGT on a low dimensional set). Let W be a subspace of Rd with dimension
dim(S) = w ≪ d. Given N source points s1, . . . , sN ∈W with charges q1, . . . , qN , and M target
points t1, . . . , tM ∈W , find a dynamic data structure that supports the following operations:

• INSERT/DELETE(si, qi) Insert or Delete a source point si ∈ Rd along with its “charge”
qi ∈ R, in logO(w)(∥q∥1/ε) time.

• DENSITY-ESTIMATION(t ∈ Rd) For any point t ∈ Rd, output the kernel density of t with
respect to the sources, i.e., output G̃ such that G(t)−ε ≤ G̃ ≤ G(t)+ε in logO(w)(∥q∥1/ε)
time.

• QUERY(q ∈ RN ) Given an arbitrary query vector q ∈ RN , output K̃q in N ·
logO(w)(∥q∥/ε) time.
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Algorithm 6 Initialization of low-dim FGT.

1: data structure DYNAMICFGT
2: members
3: Aα(Bi), i ∈ [N(B)], α ≤ p
4: Cβ(Ci), i ∈ [N(C)], β ≤ p
5: tCi

, i ∈ [N(C)]
6: sBi

, i ∈ [N(B)]
7: end members
8:
9: procedure INIT({sj ∈ Rd, j ∈ [N ]}, {qj ∈ R, j ∈ [N ]})

10: p← log(∥q∥1/ε)
11: Compute SVD: (U0,Σ, V0)← SVD ((s1, . . . , sN , t1, . . . , tM ))
12: ▷

U0ΣV
⊤
0 = (s1, . . . , sN , t1, . . . , tM ), U0 ∈ Rd×d,Σ ∈ Rd×(N+M), V0 ∈ R(N+M)×(N+M)

13: Let B ← U0Σ:,1:w ∈ Rd×w ▷ Σ:,1:w denotes the first w columns of Σ
14: Compute the spectral decomposition UΛU⊤ = B⊤B, and let P← Λ−1/2U−1B⊤ ∈ Rw×d

15: for i ∈ [N ] and j ∈ [M ] do
16: xi ← Psi, yj ← Ptj
17: end for
18: Assign x1, . . . , xN into N(B) boxes B1, . . . ,BN(B) of length r

√
δ

19: Divide Rw into N(C) boxes C1, . . . , CN(C) of length r
√
δ

20: Set center xBi , i ∈ [N(B)] of source boxes B1, . . . ,BN(B)

21: Set centers yCj
, j ∈ [N(C)] of target boxes C1, . . . , CN(C)

22: for l ∈ [N(B)] do ▷ Source box Bl with center sBl

23: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
24: Compute

Aα(Bl)←
(−1)∥α∥1

α!

∑
xj∈Bl

qj

(
xj − xBl√

δ

)α

▷ Takes pwN time in total
25: end for
26: end for
27: for l ∈ [N(C)] do ▷ Target box Cl with center tCl

28: Find (2k + 1)w nearest source boxes to Cl, denote by nb(Cl) ▷ k ≤ log(∥q∥1/ε)
29: for β ≤ p do
30: Compute

Cβ(Cl)←
(−1)∥β∥1

β!

∑
B∈nb(Cl)

∑
α≤p

Aα(B) ·Hα+β

(
xB − yCl√

δ

)
▷ Takes N(C) · (2k + 1)wdpw+1 time in total

31: ▷ N(C) ≤ min{(r
√
2δ)−d/2,M}

32: end for
33: end for
34: end procedure
35: end data structure

We generalize our dynamic data structure to solve Problem F.1, which is stated in the following
theorem. The computational cost of each update or query depends on the intrinsic dimension w
instead of d.

Theorem F.2 (Low Rank Dynamic FGT Data Structure, formal version of Theorem 1.1). Let W be
a subspace of Rd with dimension dim(S) = w ≪ d. Given N source points s1, . . . , sN ∈ W with
charges q1, . . . , qN , and M target points t1, . . . , tM ∈ W , a number δ > 0, and a vector q ∈ RN ,
let G : Rd → R be defined as G(t) =

∑N
i=1 qi · K(si, t) denote the kernel-density of t with respect
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Algorithm 7 This algorithm is the query part of Theorem F.2.

1: data structure DYNAMICFGT
2: procedure KDE-QUERY(t ∈ Rd)
3: Find the box Pt ∈ Cl
4: Compute ▷ Takes pw time in total

Gp(t)←
∑
β≤p

Cβ(Cl) ·
(
P(t− tCl

)√
δ

)β

5: return Gp(t)
6: end procedure
7: procedure QUERY(q ∈ RN )
8: INIT({sj , j ∈ [N ]}, q) ▷ Takes Õ(N) time
9: for j ∈ [N ] do

10: uj ← LOCAL-QUERY(sj) ▷ ∥u− Kq∥∞ ≤ ε
11: end for
12: return u
13: end procedure
14: end data structure

to S, where K(si, t) = f(∥si − t∥2) for f satisfying the properties in Definition 3.3 . There is a
dynamic data structure that supports the following operations:

• INIT() (Algorithm 6) Preprocess in N · logO(w)(∥q∥1/ε) time.

• KDE-QUERY(t ∈ Rd) (Algorithm 7) Output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(w)(∥q∥1/ε) time.

• INSERT(s ∈ Rd, qs ∈ R) (Algorithm 8) For any source point s ∈ Rd and its charge qs,
update the data structure by adding this source point in logO(w)(∥q∥1/ε) time.

• DELETE(s ∈ Rd) (Algorithm 9) For any source point s ∈ Rd and its charge qs, update the
data structure by deleting this source point in logO(w)(∥q∥1/ε) time.

• QUERY(q ∈ RN ) (Algorithm 7) Output K̃q ∈ RN such that ∥K̃q − Kq∥∞ ≤ ε, where
K ∈ RN×N is defined by Ki,j = K(si, sj) in N logO(w)(∥q∥1/ε) time.

F.1 PROJECTION LEMMA

Lemma F.3 (Hermite projection lemma in low-dimensional space, formal version of Lemma 3.5).
Given a subspace B ∈ Rd×w. Let B⊤B = UΛU⊤ ∈ Rw×w denote the spectral decomposition
where U ∈ Rw×w and a diagonal matrix Λ ∈ Rw×w.

We define P = Λ−1/2U−1B⊤ ∈ Rw×d. Then we have for any t, s ∈ Rd from subspace B, the
following equation holds

e−∥t−s∥2
2/δ =

∑
α≥0

(
√
1/δP(t− s))α

α!
hα(
√

1/δP(t− s)).

Proof. First, we know that

Pt = Λ−1/2U−1B⊤t

= Λ−1/2U−1B⊤Bx

= Λ−1/2U−1UΛU⊤x

= Λ−1/2ΛU⊤x
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Algorithm 8 This algorithm is the update part of Theorem F.2.

1: data structure DYNAMICFGT
2: members ▷ This is exact same as the members in Algorithm 6.
3: Aα(Bi), i ∈ [N(B)], α ≤ p
4: Cβ(Ci), i ∈ [N(C)], β ≤ p
5: tCi , i ∈ [N(C)]
6: sBi , i ∈ [N(B)]
7: end members
8:
9: procedure INSERT(s ∈ Rd, q ∈ R)

10: Find the box s ∈ B
11: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
12: Compute

Anew
α (B)← Aα(B) +

(−1)∥α∥1q

α!
(
P(s− sB)√

δ
)α

▷ Takes pw time
13: end for
14: Find (2k + 1)w nearest target boxes to B, denote by nb(B) ▷ k ≤ log(∥q∥1/ε)
15: for Cl ∈ nb(B) do
16: for β ≤ p do
17: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (B)−Aα(B)) ·Hα+β

(
P(sB − tCl

)√
δ

)
▷ Takes (2k + 1)wpw time

18: end for
19: end for
20: for α ≤ p do
21: Aα(B)← Anew

α (B) ▷ Takes pw time
22: end for
23: for Cl ∈ nb(B) do
24: for β ≤ p do
25: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)wpw time
26: end for
27: end for
28: end procedure
29: end data structure

= Λ1/2U⊤x (17)

where the first step follows from P = Λ−1/2U−1B⊤, the second step follows from t = Bx (since t
is from low dimension, then there is always a vector x), the third step follows B⊤B = UΛU⊤, the
forth step follows U−1U = I , and the last step follows from Λ−1/2Λ = Λ1/2.

Compute the spectral decomposition B⊤B = UΛU⊤, U ∈ Rw×w is the orthonormal basis, Λ =
diag(λ1, . . . , λk) ∈ Rw×w. Let ui ∈ Rw denote the vector that is the transpose of i-th row U ∈
Rw×w. Then we have

e−∥t−s∥2
2/δ = e−(x−y)⊤B⊤B(x−y)/δ

= e−(x−y)⊤UΛU⊤(x−y)/δ

=

w∏
i=1

( ∞∑
n=1

1

n!
(
√
λi/δ · u⊤

i (x− y))n · hn(
√

λi/δ · u⊤
i (x− y))

)

=
∑
α≥0

(√
1/δΛ1/2U⊤(x− y)

)α
α!

· hα

(√
1/δΛ1/2U⊤(x− y)

)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 9 This algorithm is another update part of Theorem F.2.

1: data structure DYNAMICFGT
2: members
3: Aα(Bi), i ∈ [N(B)], α ≤ p
4: Cβ(Ci), i ∈ [N(C)], β ≤ p
5: tCi , i ∈ [N(C)]
6: sBi , i ∈ [N(B)]
7: δ ∈ R
8: end members
9:

10: procedure DELETE(s ∈ Rd, q ∈ R)
11: Find the box s ∈ B
12: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
13: Compute

Anew
α (B)← Aα(B)−

(−1)∥α∥1q

α!

(
P(s− sB)√

δ

)α

▷ Takes pw time
14: end for
15: Find (2k + 1)w nearest target boxes to B, denote by nb(B) ▷ k ≤ log(∥q∥1/ε)
16: for Cl ∈ nb(B) do
17: for β ≤ p do
18: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (B)−Aα(B)) ·Hα+β

(
P(sB − tCl

)√
δ

)
▷ Takes (2k + 1)wpw time

19: end for
20: end for
21: for α ≤ p do
22: Aα(B)← Anew

α (B) ▷ Takes pw time
23: end for
24: for Cl ∈ nb(B) do
25: for β ≤ p do
26: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)wpw time
27: end for
28: end for
29: end procedure
30: end data structure

=
∑
α≥0

(√
1/δ · P(t− s)

)α
α!

· hα

(√
1/δ · P(t− s)

)
where the first step follows from changing the basis preserves the ℓ2-distance, the second step fol-
lows from B⊤B = UΛU⊤, and the fifth step follows from Eq. (17).

F.2 PROOF OF MAIN RESULT IN LOW-DIMENSIONAL CASE

Proof of Theorem F.2. Correctness of KDE-QUERY. Algorithm 6 accumulates all sources into
truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
Lemma F.4. Thus it can approximate the function G(t) by

G(t) =
∑
B

∑
j∈B

qj · e−∥t−sj∥2
2/δ
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=
∑
β≤p

Cβ

(
P(t− tC)√

δ

)β

+ ErrT (p) + ErrH(p)

where |ErrH(p)|+ |ErrT (p)| ≤ Q · ε by p = log(∥q∥1/ε),

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
P(sB − tC)√

δ

)
and the coefficients Aα(B) are defined as Line 24.

Running time of KDE-QUERY. In line 24, it takes O(pwN) time to compute all the Hermite
expansions, i.e., to compute the coefficients Aα(B) for all α ≤ p and all source boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pw

coefficients of Cβ is only O(dpw+1) for each box B in the range. Thus, we know for each target box
C, the running time is O((2k + 1)wdpw+1), thus the total time in line 30 is

O(N(C) · (2k + 1)wdpw+1).

Finally, we need to evaluate the appropriate Taylor series for each target ti, which can be done in
O(pwM) time in line 4. Putting it all together, Algorithm 6 takes time

O((2k + 1)wdpw+1N(C)) +O(pwN) +O(pwM)

= O
(
(M +N) logO(w)(∥q∥1/ε)

)
.

Correctness of UPDATE. Algorithm 8 and Algorithm 9 maintains Cβ as follows,

Cβ =
(−1)∥β∥1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
P(sB − tC)√

δ

)
where Aα(B) is given by

Aα(B) =
(−1)∥α∥1

α!

∑
j∈B

qj ·
(
P(sj − sB)√

δ

)α

.

Therefore, the correctness follows similarly from Algorithm 6.

Running time of UPDATE. In line 12, it takes O(pw) time to update all the Hermite expansions,
i.e. to update the coefficients Aα(B) for all α ≤ p and all sources boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute the pw

coefficients of Cβ is only O(dpw+1) for each box Cl ∈ nb(B). Thus, thus the total time in line 17 is

O((2k + 1)wdpw+1).

Correctness of QUERY. To compute Kq for a given q ∈ Rw, notice that for any i ∈ [N ],

(Kq)i =
N∑
j=1

qj · e−∥si−sj∥2
2/δ

= G(si).

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t)
immediately gives the ℓ∞-error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the
query, which takes Õd(N) time. Then, we perform N KDE-Query, each takes Õd(1). Hence, the
total running time is Õd(N).

We note that when the charge vector q is slowly changing, i.e., ∆ := ∥qnew − q∥0 ≤ o(N), we can
UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes Õd(1)

time, it will take Õd(∆) time to update the data structure.
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Then, consider computing Kqnew in this setting. We note that each source box can only affect Õd(1)
other target boxes, where the target vectors are just the source vectors in this setting. Hence, there
are at most Õd(∆) boxes whose Cβ is changed. Let S denote the indices of source vectors in these
boxes. Since

G(si) =
∑
β≤p

Cβ(Bk) ·
(
P(si − sBk

)√
δ

)β

,

we get that there are at most Õd(∆) coordinates of Kqnew that are significantly changed from Kq,
and we only need to re-compute G(si) for i ∈ S. If we assume that the source vectors are well-
separated, i.e., |S| = O(δ), the total computational cost is Õd(∆).

Therefore, when the change of the charge vector q is sparse, Kq can be computed in sublinear
time.

Lemma F.4 (Truncated Hermite expansion with truncated Taylor expansion (low dimension version
of Lemma E.5 )). Let G(t) be defined as Def E.1. For an integer p, let Gp(t) denote the Hermite
expansion of G(t) truncated at p, i.e.,

Gp(t) =
∑
α≤p

AαHα

(
P(t− sB)√

δ

)
.

The Taylor expansion of function Gp(t) at an arbitrary point t0 can be written as:

Gp(t) =
∑
β≥0

Cβ ·
(
P(t− t0)√

δ

)β

,

where the coefficients Cβ are defined as

Cβ =
(−1)∥β∥1

β!

∑
α≤p

(−1)∥α∥1Aα ·Hα+β

(
P
(sB − tC)√

δ

)
. (18)

Let ErrT (p) denote the error in truncating the Taylor series after pw terms, in the box C (that has
center tC and side length r

√
2δ), i.e.,

ErrT (p) =
∑
β≥p

Cβ

(
P(t− tC)√

δ

)β

.

Then, we have

|ErrT (p)| ≤
2
∑

j∈B |qj |
(1− r)w

w−1∑
l=0

(
w

l

)
(1− rp)l

(
rp√
p!

)w−l

where r ≤ 1/2.

Proof. We can write Cβ in the following way:

Cβ =
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α≤p

(−1)∥α∥1

α!

(
P(sj − sB)√

δ

)α

·Hα+β

(
P(sB − tC)√

δ

)

=
(−1)∥β∥1

β!

∑
j∈B

qj

∑
α≥0

−
∑
α>p

 (−1)∥α∥1

α!

(
P(sj − sB)√

δ

)α

·Hα+β

(
P(sB − tC)√

δ

)

= Bβ −
(−1)∥β∥1

β!

∑
j∈B

qj
∑
α>p

(−1)∥α∥1

α!

(
P(sj − sB)√

δ

)α

·Hα+β

(
P(sB − tC)√

δ

)
= Bβ + (Cβ −Bβ)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Next, we have

|ErrT (p)| ≤

∣∣∣∣∣∣
∑
β≥p

Bβ

(
P(t− tC)√

δ

)β
∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ) ·
(
P(t− tC)√

δ

)β
∣∣∣∣∣∣ (19)

Using Lemma E.4, we can upper bound the first term in the Eq. (19) by,∣∣∣∣∣∣
∑
β≥p

Bβ

(
P(t− tC)√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)w

w−1∑
l=0

(
w

l

)
(1− rp)l

(
rp√
p!

)w−l

.

Since we can similarly bound Cβ −Bβ as follows

|Cβ −Bβ | ≤
1

β!
K ·QB2

∥β∥1/2
√
β! ≤ KQB

2∥β∥1/2

√
β!

,

we have the same bound for the second term∣∣∣∣∣∣
∑
β≥p

(Cβ −Bβ)

(
P(t− tC)√

δ

)β
∣∣∣∣∣∣ ≤

∑
j∈B |qj |

(1− r)w

w−1∑
l=0

(
w

l

)
(1− rp)l

(
rp√
p!

)w−l

.

F.3 DYNAMIC LOW-RANK FGT WITH INCREASING RANK

We further give an algorithm for FGT when the low-dimensional subspace is dynamic, i.e., the rank
may increase with data insertions.
Theorem F.5 (Low Rank Dynamic FGT Data Structure). Let W be a subspace of Rd with dimension
dim(S) = w ≪ d. Given N source points s1, . . . , sN ∈W with charges q1, . . . , qN , and M target
points t1, . . . , tM ∈ W , a number δ > 0, and a vector q ∈ RN , let G : Rd → R be defined
as G(t) =

∑N
i=1 qi · K(si, t) denote the kernel-density of t with respect to S, where K(si, t) =

f(∥si− t∥2) for f satisfying the properties in Definition 3.3 . There is a dynamic data structure that
supports the following operations:

• INIT() (Algorithm 6) Preprocess in N · logO(w)(∥q∥1/ε) time.

• KDE-QUERY(t ∈ Rd) (Algorithm 7) Output G̃ such that G(t) − ε ≤ G̃ ≤ G(t) + ε in
logO(w)(∥q∥1/ε) time.

• INSERT(s ∈ Rd, qs ∈ R) (Algorithm 10) For any source point s ∈ Rd and its charge
qs, update the data structure by adding this source point in logO(w)(∥q∥1/ε) time. The
subspace dimension w may be increased by 1 if s is not in the original subspace.

• QUERY(q ∈ RN ) (Algorithm 7) Output K̃q ∈ RN such that ∥K̃q − Kq∥∞ ≤ ε, where
K ∈ RN×N is defined by Ki,j = K(si, sj) in N logO(w)(∥q∥1/ε) time.

Proof. Since Algorithm 10 updates Aα, Cβ in the same way as Algorithm 8, the correctness of
Procedures KDE-QUERY and QUERY follows similarly from Theorem B.5.

Furthermore, SCALE takes O(wd+ (N(B) +N(C)) · pw) time. For the correctness, we know that
the rows of P form an orthonormal basis for the subspace. For a newly inserted point s, if it is not lie
in the subspace, (I−P)s gives a new basis direction. Therefore, we can easily update P by attaching
this vector (after normalization) as a column. Then, we show that the intermediate variables Aα and
Cβ can be correctly updated for the new subspace. For each source box B and each w-tuple α ≤ p,
we have

Anew
(α,0)(B) =

(−1)∥α∥1 · (−1)i
α! · i!

∑
j∈B

qj ·
(
x′
j − x′

B√
δ

)(α,i)

= Aα(B),
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Algorithm 10 This algorithm is the update part of Theorem F.5.

1: data structure DYNAMICFGT
2: members
3: k ∈ N ▷ Rank of span(s1, . . . , sN , t1, . . . , tM )
4: Aα(Bl), l ∈ [N(B)], α ≤ p
5: Cβ(Cl), l ∈ [N(C)], β ≤ p
6: tCl

, l ∈ [N(C)]
7: sBl

, l ∈ [N(B)]
8: P ∈ Rw×d

9: end members
10:
11: procedure INSERT(s ∈ Rd, q ∈ R)
12: SCALE(s, q)
13: Find the box s ∈ B
14: for α ≤ p do ▷ we say α ≤ p if αi ≤ p,∀i ∈ [w]
15: Compute

Anew
α (B)← Aα(B) +

(−1)∥α∥1q

α!
(
P(s− sB)√

δ
)α

▷ Takes pk time
16: end for
17: Find (2k + 1)w nearest target boxes to B, denote by nb(B) ▷ k ≤ log(∥q∥1/ε)
18: for Cl ∈ nb(B) and β ≤ p do
19: Compute

Cnew
β (Cl)← Cβ(Cl) +

(−1)∥β∥1

β!

∑
α≤p

(Anew
α (B)−Aα(B)) ·Hα+β

(
P(sB − tCl

)√
δ

)
▷ Takes (2k + 1)wpw time

20: end for
21: for α ≤ p do
22: Aα(B)← Anew

α (B) ▷ Takes pw time
23: end for
24: for Cl ∈ nb(B) and β ≤ p do
25: Cβ(Cl)← Cnew

β (Cl) ▷ Takes (2k + 1)wpw time
26: end for
27: end procedure
28: end data structure

where x′
j denotes the “lifted” point in the new subspace. And Anew

(α,i)(B) = 0 for all i > 0, since
(x′

j − x′
B)k+1 = 0. Similarly, for each target box C,

Cnew
(β,i)(C) =

(−1)∥β∥1(−1)i
β!i!

∑
B

∑
α≤p

p∑
j=0

Anew
(α,j)(B)H(α+β,i+j)

(
x′
B − y′C√

δ

)

=
(−1)∥β∥1(−1)i

β!i!

∑
B

∑
α≤p

Aα(B)Hα+β

(
xB − yC√

δ

)
· hi(0)

=
(−1)i
i!

hi(0) · Cβ(C),

where the second step follows from Anew
(α,i)(B) = Aα(B) ·1i=0. Therefore, by enumerating all boxes

B, C and indices α, β ≤ p, we can correctly compute Anew
(α,0)(B) and Cnew

(β,i)(C). Thus, we complete
the proof of the correctness of Algorithm 11.
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Algorithm 11 This algorithm is another part of Theorem F.5.

1: data structure DYNAMICFGT
2: members
3: w ∈ N ▷ Rank of span(s1, . . . , sN , t1, . . . , tM )
4: Aα(Bl), l ∈ [N(B)], α ≤ p
5: Cβ(Cl), l ∈ [N(C)], β ≤ p
6: tCl

, l ∈ [N(C)]
7: sBl

, l ∈ [N(B)]
8: P ∈ Rw×d

9: end members
10:
11: procedure SCALE(s ∈ Rd, q ∈ R)
12: if s ∈ span(P ) then
13: pass
14: else
15: P← (P, (I − P)s/∥(I − P)s∥2), w ← w + 1
16: for Bl, l ∈ [N(B)] and Cl, l ∈ [N(C)] do
17: sBl

← (sBl
, 0) and tCl

← (tCl
, 0)

18: end for
19: Find the box BN(B)+1 of length r

√
δ containing s and let sBN(B)+1

be its center
20: for α ≤ p ∈ Nw and Bl, l ∈ [N(B)] do
21: A(α,0)(Bl)← Aα(Bl)
22: end for
23: for β ≤ p ∈ Nw, 0 ≤ i ≤ p and Cl, l ∈ [N(C)] do
24: C(β,i)(Cl)← (−1)i

i! hi(0) · Cβ(Cl)
25: end for
26: end if
27: end procedure
28: end data structure

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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