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Abstract
We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a model
for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms. We
first generate such Böröczky packings in a square box with periodic boundary conditions and
analyze their properties. We then study how local MCMC algorithms, namely theMetropolis
algorithm and several versions of event-chain Monte Carlo (ECMC), escape from configu-
rations that are obtained from the packings by slightly reducing all disk radii by a relaxation
parameter.We obtain two classes of ECMC, one in which the escape time varies algebraically
with the relaxation parameter (as for the local Metropolis algorithm) and another in which
the escape time scales as the logarithm of the relaxation parameter. A scaling analysis is
confirmed by simulation results. We discuss the connectivity of the hard-disk sample space,
the ergodicity of local MCMC algorithms, as well as the meaning of packings in the context
of the N PT ensemble. Our work is accompanied by open-source, arbitrary-precision soft-
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ware for Böröczky packings (in Python) and for straight, reflective, forward, and Newtonian
ECMC (in Go).

Keywords Hard-disk packings · Stability · Markov chains · Hard-disk model · Event-chain
Monte Carlo · Mixing times

1 Introduction

The hard-disk system is a fundamental statistical-physics model that has been intensely stud-
ied since 1953. Numerical simulations, notablyMarkov-chainMonte Carlo [1] (MCMC) and
event-driven molecular dynamics [2], have played a particular role in its study. The existence
of hard-disk phase transitions [3] was asserted as early as 1962. The recent identification
of the actual transition scenario [4] required the use of a modern event-chain Monte Carlo
(ECMC) algorithm [5, 6].

The hard-disk model has been much studied in mathematics. Even today, the existence of
a phase transition has not been proven [7, 8]. A fundamental rigorous result is that the densest
packing of N equal hard disks (for N → ∞) arranges them in a hexagonal lattice [9]. This
densest packing is locally stable, which means that no single disk can move infinitesimally
in the two-dimensional plane. The densest packing is furthermore collectively stable, which
means that no subset of disks can move at once, except if the collective infinitesimal move
corresponds to symmetries, as for example uniform translations in the presence of periodic
boundary conditions [10–12]. In 1964, Böröczky [13] constructed two-dimensional disk
packings that are sparse, that is, have vanishing density in the limit N → ∞. The properties
of these Böröczky packings are very different from those of the densest hexagonal lattice.
Infinitesimal motion of just a single disk remains impossible, so that Böröczky packings
are locally stable. However, coherent infinitesimal motion of more than one disk does allow
escape from Böröczky packings so that they are not collectively stable.

In this work, we construct finite-N Böröczky packings in a fixed periodic box and use
them to build initial configurations for localMarkov-chainMonteCarlo (MCMC) algorithms,
namely the reversible Metropolis algorithm [1, 14] and several variants [5, 15, 16] of non-
reversible ECMC. In the Metropolis algorithm, single disks are moved one by one within a
given range δ. A Böröczky packing traps the local Metropolis algorithm if δ is small enough,
because all single-disk moves are rejected. ECMC is by definition local. It features individual
infinitesimal displacements of single disks, and it also cannot escape from a Böröczky pack-
ing. We thus consider ε-relaxed Böröczky configurations that have the same disk positions
as the Böröczky packings but with disk radii reduced by a factor (1 − ε). Here, ε � 0 is the
relaxation parameter.Our scaling theory for the escape times from ε-relaxedBöröczky config-
urations predicts the existence of two classes of local Markov-chain algorithms. In one class,
escape times grow as a power of the relaxation parameter ε, whereas the other class features
only logarithmic growth.Numerical simulations confirmour scaling theory,whose power-law
exponents we conjecture to be exact. The ε-relaxed Böröczky configurations are representa-
tive of a finite portion of sample space. For a fixed number of disks, the growth of the escape
times thus leads to the existence of a small but finite fraction of sample space that cannot be
escaped from or even accessed by local MCMC in a given upper limit of CPU time. More
generally, we discuss the apparent paradox that the lacking proof for the connectedness of the
hard-disk sample space, on the one hand, might render local MCMC non-irreducible (that
is, “non-ergodic”) but, on the other hand, does not invalidate their practical use. We resolve
this paradox by considering the N PT ensemble (where the pressure is conserved instead of

123



Sparse Hard-Disk Packings and Local... Page 3 of 25 31

the volume). We moreover advocate the usefulness of ε-relaxed Böröczky configurations for
modeling bottlenecks inMCMCand consider the comparison of escape times from these con-
figurations as an interesting benchmark.We provide open-source arbitrary-precision software
for Böröczky packings and for ECMC. Several of the ECMC algorithms can evolve towards
numerical gridlock, that can be diagnosed and studied using our arbitrary-precision software.

This work is organized as follows. In Sect. 2, we construct Böröczky packings following
the original proposal [13] and a variant due to Kahle [17], and we analyze their properties. In
Sect. 3, we discuss local MCMC algorithms and present analytical and numerical results for
the escape times from the ε-relaxed Böröczky configurations. In Sect. 4, we analyze algo-
rithms and their escape times and discuss fundamental aspects, among them irreducibility,
statistical ensembles, as well as the question of bottlenecks, and the difference between local
and non-local MCMC methods. In the conclusion (Sect. 5), we point to several extensions
and place our findings into the wider context of equilibrium statistical mechanics, the physics
of glasses and themechanics of granular materials. In Appendix A, we present further numer-
ical analysis and, in Appendix B, we introduce our open-source arbitrary-precision software
package BigBoro for Böröczky packings and for ECMC.

2 Böröczky Packings

In the present section, we discuss Böröczky packings of N disks of radius σ = 1 in a periodic
square box of sides L . The density η is the ratio of the disk areas to that of the box:

η = Nπσ 2/L2. (1)

For concreteness, the central simulation box ranges from −L/2 to L/2 in both the x and the
y direction. The periodic boundary conditions map the central simulation box onto an infinite
hard-disk system with periodically repeated boxes or, equivalently, onto a torus. A Böröczky
packing is locally stable, and each of its N disks is blocked—at a distance 2σ—by at least
three other disks (taking into account periodic boundary conditions), with the contacts not all
in the same half-plane. The opening angle of a disk i , the largest angle formed by the contacts
to its neighbors, is then always smaller than π . The maximum opening angle is the largest
of the N opening angle of all disks. Clearly, a locally stable packing cannot be escaped from
through the infinitesimal single-disk moves of ECMC or, in Metropolis MCMC, through
steps of small enough range. Only collective infinitesimal moves of all disks may escape
from the packing.

In a nutshell, Böröczky packings (see Sect. 2.1 for their construction) consist in cores and
branches (as visible in Fig. 1). The original Ref. [13] mainly focused on Böröczky packings
in an infinite plane, but also sketched how to generalize the packings to the periodic case.
Böröczky packings can exist for different cores, and they depend on a bounding curve (more
precisely: a convex polygonal chain) which encloses the branches, and which can be chosen
more or less freely (see Sect. 2.2 for the properties of Böröczky packings, including the
collective infinitesimal escape modes from them).

2.1 Construction of Böröczky Packings

In the central simulation box, a finite-N Böröczky packing is built on a central core placed
around (0, 0) (see Sect. 2.1.1 for a discussion of cores). This core connects to four periodic
copies of the core centered at (L, 0), (0, L), (−L, 0), and (0,−L) by branches that have k
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separate layers (see Sects. 2.1.2 and 2.1.3 for a detailed discussion of branches). A Böröczky
packing shares the symmetries of the central simulation box. Cores with different shapes, as
for example that of a triangle, yield Böröczky packings in other geometries (see [13, 17] and
[18, Sect. 9.3]).

2.1.1 Böröczky Core, Kahle Core

We consider Böröczky packings with two different cores, either the Böröczky core or
the Kahle core. Both options are implemented in the BigBoro software package (see
Appendix B). The Böröczky core [13] consists of 20 disks (see Fig. 1a). Using reflec-
tion symmetry about coordinate axes and diagonals, this core can be constructed from
four disks at coordinates (

√
2, 0), (2 + √

2, 0), (2 + √
6/2 + 1/

√
2,

√
6/2 + 1/

√
2), and

(2+√
6/2+1/

√
2, 2+√

6/2+1/
√
2) (see highlighted disks in Fig. 1a). TheKahle core [17],

with a total of 8 disks, is constructed from two disks at coordinates (1, 1), and (1 + √
3, 0),

using the same symmetries (see highlighted disks in Fig. 1b). The Böröczky core for k = 0,
that is without the branches included in Fig. 1a, is only locally stable if repeated periodically
in a central simulation box that fully encloses the core disks, with L/2 = 3+√

6/2+1/
√
2.

The Kahle core, again without branches, can be embedded in two non-equivalent ways into
a periodic structure. When the outer-disk centers are placed on the cell boundaries, with
L/2 = 1+ √

3, it forms a collectively stable packing with no remaining degrees of freedom
other than uniform translations. Alternatively, it only forms a locally stable packing, with the
possibility of non-trivial collective deformations, if the outer disks are enclosed in a larger
simulation cell, with L/2 = 2 + √

3. These two cores are the seeds from which larger and
less dense Böröczky packings are now constructed and studied.

2.1.2 Branches—Infinite-Layer Case (Infinite N)

Following Ref. [13], we first construct infinite branches (k = ∞) that correspond to the
N → ∞ and η → 0 limits, without periodic boundary conditions. One such branch is
attached to each of the four sides of the central core so that all disks are locally stable. The
horizontal branch that extends from the central core in the positive x-direction is symmetric
about the x-axis. Thehalf branch for y ≥ 0 uses three sets of disks {A1, A2, . . .}, {B1, B2, . . .},
and {C1,C2, . . .}, where i = 1, 2, . . . is the layer index.

For the branch that is symmetric about the x-axis, the construction relies on four horizontal
lines [13]:

horizontal line g g1 g2 g3
y-value 0

√
3 2

√
3

√
3 + 2

. (2)

The disks A1 and B1 are aligned in x at heights g3 and g1, respectively. All A disks lie on a
given convex polygonal chainA between g2 and g3. The chain segments onA are of length 2
so that subsequent disks Ai and Ai+1 block each other, and the position of A1 fixes all other
A disks. All C disks lie on g, and Ci blocks Bi from the right (in particular, C1 is placed
after B1). The disk Bi , for i > 1, lies between g and g1 and it blocks disks Ai and Ci−1 from
the right. With the position of g2, the branch approaches a hexagonal packing for i → ∞.
After reflection about the x-axis, all disks except A1 and B1 are locally stable in the infinite
branch.

The Böröczky packing is completed by attaching the four branches along the four coor-
dinate axes to a core. For the Böröczky core, both A1 and B1 are blocked by core disks (see
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Fig. 1a). For the Kahle core, B1 is blocked by a core disk, and A1 is locally stable as it also
belongs to another branch (see Fig. 1b).

2.1.3 Branches—Finite-Layer Case (Finite N), Periodic Boundary Conditions

Branches can also be constructed for periodic simulation boxes, with a finite number k
of layers and finite N (see [13]). The branch that connects the central core placed around
(0, 0) with its periodic image around (L, 0) is then again symmetric about the x-axis but, in
addition, also about the boundary of the central simulation box at x = L/2. We describe the
construction of the half-branch (for y ≥ 0) up to this boundary (see Fig. 1).

For half-branches with a finite number of layers k and a finite number of disks
{A1, . . . , Ak}, {B1, . . . , Bk}, and {C1, . . . ,Ck−1} (with their corresponding mirror images),
the convex polygonal chain A lies between g<

2 and g3 where g<
2 is an auxiliary horizontal

line placed slightly below g2. The horizontal lines g and g1 and the algorithm for placing
the disks are as in Sect. 2.1.2 (see Fig. 1c, d). By varying the distance between g2 and g<

2 ,
one can make disk Bk satisfy the additional requirement xBk = xAk + 1 that allows for
periodic boundary conditions. The position of Bk then fixes the boundary of the square box
(xBk = L/2) and Bk blocks Ak as well as the mirror image Ak+1 of Ak (see Fig. 1c again).

2.2 Properties of Böröczky Packings

The local stability of Böröczky packings only relies on the fact that all A disks lie on a largely
arbitrary convex polygonal chainA [13]. The choice ofA influences the qualitative properties

(b)

L

2

(a)

−L

2
−L

2

L

2

(c)

A
g

g1
g2
g3
g<
2

A1 Ak

(d)

Core disk
A disk
B disk
C disk

Fig. 1 Hard-disk Böröczky packings, composed of a core and of four branches with k = 5 layers, with contact
graphs and highlighted opening angles. a Packing with the Böröczky core [13]. b Packing with the Kahle core
[17]. c Detail of a branch. d Convex polygonal chain A, and horizontal lines g<

2 , g2, and g3. Two different

classes of polygonal chains, called Ageo andAcirc, are considered in this work
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of the packing. The BigBoro software package (see Appendix B) implements two different
classes of convex polygonal chains that we discuss in Sect. 2.2.1. Another computer program
in the package explicitly determines the space of collective escape modes from a Böröczky
packing, which we discuss in Sect. 2.2.2.

2.2.1 Convex Polygonal Chains (Geometric, Circular)

In the convex geometric chain Ageo (which is for instance used in Fig. 1), the disks Ai

approach the line g<
2 exponentially in i . In contrast, in the convex circular chain Acirc, all A

disks lie on a circle (including their mirror images after reflection about x = L/2) so that
their opening angles are all the same.

For the convex geometric chainAgeo, the distance between Ai and g<
2 follows a geometric

progression:

dist(Ai+1, g
<
2 ) = φ dist(Ai , g

<
2 ), φ ∈ (0, 1), (3)

with the attenuation parameter φ. (For a horizontal branch, the distances in Eq. (3) are
simply the difference between y-values.) The densities ηBör and ηKahle of the Böröczky
packings that either use the Böröczky or the Kahle core vary with φ, and they decrease as
∼ 1/k for large k (see Table 1). The geometric sequence for Ai induces that the maximum
opening angle, usually the one between Ak−1, Ak , and Ak+1, approaches the angle π as
θk = φk−2(1 − φ)(g3 − g<

2 )/2 ∼ φk , that is, exponentially in k and in L . This implies that
the Böröczky packing with the convex geometric chain Ageo is for large number of layers k
exponentially close to losing its local stability (see fifth column of Table 1).

The convex circular chain Acirc improves the local stability of the Böröczky packing, as
the maximum opening angle onA approaches the critical angle π only algebraically with the
number of layers k. Here, all A disks lie on a circle of radius R. This includes A1, which by
construction lies on g3 (see Sect. 2.1.2). The circle is tangent to g<

2 at x = L/2. The center

Table 1 Parameters of Böröczky packings for different numbers k of layers with N ∼ 20k given by Eq. (4)

Layers k Density ηBör Density ηKahle Def. anglecirc Def. anglegeo

5 0.3957 ± 3.1×10−4 0.4660 ± 4.3×10−4 8.3×10−1 3.8×10−1

6 0.3625 ± 2.9×10−4 0.4204 ± 3.9×10−4 5.3×10−1 2.5×10−1

7 0.3338 ± 2.6×10−4 0.3820 ± 3.3×10−4 3.8×10−1 1.8×10−1

8 0.3089 ± 2.2×10−4 0.3496 ± 2.8×10−4 2.8×10−1 1.3×10−1

9 0.2873 ± 1.9×10−4 0.3219 ± 2.4×10−4 2.2×10−1 9.9×10−2

10 0.2683 ± 1.7×10−4 0.2982 ± 2.1×10−4 1.7×10−1 7.6×10−2

15 0.2010 ± 9.5×10−5 0.2171 ± 1.1×10−4 7.3×10−2 2.2×10−2

20 0.1604 ± 6.0×10−5 0.1704 ± 6.7×10−5 4.1×10−2 7.0×10−3

30 0.1141 ± 3.0×10−5 0.1190 ± 3.2×10−5 1.8×10−2 7.4×10−4

50 0.0722 ± 1.2×10−5 0.0741 ± 1.2×10−5 6.3×10−3 8.5×10−6

100 0.0376 ± 3.1×10−6 0.0381 ± 3.2×10−6 1.6×10−3 1.2×10−10

1000 0.0039 ± 3.3×10−8 0.0039 ± 3.3×10−8 1.5×10−5 7.4×10−98

Second and third columns: Density window for the Böröczky and Kahle cores with Ageo, obtained from φ

between 0.0001 and 0.9. Fourth and fifth columns: Deficit angle with respect to 180◦ of the maximum opening
angle (in degrees, same for both cores) forAcirc and forAgeo with attenuation parameter φ = 0.8
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of the circle lies on the vertical line at x = L/2. It follows from elementary trigonometry
that for large k, the radius of the circle R scales as∼ k2 and that the maximum opening angle
approaches the angle π as ∼ k−2 (see fourth column of Table 1).

2.2.2 Contact Graphs: Local and Collective Stability

The contact graph of a Böröczky packing connects any two disks whose pair distance equals
2 (including periodic boundary conditions, see Fig. 1). In a Böröczky packing with k ≥ 1
layers, the number N of disks and the number Ncontact of contacts are:

N Ncontact

Bpöröczky core 20k + 12 32k + 20
Kahle core 20k − 4 32k + 4

. (4)

For all values of k > 1, the number of contacts is smaller than 2N − 2. This implies that
collective infinitesimal two-dimensional displacements, with 2N − 2 degrees of freedom
(the values of the displacements in x and in y for each disk avoiding trivial translations), can
escape from a Böröczky packing, which is thus not collectively stable [17].

When all disks i , at positions xi = (xi , yi ), are moved to xi + Δi with Δi = (Δx
i ,Δ

y
i ),

the squared separation between two touching disks from the contact graph i and j changes
from |xi − x j |2 to

|xi + Δi − (x j + Δ j )|2 = |xi − x j |2 + 2(xi − x j ) · (Δi − Δ j )
︸ ︷︷ ︸

first-order variation

+|Δi − Δ j |2. (5)

If the first-order term in Eq. (5) vanishes for all contacts i and j , the separation between
touching disks cannot decrease. It then increases to second order in the displacements, if
Δi 	= Δ j , so that contact is lost. Distances between disks that are not in contact need not be
considered because the displacementsΔi are infinitesimal. The first-order variation in Eq. (5)
can be written as a product of twice an “escape matrix” Mesc of dimensions Ncontacts × 2N
with a 2N -dimensional vectorΔ = (Δx

1,Δ
y
1,Δ

x
2,Δ

y
2, . . .). The row r ofMesc corresponding

to the contact between i and j has four non-zero entries

Mesc
r ,2i−1 = xi − x j ,

Mesc
r ,2i = yi − y j ,

Mesc
r ,2 j−1 = −(xi − x j ),

Mesc
r ,2 j = −(yi − y j ).

(6)

The BigBoro software package (see Appendix B) solves for

MescΔ = 0 (7)

using singular-value decomposition. The solutions of Eq. (7) are the directions of the small
displacements that break the contacts but do not introduce overlapping disks. For the k = 5
Böröczky packing with the Kahle core, we find 28 vanishing singular values. It follows from
Eq. (4) that, because of 28 = 2N −Ncontact, all contacts are linearly independent. We classify
the 28 modes by studying the following cost function on the contact graph:

L =
∑

i, j

(Δi − Δ j )
2, (8)
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Fig. 2 Two orthogonal modes (represented as red arrows) out of the 28-dimensional space of all collective
escape modes Δ for the k = 5 Böröczky packing with the Kahle core and the convex geometric chain Ageo

with attenuation parameter φ = 0.7. Lines are drawn between pairs of disks which are in contact

where the sum is over all contact pairs i and j . This function, acting on the 2N displacements
Δ, measures the non-uniformity of a deformation. It acts as a quadratic form within the
28-dimensional space of vanishing singular values, and can be diagonalized within this
space. The resulting two lowest eigenmodes (with zero eigenvalue) of Eq. (8) describe rigid
translation of the packing in the plane. Other low-lying eigenmodes give smooth large-scale
deformations which collectively escape the contact constraints (see Fig. 2).

For k ≥ 1, the number of contacts in Eq. (4) is larger than N − 1. Böröczky packings
are thus collectively stable for displacements that are constrained to a single direction, as for
example the x or y direction. This strongly constrains the dynamics of MCMC algorithms
that for a certain time have only one degree of freedom per disk.

2.2.3 Dimension of the Space of Böröczky Packings

As discussed in Sect. 2.2.2, each Böröczky packing has a contact graph. Conversely, a given
contact graph describes Böröczky packings for a continuous range of densities η. As an
example, changing the attenuation parameter φ of the convex polygonal chainAgeo in Eq. (3)
continuously moves all branch disks, and in particular disk Bk and, therefore, the value of
L and the density η (see Table 1 for density windows that can be obtained in this way). We
conjecture that locally stable packings exist for any density at large enough N . Sparse locally
stable packings can also be part of dense hard-disk configurations where the majority of disks
are free to move.

Moreover, the space B of locally stable packings of N disks of radius σ in a given central
simulation box is of lower dimension than the sample space Ω: For each contact graph, each
independent edgedecreases thedimensionality byone. In addition there is only afinite number
of contact graphs for a given N . The low dimension of B also checks with the fact that any
packing, andmore generally, any configurationwith contacts, has effectively infinite pressure
(see the detailed discussion in Sect. 4.2.2). As the ensemble-averaged pressure is finite (except
for the densest packing), the packings (and the configurations containing packings) must be
of lower dimension. As the dimension of B, for large N , is much lower than that of Ω , we
conjecture Ω \ B to be connected for a given η below the densest packing at large enough
N although, in our understanding, this is proven only for η ∼ 1/

√
N (see [19, 20]).
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3 MCMC Algorithms and "-relaxed Böröczky configurations

In this section, we first introduce to a number of local MCMC algorithms (see Sect. 3.1). In
Sect. 3.2, we then determine the escape times (in the number of trials or events) after which
these algorithms escape from ε-relaxed Böröczky configurations, that is, from Böröczky
packings with disk radii multiplied by a factor (1 − ε) (see Fig. 3a, b). A scaling theory
establishes the existence of two classes of MCMC algorithms, one in which the escape time
from an ε-relaxed Böröczky configurations scales algebraically with ε, with exponents that
are predicted exactly, and the other inwhich the scaling is logarithmic. Numerical simulations
confirm the theory.

3.1 Local Hard-Disk MCMC Algorithms

We define the reversible Metropolis algorithm with two displacement sets, from which the
trial moves are uniformly sampled (see Sect. 3.1.1). We also consider variants of the non-
reversible ECMC algorithm that only differ in their treatment of events, that is, of disk
collisions (see Sect. 3.1.2). An arbitrary-precision implementation of the discussed ECMC
algorithms (in theGoprogramming language) is contained in theBigBoro software package
(see Appendix B).

3.1.1 Local Metropolis Algorithm: Displacement Sets

The N disks are at positions x = (x1, . . . , xN ). In the local Metropolis algorithm [1], at each
time t = 1, 2, . . ., a trial move is proposed for a randomly chosen disk i , from its position
xi to xi + Δxi . If the trial produces an overlap, disk i stays put and x remains unchanged.
We study two sets for the trial moves. For the cross-shaped displacement set, the trial moves
are uniformly sampled within a range δ along the coordinate axes, that is, either along the x-
axis (Δxi = (ran(−δ, δ) , 0)) or along the y-axis (Δxi = (0,ran(−δ, δ))). Alternatively,
for the square-shaped displacement set, the trial moves are uniformly sampled as Δxi =
(ran(−δ, δ) ,ran(−δ, δ)). A Böröczky packing traps the local Metropolis algorithm if the
range δ is smaller than a critical range δc. This range is closely related to the maximum
opening angle (see the discussion in Sect. 2.2.1 and Fig. 3c). For these packings, the critical
range vanishes for N → ∞ independently of the specific core or of the convex polygonal
chain, simply because the maximum opening angle approaches π in that limit. On the other
hand, for large range δ, the algorithm can readily escape from the stable configuration. For
δ = L/2, theMetropolis algorithmwith a square-shaped displacement set proposes a random
placement of the disk i inside the central simulation box. This displacement set leads to a
very inefficient algorithm at the densities of physical interest, but it mixes very quickly at
small finite densities (see Sect. 4.2.1). For the scaling theory of the escape of the Metropolis
algorithm from ε-relaxed Böröczky configurations, we consider ranges δ smaller than the
critical range δc.

3.1.2 Hard-Disk ECMC: Straight, Reflective, Forward, Newtonian

Straight ECMC [5] is one of the two original variants of event-chain Monte Carlo. This
Markov chain evolves in (real-valued) continuous Monte-Carlo time tMCMC, but its imple-
mentation is event-driven. The algorithm is organized in a sequence of “chains”, each with
a chain time τchain, its intrinsic parameter. In each chain, with Monte-Carlo time between
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tMCMC and tMCMC+τchain, disks move with unit velocity in one given direction (alternatively
in+x or in+y). A randomly sampled initial disk thus moves either until the chain time τchain
is used up, or until, at a collision event, it collides with another disk, which then moves in
its turn, etc. This algorithm is highly efficient in some applications [4, 5, 21]. During each
chain (in between changes of direction), any disk can collide only with three other disks
or fewer [22, 23]. A constraint graph with directed edges may encode these relations. This
constraint graph (defined for hard-disk configurations) takes on the role of the contact graph
(that is defined for packings) (see Fig. 3a, b). As the moves in a chain are all in the same
direction, straight ECMC has only N − 1 degrees of freedom, fewer than there are edges in
the constraint graph. It is for this reason that it may encounter the rigidity problems evoked
in Sect. 2.2.2.

In reflective ECMC [5], in between events, disks move in straight lines with unit velocity
just as in straight ECMC. At a collision event, the target disk does not continue in the
same direction as the active disk. Rather, the target-disk direction is the original active-disk
direction reflected from the line connecting the two disk centers at contact (see [5]). As all
ECMC variants, reflective ECMC satisfies the global-balance condition. Irreducibility (for
connected sample spaces) requires in principle resamplings of the active disk and its velocity
in intervals of the chain time τchain [15, 24, 25]. However, this seems not always necessary
[15, 25]. Numerical experiments indicate that reflective ECMC requires no resamplings in
our case as well. It is also faster without them (see Appendix A.2). A variant of reflective
ECMC, obtuse ECMC [16], has shown interesting behavior.

Forward ECMC [15] updates the normalized target-disk direction as follows after an event.
The component orthogonal to the line connecting the disks at contact is uniformly sampled
between 0 and 1 (reflecting the orthogonal orientation). Its parallel component is determined
so that the direction vector (which is also the velocity vector) is of unit norm. The parallel
orientation remains unchanged. In contrast to reflective ECMC, the event-based randomness
renders forward ECMC practically irreducible for the considered two-dimensional hard-disk
systems even without resamplings. Resamplings in intervals of the chain time τchain can still
be considered but slow the algorithm down (see Appendix A.2). We thus consider forward
ECMC without resampling.

(a) (b)

Ak−1

Ak Ak+1

Bk

δ

L

2

δc

(c)

Fig. 3 Contact graphs, constraint graphs and minimal escape range. a Contact graph for a packing consisting
solely of the Böröczky core. b Constraint graph in x-direction for an ε-relaxed Böröczky configurations
derived from the same packing with ε = 0.25. The edges indicate all possible collisions of straight ECMC in
x-direction. c Escape move δ and minimal escape range δc of the Metropolis algorithm with a square-shaped
displacement set
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Newtonian ECMC [16] mimics molecular dynamics in order to determine the velocity
of the target disk in an event. It initially samples disk velocities from the two-dimensional
Maxwell distribution with unit root-mean-square velocity. However, at each moment, only
a single disk is actually moving with its constant velocity. At a collision event, the veloc-
ities of the colliding disks are updated according to Newton’s law of elastic collisions for
hard disks of equal masses, but only the target disks actually moves after the event. In this
algorithm, the velocity (which indexes the Monte-Carlo time) generally differs from unity.
Similar to reflective ECMC, we tested that resamplings appear not to be required in our
case (and again yield a slower performance, see Appendix A.2), although Newtonian ECMC
manifestly violates irreducibility in highly symmetric models [25]. As in earlier studies for
three-dimensional hard-sphere systems [16] and for two-dimensional dipoles [25], Newto-
nian ECMC is typically very fast for ε-relaxed Böröczky configurations. However, it suffers
from frequent gridlocks (see Sect. 3.2.4).

3.2 Escape Times from "-relaxed Böröczky configurations

The principal figure of merit for a Markov chain is its mixing time [26], the number of
steps it takes from the worst-case initial condition to approach the stationary probability
distribution to some precision level. Böröczky packings trap the local Metropolis dynamics
(of sufficiently small range) as well as ECMC dynamics, so that the mixing time is, strictly
speaking, infinite. Although they cannot be escaped from, the packings make up only a set
of measure zero in sample space, and might thus be judged irrelevant.

However, as we will discuss in the present subsection, the situation is more complex. For
every Böröczky packing, an associated ε-relaxed Böröczky configurations keeps the central
simulation box and the disk positions, but reduces the disk radii from 1 to 1−ε. An ε-relaxed
Böröczky configurations effectively defines a finite portion of the sample space (the spheres
of radius ε around each disk position of the packing). All MCMC algorithms considered in
this work escape from these configurations in an escape time that diverges as ε → 0 (see
Sect. 3.2.1 for a definition of escape times). Numerical results and a scaling theory for the
escape times are discussed in Sects. 3.2.2 and 3.2.3, and a synopsis of our results is contained
in Sect. 3.2.4. The divergent escape times as ε → 0 are specific to the NVT ensemble (as
we will discuss in Sect. 4.2.2).

3.2.1 Nearest-Neighbor Distances and Escape Times

In a Böröczky packing, disks are locally stable, and they all have a nearest-neighbor distance
of 2. The packings are sparse, and the nearest-neighbor distance is thus smaller than its
∼ 1/

√
η equilibrium value. To track the escape from an ε-relaxed Böröczky configurations,

we monitor the maximum nearest-neighbor distance:

d(t) = max
i

[

min
j(	=i)

|xi j (t)|
]

, (9)

where |xi j (t)| = |x j (t) − xi (t)| is the distance between disks i and j (possibly corrected
for periodic boundary conditions). The maximum nearest-neighbor distance signals when a
single disk breaks loose from what corresponds to its contacts. In the further time evolution,
the configuration then falls apart. For the Metropolis algorithm, we compute d(t) once every
N trials, and t denotes the integer-valued number of individual trial moves. For ECMC,
we sample d(t) and the number of events in intervals of the sampling Monte-Carlo time. In
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Eq. (9), t then denotes the integer-valued number of events. Both discrete times t increment by
one with a computational effortO(1), corresponding to one trial in the Metropolis algorithm
and to one event in ECMC. Starting from an ε-relaxedBöröczky configurations, d(t) typically
remains at d(t) ∼ 2 + O (ε) for a long time until it approaches the equilibrium value in a
way that depends on the algorithm. We define the escape time tesc, an integer, as the time t
at which d(t) has increased by ten percent:

tesc = min
[

t : d(t) > 2(1 + γ )
]

, (10)

with γ = 0.1. All our results for the scaling of the escape time with the relaxation parameter
ε in the following subsections were reproduced for γ = 0.025 (see Appendix A.1). The
definition of the escape time based on the maximum nearest-neighbor distance d(t) is cer-
tainly not the only one to monitor the stability of ε-relaxed Böröczky configurations. It may
not be equally well-suited for all considered algorithms. Still, our scaling theory suggests
that the algorithms with an intrinsic parameter show a distinctly different behavior than the
algorithms without them, which appears to be independent of the precise definition of the
escape time.

3.2.2 Escape-Time Scaling for Metropolis and Straight ECMC

The local Metropolis algorithm and straight ECMC both have an intrinsic parameter, namely
the range δ of the displacement set or the chain time τchain. These two parameters play a
similar role. We numerically measure the escape time tesc of these algorithms for a wide
range of their intrinsic parameters and for small relaxation parameters ε (see Fig. 4, for the
escape times from ε-relaxed Böröczky configurations with k = 5 layers and the Kahle core).
The escape time diverges for δ, τchain → 0. For straight ECMC and small ε, tesc also diverges
for τchain → ∞ so that the function is “V ”-shaped with an optimal chain time τmin

chain. For
the Metropolis algorithm, tesc increases until around the critical range δc so that there is an
optimal range δmin < δc.

Two limiting cases can be analyzed in terms of the intrinsic parameter δ < δc or τchain,
and the internal length scales ε, and σ . For the Metropolis algorithm at small δ, a trajectory
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Fig. 4 Median escape times from the k = 5 ε-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter φ = 0.7, N = 96 disks) for different ε. a tesc (in trials) vs.
range δ for the Metropolis algorithm with the cross-shaped displacement set. b tesc (in events) vs. chain time
τchain for straight ECMC. Asymptotes are from Eqs. (11) and (12). Error bars are smaller than the marker
sizes
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spanning a constant distance is required to escape from an ε-relaxedBöröczky configurations.
This constant distance can be thought of as the escape distance δc in Fig. 3, which is on a
scale σ and independent of ε for small ε. As the Monte-Carlo dynamics is diffusive, this
constant distance satisfies const = δ

√
tesc. For straight ECMC with small chain times τchain,

the effective dynamics (after subtraction of the uniform displacement), is again diffusive.
This leads to:

tesc ∼
{

const/δ2 (Metropolis),

const/τ 2chain (straight ECMC),
(for small δ < δc, τchain). (11)

The independence of tesc of the relaxation parameter ε for small intrinsic parameters is clearly
brought out in the numerical simulations (see Fig. 4).

On the other hand, even for large δ < δc or τchain, the Markov chain must make a cer-
tain number of moves on a length scale ε in order to escape from the ε-relaxed Böröczky
configurations. In the Metropolis algorithm, the probability for a trial on this scale is ε/δ for
the cross-shaped displacement set and ε2/δ2 for the square-shaped displacement set. For the
straight ECMC with large τchain, all displacements beyond a time ∼ ε (or, possibly, ∼ Nε)
effectively cancel each other, because the constraint graph is rigid. This leads to:

tesc ∼

⎧

⎪
⎨

⎪
⎩

δ2/ε2 (Metropolis—square),

δ/ε (Metropolis—cross),

τchain/ε (straight ECMC),

(for large δ < δc, τchain). (12)

The scaling of tesc as ∼ 1/ε or ∼ 1/ε2 for large intrinsic parameters is confirmed in the
numerical simulations for small relaxation parameters ε (see Fig. 4). For large ε, the critical
range δc of the Metropolis algorithm (that slightly decreases with ε) falls below the region
of large δ. For large ε, the constraint graph of straight ECMC loses its rigidity, and τchain no
longer appears as a relevant intrinsic parameter. The scaling theory no longer applies.

The two asymptotes of Eqs. (11) and (12) form a “V ” with a base δmin (or τmin
chain) that is

obtained by equating the two expressions for tesc(δ) (or tesc(τchain)). This yields δmin ∼ 3
√

ε

for the Metropolis algorithm with a cross-shaped displacement set, and likewise τmin
chain ∼ 3

√
ε

for straight ECMC. For the Metropolis algorithm with a square-shaped move set, one obtains
δmin ∼ √

ε. The resulting optimum, the minimal escape time with respect to ε, is

tesc ∼

⎧

⎪
⎨

⎪
⎩

ε−1 (Metropolis—square),

ε−2/3 (Metropolis—cross),

ε−2/3 (straight ECMC),

(for optimal δmin, τmin
chain). (13)

These scalings balance two requirements: to move by a constant distance (which favors large
δ or τchain) and to move on the scale ε (which favors small δ or τchain).

3.2.3 Time Dependence of Free Path—Reflective, Forward, and Newtonian ECMC

The forward, reflective, and Newtonian variants of ECMC move in any direction, even in
the absence of resamplings, so that their displacement sets are 2N -dimensional. This avoids
the rigidity problem of straight ECMC (the fact that the number of constraints can be larger
than the number of degrees of freedom). We consider these algorithms without resamplings,
that is, for τchain = ∞. Finite chain times yield larger escape times that approach the value
at τchain = ∞ (see Appendix A.2). Without an intrinsic parameter, the effective free path
between events may thus adapt as the configuration gradually escapes from the ε-relaxed
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Böröczky configurations. The free path is initially on the scale ε, but then grows on average
by a constant factor at each event, reaching a scale ε′ > ε after a time (that is, after a
number of events) that scales as ∼ ln(ε′/ε). The scale ε′ at which the algorithms break free
is independent of the initial scale ε, and we expect a logarithmic scaling of the escape time
(measured in events):

tesc ∼ ln(1/ε) (reflective, forward, and Newtonian ECMC). (14)

The absence of an imposed scale for displacements manifests itself in the logarithmic
growth with time of the average free path, that is, the averaged displacement between events
over many simulations starting from the same ε-relaxed Böröczky configurations (see Fig. 5
for the example of the escape of forward ECMC from ε-relaxed Böröczky configurations
with k = 5 layers and the Kahle core). Individual evolutions as a function of time t for small
relaxation parameters ε and ε′ overlap when shifted by their escape times. Starting from
an ε-relaxed Böröczky configurations with ε = 10−30, as an example, the same time is on
average required to move from an average free path of ∼ 10−30 to 10−25, as from an average
free path ∼ 10−25 to 10−20. The time t in this discussion refers to the number of events
and not to the Monte-Carlo time tMCMC. As discussed, the velocity in reflective and forward
ECMC, and the root-mean-square velocity in Newtonian ECMC, have unit value. The free
path between subsequent events—which, as discussed, grows exponentially with t—then
equals the difference of Monte-Carlo times tMCMC(t + 1) − tMCMC(t). The Monte-Carlo
time tMCMC thus grows as a geometric series and depends exponentially on the number of
events t . This emphasizes that the escape from an ε-relaxed Böröczky configurations is a
non-equilibrium phenomenon.
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Fig. 5 Free path (equivalently: Monte-Carlo time between events) for the forward ECMC algorithm started
from three k = 5 ε-relaxed Böröczky configurations (Kahle core and convex geometric chain Ageo with
attenuation parameter φ = 0.7, N = 96 disks) with ε = 10−30, 10−25 and 10−20. Integer time t (lower
x-axis) counts events, while tMCMC (upper x-axis) is the real-valued continuous Monte-Carlo time. Event
times are shifted. Expanded light curves show single simulations for each ε, dark lines average over 10,000
simulations
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Fig. 6 Median escape time tesc from k = 5 ε-relaxedBöröczky configurationswith different cores (with convex
geometric chain Ageo and attenuation parameter φ = 0.7) for local MCMC algorithms (where applicable:
with optimized intrinsic parameters). a a tesc for the Kahle core (N = 96 disks). TheMetropolis algorithm and
straight ECMC show an algebraic scaling. Inset: log–lin plots suggesting logarithmic scaling for the forward,
reflective, and Newtonian ECMC. b tesc for the Böröczky core (N = 112 disks). Newtonian ECMC has
frequent gridlocks for small ε so that its logarithmic scaling is distorted. Error bars are smaller than the marker
sizes.

3.2.4 Escape Times: Synopsis of Numerical Results and Scaling Theory

Overall, escape times tesc(ε) (with intrinsic parameters optimized through a systematic scan
for the Metropolis algorithm and for straight ECMC) validate the algebraic scalings of
Eq. (13), on the one hand, and the logarithmic scaling of Eq. (14), on the other (see Fig. 6
for the escape times from ε-relaxed Böröczky configurations with k = 5 layers with either
the Kahle core or the Böröczky core). Our arbitrary-precision implementation of reflective,
forward, and Newtonian ECMC confirms their logarithmic scaling down to ε = 10−29.
Newtonian ECMC appears a priori as the fastest variant of ECMC. However, it frequently
gets gridlocked, i.e., trapped in circles of repeatedly active disks with a diverging event rate.
Gridlocks also rarely appear in straight and reflective ECMC. In runs that end up in gridlock,
escape times are very large, possibly diverging. (In Figs. 4 and 6, median escape times rather
than the means are therefore displayed for all algorithms. Mean and median escape times
are similar for the Metropolis algorithm and forward ECMC where gridlocks play no role.)
The gridlock rate increases with 1/ε. For the Kahle core, this effect is negligible for all ε.
For the Böröczky core, the gridlock rate of Newtonian ECMC is ∼ 30% for ε = 10−29 (see
Fig. 6b, the logarithmic scaling is distorted even for the median). We observe no clear depen-
dence of the gridlock rate on the floating-point precision of our arbitrary-precision ECMC
implementation, and it thus appears unlikely that gridlocks are merely numerical artifacts
(see Appendix A.3).

Gridlock is the very essence of ECMC dynamics from a locally stable Böröczky packing,
but it can also appear as a final state from an ε-relaxed Böröczky configurations. We observe
gridlocks in all hard-disk ECMCvariants that feature deterministic collision rules. Theywere
previously observed for straight ECMC from tightly packed initial configurations [27, Sect.
4.2.3]. Only forward ECMC with its event-based randomness is free of them. In a gridlock,
the event rate diverges at a given Monte-Carlo time, which then seems to stand still so that
no finite amount of Monte-Carlo time is spent in a configuration with contacts. Because
of the divergence of the event rate, gridlocks cannot be cured through resamplings at fixed
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Monte-Carlo-time intervals. To overcome them in Newtonian ECMC, which appears a priori
as the fastest of our ECMC variants, one can probably introduce event-based randomness as
is done in forward ECMC. Nevertheless, gridlocks play no role in large systems at reasonable
densities. Also, ECMC algorithms for soft potentials introduce randomness at each event so
that gridlocks should not appear.

4 Discussion

In the present section, we discuss our results for the escape times (Sect. 4.1), as well as
a number of more fundamental aspects of Böröczky packings in the context of MCMC
(Sect. 4.2). We in particular clarify why a packing effectively realizes an infinite-pressure
configuration that in a constant-pressureMonte-Carlo simulation is instantly relaxed through
a volume increase.

4.1 Escape Times: Speedups, Bottlenecks

ECMC is a continuous-time MCMC method, and its continuous Monte-Carlo time tMCMC

takes the place of the usual count of discrete-time Monte-Carlo trials. However, ECMC
is event-driven. The time t , and especially the escape time tesc, are integers, and they
count events. The computational effort in hard-disk ECMC is O (1) per event, using a cell-
occupancy system that is also implemented in the BigBoro software package. In several
of our algorithms, the times t and tMCMC are not proportional to each other, because the
free path (roughly equivalent to the Monte-Carlo time between events) evolves during each
individual run.

4.1.1 Range of Speedups

The speedup realized by lifted Markov chains, of which ECMC is a representative, corre-
sponds to the transition from diffusive to ballistic transport [6, 28, 29]. This speedup refers
to what we call the “Monte-Carlo time” tMCMC, that is the underlying time of the Markov
process, and not to the time t that is measured in events. For Markov chains in a finite sample
space Ω , the Monte-Carlo time for mixing of the lifted Markov chain cannot be smaller
than the square root of the mixing time for the original (collapsed) chain. The remarkable
power-law-to-logarithm speedup in ε realized by some of the ECMC algorithms concerns
escape times which measure the number of events. The Monte-Carlo escape times probably
conform to the mathematical bounds, although it is unclear how to approximate hard-disk
MCMC for ε → 0 through a finite Markov chain. Mathematical results for the Monte-Carlo
escape times from locally blocked configurations would be extremely interesting, even for
models with a restricted number of disks.

4.1.2 Space of "-Relaxed Böröczky Configurations

The definition of an ε-relaxed Böröczky configurations can be generalized. Equivalent legal
hard-disk configurations are obtained by reducing the disk radii and choosing random disk
positions in a circle of radius ε around the original disk positions in the Böröczky packing.
These configurations also feature the escape-time scalings given in Eqs. (13) and (14). Any
ε-relaxed Böröczky configurations is thus merely a sample in a space Bε of volume ∼ ε2N .
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For a given upper limit tcpu of CPU time at fixed N , this corresponds to a volume of Bε

(that cannot be escaped from in tcpu) scaling with the computer-time budget as ∼ t−3N
cpu for

the straight ECMC and scaling as ∼ exp
(−2Ntcpu

)

for the forward ECMC. We expect Bε

to have a double role, as a space of configurations that the Monte-Carlo dynamics cannot
practically escape from, but maybe also a space that it cannot even access. The volume of Bε

(with ε chosen such that it cannot be escaped from in a reasonable CPU time) as well as the
corresponding changes in the free energy per disk are probably unmeasurably small except,
possibly, at very small N . The existence of a finite fraction of sample space that cannot be
escaped from in any reasonable CPU time at finite N is however remarkable. InmanyMCMC
algorithms for physical systems, as for example the Ising model, parts of sample space are
practically excluded because of their lowBoltzmannweight, but they feature diverging escape
times only in the limit N → ∞.

In this context,wenote thatMarkov chains canbe interpreted in termsof a single bottleneck
partitioning the sample space into two pieces [26, Sect. 7.2]. The algorithmic stationary
probability flow across the bottleneck sets the conductance of an algorithm, which again
bounds mixing and correlation times. Ideally, MCMC algorithms would be benchmarked
through their conductances. In the hard-disk model, the bottleneck has not been identified, so
that the benchmarking and the analysis of MCMC algorithms must rely on empirical criteria.
However, Böröczky packings and the related ε-relaxed Böröczky configurations may well
model a bottleneck, from which the Markov chain has to escape in order to cross from one
piece of the sample space into its complement. The benchmarks obtained by comparing
escape times from an ε-relaxed Böröczky configurations may thus reflect the relative merits
of sampling algorithms.

4.2 Böröczky Packings and Local MCMC: Fundamental Aspects

We now discuss fundamental aspects of the present work, namely the question of the irre-
ducibility of local hard-sphere Markov chains and the connection with non-local MCMC
algorithms (see Sect. 4.2.1), as well as regularization of Böröczky packings and ε-relaxed
Böröczky configurations in the N PT ensemble (see Sect. 4.2.2).

4.2.1 Irreducibility of Local and Non-local Hard-Disk MCMC

Strictly speaking, ECMC can be irreducible only if Ω \B is connected, where B is a suitably
defined space of locally stable configurations. Packings in B (a space of low dimension) are
certainly invariant under any version of the ECMC algorithm, so that they cannot evolve
towards other samples in Ω . Connectivity in Ω \ B would at least assure that this space
can be sampled. In addition it appears necessary to guarantee that a well-behaved initial
configuration cannot evolve towards an ε-environment around B (e.g., the space Bε of ε-
relaxed Böröczky configurations that makes up a finite portion of Ω) or to gridlocks with
diverging event rates. These properties appear not clearly established for finite densities η and
for large N . In other models, for example the Ising model of statistical physics, irreducibility
can be proven for any N .

These unresolved mathematical questions concerning irreducibility do not shed doubt on
the practical usefulness of MCMC for particle systems. First, the concept of local stability is
restricted to hard disks and hard spheres (that is, to potentials that are either zero or infinite).
The phase diagram of soft-disk models can be continuously connected to the hard-disk case
[30]. For soft disks, irreducibility is trivial, but the sampling speed of algorithms remains
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crucial. Second, in applications, one may change the thermodynamic ensemble. In the N PT
ensemble, the central simulation box fluctuates in size and can become arbitrarily large. In
this ensemble, irreducibility follows from the fact that large enough simulation boxes are free
of steric constraints. Again, the question of mixing and correlation time scales is primordial.
Third, practical simulations that require some degree of irreducibility are always performed
under conditionswhere the simulation box houses a number of effectively independent copies
of the system. This excludes the crystalline or solid phases. Monte Carlo simulations of such
phases are more empirical in nature. They require a careful choice of initial states, and are
then not expected to visit the entire sample space during their time evolution. Fundamental
quantitative results can nevertheless be obtained [31].

In thiswork,we concentrate on localMCMCalgorithms, because global-move algorithms,
as the cluster algorithms in spin systems, rely onapriori probabilities formany-particlemoves
that appear too complicated. Also, global single-particle moves are related to the single-
particle insertion probabilities, in other words to fugacities (the exponential of the negative
chemical potential) that are prohibitively small. At lower (finite) densities, however, placing
at each time step a randomly chosen disk at a random position inside the box corresponds to
the Metropolis algorithm of Sect. 3.1.1 with a square-shaped displacement set and a range
δ = L/2. This non-local algorithm easily escapes from a Böröczky packing. Moreover, it is
proven to mix in O (N log N ) steps at densities η < 1/6 [8, 32] (see also [33]), a result that
implies that the liquid phase in the hard-disk system extends at least to the density η = 1/6
[8]. The density bound for the algorithm (which yields a bound for the stability of the liquid
phase) is much smaller than the empirical density bound for the liquid phase, at η � 0.70.
At this higher density, the global-move Metropolis algorithm and the more general hard-
disk cluster algorithm [34] are almost totally stuck. For applications, we imagine structures
resembling ε-relaxed Böröczky configurations to be backbones of configurations at high
density, where global moves cannot be used.

4.2.2 Böröczky Packings and the NPT Ensemble

The concepts of packings and of local and collective stability make sense only in the NVT
ensemble, that is, for a constant number of particles and for a simulation box with fixed
shape and volume (the temperature T = 1/β that appears in NVT plays no role in hard-
disk systems [14]). In the N PT ensemble, the pressure P is constant, and the size of the
simulation box may vary. The equivalence of the two ensembles is proven [35] for large N ,
so that the choice of ensemble is more a question of convenience than of necessity. As wewill
see, in the N PT ensemble, tiny relaxation parameters (as ε = 10−29 in Fig. 6) are instantly
relaxed to ε ∼ 10−3 for normal pressures and system sizes.

To change the volume at constant pressure, onemay, among others, proceed to “rift volume
changes” (see [36, Sect. VI]) or else to homothetic transformations of the central simulation
box. We discuss this second approach (see [14, Sect. 2.3.4]), where the disk positions (but
not the radii) are rescaled by the box size L as:

x = (x1, . . . , xN ) → α = (α1, . . . ,αN ) with αi = xi/L. (15)

Each configuration is then specified by an α vector in the 2N -dimensional periodic unit
square and an associated volume V = L2, which must satisfy V ≥ Vcut(α). A classic
MCMC algorithm [37] directly samples the volume at fixed α from a gamma distribution
above Vcut(α), below which (α, V ) ceases to represent a valid hard-disk configuration [14,
Eq. (2.19)]. Typical sample volumes are characterized by βP(V − Vcut) ∼ 1, and with
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V = (Lcut + ΔL)2, it follows that

ΔL

L
∼ ε ∼ 1

βPVcut
(at fixed α). (16)

This equation illustrates that a packing, with ε → 0, is realized as a typical configuration
only in the limit βP → ∞. For the Böröczky packings of Fig. 1, we have L � 20, and a
typical value for the pressure for hard-disk systems is βP ∼ 1, which results in ε ∼ 10−3.
In the N PT ensemble, as a consequence, escape times from a packing naturally correspond
to a relaxation parameter ε ∼ 1/(βPV ), in our example to tesc(ε ∼ 10−3), which is O (1).

The above N PT algorithm combines constant-volume NVT -type moves of α with the
mentioned direct-sampling moves of V at fixed α. In practice, however, N PT calculations
are rarely performed in hard-disk systems [38, 39]. This is because, as discussed in Eq. (16),
the expected single-move displacement in volume at fixed α is ΔV ∼ 1/(βP), so that
ΔV /V ∼ 1/N (because N ∼ V and βP ∼ 1). The fluctuations of the equilibrium volume
V eq (averaged over α) scale as

√
V eq, which implies ΔV eq/V eq ∼ 1/

√
N . The volume-

sampling algorithm requires ∼ N single updates of the volume to go from the 1/N scale of
volume fluctuations at fixed α to the 1/

√
N scale of the fluctuations of V eq at equilibrium.

This multiplies with the number of steps to decorrelate at a given volume. In practice, it has
proven more successful to perform single NVT simulations, but to restrict them to physical
parameterswhere the central simulation box houses a finite number of effectively independent
systems mimicking constant-pressure configurations.

5 Conclusion

Building on an early breakthrough by Böröczky, we have studied in this work locally stable
hard-disk packings. Böröczky packings are sparse, with arbitrarily small densities for large
numbers N of disks. We constructed different types of these packings to arbitrary precision
for finite N , namely Böröczky packings with the original Böröczky core [13] and those with
the Kahle core [17]. In addition to the core and the number k of layers, Böröczky packings
are defined by the convex polygonal chain which bounds their branches. We constructed
Böröczky packings in a continuous range of densities, andmade our software implementation
of the construction openly accessible. Böröczky packings are locally, but not collectively
stable. Using singular-value decomposition (in an implementation that is included in our
open-source software) we explicitly exposed the unstable collective modes. We furthermore
reduced the radius of Böröczky packings slightly, and determined the escape times from
ε-relaxed Böröczky configurations as a function of the parameter ε for a number of local
MCMCalgorithms, including several variants ofECMC, arbitrary-precision implementations
of which are also made openly available. Although the algorithms depart from each other in
seemingly insignificant details only,wewitnessedwidely different escape times, ranging from
1/ε to log(1/ε). Our theory suggested that the significant speedup of some of the algorithms
is rooted in their event-driven nature coupled to their lack of an intrinsic scale. We noted that
the space of ε-relaxed Böröczky configurations is a finite portion of the sample space, and that
a given computer-time budget implies such a finite fraction of sample space that is practically
excluded in local MCMC at finite N . Here, the excluded volume only vanishes in the limit
of infinite CPU time. More generally, connectedness of the hard-disk sample space is not
proven. We pointed to the importance of statistical ensembles to reconcile the possible loss
of irreducibility with the proven practical usefulness of local hard-disk MCMC algorithms.
Although Böröczky packings or ε-relaxed Böröczky configurations are sparse, they could
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form the locally stable (or almost locally stable) backbones of hard-disk configurations at
the much higher density which are of practical interest.

We expect the observed differences in escape times to carry over to real-world ECMC
implementations. Qualitatively similar performance differences were already observed in
autocorrelation times of hard-disk dipoles [25]. In statistical mechanics, bottlenecks and
escape times possibly play an important role in polymer physics and complex molecular
systems and some of the algorithms studied here may find useful applications. Escape times
may also play an important role in the study of glasses and in granular matter, where the
high or even infinite pressures favor local configurations that resemble the mutually blocked
disks in the ε-relaxed Böröczky configurations. We finally point out that the very concept of
locally stable packings naturally extends to higher dimensions.
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A Escape Times, Resamplings and Gridlocks

In this appendix we collect a number of numerical results that support statements made in
the main text.

A.1 Critical MaximumNearest-Neighbor Distance

In the escape time tesc of Eq. (10), the parameter γ sets the criticalmaximumnearest-neighbor
distance d(t) for the escape from an ε-relaxed Böröczky configurations. In Sect. 3.2, we use
γ = 0.1 which corresponds to a 10%-increase of the initial value d(t = 0) = 2. Using the
alternative value γ = 0.025, we find that the escape time of straight ECMC again varies
algebraically as tesc ∼ ε−2/3 and, for forward, reflective, and Newtonian ECMC we again
find tesc ∼ ln(1/ε) (see Fig. 7). Our conclusions thus appear robust with respect to the value
of γ .
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A.2 Escape Times with Resamplings

The reflective, forward and Newtonian variants of ECMC, at a difference of straight ECMC,
appear to not always require resampling. In the main text, we therefore use τchain = ∞,
which, given our discussion in Sect. 3.1, is appropriate. Moreover, resamplings after chain
times τchain considerably deteriorate the escape time for all three variants (see Fig. 8). This
again illustrates the power of liftedMarkov chains, inwhich the proposedmoves are correlated
over long Monte-Carlo times.

A.3 Gridlock Rates with Different Numerical Precisions

The straight, reflective, and Newtonian variants of ECMC feature deterministic collision
rules, and they may run into gridlocks if started from ε-relaxed Böröczky configurations for
very small ε (see Sect. 3.2.4). In a gridlock, the active-disk label loops through a subset of

Fig. 7 Median escape times tesc from k = 5 ε-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter φ = 0.7, N = 96 disks) for ECMC algorithms. Solid
curves use γ = 0.1 for the definition of tesc (as in Sect. 3.2), dashed curves use γ = 0.025 (see Eq. (10)).
For both values of γ , straight ECMC with optimized chain time τchain shows algebraic scaling with identical
exponents, whereas forward, reflective, and Newtonian ECMC scale logarithmically. Error bars are smaller
than the marker sizes

chain

chain

Fig. 8 Median escape times tesc from k = 5 ε-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter φ = 0.7, N = 96 disks) for forward, reflective, and
Newtonian ECMC vs. chain time τchain for two different relaxation parameters ε. Horizontal lines indicate
the escape times without any resamplings. Error bars are smaller than the marker sizes
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Fig. 9 Gridlock rate of Newtonian ECMC simulations with different numerical precisions starting from a
k = 5 ε-relaxed Böröczky configurations (Böröczky core and convex geometric chain Ageo with attenuation
parameter φ = 0.7, N = 112 disks). The inset shows the gridlock rate as a function of 1/ε for the Newtonian
ECMC simulations with 200 mantissa bits that were used to measure the escape times in Fig. 6b

the N disks which are in contact. The event rate diverges, and so does the CPU time spent in
the gridlock. The Monte-Carlo time, however, stands still. Newtonian ECMC starting from
k = 5 ε-relaxed Böröczky configurations with the Böröczky core appears particularly prone
to gridlocks.

It remains an open question whether gridlocks are a numerical artifact related to the finite-
precision computer arithmetic. In our arbitrary-precision BigBoro software, the number of
mantissa bits (in base 2) can be set freely. We have studied the gridlock rate of Newtonian
ECMC (the fraction of simulations that run into gridlock) for the problematic k = 5 ε-relaxed
Böröczky configurations (using the convex geometric chainAgeo with attenuation parameter
φ = 0.7) with the Böröczky core, and observed no clear influence of the numerical precision.
It thus appears unlikely that gridlocks are a precision issue (see Fig. 9).

B BigBoro Software Package: Outline, License, Access

The BigBoro software package is published as an open-source project under the GNU
GPLv3 license. It is available on GitHub as part of the JeLLyFysh organization.1

The software package consists of three parts: First, the arbitrary-precision Python script
construct_packing.py constructs finite-N Böröczky packings of hard disks in a peri-
odic square box. Second, the Python script collective_escape_modes.py computes
collective infinitesimal displacements of hard disks in a packing that result in an escape.
Third, the arbitrary-precision Go application go-hard-disks performs hard-disk ECMC
simulations that may start from ε-relaxed Böröczky configurations derived from Böröczky
packings.

B.1 Python Script construct_packing.py

The arbitrary-precision Python script construct_packing.py implements the con-
struction of Böröczky packings. It allows for the Böröczky or Kahle cores (see Sect. 2.1.1),
and connects them to branches with a finite number of layers (see Sect. 2.1.3). The con-

1 The url of repository is https://github.com/jellyfysh/BigBoro.
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vex geometric chain Ageo with different attenuation parameters φ, and the convex circular
chain Acirc are implemented (see Sect. 2.2.1). The core, the number of layers, and the con-
vex polygonal chain are specified using command-line arguments. The construction of the
Böröczky packings uses arbitrary-precision decimal floating-point arithmetic. Two additional
command-line options specify the number of decimal digits, and the precision of the bisection
search for the value g<

2 that renders the Böröczky packing compatible with periodic boundary
conditions (see Sect. 2.1.3). The final configuration and its parameters (as for example the
system length) are stored in a human-readable format in a specified output file.

The example_packings directory of BigBoro contains several Böröczky packings
in corresponding subdirectories (as for example kahle_geometric_5). The headers of
these files contain the values of the command-line arguments for construct_packing.
py. A plot of each example configuration is provided. The different packings in kahle_
geometric_5 and boro_geometric_5 (see Fig. 1) were used in this work. Although
the bisection search for the construction of theBöröczkypacking usually requires an increased
precision, the high-precision packings with small enough number of layers may be used as
input for standard double-precision applications. For simplicity and improved readability,
we provide packing_double.txt files that store the configurations in double precision,
where applicable.

B.2 Python Script collective_escape_modes.py

The double-precision Python script collective_escape_modes.py identifies the
orthonormal basis vectors of the escape matrix Mesc from a packing x (see Eq. (6)) that
have zero singular values. Afterwards, these modes are classified using the cost function in
Eq. (8). The resulting basis vectorsΔa form the solution space for 2N -dimensional displace-
mentsΔ = {Δx

1,Δ
y
1,Δ

x
2,Δ

y
2, . . .} that have a vanishingfirst-order term inEq. (5) and thus for

collective infinitesimal displacements Δ of all disks that escape from the packing. The basis
vectorsΔa are stored in a human-readable output file, and optionally represented as in Fig. 2.
The input filename of the packing, and the output filename for the collective escape modes
are specified in command-line arguments. Further optional arguments specify the filename
for the plots of the escape modes, and the system length of the central simulation box (that
is unnecessary for packings generated by the Python script construct_packing.py in
which case the system length is parsed from the packing file).

B.3 Go Application go-hard-disks

The Go application go-hard-disks relies on a cell-occupancy system for the efficient
simulations of large-N hard-disk systems using several variants of the ECMC algorithm.
Straight, reflective, forward, and Newtonian ECMC are implemented. After each sampling
interval, it samples the maximum nearest-neighbor distance d(t) (see Eq. (9)). All compu-
tations use a fixed number of mantissa bits (in base 2) that may exceed the usual 24 or 53
bits for single- or double-precision floating-point values. The ECMC variant, its parameters
(as for example the sampling time or chain time), and further specifications (the number of
mantissa bits, the cell specifications, the filename for the initial configuration, etc.) are again
set using command-line arguments.
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