

000 IMAGE-FREE ZERO-SHOT LEARNING VIA ADAPTIVE 001 SEMANTIC-GUIDED CLASSIFIER INJECTION 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 *Zero-Shot Learning* (ZSL) aims to classify images from *unseen* classes by lever-
011 aging semantic relationships with *seen* classes. Most ZSL methods require access
012 to visual data for training or adaptation, limiting their applicability in image-free
013 scenarios. *Image-free Zero-Shot Learning* (I-ZSL) addresses this challenge by en-
014 abling pre-trained models to recognize unseen classes without image data. How-
015 ever, existing I-ZSL approaches rely on pre-defined class descriptions and task-
016 agnostic text encoders, which often fail to capture domain-specific semantics. We
017 propose *Adaptive Semantic-Guided Classifier Injection* (ASCI), a novel I-ZSL
018 framework that eliminates reliance on manually curated descriptions. ASCI lever-
019 ages large language models to generate class-pair affinity descriptions, capturing
020 structured relationships between seen and unseen classes. A trainable text en-
021 coder refines these descriptions, ensuring alignment with task-specific semantics.
022 Dynamically computed affinity scores guide the injection of robust classifiers for
023 unseen classes while preserving the structural consistency of the pre-trained clas-
024 sification space. Experiments on benchmark datasets demonstrate that ASCI out-
025 performs existing I-ZSL methods, particularly in fine-grained classification tasks.

026 027 1 INTRODUCTION 028

029 AI models have achieved remarkable success in extracting rich visual and semantic knowledge from
030 large-scale datasets (LeCun et al., 2010; 2015). However, the increasing restrictions on data sharing
031 due to privacy, copyright, and security concerns pose significant challenges (Papernot et al., 2018).
032 These issues are particularly critical in sensitive domains such as healthcare and security, where
033 access to data is tightly regulated. Additionally, proprietary and industrial datasets are often inac-
034 cessible to researchers, limiting the ability to train and deploy models across different organizations.
035 As a result, these constraints hinder the transfer of knowledge to novel tasks, reducing the broader
036 applicability of AI models (Xian et al., 2019; Wang et al., 2019; Zhong et al., 2025).

037 To address these challenges, *Zero-Shot Learning* (ZSL) (Mensink et al., 2014; Romera-Paredes &
038 Torr, 2015) has emerged as a promising alternative. ZSL enables models to recognize unseen classes
039 by leveraging semantic relationships between seen and unseen categories, rather than requiring la-
040 beled training samples. This capability is especially valuable in real-world applications where col-
041 lecting labeled data for every possible category is infeasible (Pourpanah et al., 2023). However,
042 most ZSL approaches rely on access to visual data or models during training or adaptation (Tang
043 et al., 2024; Chen et al., 2024), limiting their usability in image-free scenarios where neither seen
044 nor unseen class images are available. This restriction is particularly problematic in domains with
045 strict privacy regulations or environments where data collection is expensive and time-consuming.

046 To overcome these limitations, Christensen et al. (2023) introduce the task of *Image-free Zero-Shot
047 Learning* (I-ZSL). Given a pre-trained model and a classification task, I-ZSL extends the model to
048 include unseen categories without requiring access to any images or models. The proposed ICIS
049 model addresses this problem using two key components: (i) *pre-defined class descriptions*, which
050 provide semantic representations for unseen classes, and (ii) *pre-trained text encoders*, which map
051 these descriptions into a shared semantic space with classifier weights (Christensen et al., 2023).
052 While effective, this approach presents two fundamental limitations: (1) Pre-defined descriptions
053 assume the availability of accurate and detailed semantic annotations, which is often infeasible, par-
ticularly in domains requiring fine-grained category distinctions (Wah et al., 2011). (2) Pre-trained

054 text encoders, typically trained on general-purpose corpora, fail to capture task-specific semantics,
 055 leading to suboptimal alignment between visual and semantic spaces. Moreover, these text encoders
 056 do not adapt to the classification task, reducing their effectiveness in specialized domains where
 057 class relationships are complex and context-dependent. These challenges highlight the need for a
 058 more adaptive and task-specific I-ZSL framework capable of functioning effectively in applications.

059 In this work, we propose *Adaptive Semantic-Guided Classifier Injection* (ASCI), a novel frame-
 060 work designed for I-ZSL. Unlike previous work, ASCI eliminates the dependency on pre-defined
 061 descriptions and instead leverages *large language models* to generate *class-pair affinity descriptions*
 062 that capture structured relationships between seen and unseen classes. These descriptions provide
 063 a richer semantic context, enabling better generalization to unseen categories. Furthermore, ASCI
 064 introduces a trainable text encoder that adaptively aligns affinity descriptions with task-specific se-
 065 mantics, addressing the shortcomings of static, pre-trained encoders. By dynamically refining class-
 066 pair affinity scores during training, ASCI ensures that injected classifiers for unseen classes remain
 067 robust, well-aligned, and effective, even in challenging classification scenarios.

068 We evaluate ASCI on benchmarks under conventional and generalized ZSL settings. Experimental
 069 results demonstrate that ASCI consistently outperforms existing I-ZSL methods, particularly in
 070 fine-grained classification tasks where subtle inter-class differences must be captured. Ablation
 071 studies further validate the contributions of adaptive encoding and class-pair affinity descriptions in
 072 improving model scalability and generalization.

074 2 RELATED WORK

075 **Zero-Shot Learning.** ZSL has emerged as a promising paradigm for handling classification tasks
 076 where labeled data for certain categories is unavailable (Norouzi et al., 2014; Mensink et al., 2014;
 077 Romera-Paredes & Torr, 2015). By leveraging semantic information and image visual features, ZSL
 078 models establish relationships between seen and unseen classes, enabling the transfer of knowledge
 079 to novel tasks (Xian et al., 2017; Schönenfeld et al., 2019; Pourpanah et al., 2023; Chen et al., 2023).
 080 Common approaches utilize either visual attribute-based representations (Farhadi et al., 2009; Lam-
 081 pert et al., 2014; Hou et al., 2024) or manually designed class description embeddings (Socher et al.,
 082 2013; Xian et al., 2019; Wang et al., 2023; Qu et al., 2025) to define semantic spaces. However,
 083 these methods often rely on high-quality annotated data for seen classes or assume the availability
 084 of auxiliary datasets, which are not always accessible in sensitive or resource-constrained domains.

085 **Image-Free Zero-Shot Learning.** In addition, conventional ZSL methods heavily depend on *vi-
 086 sual data or models* during training or adaptation (Tang et al., 2024; Chen et al., 2024), which
 087 limits their feasibility in scenarios where data sharing is restricted due to privacy or security con-
 088 cerns (Papernot et al., 2018). To address these limitations, Christensen et al. (2023) introduce *Image-
 089 free Zero-Shot Learning* (I-ZSL), which eliminates the need for images from both seen and unseen
 090 classes. The ICIS model (Christensen et al., 2023) employs predefined class descriptions and pre-
 091 trained text encoders to map semantic representations of unseen classes into a shared space with
 092 classifier weights. Despite its effectiveness, ICIS faces three main limitations: (1) it relies on pre-
 093 defined class descriptions, which assumes access to detailed annotations for unseen classes—an
 094 unrealistic requirement in fine-grained or specialized domains; (2) it models semantics only at the
 095 class level, ignoring pairwise relationships that are often crucial for distinguishing between semanti-
 096 cally similar classes; and (3) it uses a fixed, pre-trained text encoder, which limits the model’s ability
 097 to adapt semantic representations to the task. In addition, ICIS provides no theoretical analysis on
 098 the quality of synthesized classifiers or the effects of semantic alignment and distributional variance.

099 **Large Language Models for Semantic Representations.** Recent advancements in *Large Lan-
 100 guage Models* (LLMs) have shown their potential in generating rich, context-aware semantic rep-
 101 resentations (Brown et al., 2020; Radford et al., 2021). These models have been applied to various
 102 natural language processing and cross-modal learning tasks, where they bridge gaps between text
 103 and other modalities (Xu et al., 2022; Tang et al., 2024). LLMs typically operate on general-purpose
 104 corpora and are not optimized for generating task-specific representations required for fine-grained
 105 classification tasks (Christensen et al., 2023). Esfandiarpoor & Bach (2024) propose using LLMs to
 106 generate descriptions to understand the correlation between visual data and target classes. However,
 107 visual data still manipulates this process, and the possibilities of I-ZSL still remain underexplored.

108
109
110 Table 1: Model comparison of ASCI and related work.
111
112
113
114
115
116
117

MODEL	I-ZSL	W/O MANUAL DEFINED CLASS DESCRIPTION	ADAPTIVE SEMANTIC GUIDANCE	W/O IMAGE VISION FEATURES
CONSE (NOROUZI ET AL., 2014)	✓	✗	✗	✓
COSTA (MENSINK ET AL., 2014)	✓	✗	✗	✓
SUB.REG. (AKYÜREK ET AL., 2022)	✗	✓	✗	✗
WDAE (GIDARIS & KOMODAKIS, 2019)	✗	✓	✗	✗
WAVG (XU ET AL., 2022)	✗	✗	✓	✗
SMO (XU ET AL., 2022)	✗	✗	✓	✗
ICIS (CHRISTENSEN ET AL., 2023)	✓	✗	✓	✓
LABO (YANG ET AL., 2023)	✗	✓	✓	✓
ZSLViT (CHEN ET AL., 2024)	✗	✗	✓	✗
COMC (LIU ET AL., 2024)	✗	✓	✓	✗
DFZSL (TANG ET AL., 2024)	✗	✗	✓	✗
FUDD (ESFANDIARPOOR & BACH, 2024)	✗	✗	✓	✗
ASCI (OURS)	✓	✓	✓	✓

118
119 **Discussion.** Existing I-ZSL methods rely on human-written class-level descriptions and fixed text
120 encoders, which limit their capacity to distinguish fine-grained categories and adapt to domain-
121 specific tasks. ASCI removes both constraints by generating task-oriented pairwise affinity descrip-
122 tions using LLMs and by training a lightweight, task-adaptive semantic encoder jointly with the
123 classifier injection process. This design enables stronger semantic alignment and improved gener-
124 alization, without requiring visual data or manual supervision. Table 1 summarizes the modeling
125 choices of recent approaches and shows that ASCI is the only method that simultaneously satis-
126 fies all three I-ZSL requirements: *no visual data*, *no human descriptions*, and *adaptive semantic*
127 *guidance*. A more detailed discussion is provided in Appendix C.

128
129

3 PROPOSED FRAMEWORK: ASCI

130
131

3.1 PRELIMINARY

132
133 Let $\Phi : \mathbf{X} \rightarrow \mathcal{S}$ be a pre-trained classification model, where \mathbf{X} represents the input feature space,
134 and \mathcal{S} is the set of *seen* class labels. Φ consists of two components: a feature extractor \mathcal{F} , which
135 maps input features into a latent space, and a classifier with a weight matrix $\mathbf{W}_{\mathcal{S}}$ corresponding to
136 the seen classes. The model Φ is pre-trained on a large-scale dataset labeled for the classes in \mathcal{S} .137
138 **Image-Free Zero-Shot Learning.** The goal of I-ZSL is to extend Φ to classify instances from a
139 target class set \mathcal{Y} *without access to the visual data* \mathbf{X} . The extended model, denoted by $\hat{\Phi} : \mathbf{X} \rightarrow \mathcal{Y}$,
140 must function in two settings: (i) *Zero-Shot Learning* (ZSL), where $\mathcal{Y} \cap \mathcal{S} = \emptyset$, meaning only unseen
141 classes are classified; and (ii) *Generalized Zero-Shot Learning* (GZSL), where \mathcal{Y} includes both seen
142 and unseen classes, *i.e.*, $\mathcal{Y} \cap \mathcal{S} = \mathcal{S}$. The set of unseen classes is denoted as \mathcal{U} , where $\mathcal{U} = \mathcal{Y} \setminus \mathcal{S}$.143
144 To extend Φ for classifying \mathcal{U} , we utilize semantic representations \mathbf{A} that encode information about
145 both seen classes \mathcal{S} and unseen classes \mathcal{U} . These semantic representations are typically derived
146 from predefined class descriptions, such as textual attributes or labels, which remain static and often
147 require domain expertise to construct. Additionally, these predefined class-level descriptions are
148 not optimal in capturing differences between classes, which is essential in I-ZSL. Moreover, the
149 text encoders used to process \mathbf{A} are typically trained on general-purpose corpora, making them less
150 effective at capturing fine-grained, task-specific semantics. The discrepancy between these semantic
151 representations and the classification objective can lead to degraded performance, particularly in
152 domains with specialized requirements (Wang et al., 2019).153
154

3.2 OVERVIEW OF THE FRAMEWORK

155
156 The proposed framework, ASCI, addresses the challenges of I-ZSL by leveraging task-specific
157 semantic relationships to dynamically inject classifiers for unseen classes. Unlike prior methods
158 that rely on static predefined descriptions, ASCI generates adaptive semantic information, enabling
159 effective generalization to unseen classes without requiring access to visual data features. As il-
160 lustrated in Figure 1, ASCI comprises three key components: (i) a *class-pair affinity description*
161 *generation module* establishes task-specific semantic relationships between seen and unseen classes
162 using an LLM; (ii) an *adaptive semantic encoder* refines these relationships by projecting them into
163 the semantic space of the pre-trained model; and (iii) a *classifier injection process* constructs clas-
164 sifiers for unseen classes based on the refined semantic representations and integrates them into the



Figure 1: Overview of the ASCI framework.

extended model $\hat{\Phi}$. These components operate sequentially to extend the pre-trained model Φ for classifying unseen classes \mathcal{U} while maintaining performance on seen classes \mathcal{S} .

3.3 CLASS-PAIR AFFINITY DESCRIPTION

Class-pair affinity descriptions capture the semantic relationships between seen and unseen classes, forming the foundation for generating classifiers for unseen classes. Instead of relying on static, predefined descriptions that require extensive manual curation and domain expertise, ASCI dynamically generates task-aware affinity descriptions using an LLM. This approach enhances adaptability across different classification tasks without requiring manually annotated semantic attributes.

Given a pair of classes (c_i, c_j) , where $c_i \in \mathcal{S}$ and $c_j \in \mathcal{U}$, the LLM generates a structured textual description that characterizes their semantic relationship. The prompt used to obtain these descriptions is provided in Appendix A.1. For example, in the CUB dataset (Wah et al., 2011), the relationship between a “sparrow” (seen class) and a “warbler” (unseen class) may be expressed as: “Both are small songbirds with similar feeding habits, but they differ in plumage coloration.” These descriptions encapsulate class similarities and distinctions relevant to the classification task, aiding in the model’s ability to infer relationships between seen and unseen classes.

To integrate these descriptions into the framework, they are first converted into numerical representations using a pre-trained text encoder. Let $f_{\text{LLM}}(c_i, c_j)$ denote the textual relationship generated by the LLM for the class pair (c_i, c_j) , and let f_{ENC} represent the text encoder. The affinity embedding for the class pair is then computed as:

$$\mathbf{a}_{ij} = f_{\text{ENC}}(f_{\text{LLM}}(c_i, c_j)), \quad (1)$$

where $\mathbf{a}_{ij} \in \mathbb{R}^d$ represents the semantic embedding in a d -dimensional space.

The affinity embeddings for all class pairs are aggregated into an affinity matrix $\mathbf{A} \in \mathbb{R}^{|\mathcal{Y}| \times (|\mathcal{Y}|-1) \times d}$. This structured representation encodes relational information between classes and serves as input to the adaptive semantic encoder, which further processes and refines the embeddings to ensure alignment with the classification space.

3.4 ADAPTIVE SEMANTIC ENCODING FOR CLASSIFIER INJECTION

The adaptive semantic encoder refines class-pair affinity embeddings \mathbf{a}_{ij} to align them with the classifier weights of the pre-trained model Φ , enabling effective generalization to unseen classes. Under the I-ZSL setting, the feature extractor \mathcal{F} is inaccessible, and the only available model outputs

216 are the classifier weight matrix for seen classes, \mathbf{W}_S . Classifier weights for unseen classes are
 217 synthesized solely from semantic embeddings without relying on direct feature extraction.
 218

219 **Semantic Embedding.** Given a class-pair semantic embedding \mathbf{a}_{ij} , the semantic encoder, parame-
 220 terized by Θ , maps it into a k -dimensional semantic space: $\mathbf{z}_{ij} = \Theta(\mathbf{a}_{ij})$, where $\mathbf{z}_{ij} \in \mathbb{R}^k$ represents
 221 the refined semantic representation, structured to align with the classifier weight space. To construct
 222 the classifier weight vector for an unseen class $c_j \in \mathcal{U}$, ASCI synthesizes \mathbf{w}_j by adapting the clas-
 223 sifier weights of seen classes based on their semantic relationships with c_j . Instead of learning new
 224 classifiers explicitly, the model generates \mathbf{w}_j as a weighted combination of the classifier weights of
 225 seen classes:

$$226 \quad \mathbf{w}_j = \sum_{c_i \in \mathcal{S}} \alpha_{ij} \cdot \mathbf{w}_i, \quad (2)$$

228 where $\mathbf{w}_i \in \mathbf{W}_S$ represents the classifier weight of a seen class c_i , and α_{ij} quantifies the relationship
 229 between c_i and c_j . The relationship weight is computed using softmax normalization:

$$231 \quad \alpha_{ij} = \frac{\exp(f(\mathbf{z}_{ij} \oplus \mathbf{w}_i))}{\sum_{c_k \in \mathcal{S}} \exp(f(\mathbf{z}_{ik} \oplus \mathbf{w}_k))}. \quad (3)$$

233 Here, \oplus denotes the concatenation operator, and $f(\cdot)$ is a function that measures the compatibility
 234 between the encoded semantic representation \mathbf{z}_{ij} and the classifier weight \mathbf{w}_i . In this work, we
 235 implement $f(\cdot)$ using a multilayer perceptron (Gardner & Dorling, 1998).

236 By aligning the synthesized classifier weights with those of seen classes, this approach ensures that
 237 the classifier \mathbf{w}_j for an *unseen* class remains semantically consistent with the underlying structure
 238 of Φ . This alignment allows the model to infer classifiers for unseen categories without requiring
 239 image features or modifications to the pre-trained model.

241 **Classifier Injection and Model Extension.** The classifier injection module integrates the synthe-
 242 sized unseen-class classifiers \mathbf{w}_j into the extended model $\hat{\Phi}$, enabling it to recognize both seen and
 243 unseen classes without additional retraining. It extends the pre-trained model Φ while preserving its
 244 original classification structure. The classifier weight matrix for the extended model is:

$$246 \quad \mathbf{W}_Y = \{\mathbf{W}_S, \mathbf{W}_U\}, \quad (4)$$

247 where \mathbf{W}_S consists of the pre-trained classifier weights for seen classes, and \mathbf{W}_U contains the synthe-
 248 sized classifier weights for unseen classes. Since the feature extractor is inaccessible, classifica-
 249 tion operates entirely within the semantic space. Instead of computing logits from extracted features,
 250 the unseen class weights \mathbf{W}_U are derived from their semantic relationship with \mathbf{W}_S , ensuring that
 251 unseen classifiers maintain structural consistency with the pre-trained classification space.

253 3.5 TRAINING AND INFERENCE

255 **Training.** To ensure that the adaptive semantic encoder Θ effectively projects class-pair affinity
 256 descriptions into the classification space, we introduce a training strategy that simulates the unsee-
 257 n-class scenario using only the seen classes. Specifically, for each class $c_j \in \mathcal{S}$, we temporarily
 258 mask its classifier weight \mathbf{w}_j and reconstruct it using the remaining seen-class weights $\{\mathbf{w}_i | c_i \in$
 259 $\mathcal{S} \setminus \{c_j\}\}$. This self-supervised approach encourages the encoder to learn transferable representations
 260 that generalize to truly unseen classes.

261 The predicted weight for the masked class c_j is obtained as: $\mathbf{w}_j = \sum_{c_i \in \mathcal{S} \setminus \{c_j\}} \alpha_{ij} \cdot \mathbf{w}_i$, where α_{ij}
 262 is computed via softmax normalization:

$$264 \quad \alpha_{ij} = \frac{\exp(f(\mathbf{z}_{ij} \oplus \mathbf{w}_i))}{\sum_{c_k \in \mathcal{S} \setminus \{c_j\}} \exp(f(\mathbf{z}_{ik} \oplus \mathbf{w}_k))}. \quad (5)$$

267 To enforce consistency between the predicted and true classifier, we define an *alignment loss*:

$$269 \quad \mathcal{L}_{\text{align}} = \sum_{c_j \in \mathcal{S}} \|\mathbf{w}_j - \sum_{c_i \in \mathcal{S} \setminus \{c_j\}} \alpha_{ij} \cdot \mathbf{w}_i\|_2^2. \quad (6)$$

This loss function encourages the model to generate classifier weights that maintain semantic consistency with Φ . Additionally, a *reconstruction loss* is introduced to ensure that the encoded affinity embeddings retain the semantic relationships from the original class-pair descriptions. Specifically, the reconstruction loss penalizes deviations between the affinity embeddings \mathbf{z}_{ij} and their original descriptions \mathbf{a}_{ij} when decoded by an inverse mapping function Θ^{-1} :

$$\mathcal{L}_{\text{recon}} = \sum_{c_i \in \mathcal{S}, c_j \in \mathcal{U}} \|\mathbf{a}_{ij} - \Theta^{-1}(\mathbf{z}_{ij})\|_2^2. \quad (7)$$

Here, Θ^{-1} is a decoder that reconstructs the original affinity descriptions, ensuring that the learned embeddings remain faithful to their semantic meaning. The total training objective is defined as:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{align}} + \lambda \mathcal{L}_{\text{recon}}, \quad (8)$$

where λ is a hyperparameter balancing classifier alignment and semantic reconstruction.

Inference. During inference, the extended model $\hat{\Phi}$ utilizes the generated classifier weights for unseen classes $\mathbf{W}_{\mathcal{U}}$ alongside the pre-trained classifier weights for seen classes $\mathbf{W}_{\mathcal{S}}$. Since the feature extractor \mathcal{F} is inaccessible, classification is performed entirely in the semantic space by leveraging the alignment between the semantic embeddings \mathbf{Z} and the classifier weights \mathbf{W} .

For a given query instance, the logits for both seen and unseen classes are computed as: $f_{\mathcal{S}} = \mathbf{W}_{\mathcal{S}}^T \mathbf{Z}$, $f_{\mathcal{U}} = \mathbf{W}_{\mathcal{U}}^T \mathbf{Z}$, where \mathbf{Z} represents the semantic embeddings derived from the class-pair affinity descriptions. The final prediction is obtained by selecting the class with the highest score: $y^* = \arg \max_{y \in \mathcal{Y}} (f_{\mathcal{S}} + f_{\mathcal{U}})$. This inference strategy enables ASCI to classify unseen instances effectively without requiring raw data features, ensuring that predictions remain consistent with the learned semantic relationships. By leveraging a self-supervised training mechanism and performing inference directly in the semantic space, ASCI achieves robust generalization to unseen classes while preserving alignment with the pre-trained classifier weights. This approach enables efficient adaptation in both ZSL and GZSL settings without requiring additional fine-tuning.

3.6 THEORETICAL ANALYSIS

This section provides formal guarantees for the correctness and generalization capabilities of the proposed framework. We present a lemma to establish the alignment of the adaptive semantic encoding with the classifier weights of the pre-trained model and a theorem to bound the generalization error of the injected classifiers for unseen classes.

Lemma 1. *Let \mathbf{a}_{ij} be the affinity embedding for the class pair (c_i, c_j) , where $c_i \in \mathcal{S}$ and $c_j \in \mathcal{U}$. If the adaptive semantic encoder Θ minimizes the alignment loss $\mathcal{L}_{\text{align}}$ as defined in Equation 6, then the transformed embedding $\mathbf{z}_{ij} = \Theta(\mathbf{a}_{ij})$ aligns with the classifier weights $\mathbf{W}_{\mathcal{S}}$ such that:*

$$\|\mathbf{w}_j^{\text{true}} - \mathbf{w}_j^{\text{pred}}\|_2^2 \leq \mathcal{O}(\mathcal{L}_{\text{align}}), \quad (9)$$

where $\mathbf{w}_j^{\text{true}}$ is the ideal classifier weight, and $\mathbf{w}_j^{\text{pred}}$ is the predicted classifier weight synthesized from the affinity-based representations. The bound holds up to an approximation error ϵ due to the finite expressivity of Θ .

Theorem 1. *Let $\hat{\Phi}$ denote the extended model incorporating synthesized classifier weights $\mathbf{W}_{\mathcal{U}}$ for unseen classes. Suppose Θ is optimized to minimize the total loss $\mathcal{L}_{\text{total}}$ as defined in Equation 8. Under the assumption that the distributional shift between seen and unseen classes is bounded, the classification accuracy of $\hat{\Phi}$ on the target class set \mathcal{Y} satisfies:*

$$\text{Accuracy}(\hat{\Phi}) \geq \text{Accuracy}(\Phi) - \mathcal{O}(\lambda\epsilon + \delta), \quad (10)$$

where λ is a trade-off parameter controlling the influence of the reconstruction loss, ϵ is the alignment error bound from Lemma 1, and δ represents the semantic variance of unseen classes.

Implications: Lemma 1 and Theorem 1 provide theoretical justification for the framework's effectiveness. The adaptive semantic encoder Θ ensures that unseen-class classifier weights remain structurally consistent with the pre-trained model up to a bounded approximation error. Furthermore, the classification accuracy of the extended model $\hat{\Phi}$ degrades at most by $\mathcal{O}(\lambda\epsilon + \delta)$, ensuring that the generalization error remains controlled as long as $\mathcal{L}_{\text{align}}$ and $\mathcal{L}_{\text{recon}}$ are minimized effectively.

324 Table 2: Comparison between our ASCI framework and existing methods in the literature applicable
 325 or adaptable to the I-ZSL setting using standard benchmark (*i.e.*, CUB, AWA2, and SUN). We
 326 measure the results as unseen accuracy (Acc) for the zero-shot task, unseen (u) and seen (s) accuracy
 327 and their harmonic mean (H) for the generalised zero-shot setting. It reports the average number of
 328 5 random runs with random seeds. Methods marked with * are adapted to the image-free setting.

330 331 332 333 334 335 336 337	338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Zero-Shot Accuracy						Generalised Zero-Shot Accuracy						CUB			AWA2			SUN		
		CUB			AWA2			SUN			CUB			AWA2			SUN					
		Acc	Acc	Acc	Acc	Acc	Acc	u	s	H	u	s	H	u	s	H	u	s	H			
ConSE	41.39 \pm 0.79	44.94 \pm 0.52	43.77 \pm 0.39	0.45 \pm 0.03	87.83 \pm 0.87	0.90 \pm 0.04	3.22 \pm 0.13	96.29 \pm 0.15	6.22 \pm 0.18	0.09 \pm 0.00	49.43 \pm 0.27	0.18 \pm 0.01	0.00 \pm 0.00	0.00 \pm 0.00	51.90 \pm 0.04	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
COSTA	33.62 \pm 1.21	46.30 \pm 1.63	18.68 \pm 0.97	0.00 \pm 0.00	87.82 \pm 1.70	0.00 \pm 0.00	0.00 \pm 0.00	96.27 \pm 1.72	0.00 \pm 0.00	0.00 \pm 0.00	51.90 \pm 0.04	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00			
Sub.Reg.*	51.84 \pm 1.58	46.06 \pm 1.14	44.38 \pm 1.28	1.17 \pm 0.41	87.83 \pm 1.98	2.30 \pm 0.13	0.00 \pm 0.00	96.26 \pm 1.25	0.00 \pm 0.00	0.00 \pm 0.00	51.55 \pm 1.50	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00			
wDAE*	48.88 \pm 0.90	52.47 \pm 1.30	45.76 \pm 2.53	0.93 \pm 0.05	87.45 \pm 1.44	1.85 \pm 0.09	0.00 \pm 0.00	95.86 \pm 2.17	0.00 \pm 0.00	0.00 \pm 0.00	50.43 \pm 1.04	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00			
WAvg*	2.00 \pm 0.43	20.42 \pm 0.61	1.39 \pm 0.53	1.75 \pm 0.20	58.97 \pm 2.67	3.40 \pm 0.49	8.77 \pm 0.10	87.05 \pm 2.06	15.93 \pm 1.11	1.34 \pm 0.35	7.57 \pm 0.90	2.28 \pm 0.18	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
SMO*	45.52 \pm 2.48	55.67 \pm 5.50	43.68 \pm 2.17	40.11 \pm 1.48	53.61 \pm 2.12	45.89 \pm 1.57	37.26 \pm 0.82	86.44 \pm 2.18	52.08 \pm 0.10	42.57 \pm 1.18	6.71 \pm 0.55	11.59 \pm 0.91	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
ICIS	63.43 \pm 1.22	21.65 \pm 0.11	52.14 \pm 1.37	52.21 \pm 1.60	70.07 \pm 1.63	59.83 \pm 1.72	0.01 \pm 0.00	96.24 \pm 1.93	0.01 \pm 0.00	42.11 \pm 0.74	28.56 \pm 1.16	34.03 \pm 1.18	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
LaBo	50.83 \pm 1.30	43.99 \pm 1.14	48.22 \pm 1.32	46.89 \pm 2.64	57.45 \pm 2.23	49.01 \pm 2.85	33.07 \pm 0.86	80.40 \pm 2.29	45.76 \pm 1.56	43.81 \pm 1.70	7.52 \pm 0.88	11.12 \pm 1.05	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
ZSLViT*	64.17 \pm 2.30	52.04 \pm 1.99	50.63 \pm 2.08	53.44 \pm 1.90	72.21 \pm 2.78	60.94 \pm 2.38	30.39 \pm 1.37	82.95 \pm 2.01	50.06 \pm 0.83	41.11 \pm 1.98	26.59 \pm 0.86	33.32 \pm 0.54	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
CoMC*	56.29 \pm 1.82	49.28 \pm 1.00	44.27 \pm 1.75	10.21 \pm 0.46	77.81 \pm 3.23	6.01 \pm 0.04	3.45 \pm 0.10	96.29 \pm 1.42	7.56 \pm 0.57	36.40 \pm 1.76	25.51 \pm 0.87	31.40 \pm 0.57	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
DFZSL*	54.21 \pm 1.12	48.37 \pm 1.04	45.63 \pm 1.26	41.09 \pm 0.93	67.42 \pm 1.77	51.08 \pm 1.21	28.33 \pm 0.72	83.95 \pm 2.01	42.27 \pm 0.84	33.71 \pm 0.68	25.94 \pm 0.92	29.23 \pm 0.74	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
FuD ^D	43.62 \pm 1.32	52.55 \pm 1.97	40.14 \pm 0.44	43.39 \pm 1.20	51.92 \pm 1.14	41.24 \pm 1.38	36.29 \pm 0.85	88.82 \pm 1.73	47.62 \pm 1.38	39.92 \pm 0.92	5.00 \pm 0.00	2.11 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				
ASCI (Ours)	70.39 \pm 0.64	59.92 \pm 0.93	58.28 \pm 0.87	64.29 \pm 0.42	79.93 \pm 0.37	70.62 \pm 0.77	36.40 \pm 0.33	96.29 \pm 0.29	51.39 \pm 0.71	47.76 \pm 0.22	44.77 \pm 0.82	41.53 \pm 0.74	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00				

Scalability is a key consideration in zero-shot learning settings. As the number of unseen classes $|\mathcal{U}|$ increases, the effect of unseen-class variance δ grows, potentially impacting performance. This requires careful tuning of λ to balance classifier alignment and generalization (relevant experimental investigations can be found in Section 4.3). These findings establish that the proposed method preserves semantic alignment and ensures effective generalization in both ZSL and GZSL scenarios. Detailed proofs and further discussions are provided in Appendix D.

4 EXPERIMENTS

4.1 DATASETS AND COMPETING MODELS

We evaluate the I-ZSL performance on three widely used benchmark datasets, covering both fine-grained and coarse-grained classification tasks, including CUB (Wah et al., 2011), AWA2 (Xian et al., 2019), and SUN (Patterson et al., 2014). To ensure consistency across experiments, we adopt the class splits from (Christensen et al., 2023) for ZSL and GZSL. A detailed description of these datasets is provided in Appendix E.1. We compare ASCI against ZSL and I-ZSL methods, *e.g.*, ConSE (Norouzi et al., 2014), COSTA (Mensink et al., 2014), Sub.Reg.* (Akyürek et al., 2022), wDAE* (Gidaris & Komodakis, 2019), WAvg* (Xu et al., 2022), SMO* (Xu et al., 2022), ICIS (Christensen et al., 2023), LaBo (Yang et al., 2023), ZSLViT* (Chen et al., 2024), CoMC* (Liu et al., 2024), DFZSL (Tang et al., 2024) and FuDD (Esfandiarpour & Bach, 2024). *For methods marked with *, which require image features, we replace image inputs \mathbf{X} with the weight matrix \mathbf{W} to ensure a fair comparison under the I-ZSL paradigm.* Detailed descriptions are provided in Appendix E.2, with implementation available in our code.

4.2 MAIN RESULTS

Zero-shot learning performance. Table 2 compares ASCI with existing methods under the standard ZSL setting across CUB, AWA2, and SUN. ASCI achieves the highest zero-shot accuracy on all datasets, outperforming both image-free methods and those adapted to this setting. Notably, ASCI surpasses ICIS (Christensen et al., 2023), the previous best-performing I-ZSL method, by 7.0% on CUB and 6.9% on SUN, demonstrating the effectiveness of adaptive semantic representations. Compared to ZSLViT (Chen et al., 2024), which benefits from vision transformer-based feature aggregation, ASCI achieves superior accuracy despite operating in a fully image-free setting. These results highlight the advantage of class-pair affinity descriptions and adaptive text encoding in capturing meaningful semantic relationships between seen and unseen classes.

Generalized zero-shot learning performance. GZSL presents an additional challenge, requiring the model to distinguish between both seen and unseen classes. ASCI demonstrates strong generalization, achieving the highest harmonic mean (H) across all datasets. On CUB, ASCI achieves an H-score of 70.62%, surpassing ICIS by 11.6%. On AWA2, ASCI maintains a balance between unseen and seen class accuracy, achieving an H-score of 51.39%, while other methods struggle with

378
 379 Table 3: Evaluation of the contribution of key components by removing the affinity description
 380 and semantic encoding modules, as well as by varying the hyperparameter λ . Without the affinity
 381 description module, we replace the class-pair generated descriptions with target class labels and
 382 class-wise descriptions. The semantic encoding module is removed to assess its role in aligning
 383 class representations with the classification space. We replace the generated class-pair descriptions
 384 with the concatenation of two class-level descriptions. The default setting uses $\lambda = 1$; we report
 385 results for $\lambda = 0.5$ (weaker semantic reconstruction) and $\lambda = 2$ (stronger reconstruction emphasis).

Settings	Zero-Shot Accuracy			Generalised Zero-Shot Accuracy								
	CUB			CUB			AWA2			SUN		
	Acc	AWA2 Acc	SUN Acc	s	H	u	s	H	u	s	H	
ASCI (Ours)	70.39\pm0.64	59.92\pm0.93	58.28\pm0.87	64.29\pm0.42	79.93\pm0.37	70.62\pm0.77	36.40\pm0.33	96.29\pm0.29	51.39\pm0.71	47.76\pm0.22	44.77\pm0.82	41.53\pm0.74
w/o Affinity Description	63.85 \pm 0.65	53.42 \pm 0.89	51.27 \pm 0.85	55.12 \pm 0.37	78.31 \pm 0.35	63.95 \pm 0.50	31.22 \pm 0.21	94.78 \pm 0.16	45.80 \pm 0.30	40.83 \pm 0.30	42.95 \pm 0.77	38.17 \pm 0.62
w/ Class Description	64.23 \pm 3.81	55.23 \pm 2.50	57.83 \pm 0.92	59.00 \pm 1.24	78.72 \pm 0.71	65.03 \pm 1.24	33.23 \pm 0.80	95.27 \pm 1.72	48.04 \pm 1.70	45.52 \pm 0.51	43.05 \pm 1.51	39.13 \pm 0.88
w/o Semantic Encoding	61.74 \pm 0.61	52.61 \pm 0.92	49.81 \pm 0.84	50.48 \pm 0.61	77.91 \pm 0.42	60.94 \pm 0.82	28.37 \pm 0.44	92.64 \pm 0.71	43.29 \pm 0.28	37.55 \pm 0.31	41.33 \pm 0.73	35.79 \pm 0.90
$\lambda = 0.5$	67.89 \pm 0.52	57.71 \pm 0.88	55.36 \pm 0.58	60.41 \pm 1.06	79.26 \pm 0.94	67.50 \pm 0.99	34.61 \pm 0.30	95.11 \pm 0.93	49.54 \pm 0.39	45.92 \pm 0.20	43.68 \pm 0.39	39.21 \pm 0.41
$\lambda = 2$	66.22 \pm 0.64	56.38 \pm 0.82	54.19 \pm 0.59	58.74 \pm 0.83	78.32 \pm 0.92	65.97 \pm 0.92	33.84 \pm 0.29	96.12 \pm 0.22	47.83 \pm 0.23	44.15 \pm 0.12	41.47 \pm 0.53	38.58 \pm 0.34
Only LLM (GPT-4)	11.37 \pm 0.45	47.82 \pm 0.02	26.94 \pm 0.57	8.42 \pm 0.38	62.15 \pm 0.70	14.88 \pm 0.41	41.26 \pm 0.59	69.37 \pm 0.05	51.73 \pm 0.52	18.73 \pm 0.44	47.62 \pm 0.01	26.52 \pm 0.48

391 overfitting to seen categories. This improvement is attributed to the dynamic classifier injection
 392 mechanism, which ensures that unseen class representations remain aligned with the pre-trained
 393 classification space while preserving performance on seen classes.

394
 395
 396 **Fine-grained recognition.** ZSL performance is sensitive to fine-grained distinctions, where inter-
 397 class similarities can make classification challenging. This issue is especially evident in CUB,
 398 which contains visually similar bird species. ASCI excels in such cases, improving unseen ac-
 399 curacy by 6.4% over ICIS. The adaptive semantic encoding mechanism enables ASCI to capture
 400 subtle differences between similar species, addressing the limitations of static, predefined semantic
 401 representations. Similarly, the performance gain on SUN, a scene classification dataset with se-
 402 mantically overlapping categories, further demonstrates the effectiveness of ASCI in distinguishing
 403 fine-grained classes.

404 405 4.3 FURTHER ANALYSIS

406 Due to space constraints, this section only provides a brief discussion. Detailed experimental settings
 407 and extended discussions of the analysis experiments are provided in Appendix F.

408
 409 **Effect of removing class-pair affinity descriptions.** Table 3 shows that replacing class-pair affin-
 410 ity descriptions with either class labels or class-wise descriptions reduces generalization to un-
 411 seen classes. Specifically, removing affinity descriptions leads to a 6.54% drop in zero-shot accuracy on
 412 CUB ($70.39\% \rightarrow 63.85\%$) and a 7.01% drop on SUN ($58.28\% \rightarrow 51.27\%$). The H-score on SUN
 413 also declines by 3.36% ($41.53\% \rightarrow 38.17\%$), highlighting the importance of structured semantic
 414 relationships for fine-grained recognition. In addition, using class-wise descriptions performs better
 415 than class labels alone. For example, on CUB, using class-wise descriptions yields 64.23% accuracy,
 416 compared to 63.85% with class labels, showing that additional semantic content—though lacking
 417 explicit relational information—still improves generalization compared to label-only inputs.

418
 419 **Effect of removing adaptive semantic encoding.** Removing the semantic encoding module leads to
 420 a notable decline in performance, with zero-shot accuracy dropping by 8.65% on CUB ($70.39\% \rightarrow$
 421 61.74%) and 8.47% on SUN ($58.28\% \rightarrow 49.81\%$). The harmonic mean (H) on AWA2 decreases
 422 by 9.60% ($51.39\% \rightarrow 41.79\%$), emphasizing the essential role of adaptive semantic encoding in
 423 aligning class representations with the classification space. These findings indicate that static text
 424 embeddings are insufficient and that adaptive encoding is necessary for effectively refining affinity
 425 descriptions and supporting generalization to unseen classes.

426
 427 **Impact of λ .** The hyperparameter λ determines the trade-off between semantic reconstruction
 428 and classifier alignment. When $\lambda = 0.5$, unseen class accuracy increases (+0.88% on CUB and
 429 +2.15% on AWA2), resulting in a higher H-score, but seen-class accuracy decreases slightly, likely
 430 due to reduced emphasis on classifier alignment. In contrast, setting $\lambda = 2$ increases seen-class
 431 accuracy (+1.06% on AWA2), but decreases unseen-class accuracy (−5.55% on SUN and −4.85%
 432 on AWA2), which leads to a lower H-score as a result of over-regularization. Overall, these re-
 433 sults indicate that $\lambda = 1$ achieves the best balance, supporting adaptability to unseen classes while
 434 maintaining performance on seen classes.

432 **Using LLMs as standalone classifiers.** Table 3 further reports the results of directly using GPT-4
 433 for classification by providing images and candidate class lists (prompt in Appendix A.3). While
 434 GPT-4 attains moderate performance on coarse-grained datasets such as AWA2 ($H = 51.73\%$), it
 435 performs poorly on fine-grained datasets, yielding only 14.88% H on CUB. In contrast, our method
 436 achieves consistent improvements across all three benchmarks, with $H = 70.62\%$ on CUB and
 437 $H = 51.39\%$ on AWA2. This comparison highlights the necessity of our adaptive semantic-guided
 438 design, as large language models alone are insufficient for reliable generalized zero-shot learning.
 439

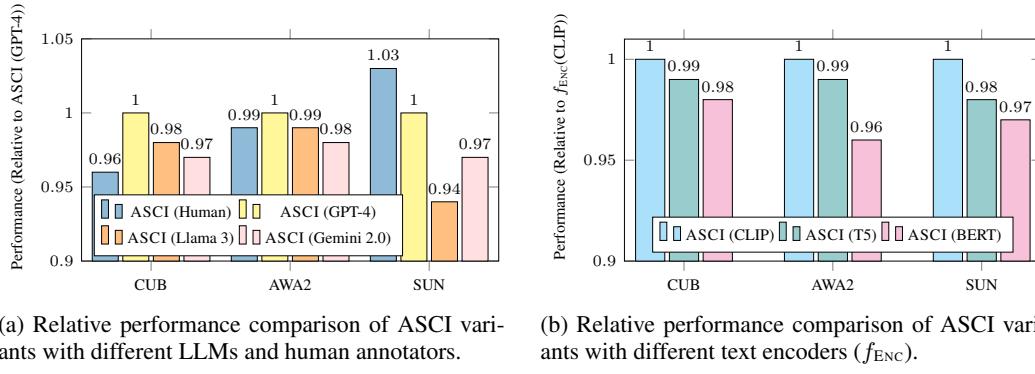


Figure 2: Ablation study.

440
 441 **Different description annotators.** Figure 2a compares ASCI performance using descriptions
 442 from humans and various LLMs. GPT-4 achieves the best results and serves as the baseline. Llama
 443 3 performs comparably, with only a slight decrease across datasets, while Gemini 2.0 shows a more
 444 significant drop, especially on SUN. Human-generated descriptions yield strong but not top perfor-
 445 mance. This may be because the student annotators lack sufficient fine-grained domain knowledge
 446 to provide precise and consistent semantic distinctions between classes, especially in specialized or
 447 subtle cases. These results highlight that high-quality LLMs can generate class-pair descriptions
 448 that are at least as effective, if not better, than those from non-expert human annotators, particularly
 449 for tasks requiring detailed domain understanding. Examples are provided in Appendix B.
 450

451
 452 **Impact of different f_{ENC} .** The choice of text encoder (f_{ENC}) influences classification performance,
 453 as shown in Figure 2b. T5 (Raffel et al., 2020)-based embeddings achieve near-CLIP (Radford
 454 et al., 2021) performance across all datasets, with minor variations. BERT (Devlin et al., 2019)-
 455 based embeddings perform slightly worse, particularly on AWA2, where they reach 0.96 relative to
 456 CLIP. This suggests that T5’s sequence-to-sequence pretraining contributes to stronger contextual
 457 representations, while BERT’s bidirectional training, though effective, does not generalize as well
 458 for this task. These findings emphasize the importance of selecting a text encoder that aligns well
 459 with the dataset’s semantic structure to optimize performance.
 460

461
 462 **Can other methods benefit from LLM generated descriptions?** We substitute human-written
 463 descriptions in baseline methods with LLM-generated ones and present the results in Table 4. Com-
 464 parison with Table 2 shows that most baselines exhibit little or no improvement, suggesting that
 465 simply using LLM-generated descriptions is not sufficient for better performance. In contrast, our
 466 model is explicitly designed to exploit the richer semantic information from LLM-generated de-
 467 scriptions and achieves clear gains, highlighting the need for adaptive semantic modeling in I-ZSL.
 468

471 5 CONCLUDING REMARKS

472
 473 This work introduces a novel framework designed for I-ZSL. Unlike previous methods that rely
 474 on pre-defined class descriptions and static text encoders, ASCI dynamically generates class-pair
 475 affinity descriptions using LLMs and employs an adaptive text encoder to refine semantic repres-
 476 entations. By aligning classifier weights with task-specific semantics, ASCI enhances generalization
 477 to unseen classes while operating in fully image-free settings. Extensive experiments on standard
 478 benchmarks demonstrate that ASCI significantly improves I-ZSL performance, particularly in fine-
 479 grained classification tasks. A discussion of limitations and future work is provided in Appendix G.

486 ETHICS STATEMENT
487488 All datasets used in this work (CUB, AWA2, SUN) are publicly available under terms that permit
489 research use, and we strictly follow the official training/test splits. Our method does not involve
490 private or sensitive data. While LLMs are employed to generate semantic descriptions, these are
491 used solely for research purposes and do not contain personal or identifiable information. Potential
492 risks such as bias or factual errors in LLM-generated text are mitigated by our adaptive semantic
493 modeling, and all experiments are bounded within controlled benchmarks. We therefore do not
494 identify direct pathways to harmful applications such as surveillance or privacy-invasive systems.
495496 REPRODUCIBILITY STATEMENT
497498 We have made our implementation and experimental settings publicly available at <https://anonymous.4open.science/r/ASCI-828D>. The repository includes data preprocessing
499 scripts, training and evaluation pipelines, and instructions for reproducing all results. Experiments
500 were conducted using PyTorch 2.2 with CUDA 12.1 on NVIDIA A100 GPUs. Detailed hyperpa-
501 rameters and training schedules are listed in Appendix E. We fix random seeds and report mean and
502 standard deviation over multiple runs. Together, these steps ensure that all results in this paper can
503 be reproduced by independent researchers.
504505 REFERENCES
506507 Afra Feyza Akyürek, Ekin Akyürek, Derry Wijaya, and Jacob Andreas. Subspace regularizers for
508 few-shot class incremental learning. In *Proceedings of the 2022 International Conference on*
509 *Learning Representations (ICLR)*, 2022.
510511 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
512 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
513 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
514 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
515 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
516 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proceedings of the*
517 *2020 Annual Conference on Neural Information Processing Systems (NeurIPS)*, pp. 1877–1901,
518 2020.
519520 Shiming Chen, Wenjin Hou, Ziming Hong, Xiaohan Ding, Yibing Song, Xinge You, Tongliang
521 Liu, and Kun Zhang. Evolving semantic prototype improves generative zero-shot learning. In
522 *Proceedings of the 2023 International Conference on Machine Learning (ICML)*, pp. 4611–4622.
523 PMLR, 2023.
524525 Shiming Chen, Wenjin Hou, Salman H. Khan, and Fahad Shahbaz Khan. Progressive semantic-
526 guided vision transformer for zero-shot learning. In *Proceedings of the 2024 Conference on*
527 *Computer Vision and Pattern Recognition (CVPR)*, pp. 23964–23974. IEEE, 2024.
528529 Anders Christensen, Massimiliano Mancini, A. Sophia Koepke, Ole Winther, and Zeynep Akata.
Image-free classifier injection for zero-shot classification. In *Proceedings of the 2023 IEEE In-*
530 *ternational Conference on Computer Vision (ICCV)*, pp. 19026–19035, 2023.
531532 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
533 hierarchical image database. In *Proceedings of the 2009 Conference on Computer Vision and*
534 *Pattern Recognition (CVPR)*, pp. 248–255. IEEE, 2009.
535536 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
537 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of*
538 *the North American Chapter of the Association for Computational Linguistics: Human Language*
539 *Technologies (NAACL-HLT)*, pp. 4171–4186. ACL, 2019.
540541 Reza Esfandiarpour and Stephen H Bach. Follow-up differential descriptions: Language models
542 resolve ambiguities for image classification. In *Proceedings of the 2024 International Conference*
543 *on Learning Representations (ICLR)*, 2024.
544

540 Ali Farhadi, Ian Endres, Derek Hoiem, and David A. Forsyth. Describing objects by their attributes.
 541 In *Proceedings of the 2009 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 542 1778–1785. IEEE, 2009.

543

544 Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer perceptron)—a review
 545 of applications in the atmospheric sciences. *Atmospheric Environment*, 32(14-15):2627–2636,
 546 1998.

547

548 Spyros Gidaris and Nikos Komodakis. Generating classification weights with GNN denoising au-
 549 toencoders for few-shot learning. In *Proceedings of the 2019 Conference on Computer Vision and*
 550 *Pattern Recognition (CVPR)*, pp. 21–30. IEEE, 2019.

551

552 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 553 nition. In *Proceedings of the 2016 Conference on Computer Vision and Pattern Recognition*
 554 (*CVPR*), pp. 770–778. IEEE, 2016.

555

556 Wenjin Hou, Shiming Chen, Shuhuang Chen, Ziming Hong, Yan Wang, Xuetao Feng, Salman Khan,
 557 Fahad Shahbaz Khan, and Xinge You. Visual-augmented dynamic semantic prototype for gener-
 558 ative zero-shot learning. In *Proceedings of the 2024 Conference on Computer Vision and Pattern*
 559 *Recognition (CVPR)*, pp. 23627–23637. IEEE, 2024.

560

561 Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based classification for
 562 zero-shot visual object categorization. *IEEE Transactions on Pattern Analysis and Machine In-
 563 telligence (TPAMI)*, 36(3):453–465, 2014.

564

565 Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks and applications
 566 in vision. In *Proceedings of the 2010 International Symposium on Circuits and Systems (ISCAS)*,
 567 pp. 253–256. IEEE, 2010.

568

569 Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. *Nature*, 521(7553):436–444,
 570 2015.

571

572 Yicheng Liu, Jie Wen, Chengliang Liu, Xiaozhao Fang, Zuoyong Li, Yong Xu, and Zheng Zhang.
 573 Language-driven cross-modal classifier for zero-shot multi-label image recognition. In *Proceed-
 574 ings of the 2024 International Conference on Machine Learning (ICML)*. PMLR, 2024.

575

576 Thomas Mensink, Efstratios Gavves, and Cees G. M. Snoek. COSTA: co-occurrence statistics for
 577 zero-shot classification. In *Proceedings of the 2014 Conference on Computer Vision and Pattern*
 578 *Recognition (CVPR)*, pp. 2441–2448. IEEE, 2014.

579

580 Mohammad Norouzi, Tomás Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea
 581 Frome, Greg Corrado, and Jeffrey Dean. Zero-shot learning by convex combination of semantic
 582 embeddings. In *Proceedings of the 2014 International Conference on Learning Representations*
 583 (*ICLR*), 2014.

584

585 Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and Michael P. Wellman. Sok: Security and
 586 privacy in machine learning. In *Proceedings of the 2018 IEEE European Symposium on Security*
 587 and Privacy (Euro S&P), pp. 399–414. IEEE, 2018.

588

589 Genevieve Patterson, Chen Xu, Hang Su, and James Hays. The SUN attribute database: Beyond
 590 categories for deeper scene understanding. *International Journal of Computer Vision (IJCV)*, 108
 591 (1-2):59–81, 2014.

592

593 Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, Xinlei Zhou, Ran Wang, Chee Peng Lim, Xi-Zhao
 594 Wang, and Q. M. Jonathan Wu. A review of generalized zero-shot learning methods. *IEEE*
 595 *Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 45(4):4051–4070, 2023.

596

597 Hongyu Qu, Jianan Wei, Xiangbo Shu, and Wenguan Wang. Learning clustering-based prototypes
 598 for compositional zero-shot learning. In *Proceedings of the 2025 International Conference on*
 599 *Learning Representations (ICLR)*, 2025.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 595 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 596 Sutskever. Learning transferable visual models from natural language supervision. In *Proceedings*
 597 *of the 2021 International Conference on Machine Learning (ICML)*, volume 139, pp. 8748–8763.
 598 PMLR, 2021.

599 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 600 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 601 transformer. *Journal of Machine Learning Research*, 21:140:1–140:67, 2020.

602 Bernardino Romera-Paredes and Philip H. S. Torr. An embarrassingly simple approach to zero-shot
 603 learning. In *Proceedings of the 2015 International Conference on Machine Learning (ICML)*,
 604 volume 37, pp. 2152–2161. PMLR, 2015.

605 Edgar Schönfeld, Sayna Ebrahimi, Samarth Sinha, Trevor Darrell, and Zeynep Akata. Generalized
 606 zero- and few-shot learning via aligned variational autoencoders. In *Proceedings of the 2019*
 607 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8247–8255. IEEE, 2019.

608 Richard Socher, Milind Ganjoo, Christopher D. Manning, and Andrew Y. Ng. Distributed repre-
 609 sentations of words and phrases and their compositionality. In *Proceedings of the 2013 Annual*
 610 *Conference on Neural Information Processing Systems (NIPS)*, pp. 935–943, 2013.

611 Bowen Tang, Jing Zhang, Long Yan, Qian Yu, Lu Sheng, and Dong Xu. Data-free generalized zero-
 612 shot learning. In *Proceedings of the 2024 AAAI Conference on Artificial Intelligence (AAAI)*, pp.
 613 5108–5117, 2024.

614 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 615 birds-200-2011 dataset. *California Institute of Technology*, 2011.

616 Wei Wang, Vincent W. Zheng, Han Yu, and Chunyan Miao. A survey of zero-shot learning: Settings,
 617 methods, and applications. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 10
 618 (2):13:1–13:37, 2019.

619 Zhengbo Wang, Jian Liang, Ran He, Nan Xu, Zilei Wang, and Tieniu Tan. Improving zero-shot
 620 generalization for clip with synthesized prompts. In *Proceedings of the 2023 IEEE International*
 621 *Conference on Computer Vision (ICCV)*, pp. 3032–3042, 2023.

622 Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning - the good, the bad and the ugly.
 623 In *Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 624 3077–3086. IEEE, 2017.

625 Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature generating networks for
 626 zero-shot learning. In *Proceedings of the 2018 Conference on Computer Vision and Pattern*
 627 *Recognition (CVPR)*, pp. 5542–5551. IEEE, 2018.

628 Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning - A com-
 629 prehensive evaluation of the good, the bad and the ugly. *IEEE Transactions on Pattern Analysis*
 630 *and Machine Intelligence (TPAMI)*, 41(9):2251–2265, 2019.

631 Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. VGSE: visually-
 632 grounded semantic embeddings for zero-shot learning. In *Proceedings of the 2022 Conference on*
 633 *Computer Vision and Pattern Recognition (CVPR)*, pp. 9306–9315. IEEE, 2022.

634 Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark
 635 Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable
 636 image classification. In *Proceedings of the 2023 Conference on Computer Vision and Pattern*
 637 *Recognition (CVPR)*, pp. 19187–19197. IEEE, 2023.

638 Zhiqiang Zhong, Anastasia Barkova, and Davide Mottin. Knowledge-augmented graph machine
 639 learning for drug discovery: A survey. *ACM Computing Surveys*, 57(12):1–38, 2025.

640

648
649

A PROMPT

650
651

A.1 CLASS-PAIR AFFINITY DESCRIPTION GENERATION PROMPT

652
653***Class-pair affinity description generation prompt***654
655
656
657

Instruction: You are tasked with comparing two animal species based on their semantic relationships. Use your knowledge to generate a detailed and accurate description of the similarities and differences between the given animals. Ensure the comparison is domain-relevant and includes key characteristics that would help identify or distinguish these species in a real-world classification task.

658
659
660
661
662
663
664
665

Message: Describe the similarities and differences between [ANIMAL-1] and [ANIMAL-2]. Focus on key aspects such as their physical characteristics, habitat, diet, behavior, and any notable distinctions in their roles in the ecosystem. Provide a concise but detailed explanation that highlights how these animals are alike and how they differ.

Response: [The response will contain a structured and precise description of the relationship between the two animals, highlighting shared features and distinct attributes relevant to their classification.]

666
667

A.2 CLASS-WISE DESCRIPTION GENERATION PROMPT

668
669
670
671
672
673
674
675
676
677***Class-wise description generation prompt***

Instruction: You are tasked with describing one animal species based on its characteristics. Use your knowledge to generate a detailed and accurate description of the given animal. Ensure the description is domain-relevant and includes key characteristics that would help identify this species in a real-world classification task.

Message: Describe the [ANIMAL]. Focus on key aspects such as its physical characteristics, habitat, diet, behavior, and any notable distinctions in its roles in the ecosystem.

Response: [The response will contain a structured and precise description of the given animal.]

678
679

A.3 PROMPT FOR USING LLMs AS CLASSIFIERS

680
681
682
683
684
685
686
687
688
689
690
691
692***Prompt for using LLMs as classifiers***

Instruction: You are tasked with classifying an image into one of the given candidate categories. You are provided with the input image and a candidate set of class labels. Select the most appropriate class from this candidate set based on the visual content of the image. Provide only the final predicted class label without additional explanation.

Message: Input image: [IMAGE]

Candidate class labels: [CLASS-1, CLASS-2, ..., CLASS-N]

Which class does the image most likely belong to? Provide only the class label as the final answer.

Response: Predicted class: [CLASS-X]

693
694
695
696
697
698
699
700
701

B EXAMPLE GENERATED DESCRIPTIONS

This section presents the example generated descriptions from LLMs (GPT-4, Llama 3, and Gemini 2.0) and human annotators. Regarding human annotators, we ask 3 bachelor students with a computer science or mathematics background to perform this task.

CUB. *Coot vs. Grebe*

- *Human*: Coots and Grebes are both aquatic birds found in lakes and ponds, and both have lobed toes for swimming. Coots are dark-colored with a white beak and often feed on plants and small animals at the water's edge. Grebes have sleeker bodies, pointed bills, and are expert divers that mainly eat fish and insects. While both occupy similar habitats, coots

702 are more likely to be seen walking on land, whereas grebes spend more time diving and
 703 rarely leave the water.

704 • *GPT-4*: Coot and Grebe are both freshwater diving birds with lobed feet and similar diets.
 705 Coots have a stocky body, blunt beak, and walk well on land. Grebes are sleek, have sharp
 706 beaks, and are clumsy on land. Coots are social; Grebes are more solitary and perform
 707 courtship displays.

708 • *Llama 3*: The Coot and the Grebe are two distinct waterbird species. Similarities include
 709 their aquatic lifestyle, freshwater habitats, and diet of aquatic plants and invertebrates.

710 Differences lie in their physical characteristics, with Coots having a robust body, black
 711 plumage, and a white bill, whereas Grebes have a sleeker body and grayish or brownish
 712 plumage. Grebes are excellent divers, preferring open water, while Coots are more surface-
 713 oriented, favoring vegetated areas.

714 Their behaviors also differ, with Grebes being more solitary during breeding and Coots
 715 forming larger groups. In the ecosystem, both species play important roles, but Coots have
 716 a greater impact on vegetation due to their plant-based diet. Overall, while sharing some
 717 similarities, the Coot and the Grebe exhibit distinct adaptations to their environments.

718 • *Gemini 2.0*: Similarities: Aquatic birds, swim/dive, eat aquatic invertebrates/some plants,
 719 build floating nests.

720 Differences: Coots: Dark plumage, white bill & frontal shield, lobed toes (can walk on
 721 land), omnivorous, often in flocks. Grebes: Streamlined, pointed bill, distinctly lobed feet
 722 (poor walking), mainly carnivorous (fish/invertebrates), often solitary/pairs. Key Distinc-
 723 tions: Bill/foot morphology and terrestrial ability.

725 **CUB. Wren vs. Finch**

726 • *Human*: Wrens and Finches are both small songbirds commonly found in gardens and
 727 forests. Wrens have thin, slightly curved bills, short wings, and are known for their upright
 728 tails and insect-based diet. Finches have stout, conical bills adapted for eating seeds, and
 729 generally display a more robust body shape. While both may sing and nest in shrubs, wrens
 730 are more active in searching for insects, while finches mainly forage for seeds on the ground
 731 or in trees.

732 • *GPT-4*: Wren and Finch are both small songbirds often found in gardens and woodlands.
 733 Wrens are brown, with short wings and tails held upright; they eat insects and are very
 734 active. Finches are more colorful, with conical beaks for seeds, and show more varied
 735 plumage. Wrens are solitary; Finches often form flocks.

736 • *Llama 3*: The Wren and the Finch are two distinct bird species. Similarities include their
 737 small size, insectivorous and seed-eating diets, and social behaviors, often forming flocks.
 738 Differences lie in their physical characteristics, with Wrens having a rounder body, shorter
 739 tail, and longer bill, whereas Finches have a more elongated body, notched tail, and shorter
 740 bill. Wrens are also known for their bold and loud songs, whereas Finches have more
 741 melodic and varied songs.

742 In terms of habitat, Wrens prefer denser vegetation, such as shrubs and trees, while Finches
 743 are found in a wider range of habitats, including backyards, fields, and woodlands. Overall,
 744 while sharing some similarities, the Wren and the Finch exhibit distinct characteristics and
 745 preferences.

746 • *Gemini 2.0*: Similarities: Small passerine birds, diurnal, known for songs.

747 Differences: Wrens: Tiny, roundish, thin bill, short tail (often upright), mainly brown,
 748 primarily insectivorous, often solitary, dome-shaped nests. Finches: Slightly larger, stout,
 749 conical bill, varied tail, often colorful, primarily granivorous, sometimes in flocks, cup-
 750 shaped nests. Key Distinctions: Bill shape (thin vs. conical) and primary diet (insects vs.
 751 seeds).

752 **AWA2. Wolf vs. Domestic Dog**

753 • *Human*: Wolves and domestic dogs are closely related canines, both with similar body
 754 structures and social behaviors. Wolves are wild animals with larger bodies, longer legs,

756
757
758
759

and thick, grayish fur; they live and hunt in packs and rely on hunting large prey in forests or open lands. Domestic dogs are smaller on average, have diverse fur colors and shapes due to selective breeding, and live with humans, eating a variety of foods. Unlike wolves, dogs rely on humans for care and rarely hunt in packs.

760
761
762
763

- *GPT-4*: Wolf and Domestic Dog share ancestry and body plan. Wolves are larger, have broader skulls, and stronger jaws. They live in wild packs and hunt large prey. Dogs vary in size and shape due to breeding, live with humans, and depend on them for food. Wolves avoid humans; dogs are domesticated and socialized.

764

- *Llama 3*: The Wolf and the Domestic Dog are two closely related species. Similarities include their carnivorous diet, pack behavior, and loyal nature.

766
767
768
769
770
771
772

Differences lie in their physical characteristics, with Wolves having a more muscular build, sharper teeth, and a thicker coat, whereas Domestic Dogs have a more varied size, shape, and coat type due to breeding. Wolves are also more territorial and have a stronger prey drive, whereas Domestic Dogs are more socialized to humans and have a wider range of behaviors and roles, from companions to working animals. Overall, while sharing a common ancestor, Wolves and Domestic Dogs have distinct differences in their physiology, behavior, and relationship with humans.

773
774

- *Gemini 2.0*: Similarities: Same species (*Canis lupus*), pack-oriented, quadrupedal carnivores, similar vocalizations.

775
776
777
778

Differences: Wolves: Larger, powerful build, straighter tail, muted colors, more cautious/independent, shorter socialization. Domestic Dogs: Wide size/shape range, varied tail, diverse colors, more amenable to humans, longer socialization. Key Distinctions: Physical variability/size, temperament/dependence on humans.

779

780 AWA2. Horse vs. Zebra

781
782
783
784
785
786

- *Human*: Horses and zebras are both hoofed mammals in the Equidae family. Horses have solid-colored coats, are domesticated, and are used for riding, transport, or farm work. Zebras are wild animals, easily identified by their black-and-white stripes, and live in herds on African grasslands. While both mainly eat grasses, horses are more adaptable to different environments, while zebras rely on their stripes for camouflage and social behavior in the wild.

787
788
789
790
791

- *GPT-4*: Horse and Zebra are both equids with similar body shape and herbivorous diet. Horses are domesticated, come in various colors, and are used for riding and work. Zebras are wild, have black-and-white stripes, and are more aggressive and harder to tame. Horses neigh and are social with humans; zebras bark and live in tight herds for predator defense.

792
793

- *Llama 3*: The Horse and the Zebra are two closely related species. Similarities include their herbivorous diet, social behavior, and grazing habits.

794
795
796
797
798

Differences lie in their physical characteristics, with Horses having a solid coat color and Zebras having distinctive black and white stripes. Zebras are also more adapted to wilderness habitats and have a stronger instinct for self-preservation, whereas Horses are more domesticated and have a wider range of behaviors and roles, from companions to working animals. Overall, while sharing a common ancestor, Horses and Zebras have distinct differences in their physiology, behavior, and relationship with their environment.

799
800
801
802
803
804
805

- *Gemini 2.0*: Similarities: Equids, herbivorous, similar body plan (hooves, legs, tail, mane), live in herds.

Differences: Zebras: Black and white stripes, stockier build, coarser mane, less domesticable, native to Africa. Horses: Typically solid-colored coats (or spots), more varied build, often longer mane, generally domesticable, global distribution (wild populations more restricted). Key Distinction: Coat pattern (stripes vs. solid/spots).

806
807

808 SUN. Classroom vs. Library

809

- *Human*: Classrooms and libraries are both indoor environments designed for learning. Classrooms typically contain desks, a teacher's area, and boards for instruction, and are used for active teaching and group discussions. Libraries are quieter spaces filled with

810 bookshelves, reading tables, and study areas, intended for reading, research, and independent study. While both support education, classrooms focus on direct instruction, while 811 libraries provide resources and a quiet atmosphere for individual learning. 812

- 813 • *GPT-4*: Classroom and Library are both indoor educational spaces. A classroom is for 814 instruction, with a teacher, desks, and active discussion. A library is for independent study, 815 with books, quiet zones, and minimal interaction. Classrooms focus on teaching; libraries 816 support learning through resources.
- 817 • *Llama 3*: The Horse and the Zebra are closely related equine species. Similarities include 818 their herbivorous diet, four-legged stance, and social behavior, often living in groups. 819 Differences lie in their physical characteristics, with Horses having a solid coat color and a 820 more muscular build, whereas Zebras have a distinctive black and white striped pattern and 821 a slightly smaller size. Zebras also have a more aggressive temperament and are native to 822 Africa, whereas Horses are found in various parts of the world and have been domesticated 823 for thousands of years. Overall, while sharing many similarities, the Horse and the Zebra 824 exhibit distinct differences in their appearance, behavior, and geographic distribution.
- 825 • *Gemini 2.0*: Similarities: Spaces for learning, contain informational resources, found in 826 educational settings. 827 Differences: Classroom: For structured teaching with an instructor, curriculum-focused, 828 scheduled attendance. Library: For self-directed learning, diverse resources, voluntary 829 access. Key Distinction: Presence of a teacher/structured instruction vs. self-directed re- 830 source access.

831 **SUN. Beach vs. Desert**

- 832 • *Human*: Beaches and deserts are both natural environments with sandy ground. Beaches 833 are located next to bodies of water like oceans or lakes, have moist sand, support aquatic 834 life, and are often visited for recreation. Deserts are dry, receive very little rainfall, have 835 arid sand or rocky soil, and support sparse, drought-resistant vegetation and animals. While 836 both can be hot and sunny, beaches are shaped by water and tides, while deserts are shaped 837 by wind and extreme dryness.
- 838 • *GPT-4*: Beach and Desert are both sandy environments but differ in key aspects. Beaches 839 are coastal, humid, and support marine life; deserts are inland, arid, and support drought- 840 adapted species. Beaches have tides and moderate temperatures; deserts have extreme 841 temperature swings and minimal water.
- 842 • *Llama 3*: The Beach and the Desert are two distinct ecosystems. Similarities include their 843 ability to support unique and adapted plant and animal species. 844 Differences lie in their climate, geography, and characteristics, with Beaches being coastal 845 areas with sandy or rocky shores, salty air, and a variety of marine life, whereas Deserts 846 are arid, landlocked regions with extreme temperatures, limited vegetation, and special- 847 ized wildlife. Beaches are also typically characterized by high humidity and abundant 848 water, whereas Deserts are defined by low humidity and scarce water resources. Overall, 849 the Beach and the Desert exhibit contrasting environments and support different types of 850 biodiversity.
- 851 • *Gemini 2.0*: Similarities: Sparse vegetation, large areas of sediment, can have extreme 852 temperatures, subject to wind/water erosion.
- 853 Differences: Beach: Adjacent to water, higher water availability/humidity, vegetation 854 adapted to salt/waves, temperature moderated by water, shaped by water. Desert: Arid 855 (low water), vegetation adapted to drought, extreme daily temperature swings, shaped by 856 wind. Key Distinction: Presence/absence of significant water.

858 **C RELATED WORK DISCUSSION**

859 Table 1 provides a side-by-side comparison of ASCI and existing approaches in image-free zero- 860 shot learning (I-ZSL). We highlight three key dimensions relevant to I-ZSL: the need for manually 861 defined class descriptions, the use of adaptive semantic guidance, and the reliance on image vision 862 features.

864 Most early methods, such as ConSE (Norouzi et al., 2014) and COSTA (Mensink et al., 2014),
 865 support I-ZSL but require human-written class descriptions and do not employ adaptive semantic
 866 modeling. Methods like wDAE (Xian et al., 2017) and WAvg (Socher et al., 2013) do not support
 867 I-ZSL at all, since they depend on visual features for both training and inference. ICIS (Christensen
 868 et al., 2023) is a representative I-ZSL model that removes the dependency on images but still relies
 869 on manually defined class descriptions and a fixed semantic encoder, without adaptive guidance for
 870 semantic representation.

871 In contrast, ASCI is the first to achieve the following:
 872

- 873 • No reliance on human-written class descriptions: All semantic information is generated
 874 automatically by LLMs, removing the need for expert annotation and enabling adaptation
 875 to new domains where such information is unavailable or difficult to collect.
- 876 • Adaptive semantic guidance: Our model introduces a task-adaptive encoder trained jointly
 877 with the classifier, rather than relying on a fixed pre-trained text encoder. This design allows
 878 the semantic space to be optimized for the target task, improving discrimination between
 879 fine-grained classes.
- 880 • Fully image-free: ASCI does not require any image data or models at any stage, making it
 881 applicable to sensitive domains where visual data or models are inaccessible due to privacy,
 882 security, or resource constraints.

883 Compared to prior methods, our approach is the only one to satisfy all three criteria: operating fully
 884 in the image-free setting, without human-crafted class descriptions, and with adaptive semantic
 885 modeling. This enables a more flexible and robust framework for I-ZSL, as summarized in Table 1.
 886 Our results demonstrate that these design choices translate to clear improvements in both accuracy
 887 and generalization, particularly in fine-grained or specialized domains where existing assumptions
 888 are not realistic.

889 **Costs of LLM Usages.** Our automatic class-pair affinity description generation pipeline issued
 890 a total of 137 queries to GPT-4 and 135 queries to Gemini 2.0. Each request used a prompt of
 891 approximately 150 tokens and received a model response of about 100 tokens, for a total of roughly
 892 250 tokens per request. Based on research-tier pricing (\$0.06 per 1K prompt tokens and \$0.12 per 1K
 893 completion tokens for GPT-4; \$0.02 per 1K prompt/completion tokens for Gemini 2.0), the average
 894 cost per GPT-4 request was approximately \$0.021, and per Gemini 2.0 request was about \$0.005.
 895 Summing across all calls, the total expenditure was about \$2.88 for GPT-4 and \$0.68 for Gemini
 896 2.0, for a combined API cost of less than \$4. This total is significantly lower than previous estimates
 897 based on 1K+1K token usage. Most costs are attributable to GPT-4, which performs the majority of
 898 description generation, while Gemini 2.0 is used for ablation studies. Local experiments with Llama
 899 3 incur no additional API charges. These results show that, for our experimental scale and prompt
 900 length, LLM-based description generation is computationally efficient and cost-effective.

902 D THEORETICAL ANALYSIS

903 In this section, we provide formal guarantees for the correctness and generalization capabilities of
 904 the proposed framework. We present a lemma to establish the alignment of adaptive semantic
 905 encoding with the classifier weights of the pre-trained model and a theorem to bound the generalization
 906 error of the injected classifiers for unseen classes.

907 *Proof of Lemma 1.* The alignment loss $\mathcal{L}_{\text{align}}$ is formulated as:

$$912 \mathcal{L}_{\text{align}} = \sum_{c_j \in \mathcal{S}} \|\mathbf{w}_j^{\text{true}} - \sum_{c_i \in \mathcal{S} \setminus \{c_j\}} \alpha_{ij} \cdot \mathbf{w}_i\|_2^2,$$

913 where $\mathbf{w}_j^{\text{true}}$ represents the true weight of the masked class c_j , and the predicted weight $\mathbf{w}_j^{\text{pred}}$ is
 914 computed as:

$$915 \mathbf{w}_j^{\text{pred}} = \sum_{c_i \in \mathcal{S} \setminus \{c_j\}} \alpha_{ij} \cdot \mathbf{w}_i.$$

918 Here, α_{ij} is the semantic relationship weight derived through softmax normalization:
 919

$$920 \quad \alpha_{ij} = \frac{\exp(f(\mathbf{z}_{ij}, \mathbf{w}_i))}{\sum_{c_k \in \mathcal{S} \setminus \{c_j\}} \exp(f(\mathbf{z}_{ik}, \mathbf{w}_k))}.$$

923 Minimizing $\mathcal{L}_{\text{align}}$ ensures that Θ is trained to generate \mathbf{z}_{ij} such that the predicted classifier weight
 924 $\mathbf{w}_j^{\text{pred}}$ closely approximates $\mathbf{w}_j^{\text{true}}$. The approximation error ϵ arises due to the finite expressivity of
 925 Θ and the dimensional constraints of the latent space. Therefore, the alignment between \mathbf{z}_{ij} and
 926 $\mathbf{W}_{\mathcal{S}}$ is preserved up to an error bound $\|\mathbf{w}_j^{\text{true}} - \mathbf{w}_j^{\text{pred}}\| \leq \epsilon$. \square
 927

928 *Proof of Theorem 1.* Let Φ be a pre-trained classifier over seen classes \mathcal{S} , with classifier weights
 929 $\mathbf{W}_{\mathcal{S}}$. The extended classifier $\hat{\Phi}$ augments Φ by injecting synthesized classifier weights $\mathbf{W}_{\mathcal{U}}$ for
 930 unseen classes \mathcal{U} using semantic affinity embeddings refined by the adaptive encoder Θ .
 931

932 We define the expected classification accuracy of Φ and $\hat{\Phi}$ as:

$$933 \quad \text{Accuracy}(\Phi) = \mathbb{E}_{x \sim p_{\mathcal{S}}(x)} [\mathbb{I}(\Phi(x) = y_{\text{true}})], \quad \text{Accuracy}(\hat{\Phi}) = \mathbb{E}_{x \sim p_{\mathcal{Y}}(x)} [\mathbb{I}(\hat{\Phi}(x) = y_{\text{true}})],$$

935 where $\mathbb{I}(\cdot)$ is the indicator function, and $p_{\mathcal{S}}(x)$, $p_{\mathcal{Y}}(x)$ denote data distributions over \mathcal{S} and $\mathcal{Y} =$
 936 $\mathcal{S} \cup \mathcal{U}$, respectively.

937 The drop in accuracy from Φ to $\hat{\Phi}$ can be attributed to two sources:
 938

939 (i) Alignment error ϵ : According to Lemma 1, the synthesized classifier weights $\mathbf{w}_j^{\text{pred}}$ approx-
 940 imate the ideal weights $\mathbf{w}_j^{\text{true}}$ for class $c_j \in \mathcal{U}$ such that:

$$942 \quad \|\mathbf{w}_j^{\text{true}} - \mathbf{w}_j^{\text{pred}}\|_2^2 \leq \epsilon.$$

944 This error reflects the finite capacity of Θ to perfectly align semantic embeddings with the
 945 classifier weight space.

946 (ii) Semantic variance δ : This captures the inherent semantic gap between seen and unseen
 947 classes. Formally, let $p_{\mathcal{S}}(z)$ and $p_{\mathcal{U}}(z)$ denote the distributions of semantic representations
 948 for seen and unseen classes, respectively. We define:

$$950 \quad \delta = \mathbb{E}_{z \sim p_{\mathcal{U}}(z)} \left[\min_{z' \sim p_{\mathcal{S}}(z')} \|z - z'\|_2^2 \right].$$

952 Even with perfect alignment, this distributional shift introduces an irreducible generaliza-
 953 tion error.

954 The total loss minimized by Θ is:

$$956 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{align}} + \lambda \mathcal{L}_{\text{recon}},$$

958 where $\mathcal{L}_{\text{recon}}$ encourages the encoder to preserve semantic consistency by ensuring the invertibility
 959 of affinity embeddings. Although $\mathcal{L}_{\text{recon}}$ is not directly tied to classifier accuracy, it regularizes the
 960 semantic embedding space and indirectly affects classifier synthesis. Its contribution to generaliza-
 961 tion error is upper-bounded by a term proportional to $\lambda\epsilon$, assuming encoder capacity governs both
 962 alignment and reconstruction.

963 Combining both sources of error, the accuracy of the extended model satisfies:

$$964 \quad \text{Accuracy}(\hat{\Phi}) \geq \text{Accuracy}(\Phi) - \mathcal{O}(\epsilon + \lambda\epsilon + \delta).$$

966 Assuming $\lambda \geq 1$, we merge the two ϵ terms and simplify:

$$967 \quad \text{Accuracy}(\hat{\Phi}) \geq \text{Accuracy}(\Phi) - \mathcal{O}(\lambda\epsilon + \delta).$$

969 \square

971 **Implications:** The results in Lemma 1 and Theorem 1 provide theoretical justification for the frame-
 972 work's effectiveness. Specifically:

- 972 • The adaptive semantic encoder Θ ensures that unseen-class classifier weights align with
973 the pre-trained model’s structure up to a bounded approximation error.
- 974
- 975 • The classification accuracy of the extended model $\hat{\Phi}$ degrades at most by $\mathcal{O}(\lambda\epsilon)$, ensuring
976 that the generalization error remains controlled.
- 977
- 978 • The trade-off parameter λ dictates the balance between alignment and reconstruction ob-
979 jectives, influencing the generalization performance of $\hat{\Phi}$.

980 These findings formally establish that the proposed method preserves semantic alignment and en-
981 sures effective generalization in both Zero-Shot Learning (ZSL) and Generalized Zero-Shot Learn-
982 ing (GZSL) scenarios.

983 E EXPERIMENTAL SETTINGS

984 E.1 DATASETS

985 We evaluate *Image-Free Zero-Shot Learning* (I-ZSL) performance on three widely used *Zero-Shot*
986 *Learning* (ZSL) benchmark datasets: CUB, AWA2, and SUN. These datasets span fine-grained and
987 coarse-grained classification tasks, enabling a comprehensive evaluation of ASCI under different
988 levels of semantic granularity. To ensure consistency with prior work, we adopt the class splits for
989 seen and unseen categories as defined in (Christensen et al., 2023) for both the ZSL and *Generalized*
990 *Zero-Shot Learning* (GZSL) settings.

- 991 • **CUB-200-2011 (CUB)** (Wah et al., 2011): A fine-grained bird classification dataset con-
992 taining 200 categories of North American bird species. Each category is annotated with ex-
993 tensive semantic information, including part-level attributes and textual descriptions. Fol-
994 lowing established ZSL benchmarks (Xian et al., 2018; 2017), we use 150 classes as seen
995 and 50 as unseen. Since ASCI operates in an image-free setting, we utilize class-pair affin-
996 ity descriptions and classifier injections for the I-ZSL training process (Christensen et al.,
997 2023). The high intra-class similarity in CUB makes it a challenging dataset, as accurate
998 classification requires fine-grained semantic reasoning.
- 999 • **Animals with Attributes 2 (AWA2)** (Xian et al., 2019): A large-scale coarse-grained ani-
1000 mal classification dataset comprising 50 mammal species, each annotated with 85 attributes
1001 covering physical characteristics, habitat, and behavior. We adopt the standard split of 40
1002 seen and 10 unseen classes. Unlike CUB, AWA2 exhibits greater inter-class variation,
1003 making it well-suited for evaluating the ability of ASCI to generalize across distinct se-
1004 mantic concepts. The attribute-based structure of AWA2 is particularly relevant for I-ZSL,
1005 as semantic information must fully compensate for the absence of visual data.
- 1006 • **SUN Attribute (SUN)** (Patterson et al., 2014): A large-scale scene classification dataset
1007 containing 717 categories covering diverse indoor and outdoor environments. Each scene
1008 category is annotated with 102 attributes, such as object presence, spatial arrangement, and
1009 lighting conditions. We follow the standard protocol in (Lampert et al., 2014), using 645
1010 seen and 72 unseen classes, consistent with the ZSL/GZSL split from (Xian et al., 2019).
1011 SUN is particularly challenging for I-ZSL, as scene categories often lack distinct object-
1012 based semantics, requiring a deeper understanding of high-level contextual attributes.
- 1013
- 1014
- 1015

1016 These datasets provide a diverse evaluation setting for I-ZSL. **CUB** assesses the ability to capture
1017 fine-grained semantic variations among visually similar species, **AWA2** evaluates generalization
1018 across distinct animal classes with structured attribute descriptions, and **SUN** tests the ability to
1019 infer semantic relationships from abstract contextual attributes. By encompassing different levels of
1020 semantic complexity, our evaluation ensures a rigorous assessment of ASCI’s capacity to recognize
1021 unseen classes without relying on visual information.

1022 E.2 COMPETING METHODS

1023 We compare ASCI against multiple state-of-the-art methods for zero-shot learning (ZSL) and
1024 image-free zero-shot learning (I-ZSL). This comparative analysis highlights the key differences in

1026 semantic representation, classifier injection, and adaptation mechanisms across these approaches.
 1027 Our code and data are available at <https://anonymous.4open.science/r/ASCI-828D>.
 1028

- 1029 1. **ConSE** (Norouzi et al., 2014) represents an early attempt at ZSL by using a probabilistic
 1030 framework that projects unseen class representations as convex combinations of seen-class
 1031 classifier outputs. Instead of explicitly learning semantic embeddings, it aggregates seen-
 1032 class predictions in a weighted manner, making it an effective but limited baseline for ZSL
 1033 due to its reliance on the quality of seen-class classifiers.
- 1034 2. **COSTA** (Mensink et al., 2014) is an attribute-based method that maps visual features into a
 1035 structured attribute space. It requires predefined attribute annotations to establish semantic
 1036 relationships between seen and unseen classes. While effective in leveraging structured se-
 1037 mantic priors, COSTA depends on high-quality manual annotations, limiting its scalability.
- 1038 3. **Sub.Reg.*** (Akyürek et al., 2022) introduces a subspace regularization approach that con-
 1039 strains the embedding space through additional priors, enhancing the preservation of se-
 1040 mantic structures across class distributions. By improving the alignment between seen and
 1041 unseen class spaces, it increases generalization but still requires access to seen-class fea-
 1042 tures.
- 1043 4. **wDAE*** (Gidaris & Komodakis, 2019) employs a denoising autoencoder (DAE) architec-
 1044 ture to reconstruct semantic embeddings for unseen classes. It uses an auxiliary decoding
 1045 mechanism to refine embeddings and improve their robustness. Despite its generative ca-
 1046 pabilities, wDAE requires visual data during training, restricting its applicability in image-
 1047 free settings.
- 1048 5. **WAvg*** (Xu et al., 2022) models unseen-class representations as weighted averages of seen-
 1049 class embeddings. It assumes that unseen categories exist as linear combinations of known
 1050 ones. While computationally efficient, this assumption is often too simplistic for capturing
 1051 fine-grained distinctions in complex classification tasks.
- 1052 6. **SMO*** (Xu et al., 2022) introduces a *semantic manifold optimization* technique that iter-
 1053 atively adjusts class embeddings to maximize class separability. This refinement process
 1054 improves recognition in fine-grained classification scenarios but still relies on learned vi-
 1055 sual features during adaptation.
- 1056 7. **ICIS** (Christensen et al., 2023) is a fully image-free ZSL model that extends a pre-trained
 1057 classifier to recognize unseen classes using pre-defined class descriptions and a static text
 1058 encoder. ICIS maps textual descriptions into a classifier space, enabling zero-shot classi-
 1059 fication without visual data. However, its reliance on static textual representations limits its
 1060 adaptability to specific tasks, especially in cases where class descriptions are incomplete or
 1061 poorly aligned with the classification objective.
- 1062 8. **LaBo** (Yang et al., 2023) proposes a *language-model-based bootstrapping* framework for
 1063 zero-shot learning. It leverages large language models to automatically generate rich class-
 1064 level descriptions and augment limited semantic information, thereby reducing reliance on
 1065 manually crafted attributes. By aligning these generated descriptions with a classifier space,
 1066 LaBo improves the expressiveness of class embeddings and enhances transfer to unseen
 1067 categories. However, the method primarily depends on static LLM outputs without adaptive
 1068 refinement, which constrains its effectiveness in cases where generated descriptions are
 1069 noisy or misaligned with the task-specific classification objective.
- 1070 9. **ZSLViT** (Chen et al., 2024) leverages a transformer-based vision model, *Vision Trans-
 1071 former (ViT)*, for ZSL. While it moves beyond traditional convolutional-based architec-
 1072 tures, ZSLViT still requires access to visual data during adaptation, making it unsuitable
 1073 for fully image-free scenarios.
- 1074 10. **CoMC** (Liu et al., 2024) focuses on compositionality in zero-shot classification by learning
 1075 to decompose and reassemble semantic features across multiple concepts. This approach
 1076 improves generalization by capturing hierarchical and compositional relationships between
 1077 seen and unseen classes. However, like ZSLViT, it still assumes some level of exposure to
 1078 visual data during training.
- 1079 11. **DFZSL*** (Tang et al., 2024) addresses the *data-free zero-shot learning* problem, where
 1080 access to raw training images is restricted but a base-class classifier is available. It re-
 1081 constructs virtual features by modeling the class-wise distribution with a von Mises-Fisher

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 4: Comparison between our ASCI framework and existing methods in the literature applicable or adaptable to the I-ZSL setting using standard benchmark (*i.e.*, CUB, AWA2, and SUN). Each dataset is associated with the descriptions generated using the prompt as shown in Appendix A.2 We measure the results as unseen accuracy (Acc) for the zero-shot task, unseen (u) and seen (s) accuracy and their harmonic mean (H) for the generalised zero-shot setting. It reports the average number of 5 random runs with random seeds. Methods marked with * are adapted to the image-free setting.

Models	Zero-Shot Accuracy			Generalised Zero-Shot Accuracy								
	CUB Acc	AWA2 Acc	SUN Acc	CUB		AWA2			SUN			
				u	s	H	s	H	s	H		
ConSE	39.87 \pm 0.79	43.12 \pm 0.52	42.21 \pm 0.39	0.39 \pm 0.03	83.32 \pm 0.87	0.74 \pm 0.04	2.91 \pm 0.13	93.84 \pm 0.15	5.57 \pm 0.18	0.07 \pm 0.00	47.10 \pm 0.27	0.15 \pm 0.01
COSTA	32.01 \pm 1.21	44.70 \pm 1.63	17.12 \pm 0.97	0.00 \pm 0.00	84.01 \pm 1.70	0.00 \pm 0.00	0.00 \pm 0.00	93.12 \pm 1.72	0.00 \pm 0.00	0.00 \pm 0.00	49.40 \pm 2.04	0.00 \pm 0.00
SubReg*	49.12 \pm 1.58	45.20 \pm 1.14	41.85 \pm 1.28	0.95 \pm 0.41	85.25 \pm 1.98	1.89 \pm 0.13	0.00 \pm 0.00	92.11 \pm 1.25	0.00 \pm 0.00	0.00 \pm 0.00	50.15 \pm 1.59	0.00 \pm 0.00
wDAE*	45.90 \pm 0.90	50.65 \pm 1.30	43.12 \pm 2.53	0.71 \pm 0.05	83.92 \pm 1.44	1.53 \pm 0.08	0.00 \pm 0.00	91.53 \pm 2.17	0.00 \pm 0.00	0.00 \pm 0.00	48.20 \pm 1.04	0.00 \pm 0.00
WAvg*	1.82 \pm 0.43	18.90 \pm 0.61	1.29 \pm 0.53	1.59 \pm 0.20	56.10 \pm 2.67	3.10 \pm 0.49	8.12 \pm 0.10	84.93 \pm 2.06	14.41 \pm 1.11	1.17 \pm 0.35	7.01 \pm 0.90	2.11 \pm 0.18
SMO*	43.40 \pm 4.48	52.01 \pm 5.50	41.87 \pm 2.17	36.90 \pm 1.44	50.23 \pm 2.12	41.99 \pm 1.57	35.14 \pm 0.82	83.02 \pm 2.18	49.01 \pm 1.01	39.00 \pm 1.18	6.22 \pm 0.55	10.19 \pm 0.91
ICIS	60.90 \pm 1.22	20.01 \pm 0.11	50.12 \pm 1.37	50.03 \pm 1.69	66.23 \pm 1.63	56.31 \pm 1.72	0.01 \pm 0.00	93.03 \pm 1.93	49.01 \pm 0.82	40.00 \pm 0.74	26.90 \pm 1.16	31.20 \pm 1.18
LaBo	47.95 \pm 1.36	42.21 \pm 1.14	46.30 \pm 1.32	43.12 \pm 2.64	54.67 \pm 2.23	45.32 \pm 2.85	28.75 \pm 0.86	76.00 \pm 2.29	41.91 \pm 1.56	39.42 \pm 1.70	6.91 \pm 0.88	9.98 \pm 0.08
ZSLViT*	61.75 \pm 2.36	49.21 \pm 1.99	48.09 \pm 2.00	50.97 \pm 1.90	68.40 \pm 2.78	57.19 \pm 2.23	7.92 \pm 1.37	90.02 \pm 2.01	46.80 \pm 0.83	38.75 \pm 1.93	24.12 \pm 0.86	30.44 \pm 0.54
CoMC*	53.01 \pm 1.82	46.70 \pm 1.00	41.38 \pm 1.75	8.91 \pm 0.46	73.11 \pm 3.23	5.23 \pm 0.28	2.83 \pm 0.10	93.01 \pm 1.42	6.32 \pm 0.57	32.00 \pm 1.76	22.41 \pm 0.87	27.19 \pm 0.57
DFZSL*	51.23 \pm 1.10	47.56 \pm 0.98	44.87 \pm 1.21	39.41 \pm 0.85	65.72 \pm 1.73	49.24 \pm 1.07	27.33 \pm 0.69	82.15 \pm 1.92	40.80 \pm 0.81	32.14 \pm 0.61	24.88 \pm 0.90	28.08 \pm 0.70
FuDD	40.03 \pm 1.32	48.31 \pm 1.97	37.62 \pm 0.44	39.12 \pm 1.20	48.10 \pm 1.14	37.51 \pm 1.32	30.90 \pm 0.85	83.54 \pm 1.73	42.01 \pm 1.38	36.01 \pm 0.92	4.11 \pm 0.00	1.68 \pm 0.01
ASCI (Ours)	70.39 \pm 0.64	59.92 \pm 0.93	58.28 \pm 0.87	64.29 \pm 0.42	79.93 \pm 0.37	70.62 \pm 0.77	36.40 \pm 0.33	96.29 \pm 0.29	51.39 \pm 0.71	47.76 \pm 0.22	44.77 \pm 0.82	41.53 \pm 0.74

(vMF) prior and aligns them with text features through a feature-language prompt tuning strategy. In our adaptation to the stricter I-ZSL setting, we remove the image encoder fine-tuning stage and retain only the text-driven alignment, making the comparison fair under image-free conditions. While DFZSL* benefits from feature recovery and prompt tuning, its dependence on classifier-derived prototypes still differentiates it from methods that operate without any image-derived parameters.

12. **FuDD** (Esfandiarpoor & Bach, 2024) is a recent approach that introduces functional data decomposition to improve zero-shot transfer. It decomposes semantic features into disentangled components, enabling more flexible matching between seen and unseen classes. FuDD has shown competitive results in standard ZSL settings by capturing richer semantic structures. However, as it was originally designed with access to visual data, we adapt it to I-ZSL by substituting visual embeddings with class-level semantic representations, which constrains its effectiveness in fully image-free scenarios.

Adapt image vision features models to I-ZSL settings. Among these methods, ICIS is the most relevant baseline as it operates in an *image-free ZSL setting*. Standard ZSL methods rely on *image features* for training or adaptation, making them less suitable for image-free environments. Therefore, we replace visual data \mathbf{X} with the classifier weight matrix \mathbf{W} , and we keep other settings the same as the original. Such an adaptation solution is similar to previous work (Christensen et al., 2023).

Implementation details. For all methods, we follow a consistent protocol similar to Christensen et al. (2023). The visual backbone is ResNet101 (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009), used for extracting features and predicting seen class labels where applicable. For text embedding, we evaluate CLIP (Radford et al., 2021), T5 (Raffel et al., 2020), and BERT (Devlin et al., 2019), applying each as specified by the respective baseline. The embedding dimension is set to 2048. Training uses a batch size of 16 and a learning rate of 0.00001. All competing methods are re-implemented or adapted using their official code or published configurations, with human-written or LLM-generated descriptions as required. Our approach additionally incorporates a task-adaptive semantic encoder and pairwise affinity module, trained jointly with the classifier.

We noticed some experimental results reported in our paper, such as Table 2, are different from the numbers reported in the original paper. We conduct fair evaluation in one common environment and using common splits. For each competing method, we integrate its official implementation within our GitHub project <https://anonymous.4open.science/r/ASCI-828D>.

1134 **F ADDITIONAL EXPERIMENTAL RESULTS**

1135
 1136 **Effect of removing class-pair affinity descriptions.** *Settings:* To evaluate the contribution of
 1137 class-pair affinity descriptions, we compare three settings: (1) ASCI using LLM-generated class-
 1138 pair affinity descriptions, (2) a variant in which these descriptions are replaced with target class
 1139 labels, and (3) a variant using only class-wise descriptions (generated with the prompt shown in
 1140 Appendix A.2). For all settings, the rest of the pipeline, including the semantic encoding module,
 1141 remains unchanged.

1142 *Observations:* As summarized in Table 3, removing class-pair affinity descriptions and replacing
 1143 them with class labels results in a substantial drop in zero-shot accuracy and harmonic mean (H-
 1144 score) across datasets. On CUB, zero-shot accuracy decreases from 70.39% (default) to 63.85%
 1145 (labels), a 6.54% reduction, and on SUN, from 58.28% to 51.27%, a 7.01% reduction. The H-score
 1146 on SUN also decreases by 3.36% (from 41.53% to 38.17%). These results demonstrate that class-
 1147 pair affinity descriptions contain rich semantic information crucial for distinguishing fine-grained
 1148 categories and supporting generalization to unseen classes.

1149 Furthermore, using class-wise descriptions leads to slightly better performance than using class
 1150 labels alone, for example, 64.23% vs. 63.85% accuracy on CUB. This indicates that even generic
 1151 class-level semantic content provides some benefit, but lacks the relational detail that class-pair
 1152 affinity descriptions offer. Overall, these ablations confirm that structured and context-specific se-
 1153 mantic information is essential for optimal I-ZSL performance.

1154
 1155 **Effect of removing adaptive semantic encoding.** *Settings:* To assess the role of adaptive seman-
 1156 tic encoding, we evaluate a variant of our model in which the semantic encoding module is removed.
 1157 In this setting, classifier synthesis relies solely on static text embeddings of the class descriptions or
 1158 affinity inputs, with no further adaptation or alignment to the classification space. All other compo-
 1159 nents and hyperparameters remain unchanged.

1160 *Observations:* As shown in Table 3, removing adaptive semantic encoding leads to a consistent and
 1161 notable reduction in performance. Zero-shot accuracy drops by 8.65% on CUB (from 70.39% to
 1162 61.74%) and by 8.47% on SUN (from 58.28% to 49.81%). The H-score on AWA2 decreases by
 1163 9.60% (from 51.39% to 41.79%). These results highlight that static textual embeddings alone are
 1164 insufficient for capturing the nuanced relationships required for robust generalization. The adaptive
 1165 semantic encoding module is essential for aligning the semantic representations with the underlying
 1166 classification space, enabling the model to more effectively utilize the provided affinity information
 1167 and improve generalization to unseen classes.

1168 **Impact of λ .** *Settings:* The hyperparameter λ controls the trade-off between semantic reconstruc-
 1169 tion and classifier alignment in our model’s loss function. We evaluate model performance under
 1170 three settings: the default $\lambda = 1$, a lower value $\lambda = 0.5$ (weaker emphasis on semantic reconstruc-
 1171 tion), and a higher value $\lambda = 2$ (stronger emphasis). All other components and training procedures
 1172 are unchanged.

1173 *Observations:* As shown in Table 3, adjusting λ has a measurable effect on the balance between
 1174 seen and unseen class accuracy. Reducing λ to 0.5 improves unseen class accuracy (e.g., +0.88%
 1175 on CUB and +2.15% on AWA2) and the H-score, but slightly lowers seen class accuracy, likely due
 1176 to reduced overfitting. In contrast, increasing λ to 2 improves seen class accuracy (e.g., +1.06%
 1177 on AWA2) but decreases unseen accuracy (e.g., -5.55% on SUN, -4.85% on AWA2) and the H-
 1178 score, likely due to over-regularization. These results confirm that $\lambda = 1$ offers the best trade-off,
 1179 maintaining strong generalization to unseen classes without sacrificing consistency on seen classes.

1180
 1181 **Impact of different description annotators.** *Settings:* We compare the performance of ASCI
 1182 using class-pair affinity descriptions generated by different annotators: GPT-4, Llama 3, Gemini
 1183 2.0, and human annotators. For the human setting, three undergraduate students with backgrounds
 1184 in computer science or mathematics were asked to write detailed descriptions following the same
 1185 prompt as the LLMs. All other experimental settings remain unchanged.

1186 *Observations:* As shown in Figure 2a, GPT-4 achieves the highest or baseline-normalized perfor-
 1187 mance across all datasets. Llama 3 and Gemini 2.0 perform comparably, with only slight reductions
 1188 relative to GPT-4, particularly on the SUN dataset. Human-generated descriptions yield strong

1188 results, but do not surpass LLMs in most cases. This may be because student annotators, while
 1189 generally accurate, lack the fine-grained domain knowledge or consistency in expressing subtle dif-
 1190 ferences needed for optimal model performance. Overall, high-quality LLMs are capable of gen-
 1191 erating effective semantic descriptions for I-ZSL, often matching or exceeding non-expert human
 1192 annotators, especially on tasks requiring fine-grained distinctions. Example descriptions from each
 1193 annotator type are provided in Appendix B.

1194
 1195 **Effect of using GPT-4 as a standalone classifier.** *Settings:* To evaluate whether large multimodal
 1196 language models can serve as standalone generalized zero-shot classifiers, we tested GPT-4 by di-
 1197 rectly providing each test image along with the full set of candidate class labels. In this setup, no
 1198 affinity descriptions or adaptive semantic encoding are used, and classification relies entirely on
 1199 GPT-4’s built-in multimodal reasoning ability. All other pipeline components are removed.

1200 *Observations:* As shown in Table 3, GPT-4 alone achieves highly inconsistent performance across
 1201 datasets. On CUB, zero-shot accuracy drops to 11.37%, with an H-score of only 14.88%, far below
 1202 our model’s 70.39% accuracy and $H = 70.62\%$. This indicates that GPT-4 struggles with fine-
 1203 grained recognition tasks such as distinguishing bird species. On AWA2, GPT-4 performs better,
 1204 reaching 47.82% zero-shot accuracy and $H = 51.73\%$, comparable to our method’s $H = 51.39\%$
 1205 but without the benefits of an image-free setup. On SUN, GPT-4 obtains 26.94% accuracy and an
 1206 H-score of 26.52%, again far below our model’s 58.28% accuracy and $H = 41.53\%$.

1207 These results confirm that while GPT-4 can separate coarse-grained categories reasonably well, it
 1208 fails to generalize in fine-grained or large-scale settings. In contrast, our ASCI framework con-
 1209 sistently achieves strong performance across all three benchmarks, underscoring the necessity of
 1210 adaptive semantic encoding and class-pair affinity modeling for reliable I-ZSL performance.

1211
 1212 **Impact of different f_{ENC} .** *Settings:* We investigate the impact of different choices of text encoder
 1213 f_{ENC} within the ASCI framework. Specifically, we compare the performance when using various
 1214 pretrained encoders, including CLIP, T5, and BERT, to initialize or process the semantic descrip-
 1215 tions. All other experimental settings and training protocols are kept identical.

1216 *Observations:* We observe that the choice of f_{ENC} affects the overall performance, but all tested
 1217 encoders enable the model to outperform baselines that lack adaptive semantic modeling. In most
 1218 cases, CLIP yields the best or most stable results, likely due to its joint vision-language pretraining,
 1219 which aligns well with the requirements of zero-shot classification tasks. T5 and BERT also provide
 1220 competitive performance, but with slightly higher variance across datasets. These findings indi-
 1221 cate that while the framework is robust to the specific choice of text encoder, selecting an encoder
 1222 pretrained on diverse multimodal or language tasks can offer further benefits for generalization in
 1223 I-ZSL.

1224
 1225 **Can other methods benefit from LLM-generated descriptions?** *Settings:* To assess whether
 1226 LLM-generated descriptions can improve existing I-ZSL baselines, we substitute the human-written
 1227 class-wise descriptions in each baseline with those generated by LLMs (using the prompt as shown
 1228 in Appendix A.2), keeping all other components and training settings unchanged. The results are
 1229 reported in Table 4 and compared to original results with human-written descriptions in Table 2.

1230 *Observations:* Most baselines exhibit little or no improvement when switching from human-written
 1231 to LLM-generated descriptions. In several cases, performance remains unchanged or even slightly
 1232 decreases, indicating that these methods are not equipped to leverage the additional semantic rich-
 1233 ness provided by LLMs. This outcome suggests that simply replacing text descriptions does not
 1234 automatically enhance I-ZSL performance unless the model architecture is capable of adaptively
 1235 modeling and utilizing such information. In contrast, our model is specifically designed to bene-
 1236 fit from LLM-generated affinity descriptions and demonstrates clear gains across all datasets. This
 1237 highlights the importance of adaptive semantic modeling for fully exploiting advanced language
 1238 model outputs in the I-ZSL setting.

1239 G LIMITATIONS AND FUTURE WORK

1240 While our framework demonstrates strong performance in image-free zero-shot learning, several
 1241 limitations should be acknowledged. First, the method relies heavily on the quality and relevance

of descriptions generated by large language models; if the LLM outputs are inaccurate, ambiguous, or lack sufficient detail, model performance may degrade. Second, our experiments are conducted on standard benchmark datasets with well-defined classes; performance and robustness in more complex, real-world settings or with highly imbalanced or noisy class sets remain to be thoroughly evaluated. Additionally, the model may inherit or amplify any biases present in the LLMs or in the textual data used during their pretraining. The current framework does not include explicit mechanisms for detecting or correcting such biases. Furthermore, computational costs for large-scale LLM usage—while moderate in our study—may become significant for very large datasets or more frequent application scenarios. Finally, our adaptive semantic modeling is currently designed for single-modal, text-based auxiliary information. Extending the approach to fully integrate multi-modal or structured domain knowledge remains a direction for future work.

H LLM USAGE STATEMENT

We used LLMs (GPT-4, Llama 3, and Gemini 2.0) exclusively for generating class-pair and class-wise semantic descriptions, as described in Appendix A. These outputs served as input features to our proposed model. In addition, we used LLMs as writing assistants for grammar refinement, but all scientific content, experiment design, and analysis were performed by the authors. The final responsibility for the content of this paper remains entirely with the authors.