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ABSTRACT

Large Reasoning Models (LRMs) have shown impressive capabilities in com-
plex problem-solving, often benefiting from training on difficult mathematical
problems that stimulate intricate reasoning. Recent efforts have explored auto-
mated synthesis of mathematical problems by prompting proprietary models or
large-scale open-source models from seed data or inherent mathematical con-
cepts. However, scaling up these methods remains challenging due to their
high computational/API cost, complexity of prompting, and limited difficulty
level of the generated problems. To overcome these limitations, we propose
ScaleDiff, a simple yet effective pipeline designed to scale the creation of diffi-
cult problems. We efficiently identify difficult problems from existing datasets
with only a single forward pass using an adaptive thinking model, which can
perceive problem difficulty and automatically switch between “Thinking” and
“NoThinking” modes. We then train a specialized difficult problem generator
(DiffGen-8B) on this filtered difficult data, which can produce new difficult prob-
lems in large scale, eliminating the need for complex, per-instance prompting
and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on
the ScaleDiff-Math dataset yields a substantial performance increase of 11.3%
compared to the original dataset and achieves a 65.9% average accuracy on
AIME’24, AIME’25, HMMT-Feb’25, BRUMO’25, and MATH500, outperform-
ing recent strong LRMs like OpenThinker3. Notably, this performance is achieved
using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our
pipeline can effectively transfer advanced reasoning capabilities without relying
on larger, more expensive teacher models. We also observe a clear scaling phe-
nomenon in model performance on difficult benchmarks as the quantity of dif-
ficult problems increases. Our code is available at the anonymous repository
https://anonymous.4open.science/r/ScaleDiff-D053.

1 INTRODUCTION

Recent advancements in Large Reasoning Models (LRMs) such as OpenAI-o1 (OpenAI, 2024) and
DeepSeek-R1 (Guo et al., 2025) have demonstrated remarkable progress in tackling complex rea-
soning problems. These models exhibit the ability to perform trial-and-error, self-reflection, and
iterative refinement within long Chains of Thought (CoT), leading to enhanced problem-solving ca-
pabilities. To replicate this success, various efforts have been made, employing techniques like Su-
pervised Fine-Tuning (SFT) on distilled data (Tian et al., 2025; Moshkov et al., 2025; Team, 2025;
Guha et al., 2025), Reinforcement Learning (RL) with verifiable rewards (Yu et al., 2025b; Zeng
et al., 2025; Luo et al., 2025; He et al., 2025b), or more complex training pipelines based on SFT
and RL (Face, 2025; Wen et al., 2025b; Chen et al., 2025; Liu et al., 2025b; Huang et al., 2025a). A
common strategy among these approaches is to identify challenging mathematical problems from ex-
isting datasets for training (Moshkov et al., 2025; Wen et al., 2025b; Liu et al., 2025b). The rationale
behind this is that difficult problems typically necessitate intricate reasoning processes, thereby stim-
ulating more sophisticated model behaviors, whereas simpler problems often yield limited benefits.
However, creating such difficult mathematical problems—particularly those at the competition or
olympiad level—is often costly because they are primarily handcrafted by human experts (AI-MO;
Lin, 2025; He et al., 2024). Recent research has explored the automated synthesis of mathematical
data by prompting proprietary models as well as large-scale open-source counterparts, either from
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seed data (Luo et al., 2023; Yu et al., 2024; 2025a; Toshniwal et al.) or from inherent mathematical
concepts (Huang et al., 2025b; Tang et al., 2024; Zhao et al., 2025; Zhan et al., 2025). However,
scaling these approaches remains challenging due to their substantial computational costs, complex
prompting design, and relatively limited difficulty of the generated problems.

To further investigate the impact of difficult problems on enhancing complex reasoning abilities of
LRMs, we propose ScaleDiff, a simple yet effective pipeline that scales the creation of difficult
problems to improve models’ complex reasoning capabilities. We begin by leveraging an existing
adaptive thinking model (Zhang et al., 2025a), which can automatically switch between the “Think-
ing” and “NoThinking” modes depending on the difficulty of a given problem, thereby serving as
a difficult problem identifier to detect difficult problems within existing datasets. This identifica-
tion process requires only a single forward pass, making it more efficient than commonly used
approaches such as fail rate and LLM-as-a-judge. Subsequently, to enable the generation of an
arbitrary number of difficult problems, we train a problem generator (denoted as DiffGen-8B) on
these identified difficult problems. We then utilize DiffGen-8B to generate large-scale new difficult
problems, eliminating the need for complicated prompting design, per-instance shot selection, and
the substantial computational costs required by traditional methods. For each generated problem,
we distill its long CoT solution using Qwen3-8B (Yang et al., 2025) in “Thinking” mode. This
comparatively small model provides solutions in a cost-efficient manner and offers a favorable alter-
native to widely used larger models such as DeepSeek-R1 or QwQ-32B. We also apply both rule and
model filtration to these solutions. The final ScaleDiff-Math dataset is composed of these difficult
problem-solution pairs and the original dataset.

Further SFT of Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset demonstrates promis-
ing performance. Our ScaleDiff consistently outperforms recent strong LRMs such as Open-
Thinker3 (Guha et al., 2025) and AceReason-Nemotron (Chen et al., 2025) across AIME’24 (AI-
MO), AIME’25 (Lin, 2025), HMMT Feb’25 (HMMT, 2025), BRUMO (BRUMO, 2025), and
MATH500 (Lightman et al., 2023) on average. ScaleDiff also improves upon AM-Qwen3-Distilled-
7B by enhancing both the difficulty and scale of the training data, resulting in a relative performance
gain of 11.3%. These results highlighting the effectiveness of our approach in strengthing models’
complex reasoning abilities. Moreover, by varying the size of the augmenting dataset, we observe
a clear scaling phenomenon in model performance on AIME’24 and AIME’25, with accuracy im-
proving as the number of difficult problems increased. This scaling behavior further highlights the
potential of our method to drive continued gains as larger and more challenging datasets become
available.

2 RELATED WORK

2.1 MATHEMATICAL DATA FOR LRMS

Numerous datasets have been proposed to enhance the mathematical reasoning capabilities of LRMs
through SFT. Prevalent strategies (He et al., 2025b; Li et al., 2024b; Amini et al., 2019) involve se-
lecting data from existing sources such as textbooks, examinations and websites. Beyond simple
selection, some research focuses on data augmentation of these existing resources. Answer aug-
mentation methods (Moshkov et al., 2025; Toshniwal et al.; Tong et al., 2024; Pan et al., 2025a;
Toshniwal et al., 2024; Lin et al., 2025; Wang et al., 2025) use a teacher model to synthesize novel
and diverse solutions for existing problems, aiming to boost the student model’s performance. These
methods are often referred to as data distillation. In contrast, Question augmentation methods (Luo
et al., 2023; Yu et al., 2024; Toshniwal et al.; Li et al., 2024a; Lu et al., 2024; Mitra et al., 2024; Pei
et al., 2025; Pan et al., 2025b) involve synthesizing novel problems and their corresponding solu-
tions. This method can expand topical coverage, introduce more diverse problem structures, though
it requires rigorous validation to ensure the correctness of synthesized questions and solutions (Yu
et al., 2025a; Li et al., 2024c). To further enhance the diversity of synthetic data, Persona-based
augmentation technique (Ge et al., 2024; Lambert et al., 2024; Li et al., 2023; Luo et al., 2024)
has emerged. By incorporating role-playing into prompts, LLMs can generate diverse, role-specific
mathematical problems. However, while some efforts have emerged to synthesize new questions,
they do not explicitly control the data difficulty. Consequently, the generated problems often lack
sufficient challenge for current top-tier LRMs, leading to limited improvements.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 DIFFICULTY-AWARE DATA SELECTION AND SYNTHESIS

Data difficulty is a crucial metric for assessing data quality, significantly impacting the training ef-
fectiveness (Chen et al.). Previous research has explored difficulty-aware question selection. For
example, S1 (Muennighoff et al., 2025) and Light-R1 (Wen et al., 2025a) filter out simple problems
that small models can easily solve, retaining difficult ones for SFT. AceReason (Chen et al., 2025)
further incorporates difficulty-based filtering into RL training. DeepMath-103K (He et al., 2025b)
proposes a new dataset with a higher proportion of challenging problems. However, these methods
are limited to selecting from existing data and cannot generate new, challenging examples. Further-
more, most of these techniques assess difficulty by fail rate, a model-specific metric, which may
restrict their generalizability across different models.

Another line of research focuses on synthesizing new data with varying difficulty. In the math-
ematical domain, DART-Math (Tong et al., 2024) synthesizes more solutions for difficult prob-
lems, enhancing response diversity for challenging questions. MATH2 (Shah et al., 2024) extracts
core “skills” from existing math datasets and employs them as the basis for generating novel and
difficult questions by prompting LLMs. DAST (Xue et al., 2025) proposes a difficulty-matching
few-shot prompting method, presenting longer, more detailed examples for harder questions. Scale-
Quest (Ding et al., 2024a) introduces Question Preference Optimization (QPO), which optimizes
generated mathematical problems based on solvability and difficulty. The optimized questions then
serve as positive samples for preference optimization of the question generator. MathSmith (Zhan
et al., 2025) generates math problems from scratch using concept–explanation pairs, achieving su-
perior performance on olympiad-level benchmarks. However, most of these methods are not specif-
ically designed for synthesizing difficult math problems. The difficulty of their generated questions
remains limited, leading to restricted performance improvements.

3 METHOD

In this section, we first introduce our identification of difficult problems in Section 3.1. We then
detail our approach for generating a large-scale set of new challenging problems in Section 3.2.
Finally, in Section 3.3, we describe our process for distilling and filtering high-quality solutions to
these generated problems. The overview of our ScaleDiff pipeline is shown in Figure 1.

3.1 DIFFICULT PROBLEM IDENTIFICATION

Assessing the difficulty of mathematical problems primarily relies on two existing methods: fail
rate (Tong et al., 2024) and LLM-as-a-judge (Gao et al.). Specifically, for fail rate, a proxy math-
ematical model is used to solve a given problem multiple times, and the proportion of incorrect
responses determines its fail rate. For LLM-as-a-judge, a more powerful LLM is prompted with the
mathematical problem, its reference solution (if available), and predefined criteria for difficulty as-
sessment. However, both methods have their limitations: the fail rate is computationally inefficient
as it necessitates multiple solution attempts by the proxy mathematical model; LLM-as-a-judge is
highly sensitive to the specific rules and criteria predefined within the input prompt.

Different from existing methods, we seek to leverage AdaptThink1 (Zhang et al., 2025a) as our dif-
ficult problem identifier. AdaptThink algorithm is designed to teach models to adaptively choose
between a time-consuming “Thinking” process for complex problems and a direct “NoThinking”
response for simpler ones through RL. This adaptive mechanism inherently reflects the model’s per-
ceived difficulty of a problem. The primary objective of AdaptThink is a constrained optimization:

max E(x,·)∼D, y∼πθ(·|x)I(y1 = </think>)),

s.t. E(x,·)∼D, y∼πθ(·|x)R(x, y) ≥ E(x,·)∼D, y′∼πθref
(·|x)R(x, y′). (1)

where D denotes the problem-solution dataset, and we let P = {x | (x, y) ∈ D} denote its problem
set. I(y1 = </think>) is an indicator function for the first generated token being </think>.
R(x, y) is the reward function representing the accuracy of the model’s response for problem x
(returning 1 for a correct solution and 0 for an incorrect one). This objective aims to maximize
the probability of generating “NoThinking” responses, subject to a constraint: the current model’s

1https://huggingface.co/THU-KEG/AdaptThink-7B-delta0.05
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Figure 1: Overview of ScaleDiff pipeline. AdaptThink first identify difficult problems by decid-
ing whether the model should invoke explicit reasoning. The difficult subset is then used to train
DiffGen-8B, which generates additional challenging problems. Their solutions are distilled from a
teacher model and filtered for quality, before being combined with the original data to augment SFT.

expected accuracy—the reward for a correct solution R(x, y)—must be maintained at or above that
of a fixed reference model. This design compels AdaptThink to opt for the efficient “NoThinking”
mode only when it does not compromise accuracy. Conversely, for problems where “NoThinking”
would lead to a significant performance drop, AdaptThink is driven to engage its “Thinking” mode
to satisfy the accuracy constraint.

This adaptive behavior effectively transforms AdaptThink into a binary classifier for problem diffi-
culty. We define a problem x as “simple” if AdaptThink produces a “NoThinking” response, and
“difficult” otherwise. Formally, our problem identification criteria are based on the first generated
token (y1) of AdaptThink’s response:

Difficulty(x) =
{

Simple if y1 = </think>

Difficult if y1 ̸= </think>
(2)

Notably, determining whether a problem is simple or difficult requires only the model’s output of a
first token (one forward pass), making the identification process highly efficient than fail rate and
LLM-as-a-judge. By applying AdaptThink as such a identifier, we efficiently identify and extract
challenging problem-solution pairs from existing datasets, forming a curated subset denoted as DDiff.

3.1.1 EFFECTIVENESS OF DIFFICULTY VIA PASS@K UNDER MULTIPLE MODELS

To validate that the difficulty split reflects genuine differences in problem-solving complexity, we
evaluate Pass@k performance on problems from DSimp and DDiff under multiple models. Specifi-
cally, we randomly sample 2K problems from each subset and evaluate three models with short and
long CoT settings: Qwen2.5-Math-7B-Instruct, Qwen3-8B in both “NoThinking” and “Thinking”
modes, and DeepSeek-R1-Distill-Qwen-7B. We set k = 3 for all experiments. As shown in Table 1,

Dataset CoT Type DSimp-2K DDiff-2K
Qwen2.5-Math-7B-Instruct Short 88.2 65.8
Qwen3-8B (NoThinking) Short 85.8 71.5
Qwen3-8B (Thinking) Long 91.1 86.0
DeepSeek-R1-Distill-Qwen-7B Long 93.4 85.0

Table 1: Pass@3 performance comparison between the DSimp-2K and DDiff-2K subsets across mul-
tiple models and CoT types.

two clear conclusions can be drawn: (1) All models exhibit substantially lower Pass@3 on the DDiff-
2K subset compared with the DSimp-2K subset. (2) The performance gap is especially pronounced
for short-CoT models, which tend to be more sensitive to reasoning difficulty.

4
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3.1.2 EFFECTIVENESS OF DIFFICULTY VIA SFT PERFORMANCE

To evaluate the validity of using AdaptThink as a difficult problem identifier and the effectiveness
of difficult problems as training data, we conduct SFT on Qwen2.5-Math-7B-Instruct (Yang et al.,
2024c) with the full dataset D, as well as its two subsets: the identified difficult subset DDiff and
simple subset DSimp. To further control for data size, we downsample DSimp to match the size of
DDiff and additionally construct a random subset DRand by sampling 192K problems from D. To
further examine the effect of diversity, we construct a mixed subset DMix, which consists of all
samples in DSimp together with 20% of the samples from DDiff. More experimental details are
provided in Section 4.1. The corresponding data size and results on three mathematical benchmarks
are presented in Table 2. We also list the size of difficult sample and DivGlobal for each subset, with
more details introduced in Appendix Section C.

Model Size Difficult DivGlobal
AIME’24 AIME’25 HMMT-Feb’25 BRUMO’25 MATH500 AVGSize avg@10 avg@10 avg@10 avg@10 avg@3

D 558K 192K 0.497 63.0±3.5 51.7±5.6 33.3±5.8 60.7±7.7 94.6±0.4 59.2
DSimp 366K 0 0.495 43.7±5.3 38.7±4.5 27.0±5.3 53.7±6.0 91.3±0.4 48.9
DSimp 192K 0 0.476 40.7±4.9 33.7±2.8 24.0±3.6 48.3±7.8 90.4±0.7 45.1
DMix 404K 38K 0.497 53.7±4.3 41.3±7.0 30.0±4.7 55.3±6.2 93.5±0.3 52.5
DRand 192K 66K 0.497 54.3±5.0 42.0±5.2 31.3±4.8 57.0±4.6 93.2±0.4 53.3
DDiff 192K 192K 0.473 62.3±5.0 44.3±7.6 36.0±5.7 59.0±6.3 93.9±1.2 56.6

Table 2: Effect of problem difficulty on SFT performance across three mathematical benchmarks.

It can be observed that training on the difficult subset DDiff (192K) outperforms training on the
simple subset DSimp (56.6 vs. 45.1 on average) and randomly sampled subset DRand (56.6 vs. 53.3)
of the same size , highlighting that difficult problems provide more effective training signals for
enhancing reasoning ability. Even when comparing DDiff (192K) against the much larger DSimp
(366K), the difficult subset still yields a clear advantage (56.6 vs. 48.9). Moreover, while training
on the full dataset D (558K) achieves the strongest results overall (59.2), this improvement stems
primarily from its larger scale. Notably, the performance gap between DDiff (192K) and the full
dataset is only 2.6 points (56.6 vs. 59.2), despite the latter being nearly three times larger. In contrast,
the gap between DSimp (192K) and the full dataset is approximately 14 points (45.1 vs. 59.2),
underscoring that simple problems contribute far less effectively to improving model performance
compared to difficult ones.

We further validate the effectiveness of AdaptThink via existing difficulty annotation on
MATH Hendrycks et al. (2021) in Appendix Section B. We also exclude the impact of problem
diversity on SFT performance in Appendix Section C. These experiments confirm that AdaptThink
serves as an effective identifier for identifying high-value difficult problems, and that such problems
are significantly more beneficial than simple ones in improving model performance.

3.2 DIFFICULT PROBLEM GENERATOR

Building upon the identified difficult problem set PDiff from DDiff in Section 3.1, we train a dedi-
cated difficult problem generator, denoted as DiffGen-8B, following a similar methodology to Scale-
Quest (Ding et al., 2024b). The rationale for training exclusively on difficult problem sets derives
from Section 3.1.2, which demonstrates that difficult problems are more effective than simple ones
in improving model performance.

For each problem x = (x1, x2, . . . , xn) in PDiff, where xi denotes the ith token of the problem, we
construct the input by prepending a standard instruction prefix I = <|im start|>user\n. Dis-
tinct from conventional instruction tuning—where the loss is often computed over solution tokens—
our training loss is only applied to the problem tokens xi without solution as input. The training
objective for DiffGen-8B is the standard cross-entropy loss for language modeling:

LCE(θ) = − 1

n

n∑
i=1

logP (xi|I, x1, . . . , xi−1). (3)

This design encourages DiffGen-8B to capture the distributional patterns inherent in challenging
mathematical problems. Importantly, the goal is not to optimize for problem solving, but rather to
enable the model to generate new problems of comparable complexity.

5
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Given the instruction prefix I, the trained generator DiffGen-8B can produce a large number of new
difficult problems by adjusting decoding parameters such as temperature and top-p. The resulting
collection of generated problems constitutes our problem set, denoted as PDiffGen.

3.3 SOLUTION DISTILLATION AND FILTRATION

After generating the problem set PDiffGen, we re-evaluate their difficulty using the methodology
introduced in Section 3.1. The validation shows that about 88% of the generated problems are clas-
sified as difficult, suggesting that DiffGen-8B effectively captures the distributional characteristics
of challenging problems. Since assessing the mathematical correctness and solvability of generated
problems remains a highly non-trivial task, we leave this aspect as future work and focus instead on
ensuring the quality of distilled solutions.

For each problem in PDiffGen, we utilize a strong teacher model to distill its corresponding solution,
resulting in D̂DiffGen. Upon obtaining these solutions, we perform a two-stage filtration process: rule
and model filtration. The initial rule filtering stage removes solutions with common undesirable
traits. This includes cases with extensive repetition (20-token n-gram occurring more than 20 times)
or overly verbose reasoning (total length exceeds 32,768 tokens or whose outputs do not contain
the required </think> tag) that prevents the final answer from being clearly encapsulated within
\boxed{}. The model-based filtering step further refines the dataset by discarding problems that
the base model already solves consistently. Specifically, if the base model’s predicted answer con-
sistently matches the teacher-provided answer, the problem is treated as uninformative for further
training and removed. This criterion identifies problems on which the base model and the teacher
model do not provide meaningful disagreement. In total, we filter out approximately 43% of the
initial samples and obtain the final problem-solution dataset DDiffGen.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Initial Dataset D. We utilize the mathematical domain subset of the AM-Qwen3-Distilled dataset2
as our initial dataset D, which is well-regarded for its high quality and has demonstrated effec-
tiveness in training mathematical reasoning models. Its problem set P is a compilation of several
prominent sub-datasets, including DeepMath-103K (He et al., 2025b), OpenR1-Math-220K (Face,
2025), OpenMathReasoning (Moshkov et al., 2025), and NuminaMath (Li et al., 2024b), among
others. Subsequently, P undergoes rigorous deduplication, rule filtering, and decontamination con-
cerning downstream tasks. The original solutions in D are distilled from Qwen3-235B-A22B (Yang
et al., 2025). This distillation process is iteratively repeated until a correct solution is obtained. Fur-
ther filtering is also conducted based on metrics such as perplexity and Ngram scores (Tian et al.,
2025). This multi-stage processing results in a final curated dataset comprising 558K data instances.

Training of DiffGen-8B. Following the identification process described in Section 3.1, 192K prob-
lems from P are classified as difficult, denoted as PDiff. We train DiffGen-8B based on the Qwen3-
8B-Base (Yang et al., 2025) model. The training configuration consists of a batch size of 128, a
maximum sequence length of 1024 tokens, a learning rate of 5e-5, and a total of 1 epoch. We em-
ploy 10% warmup steps with a linear decay learning rate schedule. We use LLaMA-Factory (Zheng
et al., 2024) as our training framework.

Construction of DDiffGen. Upon completion of training, we use DiffGen-8B to generate the PDiffGen.
Generation parameters are set to a temperature of 1.0, a top-p value of 0.95, and a top-k value of
20. We utilize the Qwen3-8B model (Yang et al., 2025) as teacher model to generate long CoT
solutions for the problems within PDiffGen in “Thinking” mode with a temperature of 0.6, a top-p
value of 0.95, and a top-k value of 20, resulting in D̂DiffGen. These generated solutions then undergo
the filtration process detailed in Section 3.3. For the model filtering stage, we specifically employ
the Qwen2.5-Math-7B-Instruct (Yang et al., 2024b) model, given that this model also serves as the
base model for our ScaleDiff. This comprehensive process yields our generated dataset, denoted as
DDiffGen, comprising 1.15M problem-solution pairs. By augmenting D with DDiffGen, we get the final
DFinal (ScaleDiff-Math), comprising 1.7M problem-solution pairs.

2https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled
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Model AIME’24 AIME’25 HMMT-Feb’25 BRUMO’25 MATH500 AVG
avg@10 avg@10 avg@10 avg@10 avg@3

Qwen2.5-7B-Instruct (Yang et al., 2024a) 11.3±5.4 11.0±5.2 2.7±2.0 22.3±3.7 77.5±1.0 22.6
Qwen2.5-Math-7B-Instruct (Yang et al., 2024c) 11.3±2.7 11.3±3.1 2.0±1.6 18.0±6.0 82.7±0.2 22.8
DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI, 2025) 53.0±5.3 41.7±6.5 25.0±3.7 54.7±7.2 93.7±0.4 51.6
Qwen3-8B (Yang et al., 2025) 75.0±4.5 64.7±6.4 44.0±4.4 68.0±2.7 96.8±0.3 68.9

RL
LIMR-7B (Li et al., 2025a) 33.3±4.5 7.3±3.3 0.7±1.3 20.3±4.3 77.4±0.6 24.4
Oat-Zero-7B (Liu et al., 2025a) 30.0±4.5 11.0±4.0 4.0±2.9 22.0±3.7 79.4±0.3 26.2
Open-Reasoner-Zero-7B (Hu et al., 2025) 17.0±3.5 17.0±3.1 3.0±2.3 29.3±2.9 82.4±1.3 27.6
AReaL-boba-RL-7B (Fu et al., 2025) 58.0±4.8 43.0±4.8 25.3±4.0 56.3±5.8 93.2±0.6 53.1
Skywork-OR1-Math-7B (He et al., 2025a) 59.7±3.8 49.7±5.0 30.3±4.8 61.7±4.5 95.3±0.1 57.7
Skywork-OR1-7B (He et al., 2025a) 61.5±4.2 50.3±5.5 28.0±5.0 63.7±6.0 95.9±0.2 58.3
MiMo-7B-RL (Xiaomi et al., 2025) 68.3±4.3 59.0±5.0 38.3±4.8 64.3±2.6 95.6±0.4 64.1

SFT
OpenThinker-7B (Team, 2025) 28.0±4.3 25.7±4.7 18.0±5.8 36.7±4.7 87.9±0.4 37.0
OpenR1-Qwen-7B (Face, 2025) 50.7±5.1 36.3±3.5 25.7±3.0 55.7±6.2 93.4±0.7 49.7
OpenThinker2-7B (Team, 2025) 54.7±7.6 38.0±5.6 23.0±4.1 54.7±4.3 93.9±0.4 50.4
Light-R1-7B-DS (Wen et al., 2025b) 55.3±5.4 41.3±2.7 26.7±3.7 56.0±4.9 94.0±0.3 52.4
MiMo-7B-SFT (Xiaomi et al., 2025) 60.3±6.0 44.3±6.7 25.7±4.5 50.7±8.1 93.6±0.2 53.2
AceReason-Nemotron-7B (Chen et al., 2025) 64.3±2.6 50.3±2.8 30.3±3.5 63.7±6.0 96.1±0.4 59.2
AM-Qwen3-Distilled-7B∗ (Tian et al., 2025) 63.0±3.5 51.7±5.6 33.3±5.8 60.7±7.7 94.6±0.4 59.2
AM-Thinking-v1-Distilled-7B∗ (Tian et al., 2025) 62.0±5.8 50.0±3.3 42.3±4.0 62.7±3.9 94.9±0.7 60.3
OpenThinker3-7B (Guha et al., 2025) 66.3±4.3 57.3±5.5 36.0±3.9 67.7±3.0 95.8±0.4 63.4
OpenMath-Nemotron-7B (Moshkov et al., 2025) 73.7±4.1 60.7±4.7 43.0±5.5 68.0±6.2 95.2±0.3 66.9
ScaleDiff-7B 73.0±5.0 58.7±8.2 43.3±4.2 66.7±2.7 95.2±0.3 65.9

Table 3: Pass@1 accuracy (mean ± std) comparison of different LRMs on AIME’24, AIME’25,
HMMT-Feb’25, BRUMO’25, and MATH500 benchmarks with multiple runs. The baseline results
are sorted by the average performance. ∗ denotes results from our evaluation of the Qwen2.5-
Math-7B-Instruct model trained by us on the corresponding dataset. The rows highlighted in gray
correspond to the source data D used for the ScaleDiff augmentation.

Training of ScaleDiff. As described above, in SFT, ScaleDiff model is initialized from Qwen2.5-
Math-7B-Instruct (Yang et al., 2024b) model and trained on ScaleDiff-Math dataset. The batch size
is set to 32, the maximum sequence length is 32,768 tokens, the training epoch is set to 3, with
other training settings consistent with those employed for training DiffGen-8B. Due to the native
context length limitation of the Qwen2.5-Math-7B-Instruct model to 4,096 tokens, we modify the
rope theta parameter from 10K to 300K to enable support for a maximum context length of 32,768
tokens, following the practice of OpenR1 (Face, 2025). The data template used for fine-tuning
follows the default format of Qwen series.

Evaluation. To ensure robust and reproducible results, our evaluation adheres to the standard-
ized framework and best practices outlined in (Hochlehnert et al., 2025). We assess the perfor-
mance of our ScaleDiff model against relevant baselines on a comprehensive set of widely rec-
ognized mathematical reasoning benchmarks: AIME’24 (AI-MO), AIME’25 (Lin, 2025), HMMT
Feb’25 (HMMT, 2025), BRUMO (BRUMO, 2025), and MATH500 (Lightman et al., 2023). Perfor-
mance is primarily measured using the standard Pass@1 metric. To account for potential variability,
especially on smaller benchmarks, all evaluation results are averaged over multiple random seeds.
Specifically, we use 10 random seeds for AIME’24, AIME’25, HMMT-Feb’25, BRUMO’25, and
3 random seeds for MATH500. The maximum number of new tokens, temperature, and top-p are
set to 32,768, 0.6, and 0.95, respectively. All evaluations are conducted using the LightEval frame-
work (Fourrier et al., 2023) with a vLLM backend (Kwon et al., 2023).

Baselines. We mainly compare ScaleDiff with Qwen2.5-7B model series, including Qwen2.5-7B-
Instruct (Yang et al., 2024a), Qwen2.5-Math-7B-Instruct (Yang et al., 2024c), DeepSeek-R1-Distill-
Qwen-7B (Guo et al., 2025), as well as LRMs that have undergone further SFT or RL based on
Qwen2.5-7B model series.

4.2 MAIN RESULTS

Our ScaleDiff demonstrates strong performance on both relatively simple benchmark MATH500 and
more challenging benchmarks including AIME, HMMT-Feb’25, and BRUMO, achieving average
accuracies that surpass many RL- or SFT-based strong LRMs, such as MiMo-7B-RL (Xiaomi et al.,
2025), Light-R1-7B-DS (Wen et al., 2025b), AceReason-Nemotron-7B (Chen et al., 2025), and the
recent OpenThinker3-7B (Guha et al., 2025). Unlike most of these baseline methods, which rely on
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Model Size AIME’24 AIME’25 HMMT-Feb’25 BRUMO’25 MATH500 AVG
avg@10 avg@10 avg@10 avg@10 avg@3

ScaleDiff 192K 61.0±5.2 52.0±5.0 33.0±3.5 57.7±5.0 94.7±0.1 58.4
w/o Rule Filtration 192K 59.3±6.5 52.3±2.1 31.0±4.7 59.3±3.6 94.3±0.2 58.1
w/o Rule & Model Filtration 192K 59.0±7.5 46.7±7.3 29.3±7.9 56.7±4.9 93.3±0.5 55.3
w/o Filtration & Difficult 192K 47.7±5.8 45.0±6.2 25.0±3.4 47.0±3.5 92.5±0.9 50.4

Table 4: Ablation Study on the effects of difficult problem selection and response filtration.

rejection sampling during solution distillation—sampling multiple candidate solutions and retaining
only those matching the ground-truth answer—our approach samples a single response per problem.
This eliminates the need for repeated sampling until the correct solution is found, resulting in sig-
nificantly lower data generation cost. Although the training data may contain incorrect answers, the
diverse reasoning traces they provide can still contribute to enhancing the model’s reasoning ability.
This observation is consistent with prior findings reported in (Toshniwal et al.; Su et al., 2025).

Comparison with AM-Qwen3-Distilled-7B. ScaleDiff achieves substantial improvements (11.3%)
over AM-Qwen3-Distilled-7B (Tian et al., 2025), as ScaleDiff-7B can be viewed as a “hiking” ver-
sion of AM-Qwen3-Distilled-7B. Here hiking refers to increasing both the overall difficulty and
volume of the dataset through the ScaleDiff pipeline. We believe that such difficulty hiking is gen-
erally applicable when the original dataset maintains a balanced difficulty distribution.

Comparison with teacher model Qwen3-8B. Qwen3-8B is the teacher model for ScaleDiff-7B.
From the results in Table 3, ScaleDiff-7B achieves 65.9% average accuracy, which closely ap-
proaches Qwen3-8B’s 68.9%. The gap between the two models is thus relatively small overall, indi-
cating that the distillation and difficulty-hiking pipeline successfully transfers much of the teacher’s
reasoning ability into the student model.

4.3 ABLATION STUDY

We further conduct an ablation study to investigate the contributions of different components in the
ScaleDiff pipeline. Specifically, we focus on two key modules: (1) difficult problem identification
and (2) response filtration.

To verify the effect of difficult problem identification, we remove both the identification and the
subsequent filtration steps, and instead train the question generator directly on the original problem
set P . We then generate new problems from this generator, distill responses from the same teacher
model, and fine-tune the same target model. To assess the effect of response filtration, we keep the
difficult problem identification step but remove the rule filtration or remove both the rule and model
filtration. For fair comparison, the total fine-tuning data size is fixed to 192K samples across all
experiments. The results are summarized in Table 4, from which we can observe: (1) Removing re-
sponse filtration degrades performance (58.4 → 55.3 on average), showing that both rule and model
filtering are important to eliminate noisy, repetitive, or low-value samples, with model filtering con-
tribute more on the performance drop (58.1 → 55.3). This ensures the fine-tuning dataset remains
both high-quality and challenging. (2) Removing difficult problem identification further causes a
notable drop in performance (55.3 → 50.4), confirming that pre-filtering challenging problems be-
fore generator training yields more effective data for enhancing reasoning capabilities. Without this
step, the generated dataset may contain a higher proportion of trivial problems, limiting SFT gains.

5 ANALYSIS

In this section, we present a series of analyses to investigate the impact of data scaling (Section 5.1),
the effect of teacher model (Section 5.2), and the difficulty of generated problems (Section 5.3).
Unless otherwise specified, all experiments are conducted on unfiltered solutions.

5.1 IMPACT OF DATA SCALING

To assess the impact of augmentation scale on downstream performance, we vary the size of the
generated dataset and evaluate the model across 3 benchmarks. Figure 2 illustrates the effect of
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Figure 2: Accuracy scaling with the size of augmented data on AIME’24, AIME’25, and MATH500.
The amount of augmented data is 1/2, 1, and 2 times the size of the original dataset.

Teacher Model Size AIME’24 AIME’25 HMMT-Feb’25 BRUMO’25 MATH500 AVG
avg@10 avg@10 avg@10 avg@10 avg@3

Qwen3-235B-A22B 192K 62.3±5.0 44.3±7.6 36.0±5.7 59.0±6.3 93.9±1.2 56.6
Qwen3-8B 192K 57.3±5.3 50.0±6.7 26.7±6.3 56.3±6.6 93.5±1.0 55.6

Table 5: The effect of teacher model for solution distillation.

augmentation dataset size on model performance across three benchmarks: AIME’24, AIME’25,
and MATH500. The yellow dashed line denotes the baseline results of AM-Qwen3-Distilled-7B
without augmentation. From the figure, we observe a consistent performance improvement on the
more challenging AIME’24 and AIME’25 benchmarks as the augmentation dataset size increases.
Notably, even when the augmentation size reaches twice that of the original dataset, performance
gains remain unsaturated, indicating the continued benefit of scaling difficult problems for enhancing
complex reasoning. In contrast, for the relatively easier MATH500 benchmark, the augmentation
provides no improvements, suggesting that additional difficult data contributes more significantly
when the evaluation tasks themselves demand complex reasoning.

5.2 EFFECT OF TEACHER MODEL

The performance of different teacher models may vary, and consequently, the quality of their dis-
tilled responses can influence downstream results. In this section, we investigate the effect of the
teacher model. In our pipeline, the original solutions for DDiff are distilled from Qwen3-235B-
A22B. For each problem in PDiff, we further distill three responses using Qwen3-8B. This is be-
cause Qwen3-8B occasionally fails on extremely difficult problems, and multiple attempts increase
the chance of producing at least one correct solution. We then keep only one solution per prob-
lem—selecting a correct one if available, otherwise randomly choosing among the three. We then
compare the results obtained from the two teacher models on this controlled dataset.

As shown in Table 5, we observe that using Qwen3-235B-A22B as the teacher model yields slightly
better performance than Qwen3-8B, though the difference is not substantial. This finding partially
aligns with prior observations in (Guha et al., 2025; Li et al., 2025b), which suggest that stronger-
performing models are not necessarily better “teachers” because a noticeable gap often exists be-
tween large teacher models and smaller student models. These results corroborate our decision to
adopt the smaller Qwen3-8B as a teacher model, demonstrating it to be a more cost-efficient choice.

5.3 DIFFICULTY OF GENERATED PROBLEMS

As described in Section 3.3, approximately 88% of the problems generated by DiffGen-8B are veri-
fied as difficult. To further investigate the characteristics of these problems, we analyze the distribu-
tion of response lengths across different datasets, namely DSimp, DDiff, and D̂DiffGen, as well as across
different teacher models, Qwen3-235B-A22B and Qwen3-8B (use superscript L and S to represent
them, respectively). The results are illustrated in Figure 3, from which several findings emerge.
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Figure 3: Distribution of solution lengths across datasets and
teacher models. The superscript L denotes the use of the large-
sized Qwen3-235B-A22B as the teacher model, whereas S indi-
cates the use of the small-sized Qwen3-8B.

(1) Comparing the distribution
of DL

Simp (blue curve) with the
others, we observe that the diffi-
culty levels identified by Adapt-
Think strongly correlate with re-
sponse length: simple problems
exhibit a sharp density peak at
very short token lengths, reflect-
ing their requirement for only
brief solution traces, while dif-
ficult problems shift the dis-
tribution toward longer token
lengths, consistent with the need
for more elaborate reasoning
chains. (2) Comparing the dis-
tribution of DL

Diff and DS
Diff (or-

ange and green curves), we find
that the choice of teacher model from the same family (Qwen3) has little impact on the response
length distribution for difficult problems, as both yield similar patterns. (3) Comparing the dis-
tribution of DL

Diff and D̂S
DiffGen with rule and model filtration (orange and red curves) given (2),

it becomes evident that generated problems tend to induce longer responses than original difficult
problems, indicating higher intrinsic complexity. This observation is further corroborated by down-
stream results in Table 4 and 5: SFT on the 192K DL

Diff dataset yields an average performance of
56.6, whereas training on an equal amount of D̂S

DiffGen with rule and model filtration achieves 58.4.
(4) Finally, comparing the distribution of D̂S

DiffGen with rule filtration and D̂S
DiffGen with rule and

model filtration (purple and red curves) shows that model filtration further refines the dataset by
removing relatively easier problems, thereby retaining a subset of problems with greater difficulty
and longer reasoning traces.

6 CONCLUSION

In this work, we introduce ScaleDiff, a simple yet effective pipeline for scaling the construction of
difficult mathematical problems to enhance the complex reasoning abilities of LRMs. By leveraging
AdaptThink as an efficient difficult problem identifier and training a dedicated generator (DiffGen-
8B) to produce new difficult problems, we construct the ScaleDiff-Math dataset. Extensive experi-
ments demonstrate that fine-tuning on this dataset yields substantial improvements over both strong
SFT- and RL-based baselines across multiple mathematical reasoning benchmarks. Moreover, we
observe a clear phenomenon that augmenting training data with increasing quantities of difficult
problems consistently improves performance on challenging benchmarks, underscoring the value of
difficulty-aware augmentation for advancing reasoning capabilities.

REPRODUCIBILITY STATEMENT

Implementation details for training pipeline, datasets, and all hyperparameters are specified in Sec-
tion 4.1. Our code is available at the anonymous repository https://anonymous.4open.
science/r/ScaleDiff-D053.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to polish the manuscript, check clarity, and correct gram-
matical errors. The authors reviewed and remain responsible for all content.

B EFFECTIVENESS OF DIFFICULTY VIA ANNOTATIONS

To further examine whether AdaptThink’s difficulty recognition aligns with externally annotated
difficulty levels, we analyze the relationship between AdaptThink’s identification and the official
difficulty labels in the MATH Hendrycks et al. (2021) test set. The difficulty levels in MATH range
from 1 to 5, following the annotation protocol of AoPS.

From the statistics in Table 6, we observe a clear monotonic trend: the proportion of “Thinking”
mode predictions increases steadily as the annotated difficulty level increases. This indicates that
AdaptThink adaptively chooses its reasoning mode in accordance with established difficulty labels,
thereby providing additional evidence that the model’s difficulty identification is consistent with
externally defined problem difficulty.

C PROBLEM DIVERSITY

Since downstream performance may be influenced not only by problem difficulty but also by the
diversity, we provide a quantitative analysis to ensure that diversity is not a confounding factor
in our difficulty-based comparisons. To quantify the diversity of PSimp and PDiff, we embed all
problems using Qwen3-Embedding-0.6B Zhang et al. (2025b). We then compute the global cosine
diversity, defined as:

DivGlobal = 1− E [cos(x, x̄)] , (4)
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Difficulty Level Thinking Ratio (%) NoThinking Ratio (%)
1 2.7 97.3
2 4.6 95.4
3 10.9 89.1
4 21.7 78.3
5 41.5 58.5

Table 6: Thinking mode vs. NoThinking mode prediction ratios across annotated difficulty levels in
the MATH test set.
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Figure 4: t-SNE visualization of downsampled (10%) PSimp and PDiff.

where x̄ denotes the mean embedding vector and all embeddings are ℓ2-normalized. Higher values
of DivGlobal correspond to a greater spread of the distribution. The computed DivGlobal values for
PSimp and PDiff are 0.495 and 0.473, respectively, indicating that diversity is adequately controlled
in both cases. Furthermore, we randomly downsample 10% of PSimp and PDiff subsets and visualize
their embeddings using t-SNE. As shown in Figure 4, PSimp and PDiff exhibit clearly distinguishable
distributions. These results confirm that the simple subset does not suffer from low diversity, and
thus diversity is not a confounding factor in our difficult analysis.

We further examine the relationship between diversity and downstream accuracy across all subsets.
Notably, DivGlobal and performance do not exhibit a positive correlation; in some cases, the trend
is even inverted. For example, DDiff has the lowest DivGlobal among all subsets, yet delivers the
second-highest accuracy (only below the full dataset D). Conversely, although DSimp and DDiff have
comparable diversity levels, their downstream performance differs substantially. We also note that
the mixed subset DMix achieves performance comparable to the random subset DRand, and when
DivGlobal is controlled, the average performance increases with the proportion of difficult samples in
the dataset. These results indicate that diversity alone cannot account for the observed performance
disparities, and that problem difficulty remains a key determinant even after controlling for dataset
size and diversity.

D GENERALIZATION TO OTHER MODEL FAMILY

To further examine the generality of ScaleDiff pipeline beyond the Qwen2.5-Math series, we ex-
pand our evaluation to include two additional model families: Llama3.1 Dubey et al. (2024) and
DeepSeek-Math Shao et al. (2024). We evaluate two settings: (i) training solely on the difficult
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subset DDiff (192K examples), and (ii) training on the combined set DDiff ∪ DDiffGen (192K + 192K
examples), in order to quantify the effect of ScaleDiff data augmentation.

Model Training Set Size AIME’24 AIME’25 HMMT-Feb’25 BRUMO’25 MATH500 AVG
avg@10 avg@10 avg@10 avg@10 avg@3

Qwen2.5-Math-7B-Instruct – – 11.3±2.7 11.3±3.1 2.0±1.6 18.0±6.0 82.7±0.2 22.8
ScaleDiff-Qwen2.5-Math-7B-Instruct DDiff 192K 62.3±5.0 44.3±7.6 36.0±5.7 59.0±6.3 93.9±1.2 56.6
ScaleDiff-Qwen2.5-Math-7B-Instruct DDiff ∪ DDiffGen 364K 65.0±5.2 52.0±5.0 35.0±3.1 62.0±5.0 94.0±0.6 60.0
Llama-3.1-8B-Instruct – – 5.3±3.4 0.0±0.0 0.7±1.3 2.7±2.9 48.2±1.1 9.5
ScaleDiff-Llama-3.1-8B-Instruct DDiff 192K 41.3±6.0 28.3±5.6 24.7±6.0 46.0±9.5 86.7±1.1 42.6
ScaleDiff-Llama-3.1-8B-Instruct DDiff ∪ DDiffGen 364K 46.3±6.4 41.3±6.4 28.3±4.5 49.7±5.9 88.2±1.6 49.2
DeepSeek-Math-7B-Instruct – – 0.7±1.3 1.0±1.5 0.0±0.0 1.7±2.2 44.7±0.8 8.2
ScaleDiff-DeepSeek-Math-7B-Instruct DDiff 192K 27.3±6.8 25.7±4.7 16.0±3.6 33.7±4.6 83.1±1.1 35.3
ScaleDiff-DeepSeek-Math-7B-Instruct DDiff ∪ DDiffGen 364K 41.7±4.8 27.0±4.8 23.7±4.1 41.0±8.8 87.9±1.1 41.4

Table 7: Performance comparison across multiple model families trained under the ScaleDiff
pipeline. Incorporating ScaleDiff generated data consistently improves performance across Qwen,
Llama, and DeepSeek-Math models.

As summarized in Table 7, incorporating SCALEDIFF-generated data consistently improves perfor-
mance across all three model families—Qwen, Llama, and DeepSeek-Math—despite their distinct
architectures and pretraining pipelines. These results demonstrate that the benefits of ScaleDiff are
not tied to Qwen2.5-Math’s math-heavy specialization; instead, they transfer robustly to diverse
model families, confirming the generality of our approach.
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