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ABSTRACT

Conformal prediction has emerged as an effective strategy for uncertainty quantifi-
cation by modifying a model to output sets of labels instead of a single label. These
prediction sets come with the guarantee that they contain the true label with high
probability. However, conformal prediction typically requires a large calibration
dataset of i.i.d. examples. We consider the online learning setting, where examples
arrive over time, and the goal is to construct prediction sets dynamically. Departing
from existing work, we assume semi-bandit feedback, where we only observe the
true label if it is contained in the prediction set. For instance, consider calibrating
a document retrieval model to a new domain; in this setting, a user would only
be able to provide the true label if the target document is in the prediction set of
retrieved documents. We propose a novel conformal prediction algorithm targeted
at this setting, and prove that it obtains sublinear regret compared to the optimal
conformal predictor. We evaluate our algorithm on a retrieval task, an image classi-
fication task, and an auction price-setting task, and demonstrate that it empirically
achieves good performance compared to several baselines.

1 INTRODUCTION

Uncertainty quantification is an effective strategy for improving trustworthiness of machine learning
models by providing users with a measure of confidence of each prediction to better inform their
decisions. Conformal prediction (Vovk et al., 2005; Tibshirani et al., 2019; Park et al., 2019; Bates
et al., 2021) has emerged as a promising strategy for uncertainty quantification due to its ability to
provide theoretical guarantees for arbitrary blackbox models. They modify a given blackbox model
f : X → Y to a conformal predictor C : X → 2Y that predicts sets of labels. In the batch setting,
it does so by using a held-out calibration dataset to assess the accuracy of f ; it constructs smaller
prediction sets if f is more accurate and larger ones otherwise. Then, conformal prediction guarantees
that the true label is contained in the prediction set with high probability—i.e.,

P[y∗ ∈ C(x)] ≥ α,

where α is the desired coverage rate, and the probability is taken over the random sample (x, y∗) ∼ D
and the calibration dataset Z = {(xi, yi)}ni=1 ∼ Dn.

Traditional conformal prediction require the calibration set to consist of i.i.d. or exchangeable samples
from the target distribution; furthermore, the calibration set may need to be large to obtain good
performance. In many settings, such labeled data may not be easy to obtain. As a motivating setting,
we consider a document retrieval problem, where the input x might be a question and the goal is
to retrieve a passage y from a knowledge base such as Wikipedia that can be used to answer x;
this strategy is known as retrieval-augmented question answering, and can mitigate issues such as
hallucinations (Lewis et al., 2020; Shuster et al., 2021; Ji et al., 2023). A common practice is to use a
retrieval model trained on a large dataset in a different domain in a zero-shot manner; for instance, a
user might use the dense passage retrieval (DPR) model (Karpukhin et al., 2020) directly on their
own dataset without finetuning. Thus, labeled data from the target domain may not be available.

In this paper, we propose an online conformal prediction algorithm that sequentially constructs
prediction sets Ct as inputs xt are given. We consider semi-bandit feedback, where we only observe
the true label y∗t if it is included in our prediction set (i.e., y∗t ∈ Ct). Otherwise, we observe an
indicator that y∗t ̸∈ Ct, but do not observe y∗t . In the document retrieval example, users might
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sequentially provide queries xt to the DPR model, and our algorithm responds with a prediction
set Ct of potentially relevant documents. Then, the user selects the ground truth document y∗t if it
appears in this set, and indicates that their query was unsuccessful otherwise.

As in conformal prediction, we aim to ensure that we achieve the desired coverage rate α with high
probability. Letting C∗

t denote the optimal prediction sets (i.e., the prediction sets given infinite
calibration data), our algorithm ensures that with high probability, C∗

t ⊆ Ct on all time steps t. Since
C∗

t achieves the desired coverage rate with high probability, this property ensures Ct does so as well.

A trivial solution is to always include all documents in the prediction set. However, this would be
unhelpful for the user, who needs to manually examine all documents to identify the ground truth
one. Thus, an additional goal is to minimize the prediction set size. Formally, we consider the
optimal prediction set C∗

t in the limit of infinite data, and consider a loss function encoding how
much worse our prediction set Ct is compared to C∗

t . Then, our algorithm ensures this loss goes
to zero as sufficiently many samples become available—i.e., the prediction sets Ct converge to the
optimal ones C∗

t over time. Formally, our algorithm guarantees sublinear regret of Õ(
√
T ).

Finally, we empirically evaluate our algorithm on three tasks: image classification, document
retrieval, and setting reservation prices in auctions. Our experiments demonstrate that our algorithm
generates prediction sets that converge to the optimal ones while maintaining the desired coverage
rate. Moreover, our algorithm significantly outperforms three natural baselines; each baseline either
achieves worse cumulative expected regret or does not satisfy the desired coverage rate.

Contributions. We formalize and solve the problem of online conformal prediction with semi-bandit
feedback. Our algorithm constructs compact prediction sets, ensuring high coverage probability. The
algorithm also provides an efficient method for collecting large datasets that are expensive to label.
Instead of asking the user to select the ground truth label from the set of all candidate labels, our
approach only requires the user to select from a subset. This efficiency gain can be substantial when
the label space is large. We assess the algorithm’s performance on image classification, document
retrieval and reservation price-setting in auctions, showcasing its effectiveness in a wide variety of
real world applications, which highlights the practical utility of our approach.

Related work. Recent work has studied conformal prediction in the online setting (Gibbs and Candes,
2021; Bastani et al., 2022; Gibbs and Candès, 2022; Angelopoulos et al., 2024a;b). These approaches
are motivated by conformal prediction for time series data, where the labels can shift in complex and
potentially adversarial ways. As a consequence, they make very different assumptions. In particular,
they allow for adversarial rather than i.i.d. assumptions; however, almost all of them assume that the
ground truth label is observed at every step, regardless of whether it is contained in the prediction
set. For example, the ACI algorithm proposed in Gibbs and Candes (2021) requires observing y∗t at
every step since it is needed to update the quantile function Q̂t(·), which is needed to compute the
prediction set Ĉt(αt) as well as the loss and gradient update. As the authors point out, they do not
need to update the quantile function at every step. However, the steps where they update Q̂t cannot
be chosen in a way that depends on y∗t , since doing so would lead to a biased estimate of the quantile
function. In our experiments, we demonstrate that in the semi-bandit feedback setting, updating Q̂t

when y∗t is in the prediction set can create such a bias that leads ACI to fail to achieve coverage.

Similarly, the SAOCP algorithm proposed by Bhatnagar et al. (2023) requires observing y∗t at every
step to construct the prediction set St = inf{s ∈ R : y∗t ∈ Ĉt(Xt, s)}, which is then used to compute
the loss and gradient, and the Conformal PID control algorithm proposed by Angelopoulos et al.
(2024a) uses y∗t to compute the score st = st(xt, y

∗
t ), which is needed to compute the gradient. In

contrast, we are motivated by the active learning setting, where users are interested in constructing
conformal predictors on-the-fly rather than providing a calibration set ahead-of-time. Thus, in our
setting, it is reasonable to assume that the data arrives i.i.d.; however, we need to handle semi-bandit
feedback since the user may be unable to provide the true label y∗t if it is not in the prediction set.

Recently, Angelopoulos et al. (2024b) has pointed out that ACI still works if we take the “quantile
function” to be the identity function—i.e., Q̂t(α) = α. This strategy achieves the desired coverage
rate without requiring observing the ground truth labels y∗t ; instead, they only need to observe whether
y∗t is contained in the prediction set—i.e., 1(y∗t ∈ Ĉt). However, because they forego estimating the
quantile function, the resulting algorithm is extremely sensitive to the structure of the scoring function
as well as their choice of hyperparameters (in particular, the learning rate). In our experiments, we
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show that a standard variation the scoring function (in particular, using logits instead of prediction
probabilities) causes their performance to significantly degrade.

Angelopoulos et al. (2024b) also point out an additional shortcoming of ACI, which is that it does
not guarantee that prediction sets converge to the “optimal” ones in the i.i.d. setting. As noted
by Bastani et al. (2022), this issue is reflected in the fact that achieving α coverage (the guarantee
satisfied by the ACI algorithm) can be achieved by the “cheating” strategy that outputs Ĉt = Y with
probability 1− α and Ĉt = ∅ with probability α. To remedy this issue, Angelopoulos et al. (2024b)
proposes a modification to their algorithm that is guaranteed to converge to the optimal threshold in
the setting of i.i.d. observations. However, their result is asymptotic (in addition to suffering from the
sensitivity of the scoring function discussed above). Under certain assumptions, we prove that our
algorithm satisfies a much stronger regret guarantee; to the best of our knowledge, this is the first
regret guarantee on the performance of the prediction sets in terms of convergence of τt to τ∗.

An additional advantage of our algorithm is that it guarantees that τt ≤ τ∗ with high probability.
This guarantee mirrors the distinction between marginal guarantees (Vovk et al., 2005) and probably
approximately correct (PAC) (or training conditional) guarantees in the batch setting (Vovk, 2012;
Park et al., 2019). Marginal guarantees have the form PZ∼Dn,(x,y∗)∼D[y∗ ∈ CZ(x)] ≥ α, i.e., α
coverage over randomness in both the calibration set Z and the new example (x, y∗). They have
the additional advantage that coverage converges to α with the number of calibration examples. In
contrast, PAC guarantees disentangle these two sources of randomness:

PZ∼Dn [P(x,y∗)∼D[y∗ ∈ CZ(x)] ≥ α] ≥ 1− δ,
for a given δ ∈ R>0. In other words, coverage holds with high probability over Z. Our guarantee that
τt ≤ τ∗ is equivalent to providing the coverage guarantee P(x,y∗)∼D[y∗ ∈ Cτt(x)] ≥ α for every t
with probability at least 1− δ over the whole time horizon. To the best of our knowledge, existing
online conformal prediction algorithms all provide a marginal coverage guarantee (it is not even
clear how a PAC guarantee would look in the adversarial setting since the calibration examples are
not random). For the active learning setting, a PAC guarantee makes sense since it ensures that our
algorithm satisfies the desired coverage rate for every user-provided input. Finally, while we do not
provide an explicit guarantee that the coverage rate converges to α, our regret bound ensures that
τt → τ∗, which effectively ensures convergence to an α coverage rate.

2 PROBLEM FORMULATION

Let X denote the inputs and Y denote the labels. Let [T ] = {1, 2, · · · , T}, and let t ∈ [T ] be the steps
on which examples (xt, y∗t ) arrive, where xt is the input on step t and y∗t is the corresponding ground
truth label. We assume given a scoring function f : X × Y 7→ R (also called the non-conformity
score). The scoring function captures the confidence in whether y is the ground truth label for x.

We consider a fixed distribution D over X ×Y ; let P(x, y) be the corresponding probability measure.
On each step t, a sample (xt, y

∗
t ) ∼ D is drawn. Then, our algorithm observes xt, and constructs a

prediction set Ct ⊆ Y of form

Ct = {y ∈ Y | f(xt, y) > τt},
where τt ∈ R is a parameter to be chosen. In other words, our prediction set Ct include all labels
with score at least τt in round t. Note that a smaller (resp., larger) τt corresponds to a larger (resp.,
smaller) prediction set Ct. Then, our algorithm receives semi-bandit feedback—i.e., it only observes
y∗t if y∗t ∈ Ct. If y∗t ̸∈ Ct, it receives feedback in the form of a binary indicator that y∗t ̸∈ Ct.

Next, we describe our desired correctness properties. First, given a coverage rate α ∈ [0, 1), our goal
is to ensure that we cover the ground truth label with probability at least α on all time steps:

∀t ∈ [T ] . P[y∗t ∈ Ct] ≥ α. (1)

We want (1) to hold with high probability. A trivial solution to the problem described so far is to
always take τt = −∞. Thus, we additionally want to minimize some measure of the prediction set
size. We consider a loss function ϕ : R→ R, where ϕ(τt) encodes the loss incurred on step t. Then,
our goal is to converge to the best possible prediction sets over time, which we formalize by aiming
to achieve sublinear regret. To this end, consider the optimal prediction set C∗

t ⊆ Y defined by

C∗
t = {y ∈ Y | f(xt, y) > τ∗},

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where τ∗ is defined by

τ∗ = argmax
τ∈R

τ subj. to P[f(xt, y∗t ) ≥ τ ] ≥ α.

Note that f(xt, y∗t ) ≥ τ iff y∗t ∈ C∗
t , so this property says that P[y∗t ∈ C∗

t ] ≥ α. By definition, C∗
t

is the smallest possible prediction set for xt that achieves a coverage rate of α. Then, the expected
cumulative regret is

RT = E

∑
t∈[T ]

ϕ(τt)− ϕ(τ∗)

 .
For technical reasons, we need to impose an assumption on our loss. Intuitively, if the loss ϕ is
discontinuous at τ∗, then we may achieve linear regret since ϕ(τt)−ϕ(τ∗) ≥ c > 0 for some constant
c. A natural way to formalize the continuity assumption is based on the cumulative distribution
function (CDF) of the scoring function. In particular, let G∗ be the CDF of the random variable
s = f(x, y∗), where (x, y∗) ∼ D. Then, we have the following assumption:
Assumption 2.1. ϕ(τ) = ψ(G∗(τ)) for some K Lipschitz continuous function ψ (with K ∈ R>0).

That is, if G∗(τ) is very flat in some region, then ϕ(τ) cannot vary very much in that region.
Intuitively, if G∗(τ) is flat in some region, then we obtain very few samples in that region, so it
becomes very hard to estimate τ in that region. If ϕ(τ) varies a lot in this region, then the regret can
be large if τ∗ lies in that region. One caveat is this assumption precludes prediction set size as a loss,
since prediction set size is discontinuous. Next, we assume our loss is bounded:
Assumption 2.2. ϕmax := ∥ϕ∥∞ <∞.

Intuitively, Assumption 2.2 says that the overall reward is bounded, so we cannot accrue huge regret
early on in our algorithm when we have very little data. Finally, we make the following assumption:
Assumption 2.3. G∗(τ∗) = 1− α.

Note that G∗(τ) is the miscoverage rate of our algorithm for parameter τ . Thus, this assumption says
the optimal parameter value τ∗ achieves a coverage rate of exactly α, which simplifies our analysis.

Then, our goal is to find the optimal prediction sets C∗
t with coverage rate α. Intuitively, C∗

t is the
smallest set that contains the ground truth label with a high probability. At each step, the algorithm
observes xt and returns a set Ct of candidate labels, and the user either (1) selects the ground truth
label y∗t from Ct, or (2) indicates that the ground truth label is not in Ct. In a document retrieval
setting, xt is a query sent by the user, and y∗t is the ground truth document, while in an image
classification setting, xt is an image and y∗t is the ground truth class.

3 ALGORITHM

Next, we describe our online conformal prediction algorithm (summarized in Algorithm 1). As
before, let s = f(x, y∗) be the random variable that is the score of a random sample (x, y∗) ∼ D,
and let G∗ be its CDF. By definition, G∗(τ) = P[f(x, y∗) ≤ τ ] is the miscoverage rate, so

τ∗ = sup{τ : G∗(τ) ≤ 1− α}.

Thus, if we know G∗, then our problem can be solved by choosing τt = τ∗ for all t. However, since
we do not know G∗, we can solve the problem by estimating it from samples. Denote the estimated
CDF after step t as Gt. A naïve solution is to choose

τ̃t = sup{τ ∈ R | Gt−1(τ) ≤ 1− α}.

However, this strategy may fail to satisfy our desired coverage rate due to randomness in our estimate
Gt−1 of G∗. Failing to account for miscovered examples can exacerbate this problem—if we ignore
samples where we failed to cover y∗t , then our estimate Gt becomes worse, thereby increasing the
chance that we will continue to fail to cover y∗t . This feedback loop can lead to linear regret.

To address this challenge, we instead use a high-probability upper bound on G∗. In particular, for a
error bound δ ∈ R>0 to be specified, we construct a 1− δ confidence bound for the empirical CDF
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Algorithm 1 Semi-bandit Prediction Set (SPS)
Input: horizon T , desired quantile α
τ1 ← −∞
for t = 1 to T do

if st ≥ τt then
observe st

else
st ← τt

end if
Compute Gt according to (4)
τ1−α,t ← sup{τ ∈ R | Gt(τ) ≤ 1− α}
τt ← max{τ1−α,t, τt}

end for

Gt using the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Massart, 1990). Letting Gt be the
upper confidence bound, we instead aim to choose

τt = sup{τ ∈ R | Gt−1(τ) ≤ 1− α}.

On the event that Gt−1 is a valid upper bound, then we have τt ≤ τ∗. This property ensures that we
always cover the ground truth label, which ensures that our subsequent CDF estimate Gt is valid. As
a consequence, our algorithm converges to the true τ∗.

One remaining issue is how to handle steps where y∗t ̸∈ Ct. On these steps, our algorithm substitutes
τt for the observation f(xt, y∗t ). Intuitively, the reason this strategy works is that the learner does not
need to accurately estimate G∗ in the interval [0, τ∗) to recover τ∗; it is sufficient to include the right
fraction of samples in this interval. As long as our algorithm maintains the property that τt ≤ τ∗,
then τt lies in this interval, so substituting τt is sufficient.

Relatedly, our algorithm includes a constraint that τt+1 ≥ τt for all t. We include this constraint
because our estimate Gt of the CDF in the interval [0, τt) may be flawed due to semi-bandit feedback.
By avoiding going backwards, we ensure that these flaws do not affect our choice of τt+1. Again, as
long as τt ≤ τ∗, this constraint does not prevent convergence.

Now, we formally define Gt as follows. First, define the truncated CDF G∗
t (τ) by

G∗
t (τ) =

{
0 if τ < τt
G∗(τ) if τ ≥ τt.

(2)

This CDF captures the CDF where we replace samples s ≤ τt with τt. In particular, G∗
t (τ) shifts

all the probability mass of G∗ in the region [0, τt] to a point mass at τt. Next, the corresponding
empirical CDF Gt is

Gt(τ) =
1

t
·

t∑
j=1

1(max{τt, sj} ≤ τ). (3)

Finally, letting δ = 2/T 2 and ϵt =
√
log(2/δ)/2t, the upper bound Gt on Gt from DKW is

Gt(τ) = Gt(τ) + ϵt. (4)

We use this Gt to compute τt in Algorithm 1.

Finally, Algorithm 1 satisfies the following theoretical guarantee: (i) it incurs sublinear regret Õ(
√
T ),

and (ii) it satisfies C∗
t ⊆ Ct for all t with probability at least 1− 2/T (see Appendix A for a proof):

Theorem 3.1. The expected cumulative regret of Algorithm 1 satisfies

RT ≤ K
(
2 log T + 4

√
T log T + 1

)
+ 4ϕmax,

In addition, with probability at least 1− 2/T , we have τt ≤ τ∗ for all t.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Image classification task. We use the Vision Transformer (Dosovitskiy et al., 2020) model on the
ImageNet dataset (Deng et al., 2009).1 Each image from the dataset belongs to exactly one class
out of the 1,000 candidate classes. Consequently, the cardinality of the label domain is 1,000 (i.e.,
|Y| = 1000). In the experiments, images arrive sequentially, and our algorithm aims to construct the
smallest candidate label set that achieves the desired coverage. We use the logits score returned by
a ViT model (pretrained on the ImageNet training set) as our scoring function f ; we use the logits
instead of the softmax function to evaluate sensitivity to the choice of scoring function.

Document retrieval task. Next, we consider the Dense Passage Retriever (DPR) model (Karpukhin
et al., 2020) on the SQuAD question-answering dataset. DPR leverages a dual-encoder architecture
that maps questions and candidate documents to embedding vectors. Denoting the space of questions
and documents by Q and D, respectively, then DPR consists of a question encoder EQ : Q 7→ R768

and a document encoder ED : D 7→ R768. Given a question q and a set of candidate documents
D ⊆ D, the similarity score between each document d ∈ D and the question q is defined as:

sq,d =
EQ(q) · ED(d)

|EQ(q)| · |ED(d)|
.

We use this score as our scoring function. Then, our goal is to construct the smallest set of candidate
documents while guaranteeing that they contain the ground truth document with high probability.

Our dataset is SQuAD question-answering dataset (Rajpurkar et al., 2016), which is a popular
benchmark for reading comprehension. Each question in SQuAD can be answered by finding the
relevant information in a corresponding Wikipedia paragraph known as the context. The authors of
DPR make a few additional changes to adapt SQuAD better for document retrieval. First, paragraphs
are further split into multiple, disjoint text blocks of 100 words, serving as the basic retrieval unit
(i.e., candidate documents). Second, each question is paired with ground truth documents and a set of
irrelevant documents.2 In our experiments, for each question, we include one ground truth document
and all the irrelevant documents to create the set of candidate documents.

Second-price auctions task. Lastly, we consider the scenario of setting reservation prices in second-
price auctions, a well-studied problem that has semi-bandit feedback (Cesa-Bianchi et al., 2014; Zhao
and Chen, 2020). In this problem, a seller (the auctioneer) repeatedly sells the same type of items to a
group of bidders. In each round t, she publicly announces a reservation price pt, while bidders draw
their private values vt from a fixed distribution that is unknown to the seller. For each bidder i, she
will submit the bid Bt

i = vti if and only if vti ≥ pt. The seller obtains reward Rt:

Rt =


0 if pt > B

(1)
t

pt if B(2)
t < pt ≤ B(1)

t

B
(2)
t if pt ≤ B(2)

t ,

whereB(1)
t , B

(2)
t denote the highest and second-highest bid received by the seller in round t, implying

that the seller only observes bids that are higher than pt. We consider a seller that aims to learn

p∗ = argmax
p∈R

p subj. to P[B(1) ≥ p] ≥ α.

That is, the seller aims to find the highest reservation price p such that she can sell the item with
probability at least α. This problem can be solved using online conformal prediction. Following
standard practice (Mohri and Medina, 2014), we use a synthetic dataset that adapts from eBay auction
data (Jank and Shmueli, 2010). Specifically, we simulate the distribution of vi by using the empirical
distribution of the observed bids in the dataset.

1Obtained from https://www.image-net.org/ with a custom and non-commercial license; we use
the 16× 16 down sampled version.

2In the data, all questions are paired with 50 irrelevant documents. We construct the candidate documents
set by including all 50 irrelevant documents and 1 ground truth document. We exclude questions that have 0
ground truth documents. The data were obtained from DPR’s public Github Repo: https://github.com/
facebookresearch/DPR with licenses CC BY-SA 4.0 and CC BY-NC 4.0
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(a) ImageNet (b) SQuAD (c) Auction

Figure 1: Cumulative Regret

Baselines. We compare to greedy, Adaptive Conformal Inference (ACI) (Gibbs and Candes, 2021),
and Decaying Learning Rate (DLR) (Angelopoulos et al., 2024b). The greedy strategy chooses

τt = sup{τ ∈ R | Gt(τ) ≤ 1− α}

at every step, which cannot guarantee the α coverage rate, leading it to undercover significantly more
than desired. Next, Adaptive Conformal Inference (ACI) adjusts αt (and then τt) based on whether
the ground truth label is in the previous round’s prediction set. We choose the learning rate γ from a
grid search in a candidate set proposed in (Gibbs and Candès, 2022). To run ACI in our semi-bandit
feedback setting, we only update the quantile function Q̂t when ground-truth label y∗t is observed; as
we show, this biased strategy for updating Q̂t leads it to fail to achieve the desired coverage rate.

Lastly, we consider the Decaying Learning Rate (DLR) algorithm proposed in (Angelopoulos et al.,
2024b). In contrast to ACI, DLR directly performs gradient descent on the cutoffs τt instead of the
quantiles αt; it can be viewed as running ACI with Q̂t(α) = α. We set the learning rate to the one
used in the experiments from the original paper—i.e., ηt = t−1/2−ϵ with ϵ = 0.1. We show results
for two additional baselines, explore-then-commit (ETC) and conservative ETC, in Appendix B.

Experiment parameters. We use α = 0.9 and T = 10000, and report the averages across 5 runs.

Metrics. First, we consider the cumulative regret for the following reward function ϕ:

ϕ(τ) =

{
−λ1 · |G∗(τ)− (1− α)| if G∗(τ) ≤ (1− α)
−λ2 · |G∗(τ)− (1− α)| if G∗(τ) > (1− α),

for some 0 < λ1 < λ2; we take λ1 = 0.1 and λ2 = 10. Note this loss imposes a larger penalty for
undercovering compared to overcovering. Next, we consider coverage rate:

Coverage Rate =
1

T

T∑
t=1

1(y∗t ∈ Ct).

Third, we consider the number of times τt > τ∗, which measures the violation of our safety condition:

Undercoverage Count =
T∑

t=1

1(τt > τ∗).

Our goals are to (i) achieve Õ(
√
T ) regret, while (ii) maintaining the desired α coverage rate, and

(iii) achieving zero undercoverage count with probability at least 1− δ over the entire time horizon.

4.2 RESULTS

Regret. First, Figure 1 shows the cumulative regret of each approach on each task. As can be
seen, our algorithm consistently obtains the lowest regret. The ACI algorithm attains a regret level
comparable to the greedy algorithm because its quantile function is updated with a bias. Furthermore,
note that the curves for both ACI and the greedy algorithm appear to be superlinear. This can happen
since these algorithms do not properly account for semi-bandit feedback—in particular, the empirical
estimate Gt of the distribution becomes increasingly truncated.
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(a) ImageNet (b) SQuAD (c) Auction

Figure 2: Coverage Rate

(a) ImageNet (b) SQuAD (c) Auction

Figure 3: Undercoverage Count

Moreover, the poor performance of DLR can be attributed to the fact that it does not make use of a
quantile function. As a consequence, without score-specific hyperparameter tuning (i.e., tuning the
learning rate), it can converge very slowly to the optimal prediction sets. For many scoring functions,
we do not have prior knowledge of the score’s range, which exacerbates these issues. These issues are
particularly salient when we consider tasks such as the second-price auction, where the score’s range
(i.e., the range of bids) can be difficult to predict in advance. In contrast, our algorithm consistently
performs and does not have any hyperparamters to tune.

Coverage rate. Next, Figure 2 shows the coverage rate achieved by each algorithm for each task.
Both ACI and greedy fail to maintain the desired coverage rate in all three tasks. DLR and SPS both
achieve the desired coverage rate; however, SPS converges more quickly.

Undercoverage count. Finally, Figure 3 shows the undercoverage count. Note that greedy and
ACI frequently undercover. ACI has high undercoverage count because the prediction set oscillates
between being too small (i.e., τt > τ∗) and too large (i.e., τt < τ∗). This behavior can be undesirable
since it means that different inputs have different coverage probabilities. In contrast, our algorithm
never undercovers since τt is guaranteed to converge to τ∗ from below. Interestingly, DLR also does
not undercover. While their algorithm is not guaranteed to satisfy this property, it incrementally
estimates τt by starting from a conservative τ . Thus, if the learning rate is small enough, it would not
undercover until τt gets significantly closer to the true τ∗.

Summary. These results demonstrate that our algorithm achieves (and converges to) the desired
coverage rate while achieving sublinear regret and maintaining τt < τ∗. In contrast, ACI and greedy
fail to achieve the desired coverage rate, and DLR converges much more slowly than our algorithm.

5 CONCLUSION

We have proposed a novel conformal prediction algorithm for constructing online prediction sets under
stochastic semi-bandit feedback. We have shown our our algorithm can be applied to learn optimal
prediction sets in image classification, document retrieval, and second-price auction reservation
price prediction. Our experiments demonstrate that we maintain the desired α coverage level while
achieving prediction set sizes that achieve sublinear regret and zero undercoverage count.
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Ethics statement: Our approach aims to improve the trustworthiness of machine learning models by
reliably quantifying their uncertainty. We do not foresee any ethical concerns with our work.

Reproducibility statement: We provide detailed explanations of our experiments in Section 4.2 and
include the necessary parameter settings in the captions of the result figures. All experiments were
conducted on a MacBook with an M1 chip.
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A PROOF OF THEOREM 3.1

We begin by proving several helper lemmas, and then establish our main result. Our first lemma
shows that Gt defined in (3) converges uniformly to G∗

t defined in (2). Note that the randomness
comes from the sequence of random variables sj = f(xj , y

∗
j ).

Lemma A.1. For any ϵ ∈ R>0, we have

P
[
sup
τ∈R
|Gt(τ)−G∗

t (τ)| > ϵ

]
≤ 2e−2tϵ.

Proof. Let the full empirical CDF of s be G′
t(τ) =

1
t

∑t
j=1 1(sj ≤ τ), and define the events

A< =

{
sup
τ<τt

|Gt(τ)−G∗
t (τ)| > ϵ

}
and A≥ =

{
sup
τ≥τt

|Gt(τ)−G∗
t (τ)| > ϵ

}
.

First, consider A≥. For τ ≥ τt, by definition of G∗
t and Gt, we have G∗

t (τ) = G∗(τ) and Gt(τ) =

G′
t(τ). Thus, by the DKW inequality, we have P[A≥] ≤ 2e−2tϵ2 . Next, consider A<. By definition

of G∗
t and Gt, we have Gt(τ) = G∗

t (τ) = 0, so P[A<] = 0. Thus, by a union bound, we have

P
[
sup
τ∈R
|Gt(τ)−G∗

t (τ)| > ϵ

]
≤ P[A≥] + P[A<] ≤ 2e−2tϵ2 ,

as claimed.

Our next lemma shows that with high probability, the desired invariant τt ≤ τ∗ holds for all t ∈ [T ].
Lemma A.2. Suppose supτ∈R |Gt(τ)−G∗

t (τ)| ≤ ϵt for all t ∈ [T ]. Then, τt ≤ τ∗ for all t ∈ [T ].

Proof. We prove by induction. For the base case t = 1, we choose τ1 = −∞, so τ1 ≤ τ∗. For the
inductive case, assume that τk ≤ τ∗. Now, by our assumption that supτ∈R |Gk(τ)−G∗

k(τ)| ≤ ϵk
for all k ∈ [T ], we have

G∗
k−1(τ) ≤ Gk−1(τ) + ϵk−1 = Gk−1(τ).

Because τk ≤ τ∗, we also have G∗
k−1(τ) = G∗(τ) for all τ ≥ τ∗. Together, we have

Gk−1(τ
∗) ≥ G∗(τ∗) = 1− α.

Thus, we have τ1−α,k ≤ τ∗. Since τk ≤ τ∗, it follows that:

τk+1 = max{τk−1, τ1−α,k} ≤ τ∗,
as claimed.

Our next lemma bounds the range of Gt(τt).
Lemma A.3. Suppose supτ∈R |Gt(τ)−G∗

t (τ)| ≤ ϵt for all t ∈ [T ]. Then, for all t ∈ [T ], we have

1− α− 2

t
≤ Gt(τt) ≤ 1− α+ 2ϵt.

Proof. By Lemma A.2, τt ≤ τ∗, implying that G∗(τt) ≤ G∗(τ∗). For the upper bound, we have

Gt(τt) ≤ G∗
t (τt) + 2ϵt = G∗(τt) + 2ϵt ≤ G∗(τ∗) + 2ϵt = 1− α+ 2ϵt.

Next, we consider the lower bound. When t = 1, the inequality trivially holds. Otherwise, at step
t− 1, τt is at least the ⌊(1−α)(t− 1)⌋-th order statistic. On the event that st ≥ τt, then τt is at least
the (⌊(1− α)(t− 1)⌋ − 1)-th order statistic. Thus, we have

Gt(τt) ≥
⌊(1− α)t⌋ − 1

t
≥ (1− α)t

t
− 2

t
.

If st < τt, then τt is at least the (⌊(1− α)t⌋)-th order statistic. Then, we have

Gt(τt) ≥
⌊(1− α)t⌋

t
≥ (1− α)t

t
− 2

t
,

as claimed.
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Theorem 3.1. The expected cumulative regret of Algorithm 1 satisfies

RT ≤ K
(
2 log T + 4

√
T log T + 1

)
+ 4ϕmax,

In addition, with probability at least 1− 2/T , we have τt ≤ τ∗ for all t.

Proof. Define the good event

E = ∀t ∈ [T ] . sup
τ∈R
|G∗

t (τ)−Gt(τ)| ≤ ϵt.

By a union bound and by Lemma A.1, we have

P[¬E] ≤
T∑

t=1

2e−2tϵ2t ≤ Tδ = 2

T
.

Now, we have

RT = E

[
T∑

t=1

|ϕ(τ∗)− ϕ(τt)|
∣∣∣∣ E

]
· P[E] + E

[
T∑

t=1

|ϕ(τ∗)− ϕ(τt)|
∣∣∣∣ ¬E

]
· P[¬E]

=

T∑
t=1

E [|ϕ(τ∗)− ϕ(τt)| | E] · P[E] +

T∑
t=1

E [|ϕ(τ∗)− ϕ(τt)| | ¬E] · P[¬E]

≤
T∑

t=1

E [|ϕ(τ∗)− ϕ(τt)| | E] · P[E] +

T∑
t=1

E [2ϕmax | ¬E] · P[¬E]

≤

 T∑
t=1

E [|ϕ(τ∗)− ϕ(τt)| | E]︸ ︷︷ ︸
=:Xt

+ 4ϕmax.

The first inequality follows from Assumption 2.2. Using Lemma A.3, we can bound Xt as follows:

Xt = E [|ϕ(τ∗)− ϕ(τt)| | E]

= E[ψ(G∗(τ∗))− ψ(G∗(τt)) | E]

≤ K · E[|G∗(τ∗)−G∗(τt)| | E]

= K · E
[
|1− α−Gt(τt) +Gt(τt)−G∗(τt)| | E

]
≤ K · E

[
|1− α−Gt(τt)|+ |Gt(τt)−G∗(τt)| | E

]
≤ K · E

[
max

{
2

t
, 2ϵt

}
+ |Gt(τt)−G∗

t (τt)|
∣∣∣∣ E]

≤ K ·max

{
2

t
, 2ϵt

}
+K · E

[
sup
τ∈R
|Gt(τ)−G∗

t (τ)|
∣∣∣∣ E]

≤ K ·max

{
2

t
, 2

√
log(2/δ)

2t

}
+ 2K

√
log(2/δ)

2t

≤ 2K

t
+ 4K

√
log(2/δ)

2t
,

where the first inequality follows from Assumption 2.1 and the third inequality follows from Lemma
A.3. Thus, we have

T∑
t=1

Xt ≤
T∑

t=1

{
2K

t
+ 4K ·

√
log T

t

}
≤ K

[
2 log T + 1 + 4

√
T log T}

]
.

The claim follows.
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B ADDITIONAL EXPERIMENTS

We consider two additional baselines. First, explore-then-commit (ETC) chooses τt = −∞ in the
first m steps, and then commits to

τt = sup{τ ∈ R | Gm(τ) ≤ 1− α}.

Next, conservative ETC (Con-ETC) uses the same strategy, except it commits to

τt = sup{τ ∈ R | Gm(τ) ≤ 1− α}

after the exploration period. In other words, it commits to a conservative choice of τ that satisfies
our coverage guarantee, and also guarantees τt ≤ τ∗ with probability at least 1− 2/T . The number
of exploration rounds are chosen via a grid search. Results are shown in Figures 4, 5, & 6. As can
be seen, ETC fails to achieve the desired coverage rate since it does not account for uncertainty;
conversely, Con-ETC achieves very high regret since it does not adaptively choose τt over time.

(a) ImageNet (b) SQuAD (c) Auction

Figure 4: Cumulative Regret

(a) ImageNet (b) SQuAD (c) Auction

Figure 5: Coverage Rate

(a) ImageNet (b) SQuAD (c) Auction

Figure 6: Undercoverage Count
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