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Abstract: Image segmentation is a crucial task in artificial intelligence fields such as computer vision
and medical imaging. While convolutional neural networks (CNNs) have achieved notable success by
learning representative features from large datasets, they often lack geometric priors and global object
information, limiting their accuracy in complex scenarios. Variational methods like active contours
provide geometric priors and theoretical interpretability but require manual initialization and are
sensitive to hyper-parameters. To overcome these challenges, we propose a novel segmentation
approach, named PolarVoting, which combines the minimal path encoding rich geometric features
and CNNs which can provide efficient initialization. The introduced model involves two main steps:
firstly, we leverage the PolarMask model to extract multiple source points for initialization, and
secondly, we construct a voting score map which implicitly contains the segmentation mask via a
modified circular geometric voting (CGV) scheme. This map embeds global geometric information for
finding accurate segmentation. By integrating neural network representation with geometric priors,
the PolarVoting model enhances segmentation accuracy and robustness. Extensive experiments on
various datasets demonstrate that the proposed PolarVoting method outperforms both PolarMask
and traditional single-source CGV models. It excels in challenging imaging scenarios characterized by
intensity inhomogeneity, noise, and complex backgrounds, accurately delineating object boundaries
and advancing the state of image segmentation.

Keywords: geodesic voting; image segmentation; multi-source; polar representation; geodesic model

1. Introduction

Image segmentation is a fundamental task in computer vision, playing a crucial role in
applications such as medical imaging [1,2], autonomous vehicles [3,4], and agriculture [5,6].
Given its wide-ranging applications, image segmentation has been extensively studied
over the past few decades, resulting in the development of numerous methods aimed at
solving this problem efficiently [7,8].

The advent of deep learning, particularly convolutional neural networks (CNNs), has
led to significant advancements in image segmentation [9]. CNNs can automatically learn
image features and contextual information from large-scale datasets, thereby markedly
improving segmentation performance. Specific neural network architectures, such as U-
Net [10], DeepLab [11], and PolarMask [12,13], are designed with multi-scale processing
capabilities, enabling them to handle features and objects of varying scales simultaneously.
However, existing neural network-based segmentation models primarily rely on local
appearance and abstract features from convolutional layers based on regular image grids.
These models often lack explicit consideration of geometric constraints and global object
information, which could further enhance segmentation precision.

Meanwhile, researchers have also investigated energy functional-based active contour
methods for image segmentation [14,15]. The core idea of these methods is to define an
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energy functional that accounts for specific image attributes, such as grayscale values, color
information, and texture features. By employing optimization algorithms to minimize
this energy functional, an optimal image segmentation result can be obtained. A notable
advantage of active contour methods is their ability to design an energy functional based
on the characteristics of the segmentation target. This approach naturally integrates prior
information about the target, thereby enhancing model interpretability. However, a major
limitation is that these methods do not automatically extract features from training samples.
In practical applications, they often require manual or semi-automatic contour initialization
based on test images and are highly sensitive to hyperparameters.

Given the limitations of neural network-based and active contour-based image seg-
mentation methods, researchers have started to integrate these approaches to develop
segmentation techniques with enhanced performance across various applications [16].
In the remainder of this section, we provide a brief overview of recent image segmenta-
tion methods that combine neural networks with active contour detection, followed by a
discussion of the motivation behind our work.

Integration of Neural Networks and Active Contour Models for Image Segmentation

In [17], the segmentation task is reframed as a contour detection problem, combining
CNN’s with active contour modeling to explicitly track contours without relying on dense
intermediate predictions. Building on this integration, other studies have leveraged the syn-
ergy between CNNs and active contour methods for improved accuracy and robustness in
diverse industrial and inspection tasks. For instance, the authors of [18] apply a lightweight
depthwise CNN following an active contour-based segmentation stage to classify complex
multi-defect wafer maps, achieving high accuracy under intricate manufacturing condi-
tions. Similarly, the approach in [19] enhances deep learning-based contour detection by
incorporating domain knowledge and specialized edge extraction to accurately delineate
yarn boundaries, improving inspection performance in challenging textile environments.

Several methods have focused on refining local region modeling and parameter estima-
tion within active contour frameworks. In [20], a local region-based active contour model
employs Bayes’ theorem and spatial regularization to achieve robustness against noise
when segmenting images with intensity inhomogeneity. Additionally, the authors of [21]
combine CNN-generated parameter maps with texture descriptors, improving both speed
and reliability during contour evolution. These techniques have shown particular success
in medical imaging applications. For example, the authors of [22] fuse a modified active
shape model with CNNS5s to accurately extract brain boundaries in MRI scans. In another
instance, the authors of [23] integrate fuzzy connectedness with an autoencoder CNN,
followed by post-processing with active contours, to enhance breast tumor segmentation in
ultrasound images.

However, most of the existing approaches that integrate neural networks with active
contour modeling still rely heavily on localized cues and lack a more global geometric
understanding. In addition, many of these methods focus on specific applications, tailoring
their designs and parameter settings to particular imaging scenarios and object classes,
which limits their generalizability. These observations motivate the development of a
method that not only leverages the strengths of deep learning but also integrates global
geometric constraints to provide a more robust and general segmentation solution.

This paper proposes a novel approach that combines geometric constraints with neural
networks. Specifically, it introduces a multi-source point circular geometric voting (CGV)
method, termed PolarVoting. The PolarMask deep learning model [12] is utilized to extract
feature representations at different scales and to obtain the primary contour of the object.
Based on the center point and the source contour points identified by PolarMask, a new
variant of the CGV model is proposed, where the voting score map is constructed using
multiple source points. By leveraging the representational power of neural networks in
conjunction with the global geometric information inherent in the image, the proposed
PolarVoting method achieves precise and robust segmentation. It is particularly effective in
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complex imaging scenarios, accurately delineating object boundaries despite challenges
such as intensity inhomogeneity, noise, and intricate background structures.
The contributions of this paper are summarized as follows:

1.  We introduce a variational PolarVoting model for image segmentation that blends the
enhancement from the geometric regularization of the CGV approach and the learning
capabilities of the deep learning-based PolarMask model. This fusion leverages the
classical PolarMask model to generate initialization information, thereby enhancing
segmentation precision, especially in complicated scenarios.

2. The traditional CGV model utilizes a single user-provided source point to create the
voting score map, which may suffer from unexpected difficulties for complex images.
Our model advances the CGV model by incorporating multiple source points, an
enhancement designed to achieve more robust segmentation, particularly for intricate
object boundaries.

3. The efficacy of the proposed PolarVoting model is evaluated on both real-world
natural and medical images. Experimental results demonstrate that the PolarVoting
model indeed outperforms both PolarMask and the traditional single-source CGV
model, underscoring its effectiveness across varied contexts.

2. Preliminaries

In this paper, we propose the integration of the PolarMask deep learning model [12,13]
with the CGV method [24], thereby leveraging the representational capabilities of deep
neural networks alongside the geometric regularization inherent in geodesic models. This
section introduces the core principles underlying the PolarMask model and the CGV model,
as well as a discussion of their respective limitations, which serve as the impetus for the
development of the novel image segmentation model presented in this paper.

2.1. PolarMask Model

The PolarMask model is a widely recognized single-shot instance segmentation frame-
work that predicts image masks in polar coordinates both effectively and efficiently. This ap-
proach has demonstrated promising performance in object image segmentation tasks. First,
we present the overall framework of PolarMask, followed by a discussion of its limitations.

2.1.1. PolarMask Segmentation

As shown in Figure 1, the PolarMask model introduces an efficient way to represent
the image segmentation mask using the polar coordinate system, where an instance mask
is represented by a single center and # straight rays. For a given instance mask, PolarMask
first samples a candidate center (x,y.) of the instance and a set of boundary points (x;, ;)
fori =1,2,...,n located on the predicted contour. From the center point x., y., n rayline-
like straight segments are emitted uniformly at equal angular intervals Af, with their
lengths determined by the distance from the center point to corresponding boundary point
(xi,i). The angular resolution is predefined (e.g., n = 8, A® = 45°). The length r of each
rayline-like segment is predicted through a learning process. As a consequence, the image
segmentation consists of an instance center classification processing and a dense distance
regression processing in polar coordinates. With the polar coordinate representation, the
PolarMask mask incorporates the polar IoU loss and soft polar centerness for instance center
classification and dense coordinate regression, which further enhances its performance. For
more detailed information, we refer the reader to [12,13].

The PolarMask model integrates a backbone network, a modified feature pyramid
network, and a task-specific head [25]. Given the center location (x., ) and the lengths of
n rays, the position of each corresponding contour point (x;, ;) is calculated by:

x; = cos0; x d; + x¢ (1)

and
yi =sin®; X d; + ye. )
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Starting from the angle 0°, the boundary points are sequentially connected, ultimately
forming the complete contour and the corresponding mask.

( (wm yc) >

Figure 1. Illustration for a polar representation of a mask. The light green dot denotes the center

point (x¢, yc) and the dark green dots are the sampled boundary points (x;, ;) for 1 <i < n.

2.1.2. Limitations of the PolarMask Model

The PolarMask model offers a novel approach to single-shot image segmentation,

significantly improving performance and simplifying the training process. However,
PolarMask still faces significant challenges when addressing image segmentation tasks,
particularly in the following three scenarios:

1.

The PolarMask model constructs the final contour by directly connecting the predicted
points on the instance contour. This means that to achieve a more detailed representa-
tion of the contour, a greater number of polar rays must be predicted. For instance,
as shown in Figure 2a, constructing the contour of an instance using only 36 points
would lead to poor segmentation results. Furthermore, as previously mentioned, the
mask regression branch has a shape of H X W X n to predict the length of each polar
ray. When the number of rays is large, the branch structure becomes more complex,
making training more challenging. Therefore, selecting an appropriate value for the
hyper-parameter  is a delicate task for PolarMask.

In the PolarMask model, only the point with the greatest length for each ray is
preserved. However, if there are multiple points along the ground truth contour, as in
the case of the example shown in Figure 2b, PolarMask struggles to accurately capture
the true contour of the instance, even when the number of rays is large. As a result,
PolarMask encounters significant challenges in segmenting U-shaped instances.

The PolarMask model does not incorporate contour regularization. In scenarios
where image quality is low or distorted by noise, such as in medical CT images, the
absence of regularization can lead to unexpected and irregular segmentation results,
highlighting significant room for improvement.
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(a) Result of insufficient number of rays. (b) Result for a U-shaped instance.

Figure 2. Result in challenging scenarios.

2.2. The Circular Geodesic Voting Model

The circular geodesic voting model (CGV) [24] is a novel variational model designed
to address the interactive image segmentation problem, particularly effective for complex
tasks such as medical image segmentation. This section introduces the key concepts
underlying the method and discusses the limitations that this paper aims to address.

2.2.1. Geodesic Minimal Path Model with Asymmetric Quadratic Metrics

The general geodesic minimal path problem is defined on a bounded domain O C R”
equipped with a metric F(x, u) that depends on positions x € () and orientations u € R".
This metric F defines a norm at each point x as:

Fx(u) := F(x,u), (3)

where the norms Fx must be positive Fx(u) > 0 whenever u # 0, 1-homogeneous,
and satisfy the triangle inequality. However, in general, these norms are allowed to
be asymmetric:

Fx(u) # Fx(—u). 4)

The length of a regular curve 7y with respect to the metric F is measured as:
1
Lr(n) = [ Fa0,7'(1)d. ©

The minimal action map U(x) is defined as:

U(x) :=1inf{LF(7); v € Asx}, (6)

where A, , represents the collection of all Lipschitz paths v : [0,1] — Q) such that y(0) = s
and (1) = x. This map is the unique viscosity solution to an Eikonal partial differential
equation (PDE) [26,27]:

Fi(VU(x)) =1, VxeQ\{s}, @)
U(s) =0,
where F} is the dual norm of Fy, defined for all u € R" by:
. (u,v)
Fi(u) :==su . (8)
X( ) v;&% .Fx(v)

Based on the definition of the dual norm in (8), the corresponding optimal direction map ¥
is obtained by:
¥ (x,u) := arg max M, ¥Vx €, VYucR" )
V#O f X (V)
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The geodesic C; » is obtained by reversing the geodesic Cy s with Csx(0) =sand Cs (1) = x,

where Cy 5 is tracked through the following ordinary differential equation (ODE) involving

the minimal action map U and the optimal direction map ¥:

C;c,s(t) & —‘I’(Cx,s(t),VU(éxrs(t))), (10)
Cx,s(o) = X.

Numerically, the ODE expressed in Equation (10) is solved using methods such as Heun’s
or Runge—Kutta’s, or more robustly with the numerical method proposed by [28].

The asymmetric quadratic metrics F4¢ used in the geodesic minimal path model
within CGV are defined by:

Foi= Faglxw) = y/{u, M(x)u) + (w(x),u)?, an

where M : M — S; ', is a tensor field, w : M — R2? is a vector field, and (u,v)%r =
(max{0, (u,v)})?> with u,v € R?.

To leverage edge asymmetry features, two anisotropic and asymmetric minimal paths
can be traced from a source point to an endpoint on the target edge along two opposite
edge tangent directions based on the asymmetric quadratic metric. A closed contour is
then formed by combining these two minimal paths, which share the same source and
target points, to delineate the target boundary. For this purpose, the asymmetric quadratic
metrics, constructed with different rotation matrices M; (i € {0,1}) and vector fields w; in
the second part of the metric, are used to track minimal paths in counter-clockwise and
clockwise directions. The corresponding asymmetric quadratic metrics are defined as:

Folxu) =/ (u, M(x)u) + (wo(x), u)2, (12)

Fholxu) = 1/ tu, M(x)u) + (@1 (x), ). (13)

Unlike the isotropic metric, which is independent of path tangents, the asymmetric quadratic
metrics can generate different minimal paths with the same source point and endpoint by
reversing the vector field component.

2.2.2. Overall Pipeline

The overall pipeline of the CGV model includes the following four components:
computing the adaptive cut, building the set of endpoints, performing geodesic voting,
and final segmentation.

Computing the Adaptive Cut

The adaptive cut [15] is integrated into the segmentation framework in conjunction
with the minimal path model associated with the asymmetric quadratic metric. The use
of the adaptive cut helps avoid the shortcut problem by preventing minimal paths from
crossing the adaptive cut.

The adaptive cut is generated by computing a minimal path that connects a landmark
point z inside the target region to a point x on the image boundary. It is constructed based
on the Cohen-Kimmel minimal path model, where the metric in Equation (5) is simplified
as Fso(x,u) = P(x)||u||. The potential function ¢ is designed so that the resulting minimal
path intersects the target boundary only once. The geodesic distance map U, : M — R
can be computed by solving the PDE (7) associated with the metric Fis,.

The endpoint b € d M of the target adaptive cut C, can be identified by finding the
point with the minimum distance value, i.e.,

b:= argxlgijr\l/l U, (x). (14)
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Finally, the adaptive cut C, can be generated by solving the gradient descent ODE (10)
on U, such that C;(0) = p and C,(1) = b. Since the adaptive cut intersects the target
boundary only once, it allows for tracking the minimal path from one side of the cut to
the other.

Building the Set of Endpoints

The farthest point sampling (FPS) scheme [29] is employed to generate a set of points
A ={pr € M;1 < k < N} with N > 3, which is then used to construct the set of
endpoints for computing anisotropic and asymmetric minimal paths.

All points in the adaptive cut C; are utilized as the initial model to search for the
farthest points. The set of sampled farthest points is denoted as P. In the first iteration, P is
setas P0) = C,, where P¥ represents the updated set at the k-th iteration. The first farthest
point p; is detected via the corresponding geodesic distance map Uc, with P = P(0),
as follows:

p1 = argmax Up (x). (15)

The set P is then updated to P(1) = PO U {p;}. In the k-th iteration (where 1 < k < N),
the k-th farthest point py is detected by:

e . l
Py = argmax Up(x) (16)

This process yields the updated set P} = P~  {p;}. Finally, the set of farthest points
A is generated as:
A=P\C. (17)

Performing Geodesic Voting

Using the sampled endpoints, a set of minimal paths for constructing the voting
score map can be established by connecting each endpoint in the farthest point set A with
asymmetric quadratic paths, based on the asymmetric quadratic metric. All minimal paths
originate from the source point, which is the intersection of the target boundary and the
adaptive cut. Let ® 4 = {Gl]}]1€<{10<11\]} C Lip([0,1], M) represent the set of voting paths,
where N is the total number of endpoints. For each endpoint p; € A, two minimal paths,
G;po and G; 1, corresponding to the metrics ]:SlQ and ]:}1(3/ are computed from the initial
point s along both sides of the adaptive cut. The geodesic distance maps U; ¢ and U; ; are
calculated using the adapted Hamiltonian fast marching (HFM) method in conjunction
with the adaptive cut.

For an endpoint p;, the minimal paths G; and G;; are obtained with respect to the
geodesic distance maps U, and U; 1. The minimal path G; ; with the lower weighted curve
length is selected for voting score construction, as it has a higher likelihood of accurately
depicting the target boundary. In this context, the weighted lengths of G, and G; are
Uio(pi) and U;1(p;), respectively. The path with the lower length between G, and G
is denoted by G;, where G; = G, if U;o(p;) < U;1(p;), and G; = G;; otherwise. For
convenience, define:

®p = {Gi}i oy (18)
The voting score map VP : M — [0, ), associated with the initial point s, is defined as:
Vi) = ) xx(G), (19)
Gedp

where xx : Lip([0,1],Q2) — {0,1} is a path detector defined by:

1, 3t € [0,1] such that y(t) = x,

. (20)
0, otherwise.

xx(r) = {



Entropy 2024, 26, 1123

8 of 22

The value xx(y) equals 1 if the curve -y passes through the point x, and 0 otherwise.

For each pair of minimal paths G;y and G;; leading to p; € A, these paths are
considered to form a closed contour that accurately depicts the target if the geodesic flows
at the endpoint are inverse to each other. The Euclidean scalar product of the vector fields
at point p;, derived from the geodesic flow maps V; and V; ;, is expressed as:

N AVio(pi), Via(pi))
T®) = W0 TV (e’

with Gjo(1) = Gj1(1) = p;. Given a threshold { € [—1,0), the minimal paths G,
and Gj; linked to p; are regarded as forming a valid closed path if 7(p;) < {. Let
®r = {Gyj}1<n<mo<j<1 denote the set of all minimal paths from ®4¢ that satisfy this
condition, where M € (0, N] is a positive integer representing the number of selected
minimal paths. The second voting score map V7 : M — [0, ) is then established as:

Vi(x) = GZ{) xx(G). (22)

(21)

The final voting score map V : M — [0, 0), associated with the initial point s, is
defined as:

V(x) = aV” (x) + pVP(x), (23)

where the weight parameters « and S control the relative importance of the two voting
score maps.

Final Segmentation

In the voting score map, a high value of V(x) indicates a strong likelihood that x
belongs to the target boundary. A thresholding procedure is then applied to the voting score
map V to obtain the initial segmentation results. Additionally, mathematical morphological
operators are employed to refine these results, ensuring that the final contours have a width
of a single grid point.

2.2.3. Limitations

The CGV model demonstrates significant advantages by integrating the disconnection
constraint within the image domain with the anisotropic and asymmetric properties of
image edges. This approach allows for the detection of boundary contours of complex
objects using only a randomly placed landmark point within the target region. Despite
these strengths, the model has certain limitations that warrant further consideration:

1. The CGV model is inherently designed for interactive image segmentation, as it relies
on the manual input of a landmark point. Consequently, it is unsuitable for scenarios
requiring fully automatic segmentation.

2. Inconstructing the score map, the model utilizes a single point on the instance contour
as the source point. While effective for simpler contours, this approach may struggle
to accurately capture the complexity of highly intricate instance contours.

3. A Multi-Source Circular Geodesic Voting Model

In this section, we present the core contribution of this work: integrating the geometric
properties of the CGV approach with the learning capabilities of the deep learning-based
PolarMask model. This integration enhances the traditional CGV model by incorporating
multiple source points to improve the computation of the voting score map.

An overview of the proposed PolarVoting framework is shown in Figure 3. The
method involves two primary steps: (i) updating the vertices, which are derived from
the PolarMask model and located near the target boundary, and (ii) computing a series of
continuous curves, each of which passes through a vertex and connects the center point to
the image domain boundary.
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(d) (e) ()

Figure 3. Overview of the proposed PolarVoting framework. (a) The original image, where the red

dots represent the sampled farthest points. (b) Updating of vertices: the red dots denote contour
points obtained from PolarMask, while the green dots represent the updated points. (c) Construction
of multiple adaptive cuts. (d) Visualization of minimal paths using different metrics. (e) Visualization
of the voting score map. (f) The final segmentation contour, represented by the red line.

3.1. Update the Vertices

Suppose that the output from the classical PolarMask model is a set of landmark points
{Pj}1<j<j, where ] is a positive integer. We further suppose that these points are distributed
along the target boundary in a clockwise order. However, these points sometimes are not
exactly located in the target boundary. In order to solve this problem, we move these points
towards the close edge points identified using the image gradient magnitude. Specifically,
letlI=(I,hL,5):Q— RR3 be a vector-valued image (color image), where [ fork =1,2,3
represent the respective channel of the color image. As introduced in [30], the gradients of
the color image I, denoted by VI, are defined in its Jacobian matrix, that is

VI(x) = [VGy* L1, VGg x I, VGy * I5], (24)

where VG, = (9,G, 9,G,) are the standard euclidean gradients of the Gaussian kernel
with deviation ¢ and 9,G; (resp. 0,G) is the partial differential of G, along a-axis (resp.
b-axis). Then, we construct a symmetric quadratic definite matrix field

W(x) = VI(x)VI(x) " (25)

whose eigenvalues are A (x) and A, (x) with A(x) < Ay(x), such that we define f : Q — Rj
as the image edge indictor such that

f(x) = A1(x) + A2(x). (26)

In essence, high values of the function f(-) usually imply strong appearance of image
edges. Asa consequence, we consider rectifying the landmark points {p; }1<j<j by detecting
an optimal point, denoted by pj, in a neighborhood Tz (p;) which surrounds the original
landmark point p;, where & € R" is a positive scalar value defining the size of T¢(p;).

In this work, this procedure involves two main steps, where the first one is the
construction of the neighbourhood T¢(p;). In order to take into account the image data,
we apply the minimal weighted curve length associated to each point p; to recover the
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small region T¢(p;). Specifically, this is implemented by estimating the following map of
minimal weighted curve length

1
Dp,(x) = min | R (7p,x(u), 7, () ) 27)

"/Pj,x

where 75, x 1 [0,1] = Q is a curve of Lipschitz continuity, subject to 7p,x(0) = p; and
vp;x(1) = x. Let A; (i = 1, 2) be the eigenvalues of the matrix field W as defined in
Equation (25). In addition, let r : Q — R? be a vector field such that the direction r(x)
points from x to the closest image edge. For this purpose, we apply the method [31] to
construct such a vector field r and we further suppose that r | (x) is a vector perpendicular
to r(x). The function R : Q x R? — [0, 0] is a standard Riemannian metric expressed as

R(x,u) =1 ()1 (x) "+ exp(uf (x))r(x)r(x) | (28)

where y > 0 is a positive constant. The computation of the minimal weighted curve
length Dp, can be efficiently estimated using the Hamiltonian fast marching method [28,32].

Moreover, each point x leads to a minimal path fy;f,],,x, whose Euclidean length is L (’Yiksj,x)-
Then, we define the neighbourhood Tz (p;) as

Te(pj) = {¥x € O, L(75,5) <&} 29)
Eventually, the rectified points p; can be obtained by

p; = argmax f(x). (30)

An example of updating five PolarMask contour points is illustrated in Figure 3c.

3.2. Construct Multiple Adaptive Cuts

Now, we have a set of rectified landmark points {p;}; distributed along the boundary
of the target and a center point c inside the target. In contrast to the adaptive circular
geodesic model [15] whose adaptive cut only connects the center point to a point at the
image domain boundary 9d(), the introduced method is able to simultaneously pass through
a specified point such as a landmark point p;, allowing us to blend the benefits from the
landmark points and the circular minimal paths. We denote by C; as the adaptive cut such
that C;j(0) = ¢, C;(1) € 9Q and Cj(u) = pj, forall 1 <j < J.

Basically, an adaptive cut C]- is a continuous curve, and in our work this curve is
generated as the concatenation of two minimal paths. In other words, we suppose that

C] = Cl,j U CZ’]' (31)

where Cyj, Cy; : [0,1] — Q are two open curves. The operator U is used for curve
concatenation [33-35] such that

71(21’[)/ if 0 <u< %/

32
T2(2u—1), ifl<u<i (32)

(M Y2)(u) = {

where 71, 72 : [0,1] — Q are two curves.

Now, we describe how to compute the curves Cl,j and CZ/]-. In our work, we compute
both paths using the Euler-Mumford elastica model [36,37], such that the path curvature
can be taken into account. Basically, the energy of this elastica model can be formulated as:

Length(7) = [ 9((),7/()/ Iy (1) )1 + () )
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where ¢ : O x S! — R* is a cost function with S! = [0,27] being an interval of periodic
boundary condition, « : [0,1] — R is the curvature of the regular path 7 : [0,1] — Q, and
T > 0 is a parameter that controls the relative importance of the path curvature x. The
cost function ¢ is dependent on the direction ny = (—sin 6, cos 8) for any angle 6 € S!. In
this work, we compute the cost ¢ using the image gradient-related matrix W defined in
Equation (25). Let 4 > 0 be a weight parameter and the cost ¢ be estimated by

$(x,0) = exp(—pg(x,0)/[Ig(x, )| ) (34)

where the function g is defined as g(x,0) = (ng, W(x)ny).

This is implemented in two steps. The first step is to compute C; ;, which is treated as
a curvature-penalized minimal path that globally minimizes the elastica energy under a
specified condition

7(0) =¢,
7(1) = p;.
We adopt the method of orientation lifting, as presented in [36,37], to solve the min-
imization of the length (33), yielding the minimal path C; such that C;;(0) = ¢ and
Cl,j(l) = Pj-
Secondly, we apply the similar procedure to generate the the minimal path Cl,j obeying
that C, ;(0) = pj and C,;(1) € 9Q). This is performing by solving

iglf Length(-y), subject to { (35)

7(0) = pj,

7(1) =x. (36)

in inf Length(7y), subject t
mininf Leng (), subjec 0{

The target adaptive cut C; can be generated using equation (31). Repeating this procedure,
we eventually obtain a series of adaptive cuts {C;},1 <j <.

An example of the construction of multiple adaptive cuts, with the number of vertices
set to five, is illustrated in Figure 3b.

3.3. Circular Geodesic Voting with Distance Competition and Multiple Cuts
First of all, we construct a set of farthest points

Q={qeQ|1<k<K}

which are usually taken as the endpoints for computing the voting paths. Note that in the
circular geodesic voting method, the user is required to provide the contrast prior to the
image gray levels. More precisely, the gray levels at most of the points inside the target
region are supposed to be locally higher than the background. In order to remove this
constraint and to facilitate the segmentation, we introduce a geodesic distance competition
procedure which is able to identify locally the contrast of image gray levels, providing that
the target boundaries are unknown.

Recall that each landmark point p; is assigned with an adaptive cut C; whose unit
normal vectors are denoted by N;(u) o M(rr/ 2)C]((u), where M(71/2) is the clockwise
rotation matrix with angle 71/2 and o is the positively proportional operator. In this
case, each landmark point p; corresponds to two offset points p} = pj — Nj(u)e and
p; = pj +N;j(u)e, where € > 0 is a sufficiently small constant. As a consequence, the point

p} (resp. p]r-) is placed at the left (resp. right) side of the adaptive cut C;.
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3.3.1. The Construction of Voting Paths
In the CGV model, two asymmetric quadratic metrics ng (12) and .7-"%@ (13) are

adopted to track minimal paths in counter-clockwise and clockwise directions. This paper
considers two sets, H]r- and H}-, as the search spaces for minimal paths with respect to p;:
IT; := {7 € Lip([0,1], Q) [ 7(0) = pj, Vu € [0, 1], 7(u) £ Cj},
I} := {y € Lip([0, 1), Q) | 7(0) = p}, Vu € [0,1], 7(u) & Cj}.
In other words, the set I'T} involves all the paths that emanate from p]?. Given an asymmetric

quadratic metric, the geodesic distance between two points is the minimal length of an
admissible curve . By this definition, we construct two geodesic distance maps D?’r

and ’D}’r:
0,r . 1 0 / r _
DY (x) = inf [ Fho(r(u), ' (u))du| 7 € 1T}, 7(1) = x ©7)
1
DI (x) = inf{ A Fro(r(w), 7' (w)du | y € ITE, 7(1) = x}. (38)

In the eikonal PDE framework [32,38,39], the distances maps D?’r(x) and D}’r(x) are the
viscosity solutions to the following PDEs

(VD) (x),%) o (VD" (x),%) y

- J === = 1, L _—— 1, r
%0 R (%) X7 PJ nd { T8 Flo(ux) XFP (39
D" (p}) =0. D" (p}) =0.

The geodesic distance map D?’r (resp. D;)’l) corresponds to a set of minimal paths {g,fr’}lg k<K

(resp. {G," }1<k<x), satisfying that G (1) = qi (resp. G,” (1) = qi) where q; € Qisa
sampled point. In other words, each sampled point q; leads to two minimal paths, and
our goal is to choose a proper one so as to compute the voting scores. For this purpose, we
estimate a binary-valued map b, : QO — {0,1} such that

. 1r 0,r
bu(x) = {1, if D" (x) < DY (x), (a0)

0, otherwise.

Let G] be the voting path such that G{(0) = pj and Gi(1) = qx. Using the map by, one can

identify G as follows:
Gy, ifbi(x) =1,
G =10 ) @
gk' , otherwise.

Similar to the construction of Q,ﬁ, one can obtain the voting paths Q}: obeying that
Gi(0) = p} and G (1) = qi. Note that the binary map by for identifying the voting paths
can be simply set to b; = b, or can be computed by Equation (40) using the geodesic
distance maps D]Q'l and D}’l. Finally, we can also obtain K voting paths G}. In Figure 3d, we
illustrate the voting paths originating from the farthest points for illustration.

3.3.2. Voting Score Map with Multiple Cuts
For each pair of points p]r- and p}-, one has two sets of voting paths {G} }1<x<x and

{Gl}1<k<k. Using the geodesic voting method introduced in the section on “Section
Performing Geodesic Voting”, we can compute a voting score map V; : O — R using (23)
by setting the parameter « = 0. This means that we only use the circular path voting part.
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As illustrated in the example in Figure 3e, the final voting score map V can be simply set as
the summation of all the V;:

V(x) =) Vix). (42)

4. Experiments

In this section, we conduct experiments to compare the proposed multi-source circular
geodesic voting model with both deep learning and geodesic voting methods through
qualitative and quantitative analyses.

4.1. Experimental Configuration
4.1.1. Datasets

We employ both natural and medical images in our experiments to assess the perfor-
mance of the methods.

*  Natural Images: We utilize the Berkeley Segmentation Dataset 500 (BSDS500) [40] as
the dataset for natural images, which serves as a standard benchmark for contour
detection. This dataset is specifically designed to evaluate natural edge detection,
encompassing not only object contours but also interior and background boundaries.

*  Medical Images: For medical images, we select X-ray computed tomography (CT) scans
from [41]. This dataset is commonly used in medical image segmentation evaluations,
with image resolution ranging from 100 x 100 to 150 x 150 pixels, depending on the
specific context of each test.

For both datasets, we select 80% of the images as the training set for deep learning-
based methods, with the remaining 20% used as the test set for performance evaluation.

4.1.2. Baseline Methods

The baseline methods include the deep learning-based PolarMask [13] and the geodesic
voting-based CGV [24]. For PolarMask, the training process follows that in [13], where
ResNet101 and ResNeXt101 serve as the backbone networks, and the number of rays is set
to 36. For CGV, the parameter settings align with those in [24]. Specifically, the number of
endpoints N is set to 1000, and the parameters a and B used to compute the final voting
score in Equation (23) are both set to 1. The threshold value for the final segmentation
result is set to 100.

4.2. Qualitative Comparison Analysis

Figure 4 presents qualitative comparison results on natural images. The green lines
denote the segmentation contours. In the original images (Column 1), target objects
are surrounded by complex backgrounds, have intricate shapes, and exhibit intensity
inhomogeneity. Additionally, some target boundaries are not clearly defined, making the
segmentation task challenging. The PolarMask method (Column 2) struggles to capture
the detailed contours of objects when boundaries are complex, as seen in the images in the
second and fourth rows. It may also miss essential object components due to the limited
number of points on the contour, as observed in the images in the first and fifth rows. The
circular geodesic voting method (Column 3) encounters the “short-cut” problem when the
object contains intricate textures, as evident in the images in the first, second, third, and
fifth rows. This method is also influenced by strong background shapes because it uses
only a single source point to compute the geodesic distance map. In contrast, the proposed
multi-source circular geodesic voting method (Column 4) overcomes these limitations,
accurately detecting target boundaries even in complex scenarios.

Figure 5 illustrates qualitative comparison results on medical CT images. In the first
column, the original images highlight the challenges of segmenting the liver contour due
to its low contrast with adjacent tissues, which complicates boundary differentiation. The
liver’s irregular shape and texture, along with the partial volume effect, result in blurred
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edges that further complicate segmentation. Given the difficulty of this task, the PolarMask
method (Column 2) fails to capture a complete set of contour points around the liver. The
circular geodesic voting method (Column 3) is affected by inherent noise along the liver
boundary and artifacts from nearby structures, such as the ribs or diaphragm, leading
to incorrect areas being included in the contour. By contrast, the proposed multi-source
circular geodesic voting method (Column 4) demonstrates robustness against noise and
accurately delineates the target boundaries.

(a) Original Images (b) PolarMask (c) Circular Geodesic (d) Multi-Source
Voting Circular Geodesic
Voting

Figure 4. Qualitative comparison results on nature images, where the green lines denote the segmen-
tation contours. Column 1 displays the original images with ground truth segmentation contours
indicated by green lines. Columns 2—4 show the segmented results produced by the PolarMask,
circular geodesic voting, and multi-source circular geodesic voting methods, respectively.
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(a) Original Images (b) PolarMask (c) Circular Geodesic (d) Multi-Source
Voting Circular Geodesic
Voting

Figure 5. Qualitative comparison results on CT images. The green lines denote the segmenta-
tion contours. Column 1 displays the original images. Columns 2—4 show the segmented results
produced by the PolarMask, circular geodesic voting, and multi-source circular geodesic voting
methods, respectively.

4.3. Quantitative Performance Analysis

To compare the methods rigorously and convincingly, we conduct quantitative com-
parisons using the Dice score 7, chosen for its effectiveness in measuring the overlap
between predicted paths and ground truth regions [15,24]. The accuracy of the tested
methods is measured by the Dice score, defined as follows:

#SNG]|

(43)
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where S represents the set of grid points traversed by the evaluated paths, G denotes the
region corresponding to the ground truth, and #|S| indicates the number of elements in
the set S. The accuracy score J ranges within the interval [0, 1], with higher values of J
indicating better performance.

To quantitatively evaluate the segmentation accuracy of the proposed model, we
perform a comparative analysis of different methods on the test set of the CT image
dataset. Table 1 presents the quantitative comparison results for the PolarMask, CGV, and
PolarVoting methods on the test set. These metrics report the mean accuracy and standard
deviation of segmentation performance across the dataset.

Table 1. The quantitative comparison results of the PolarMask, circular geodesic voting, and multi-
source circular geodesic voting methods on the test set of CT images.

PolarMask CGV PolarVoting
Mean Std Mean Std Mean Std
0.2928 0.1841 0.6639 0.3344 0.8561 0.1541

From the results in Table 1, it is evident that the PolarVoting method achieves a
significantly higher mean accuracy (0.8561) compared to both PolarMask (0.2928) and
single-source CGV (0.6639), with a notably lower standard deviation (0.1541) than that
of the single-source CGV method (0.3344). This suggests that the PolarVoting approach
provides more consistent segmentation outcomes.

In contrast, PolarMask demonstrates the lowest performance in both mean accuracy
and standard deviation, indicating insufficient robustness and precision for CT image
segmentation in this context. While the single-source CGV method outperforms PolarMask,
it remains inferior to the proposed PolarVoting approach in terms of both accuracy and
consistency. The box plots of the Dice scores in Figure 6 further support these findings.

0.8

—_— . 4|;
0.6

Dice Score

0.4

0.2

N

0.0 _—

PolarMask Ccev Polar Voting

Figure 6. Box plots of the Dice scores for the PolarMask, circular geodesic voting, and multi-source
circular geodesic voting methods on the test set of CT images. The green triangles represent the mean
Dice score.

4.4. Influence of Source Points on Performance
4.4.1. Effect of the Number of Source Points
Table 2 and Figure 7 present the mean and standard deviation of the Dice scores,

along with bar plots showing the Dice scores for different numbers of source points in the
multi-source circular geodesic voting method on the test set of CT images.
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Table 2. The quantitative comparison results of different numbers of source points for multi-source
circular geodesic voting methods on the test set of CT images.

Number of Source Points
5 10 15 20 25
Mean Std Mean Std Mean Std Mean Std Mean Std
0.7550  0.2432 0.8017 0.2436 0.8728 0.1576  0.8733  0.1572  0.8739  0.1576

o
©
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Dice Score
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03
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5 10 15 20 25

Figure 7. Box plots of the Dice scores for different numbers of source points for multi-source circular
geodesic voting methods on the test set of CT images. The green triangles represent the mean
Dice score.

From these results, we observe that the Dice score improves as the number of source
points increases from 5 to 25. Specifically, the mean Dice score rises from 0.7550 with 5 source
points to 0.8739 with 25 points. This trend suggests that a higher number of source points
enhances segmentation performance in the multi-source circular geodesic voting approach,
likely due to the additional spatial information provided by multiple source points, allowing
for more accurate alignment of geodesic votes within the CT image domain.

Furthermore, the standard deviation of the Dice scores decreases slightly as the number
of source points exceeds 10. For example, with 5 and 10 source points, the Std is relatively
high, around 0.243, indicating greater variability in performance across different samples
in the test set. However, from 15 source points onward, the Std reduces to approximately
0.157, indicating that the method’s performance becomes more consistent as the number of
source points increases. This increased stability can be attributed to a more robust spatial
representation achieved with a higher number of source points, which helps to minimize
performance fluctuations.

The box plots in Figure 7 further illustrate the distribution of Dice scores across dif-
ferent configurations. With five source points, the Dice score distribution shows greater
variability, including a wider range with lower minimum values. In contrast, the distri-
butions become more compact and centered around higher median values as the number
of source points increases, particularly from 15 to 25. This indicates that the voting-based
method performs more reliably and effectively with an increased number of source points,
leading to improved segmentation accuracy.

Figure 8 illustrates the execution time of the PolarVoting model as a function of the
number of source points. The results indicate that the execution time increases linearly
with the number of source points. This linear relationship suggests that the computational
complexity of the PolarVoting model is directly influenced by the number of source points
used in the segmentation process. While a higher number of source points may improve
segmentation accuracy by better approximating the target boundary, it also increases the
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computational burden. This trade-off between execution time and accuracy highlights
the importance of selecting an appropriate number of source points based on application-
specific requirements.

o]

“ ==

35

’ %’
15
10
5 10 15 20 25
Number of Source Points

Time (s)

Figure 8. Box plots of the execution time for different numbers of source points for multi-source
circular geodesic voting methods on the test set of CT Images. The green triangles represent the mean
execution time.

4.4.2. Effect of the Placement of Source Points

In the PolarVoting model, the initial placement of source points is determined using
PolarMask, and their locations are subsequently updated to align with the nearby target
boundary. To evaluate the impact of the initial placement of source points, a PolarMask
model is trained to generate 36 source points. A fixed number of source points, specifically
5,10, and 15, are then sampled using different random seeds. This procedure is repeated
10 times for each configuration.

For each image in the test set of the CT image dataset, the Dice score is computed,
and the variance across the 10 iterations is calculated. The distribution of these variances
is depicted in Figure 9. The results indicate that the variance distributions for different
numbers of source points are similar and remain small. This demonstrates that the location
update strategy employed by the PolarVoting model ensures stable performance, rendering
it insensitive to the initial placement of source points.

— 5 points
—— 10 points
—— 15 points

160 o

140 A

120

100 +

Density

60 o

20 4

~0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150

Variance of Dice Score

Figure 9. Variance distribution of Dice scores for different initial placements of source points in the
PolarVoting model on the test set of CT images.
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4.5. Performance Under Adverse Conditions

In this section, the performance of the proposed multi-source CGV model is evaluated
under adverse conditions, including images affected by noise, blurring, and poor brightness.

Figures 10-12 present the segmentation results of PolarVoting under various adverse
conditions. For noise conditions, Gaussian noise with variances of 0.01, 0.02, and 0.05
is added to the images. For blur conditions, the images are blurred using a rotationally
symmetric Gaussian low-pass filter with o values of 1, 2, and 3. For brightness variations,
the brightness of the images is adjusted by factors of 0.2, 0.5, and 1.3, where values less
than 1 darken the image and values greater than 1 brighten it. The segmentation results
demonstrate that the PolarVoting model is robust to noise, blur, and brightness variations.
It effectively tracks the correct boundaries even in the presence of significant noise, severe
blurring, or extremely low brightness.

Figure 10. Performance of the PolarVoting model under noise conditions on CT images. The
green lines represent the segmentation contours. Column 1 shows the original image alongside its
segmentation result. Columns 2—4 present images affected by Gaussian noise with variances of 0.01,
0.02, and 0.05, respectively, along with the corresponding segmentation results.

Figure 11. Performance of the PolarVoting model under blur conditions on CT images. The green lines

represent the segmentation contours. Column 1 shows the original image alongside its segmentation
result. Columns 2—4 display images with Gaussian blur levels of c = 1, 0 = 2, and o = 3, respectively,
along with the corresponding segmentation results.
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Figure 12. Performance of the PolarVoting model under brightness variations on CT images. The

green lines represent the segmentation contours. Column 1 shows the original image alongside its
segmentation result. Columns 2—4 display images with brightness adjustment factors of 0.5, 0.7, and
1.3, respectively, along with the corresponding segmentation results.

5. Conlusions

In this paper, we introduce a novel multi-source circular geodesic voting model for
image segmentation, which effectively integrates the geometric regularization of traditional
voting models which can take advantage of the adaptive representation capabilities of
deep learning, particularly when carried out by the classical PolarMask model. By em-
ploying multiple source points for constructing the voting score map, the proposed model
overcomes the limitations of single-source CGV approaches, especially when dealing with
complex and noisy images in many segmentation tasks. Experimental results on both
natural and medical image datasets demonstrate that the multi-source CGV model achieves
superior accuracy and robustness compared to existing methods, such as PolarMask and
single-source CGYV, validating its potential for diverse image segmentation applications.
Future work will be devoted to automated selection of source points and further optimiza-
tion of the model for large-scale segmentation tasks, aiming to enhance both efficiency and
accuracy across broader application domains.
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