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ABSTRACT

Graph Neural Networks (GNNs) have manifested significant proficiency in vari-
ous graph learning tasks over recent years. Owing to their exemplary performance,
GNNs have garnered increasing attention from both the research community and
industrial practitioners. Consequently, there has been a notable transition away
from the conventional and prevalent shallow graph embedding methods. How-
ever, in tandem with this transition, an imperative question arises: do GNNs al-
ways outperform shallow embedding methods in node representation learning?
Despite the doubts cast by multiple recent studies, the field of graph machine
learning still lacks a systematic understanding, which is essential for meticulously
paving its advancement. To properly answer this question, in this work, we pro-
pose a principled framework that unifies the pipelines of representative shallow
graph embedding methods and GNNs. With rigorous comparative analysis, we
first characterize the primary differences in their design from two different per-
spectives: the prior of node representation learning, and the neighborhood aggre-
gation mechanism. We then analyze the benefits and drawbacks of using GNNs
instead of shallow embedding methods through comprehensive experiments on
ten real-world graph datasets. Furthermore, we also empirically validate that our
analysis can be generalized to GNNs under various learning paradigms. Armed
with these insights, we propose a guide for practitioners in choosing appropriate
graph representation learning models under different scenarios.

1 INTRODUCTION

Graph-structured data is ubiquitous across a plethora of applications, including recommender sys-
tems (Ying et al., 2018b; Fan et al., 2019; Sankar et al., 2021; Tang et al., 2022), predictive user
behavior models (Pal et al., 2020; Zhao et al., 2021; Tang et al., 2020), and chemistry analysis (You
et al., 2018; Li et al., 2018). To gain deeper understanding on graph data and exploit the rich re-
lational information, there has been a surge of interest in learning informative representations for
graphs (Hamilton et al., 2017a; Xu et al., 2019). These methods typically learn representations via
optimizing mappings that encode nodes or subgraphs as data points in a low-dimensional hidden
space (Kipf & Welling, 2017). Their primary goal is to preserve as much task-relevant information
of the graph (e.g., the proximity of nodes over the graph topology) as possible. Once the mapping
is optimized, the learned representations can serve as the input features to perform a wide spectrum
of downstream tasks on graphs, such as node classification (Kipf & Welling, 2017; Hamilton et al.,
2017a) and link prediction (Zhang & Chen, 2018; Zhao et al., 2022).

In general, commonly used graph representation learning methods in practice can be divided into
two categories, i.e., shallow graph embedding methods and deep graph learning methods (Hamilton
et al., 2017b). Shallow graph embedding methods are mostly characterized by using an embedding
lookup table as the mapping from nodes to their representations. For example, DeepWalk (Perozzi
et al., 2014) and node2vec (Grover & Leskovec, 2016) directly consider node representations as
free parameters. These representations are optimized with a skip-gram model (Mikolov et al., 2013)
based on randomly generated walks. On the other hand, deep graph learning methods learn map-
pings from node attribute space to the latent space. For example, GNNs typically take node attributes
and the graph topology as input, and they exploit the topology and attribute information concurrently
via neighborhood aggregation. In practice, GNNs are often found to show superior performance in
node representation learning to power various tasks over attributed graphs (Dwivedi et al., 2023),
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such as node classification (Kipf & Welling, 2017; Xu et al., 2019; Dwivedi et al., 2023), link pre-
diction (Zhang & Chen, 2018; Chamberlain et al., 2023; Zhu et al., 2021b; Ying et al., 2018b), and
graph classification (Xu et al., 2019; Ying et al., 2019; You et al., 2021). Such a huge success has
made GNNs the most popular graph representation learning methods, attracting increasing attention
from researchers and practitioners over recent years (Zhou et al., 2020; Wu et al., 2020).

Nevertheless, close on the heels of the tremendous success of GNNs, several recent studies have
revealed that GNNs may also bear worse performance in downstream tasks compared with shal-
low embedding methods across different scenarios (Wang et al., 2022; Chamberlain et al., 2023;
Kipf & Welling, 2016). For example, DeepWalk can easily outperform Variational Graph Auto-
Ecoders (Kipf & Welling, 2016), which is commonly believed to exhibit better performance, on
multiple real-world graph datasets (Wang et al., 2022). Additionally, multiple other shallow embed-
ding methods (Bordes et al., 2013; Trouillon et al., 2016; Yang et al., 2015; Postavaru et al., 2020)
also exhibited superior performances over GNNs in link prediction tasks (Chamberlain et al., 2023).
Moreover, graph embedding methods have been widely deployed in various high-stake application
scenarios to aid decision making in industry (Dong et al., 2023; Chang et al., 2021). Correspond-
ingly, if practitioners shift from shallow embedding methods to GNNs without careful proof-of-
concept evaluations, they could be wasting time and effort as the updated model might result with
useless or even erroneous results (Altae-Tran et al., 2017; Chen et al., 2018; Li et al., 2017) if GNNs
are not suitable for their data and task. Therefore, given the rising interest in GNNs within the graph
machine learning field, there is an urgent need to have a systematic understanding about when GNNs
fall short in node representation learning (compared with shallow embedding methods). Although
multiple studies have cast doubts on the superiority of GNNs, a systematic study is desired by the
community. To bridge this research gap, we ask:

When do GNNs exhibit drawbacks compared with shallow embedding methods?

To answer this question, we pioneer a comprehensive investigation SEESAW (Shallow Embedding
MEthods veSus GrAph Neural NetWorks) to systematically compare the two branches of node
representation learning methods. Specifically, we first perform a systematic analysis to compare the
pipelines of the two branches with a unified framework. Through such analysis, we attribute the
primary differences between shallow embedding methods and GNNs to two factors: (i) whether the
learning method uses a prior based on node attributes for representation learning; and (ii) whether the
learning method explicitly performs neighborhood aggregation. Then we present a comprehensive
study to compare the performance of methods from the two branches, and explore whether these
differences bring drawbacks to GNNs or not. Despite the significant performance superiority of
GNNs in most use-cases, we highlight two key drawbacks based on their differences from shallow
embedding methods. First, in terms of the learning priors, we found that when only a limited number
of attributes are available (i.e., in attribute-poor scenarios), the representations yielded by GNNs
usually collapse into a lower-dimensional subspace (instead of spanning the entire available hidden
space), a.k.a. dimensional collapse (Zhuo et al., 2023; Jing et al., 2022; He & Ozay, 2022). Second,
in terms of neighborhood aggregation, we found that performing aggregation is prone to jeopardizing
the performance for certain subgroups, e.g., heterophilic nodes, in downstream tasks.

Armed with the above-mentioned observations, we further present a guide for practitioners to select
an appropriate class of representation learning models given their settings. In particular, despite the
overall performance superiority of GNNs, we suggest adopting shallow embedding methods instead
of more commonly used GNNs in (i) attribute-poor scenarios, as shallow embedding methods excel
at avoiding dimensional collapse by avoiding using node attributes; (ii) highly heterophilic net-
works, as shallow embedding methods do not perform neighborhood aggregation that jeopardizes
the performances of heterophilic nodes.

2 PRELIMINARIES

Notations. We denote an attributed graph as G = {V, E}, where V = {v1, ..., vn} is the set of
n nodes; E ⊆ V × V is the set of edges. Let A ∈ {0, 1}n×n and X ∈ Rn×c be the adjacency
matrix and attribute matrix of G, respectively. Here n represents the total number of nodes, while c
is the number of dimensions1 of the node attributes. In self-supervised node representation learning,
an embedding model is denoted as fθ, where θ denotes the learnable parameters. Specifically, fθ

1For simplicity, we refer to the total number of dimensions of a space as its dimensionality.
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takes a node vi as input, and outputs its associated embedding. In the node classification task, a
decoder typically takes the embedding of a node as input, and outputs the predicted label. In the link
prediction task, a decoder typically takes the representations of a pair of nodes as input, and output
the predicted probability of being connected.

Shallow Embedding Methods. Common shallow embedding methods include those based on ma-
trix factorization and those based on random walks. Without loss of generality, in this paper, we
focus on the walk-based ones, since they are observed to yield better performance and thus become
the most popular options amongst shallow embedding methods (Hamilton et al., 2017b). Specif-
ically, the mapping from nodes to representations in walk-based shallow embedding methods is
usually an embedding lookup table. Such mapping is optimized to extract topological information
into node representations. We formulate the mapping as

fθ(vi) = Zvi, (1)
where Z ∈ Rd×n is a matrix of representations, while vi ∈ In is a one-hot vector indicating the
column in Z associated with node vi. Here the learnable parameter set θ = {Z}, which is usually
optimized with a walk-based objective. We denote the embedding of node vi as zvi (i.e., the i-th
column of Z). We present a commonly used walk-based objective (Perozzi et al., 2014) as

Lwalk (zvi) = − log
(
σ
(
z⊤vizvj

))
−Q · Evk∼Pn(v) log

(
σ
(
−z⊤vizvk

))
. (2)

Here zvj denotes the embedding of node vj , which is a node that co-occurs near vi within a fixed-
length random walk; σ(·) denotes the activation function; Q is the number of negative samples; Pn

is a negative sampling distribution. The topology proximity can be preserved in the embedding of
each node via optimizing Lwalk for each node.

Graph Neural Networks (GNNs). There have been a plethora of GNNs designed for different pur-
poses over the years. Here we introduce the general paradigm of GNNs (Wu et al., 2020). Typically,
a GNN model takes the input G and outputs Z as the learned embedding matrix for the nodes in V .
The basic operation of GNN between l-th and (l + 1)-th layer can be summarized as

z(l+1)
vi = σ(COMBINE(z(l)

vi ,AGG({z(l)
vj : vj ∈ N (vi)}))), (3)

where z(l)
vi and z

(l+1)
vi is the embedding of node vi at l-th and (l+1)-th layer, respectively. In the first

layer, z(0)
vi can be initialized as the input node feature xvi

. N (vi) is the set of one-hop neighbors of
vi according to A. AGG(·) represents the aggregating function, e.g., weighted sum. COMBINE(·) is
the combining function for output of AGG(·) and z

(l)
vi , which combines the representation from the

centering node and the representations of its neighbors. Various objective functions can be adopted
to optimize the learnable parameters of GNNs, including supervised objectives (e.g., cross-entropy
loss in classification) and self-supervised ones (e.g., the walk-based objective in Equation (2)).

3 SHALLOW EMBEDDING METHODS VS. GNNS: A UNIFIED VIEW

In this section, we design a systematic analysis named SEESAW to characterize the connections and
differences between shallow graph embedding methods and GNNs. Based on such analysis, we aim
to reveal the benefits and drawbacks of GNNs brought by the identified differences.
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such as node classification (Kipf & Welling, 2017; Xu et al., 2019; Dwivedi et al., 2023), link pre-
diction (Zhang & Chen, 2018; Chamberlain et al., 2023; Zhu et al., 2021b; Ying et al., 2018b), and
graph classification (Xu et al., 2019; Ying et al., 2019; You et al., 2021). Such a huge success has
made GNNs the most graph popular representation learning methods, attracting increasing attention
from researchers and practitioners over recent years (Zhou et al., 2020; Wu et al., 2020).

Nevertheless, close on the heels of the tremendous success of GNNs, several recent studies have
revealed that GNNs may also bear worse performance in downstream tasks compared with shal-
low embedding methods across different scenarios (Wang et al., 2022; Chamberlain et al., 2023;
Kipf & Welling, 2016). For example, DeepWalk can easily outperform Variational Graph Auto-
Ecoders (Kipf & Welling, 2016), which is commonly believed to exhibit better performance, on
multiple real-world graph datasets (Wang et al., 2022). Additionally, multiple other shallow embed-
ding methods (Bordes et al., 2013; Trouillon et al., 2016; Yang et al., 2015; Postavaru et al., 2020)
also exhibited superior performances over GNNs in link prediction tasks (Chamberlain et al., 2023).
Moreover, graph embedding methods have been widely deployed in various high-stake application
scenarios to aid decision making in industry (Dong et al., 2023; Chang et al., 2021). Correspond-
ingly, if practitioners shift from shallow embedding methods to GNNs without careful proof-of-
concept evaluations, they could be wasting time and effort as the updated model might result with
useless or even erroneous results (Altae-Tran et al., 2017; Chen et al., 2018; Li et al., 2017) if GNNs
are not suitable for their data and task. Therefore, given the rising interest in GNNs within the graph
machine learning field, there is an urgent need to have a systematic understanding about when GNNs
fall short in node representation learning (compared with shallow embedding methods). Although
multiple studies have cast doubts on the superiority of GNNs, a systematic study is desired by the
community. To bridge this research gap, we ask:

When do GNNs exhibit drawbacks compared with shallow embedding methods?

To answer this question, we pioneer a comprehensive investigation SEESAW (Shallow Embedding
MEthods veSus GrAph Neural NetWorks) to systematically compare the two branches of node
representation learning methods. Specifically, we first perform a systematic analysis to compare the
pipelines of the two branches with a unified framework. Through such analysis, we attribute the
primary differences between shallow embedding methods and GNNs to two factors: (i) whether the
learning method uses a prior based on node attributes for representation learning; and (ii) whether the
learning method explicitly performs neighborhood aggregation. Then we present a comprehensive
study to compare the performance of methods from the two branches, and explore whether these
differences bring drawbacks to GNNs or not. Despite the significant performance superiority of
GNNs in most use-cases, we highlight two key drawbacks based on their differences from shallow
embedding methods. First, in terms of the learning priors, we found that when only a limited number
of attributes are available (i.e., in attribute-poor scenarios), the representations yielded by GNNs
usually collapse into a lower-dimensional subspace (instead of spanning the entire available hidden
space), a.k.a. dimensional collapse (Zhuo et al., 2023; Jing et al., 2022; He & Ozay, 2022). Second,
in terms of neighborhood aggregation, we found that performing aggregation is prone to jeopardizing
the performance for certain subgroups, e.g., heterophilic nodes, in downstream tasks.

Armed with the above-mentioned observations, we further present a practical guide for practitioners
to select an appropriate class of representation learning models given their setting. In particular, de-
spite the overall superiority of GNNs, we suggest adopting shallow embedding methods instead of
more commonly used GNNs in (i) attribute-poor scenarios, as shallow embedding methods excel at
avoiding dimensional collapse by avoiding using node attributes; (ii) highly heterophilic networks,
as shallow embedding methods do not perform neighborhood aggregation that jeopardizes the per-
formances of heterophilic nodes.

2 PRELIMINARIES

Notations. We denote an attributed graph as G = {V, E}, where V = {v1, ..., vn} is the set of
n nodes; E ✓ V ⇥ V is the set of edges. Let A 2 {0, 1}n⇥n and X 2 Rn⇥c be the adjacency
matrix and attribute matrix of G, respectively. Here n represents the total number of nodes, while c
is the number of dimensions of the node attributes1. In self-supervised node representation learning,
an embedding model is denoted as f✓ , where ✓ denotes the learnable parameters. Specifically, f✓

1For simplicity, we refer to the total number of dimensions of a space as its dimensionality.
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such as node classification (Kipf & Welling, 2017; Xu et al., 2019; Dwivedi et al., 2023), link pre-
diction (Zhang & Chen, 2018; Chamberlain et al., 2023; Zhu et al., 2021b; Ying et al., 2018b), and
graph classification (Xu et al., 2019; Ying et al., 2019; You et al., 2021). Such a huge success has
made GNNs the most graph popular representation learning methods, attracting increasing attention
from researchers and practitioners over recent years (Zhou et al., 2020; Wu et al., 2020).

Nevertheless, close on the heels of the tremendous success of GNNs, several recent studies have
revealed that GNNs may also bear worse performance in downstream tasks compared with shal-
low embedding methods across different scenarios (Wang et al., 2022; Chamberlain et al., 2023;
Kipf & Welling, 2016). For example, DeepWalk can easily outperform Variational Graph Auto-
Ecoders (Kipf & Welling, 2016), which is commonly believed to exhibit better performance, on
multiple real-world graph datasets (Wang et al., 2022). Additionally, multiple other shallow embed-
ding methods (Bordes et al., 2013; Trouillon et al., 2016; Yang et al., 2015; Postavaru et al., 2020)
also exhibited superior performances over GNNs in link prediction tasks (Chamberlain et al., 2023).
Moreover, graph embedding methods have been widely deployed in various high-stake application
scenarios to aid decision making in industry (Dong et al., 2023; Chang et al., 2021). Correspond-
ingly, if practitioners shift from shallow embedding methods to GNNs without careful proof-of-
concept evaluations, they could be wasting time and effort as the updated model might result with
useless or even erroneous results (Altae-Tran et al., 2017; Chen et al., 2018; Li et al., 2017) if GNNs
are not suitable for their data and task. Therefore, given the rising interest in GNNs within the graph
machine learning field, there is an urgent need to have a systematic understanding about when GNNs
fall short in node representation learning (compared with shallow embedding methods). Although
multiple studies have cast doubts on the superiority of GNNs, a systematic study is desired by the
community. To bridge this research gap, we ask:

When do GNNs exhibit drawbacks compared with shallow embedding methods?

To answer this question, we pioneer a comprehensive investigation SEESAW (Shallow Embedding
MEthods veSus GrAph Neural NetWorks) to systematically compare the two branches of node
representation learning methods. Specifically, we first perform a systematic analysis to compare the
pipelines of the two branches with a unified framework. Through such analysis, we attribute the
primary differences between shallow embedding methods and GNNs to two factors: (i) whether the
learning method uses a prior based on node attributes for representation learning; and (ii) whether the
learning method explicitly performs neighborhood aggregation. Then we present a comprehensive
study to compare the performance of methods from the two branches, and explore whether these
differences bring drawbacks to GNNs or not. Despite the significant performance superiority of
GNNs in most use-cases, we highlight two key drawbacks based on their differences from shallow
embedding methods. First, in terms of the learning priors, we found that when only a limited number
of attributes are available (i.e., in attribute-poor scenarios), the representations yielded by GNNs
usually collapse into a lower-dimensional subspace (instead of spanning the entire available hidden
space), a.k.a. dimensional collapse (Zhuo et al., 2023; Jing et al., 2022; He & Ozay, 2022). Second,
in terms of neighborhood aggregation, we found that performing aggregation is prone to jeopardizing
the performance for certain subgroups, e.g., heterophilic nodes, in downstream tasks.

Armed with the above-mentioned observations, we further present a practical guide for practitioners
to select an appropriate class of representation learning models given their setting. In particular, de-
spite the overall superiority of GNNs, we suggest adopting shallow embedding methods instead of
more commonly used GNNs in (i) attribute-poor scenarios, as shallow embedding methods excel at
avoiding dimensional collapse by avoiding using node attributes; (ii) highly heterophilic networks,
as shallow embedding methods do not perform neighborhood aggregation that jeopardizes the per-
formances of heterophilic nodes.

2 PRELIMINARIES

Notations. We denote an attributed graph as G = {V, E}, where V = {v1, ..., vn} is the set of
n nodes; E ✓ V ⇥ V is the set of edges. Let A 2 {0, 1}n⇥n and X 2 Rn⇥c be the adjacency
matrix and attribute matrix of G, respectively. Here n represents the total number of nodes, while c
is the number of dimensions of the node attributes1. In self-supervised node representation learning,
an embedding model is denoted as f✓ , where ✓ denotes the learnable parameters. Specifically, f✓

1For simplicity, we refer to the total number of dimensions of a space as its dimensionality.

2Figure 1: A unified view of pipelines.

To perform rigorous analysis between the two branches
of representation learning methods, it is critical to en-
force a fair comparison. As discussed in Section 2, most
popular shallow embedding methods (e.g., DeepWalk
and node2vec) are optimized in a self-supervised learn-
ing paradigm with an objective based on random walks
On the other hand, GNNs can be optimized either in
an end-to-end or self-supervised learning paradigm with
various types of objectives. Considering the overlapping
in the objectives and the learning paradigms of the two
branches, we utilize the widely studied self-supervised
learning paradigm with a walk-based optimization ob-
jective (Equation (2)) (Hamilton et al., 2017a) to estab-
lish a unified view for the purpose of fair comparison.

We unify the pipelines of the two branches of methods
from the perspective of prior-posterior process, with Figure 1 presenting an overview of it. Specif-
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ically, we consider the distribution of node representations in the hidden space after model initial-
ization as the prior distribution. For shallow graph embedding methods, as their embedding matrix
is randomly initialized, the adopted distribution for node embedding initialization is the prior for
representation learning, e.g., a uniform distribution. For GNNs e.g., GCN (Kipf & Welling, 2017)
and GraphSAGE (Hamilton et al., 2017a), the node attributes transformed by the randomly initial-
ized learnable parameters are regarded as the prior distribution of node representations in the hidden
space. Based on the prior formulations, we characterize the first difference below.

Difference 1 (Difference in Learning Priors). Shallow graph embedding methods take any assigned
distribution as the prior of representations in the hidden space, while GNNs take the transformed
node attributes as the prior of representations.

Both branches of models perform optimization w.r.t. the graph topology based on the prior. As
such, the proximity of nodes over the topology could be preserved in the learned representations.
For shallow graph embedding methods, the prior distribution is directly optimized with a walk-
based objective function. For GNNs, the output node representations can be optimized with the
same objective, but only after the layer-wise neighborhood aggregation is performed. Therefore, we
characterize the second difference from the perspective of neighborhood aggregation.

Difference 2 (Difference in Updating Operations). Shallow graph embedding methods do not ex-
plicitly perform neighborhood aggregation, while GNNs do.

In the following section, we conduct comprehensive experiments to analyze what the two differ-
ences bring to GNNs. Through analysis, we aim to present a systematic understanding of (i) the
overall superiority of GNNs when node attributes are abundant and (ii) the scenarios where shallow
embedding methods exhibit superiority while GNNs fall short. Additionally, we note that GNNs
can also be optimized with other learning paradigms such as contrastive learning (Zhu et al., 2020b;
Ying et al., 2018a) and end-to-end training (Kipf & Welling, 2017). Nonetheless, they generally still
adhere to the pipeline delineated in Figure 1. Consequently, we also incorporate them to facilitate a
comprehensive and generalizable analysis below.

4 EMPIRICAL ANALYSIS: WHAT DO THE DIFFERENCES BRING TO GNNS?

4.1 EXPERIMENTAL SETTINGS

Datasets and Tasks. We conduct experiments with 10 commonly used real-world bench-
mark datasets at different scales, including Cora (Yang et al., 2016), CiteSeer (Yang
et al., 2016), PubMed (Yang et al., 2016), CoraFull (Bojchevski & Günnemann,
2018), DBLPFull (Bojchevski & Günnemann, 2018), Amazon-Computers (Shchur et al.,
2018), Amazon-Photo (Shchur et al., 2018), Coauthor-CS (Shchur et al., 2018),
Coauthor-Physics (Shchur et al., 2018), and Flickr (Zeng et al., 2020). More details includ-
ing dataset statistics are in Appendix B.1. Due to space limit, we only present the most representative
results in this section, and we include more comprehensive evaluations in Appendix C.

Models. We adopt representative models from shallow embedding methods and GNNs for anal-
ysis. Specifically, we utilize DeepWalk (Perozzi et al., 2014) as the representative shallow em-
bedding method, and select GCN with the walk-based loss in Equation (2) (Walk-GCN) as the
default GNN for comparison, unless otherwise indicated. To take a step further, we will also present
comprehensive empirical results of GNNs in different designs and learning paradigms to demon-
strate the generality of our analysis. In terms of GNNs with different designs, there are multi-
ple GNNs designed with contrastive and non-contrastive objectives under the same self-supervised
learning paradigm (Shiao et al., 2023). We adopt four representative ones from both branches to
study. For contrastive self-supervised GNNs, we adopt GRACE (Zhu et al., 2020b) and a GCN
trained with max-margin loss (ML-GCN) (Ying et al., 2018a). For non-contrastive self-supervised
GNNs, we adopt Graph Barlow Twins (GBT) (Bielak et al., 2022) and Bootstrapped Graph Latents
(BGRL) (Thakoor et al., 2022). In terms of different learning paradigms, we also adopt the vanilla
GCN trained in an end-to-end manner (E2E-GCN) for comparison. We report the average results
across three separate runs with the corresponding standard deviation. We present more experimental
details such as dataset split, evaluation protocol, and implementation details in Appendix B.2.
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Table 1: Node classification accuracy comparison between DeepWalk and GCN trained with differ-
ent learning paradigms on 10 real-world graph datasets, with the best performances highlighted in
Bold. All numerical numbers of accuracy are in percentages.

Shallow Walk-GCN GBT BGRL ML-GCN GRACE E2E-GCN
Cora 69.33 ± 0.9 70.07 ± 1.4 75.63 ± 1.4 74.33 ± 1.0 71.87 ± 1.9 80.87 ± 0.4 81.40 ± 0.4
CiteSeer 46.37 ± 0.9 51.77 ± 1.4 56.90 ± 0.8 57.03 ± 2.8 53.07 ± 0.3 69.83 ± 0.7 70.90 ± 0.5
PubMed 60.77 ± 0.3 71.13 ± 2.9 78.63 ± 0.3 77.27 ± 3.5 72.03 ± 1.7 80.50 ± 0.4 79.00 ± 0.4
CoraFull 50.37 ± 1.1 53.77 ± 0.5 57.69 ± 0.7 54.10 ± 0.9 49.32 ± 0.3 50.23 ± 1.1 52.18 ± 8.3
DBLPFull 81.68 ± 0.7 84.54 ± 0.4 85.07 ± 0.0 84.74 ± 0.3 81.66 ± 0.4 83.25 ± 0.3 85.19 ± 0.4
Amz-C. 88.23 ± 0.8 88.74 ± 1.3 89.15 ± 0.3 88.46 ± 0.6 89.12 ± 0.5 86.30 ± 0.2 91.03 ± 0.5
Amz-P. 92.57 ± 0.5 93.64 ± 0.3 93.07 ± 0.4 93.68 ± 0.5 93.36 ± 0.5 92.07 ± 0.2 91.66 ± 0.6
Co-CS 87.69 ± 0.2 90.08 ± 0.3 93.75 ± 0.2 92.92 ± 0.1 92.95 ± 0.2 92.68 ± 0.6 93.23 ± 0.1
Co-Phy. 93.40 ± 0.4 95.83 ± 0.3 95.84 ± 0.2 95.74 ± 0.0 95.19 ± 0.0 OOM 95.86 ± 0.2
Flickr 52.45 ± 0.1 46.26 ± 0.2 51.87 ± 0.1 51.89 ± 0.2 51.16 ± 0.3 OOM 48.19 ± 0.2

4.2 OVERALL PERFORMANCE EVALUATION

We first present an overall performance comparison between shallow embedding methods and GNNs
in Table 1. Without loss of generality, we take node classification as an exemplary downstream task.
We observe that GNNs exhibit significant superiority over shallow embedding methods in most
datasets. We assume that such superiority comes from two perspectives, where each perspective
associates with one difference identified in Section 3. First, in terms of the learning prior, GNNs
are able to exploit the information encoded in the node attributes, which could lead to more task-
relevant information in the learned node representations. As a comparison, shallow embedding
methods typically are not capable of incorporating node attributes. Second, in terms of neighborhood
aggregation, GNNs are able to exploit more abundant localized information by explicitly performing
neighborhood aggregation between a node and its direct neighbors. On the other hand, shallow
embedding methods preserve the topological proximity only through optimizing the walk-based
loss, which may leave relatively more neighbors unexplored. We note that consistent observations
have also been reported in recent studies on other graph learning tasks such as link prediction (Shiao
et al., 2023; Zhu et al., 2020b; Thakoor et al., 2022). We present more discussions in Appendix C.
Interestingly, the only dataset which shallow embedding method exhibits superiority on is Flickr.
We attribute such phenomenon to the limited number of available node attributes and less homophily
in this dataset, which will be further discussed in the following subsections.

Despite the significant superiority of GNNs over shallow embedding methods, we found GNNs
could also exhibit clear drawbacks associated with the two differences. We discuss the drawbacks
of GNNs brought by Difference 1 and Difference 2 in the following two subsections.

4.3 ARE THERE ANY DRAWBACKS OF USING AN ATTRIBUTE-BASED PRIOR?

We note that using an attribute-based prior could enable GNNs to exploit the information from
both attributes and graph topology, which usually brings advantages. However, we found that their
differences may also jeopardize the performance of GNNs in certain scenarios. Here we focus on the
potential drawbacks brought by using a prior based on node attributes in GNNs, i.e., Difference 1.
Our rationale is that if the prior is directly obtained based on node attributes, then the performance
of GNNs could also heavily rely on the quality of attributes. Nevertheless, we note that in practice,
the rich high-dimensional node attributes are not always available. In those attribute-poor scenarios
(i.e., when the attributes are only partially available), GNNs may struggle to learn high quality node
representations, and thus could also end up with limited performance in downstream tasks. On the
contrary, shallow graph embedding methods typically do not bear such a problem since they usually
do not rely on node attributes. In light of this, here we study the drawbacks of GNNs in attribute-poor
scenarios. We present our observations below, with additional results in Appendix C.

Observation 1: GNN Performance Drops Under Limited Input Attributes. We first compare the
performance of GNNs under different attribute dimensionalities by manually controlling the number
of available attribute dimensions. Specifically, we refer to the ratio of available attribute dimensions
for GNN as attribute dimensionality ratio, and we vary such a ratio in {100%, 1%, 0.01%} with
a minimum number of node attribute dimensionality being one. We present the performance com-
parison between different ratios of attribute dimensions on node classification and link prediction
in Figure 2(a) and Figure 2(b), respectively. We observe that, when using 100% node attributes,
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(a) Accuracy in Node Classification.
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(b) Hits@50 in Link Prediction.
Figure 2: A comparison between GNNs with different ratios of available node attribute dimension-
ality in node classification and link prediction. (a): Comparison of node classification accuracy; (b):
Comparison of Hits@50 in link prediction.

GNN yields satisfying performance on all datasets, demonstrating the superiority of GNNs when
abundant attributes are available. However, when the attribute dimensionality becomes limited, i.e.,

(a) Normal. (b) Collapse.

Figure 3: An illustration of (a) normal rep-
resentations in the hidden space vs. (b) rep-
resentations after dimensional collapse.

in cases with 1% and 0.01% node attributes, the per-
formance of GNN drops significantly in both tasks.
Such a phenomenon demonstrates that limited at-
tribute dimensionality typically jeopardizes the per-
formance of GNNs. As a comparison, shallow em-
bedding methods typically do not bear such an issue,
since they usually do not take node attributes as in-
put. In fact, when the attribute dimensionality is lim-
ited, the representations yielded by GNNs collapse
into a lower-dimensional subspace instead of span-
ning the entire hidden space, a.k.a. dimensional col-
lapse (Zhuo et al., 2023; Jing et al., 2022; He & Ozay,
2022). We present an illustration in Figure 3, and we
elaborate on details in the observation below.

Observation 2: Limited Input Attributes Typically Cause Dimensional Collapse. To explore to
what extent dimensional collapse happens, here we characterize the effective dimension as the rank
of the learned embedding matrix. Then, we measure the level of dimensional collapse with the ratio
of the effective dimension number to the total number of hidden dimensions, i.e., r/d, where r is
the rank of the node representation matrix and d is dimension of the hidden space. As such, the
lower the ratio, the more severe the dimension collapse becomes. Figure 4 presents the effective
dimension ratio across different datasets and attribute dimensionalities in node classification task.

Cora
CiteSeer

PubMed
CoraFull

DBLPFull

Amz-Comp.

Amz-Pho.
Co-CS

Co-Phy.
Flickr

0.00
0.25
0.50
0.75
1.00

Ef
fe

ct
iv

e 
D

im
en

si
on

 R
at

io

Shallow Embedding Method
GNN with 100 % Attributes

GNN with 1 % Attributes
GNN with 0.01 % Attributes

Figure 4: Representation effective dimension ratios.

We observe that more available node attribute
dimensions play a critical role in learning
representations that span a higher dimen-
sional space, which prevents GNNs from di-
mensional collapse. As a comparison, shal-
low embedding method consistently yields a
maximal effective dimension ratio, which at-
tributes to the difference in their learning pri-
ors. Specifically, shallow embedding meth-
ods randomly initialize the representations,
and thus it consistently tends to learn full-

rank node representation matrix. As such, in attribute-poor scenarios, it’s difficult for GNNs to
learn representations spanning a higher dimensional space. We present further discussions on the
ranks of the learned representations in Appendix C.4.

Observation 3: Dimensional Collapse Ties to Performance & Attribute Dimensionality. To fur-
ther understand the influence of the dimensionality of the representation subspace, we experiment
with enforcing a bound over the effective dimensionality of the learned representations. In this way,
we are able to manually control the level of dimensional collapse in the learned embedding matrix.
Specifically, we propose to consider the learned embedding matrix from GNNs as Z = CF , where
Z ∈ Rn×d, C ∈ Rn×r, and F ∈ Rr×d (1 ≤ r ≤ d). As such, r naturally serves as an upper bound
of the rank for Z without changing the dimensionality of the hidden space. In practice, we consider
the output matrix of GNN model and a matrix with learnable parameters as C and F , respectively.
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(c) Performances on CiteSeer and PubMed.

Figure 5: (a) and (b): Tendencies of performance and collapse under different rank bounds (enforced
for embedding matrix). (c): Performance comparison of other popular GNNs across different avail-
able attribute dimensionality ratios.

First, we present the tendency of node classification accuracy on Amazon-Computers in Fig-
ure 5(a), where both r and d vary within a wide range between 20 and 29 to cover most commonly
used values. We observe that the performance (indicated by the color) improves as long as the bound
of the rank r improves under any embedding dimension number d. This further demonstrates that
spanning a larger subspace (within the available hidden space) is beneficial for the quality of the
learned representations. Second, we present the tendency of effective dimension w.r.t. the bound
of rank on DBLPFull under different input attribute dimensionalities in Figure 5(b). We observe
that, in attribute-poor scenarios, it is difficult for GNNs to learn representations with large effective
dimensions even if the bound raises to a larger value. We note that such observations are consistent
across datasets and provide additional results and discussion in Appendix C.3 and Appendix C.4.

Finally, Figure 5(c) shows the performances of DeepWalk and GNNs under different learning
paradigms under different node attribute availabilities. We can observe that the performance re-
duction due to dimensional collapse (as discussed above) can also be observed with other GNNs.
By contrast, shallow embedding method learns representations spanning a maximum subspace (i.e.,
effective dimensionality equals to the bound of rank). These observations demonstrate that small
attribute dimensionality indeed prevents a wide spectrum of GNNs from learning representations
that span a larger subspace, while shallow embedding methods typically do not bear such an issue.

4.4 ARE THERE ANY DRAWBACKS OF PERFORMING NEIGHBORHOOD AGGREGATION?

In this subsection, we explore the potential drawbacks brought by performing neighborhood aggre-
gation in GNNs, i.e., Difference 2. We note that explicitly performing neighborhood aggregation
enables GNNs to extract information from its direct neighbors. In this way, GNNs allows each node
to take advantage of abundant localized information around it. However, multiple existing works
have pointed out that the neighborhood aggregation mechanism could jeopardize the performance
of GNNs (Zhu et al., 2021a; Luan et al., 2022). For example, when most labels of a node’s neigh-
bor are different from its own (i.e., heterophilic cases), the learned embedding associated with this
node could be misled by the information aggregated from its neighbors. To exclude the influence
of differences in their priors, we propose to adopt (i) shallow embedding methods w/ neighborhood
aggregation and (ii) GNNs w/o neighborhood aggregation for comparison with normal shallow em-
bedding methods and GNNs, respectively. Specifically, for the former, we add a layer of the mean
aggregator (Hamilton et al., 2017a) in DeepWalk during both training and inferencing. For the latter,
we remove the neighborhood aggregation before the non-linear transformation in each GNN layer.

Observation 4: Heterophilic Nodes Barely Benefit From Aggregation. We empirically validate
whether neighborhood aggregation mechanism could jeopardize the performance of GNNs or not
in the self-supervised learning paradigm. Figure 6(a) and Figure 6(b) present comparisons between
(i) shallow embedding methods w/ and w/o neighborhood aggregation and (ii) GNNs w/ and w/o
neighborhood aggregation, respectively. The homophily score of each node is measured with the
ratio of its neighbors with the same labels (as this node) to the total number of its neighbors (Zhu
et al., 2020a). We can observe that the overall performance (i.e., the performance at homophily score
equals to one) are similar between w/ and w/o aggregation for shallow embedding method, while
the overall performance for GNN w/o aggregation reduces significantly compared with vanilla GNN.
This demonstrates that neighborhood aggregation could be critical to effectively exploit the informa-
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Figure 6: Cumulative node classification accuracy comparison across nodes with different levels of
homophily: (a) shallow embedding methods w/ vs. w/o neighborhood aggregation; (b) GNNs w/ vs.
w/o neighborhood aggregation. Performance is on Amazon-Computers dataset for both figures.
The density function for the homophily score of nodes is marked out with the dashed curve.

tion encoded in node attributes. Furthermore, we observe that neighborhood aggregation reduces the
performance on nodes with low levels of homophily (i.e., high levels of heterophily) for both models.

Figure 7: Performance comparison of other GNNs
across heterophilic and homophilic nodes.

Such observation validates that the phe-
nomenon of heterophily nodes suffering from
neighborhood aggregation. Similar observa-
tions can be found on other datasets, and
more results are presented in Appendix C.5.

Finally, Figure 7 shows the performances of
different GNNs w/ and w/o neighborhood ag-
gregation for top 10% most heterophilic and
homophilic nodes in the Amazon-Photo
dataset. We can observe that the performance
downgrade brought by neighborbood aggre-
gation also widely exists in different GNNs
across different learning paradigms.

5 DISCUSSION: A GUIDE FOR PRACTITIONERS

Based on the discussion above, we conclude that it is necessary to meticulously select the branches
of models to use, instead of adopting GNNs as a panacea. Armed with such insights, in this section,
we provide a guide for practitioners to choose an appropriate type of models to learn high-quality
node representations, such that the performance in various downstream tasks can be improved.

Shallow

Figure 8: Comparison between GNNs,
GNNs with concatenated representa-
tions from shallow embedding method
(denoted as Concat), and shallow em-
bedding methods (denoted as Shallow).

It’s worth noting that neither shallow embedding methods
nor GNNs are flawless: it is difficult for shallow embed-
ding methods to properly exploit information encoded in
node attributes, while GNNs also bear drawbacks as dis-
cussed in Section 4.3 and Section 4.4. To properly handle
their drawbacks, a straightforward way to leverage the ad-
vantages from both is by simply combining the represen-
tations learned from both types of models. The rationale
is two-fold: (i) The number of effective dimensions of the
learned representations (i.e., the rank of the node repre-
sentation matrix) from GNNs could be promoted by rep-
resentations from shallow methods, which helps to tackle
the problem of dimensional collapse even in attribute-
poor scenarios (i.e., when node attributes are only par-
tially available). (ii) Information from both aggregated
and unaggregated node attributes could be preserved at
the same time, which helps to alleviate the performance
reduction on heterophilic nodes.

As an example, we found that simply concatenating the representations from both models helps
achieve satisfying performance across different attribute dimensionality ratios. We present a perfor-
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mance comparison between shallow method, GNN, and the strategy of using the concatenation of
node representations yielded by the two methods on DBLPFull dataset in Figure 8. We observe
that the performance and effective dimension ratio of GNNs reduce significantly when attribute di-
mensionality ratio declines. However, by simply combining the representations yielded by the two
methods, we are able to significantly reduce its sensitivity to attribute dimensionality ratio, achiev-
ing a more stable performance along both axes. We also have similar observations on other datasets.
Nevertheless, such combination would result in significantly higher computational complexity as
well as the need of maintaining two models instead of one, which is often much less preferred in
industrial applications given cost and human resourcing concerns. Hence, it’s of practical signifi-
cance to provide guidance in choosing between the two branches of methods. Below, we formulate
the guidance from two perspectives: (i). data perspective, as discussed in previous sections, and (ii).
model perspective, which has been extensively discussed in literature.

Data - Attribute-Rich vs. Attribute-Poor Networks. As discussed in Section 4.3, GNNs often
achieve superior performance in scenarios with rich attribute compared to shallow embedding meth-
ods. Correspondingly, adopting GNNs for representation learning on attribute-rich networks is an
obvious choice. Nevertheless, in attribute-poor scenarios, e.g., when the attribute dimensionality is
limited, GNNs are prone to exhibit dimensional collapse, while shallow embedding methods do not
bear such a drawback. Therefore, we recommend adopting GNNs and shallow embedding methods
on attribute-rich and attribute-poor networks, respectively.

Data - Homophilic vs. Heterophilic Networks. According to discussion in Section 4.3, shal-
low embedding methods and GNNs exhibit different performance on nodes with different levels of
heterophily. In particular, GNNs exhibit superior and inferior performance on homophilic and het-
erophilic nodes (compared with shallow embedding methods), respectively. A preliminary reason is
that explicitly performing neighborhood aggregation is helpful for homophilic nodes while harmful
to heterophilic nodes. Therefore, GNNs are recommended for representation learning if the network
data is homophilic, otherwise shallow embedding methods could be more suitable.

Model - Transductive vs. Inductive Settings. As the shallow embedding methods rely on training
an embedding vector for each of the node in the graph, they naturally do not support inductive
learning. That is, given any newly appeared nodes, shallow embedding methods cannot produce it’s
representation without retraining or at least fine-tuning the model. On the other hand, as feature-
based models, GNNs are naturally inductive and are able to inference node representations for the
newly appeared nodes (Hamilton et al., 2017a). Hence, for use-cases such that the graphs are rapidly
updating (e.g., social networks, e-commerce networks, etc), GNNs are recommended given their
inductive bias, whereas shallow embedding methods require frequent costly retrains.

Model - Low-parameter vs. High-parameter Settings. Modern machine learning usually requires
loading all learnable parameters into limited GPU memory to achieve higher training speed. The
number of learnable parameters for shallow embedding methods grows linearly with the number
of nodes. On the other hand, the parameters size of GNNs is only proportional to the dimension
of node attributes and not the number of nodes. Therefore, for large graphs with high number of
nodes, GPU training might not be feasible for shallow embedding methods without techniques such
as model parallelism (Li, 2023).

6 CONCLUSION

In this study, we aim to provide a broader perspective on graph learning, challenging the prevailing
emphasis on GNNs. Specifically, we proposed a principled framework that unifies the pipelines
of representative shallow graph embedding methods and GNNs. Based on the framework, we pre-
formed systematic comparison between shallow graph embedding methods and GNNs. In essence,
we characterized their primary differences from two different perspectives, and analyzed the benefits
and drawbacks the two differences bring to GNNs through comprehensive experiments. Notably, the
drawbacks are found generalizable onto different GNNs under different learning paradigms, high-
lighting the practical significance. Armed with these insights, we further discuss a structured guide
for practitioners on selecting appropriate graph representation learning models. With this paper,
our primary endeavor is to recalibrate the academic perspective, accentuating both the benefits and
drawbacks of GNNs compared with conventional shallow embedding methods. We hope our work
enlighten practitioners and researchers to foster the meticulous advancement of this field.
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Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Re-
search, pp. 8613–8634. PMLR, 2022.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. In The Tenth International Conference on Learning Repre-
sentations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug discovery. arXiv
preprint arXiv:1709.03741, 2017.

Shen Li. Single-machine model parallel best practices, 2023. URL https://pytorch.org/
tutorials/intermediate/model_parallel_tutorial.html.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Seiji Maekawa, Koki Noda, Yuya Sasaki, et al. Beyond real-world benchmark datasets: An empirical
study of node classification with gnns. Advances in Neural Information Processing Systems, 35:
5562–5574, 2022.

Ilya Makarov, Dmitrii Kiselev, Nikita Nikitinsky, and Lovro Subelj. Survey on graph embeddings
and their applications to machine learning problems on graphs. PeerJ Computer Science, 7:e357,
2021.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. In Yoshua Bengio and Yann LeCun (eds.), 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings, 2013.

11

https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html
https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html


Under review as a conference paper at ICLR 2024

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1105–1114, 2016.

Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure Leskovec.
Pinnersage: Multi-modal user embedding framework for recommendations at pinterest. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2311–2320, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Stefan Postavaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Yingtao Tian, Silvio
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of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

William Shiao, Zhichun Guo, Tong Zhao, Evangelos E. Papalexakis, Yozen Liu, and Neil Shah. Link
prediction with non-contrastive learning. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023.

Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2gae: Self-
supervised graph autoencoders are generalizable learners with graph masking. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 787–795,
2023.

Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang. Knowing
your fate: Friendship, action and temporal explanations for user engagement prediction on social
apps. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 2269–2279, 2020.

Xianfeng Tang, Yozen Liu, Xinran He, Suhang Wang, and Neil Shah. Friend story ranking with
edge-contextual local graph convolutions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pp. 1007–1015, 2022.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer,
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A RELATED WORK

Shallow Embedding Methods. Common shallow embedding methods simply consider the map-
ping from nodes to representations in the hidden space as lookup tables, and the representations are
directly optimized w.r.t. the objective function (Hamilton et al., 2017b; Perozzi et al., 2014; Grover
& Leskovec, 2016). In general, shallow embedding methods can be divided into two types, i.e.,
those based on matrix factorization (Ahmed et al., 2013; Belkin & Niyogi, 2001; Cao et al., 2015;
Ou et al., 2016) and those based on random walks. Among them, the approaches based on random
walks, e.g., DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016), have shown
superior performance in a plethora of settings.

Graph Neural Networks. Graph Neural Networks (GNNs) have emerged to be powerful frame-
works to tackle learning problems on graphs (Wu et al., 2020; Zhou et al., 2020; Hamilton et al.,
2017a; Kipf & Welling, 2017). GNNs learn low-dimensional representations by extracting infor-
mation from both attributes and graph topology (Velickovic et al., 2018). Such success can be
attributed to its carefully designed neighborhood aggregation, through which a node iteratively ex-
tracts information from its direct neighbors (Velickovic et al., 2018; Wu et al., 2020; Zhou et al.,
2020). Correspondingly, GNNs have been widely used in many real-world applications (Ying et al.,
2018b; Fan et al., 2019; Pal et al., 2020; Zhao et al., 2021; You et al., 2018; Li et al., 2018).

Comparison of Shallow Embedding Methods vs. GNNs. Several existing works have compared
traditional shallow embedding methods and GNNs from different perspectives, including optimiza-
tion objectives (Cai et al., 2018; Zhang et al., 2018; Cui et al., 2018; Amara et al., 2021; Hamilton
et al., 2017b), properties learned (Cai et al., 2018; Goyal & Ferrara, 2018; Zhang et al., 2018), com-
putational complexity (Goyal & Ferrara, 2018; Cui et al., 2018), and applications (Cai et al., 2018;
Amara et al., 2021). Nevertheless, the performance comparison over real-world datasets and practi-
cal settings of data availability and heterogeneity are ignored. A few recent studies have performed
performance comparison between the two branches (Makarov et al., 2021), with the conclusion that
GNNs consistently achieve superior performance. However, we argue they do not sufficiently ex-
plore the drawbacks of GNNs. Different from the works above, we present a systematic study to
compare the two branches based on both theoretical and experimental discussion. This allows us to
(i) elaborate on the drawbacks of GNNs in a finer granularity; and (ii) propose simple yet effective
strategies to tackle the drawbacks.

B EXPERIMENTAL SETTINGS

B.1 DATASETS

We perform the empirical evaluations on 10 real-world network datasets, which span differ-
ent fields such as scientific publications (citation networks and co-authorship networks) and
e-commerce (merchandise networks), including Cora (Yang et al., 2016), CiteSeer (Yang
et al., 2016), PubMed (Yang et al., 2016), CoraFull (Bojchevski & Günnemann,
2018), DBLPFull (Bojchevski & Günnemann, 2018), Amazon-Computers (Shchur et al.,
2018), Amazon-Photo (Shchur et al., 2018), Coauthor-CS (Shchur et al., 2018),
Coauthor-Physics (Shchur et al., 2018), and Flickr (Zeng et al., 2020). We present their
statistics in Table 2. We directly utilize the APIs provided by PyTorch Geometric (Fey & Lenssen,
2019) to load all datasets.

Among these datasets, Cora, CiteSeer, PubMed, CoraFull, and DBLPFull are citation net-
works, where nodes represent documents and edges are citation links. Amazon-Computers and
Amazon-Photo are networks of merchandise, where nodes denote goods and edges represent that
two goods are frequently bought together. Coauthor-CS and Coauthor-Physics are co-
author networks. Here nodes are authors, and two authors are connected if they have co-authored a
paper. Flickr is a social network of images (as nodes), and a pair of images are connected if they
share similar properties such as geographic locations.

B.2 IMPLEMENTATION DETAILS

Dataset Split. We first introduce the dataset split for node classification tasks. For all
datasets with available public splits (i.e., Cora, CiteSeer, and PubMed), we utilize the
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given public splits to train an MLP model based on the learned node representations and mea-
sure the utility such as node classification accuracy. For those datasets without available public
splits (i.e., CoraFull, DBLPFull, Amazon-Computers, Amazon-Photo, Coauthor-CS,
Coauthor-Physics, and Flickr), we utilize a commonly used with 60%/20%/20% split for
the train/validation/test split, following the same settings explored by other literature. (Maekawa
et al., 2022; Chien et al., 2021) We first introduce the dataset split for link prediction tasks. For
all datasets, we explore the random split of 85%/5%/10%, following the same standard as existing
works (Shiao et al., 2023; Zhang & Chen, 2018; Cai et al., 2021). Only training edges are visible
during the training phase.

Evaluation Protocol. We consider the representation learning models as the encoder, and we follow
a standard evaluation protocol to train a decoder to perform downstream tasks on graphs based
on the learned representations. Specifically, we train an MLP model as the decoder in both node
classification and link prediction tasks, which is a commonly adopted approaches in a series of
related works (Kipf & Welling, 2016; Tan et al., 2023). In node classification, we input each node
embedding into an MLP model and predict the associated label. In link prediction, we take the
Hadamard product for representations of each node pair. An MLP takes the resulted vector as input,
and output the associated predicted probability of being connected. All results are presented as an
average value across three different runs together with the associated standard deviation.

Details of GNNs for Comparison. In this paper, we adopt vanilla GCN and vanilla GraphSAGE
as the most representative GNNs for comparison. In addition, we also adopted state-of-the-art con-
trastive and non-contrastive self-supervised learning GNNs. We present a more detailed discussion
below. For contrastive self-supervised GNNs, we adopt GRACE (Zhu et al., 2020b) and a GCN
trained with max-margin loss, i.e., ML-GCN (Ying et al., 2018a). Specifically, GRACE first gener-
ates two correlated graph views by randomly performing corruption. Then, the embedding model
is trained with a contrastive loss to maximize the agreement between node representations in these
two views. On the other hand, ML-GCN is trained with a walk-based max-margin loss, which
forces the agreement between nodes appear in same walks (measured with inner product) to exceed
a certain positive margin. For non-contrastive self-supervised GNNs, we adopt Graph Barlow Twins
(GBT) (Bielak et al., 2022) and Bootstrapped Graph Latents (BGRL) (Thakoor et al., 2022). Specif-
ically, GBT computes the representations cross-correlation matrix of two distorted views of a single
graph. The objective function is formulated to force the cross-correlation matrix to be as close as
possible to the identity matrix. In this way, no negative sample is needed for optimization, which
improves the practical efficiency. On the other hand, BGRL maintains two distinct graph encoders,
and learns the node representations by training an online encoder to predict the embedding of a
target node. This also enables BGRL to avoid using negative samples during learning.

Downstream Tasks and Metrics. In this work, we use the two most commonly studied tasks for
graph data: node classification and link prediction. Following the literature, we use node classifica-
tion accuracy and F1 score for node classification (Dwivedi et al., 2023), and Hits@50 is adopted
for link prediction (Shiao et al., 2023).

Machine Details. We ran our experiments on Google Cloud Platform. For all experimental results
reported in this paper, we run the corresponding experiments on either NVIDIA P100 or V100
GPUs. Specifically, the machine is configured with 12 virtual CPU cores and 64 GB of RAM for
most experiments.

Open-Sourced Code. Our open-sourced code is released here: https://github.com/
anonymoussibmissionpurpose/anonymous.

C ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present additional experimental results and corresponding analysis. Specifically,
we first discuss the overall performance across different GNNs. Then, we present an additional anal-
ysis on the GNN performance on nodes with different levels of degrees between attribute-rich and
attribute-poor scenarios. After that, we present comprehensive results from both shallow embed-
ding methods and GNNs to demonstrate the relationship between dimensional collapse, embedding
dimensionality, and performance. In the last two sections, we first present the relationship between
the bound of the rank and the actual rank of the learned node embedding matrix between shallow
embedding methods and GNNs. We then discuss the performance difference between (1) shallow
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Table 2: Statistics of the 10 real-world datasets we adopted in this paper. We utilize Amz-C.,
Amz-P., Co-CS, and Co-Phy. to represent Amazon-Computers, Amazon-Photo,
Coauthor-CS, and Coauthor-Phy, respectively.

Cora CiteSeer PubMed CoraFull DBLPFull Amz-C. Amz-P. Co-CS Co-Phy. Flickr

#nodes 2,708 3,327 19,717 19,793 17,716 13,752 7,650 18,333 34,493 89,250
#edges 10,556 9,104 88,648 126,842 105,734 491,722 238,162 163,788 495,924 899,756
#features 1,433 3,703 500 8,710 1,639 767 745 6,805 8,415 500
#classes 7 6 3 70 4 10 8 15 5 7

Table 3: F1 score (macro) comparison between shallow embedding method, vanilla GCN, and other
state-of-the-art self-supervised learning GNNs on 10 real-world graph datasets. We highlight the
best performances in Bold. All numerical numbers of accuracy are in percentages.

Shallow Walk-GCN GBT BGRL ML-GCN GRACE E2E-GCN

Cora 69.45 ± 0.9 69.80 ± 0.7 74.85 ± 1.2 74.31 ± 1.5 67.93 ± 1.5 79.91 ± 0.2 80.34 ± 0.7
CiteSeer 44.82 ± 1.0 50.21 ± 1.2 54.65 ± 0.4 54.38 ± 2.7 48.39 ± 1.3 65.51 ± 1.2 67.30 ± 0.8
PubMed 58.92 ± 0.3 70.19 ± 3.0 77.79 ± 0.4 76.81 ± 3.2 71.98 ± 3.3 81.45 ± 0.5 78.49 ± 0.1
CoraFull 29.38 ± 0.5 32.37 ± 0.4 39.54 ± 1.0 37.37 ± 1.0 33.35 ± 1.3 32.15 ± 0.8 40.55 ± 7.5
DBLPFull 76.26 ± 0.9 80.32 ± 0.1 80.44 ± 0.1 81.22 ± 0.3 76.70 ± 0.6 80.89 ± 0.1 81.19 ± 0.3
Amz-C. 86.78 ± 0.9 86.54 ± 1.4 87.21 ± 0.7 85.73 ± 1.3 85.98 ± 1.2 79.92 ± 0.3 89.45 ± 0.4
Amz-P. 91.77 ± 1.0 92.49 ± 0.5 91.30 ± 0.7 92.28 ± 0.9 90.45 ± 0.6 90.31 ± 0.1 88.60 ± 0.8
Co-CS 84.25 ± 0.7 86.94 ± 0.7 91.68 ± 0.4 90.97 ± 0.4 89.13 ± 0.5 91.94 ± 0.2 91.40 ± 0.4
Co-Phy. 91.04 ± 0.5 94.42 ± 0.3 94.41 ± 0.3 94.25 ± 0.0 93.57 ± 0.3 OOM 94.48 ± 0.3
Flickr 23.29 ± 0.0 16.58 ± 0.0 21.00 ± 0.2 21.13 ± 0.4 20.23 ± 0.3 OOM 16.41 ± 0.1

embedding method and that with the enforced neighborhood aggregation; (2) GNNs and that without
the neighborhood aggregation.

C.1 ANALYSIS: PERFORMANCE OF DIFFERENT GNNS

We first present the performance of different state-of-the-art GNNs from a different perspective to
reveal their superiority over shallow embedding methods in terms of overall performance. Without
loss of generality, we take node classification as an example, and we measure the performance
with F1 score (macro). We present the corresponding performance in Table 3. We observe that
GNNs exhibit significant performance superiority over shallow embedding method on almost all
datasets, which remains consistent with the discussion in Section 4.2. It is worth note that the only
dataset where shallow embedding method exhibits superiority over all other GNNs is Flickr,
where we have the smallest available node attribute dimensionality (see Table 2). This implies that
such superiority could be undermined when only limited node attribute dimensionality is available,
which is in align with the discussion in Difference 1.

C.2 ANALYSIS: PERFORMANCE ON NODES WITH DIFFERENT LEVELS OF DEGREES

To gain a deeper understanding of the performance on a finer granularity, we propose to also explore
the influence of limited attributes on nodes with different levels of degrees, which allows us to gain
an understanding of performance w.r.t. available attribute dimensionality at a fine-grained level.

Specifically, we propose to first compute the ranking of all nodes based on their degree. Then we
divide the nodes in the test set into high- and low-degree nodes with a percentile threshold. With-
out loss of generality, here we take the percentile threshold as 50%. We present the experimental
results in Table 4. We observe that low-degree nodes bear more significant accuracy reduction in
seven out of the 10 adopted datasets. A potential reason is that low-degree nodes rely more on the
information contained in the attribute-based prior (than high-degree nodes). Specifically, compared
with high-degree nodes, low-degree nodes tend to receive relatively less information from its neigh-
bors through the neighborhood aggregation mechanism. Therefore, the information encoded in their
attributes could dominate the performance. We have consistent observations in link prediction.
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Table 4: Node classification accuracy of GNNs under different numbers of attribute dimensions. We
highlight the performances with the most significant reduction when transitioning from using 100%
to 1% attributes in Bold. All numerical numbers of accuracy are in percentages.

GNN + 100% Attributes GNN + 1% Attributes
High-Degree Low-Degree High-Degree Low-Degree

Cora 74.7 ± 1.3 61.0 ± 1.7 35.6 ± 0.8 (− 52.3 %) 36.9 ± 0.7 (− 39.6 %)
CiteSeer 53.4 ± 0.9 39.3 ± 1.6 32.1 ± 0.4 (− 39.9 %) 18.1 ± 0.1 (− 54.1 %)
PubMed 73.1 ± 0.9 63.5 ± 2.1 51.9 ± 1.3 (− 29.0 %) 56.3 ± 0.6 (− 11.3 %)
CoraFull 59.3 ± 0.5 49.1 ± 1.1 11.8 ± 0.3 (− 80.1 %) 7.09 ± 0.2 (− 85.6 %)
DBLPFull 87.1 ± 0.3 81.8 ± 0.2 61.7 ± 0.8 (− 29.2 %) 32.5 ± 1.4 (− 60.2 %)
Amz-C. 92.4 ± 0.5 88.0 ± 0.4 63.9 ± 1.3 (− 30.9 %) 42.2 ± 2.3 (− 52.0 %)
Amz-P. 95.6 ± 0.2 91.0 ± 0.9 67.1 ± 1.7 (− 29.9 %) 45.4 ± 0.9 (− 50.1 %)
Co-CS 93.0 ± 0.4 87.9 ± 0.4 72.7 ± 1.5 (− 21.8 %) 57.3 ± 0.5 (− 34.8 %)
Co-Phy. 97.5 ± 0.3 93.8 ± 0.2 96.9 ± 0.1 (− 0.69 %) 92.6 ± 0.3 (− 1.35 %)
Flickr 43.0 ± 0.2 49.6 ± 0.1 37.8 ± 0.1 (− 12.1 %) 48.2 ± 0.0 (− 2.82 %)
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(a) Cora.
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(b) CiteSeer.
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(c) PubMed.
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(d) CoraFull.
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(e) DBLPFull.
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(f) Amz-Computers.
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(g) Amazon-Photo.
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(h) Coauthor-CS.
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(i) Coauthor-Physics.
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(j) Flickr.

Figure 9: The node classification performance (measured with classification accuracy) of shallow
embedding method on 10 different real-world graph datasets. A lower value of Bound of Rank
implies a heavier level of dimensional collapse. We utilize Amz-Computers to refer to the dataset
Amazon-Computers.

C.3 ANALYSIS: DIMENSIONAL COLLAPSE VS. PERFORMANCE

We then present the experimental results of performance w.r.t. the level of dimensional collapse.
We utilize the same strategy introduced in Observation 3 in Section 4.3 to enforce different levels of
dimensional collapse. Specifically, instead of directly obtaining the learned node embedding matrix
from the GNN model, we consider the learned embedding matrix as Z = CF , where Z ∈ Rn×d,
C ∈ Rn×r, and F ∈ Rr×d (1 ≤ r ≤ d). In practice, C is the direct output of the GNN model, while
F is a matrix with learnable parameters. We optimize both the learnable parameters in the GNN
model and all elements in F during the end-to-end learning process. Without loss of generality, we
present two sets of results as representative performances of shallow embedding methods and GNNs:
(1) for shallow embedding methods, we present the results from DeepWalk in node classification
task as an example in Figure 9.; (2) for GNNs, we present the results from GCN in node classification
task as an example in Figure 10. We also have similar observations in link prediction task, other
shallow embedding methods, and GNNs. We have the following observations.

First, we observe that in all cases, improving the value of embedding dimension does not signifi-
cantly change the performance, which implies that the value of embedding dimension does not play
a key role in learning high-quality node representations.
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(a) Cora.
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(b) CiteSeer.
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(c) PubMed.
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(d) CoraFull.
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(e) DBLPFull.
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(f) Amz-Computers.
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(g) Amazon-Photo.
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(h) Coauthor-CS.
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(i) Coauthor-Physics.
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(j) Flickr.

Figure 10: The node classification performance (measured with classification accuracy) of GNN on
10 different real-world graph datasets. Here the available ratio of the node attribute dimensionality
is 100%. A lower value of Bound of Rank implies a heavier level of dimensional collapse. We utilize
Amz-Computers to refer to the dataset Amazon-Computers.

Second, we found that in almost all cases, improving the bound of the rank is able to significantly
improve the performance (i.e., lead to deeper colors in the heatmap). Here, a smaller value of the
bound of the rank generally implies a heavier level of dimensional collapse. This because no mat-
ter what value the embedding dimension takes, the learned representations will be guaranteed to
collapse into a lower dimensional subspace as long as the the bound of the rank is small. The di-
mensionality of the lower dimensional subspace is upper-bounded by the bound of the rank. Such an
observation demonstrates that as long as dimensional collapse happens, the performance then signif-
icantly drops no matter how large the embedding dimensionality is. On the contrary, if dimensional
collapse is relieved, the performance is then also improved under a given embedding dimension. We
note that improving the bound of the rank could also bring performance reduction in very few cases,
e.g., on the PubMed dataset for both shallow embedding methods and GNNs. Such a phenomenon
could be caused by overfitting, which goes beyond the scope of this paper.

To summarize, we conclude that no matter what value embedding dimension takes, dimensional
collapse always leads to significantly performance drop, which implies a worse quality of the node
representations. At the same time, mitigating the dimensional collapse will be beneficial to the
performance in most cases. This remains consistent with our conclusion discussed in Section 4.3.

C.4 ANALYSIS: RANKS OF LEARNED REPRESENTATIONS

We now present an analysis on the rank of the learned node representations between shallow em-
bedding methods and GNNs with different levels of attribute availability. Specifically, we utilize the
strategy introduced in Section 4.3 and Appendix C.3 to control the level of dimensional collapse.
At each value of the bound of the rank, we calculate the actual rank of the learned node embedding
matrix. Note that the actual rank of the learned node embedding matrix cannot exceed the bound of
the rank. Correspondingly, in an ideal case, an representation learning model should yield an em-
bedding matrix with a rank equivalent to the bound of the rank, such that the node representations
will span a hidden subspace as large as possible. In Figure 11, we present the curves of effective
dimension vs. bound of rank for each of the 10 real-world graph datasets. In each subfigure, we
present curves from four different scenarios, namely using shallow embedding method, using GNN
with 100% attributes, using GNN with 1% attributes, and using GNN with 0.01% attributes. Here,
without loss of generality, we adopt DeepWalk and GCN as the representative model for shallow
embedding methods and GNNs, respectively. We have the following observations.

First, the curve of effective dimension of shallow embedding method is a straight line of y = x in all
cases. This reveals the clear advantage of shallow embedding method in defending against dimen-
sional collapse, since it can always learn node embedding matrices spanning the whole available
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Figure 11: A comparison between shallow embedding method and GNNs under different ratios
of available attributes on 10 real-world graph datasets. Here, Effective Dimension represents the
rank of the learned node embedding matrix, which is upper bounded by the Bound of Rank.
The dimensionality of hidden space is 29. We utilize Amz-Computers to refer to the dataset
Amazon-Computers.

hidden subspace. As discussed in Section 4.3, such an advantage can be attributed to avoiding using
a prior based on the node attributes.
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Figure 12: Effective dimension ratio of representa-
tions learned for link prediction task.

Second, we found that it is always difficult for
GNNs to avoid dimensional collapse when
the dimensionality of the input node attributes
is limited. We take Cora dataset (given in Fig-
ure 11(a)) as an example. GNNs with 100%
available node attributes can always achieve
a value of effective dimension (i.e., the rank
of the learned node embedding matrix) equal
to the bound of the rank. Nevertheless, when
only 1% node attributes are available, dimen-
sional collapse begins to happen when the
bound of rank is larger than 26. When only

0.01% node attributes are available, dimensional collapse even begins to happen when the bound of
rank is larger than 22. As a comparison, shallow embedding method can always achieve an effective
dimension that is equals to the bound of the rank. This demonstrates that available node attribute
dimensionality directly influences the level of dimensional collapse. We also present the effective
dimension ratio of the learned node representations in Figure 12, revealing that dimensional collapse
also happens under representations learned for link prediction in GNNs, while shallow embedding
methods do not encounter such a problem. As discussed in Section 4.3, such a drawback should be
attributed to using a prior based on the node attributes. Such a conclusion remains consistent with
the discussion in Section 4.3.

C.5 ANALYSIS: PERFORMANCE W/ AGGREGATION VS. PERFORMANCE W/O AGGREGATION

We finally present a comparison of the performance between representation learning models with
and without neighborhood aggregation. Specifically, we adopt the same strategy as discussed in Sec-
tion 4.4, where shallow embedding method with neighborhood aggregation (with a mean aggregator)
and GNNs without neighborhood aggregation are implemented for comparison. In this way, we are
able to rigorously compare the effect of performing neighborhood aggregation within each branch
of models, and whether using a prior based on node attributes or not will not influence the conclu-
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sion. Without loss of generality, we take DeepWalk and GraphSAGE as the representative example
of shallow embedding methods and GNNs, respectively. For any node, we measure the homophily
score with the ratio of the total number of its direct neighbors with the same label as itself to the
total number of its direct neighbors. We have the following observations.

First, the shallow embedding methods without neighborhood aggregation can achieve better per-
formance on those nodes with small homophily scores in almost all cases. As a comparison, the
cumulative performance of shallow embedding methods with neighborhood aggregation improves
faster than that of shallow embedding methods without neighborhood aggregation. This indicates
a better performance of shallow embedding method with neighborhood aggregation on those nodes
with large homophily scores.

Second, we found that a similar phenomenon also exists in GNNs. Specifically, the GNNs without
neighborhood aggregation can achieve better performance on those nodes with small homophily
scores in almost all cases. As a comparison, GNNs with neighborhood aggregation can always
achieve a similar or even better performance compared with that without neighborhood aggregation.
This indicates a better performance of GNNs with neighborhood aggregation on those nodes with
large homophily scores.

To summarize, we conclude that for both types of models, performing neighborhood aggregation
typically helps the performance on those nodes with larger homophily scores, while this could also
do harm to the performance on those nodes with smaller homophily scores. This remains consistent
with our conclusion discussed in Section 4.4.

C.6 ANALYSIS: COMBINING SHALLOW EMBEDDING METHODS AND GNNS

We now present the analysis on the performance of combining shallow embedding methods and
GNNs by directly concatenating their node representations. The rationale here is two-fold: (i) The
number of effective dimensions of the learned representations (i.e., the rank of the node embedding
matrix) from GNNs could be promoted by representations from shallow methods, which helps to
tackle the problem of dimensional collapse in attribute-poor scenarios (mentioned in Section 4.3).
(ii) Information from both aggregated and unaggregated node attributes could be preserved at the
same time, which helps to alleviate the performance reduction on heterophilic nodes (mentioned
in Section 4.4). This remains consistent with the disucssion in Section 5. Without loss of generality,
we take DeepWalk and GCN as the shallow embedding model and the GNN model, respectively.
We take the performance of node classification accuracy on the DBLPFull dataset as an example,
and present the results across different levels of available attribute dimensionalities in Figure 8. We
present the observations below.

First, the performance of GNNs with 100% available node attributes is superior to that of shallow
embedding method, which reveals that useful information could be encoded in the node attributes,
which contribute to the performance of GNNs.

Second, when the available attribute dimensionality is decreased, the performance of GNNs reduces
significantly together with the performance (measured with node classification accuracy). This gen-
erally reflects that less available node attributes will typically lead to dimensional collapse, which
remains consistent with the discussion in Section 4.3.

Third, when we use the concatenation of the node representations from the two methods, we ob-
serve that the performance does not significantly reduce when the available node attributes become
limited. This validate the superiority of combining the representations from the two methods across
scenarios with different available node attribute dimensionalities.

To summarize, we observe that although GNNs with 100% node attributes can achieve the best per-
formance, its performance reduces significantly once the available node attributes are limited. How-
ever, by simply concatenating their representations, we can obtain much more stable performance
across scenarios with different available node attribute dimensionalities. However, this approach
will lead to a higher computational complexity, since both models need to be optimized. Hence such
method can hardly be recommended in industrial settings due to the high computational cost.
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Table 5: Performance comparison between shallow embedding method and GNNs on the Squirrel
dataset under different levels of attribute availibility ratio.

100%Att, Acc 100%Att, EDR 1%Att, Acc 1%Att, EDR 0.01%Att, Acc 0.01%Att, EDR

GNN 38.8% 74.2% 26.3% 21.9% 19.0% 1.56%

Shallow 31.5% 99.6% 31.5% 99.6% 31.5% 99.6%

Table 6: Node classification accuracy comparison between GNN (w/ Aggregation) and GNN w/o
Aggregation on the Squirrel dataset under different levels of node heterophily score.

1e-3 5e-3 1e-2 5e-2 1e-1 5e-1 1e0

GNN (w/ Aggregation) 26.88% 26.88% 26.88% 26.73% 25.44% 36.64% 38.75%
GNN w/o Aggregation 30.10% 30.10% 30.10% 30.69% 26.48% 32.20% 33.17%

C.7 SELECTION OF SHALLOW METHOD

We select DeepWalk as a representative shallow graph embedding method to compare with in this
paper. The reason why DeepWalk is adopted is that DeepWalk is a representative example of walk-
based shallow methods in its design. Specifically, DeepWalk is among the most commonly used
shallow graph embedding methods, and a large amount of following works under the umbrella of
shallow methods are developed based on DeepWalk. Therefore, DeepWalk is among the best options
we can choose to obtain generalizable analysis, and adopting more follow-up methods that share
similar design with DeepWalk does not change the observation and conclusion.

C.8 EXPERIMENTAL RESULTS WITH HETEROPHILIC GRAPHS

We would like to note that our analysis does not depend on whether the adopted datasets are ho-
mophilic or not. Here we present the comparison between GNNs and shallow methods on the
heterophilic dataset. Specifically, we select the Squirrel dataset and present the corresponding per-
formances below as a representative example, since the Squirrel dataset has a comparable scale
(5,201 nodes) with the datasets adopted in our paper and is also highly heterophilic (homophilic
ratio 0.22). First, we perform experiments to evaluate dimensional collapse. Here utility is mea-
sured by node classification accuracy, while the effective dimension ratio (EDR) is measured by the
ratio of the value of rank (of representation matrix) to the representation dimensionality. We present
the experimental results in Table 5. We observe a similar tendency as presented in our paper: the
GNN model bears severe dimensional collapse when available attributes become limited, while the
shallow method is not influenced since it does not take any node attribute as its input.

Second, we also perform experiments to study how the performance changes from highly het-
erophilic nodes to highly homophilic nodes. We first present the study between GNN (w/ neigh-
borhood aggregation) and GNN w/o neighborhood aggregation. We present their cumulative per-
formances in node classification accuracy under different values of the homophilic score below (the
same setting as in Figure 6 in our paper). We present the experimental results in Table 6. We ob-

Table 7: Node classification accuracy comparison between shallow method (w/o Aggregation) and
shallow method w/ Aggregation on Squirrel dataset under different levels of node heterophily score.

1e-3 5e-3 1e-2 5e-2 1e-1 5e-1 1e0

Shallow w/ Aggregation 21.86% 21.86% 21.86% 23.23% 26.35% 30.36% 31.54%
Shallow (w/o Aggregation) 25.14% 25.14% 25.14% 26.26% 26.71% 29.95% 31.44%
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Table 8: Node classification accuracy comparison between GNN and GNN under two types of
attribute augmentation approaches (including concatenating a random matrix denoted as R and con-
catenating a matrix of structural features denoted as S onto the original node attribute matrix) on
Cora dataset. Here we adopt the walk-based GCN (denoted as W-GCN) as the backbone GNN.

100%Att, Acc 100%Att, EDR 1%Att, Acc 1%Att, EDR 0.01%Att, Acc 0.01%Att, EDR

W-GCN 67.8% 96.9% 36.9% 35.5% 32.3% 1.56%

W-GCN (R) 68.0% 97.3% 29.9% 67.2% 10.6% 5.08%

W-GCN (S) 69.0% 97.3% 37.3% 35.2% 32.3% 2.34%

serve a similar tendency as presented in our paper: neighborhood aggregation will jeopardize the
performances over those highly heterophilic nodes while benefiting highly homophilic nodes. In
addition, we also perform experiments to compare shallow method w/ neighborhood aggregation vs.
shallow method w/o neighborhood aggregation. We present the experimental results in Table 7, and
the observations remain consistent.

In conclusion, we also have similar observations on heterophilic datasets from both studied per-
spectives, and our analysis does not depend on whether the adopted datasets are homophilic or not.

C.9 EXPERIMENTAL RESULTS WITH ATTRIBUTE AUGMENTATION

We performed experiments by (1) concatenating a random matrix with the same dimensionality as
the original node attributes onto the node attribute matrix and (2) concatenating a matrix encoded
with structural information following the state-of-the-art degree strategy (Cui et al., 2022) onto the
node attribute matrix. We present the unsupervised learning performances on the Cora dataset be-
low as an example. Here utility is measured by node classification accuracy, while the effective
dimension ratio (EDR) is measured by the ratio of the value of rank (of representation matrix) to
the representation dimensionality. We present the experimental results in Table 8. We observe that:
(1) concatenating a matrix with structural information slightly improves the node classification ac-
curacy, while such a strategy does not stop the significant drop in the rank of node representations;
(2) concatenating random node attributes successfully improves the rank of the node representa-
tions, however, the classification accuracy is reduced. Therefore, both strategy does not really solve
the problem of dimensional collapse, and we believe handling such a problem is non-trivial. Cor-
respondingly, this paper is particularly interesting to researchers working in this area and such a
problem is also worth to be explored in future works.

C.10 OBSERVATIONS OVER OTHER TYPES OF GNNS

Performance of APPNP. We perform empirical experiments based on APPNP. We present the un-
supervised learning performances on the Cora dataset below as an example. Here utility is measured
by node classification accuracy, while the effective dimension ratio (EDR) is measured by the ra-
tio of the value of rank (of representation matrix) to the representation dimensionality. We present
the experimental results in Table 9. We observe that similar to GCN, APPNP also bears severe
dimensional collapse (exhibited by the significant reduction in the value of EDR).

Performance of LINKX. We perform empirical experiments based on LINKX. We present the un-
supervised learning performances on the Cora dataset below as an example. Here utility is measured
by node classification accuracy, while the effective dimension ratio (EDR) is measured by the ratio
of the value of rank (of representation matrix) to the representation dimensionality. We observe that
compared with GCN, LINKX exhibits smaller values of EDR in attribute-rich scenarios (e.g., 100%
available node attributes), while it also mitigates dimensional collapse in attribute-poor scenarios
(e.g., 0.01% available node attributes). This demonstrates that (1) such an approach may jeopardize
the effective dimension ratio in attribute-rich scenarios and (2) such an approach effectively helps
to mitigate dimensional collapse in attribute-poor scenarios. However, we would also like to point
out that even if LINKX successfully mitigates dimensional collapse for GNNs, it is not ideal, since
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Table 9: Node classification accuracy comparison between GNN and APPNP on Cora dataset. Here
we adopt the walk-based GCN as a representative GNN for comparison, and both models are opti-
mized with the walk-based loss.

100%Att, Acc 100%Att, EDR 1%Att, Acc 1%Att, EDR 0.01%Att, Acc 0.01%Att, EDR

GCN 67.8% 96.9% 36.9% 35.5% 32.3% 1.56%

APPNP 75.5% 56.3% 42.4% 13.7% 10.6% 0.78%

Table 10: Node classification accuracy comparison between GNN and LINKX on Cora dataset.
Here we adopt the walk-based GCN as a representative GNN for comparison, and both models are
optimized with the walk-based loss.

100%Att, Acc 100%Att, EDR 1%Att, Acc 1%Att, EDR 0.01%Att, Acc 0.01%Att, EDR

GCN 67.8% 96.9% 36.9% 35.5% 32.3% 1.56%

LINKX 65.9% 50.4% 64.6% 49.6% 68.8% 24.2%

it (1) sacrifices the capability of GNNs in inductive learning and (2) improves the computational
complexity from O(n ∗ k) to O(n2) to perform inference (k is the number of node attributes and
n is the number of nodes). Therefore, the problem of dimensional collapse is non-trivial to handle,
and more analysis can be a great follow-up study of our work.

C.11 DISCUSSION: WORKS COMBINING SHALLOW METHODS AND GNNS

Here we present two representative works that aim to combine the advantage of shallow graph em-
bedding methods and GNNs (Abu-El-Haija et al., 2018; Chien et al., 2020). Specifically, (Abu-El-
Haija et al., 2018) successfully achieves optimization for the context hyper-parameters of shallow
graph embedding methods. However, the proposed approach cannot take node attributes as the input
and thus fails to effectively utilize the information encoded in node attributes; (Chien et al., 2020)
explored to generalize the GNNs to adaptively learn high-quality node representations under both
homophilic and heterophilic node label patterns. Nevertheless, it fails to avoid using the node at-
tributes as the learning prior, and thus still follows a design that has been proved to bear dimensional
collapse in this paper.
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Figure 13: A comparison between shallow embedding methods and shallow embedding methods
with an enforced neighborhood aggregation on 10 real-world graph datasets Here performance is
measured with the cumulative node classification accuracy, and the density curve (marked with
dashed line) represents the density of nodes with a certain homophily score in the test set.
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(i) Coauthor-Physics.
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(j) Flickr.

Figure 14: A comparison between GNNs and GNNs without the neighborhood aggregation on 10
real-world graph datasets Here performance is measured with the cumulative node classification
accuracy, and the density curve (marked with dashed line) represents the density of nodes with a
certain homophily score in the test set.
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