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ABSTRACT

Deep neural networks learn increasingly complex functions over the course of
training. Here, we show both empirically and theoretically that learning of the
target function is preceded by an early phase in which networks learn the optimal
constant solution (OCS) – that is, initial model responses mirror the distribution of
target labels, while entirely ignoring information provided in the input. Using a
hierarchical category learning task, we derive exact solutions for learning dynamics
in deep linear networks trained with bias terms. Even when initialized to zero,
this simple architectural feature induces substantial changes in early dynamics.
We identify hallmarks of this early OCS phase and illustrate how these signatures
are observed in deep linear networks and larger, more complex (and nonlinear)
convolutional neural networks solving a hierarchical learning task based on MNIST
and CIFAR10. We explain these observations by proving that deep linear networks
necessarily learn the OCS during early learning. To further probe the generality of
our results, we train human learners over the course of three days on a structurally
equivalent learning task. We then identify qualitative signatures of this early OCS
phase in terms of true negative rates. Surprisingly, we find the same early reliance
on the OCS in the behaviour of human learners. Finally, we show that learning of
the OCS can emerge even in the absence of bias terms and is equivalently driven
by generic correlations in the input data. Overall, our work suggests the OCS as a
common learning principle in supervised, error-corrective learning, and suggests
possible factors for its prevalence.

1 INTRODUCTION

Neural networks trained with stochastic gradient descent (SGD) exhibit various simplicity biases,
where models tend to learn simple functions before more complex ones (Kalimeris et al., 2019;
Rahaman et al., 2019). Simplicity biases hold significant theoretical interest as they provide an
explanation for how deep networks generalize or fail to generalize in practice (Bhattamishra et al.,
2023; Valle-Pérez et al., 2019; Zhang et al., 2021).

The characterisation of simplicity biases is still incomplete. Some explanations appeal to distributional
properties of input data, pointing out that SGD progressively learns increasingly higher-order moments
(Refinetti et al., 2023; Belrose et al., 2024). Other approaches focus directly on the evolution of
the network function, proposing that networks initially learn a classifier highly correlated with a
linear model. Importantly, networks continue to perform well on examples correctly classified by this
simple function, even when overfitting in later training (Kalimeris et al., 2019). This implies that
dynamical simplicity biases help models generalize, by locking in initial knowledge that is not erased
or forgotten during later training (Braun et al., 2022; Kalimeris et al., 2019).

Deep linear networks have proven to be a valuable tool for studying simplicity biases. A key finding
is that directions in the network function are learned in order of importance (Saxe et al., 2014; 2019).
This phenomenon, known as progressive differentiation, connects modern deep learning theory to
both to human child development and to the earliest connectionist models of semantic cognition
(Rogers and McClelland, 2004; Rumelhart et al., 1986).

Our contribution proposes a connection between these works by characterizing networks in the
earliest stages of learning in terms of input, output, and architecture. In the hierarchical setting by
Saxe et al. (2019), we demonstrate both theoretically and empirically that neural networks initially
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Figure 1: Early learning of the optimal constant solution (OCS). A Graphical illustration of our
hypothesis, where learning of the target function is preceded by the early acquisition of the OCS. B
Top: a graphical illustration of the hierarchical structure embedded in the outputs. Bottom: The full
output data matrix Y used across different types of learners and the corresponding OCS solution ŷocs.
C Illustration of experiments in linear networks with bias terms. D Illustration of our experiments
with non-linear models and E Illustration of the task as adapted for humans.

learn via the output statistics of the data. This function has been termed the optimal constant solution
(OCS) by Kang et al. (2024), who demonstrated that networks revert to the OCS when probed on
out-of-distribution inputs. Here, we demonstrate and prove how linear networks, when equipped
with these bias terms, necessarily learn the OCS early in training. Fig. 1A graphically illustrates this
observation. We furthermore highlight the practical relevance of these results by examining early
learning dynamics in complex, non-linear architectures.

Biological learners also display behaviours that imply the input-independent learning of output
statistics. In probability matching, responses mirror the probabilities of rewarded actions (Herrnstein,
1961; Estes, 1964; Estes and Straughan, 1954). Learners often display non-stationary biases that are
driven by the distribution of recent responses (Jones et al., 2015; Gold et al., 2008; Verplanck et al.,
1952). In paired-associates learning accuracy can depend not only on a learned input-output mapping
but also on knowledge of the task structure (Hawker, 1964; Bower, 1962). Humans also display
simplicity biases and preferentially use simple over complex functions (Feldman, 2000; Goodman
et al., 2008; Chater, 1996; Lombrozo, 2007; Feldman, 2003). However, relatively little attention has
been devoted to the dynamics of these biases. We conduct experiments to determine whether humans
replicate early reliance on the OCS.

1.1 CONTRIBUTIONS

• We devise exact solutions for learning dynamics to analyse linear networks with bias in the
input layer. Even when initialized at zero, this component substantially alters early learning
dynamics.

• We empirically characterise early learning in these linear networks as being dominated by
average output statistics. We explain this result with a theoretical analysis which reveals that
average output statistics are always learned first when the network contains bias terms.

• We further highlight the practical relevance of these theoretical results in a hierarchical
learning task for humans as well as complex, non-linear architectures by empirically demon-
strating that all learners develop stereotypical response biases during early stages of training.

• On the basis of the developed theory we show that, in linear networks, early OCS learning
can be induced by input correlations even in absence of bias terms. For natural datasets we
empirically demonstrate that learning of the OCS can indeed be purely driven by generic
correlations in the input data.
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1.2 RELATED WORK

Deep linear networks. In deep linear networks analytical solutions have been obtained for certain
initial conditions and datasets (Saxe et al., 2014; 2019; Braun et al., 2022; Fukumizu, 1998). Progress
has also been made in understanding linear network loss landscapes (Baldi and Hornik, 1989) and
generalisation ability (Lampinen and Ganguli, 2019). Despite their linearity these models display
complex non-linear learning dynamics which reflect behaviours seen in non-linear models (Saxe
et al., 2019). Moreover, learning dynamics in such simple models have been argued to qualitatively
resemble phenomena observed in the cognitive development of humans (Saxe et al., 2019; Rogers
and McClelland, 2004).

Biological response biases. Humans and animals routinely display response biases during perceptual
learning and decision making tasks (Gold et al., 2008; Jones et al., 2015; Liebana Garcia et al., 2023;
Amitay et al., 2014; Urai et al., 2019). In these tasks decisions are frequently made in sequences
where responses and feedback steer decisions beyond the provided perceptual evidence (Jones et al.,
2015; Fan et al., 2024; Gold et al., 2008; Verplanck et al., 1952; Sugrue et al., 2004). Non-stationary
response biases can be driven by feedback on previous trials (Dutilh et al., 2012; Rabbitt and Rodgers,
1977) or might reflect global beliefs about the statistics of a task (Fan et al., 2024; Jones et al., 2015).
Importantly, response biases are particularly pronounced in early learning (Jones et al., 2015; Gold
et al., 2008; Liebana Garcia et al., 2023) and their influence appears to be strongest when uncertainty
about the correct response is highest (Gold et al., 2008; Fan et al., 2024).

Simplicity biases in machine learning. Simplicity biases in neural networks have been studied
extensively both theoretically (Bordelon et al., 2020; Mei et al., 2022) and empirically (Bhattamishra
et al., 2023; Mingard et al., 2023). Work on the distributional simplicity bias emphasises the
importance of input data and proposes that models learn via progressive exploitation of dataset
moments (Refinetti et al., 2023; Belrose et al., 2024). On the other hand, neural networks have been
found to express simpler functions during early training (Kalimeris et al., 2019; Refinetti et al., 2023;
Belrose et al., 2024; Rahaman et al., 2019). Our work draws a connection between these findings and
highlights how input statistics bias early learning towards output statistics.

1.3 PAPER ORGANISATION

We initially review the linear network formalism in Section 2 on which we base our theoretical
analysis. In Section 3 we derive learning dynamics for linear networks with bias terms trained
on a classic hierarchical task and we document substantial changes in early dynamics. Section 4
characterizes this period of early learning empirically, and provides a theoretical explanation. We
then in Section 4 validate the relevance of our findings for learning in complex models. Section 5
demonstrates the prevalence of early OCS learning in humans. Finally, Section 6 further probes
generality by considering natural datasets and models that do not strictly fulfil the previous theoretical
assumptions.

2 LINEAR NETWORK PRELIMINARIES

Here, we briefly review the analytical approach to learning dynamics in linear networks developed
by Saxe et al. (2014; 2019). Consider a learning task in which a network is presented with input
vectors xi ∈ RNin that are associated to output vectors yi ∈ RNout . The total dataset consists of
{xi,yi}Ni=1 with N samples. For our setting we consider two layer linear networks where the forward
pass computes ŷi = W2W1xi and shallow networks with forward pass ŷi = Wsxi. Here weight
matrices are of dimension W1 ∈ RNhid×Nin , W2 ∈ RNout×Nhid , and Ws ∈ RNout×Nin . We train
our networks to minimise a squared error loss of the form L(ŷ) = 1

2

∑N
i=1 ∥yi − ŷi∥2.

We optimise networks using full batch-gradient descent in the gradient flow regime. When learn-
ing from small initial conditions, dynamics in these simple networks are solely dependent on the
dataset input-output and input-input correlation matrices (Saxe et al., 2014). Using singular value
decomposition (SVD), these matrices can be expressed as

Σyx =
1

N
YXT = USVT , Σx =

1

N
XXT = VDVT . (1)
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Figure 2: Exact learning dynamics. A Deep linear networks with bias (left) and without bias term
(right). B Shallow linear networks with bias (left) and without bias term (right). Top row: Exact and
simulated effective singular values A(t) and B(t) for deep and shallow linear networks respectively.
Different aα(t) and bα(t) are color-coded according to their asymptote value with larger values as
darker. Bottom row: Exact and simulated loss.

Here X ∈ RNin×N and Y ∈ RNout×Ncontain the full set of input vectors and output vectors.
Crucially, if the right singular vectors VT of Σyx diagonalise Σx (see Proposition 1) then the full
evolution of network weights for deep and shallow networks through time can be described as

W2(t)W1(t) = UA(t)VT . (2)

Here A(t) is a diagonal matrix. The evolution of these diagonal values A(t)αα = aα(t) at each
time-step t then follows a sigmoidal trajectory as expressed in Eq. (3). For shallow networks we can
similarly describe the evolution of the weight matrix Ws(t) as UB(t)VT . Here the diagonal values
B(t)αα = bα(t) evolve as seen in Eq. (4)

aα(t) =
sα/dα

1− (1− sα
dαa0

)e−
2sα
τ t

(3) bα(t) =
sα
dα

(1− e−
dα
τ t) + b0e

− dα
τ t (4)

In Eq. (3) sα = Sαα and dα = Dαα denote the relevant singular values of Σyx and the eigenvalues
of Σx respectively, a0 are the singular values at initialisation, and τ = 1

Nϵ is the time constant where
ϵ is the learning rate. In Eq. (4) b0 is the initial condition given by the initialisation. Importantly,
these relations reveal that singular values control learning speed. These solutions hinge on the
diagonalisation of Σx through V. Prior work has focused on the case of white inputs, i.e. Σx = IN
where IN denotes the N ×N identity matrix. The solution holds trivially as any V will orthogonalise
Σx (Saxe et al., 2019). We discuss a relevant relaxation of this condition in Proposition 1. While
solutions can be derived for some non-white inputs, little attention has been devoted to learning
dynamics in these scenarios. We will show how these solutions apply when networks contain bias
terms in the input layer.

3 EXACT LEARNING DYNAMICS WITH BIAS TERMS

In this section, we derive exact learning dynamics in linear networks with bias terms and analyse
the resulting changes in the dynamics. This extension to the theory by Saxe et al. (2014) forms the
basis for our later discussion. For simplicity, we focus on input bias terms and uncorrelated data, but
explore bias terms in other layers and correlated inputs in Appendix A.5.2 and Section 6, respectively.
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Closed-form learning dynamics. We consider uncorrelated inputs X = IN where IN denotes
the N × N identity matrix. Our linear network with a bias term in the input layer will compute
W2(W̃1xi + b̃) where b̃ are learnable bias terms.

A priori, it is unclear whether the diagonalisation of of Σx through V in Eq. (1) is possible in
presence of bias terms. Here, we state the condition under which learning dynamics can be described
in closed-form.
Proposition 1 (Feasibility of closed-form learning dynamics). For any input data X ∈ RNin×N and
output data Y ∈ RNout×N it is possible to diagonalize Σx by the right singular vectors V of Σyx if
YTY and XTX commute. The converse holds true only if X has a left inverse.

A proof is given in Appendix A.5.4. We put this statement to use to assess the effect of a bias term on
learning, building on the formalism from Section 2. To this end, we re-express the network weights
as W1 =

[
b̃ W̃1

]
with inputs defined as xi =

[
1 ITi

]T
where Ii denotes the ith column of the

N×N identity matrix (see Appendix A.5.1). To introduce a controlled setting in which to analyze the
effect of bias terms, we now first consider a canonical hierarchical learning task while later sections
of the paper will generalize our findings beyond this setting.

The hierarchical task. The hierarchical task requires learning a mapping from one-hot, input
vectors to output vectors that are depicted in Fig. 1B. Hereby each output vector is “three-hot”, i.e.
the vector has three entries/labels. The hierarchical structure arises from the similarity between output
vectors where some labels ym(xi) are more general and correspond to more than one input xi, while
labels corresponding to the bottom of the hierarchy are specific to a single input vector xi. The task
is motivated in the literature on semantic cognition and leverages the fact that semantic information is
usually hierarchically structured (Rogers and McClelland, 2004). In Fig. 2 we depict exact learning
trajectories for the hierarchically structured outputs from Fig. 1B.

Importantly, the introduction of a bias term X → [1N X]
T does not affect the commutativity of

XTX and YTY for the hierarchical dataset, as the constant mode 1N (i.e., a vector of 1s) is already
an eigenvector to both these similarity matrices (see Appendix A.5.6). In consequence, the analytical
solutions in Section 2 remain applicable. We generalize these considerations in Section 6 and
Appendix A.5.6.

Fig. 2 shows that linear networks with bias terms have a distinctly different early learning phase when
compared to vanilla linear networks. While both models converge to a zero loss solution, we observe
that the final network function with bias terms contains an additional non-zero singular value with
their associated singular vectors. We devote the next section to analyzing this change in the early
dynamics.

4 BIAS TERMS DRIVE EARLY LEARNING TOWARDS THE OPTIMAL CONSTANT
SOLUTION

In this section, we qualitatively characterize what causes observed changes in early learning dynamics.
We find that early learning dynamics are driven by average output statistics and provide a theoretical
explanation. We then demonstrate the generality of this result by highlighting how early learning of
average output statistics can be similarly observed in complex, non-linear architectures.

A naive strategy to learning is to minimise error over a set of samples while disregarding in-
formation conveyed by the input. Previous work has recently termed this network function the
optimal constant solution (OCS) (Kang et al., 2024). The OCS can be formalised as ŷocs =

argminŷ∈RNout
1
N

∑N
i=1 L(ŷ,yi) and represents the optimal function ŷ that is independent of input

xi. For mean-squared error, it is straightforward to show that the minimiser is the average output
ŷocs =

1
N

∑N
i yi =: ȳ.

Setup. We train linear networks and Convolutional neural networks (CNN) on the hierarchical
learning task illustrated in Fig. 1C and D respectively. For CNNs we design a "hierarchical MNIST"
task whereby one-hot inputs are replaced with eight randomly sampled classes from MNIST (Li
Deng, 2012). For the "hierarchical MNIST" task we used the started from ten digit classes provided
by MNIST and then sampled 8 classes randomly. For each image in each class we then replaced
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Figure 3: Early learning is driven to the OCS. Top row: Network predictions for a single output unit
associated with the top level of of the hierarchy in response to all inputs xi We see clearly how CNNs
and linear networks with bias initially change responses while not differentiating between different
inputs before learning the correct input output mapping. Bottom row: True negative rates, f tn

k for the
three hierarchical levels as indicated by colors. For CNNs and linear networks with bias Performance
approaches levels expected under the OCS (dotted lines).

the default one-hot label corresponding to each class i with the corresponding hierarchical, “three-
hot” label yi seen in Fig. 1B. We use standard uniform Xavier initialization (Glorot and Bengio,
2010) and trained CNNs on an squared error loss. A full description of the CNN experiment and
hyperparameter settings is deferred to Appendix A.8. We there also replicate our results with CIFAR-
10 (Krizhevsky, 2009), non-hierarchical tasks, alternative loss functions, and CelebA (Liu et al.,
2015) in Appendix A.9. We also show results for shallow networks in Appendix A.6.

To assess OCS learning we calculate true negative rates f tn
k (y, ŷ) = (1N−ŷk)

T (1N−yk)

(1N−yk)
T (1N−yk)

for our task
where the subscript k selects the vector slice corresponding to level k of the output hierarchy. We
calculate the metric separately for the three hierarchical levels. Effectively, the metric describes how
strongly model predictions ŷ align with the desired outputs y while focusing on zero entries only.
The use of the metric is motivated by our desire to highlight how OCS learning is dependent on the
distribution of labels in Y and effectively measures wrong beliefs about the presence of target labels
across the different levels of the hierarchy. Furthermore, the metric enables later comparisons to
human learners (further details in Appendix A.4).

4.1 EMPIRICAL EVIDENCE

We identify three separate empirical observations that support early learning of the OCS:

Indifference. Linear networks and CNNs initially change outputs while not differentiating between
input examples. In Fig. 3 (top) we show the empirical and analytical activation of an output unit
associated with the highest level of the hierarchy for all xi. Networks with and without bias terms
learn to differentiate inputs correctly. However, networks with bias terms produce input-independent,
non-zero outputs in early training as would be expected under the OCS.

Performance. Networks with bias terms show an initial tendency to over-select labels associated
with the top level of the hierarchy as seen in the true negative rate f tn

k (y, ŷ) in Fig. 3 (bottom).
Furthermore, linear networks and CNNs with bias terms almost exactly approach performance levels
that would be provided by the OCS (dotted lines) for each of the three hierarchical levels. Linear
network without bias terms do not produce this behaviour.

6
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OCS alignment. The distance between outputs ŷi of linear and non-linear networks and yocs

approaches zero in early training. Fig. 5 (top) shows how the L1 distance of sample-averaged network
outputs and the OCS approaches zero before later converging to the desired network function.

4.2 THEORETICAL EXPLANATION

In this section, we extend the linear network formalism to understand the mechanism behind early
learning of the OCS. We first show how bias terms in the input layer are directly related to the OCS.
Afterwards, we prove that the OCS is necessarily learned first in these settings.

The OCS is linked to shared properties. Having established the applicability of the linear network
theory in Section 3 we now seek to understand how the early bias towards the OCS emerges. To this
end, notice how bias terms can be written in terms of the constant eigenmode 1N :
Proposition 2 (The OCS is linked to shared properties). If 1N is an eigenvector to the similarity
matrix XTX ∈ RN×N , then the sample-average x̄ = 1

N

∑N
i=1 xi will be an eigenvector to the

correlation matrix XXT ∈ RNin×Nin with identical eigenvalue λ. An analogous statement applies
for YTY and YYT . The converse does not hold true in general.

We prove this statement in Appendix A.5.5. Importantly, it establishes a connection between the
feature and sample dimensions of X and Y. If 1N is an eigenvector to XTX and YTY already, it
implies that the addition of a bias term will directly add to its eigenvalue, s2ocs → s2ocs + 1, even if it
is initialized at zero. We show in Appendix A.5.6 that these assumptions on X and Y hold strictly for
our hierarchical task design, and more generally relate to symmetry in the data (Appendix A.5.6). We
discuss in Section 6 how this property extends to natural datasets where exact symmetry is absent.

Crucially, it now follows from Proposition 2 that the time-dependent network correlation Σ̂yx(t) =
UA(t)VT in Eq. (2) will contain a strongly amplified OCS mode aocs(t)uocsv

T
ocs = aocs(t)ȳx̄

T by
virtue of the modified singular value

√
s2ocs + 1 entering Eq. (2) and thereby the network function.

Consequently, learning dynamics will be driven by the outer product of average input and output data.
Moreover, this implies that given some input xi to Eq. (2), the network’s OCS mode contributes

ŷocs(xi) = aocs(t)uocsv
T
ocsxi = aocs(t)ȳx̄

Txi ∝ ȳ. (5)

The OCS mode in the time-dependent network function will hence necessarily drive responses
towards average output statistics. Note that Eq. (5) also highlights that the more an input example is
aligned to average inputs, the more the network’s responses will reflect average outputs. In particular,
this makes the expected output Ex[ŷ(x)] ∝ ȳ. Throughout learning, the evolution of aocs(t) and
scale-dependent alignment of xi and x̄ will determine the network’s reliance on the OCS mode.

Early learning is biased by the OCS mode. We established that network responses are driven by
average output statistics x̄ and ȳ, but why are early dynamics in particular influenced by the OCS?
The learning speed of the SVD modes in the time-dependent network function are controlled by the
magnitude of singular values sα as seen in Eq. (3).
Theorem 1 (Early learning is biased by the OCS mode). If 1N is a joint non-degenerate eigenvector
to positive input and output similarity matrices XTX and YTY, the OCS mode socsȳx̄

T will have
leading spectral weight s0 ≡ socs in the SVD of the input-output correlation matrix Σyx.

We prove this statement with help of the Perron-Frobenius theorem (Perron, 1907) in Appendix A.5.7.
Consequently, the optimal constant mode is learned at a faster rate than remaining SVD components
and transiently dominates the early network function. Notably, this applies to our task data YTY
(see Appendix A.5.6) and leads to characteristic learning signatures observed in Fig. 3.
Theorem 1 hinges on the constant eigenvector 1N being present in the data. We later provide
empirical (Fig. 6 and Appendix A.9) and theoretical (Appendix A.5.6) arguments that this assumption
is approximately fulfilled in a variety of cases.

To recapitulate this section: We first rephrased a learnable bias term in the architecture as a shared
feature in the input data. We then found that the associated singular value in Eq. (2) drives the learned
network function towards the OCS (Eq. (5)). Finally, we proved that the bias affects early learning.
In Appendix A.5.3, we summarize these results through the neural tangent kernel. Overall, these
results demonstrate how architectural bias terms induce early OCS learning.
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Figure 4: Early response bias towards the OCS across learners in the hierarchical learning task. True
negative rates, f tn

k for the three hierarchical levels as indicated by colors for biological and artificial
learners (with bias terms). Dotted lines represent performances expected under the OCS. Observe
that all learners show a transient bias towards the OCS. Dashed vertical gray lines indicates breaks
between days for human learners.

5 SIMILARITIES BETWEEN LINEAR NETWORKS, HUMANS, AND COMPLEX
MODELS

In this section, we demonstrate how human learners, linear networks, and non-linear architectures
show strong similarities in their early learning on the hierarchical task displayed in Fig. 1.
Setup. The hierarchical learning task has previously been used extensively in the study of semantic
cognition (Rogers and McClelland, 2004) and requires learners to develop a hierarchical one-to-many
mapping as seen in Fig. 1B. We adapted the task for human learners while maintaining the underlying
structure: Input stimuli were represented as different classes of planets and output labels were
represented as a set of plant images (see Fig. 1E and Fig. 7). We also trained CNNs as in Section 4.
Importantly, the hierarchical structure results in a non-uniform distribution of labels with average
labels equal to yocs. Human learners received supervised training over three days. A full description
of the experimental paradigm is given Appendix A.2. We then compute true negative rate f tn

k (y, ŷ)
as in Section 4 while splitting performance across the hierarchical levels as before.

Neural networks produced continuous outputs in RNout while humans responded via discrete button
clicks in {0, 1}Nout . As we do not have access to "human logits" before response execution we
discretized network responses to enable comparison. We treat network responses in ŷ as logits from
which we then sampled responses in {0, 1}Nout . Full procedure details are given in Appendix A.3.

Results. The key results of our experiments are presented in Fig. 4. Intriguingly, we find that
human learners, linear networks, and CNNs all display characteristic early response biases. Note
that chance true negative rate is equal between all three levels of the hierarchy. Biological as well as
artificial learners display an initial "drop" in true negative rate at the top level of the output hierarchy.
The result indicates a general lack of specificity and an overly liberal response criterion for output
labels on the top level of the hierarchy. To appreciate the significance of this result it is important
to understand that the task can be learned without the development of these early response biases:
In particular, linear networks without bias terms do not show this behaviour (see Appendix A.7).
Surprisingly, the human response signature demonstrates that these learners, just as artifical networks,
display an early bias towards the OCS. We conjecture that early learning of the OCS might be a
general phenomenon that emerges during error-corrective training. We replicate the human result
with a second cohort of learners in Appendix A.2. Notable is also the difference between shallow and
deep linear networks. Response biases seem more transient in shallow networks and appear to more
closely mirror human learners. However, quantitative comparisons are challenging due to inherently
differing learning timescales.

6 GENERIC INPUT CORRELATIONS CAN EQUIVALENTLY DRIVE OCS
LEARNING

We have established how the earliest phase of learning in linear networks is driven by the OCS.
Crucially, in linear networks OCS learning hinges on bias terms in the network architecture. However,

8
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Figure 5: L1 Distance from the OCS in Linear networks and CNNS. A Linear networks with (top)
and without bias terms (bottom) trained on the hierarchical task B CNNs without bias terms trained
on variants of the hierarchical task. Top: Normal inputs. Bottom: "orthogonal" image inputs which
remove all between-class input correlations from the input data. Note, how CNNs do not learn the
OCS in the absence of input correlations and bias terms.

in non-linear architectures, such as CNNs, the network is driven towards the OCS even in the absence
of bias terms (Fig. 5B, Top). The appearance of the data term XTX in Proposition 3 suggests an
equivalent effect that is induced by the data itself.

Corollary 1 (Input correlations induce early OCS). If 1N is an eigenvector of the data similarity
matrix XTX with non-degenerate eigenvalue s0, then the OCS response during early learning will
be driven according to its magnitude.

This statement follows directly from the joint diagonalisation of Eq. (1) and subsequent projection onto
the OCS yocs. We show a solvable case of OCS learning in linear networks under input correlations
and in the absence of bias terms in Appendix A.11. We furthermore hypothesize that neural networks
will be driven towards the OCS if training data contains more generic input correlations where 1N is
not an exact eigenvector.

Setup. We trained CNNs on the hierarchical task in Section 4. Inputs were given by eight randomly
sampled classes of MNIST (Fig. 5B, Top). To isolate the effect of input correlations we created a
second dataset where randomly sampled classes of MNIST were copied on orthogonal subspaces of a
larger image (Fig. 5B, bottom). Importantly, this procedure removes all between-class correlations.

Results. The main result of our experiment is displayed in Fig. 5. CNNs which learn from standard
MNIST images are strongly driven towards the OCS. In contrast, early dynamics for the "orthogonal"
MNIST do not display this tendency. Strikingly, the early dynamics with standard MNIST classes
are highly similar to those observed in linear network with bias terms, while the dynamics for the
latter task resemble those seen in the linear network without this feature. To verify that generic input
correlations are indeed causing these differences we explore the eigenspectrum of the data correlation
matrices. We sample 100 images from all 10 classes and compute a correlation matrix XTX from
flattened images. First, we find that the eigenspectrum for standard MNIST images is dominated
by a single eigenvector (Fig. 6, top-left). In contrast, the eigenspectrum of the orthogonal MNIST
task does not display this property (Fig. 6, top-center). Further, recall that input bias terms lead to a
non-degenerate constant eigenvector 1N in the input correlation matrix (Section 4). Similarly, we
find that the first eigenvector v1 of XTX is indeed highly aligned to 1N (Fig. 6, right), whereas this
is not the case in the orthogonal MNIST. We additionally show similar results for CIFAR-10 and
CelebA. Theoretical considerations suggest that these correlations originate from an approximate
symmetry in the data (see Appendix A.5.6).

Overall, we here demonstrated that early learning of the OCS can be driven by properties of the
architecture (bias terms) or data (input correlations). Our results also highlight that input correlations
are a common feature of standard image datasets: Early learning of the OCS might be a common
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occurrence when learning from such data. To see a practical implication of these results we briefly
discuss fairness implications of OCS learning in Appendix A.10.
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Figure 6: Dataset eigenspectra and constancy of first eigenvector for different image datasets. Left:
Eigenspectra of XTX for different datasets. Right: Alignment of first eigenvector in XTX with the
constant vector 1N .

7 DISCUSSION

In this work, we found that the inclusion of bias terms in linear networks shifts early learning towards
the OCS, even when initialized at zero. We also highlight how OCS learning can equivalently be
driven by input correlations. We demonstrated that early, input-independent simplicity biases occur in
practice, affecting both non-linear networks and human learners. Our contribution complements prior
work on simplicity biases by highlighting factors that drive networks in the earliest stages of learning;
connecting input, output, and architecture. Overall, our findings highlight how simple linear networks
can serve as useful tools to investigate simplicity biases in significantly more complex systems.

Relevance. We see promising applications for early OCS learning in the cognitive and behavioural
sciences. OCS-like response biases have been noted previously (Herrnstein, 1961; Estes, 1964).
However, we believe that a normative theory for these effects is still incomplete. Our theory identifies
possible properties of the biological wetware or natural stimuli that may give rise to such biases.

While we do not study generalisation ourselves, we believe that OCS learning is practically important
to understand how neural networks generalize or fail to generalize. Kang et al. (2024) has highlighted
that networks will revert to OCS in a variety of generalisation settings. We demonstrate that the OCS
component in the network function is acquired early, and is retained throughout training (effective
singular values in Fig. 2 stay constant in late training). We believe that this retention of the OCS
mode enables reversion.

OCS learning is also relevant when learning under class imbalance, a common problem in machine
learning where datasets are frequently naturally imbalanced (Feldman, 2020; Van Horn and Per-
ona, 2017), leading to a failure to learn information about minority classes (Ye et al., 2021). In
Appendix A.10 we show an exactly solvable case of OCS learning in such settings and highlight how
OCS learning can negatively impact performance for minority classes.

Limitations and future work. Our work is restricted to qualitative comparisons between linear
networks and non-linear systems and our work only gives suggestive evidence of factors which drive
early OCS learning in non-linear systems. We chose linear networks to allow for a rigorous description
of the dynamics of learning. Methods from mean-field theory may provide a precise tool to analyze a
wider range of systems directly. Second, the ambiguity between architecture and data in driving
the OCS does not allow us to determine the underlying mechanism in human learners. Future stud-
ies might address this limitation by manipulating correlations in stimuli or by recording of neural data.

Reproduciblity statement. We provide the code to produce our simulation results in the
supplementary material to this submission.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 OVERVIEW

Our appendix has the following sections:

• In Appendix A.2, we describe the human experiment in more detail and show the results of
a replication in a second cohort. We furthermore report statistical tests and describe ethical
considerations.

• In Appendix A.3, we outline how we bring neural network and human responses displayed
in Section 5 into a common space for direct comparison.

• In Appendix A.4, we outline how we compute the true negative rates, f tn used in Section 4
and Section 5.

• In Appendix A.5, we provide additional theoretical derivations and remaining proofs to the
statements in the main text.

• In Appendix A.6, we show OCS signatures in shallow networks with bias terms.
• In the short Appendix A.7, we show how linear networks without bias terms behave on the

task in Section 5.
• In Appendix A.8, we describe hyperparameters, datasets, and further training details used

for our CNN experiments.
• In Appendix A.9, we describe the results of additional experiments investigating early

emergence of the OCS in non-linear models.
• In Appendix A.10 we show an additional solvable case of linear networks with bias terms

under class imbalance.
• In Appendix A.11 we show OCS learning in linear networks with input correlations but in

the absence of bias terms.
• In Appendix A.12 we discuss additional connections of our work to multi-label learning.

A.2 HUMAN LEARNING EXPERIMENT

We directly translated the hierarchical task setup used by Saxe et al. (2019) into an experimental
paradigm. Our design attempts to stay as close to the original task structure used for neural networks
as possible. We designed the task as a mapping from 8 distinct input stimuli represented as planets to
a set of 3 associated output stimuli represented as plants (see Fig. 7, left).

Figure 7: Human task design. Left: Hierarchical learning task, adapted for human participants.
Centre: Trial structure as experienced by human participants. Right: Example screen during response
period (top), Example screen during feedback period (bottom).

In the task, participants had to learn to associate which outputs properties are associated with each
input. Unbeknownst to the participants we imposed a hierarchical structure on output targets (Fig. 7,
left). In the structure some output labels are associated with more than one input. As a control for
analyses we also included an additional control input-output pair (similarly represented by a planet

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

and a plant; not shown here and excluded from current analysis). We recruited a cohort of 10 subjects
that were trained over the course of three days with one daily session. The cohort was recruited as
part of a larger neuroimaging experiment but our analysis presented here is exclusive to behavioural
results. We further replicated our results in a second cohort of 46 human subjects recruited via the
online platform Prolific (prolific.com). Results of the replication of the study can be seen in Fig. 8.

Figure 8: The human replication cohort. While learning is slower, the qualitative pattern indicating
reliance on the OCS is replicated. Left: TNR rate. Right: TPR rate.

Each day of at home training consisted of 8 blocks of training with 22 trials each (160 standard trials
and 16 control trials) which lasted about one hour. The trial structure during training is shown in
Fig. 7, centre. During training trials, subjects were shown the stimulus on screen and were required
to press three buttons, presented below the planet image (Fig. 7, right). The subjects received fully
informative feedback on each trial and were forced to repeat the trial in the case of incorrect selection
until the correct properties were selected. The location of buttons was shuffled on screen for each trial
and for each forced repetition. For each button clicked correctly on their first attempt participants
received a bonus point. We displayed a block-wise bonus in the corner of the screen throughout
the task. Participants were payed slightly above local minimum wage as a baseline and received a
substantial performance dependent bonus (on average about one-third of the baseline pay). We include
a screenshot of the initial instructions in Fig. 9. Beyond this initial instruction screen participants
received more nuanced instructions about clicking of buttons and feedback in the beginning of the
task.

Statistical tests. While our focus is on qualitative patterns in human behaviour, we compute statistical
tests on the true negative rates for human results seen in the main text (Fig. 4). We averaged all
blocks in a given day and performed a two-way repeated measures ANOVA to assess the effect of
day and hierarchy level on true negative rates. The two-way repeated measures ANOVA revealed
significant main effects of day F (2, 18) = 57.22, p < .0001, η2 = .25 and level F (2, 18) =
6.25, p = .033, η2 = .18. Beyond this we also found a significant interaction of day and level
F (4, 36) = 9.795, p = .0056, η2 = .042. A Mauchly test indicated that the assumption of
sphericity had been violated for level χ2 = .03, p < .5 and the interaction term χ2 = .006, p < .5.
Significance values are reported with Greenhouse-Geisser correction. The results confirm that
performance between levels are significantly different depending on day and hierarchical level.

Ethical considerations. Human participants performed a simple, computerised learning task without
the collection of personal identifiable information or substantial deception. Human data collection
was handled strictly in line with institutional guidelines and under institutional review board approval.
We obtained informed consent for each participant before commencing the study. We highlighted that
participants could withdraw at any time without penalty or loss of compensation by simply exiting
full-screen or informing the experimenter. We provided contact emails in the case of concern or
questions. Data was handled in a strictly anonymised format and stored on password secured devices.
Participants were payed above minimum wage for their country of origin.
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Figure 9: Initial instructions received by participants after the collection of informed consent.

A.3 DISCRETIZING NETWORK RESPONSES FOR COMPARISON TO HUMANS

Discretization. In our task, neural networks produced continuous outputs. This is distinct from
human learners who were required to give discrete responses. We now describe the discretization that
allows us to compare human and network responses. Fundamentally, we conceptualise inference as a
noisy process by which responses are sampled from a distribution over output labels. That is, we
treat outputs from our linear network as logits. We first feed network outputs ŷi through a softmax
function with temperature 0.2 and subsequently sample three responses without replacement. The
procedure maps continuous outputs ŷi to binary responses vectors in {0, 1}Nout .

Expected solutions. Here we describe the derivation of expected solutions used in Fig. 4, dashed
lines. The derivation of these "expected responses" under the sampling procedure allows to make the
reliance of network responses on the exact solutions in Section 3 clear.

Consider network outputs ŷi(t) = W2(t)W1(t)xi. We transform these outputs through a softmax
function σβ : RNout → (0, 1)Nout . Let S = {s1, s2, s3} denote the set of three unique response
indices sampled from σβ(ŷi(t)) without replacement, where sn ∈ {1, 2, . . . , Nout} for n = 1, 2, 3,
and all sn are hence distinct. The probability distribution σβ(ŷi(t)) is dependent on time t, therefore
denote the produced probability of S as Pt(S). For each of these sets S we can compute an associated
true negative rate for each of the k ∈ {1, 2, 3} levels in the hierarchy. We denote this random variable
as Xk

S . We can then compute expected solutions to inference behaviour as

Et[X
k
S ] =

∑
S⊆{1,2,...,m}, |S|=3

Pt(S)X
k
S (6)

A.4 TRUE NEGATIVE RATES

Here we describe the metric used in the bottom panel of Fig. 3 and in Fig. 4. The metrics effectively
describes true negative rates (correct-rejection scores). We use the metric on continuous network
responses in RNout in Fig. 3. We also use the metric on discretised networks responses in {0, 1}Nout

and for human responses in {0, 1}Nout in Fig. 4.

Given responses ŷ and target vectors y ∈ RNout the metric computes the alignment between target
and response vectors while only focusing on zero entries in y. Furthermore we compute the metric
separately for the k ∈ {1, 2, 3} separate levels of the hierarchy where the entries sk and ek denote
relevant start and end indices of level k in the vectors ŷ and y. The metric is then computed as

f tn
k (ŷ,y) =

(1Nout − ŷ)Tsk:ek (1Nout − y)sk:ek
(1Nout

− y)sk:ek(1Nout
− y)sk:ek

, (7)

where sk : ek is a "slicing" notation that takes the subvector between indices sk and ek.

If for all desired entries of 0 in y the vector ŷ is equal to 0 the metric will be at 1. Correspondingly if
entries in ŷ are larger than zero the metric f tn

k (ŷ,y) will decrease. Thus, the metric measures wrong
beliefs about the presence of target labels across the different levels of the hierarchy.
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A.5 ADDITIONAL THEORETICAL RESULTS AND PROOFS

A.5.1 EQUIVALENCE OF BIAS TERMS

In this section, we give more detail on the method used in in Section 3 of how to reformulate a bias
term in terms of the network weights and a constant feature in the input.

Consider a network with an explicit input bias term b1,

ŷ = W̃1x̃+ b̃1

This is equivalent to introducing a constant component to the vector x,

x̃ → x :=

[
1
x̃

]
,

and using the network

ŷ = W1x,

as we can write

(
W1x

)
m

=

Nin∑
j=0

W 1
mjxj

= W 1
m01 +

Nin∑
j=1

W 1
mjxj

= W 1
m01 +

Nin−1∑
j=0

W̃ 1
mj x̃j

≡ b1m +

Nin−1∑
j=0

W̃ 1
mj x̃j .

In order to match a given i.i.d. initialization b1m ∼ N
(
0, σ2

b

)
where σb ̸= σw, the component that

needs to be added to x̃ to get equivalence needs to be σb/σw.

A.5.2 LEARNING DYNAMICS FOR BIAS TERMS

We here derive analytical expressions for the learning speeds of input and output bias terms for a
two-layer deep linear network discussed in the main text,

ŷ = W2
(
W1x+ b1

)
+ b2.

We decompose W2 = UA(2)R(2) and W1 = R(1)A(1)V by means of a singular value decom-
position (SVD). We here make the assumption of balancedness W1(0)W1T (0) = W2T (0)W2(0)
(Braun et al., 2022) at the beginning of training, which implies R(2)S(2)2R(2)T = R(1)S(1)2R(1)T .
For clarity, we further assume the simplification

R(2)T = R(1) =: R, A(2) = A(1) =:
√
A.

We here just state these relations without further comment to complement the respective derivation
for the weights in (Saxe et al., 2014). This decomposition then allows to rewrite the gradients.
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Input bias term

τ
d

dt
b1 = ∇b1L

= (y − ŷ)
T
W2

=
(
y −

(
W2

(
W1x+ b1

)
+ b2

))T
W2

Ex →
(
ȳ −W2

(
W1x̄+ b1

)
− b2

)T
W2

=
(
ȳ −UAVx̄−U

√
ARb

1
− b2

)T

U
√
ART

= ȳTU
√
ART − x̄TVTART − b1TRAR− b2TU

√
ART

= (Y1N )
T
U
√
ART − (X1N )

T
VTAR− b1TRART − b2TU

√
ART .

Here, we denoted the expectation over the data samples as Ex. Projecting from the right with
Rα ∈ RNhidden gives

τ
d

dt

(
b1TRα

)
= ȳTUα

√
aα − x̄TVT

αaα − b1TRαaα − b2TUα
√
aα. (8)

Output bias term

τ
d

dt
b2 =

(
y −

(
W2

(
W1x+ b1

)
+ b2

))
Ex → ȳ −W2

(
W1x̄+ b1

)
− b2

= ȳ −UAVx̄−U
√
ARTb

1 − b2

= Y1N −UAVX1N −URTb
1 − b2. (9)

Notably, the derivative in Eq. (8) is proportional to the singular vectors of the weights aα, so that its
growth is attenuated, analogous to the sigmoidal growth in deep linear networks (Saxe et al., 2014).
In contrast, the learning signal d

dtb
2 in Eq. (9) is not affected by the initialization of the weights and

is hence O(1) already at the beginning of learning, reminiscent of shallow networks.

A.5.3 INTEGRATED FORMULATION OF ARCHITECTURAL BIASES.
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Figure 10: Loss curves for dif-
ferent bias variations.

In the main text, we have analysed how bias terms on the input
layer affect the singular value spectrum. Our empirical results in
Section 4.1 suggest a more general dynamical bias towards the OCS
stemming purely from architectural properties. Here, we use the

neural tangent kernel NTK(xi,xi′) =
∑

k
dŷ

i

dθk

dŷT
i′

dθk
(Jacot et al.,

2018) to directly and comprehensively describe the affected time
evolution of the network response d

dt ŷi = NTK(yi − ŷi) at the
cost of a closed-form solution. Because changes in network outputs
are proportional to the NTK it can been viewed as an architecture-
induced learning rate (Roberts et al.). For a review and derivation of
the NTK, see Appendix A.5.8. For completeness, we now consider
a network that contains input b1 and output b2 bias terms.

Proposition 3 (NTK of linear networks with bias terms). Consider
a two-layer linear network with input and output-layer bias Ŷ =
W2(W1X+b1)+b2 in the high-dimensional regime. Furthermore,
assume weights are initialized i.i.d. W ℓ

ij ∼ N (0, σ2
Wℓ/N

ℓ
in) in each layer. Then, the neural tangent

kernel of in early training in expectation EW reads

NTK(X,X) = σ2
W2INout

⊗
(
2XTX+ 1N1T

N︸ ︷︷ ︸
↔b1

)
+ 1Nout

1T
Nout

⊗ 1N1T
N︸ ︷︷ ︸

↔b2

. (10)
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The tensor product ⊗ separates the components that operate on output and sample space. We briefly
review the NTK and derive this expression in the next section. The highlighted terms originate from

the bias term dŷ
i

db

dŷT
i′

db entering the NTK, manifesting in the appearance of the constant mode 1N .
Importantly, these terms do not scale with the size of the learned bias – they are present even if the
bias is initialized at zero. Intuitively, their contribution stems from the architecture’s potential to learn
a bias, enabling rapid changes in output ŷ. The NTK also reveals a qualitative difference between
input and output bias: Whereas the term that is induced by b1 shows attenuated growth due to the
multiplication by the weights of initial scale σW2 ≪ 1, the output bias b2 immediately changes the
output significantly. Loss curves which demonstrate the effect of different bias terms are displayed in
Fig. 10.

PROOFS

A.5.4 FEASIBILITY OF CLOSED-FORM SOLUTION

Proposition 1 (Feasibility of closed-form learning dynamics). For any input data X ∈ RNin×N and
output data Y ∈ RNout×N it is possible to diagonalize Σx by the right singular vectors V of Σyx if
YTY and XTX commute. The converse holds true only if X has a left inverse.

Proof. We would like to know when the right singular vectors V (denote as Vyx here for clarity)
of Σyx = UyxSyxVyx match these of Σx = UxSxVx. First, to reduce the problem to Vyx, note
that ΣyxTΣyx = VyxSyx2Vyx, so that what remains to show is

[
ΣyxTΣyx, Σxx

]
= 0, where

[A, B] := AB−BA denotes the commutator between two matrices A and B. We compute the two
terms as

ΣyxTΣyxΣxx = XYTYXTXXT

ΣxxTΣyxTΣyx = XXTXYTYXT

The commutator vanishes if these terms match, which happens for the simpler equality

YTYXTX = XTXYTY,

or
[
YTY, XTX

]
= 0. The converse follows only if the transformation X . . .XT in the former

equation is invertible, which is the case if a left inverse X−1X = INin
exists.

A.5.5 OCS AND SHARED PROPERTIES CORRESPOND TO EACH OTHER

We here link the OCS and shared properties stand in close relation, as the eigenvector 1N represents
properties that are shared across all data samples.
Proposition 2 (The OCS is linked to shared properties). If 1N is an eigenvector to the similarity
matrix XTX ∈ RN×N , then the sample-average x̄ = 1

N

∑N
i=1 xi will be an eigenvector to the

correlation matrix XXT ∈ RNin×Nin with identical eigenvalue λ. An analogous statement applies
for YTY and YYT . The converse does not hold true in general.

Proof.

XXT x̄ =
(
XXT

) 1

N
X1N =

1

N
X

(
XTX

)
1N =

1

N
Xλ1N = λ

1

N
X1N = λx̄.

A.5.6 CONSTANT DATA MODE 1N IS RELATED TO SYMMETRY IN THE DATA

This section gives proof sketches based on symmetry in the dataset that are sufficient to make 1N an
eigenvector to XTX and YTY, and in particular hold for the dataset that we are considering. We
anticipate that it is possible to formulate these statements in a more universal way by fully leveraging
the cited literature.
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The assumptions on symmetry should intuitively at least hold in an approximate manner for many
datasets, we expect that they indeed are the reason why we observe a prevalence of 1N , although
they are not a necessary condition.

Continuously supported data x ∈ RNin

Proposition 4 (Continuous symmetry induces 1N ). If the pairwise correlations yT
i yi′ in a dataset

are rotationally symmetric, its similarity matrix YTY has eigenvector 1N . Note that this is a weaker
assumption than the data itself being symmetric.

Proof. We assume that Y,X have been sampled from a ground truth data distribution p(y,x). If
p(y) is rotationally symmetric and X is comprised of samples x that are uniformly distributed on
the hypersphere, we can introduce the kernel function yT

xi
yxi′ = k(xi, xi′) = k(Rlxi, Rlxi′) =

k(xT
i xi′) for any Rl that is a representation of the group of rotations G = SO(Nin) that faithfully

acts on the “subsampled” hypersphere X comprised of vectors x ∈ RNin . It therefore only depends
on the pairwise input similarity (hence sometimes called dot-product kernel). If follows that for all
vectors v(X) ∈ RN that are evaluations of the functions of the sample points X

YTYv = k(XTX)v = k((RlX)
T
(RlX))v = RT

k k(X
TX)Rl v ⇔

[
YTY, Rl

]
= 0,

where [A,B] =: AB−BA is the commutator between two matrices.

It follows that we must have for all rotations Rl

Rl

(
YTY1N

)
= YTYRl 1N = YTY λRl

1N = λRl
YTY1N

with eigenvalue λRl
= 1.

meaning that YTY1N is an eigenvector to all Rl. This can only be the case if YTY1N ∝ 1N , as
this is the only vector of values on the sphere that is invariant under any rotations.

We point out that it can be shown more generally with tools from functional analysis that the full
spectrum of this kernel operator k are the spherical harmonics if the data measure p(x) is spherically
symmetric (Hecke, 1917), see (Dutordoir et al., 2020) for a modern presentation with tools from
calculus. As the first harmonic Yl=0,m=0(x) is constant, it follows that also the constant function
1(x) ≡ 1 is an eigenfunction when drawing a finite set of samples from this kernel.

Data on a graph x ∈ RNin We here prove that the former statement holds for the hierarchical
dataset that is discussed in the main text, i.e. that 1N is an eigenvector to YTY.

First, note that it is easy to convince oneself of this by writing down the matrices explicitly: Then,
as the rows are just permutations of one another, 1N is immediately identified as an eigenvector,
because

∑N
i′ Y

T
i Yi′1i′ = YT

i

(∑
i′ Yi′

)
will then not depend on i and hence be proportional to 1N .

To connect with the former symmetry-based argument Appendix A.5.6, we here however give a proof
that is based on the symmetry in the data:

Proposition 5 (Discrete symmetry induces 1N ). Consider a connected Cayley tree graph with
adjacency matrix A and nodes xi. Furthermore, let Rl ∈ G be an element of a faithful representation
of the symmetry group G that acts on the graph nodes v, i.e. that leaves its adjacency matrix invariant,
[Rl,A] = 0 ∀Rl.

If Y are labels associated with the leaf nodes X (the outermost generation of the graph, see (Erzan
and Tuncer, 2020)) and there exists a similarity function k such that yT

xi
yxi′ = yT

Rlxi
yRlxi′ =

k(d(xi,xi′)) ∀Rl where d is the geodesic distance on the graph, 1N will be an eigenvector of YTY.
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Proof. From the symmetry assumption on the labels, we again have for any vector v of node loadings[
Rl, Y

TY
]
v = 0 ∀Rl ∈ G. From this, we find that

Rl

(
YTY1N

)
= YTYRl1N = YTY λRl

1N = λRl
YTY1N ∀Rl

This shows that YTY1N is an eigenvector of Rl with eigenvalue λRl
= 1 for any element of the

symmetry group. The only vector v that is invariant under all symmetry operations of the graph is
the constant vector 1N .

We briefly point out the rich literature on spectral graph theory (for example (Brouwer and Haemers,
2011; Erzan and Tuncer, 2020)) that might allow making statements about the nature of the eigen-
values and other eigenvectors as a function of the graph topology. We expect that this is possible
because the literature in the continuous case discussed in the next paragraph bases their arguments
on the Laplacian on the sphere, an operator that can be extended to graphs as well. We leave these
exploration for future work.
Corollary 2. Because k(XTX) := XTX defines a particular case of input-output similarity map-
ping, 1N is also an eigenvector to XTX under the former assumptions of uniform data distribution.

A.5.7 CONSTANT DATA MODE 1N IS THE LEADING EIGENVECTOR

Here, we prove that the constant eigenvector 1N which is responsible for the OCS solution is
associated with the leading eigenvalue of the input-output correlation matrix and hence drives early
learning.
Theorem 1 (Early learning is biased by the OCS mode). If 1N is a joint non-degenerate eigenvector
to positive input and output similarity matrices XTX and YTY, the OCS mode socsȳx̄

T will have
leading spectral weight s0 ≡ socs in the SVD of the input-output correlation matrix Σyx.

Proof. Let 1N be an eigenvector to both similarity matrices XTX and YTY associated with
eigenvalue λ̃. Moreover, let XTX and YTY have positive entries. Then, the Perron-Frobenius
theorem (Perron, 1907) guarantees that λ̃ is indeed the leading eigenvector to YTY, λ̃ ≡ λ0 = s20.

By Proposition 2, x̄ and ȳ are now also the leading eigenvectors for XXT and YYT . Because the
eigenvectors of YYT and XXT are the left and right singular vectors of Σyx, respectively, with the
eigenvalues being the squares of the singular values, it follows that

s0u0v
T
0 =

√
λ0ȳx̄

T .

A.5.8 NEURAL TANGENT KERNEL

In this section, we review the neural tangent kernel (NTK). This object is useful because it directly
describes the learning dynamics in output space ŷ (Jacot et al., 2018; Roberts et al.) as we briefly
demonstrate here. We then calculate the NTK for our specific architecture to yield ?? in the main
text. The following makes use of Einstein summation convention.

For a vector-valued model ŷ(x) ∈ RNout parametrized by a parameter vector θ, the evaluation on
sample xi from training data at xi′ evolves as

τ
d

dt
ym(xi) =

∑
k

dym(xi)

dθk
dθk

dt
(11)

= −η
∑
k

dym(xi)

dθk
dL
dθk

(12)

= −η

[∑
k

dym(xi)

dθk
dym′(xi′)

dθk

]
dL
dym′

(xi′) (13)

=: −ηNTKmm′(xi, xi′) (ym′(xi′)− ŷm′(xi′)) , (14)
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where we used the chain rule and that the parameters update according to gradient descent with
learning rate η, dθk

dt = −η dL
dθk . The last line has defined the NTK. We set η = 1 in the main text for

simplicity, as it does not change trajectory and thereby convergence in the case of gradient flow. In
addition, we evaluated dL

dym′
(xi′) for the case of MSE loss L(xi′) = 1/2

∑
m′ (ym′(xi′)− ŷm′(xi′))

2.
The last line of Eq. (11) reveals that the NTK acts as an effective learning rate, as noted by Roberts
et al..

We here consider a two-layer linear architecture Ŷ i
m(X) = W 2

mk

(
W 1

kjX
i
j + b1k

)
+ b2m where

we adopt Einstein summation convention over repeated indices. The parameters are θk ∈{
W2,W2,b1,b2

}
. Herein, m indexes output features and i indexes data samples. The non-zero

gradients are

dŶ i
m

dW 2
mk

= W 1
kjX

i
j + b1k

dŶ i
m

db2m
= 1m

dŶ i
m

dW 1
kj

= W 2
mkX

i
j

dŶ i
m

db1k
= W 2

mk1k.

Inserting this into Eq. (11), we get

NTKm1m2
(Xi1

j , X
i2
j ) = Im1m2

(
Xi1

j′W
1
j′kW

1
kj′′X

i2
j′′ + b1kb

1
k

)
+ 1m1

1m2

+W 2
m1kW

2T
km2

Xi1
j X

i2
j

+W 2
m1k1k1kW

2
km2

.

or in matrix notation, collecting similar terms

NTK(X,X) = INout ⊗XTW1TW1X+ b1Tb1

+ 11T ⊗ 11T︸︷︷︸
↔b2

+W2W2T ⊗
(
XTX+ 11T︸︷︷︸

↔b1

)
∈ RNout×Nout ⊗ RN×N ,

where the left hand side operator in the tensor product ⊗ is acting in output space m1m2, whereas
the right hand side operator acts in pattern space i1i2. The notation ↔ b indicates that a term is due
to the bias term. To illustrate this, the NTK acts on the set of labels Y ∈ RNin×N as follows:

(NTK(X,X)Y)
m
i =

Nout∑
m′

N∑
i′

NTK(Xi, Xi′)
mm′

Y m′

i′ . (15)

For simplicity, we approximate W2(0)W2T (0) = σ2
WINout

and W1T (0)W1(0) = σ2
WINin

, which
approximately holds for initialization

W1(0) ∼ N
(
0, σ2

W/Nhid

)
, W2(0) ∼ N

(
0, σ2

W/Nhid

)
, b1 = 0, b2 = 0

where Nhid is the size of the hidden layer and both Nin and Nhid are large. This leaves

NTK(X,X) = σ2
WINout

⊗
(
2XTX+ 11T︸︷︷︸

↔b1

)
+ 11T ⊗ 11T︸︷︷︸

↔b2

.
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A.6 SHALLOW NETWORK OCS LEARNING

In this brief section we show the OCS signatures of shallow networks with bias terms. The result is
displayed in Fig. 11. We see similar behavioural signatures to deep linear networks. However, the
tendency to the OCS is more transient.
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Figure 11: Early learning in shallow networks with bias terms approaches the OCS.

A.7 TRUE NEGATIVE RATES IN LINEAR NETWORKS WITHOUT BIAS TERMS

In this short section we provide a supplemental figure relevant for our results in Section 5: We train
deep and shallow linear networks without bias terms. The learning setting and computation of metrics
are equivalent to results in Fig. 4. We display the result in Fig. 12. While networks learn the task,
early, response biases are fully absent in these models.

Figure 12: True negative rates for linear networks without bias terms. We do not see characteristic
response patterns observed in Fig. 4.

A.8 CNN DATASETS AND HYPERPARAMETERS

Datasets used. We used and adapted different image datasets for our experiments with CNNs. While
the main text focused on results obtained with a variant of MNIST we report further experiments we
conducted to highlight the generality of early OCS learning.

1. Hierarchical MNIST. We used the default ten digit classes provided by MNIST. We
then sampled 8 classes randomly and replaced the default one-hot labels corresponding to
each class i with the hierarchical, “three-hot” labels yi as seen in Fig. 1. E.g., all images
corresponding to MNIST digit “1” might be assigned some random “three-hot” output vector
yi.
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2. Hierarchical CIFAR-10. We applied the same procedure and randomly sampled eight
classes from CIFAR-10 and replaced one-hot labels as for the hierarchical MNIST.

3. Imbalanced-binary-MNIST. While not described in the main text we also report results in
a setting with standard one-hot target vectors. We randomly sample two MNIST classes for
training. To assess the impact of the OCS in early learning we introduced class imbalanced
by oversampling one of the two classes by a factor of two.

4. Standard CelebA. We perform experiments on CelebA’s face attribute detection task. The
task offers a natural testbed for early learning of the OCS as face attribute target labels form
a non-uniform distribution as seen in Fig. 15, bottom. We also normalised images in the
dataset before training.

Model details. We trained a custom CNN with 3 convolutional layers (layer 1: 32 filters of size 5×5;
layer 2: 64 filters of size 3×3; layer 3: 96 filters of size 3×3), followed by 2 fully connected layers of
sizes 512 and 256. Activation functions for all layers were chosen as ReLUs. The final layer of the
model did not contain an activation function when training with squared error loss. In experiments
with the class imbalanced-binary-MNIST and cross-entropy loss the final layer contained a softmax
function as non-linearity. For experiments on CelebA the final layer contained sigmoid activation
functions and we trained with a binary cross-entropy loss over all 40 labels.

Training details. For our results on hierarchical MNIST we train models with minibatch SGD with
a batch size of 16 and with a relatively small step size of 1e-4 to examine the early learning phase.
For all experiments we used Xavier uniform initialisation (Glorot and Bengio, 2010). Whenever
we use bias terms in the model we initialize these as 0 in line with common practice. For our main
experiments we train models using a simple squared error loss function. However, to demonstrate
generality we repeat experiments for the case of class imbalance using a cross-entropy loss and
binary cross-entropy in the case of CelebA. All experiments are repeated 10 times with different
random seeds with the exception of CelebA where we used 5 different random seeds, we provide
standard errors in all figures (shaded regions). For experiments on the hierarchical CIFAR-10, the
class imbalanced MNIST, and CelebA we kept all parameters as above but we increase step size to
1e-3. We trained CNN models on an internal cluster on a single RTX 5000 GPU. Runs took less than
one hour to complete.

A.9 ADDITIONAL EXPERIMENTAL RESULTS

To understand the generality of OCS learning we plot the results of experiments examining early
learning of the OCS in these models. We mostly restrict ourselves to plots as seen in Fig. 5 as we
deem these figures most instructive.

Hierarchical CIFAR-10. We train on a hierarchical version of CIFAR-10. Where we randomly
sample 8 classes from MNIST and replace target labels by hierarchical vectors as in Section 4. We
find the key signatures of early OCS learning: We find early indifference, the reversion of performance
metrics to the OCS, and a small initial distance of average response the to the OCS solution. The
results mirror behaviour on the hierarchical MNIST shown in Fig. 3 and Fig. 5.

Class-imbalance MNIST. We train on an imbalanced MNIST task as described in Appendix A.8.
We plot the results for training with squared error and cross-entropy loss functions in Fig. 14. Both
settings show reversion to the OCS. Note that average model outputs in the case of the cross-entropy
loss start relatively close to outputs expected under the OCS. Despite this proximity the model is still
driven towards the OCS solution. The results on this imbalanced case highlight potential fairness
implications. Given that network have been found to revert to the OCS when generalising (Kang
et al., 2024), early learning in the OCS setting can transiently, but significantly disadvantage minority
classes. We further highlight this point in a second solvable case of linear networks with bias terms
in Appendix A.10.

Standard CelebA. We show distance from the OCS for the CelebA face attribute detection task
in Fig. 15, top. CelebA provides a useful test for our hypothesis as attribute labels display natural
imbalances. We highlight the strong non-uniformity of the majority attribute labels in Fig. 15,
bottom. We again train networks in two variants: one with squared-error loss and one with binary
cross-entropy loss applied over all 40 face attributes. With both loss functions network responses are
driven towards the OCS in early learning. This case further highlights the generality of early OCS
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Figure 13: Early OCS learning CNNs trained on hierarchical CIFAR-10. left: Network outputs for
a single output unit in response to all inputs xi. Centre: Performance metrics f tn (Appendix A.4).
Right: Mean distance of network responses from OCS. Averages taken over every 10 batches for
plotting.

0 1000 2000 3000
Steps, t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

L 1
 d

ist
an

ce
 fr

om
 O

CS

Imbalanced-MNIST (squared-error loss)

0 1000 2000 3000
Steps, t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

L 1
 d

ist
an

ce
 fr

om
 O

CS

Imbalanced-MNIST (cross-entropy loss)

Figure 14: Mean distance of network responses from OCS in CNNs trained on the imbalanced
MNIST task. Averages taken over each batch.

learning. OCS learning might be especially undesirable in this setting for fairness reasons as the
model will be overly liberal in the prediction of the most common face attributes.

A.10 LINEAR NETWORKS UNDER CLASS IMBALANCE

In this section, we describe a second case of a solvable linear network with bias terms. Our dataset
consists of two examples where one example appears twice as frequently. We show the data used
on the right side of Fig. 16. The minority class has two identifying labels, while this construction
appears artificial, it allows for the application of Proposition 1 and solutions to learning dynamics
from Section 2 apply.

The case is of particular practical relevance as it illustrates the impact of early OCS learning under
class imbalance, a common problem in machine learning where datasets are often naturally imbal-
anced (Feldman, 2020; Van Horn and Perona, 2017). In practice, these settings are often addressed
through oversampling of minority classes (Haibo He and Garcia, 2009; Huang et al., 2016). Empirical
work by Ye et al. (2021) documented that neural networks initially fail to learn information about
the minority class while classifying most minority examples as belonging to the majority class.
Subsequent theoretical work by Francazi et al. (2023) demonstrated that the phenomenon is caused
by competition between the optimisation of different classes.

Our work adds to this literature by providing dynamics in a case of gradient-based learning under class
imbalance learning that is exactly solvable. Our exact solutions highlight the potential role of early
OCS learning in the initial failure to learn about minority classes. The OCS solution substantially
biases early predictions towards the majority class as seen in Fig. 16, centre. The results also can be
understood as solvable analogous to early reversion to the OCS seen in the Imbalanced-binary-MNIST
setting in Fig. 14. The results highlight the potential fairness implications of early OCS learning as
the learning phase systematically biases the model against the minority classes.
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Figure 15: Top: Mean distance of network responses from the OCS in CNNs trained on the CelebA
face attribute prediction task. Bottom: Marginal probabilities of CelebA face attributes.

Figure 16: Early learning of the OCS in linear networks under class imbalance.

A.11 OCS-LEARNING IN LINEAR NETWORKS WITH INPUT CORRELATIONS.

In this section, we demonstrate how input correlations can drive OCS learning in the absence of
bias terms in linear networks. Specifically we highlight how OCS learning can emerge if 1N is an
eigenvector of the data similarity matrix XTX. Note that the network contains no input correlations.
In the bottom row of the Fig. 17, we can see that the first SVD mode u1v

T
1 is indeed exactly equivalent

to the OCS mode, i.e. ȳx̄T . The right panel highlights how the network is driven towards the OCS
up until the time-point when the second effective singular value a2(t) (which is quite close in time) is
learned.
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Figure 17: Early learning of the OCS in linear networks with input correlations but in the absence of
bias terms.

A.12 RELATION TO IMBALANCED MULTI-LABEL LEARNING

Given the hierarchical structure of labels used in the majority of our experiments we also see some
general connections of our work to problems in the domain of imbalanced multi-label learning.
Multi-label learning deals with learning problems in which a single input example is associated
with multiple output labels simultaneously. In these settings class imbalance is a key challenge that
frequently hinders good performance of models (Liu et al., 2020; Charte et al., 2015; Pham et al.,
2021; Liu et al., 2022). Similar to standard classification problems model biases are frequently
addressed through adjustments to the models loss function via selective reweighing (Cui et al., 2019)
or through sampling based methods which selectively over- or under-sample particular labels (Charte
et al., 2015) or via both methods (Pham et al., 2021). Our results on the hierarchical learning task
and on the problem of class imbalanced learning in Appendix A.10 might hint at OCS learning as a
potential contributor to problems observed in multi-label learning as the imbalanced distribution of
output labels might drive learning to undesirable solutions.
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