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Abstract001

In-context learning (ICL) has emerged as a key002
capability that enables large language models003
(LLMs) to adapt effectively to specific tasks,004
offering both flexibility and improved perfor-005
mance. Recent advancements in extending006
the context window allow LLMs to process007
longer sequences, enabling them to benefit008
from many-shot in-context learning, which has009
shown to further enhance their performance.010
To systematically evaluate this emerging many-011
shot capability, we introduce MICLBench, a012
Many-shot ICL Benchmark spanning four core013
categories—classification, translation, summa-014
rization, and question answering—across 14015
diverse tasks, unified under a standardized016
prompt and API framework. This benchmark017
is used to evaluate over 19 high-performance018
models, including both proprietary and open-019
source ones. Our experiments yield critical in-020
sights: (i) most models can benefit from many-021
shot ICL across various tasks, (ii) many-shot022
prompts are more effective for tasks that are023
coarse-grained and require less reasoning, and024
(iii) performance in the few-shot scenario is not025
necessarily positively correlated with the ability026
to effectively utilize many-shot prompts. The027
benchmark highlights pronounced performance028
disparities across tasks and models in many-029
shot settings, while exposing limitations in cur-030
rent LLMs’ ability to harness escalating context031
examples. These findings provide actionable032
pathways for advancing models to better lever-033
age expanding context windows. By offering a034
rigorous, automated evaluation framework, this035
work underscores the challenges and opportuni-036
ties in scaling in-context learning to many-shot037
paradigms. The code is available at https://038
anonymous.4open.science/r/MICLBench.039

1 Introduction040

With the rapid scaling of model and data sizes,041

large language models (LLMs) have demonstrated042

enhanced linguistic capabilities and broader knowl-043

edge bases compared to traditional models. A key044

feature is In-Context Learning (ICL), which en- 045

ables LLMs to learn from a few examples provided 046

within a given context (Brown et al., 2020; Chowd- 047

hery et al., 2023). This ability allows LLMs to 048

perform a variety of complex tasks without requir- 049

ing fine-tuning (Wei et al., 2022). Initially, early 050

research focused primarily on the few-shot scenario, 051

constrained by the limited context length (Mavro- 052

matis et al., 2023; Liu et al., 2021). 053

Recent advancements (Chen et al., 2023; Peng 054

et al., 2023; Ding et al., 2024), which expands 055

the context window size, have paved the way for 056

research in long-context settings. This has given 057

rise to many-shot ICL, where a significantly larger 058

number of examples are provided within a single 059

context window. Many-shot ICL has attracted con- 060

siderable attention (Bertsch et al., 2024b; Agarwal 061

et al., 2024), as it has demonstrated the potential 062

to enhance LLM performance across tasks, high- 063

lighting their ability to comprehend and learn from 064

a rich set of examples within a given context. This 065

capability is particularly valuable for real-world 066

applications, such as document analysis, story gen- 067

eration, and specialized knowledge comprehension, 068

and offers an alternative to traditional fine-tuning. 069

Despite these advances, evaluating LLMs’ abil- 070

ity to leverage long-context many-shot learning 071

remains fragmented. Existing benchmarks often 072

focus on retrieving information from extended con- 073

texts (e.g., needle-in-a-haystack tasks (Song et al., 074

2025)) or solving long-dependency questions (Li 075

et al., 2024a). Critical gaps persist in assessing 076

how effectively models learn from abundant in- 077

context examples to generalize to new cases. Prior 078

efforts (Lee et al., 2024; Li et al., 2024b) have 079

explored many-shot capabilities but lack task di- 080

versity, standardized evaluation protocols, and scal- 081

ability to extreme context lengths, limiting their 082

utility for holistic analysis. 083

To address these challenges, we introduce MI- 084

CLBench, a comprehensive benchmark designed to 085
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assess the ability of LLMs to leverage many-shot086

examples. The benchmark spans four core cate-087

gories—classification, translation, summarization,088

and question answering—across 14 diverse tasks,089

all unified under a standardized prompt and API090

framework. Hence it enables systematic evalua-091

tion of LLMs’ ability to harness escalating context092

lengths (up to millions of tokens). We evaluate093

19 state-of-the-art models, including both propri-094

etary and open-source architectures, through an095

automated pipeline with established metrics (e.g.,096

Rouge-L (Lin, 2004), chrF2++ (Popović, 2017),097

accuracy). Our experiments reveal three critical in-098

sights:(i) most models can benefit from many-shot099

ICL across various tasks, (ii) many-shot prompts100

are more effective for tasks that are coarse-grained101

and require less reasoning, and (iii) performance102

in the few-shot scenario is not necessarily posi-103

tively correlated with the ability to effectively uti-104

lize many-shot prompts. These findings underscore105

pronounced performance disparities across tasks106

and models, exposing limitations in current LLMs’107

capacity to exploit many-shot examples despite ex-108

tended context windows.109

For evaluation, we have implemented an auto-110

mated pipeline for each scenario, employing estab-111

lished and reliable metrics such as Rouge-L (Lin,112

2004), chrF2++ (Popović, 2017), and accuracy.113

This approach offers a straightforward and efficient114

method for benchmarking other models.115

In short, our work makes the following contribu-116

tions:117

• The MICLBench: A rigorous evaluation118

framework for many-shot ICL, spanning 14119

tasks across four categories critical for real-120

world generalization. The benchmark in-121

cludes standardized prompts and scalable122

methodologies to extend examples to extreme123

context lengths.124

• Automated Evaluation Pipeline: A unified125

API and metrics pipeline for efficient, repro-126

ducible benchmarking of diverse LLMs.127

• Empirical Analysis: Comprehensive eval-128

uation of 19 LLMs, revealing performance129

trends, architectural limitations, and action-130

able pathways to improve context utilization.131

By bridging gaps in task diversity, scalability,132

and standardization, MICLBench provides a foun-133

dation for advancing models to better leverage ex-134

panding context windows, while highlighting chal- 135

lenges in many-shot learning. At the same time, 136

MICLBench also provides a new perspective to eval- 137

uate LLM’s long context capability. 138

2 Related Work 139

Our work is closely related with the long context 140

LLMs and the many-shot in context learning. 141

Long-context language models. Recent advances 142

in extending LLMs’ context windows have en- 143

abled many-shot in-context learning (ICL). Key 144

approaches include architectural innovations like 145

Rotary Position Embedding (RoPE) extrapola- 146

tion (Chen et al., 2023; Zhu et al., 2024) and 147

dynamic token compression (Tworkowski et al., 148

2024), as well as efficiency-focused methods such 149

as retrieval-augmented caching (Bertsch et al., 150

2024a) and infinite attention mechanisms (Mar- 151

tins et al., 2022). These techniques allow models 152

like CodeLlama (Rozière et al., 2024) and Mistral- 153

8x22B to process inputs exceeding 1M tokens, 154

making many-shot ICL feasible. 155

Concurrently, benchmarks for long-context un- 156

derstanding have emerged, focusing on tasks like 157

retrieval (e.g., needle-in-a-haystack (Song et al., 158

2025)), summarization (Bai et al., 2024), and com- 159

plex reasoning over extended texts (Li et al., 2024a). 160

While these evaluate information extraction or de- 161

pendency resolution, they do not assess how mod- 162

els learn from abundant in-context examples to 163

solve unseen problems—a critical gap given many- 164

shot ICL’s potential to replace fine-tuning (Agarwal 165

et al., 2024). Recent studies (Lee et al., 2024; Li 166

et al., 2024b) explore many-shot performance but 167

are limited to narrow tasks (e.g., classification) or 168

fail to standardize evaluation across scales. 169

Our work bridges these gaps by introducing a 170

unified benchmark for many-shot ICL across clas- 171

sification, translation, summarization, and question 172

answering—domains where systematic learning 173

from examples is essential but underexplored. 174

Many-shot in context learning. Many-shot ICL, 175

which leverages hundreds to thousands of in- 176

context examples, has emerged as a promising 177

paradigm to reduce reliance on fine-tuning while 178

maintaining task flexibility. Enabled by advances 179

in long-context LLMs (e.g., Gemini 1.5 (Agarwal 180

et al., 2024)), recent work explores its potential and 181

limitations. For instance, Bertsch et al. (2024b) 182

demonstrate that many-shot ICL rivals fine-tuned 183

Llama2 on select tasks, while Baek et al. (2025) 184
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find minimal gains from advanced example selec-185

tion strategies for most many-shot tasks.186

Existing benchmarks, however, remain narrow187

in scope. LOFT (Lee et al., 2024) focuses on classi-188

fication and QA with contexts ≤32K tokens, while189

LongICLBench (Li et al., 2024b) tests extreme-190

label classification up to 50K tokens. These lack191

task diversity (e.g., summarization, question an-192

swering) and fail to stress-test modern LLMs sup-193

porting million-token contexts.194

Our benchmark addresses these gaps by span-195

ning classification, translation, summarization, and196

question answering tasks, scaling to 128K+ tokens.197

It offers a comprehensive framework for evaluat-198

ing the learning abilities of LLMs across diverse199

domains within the many-shot setting.200

3 MICLBench Construction201

Scenario Task Data Source Avg. Length

Translation

Bemba FLORES-200 (Team et al., 2022) 91
Kurdish FLORES-200 (Team et al., 2022) 90
French FLORES-200 (Team et al., 2022) 73
German FLORES-200 (Team et al., 2022) 73

Summarization
News XLSum (Narayan et al., 2018) 587
Dialogue DialogSum (Chen et al., 2021) 232
Bill BillSum (Eidelman, 2019) 2310

Classification
Sentiment Yelp Review Full (Zhang et al., 2015) 180
Topic Yahoo Answers (Zhang et al., 2015) 135
Intent Banking77 (Casanueva et al., 2020) 25

Question
Answering

Science GPQA (Rein et al., 2023) 412
Medical MedMCQA (Pal et al., 2022) 180
Retrieval PubMedQA (Jin et al., 2019) 405
Commonsense CommonsenseQA (Talmor et al., 2019) 47

Table 1: Task descriptions in the MICLBench. The
MICLBench includes 4 scenarios and 14 tasks, with
each task showing its data source and average example
length.

To simulate real-world many-shot utilization,202

we developed four scenarios and 14 tasks, includ-203

ing translation, summarization, classification, and204

cross-domain question answering. For most tasks,205

we provide enough examples to reach at least 128k206

tokens, aligning with typical LLM context win-207

dows and supporting scalability. However, we208

limit the number of examples in experiment to209

a few hundred, balancing few-shot learning and210

full fine-tuning while prioritizing performance and211

efficiency, particularly in key-value caching for in-212

context examples. A list of tasks is provided in213

Table 1.214

3.1 Problem Definition215

The many-shot regime involves providing hundreds216

or thousands of example demonstrations within217

a single context window (Agarwal et al., 2024).218

The prompts consist of three main components: a219

preamble outlining the task and answer format, the 220

many-shot context with separated examples, and 221

the final question for the model to answer. 222

In this setup, only the final question varies across 223

evaluations, while the preamble and many-shot con- 224

text remain constant. Typically, the preamble and 225

final question are brief, with the many-shot context 226

being the longest and comprising the majority of 227

the input. The detailed prompt format for each task 228

is shown in Appendix A. 229

3.2 Datasets Construction 230

Summarization Summarization tasks are crucial 231

for information extraction and content condensa- 232

tion in various applications. To assess the ability of 233

LLMs to summarize texts across domains and vary- 234

ing lengths in a many-shot scenario, we classify 235

the articles into three categories: News, Bills, and 236

Dialogues. Notably, Bill summaries are typically 237

much longer, presenting challenges in managing 238

extended contexts while ensuring summary clarity. 239

For each dataset, we sample 100 test queries. 240

Summarization performance is evaluated using the 241

Rouge-L score (Lin, 2004), which measures the 242

overlap between generated summaries and refer- 243

ence texts, ensuring content relevance and similar- 244

ity. 245

Translation Translation performance offers in- 246

sights into a model’s ability to handle linguistic 247

diversity, essential for advancing multilingual ap- 248

plications. To examine the impact of pretraining 249

data scale on LLMs performance in many-shot 250

scenarios, we design tasks for both low-resource 251

languages (Bemba, Northern Kurdish) and high- 252

resource languages (French, German). 253

For each language, we sample 100 test queries. 254

Translation quality is assessed using the chrF2++ 255

score (Popović, 2017), a reliable metric that eval- 256

uates character and word-level similarities across 257

languages with varying resources. 258

Classification The classification scenario includes 259

three tasks: Intent, Sentiment, and Topic Classifica- 260

tion, offering a comprehensive benchmark across 261

diverse linguistic and contextual domains. With la- 262

bel sets ranging from 5 to 77 categories, the dataset 263

allows for a thorough evaluation of LLMs’ ability 264

to identify nuanced patterns in text classification. 265

For each task, we curate test queries to ensure 266

full representation of all label categories. To avoid 267

attributing performance gains to the model’s unfa- 268

miliarity with the label space, we include all pos- 269

sible labels in the prompt preamble. Performance 270
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is evaluated using accuracy, a reliable metric for271

classification.272

Question Answering The question answering sce-273

nario includes four tasks: Natural Science, Medi-274

cal, Commonsense, and Retrieval, ensuring a com-275

prehensive evaluation across diverse reasoning do-276

mains. All tasks involve answering questions277

directly, except for Retrieval, which requires re-278

sponses based on provided research papers. Ratio-279

nale is given for answers in Science, Medical, and280

Retrieval tasks, but not in Commonsense. This de-281

sign allows for a thorough evaluation of reasoning282

capabilities and analysis of how different strategies283

impact performance in many-shot settings. Reason-284

ing is fundamental for advanced AI applications,285

making this scenario a key benchmark for assess-286

ing LLMs’ cognitive processes across real-world287

domains.288

To ensure reliability, we select test queries that289

cover all relevant subthemes, minimizing assess-290

ment errors. All tasks are formatted as multiple-291

choice questions for consistency, allowing accuracy292

to be directly measured by the proportion of correct293

responses.294

4 Evaluation295

4.1 Experiment Setup296

Evaluated Models To examine the influence of297

LLMs’ internal capabilities on their performance298

in a many-shot learning regime, we selected 19299

widely used LLMs with long-context capabilities.300

This selection includes both open-source models,301

such as LLaMA (Dubey et al., 2024), Qwen (Qwen302

et al., 2025), Mistral (Jiang et al., 2023) and Mix-303

tral (Jiang et al., 2024), as well as proprietary mod-304

els, specifically GPT-4o-mini-0718 (Achiam et al.,305

2023), Gemini-1.5-Pro (Team et al., 2024), and306

Claude-3.5-Sonnet (The). These models encom-307

pass a broad range of parameter sizes and context308

window lengths (ranging from 32k to 2M tokens).309

A comprehensive list of the evaluated models is310

presented in Table 2 and Table 3311

Example Selection Due to the limitations of con-312

text window size in early LLMs, much prior re-313

search has focused on strategies for selecting ex-314

amples in the few-shot regime (An et al., 2023;315

Mavromatis et al., 2023). However, with the rapid316

expansion of context lengths, several recent studies317

have shown that various sample selection strate-318

gies do not result in statistically significant gains319

in the many-shot scenario (Bertsch et al., 2024b;320

Baek et al., 2025). In light of this, we focus on 321

utilizing randomly sampled demonstrations from 322

the dataset, as this approach enhances efficiency 323

through key-value caching of in-context examples. 324

To ensure that the context captures a broader range 325

of information as the number of demonstrations 326

increases, we incrementally introduce additional 327

examples into the context, thereby increasing the 328

number of shots. 329

Evaluation Methods and Metrics Our evaluation 330

framework includes 4 scenarios and 14 tasks, sup- 331

ported by an automated grading pipeline for effi- 332

ciency and precision. In summarization, we use the 333

ROUGE-L metric to measure the longest common 334

subsequence between reference and generated sum- 335

maries. For translation, we employ the chrF2++ 336

score, assessing character- and word-level n-gram 337

overlaps. In classification and question answering, 338

we use exact match scores. To address varying 339

answer formats, we conduct multiple rounds of 340

answer extraction for improved accuracy. 341

To mitigate the impact of random sample selec- 342

tion on the trend from the few-shot to the many- 343

shot regime, we use five randomly selected subsets 344

of the prompt datasets and average the results for 345

open-source models. For efficiency, the experiment 346

is conducted once when assessing proprietary mod- 347

els. 348

4.2 Results on MICLBench 349

The primary results are presented in Table 2 and 350

Table 3. In the following section, we offer a com- 351

prehensive analysis of these findings. 352

Model Size We categorize open-source models into 353

two groups based on size: small (0.5B-14B) and 354

large (32B-72B). While closed-source and larger 355

models typically outperform smaller ones across 356

most tasks, our analysis of many-shot prompt uti- 357

lization reveals more nuanced findings. Specifi- 358

cally, smaller models often benefit from many-shot 359

in-context learning and can even outperform larger 360

models in a few-shot setting. For instance, in the 361

Bemba task, Qwen2.5-3B-Instruct achieves a top 362

score of 20.46 at 200 shots, whereas Qwen2.5-7B- 363

Instruct scores 18.49 at 5 shots. This suggests that, 364

in some cases, smaller models can achieve target 365

performance by simply providing sufficient exam- 366

ples. This observation also applies to base models 367

and those with supervised instruction tuning. The 368

latter consistently outperform their base counter- 369

parts in a few-shot setting, while base models grad- 370

ually improve their ability to follow instructions 371
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Translation Summarization

Model Context Window
Bemba Kurdish French German News Dialogue Bill

5-shots Best 5-shots Best 5-shots Best 5-shots Best 5-shots Best 5-shots Best 1-shots Best

Gemini-1.5-pro 2M 35.58 43.49(800) 39.16 41.67(800) 72.65 72.65(5) 65.54 65.99(800) 0.3109 0.3986(75) 0.3389 0.3893(50) 0.2841 0.3291(10)
Claude-3.5-Sonnet 200k 38.73 43.95(200) 38.89 40.74(200) 70.92 71.77(100) 66.00 67.61(1000) 0.2616 0.3552(25) 0.3093 0.3595(400) 0.2243 0.2930(40)
GPT-4o-mini-0718 128k 24.79 31.18(1000) 30.00 32.92(1000) 70.80 72.03(100) 65.12 65.18(1) 0.2148 0.2278(10) 0.2973 0.3224(400) 0.2165 0.2486(5)

Qwen2.5-0.5B-Inst. 32k 10.02 14.73(50) 7.317 11.41(200) 47.23 47.66(50) 36.61 37.22(50) 0.1857 0.2338(25) 0.1595 0.2927(100) 0.1272 0.2237(10)
Qwen2.5-1.5B-Inst. 32k 11.95 16.40(200) 9.498 13.79(200) 57.17 57.17(5) 46.91 47.08(200) 0.2555 0.2724(25) 0.2497 0.3474(100) 0.1807 0.1807(1)
Qwen2.5-3B-Inst. 32k 13.36 20.46(200) 10.63 15.25(200) 61.46 62.30(200) 50.90 52.44(100) 0.2491 0.2895(25) 0.2201 0.3370(50) 0.1672 0.2550(10)
Qwen2.5-7B 128k 12.88 22.81(500) 10.91 17.99(500) 63.57 64.21(200) 55.48 56.30(1000) 0.3188 0.3309(50) 0.3255 0.3376(25) 0.2859 0.2903(10)
Qwen2.5-7B-Inst. 32k 18.49 24.27(200) 16.07 18.91(200) 63.97 64.62(50) 54.68 55.65(50) 0.2988 0.3203(25) 0.3165 0.3562(100) 0.2534 0.2722(10)
Mistral-7B-Inst.-v0.2 32k 17.20 23.36(200) 15.14 18.73(200) 63.57 64.74(50) 54.79 55.34(50) 0.3134 0.3248(25) 0.3210 0.3521(100) 0.2637 0.2758(5)
Ministral-8B-Inst.-2410 32k 12.51 18.40(200) 23.18 25.34(200) 68.92 69.41(50) 60.88 60.92(25) 0.3032 0.3143(25) 0.3347 0.3584(25) 0.2666 0.2953(10)
Llama-3.1-8B-Inst. 128k 14.88 29.48(1000) 24.65 28.29(800) 66.83 66.85(25) 59.25 59.49(1) 0.3047 0.3167(50) 0.3337 0.3419(10) 0.1871 0.2992(30)
Qwen2.5-14B-Inst. 32k 15.83 24.17(200) 19.01 21.89(200) 65.79 66.81(1) 59.70 60.42(200) 0.3296 0.3353(10) 0.3067 0.3652(100) 0.2080 0.2625(10)

Qwen2.5-32B 128k 13.16 29.83(500) 17.38 25.64(500) 63.59 68.83(25) 60.46 61.13(50) 0.3557 0.3746(75) 0.3306 0.3499(400) 0.2932 0.3005(5)
Qwen2.5-32B-Inst. 32k 17.39 26.11(200) 20.12 25.00(200) 63.01 68.45(100) 57.65 61.26(100) 0.2809 0.3539(25) 0.2612 0.3582(100) 0.2409 0.2849(10)
Mixtral-8x7B-Inst.-v0.1 32k 18.83 24.85(200) 18.82 21.07(200) 68.88 69.53(50) 62.33 63.26(200) 0.3522 0.3603(25) 0.3445 0.3676(100) 0.2823 0.2841(5)
Llama-3.1-70B-Inst. 128k 21.99 36.34(800) 35.05 36.98(500) 70.04 70.40(1) 62.42 63.50(500) 0.3256 0.3574(100) 0.3473 0.3503(200) 0.2664 0.3323(35)
Llama-3.3-70B-Inst. 128k 24.18 36.36(800) 34.16 36.77(800) 70.20 70.20(5) 63.72 64.18(25) 0.3211 0.3615(100) 0.3460 0.3536(300) 0.2594 0.3361(30)
Qwen2.5-72B 128k 15.02 28.06(800) 20.27 26.54(500) 69.95 70.61(800) 62.40 62.89(25) 0.3700 0.3908(50) 0.3460 0.3497(10) 0.3147 0.3298(35)
Qwen2.5-72B-Inst. 32k 19.32 27.09(200) 21.82 25.77(200) 67.95 69.22(25) 60.65 62.26(25) 0.3173 0.3572(25) 0.2810 0.3623(50) 0.2679 0.3438(10)

Table 2: Performance of Translation and Summarization tasks. The scores for the few-shot regime (mostly 5-shot,
except for the Bill task, which uses 1-shot due to the length of the examples in the Bill dataset—each example
is much longer, so 50 examples already account for nearly 128k tokens) and the best performance for each task
are displayed. The numbers in parentheses indicate the corresponding shot count. The best scores are highlighted
in bold when the shot count exceeds 50 (except for the Bill task, where the boundary is set to 25), marking the
transition from few-shot to many-shot. Notably, for the Qwen2.5 Instruct series, we maintained a context window of
32k tokens, but used the rope scaling parameter to extend it to 128k tokens in the Exploratory Insight.

and learn the answer format as the number of exam-372

ples increases, as seen in tasks like Kurdish (e.g.,373

Qwen2.5-32B vs. Qwen2.5-32B-Instruct). This374

suggests that a model’s performance in a few-shot375

setting does not necessarily predict its ability to376

learn from many-shot prompts. Models with vary-377

ing few-shot performance can be comparable or378

even have their rankings reversed when evaluated379

with many-shot prompts.380

Training Data Size The scale of pre-training data,381

which influences the internal knowledge of specific382

tasks, significantly affects the ability of LLMs to383

utilize many-shot prompts. As demonstrated in384

the results for translation, the improvement in low-385

resource translation tasks is considerably greater386

when transitioning from few-shot to many-shot,387

compared to high-resource translation tasks, where388

many models show only marginal gains with few-389

shot prompts. This can be attributed to the fact that390

LLMs are likely trained on large datasets, exposing391

them to numerous examples of similar tasks. As392

a result, their ability to improve further is limited,393

as they have already learned most of the relevant394

patterns from the data.395

Task Difficulty Intuitively, it is difficult for a model396

to extract useful information from the given con-397

text if the task’s difficulty exceeds the model’s up-398

per capacity limit. As observed in the summariza-399

tion scenario, models with large context windows 400

(which can handle more than 50 examples) gener- 401

ally show improved performance with many-shot 402

prompts in the News and Dialogue tasks. However, 403

they struggle with the Bill task. As the example 404

length increases, the model’s ability to effectively 405

learn from the context diminishes. Despite this, the 406

largest models still demonstrate potential benefits 407

from many-shot prompt, suggesting that as model 408

capabilities grow, there may be further opportuni- 409

ties for performance improvements. 410

When evaluating large models on simpler tasks, 411

we find that larger models benefit from many-shot 412

prompting in the Science task, while smaller mod- 413

els show greater improvement in the Medical task. 414

This difference is likely due to the increased com- 415

plexity of the Science dataset, which presents chal- 416

lenges for smaller models. In contrast, larger mod- 417

els may reach performance saturation on the rel- 418

atively simpler Medical task, where many-shot 419

prompt can disrupt their responses and degrade 420

final scores. 421

Task Categories Many-shot prompting signifi- 422

cantly improves performance in tasks such as Low- 423

resource Translation, Dialogue Summarization, 424

Classification and Retrieval, with results strongly 425

tied to task categories. It appears particularly effec- 426

tive for humanities and social sciences tasks, which 427
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are generally coarse-grained and require less rea-428

soning. In contrast, fine-grained tasks like science429

question answering, which demand step-by-step430

reasoning, may offer more potential for improve-431

ment. Notably, some models show strong perfor-432

mance in retrieval tasks, demonstrating the value of433

leveraging long-context capabilities in many-shot434

settings for short-dependency question answering.435

However, the reasons behind the consistent perfor-436

mance increase in tasks like Bemba Translation437

and Intent Classification remain unclear and war-438

rant further exploration.439

Role of Rationale For the Commonsense task, un-440

like previous datasets, we did not provide ratio-441

nales, nor did we use a “think step by step” prompt,442

allowing the LLMs to generate answers directly.443

Surprisingly, several models still showed perfor-444

mance improvements. This aligns with the findings445

of Agarwal et al. (2024), who demonstrate the446

effectiveness of “Unsupervised ICL”, where the447

prompt is provided without the answer, suggesting448

the need for further investigation into the necessity449

of rationales and answers in many-shot settings.450

4.3 Exploratory Insight451

In this section, we conduct a comprehensive anal-452

ysis of the factors that significantly influence the453

performance of LLMs in the many-shot regime,454

exploring these factors from multiple perspec-455

tives. We identify distinct characteristics that456

may provide valuable insights for advancing many-457

shot performance and facilitating the expansion of458

LLMs’ context window size. To ensure the relia-459

bility of our results, we evaluate two widely used460

models—LLaMA-3.1-8B-Instruct and Qwen2.5-461

7B-Instruct—and select some representative tasks462

from 4 scenarios for testing.463

4.3.1 Robustness to Example Order464

The large number of examples in many-shot sce-465

narios raises important questions about the impact466

of example order , factor that have been shown to467

play a crucial role in few-shot scenarios (Lu et al.,468

2022; Xiang et al., 2024).469

Several studies (Agarwal et al., 2024; Bertsch470

et al., 2024b; Baek et al., 2025) have investigated471

the effect of example order. However, Agarwal472

et al. (2024) and Baek et al. (2025) focus solely on473

the many-shot regime without comparing it to the474

few-shot setting, while Bertsch et al. (2024b) limit475

their analysis to classification tasks. To comprehen-476

sively examine the influence of example order as477
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Figure 1: Variance across different shot numbers. The
two bars represent the mean scores across five example
orders: the left bar for Llama-3.1-8B-Instruct and the
right for Qwen2.5-7B-Instruct. The error bar depict the
variance for each model.

we transition from a few-shot to a many-shot sce- 478

nario, we progressively add examples to the prompt 479

and calculate the average across 5 different exam- 480

ple orders for each given number of demonstrations. 481

The results is showed in the Figure 1. 482

As the number of examples increases, we antic- 483

ipated a decrease in the importance of any single 484

example, leading to improved robustness against 485

example order. However, this was not universally 486

observed, and performance remained sensitive to 487

the order of examples, particularly in more com- 488

plex tasks, such as science question answering, 489

even in the many-shot scenario. Notably, the low- 490

est variance occurred when the number of shots 491

was moderate (e.g., Qwen in the Bemba translation 492

and science question answering tasks, Llama in 493

intent classification and science question answer- 494

ing tasks). Building on our findings in 4.3.3, this 495

suggests that while additional examples reduce the 496

weight of individual instances, LLMs may not fully 497

utilize the context window. As a result, early exam- 498

ples may be less effectively learned, yet they could 499

have a greater impact on overall performance. Op- 500

timizing the order of examples could improve per- 501

formance. Identifying the optimal order remains a 502

key area for future research. 503

4.3.2 Analysis on Noisy Ratios 504

As more information is incorporated into the con- 505

text window, the likelihood of including noisy 506

messages—whether incorrect or of low qual- 507

ity—inevitably increases, which can negatively 508
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Classification Question Answering

Model Context Window
Sentiment Topic Intent Science Medical Retrieval Commonsense

5-shots Best 5-shots Best 5-shots Best 5-shots Best 5-shots Best 5-shots Best 5-shots Best

Gemini-1.5-pro 2M 0.6700 0.7300(400) 0.6850 0.7100(100) 0.7489 0.9307(2000) 0.6010 0.6313(10) 0.8762 0.9048(25) 0.7444 0.8000(100) 0.8000 0.8500(25)
Claude-3.5-Sonnet 200k 0.7550 0.7700(10) 0.7150 0.7350(10) 0.7576 0.9221(2000) 0.5960 0.6465(25) 0.9143 0.9333(400) 0.8333 0.8333(5) 0.8400 0.8600(25)
GPT-4o-mini-0718 128k 0.6800 0.7250(1) 0.6900 0.7050(50) 0.7013 0.8745(2000) 0.3788 0.3990(10) 0.8571 0.8571(5) 0.7000 0.7333(25) 0.8000 0.8100(50)

Qwen2.5-0.5B-Inst. 32k 0.4340 0.5370(100) 0.2330 0.4350(100) 0.2597 0.6329(1000) 0.2152 0.2323(25) 0.2724 0.3429(100) 0.3822 0.4222(50) 0.4660 0.5360(50)
Qwen2.5-1.5B-Inst. 32k 0.5400 0.5830(25) 0.5530 0.5670(200) 0.4909 0.7420(1000) 0.2556 0.2636(50) 0.3676 0.4267(100) 0.5400 0.5644(25) 0.6860 0.7180(200)
Qwen2.5-3B-Inst. 32k 0.6280 0.7130(50) 0.5200 0.6230(100) 0.5792 0.7922(1000) 0.2808 0.3141(25) 0.5962 0.6133(50) 0.6689 0.6867(50) 0.7300 0.7520(10)
Qwen2.5-7B 128k 0.6290 0.6690(400) 0.6030 0.6420(200) 0.6416 0.8320(2000) 0.2970 0.3030(10) 0.5810 0.6305(1) 0.6400 0.6756(25) 0.8540 0.8640(100)
Qwen2.5-7B-Inst. 32k 0.6620 0.6970(10) 0.6470 0.6530(200) 0.6649 0.8182(1000) 0.3030 0.3323(25) 0.6838 0.7010(10) 0.7156 0.7400(1) 0.8600 0.884(200)
Mistral-7B-Inst.-v0.2 32k 0.6370 0.6980(50) 0.5660 0.6190(100) 0.5810 0.8597(1000) 0.2586 0.2747(10) 0.5695 0.6133(25) 0.6756 0.6978(10) 0.6100 0.6880(200)
Ministral-8B-Inst.-2410 32k 0.6850 0.7150(100) 0.6770 0.7050(100) 0.6459 0.8355(1000) 0.3000 0.3131(10) 0.6152 0.6152(5) 0.6800 0.6889(50) 0.7140 0.7140(5)
Llama-3.1-8B-Inst. 128k 0.6830 0.7400(400) 0.6410 0.6740(500) 0.6511 0.8693(2000) 0.2475 0.2970(75) 0.7067 0.7238(1) 0.6733 0.6867(100) 0.6840 0.7100(1)
Qwen2.5-14B-Inst. 32k 0.6730 0.7060(10) 0.6610 0.6800(200) 0.6857 0.8459(1000) 0.3586 0.3879(1) 0.7333 0.7448(10) 0.7444 0.7489(50) 0.8620 0.8700(200)

Qwen2.5-32B 128k 0.6760 0.7440(500) 0.6540 0.6800(800) 0.6823 0.8494(2000) 0.3747 0.3950(75) 0.6990 0.7067(1) 0.6933 0.7200(200) 0.8820 0.9080(1)
Qwen2.5-32B-Inst. 32k 0.6990 0.7260(10) 0.6740 0.6740(5) 0.6892 0.8424(1000) 0.3828 0.4364(50) 0.7943 0.8095(25) 0.7622 0.7644(25) 0.8700 0.8760(10)
Mixtral-8x7B-Inst.-v0.1 32k 0.7140 0.7560(50) 0.6400 0.6620(100) 0.6701 0.9022(1000) 0.3040 0.3162(10) 0.6667 0.6990(25) 0.6978 0.7156(1) 0.7420 0.7420(5)
Llama-3.1-70B-Inst. 128k 0.6970 0.7620(200) 0.6850 0.7020(500) 0.6866 0.8675(2000) 0.4192 0.4303(25) 0.8610 0.8610(5) 0.6800 0.7422(200) 0.8360 0.8520(200)
Llama-3.3-70B-Inst. 128k 0.6870 0.7600(300) 0.6900 0.7020(1) 0.6970 0.8719(2000) 0.4374 0.4545(1) 0.9124 0.9124(5) 0.6711 0.7111(200) 0.8220 0.8460(800)
Qwen2.5-72B 128k 0.7020 0.7550(400) 0.6700 0.6870(1) 0.6866 0.8581(2000) 0.3737 0.4040(50) 0.7371 0.7524(1) 0.6889 0.7022(100) 0.8880 0.9000(1)
Qwen2.5-72B-Inst. 32k 0.6940 0.7250(100) 0.6909 0.7030(1) 0.7333 0.8545(1000) 0.4485 0.4929(50) 0.7943 0.8171(50) 0.7111 0.7467(50) 0.8520 0.8540(25)

Table 3: Performance of Classification and Question Answering tasks. The scores for the few-shot regime and the
best performance for each task are displayed. The numbers in parentheses indicate the corresponding shot count.
The best scores are highlighted in bold when the shot count exceeds 50, marking the transition from few-shot to
many-shot. Notably, for the Qwen2.5 Instruct series, we maintained a context window of 32k tokens, but used the
rope scaling parameter to extend it to 128k tokens in the Exploratory Insight.

impact performance. Previous research (Agarwal509

et al., 2024) has shown that many-shot prompts510

can help overcome pre-training biases. However,511

whether they are also capable of shielding LLMs512

from the effects of noisy information still requires513

further investigation.514

To create the noisy sample, we replace the an-515

swer of examples in the prompt by examples not in516

the prompt. Especially, when test the performance517

in classification scenario, we replace the original518

label by other labels in the whole label space. In ad-519

dition, as the noisy ration gradually increasing give520

the number of examples, we ensure the selected521

noisy examples in high ratio include all the noisy522

examples in low ratio.523

As illustrated in Figure 2, which presents results524

for intent classification and news summarization,525

the scores for intent classification and Bemba trans-526

lation show minimal decline when the noise ratio527

is below 10%, with performance remaining above528

90% even when the noise ratio reaches 25%, rela-529

tive to the baseline without noise. In contrast, per-530

formance on news summarization declines more531

rapidly, particularly for Qwen2.5-7B-Instruct, even532

in the many-shot regime. This is likely due to the533

longer length of each example, which amplifies the534

impact of noise on performance. Additionally, we535

find that while many-shot prompting does not sig-536

nificantly improve performance in high-resource537

language translation, it does enhance robustness to538
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Figure 2: Performance Change with Increasing Noise
Ratio on two representative datasets. The upper graphs
show Intent Classification results, the middle graphs
show Bemba Translation results and the lower ones
show News Summarization results. Other dataset results
are in Appendix B.1.
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noise in certain contexts, as shown in the French539

translation results in Appendix B.1.540

4.3.3 Examination of Input Utilization541
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Figure 3: Performance of test queries incorporated into
prompts in the Bemba translation task. We average the
scores across five different sets of examples for each
given number of shots. Other dataset results are in
Appendix B.2.

Given the rapid expansion of the context window542

size, it is natural to question whether LLMs can543

fully utilize the available context. To investigate544

this, we adopt a simple approach used in Bertsch545

et al. (2024b), where each question is embedded546

into the prompt, extending the context across var-547

ious tasks to gain different insights. If LLMs can548

fully utilize the context, they should be able to549

identify the question and provide the correct an-550

swer. Although all LLMs achieve high accuracy in551

this setting, none reach 100% correctness.552

As shown in Figure 3, which presents the per-553

formance on the Bemba translation task, LLMs554

demonstrate limited ability to accurately detect the555

query within the prompt, especially in the many-556

shot scenario, where a noticeable decline in per-557

formance is observed. This likely occurs because,558

as the number of examples increases, the difficulty559

of locating the query also increases, leading to a560

drop in performance. Furthermore, the variance in561

this experiment is significantly large, highlighting562

a strong correlation between copy behavior and the563

position of the query in the prompt. This observa-564

tion motivates further investigation in subsequent565

experiments.566

Previous research (Lu et al., 2022) has demon-567

strated that LLMs often prioritize the final example568

in a prompt. To further explore how LLMs utilize569

different segments of the prompt, we designed an570

experiment in which the position of the test query571

was gradually shifted from the first to the last ex-572
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Figure 4: Performance variations with query position.
The graphs display the Bemba Translation results, with
the x-axis representing the position of the query as a
percentage of all examples. A value of 0% indicates the
query is at the beginning, while 100% indicates it is at
the end. Other dataset results are in Appendix B.2.

ample. If LLMs exhibit a preference for specific 573

sections of the prompt, performance should im- 574

prove when the query is positioned accordingly. 575

As shown in Figure 4, in the Bemba translation 576

task, performance remains largely unchanged with 577

a small number of shots. However, as the number 578

of shots increases, performance significantly de- 579

creases when the query is positioned earlier in the 580

prompt. This suggests that the models are unable 581

to fully leverage the context window and continue 582

to exhibit a tendency to focus on examples placed 583

towards the end. 584

5 Conclusion 585

In this study, we introduce the MICLBench, a syn- 586

thetic benchmark designed to assess the learning 587

capacity of LLMs under many-shot prompting con- 588

ditions. Using this benchmark, we evaluate the 589

performance of 19 LLMs with long-context capa- 590

bilities across four distinct scenarios, encompass- 591

ing 14 tasks. We assess these tasks under both 592

few-shot and many-shot prompts, analyzing how 593

LLM performance varies as we transition from few- 594

shot to many-shot settings. This evaluation aims 595

to investigate the scaling laws associated with ICL 596

performance. Our findings demonstrate the signif- 597

icant potential of many-shot ICL to generalize to 598

out-of-distribution problems. Furthermore, we pro- 599

vide insights into the selection of tasks and models 600

that benefit most from many-shot ICL and examine 601

the factors that may limit performance, offering 602

strategies to improve its effectiveness. 603
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Limitation604

Our work has several limitations. First, the bench-605

mark lacks open-ended questions, which, while606

challenging to evaluate, are crucial for real-world607

applications. Addressing this gap will be impor-608

tant in future research. Additionally, the length of609

the context significantly impacts inference speed,610

increasing the time required for experiments and611

limiting the ability to further expand the datasets.612

Furthermore, as context window sizes rapidly grow,613

the current dataset scale may become insufficient.614

Future work could focus on developing a pipeline615

that automatically generates high-quality examples616

across diverse domains, enabling the system to617

keep pace with the expanding context window. Fi-618

nally, due to limited data resources, we have not619

accounted for potential data contamination, where620

examples in the training set may have already been621

seen by the models during pre-training or super-622

vised instruction tuning, which requires further at-623

tention.624
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A Prompt856

In this section, we outline the prompt format used in our experiments for each task, which is adapted from857

the prompts provided in Agarwal et al. (2024),Baek et al. (2025), and Bertsch et al. (2024b).858

News, Dialogue and Bill Summarization:859

You are an expert in article summarization. I am going to give you one or more example
pairs of article and its summary in fluent English. The pairs will be written as the following
format:
Article: <article>
Summary: <summary>
After the example pairs, I am going to provide another article and I want you to summarize
it. Give only the summary, and no extra commentary, formatting, or chattiness.

{Examples}

Article: <article>
Summary:

860

Bemba, Kurdish, French, German Translation:861

You are an expert translator. I am going to give you one or more example pairs of text
snippets where the first is in English and the second is a translation of the first snippet into
{Target Language}. The sentences will be written:
English: <first sentence>
{Target Language}: <translated first sentence>
After the example pairs, I am going to provide another sentence in English and I want you
to translate it into {Target Language}. Give only the translation, and no extra commentary,
formatting, or chattiness. Translate the text from English to {Target Language}.

{Examples}

English: <first sentence>
{Target Language}:

862

Intent Classification:863

I am going to give you one or more example pairs of customer service query and its intent.
The pairs will be written as the following format:
service query: <query>
intent category: <category>
After the example pairs, I am going to provide another customer service query and I want
you to classify the label of it that must be one among the intent categories provided in the
examples. Give only the category, and no extra commentary, formatting, or chattiness.
Here are all possible intent categories for classification:

{Label Space}

{Examples}

service query: <query>
intent category:

864
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Topic Classification: 865

I am going to give you one or more example sets of question-answer pairs and the topic
associated with them. The sets will be written as the following format:
Question: <question>
Answer: <answer>
Topic: <topic>
After the example sets, I am going to provide another question-answer pair and I want you
to classify the label of it that must be one among the topic provided in the examples. Give
only the topic, and no extra commentary, formatting, or chattiness.
Here are all possible topics for classification:

{Label Space}

{Examples}

Question: <question>
Answer: <answer>
Topic:

866

Sentiment Classification: 867

I am going to give you one or more example pairs of review and the score associated with
the review. The pairs will be written as the following format:
Review: <review>
Score: <score>
After the example pairs, I am going to provide another review and I want you to classify the
label of it that must be one among the score provided in the examples. Give only the score,
and no extra commentary, formatting, or chattiness.
Here are all possible scores for classification:

{Label Space}

{Examples}

Review: <review>
Score:

868

Science, Medical Question Answering: 869
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You are an expert in multiple-choice question answering tasks. I am going to give you one
or more example pairs consisting of a question along with its solution procedure and answer
in a multiple-choice question answering format. The pairs will be written as the following
format:
Question: <question>
Solution: <solution>
Answer: <answer>
After the example pairs, I am going to provide another question and I want you to predict
its answer. Think step by step before giving a final answer to this question and give the
final answer that follows a consistent format as in the provided examples, and no extra
commentary, formatting, or chattiness.

{Examples}

Question: <question>
870

Retrieval Question Answering:871

You are an expert in multiple-choice question answering tasks. I am going to give you one or
more examples, each containing a text, a question about the text, the solution procedure to
derive the answer from the text, and the final answer in a multiple-choice question answering
format. The examples will be written as the following format:
Text: <text>
Question: <question>
Solution: <solution>
Answer: <answer>
After the examples, I am going to provide another text and a question about the text and I
want you to predict its answer. Think step by step before giving a final answer to this question
and give the final answer that follows a consistent format as in the provided examples, and
no extra commentary, formatting, or chattiness.

{Examples}

Text: <text>
Question: <question>

872

Commonsense Question Answering:873

You are an expert in multiple-choice question answering tasks. I am going to give you one
or more example pairs of question and its answer in a multiple-choice question answering
format. The pairs will be written as the following format:
Question: <question>
Answer: <answer>
After the example pairs, I am going to provide another question and I want you to predict its
answer. Give only the answer that follows a consistent format as in the provided examples,
and no extra commentary, formatting, or chattiness.
{Examples}

Question: <question>
Answer:

874
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B Full Results 875

To save space, we present only 1-2 representative results for analysis in the paper. In this section, we 876

provide additional results from the experiments. 877

B.1 Supplementary Results from Experiments on Noise Ratio 878
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Figure 5: Performance Change with Increasing Noise Ratio on French Transaltion task.
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Figure 6: Performance Change with Increasing Noise Ratio on Science Question Answering task.

As shown in Figure 5 and Figure 6, model performance demonstrates robustness to noise in both 879

French Translation and Science Question Answering tasks within the many-shot scenario, particularly 880

when the noise ratio is below 10%, which is common in real-world applications. Furthermore, although 881

performance in the French Translation task does not show significant improvement, there is a notable 882

enhancement in robustness to noisy input. 883

B.2 Supplementary Results from Experiments on Input Utilization 884

As illustrated in Figure 7, the Science Question Answering task shows patterns similar to the Bemba 885

Translation task discussed in the paper, where performance does not reach 100% and declines in the 886

many-shot scenario. As the position of the query is gradually shifted from the beginning to the end of the 887

prompt, performance significantly decreases when the query is positioned earlier. Moreover, the copying 888

ability of LLaMA-3.1-8B-Instruct appears to be much stronger than that of Qwen2.5-7B-Instruct, as 889

evidenced by both the Bemba Translation and Science Question Answering results. 890
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Figure 7: The left graph shows the performance of test queries incorporated into prompts in the Science Question
Answering task, while the right graph presents the performance variations based on query position for Llama-3.1-
8B-Instruct.
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