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Abstract

In this study we attack the conundrum of success of over-parameterized models from un-
derstanding the complex relationship between parameter space and output space.

We classify key parameter sets related to generalization and training in parametric ba-
sis expansion machine learning models. Methods ranging from Linear regression, Extreme
learning machines to Neural networks fall in this category. We also classify these parametric
models into identifiable and non-identifiable models according to the mapping from param-
eter space to function space. Such a classification of models is already present in literature
but usually studied in Bayesian ML and statistics. We focus on identifiable models in this
article.

We later classify generalization into strict and weak generalization according to learning
in parameter space for fixed basis regression models which fall into the category of model-
identifiability. Strict generalization is when true parameters (or their un-identifiable coun-
terparts) of the ground truth are learned, while weak generalization is when they are not
learned but we still achieve local generalization. We showcase the conditions needed for strict
generalization in fixed basis regression settings, trained using pseudo-inverse methods. We
showcase that strict generalization cannot be achieved in over-parameterized regimes trained
through pseudo-inverse method, but approaching the strict generalization using gradient
descent can be completely dependent on our initialization and randomness. Thus support-
ing the classical idea that over-parameterization is bad, but emphasizing that it applies
to strict generalization case. However, weak generalization can always be achieved in over-
parameterized regimes under certain cases. Thus we study the complex relationship between
generalization in output space and the parameter space to understand the conundrum of
success of over-parameterized models and try to weave a coherent and consistent picture of
the same.

Later we study generalization performance under label noise, for the distinct scenarios iden-
tified in this article. We include insights into the theory of deep learning and quantum
machine learning.

Our work serves as refinement of the idea of generalization as well as it provides insights
through proof and sometimes demonstrations. Our focus in this article is purely taxonomical
and conceptual rather than driven by introduction of new metrics.

1 Introduction

The recent success of deep learning has renewed interest in the generalization behavior of over-parameterized
models, a phenomenon that appears counterintuitive under classical learning theory. Traditional theory
suggests that models with more parameters than data points should overfit, yet in practice, highly over-
parameterized models often achieve low test error (Bishop and Nasrabadi, [2006; |Geman et al., [1992)). Un-
derstanding the mechanisms behind this behavior remains a central challenge in modern machine learning.

Several phenomena have been proposed to explain generalization in over-parameterized regimes. Double
Descent describes a non-monotonic test error curve, where increasing model complexity initially worsens
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generalization but subsequently improves it (Nakkiran), |2019; |[Nakkiran et al., |2021; Belkin et al., |2019).
Benign overfitting occurs when models perfectly fit training data yet still generalize well (Bartlett et al.,
2020). Other observations include implicit regularization in gradient-based optimization (Neyshaburl 2017}
Gunasekar et all [2018), grokking, where generalization emerges after prolonged training (Power et al.
2022; |de Mello Koch and Ghosh| [2025), and connections to the Neural Network Gaussian Process (NNGP)
correspondence (Neall [2012; [Lee et all [2017). While these phenomena provide partial insights, they do not
fully explain why over-parameterized models sometimes fail to generalize, particularly in terms of recovering
the underlying structure of the target function.

A key limitation of existing explanations is the conflation of low test error with faithful recovery of the
target function. In practice, a model can achieve small test error without accurately learning the underlying
coeflicients or features, especially when evaluated outside the training domain. To formalize this distinction,
we introduce two complementary notions of generalization: strict gemeralization, which requires accurate
recovery of the target function, and weak generalization, which requires only low test error on the training
domain. These definitions allow us to distinguish between in-domain approximation and out-of-domain
extrapolation, and to clarify the success and limitations of over-parameterized models.

To analyze these phenomena rigorously, we focus on a fixed basis regression model, a class encompassing
linear regression, random feature models, and extreme learning machines. These models also fall into the
category of identifiable models as they are linear in parameters, i.e. there is injective mapping between
parameters and the model function class. This framework allows precise characterization of the mapping
between parameter space and function space, and facilitates analytical study of generalization in the over-
parameterized regime. For these settings, we define two novel thresholds: the sampling threshold, which
captures the minimal data requirements for parameter recovery, and the expressivity threshold, which captures
the minimal model complexity required to represent the target function. These thresholds complement the
well-known interpolation threshold observed in double descent.

Our analysis yields several insights. First, strict generalization is fundamentally unattainable in over-
parameterized fixed basis regression when trained using pseudo-inverse methods, due to the inability of
minimum-norm solutions to recover true coefficients. Consequently, out-of-domain extrapolation is also im-
possible in such settings if trained with pseudo-inverse method. In contrast, weak generalization remains
achievable: models can approximate the target function within the training domain even without recovering
its true structure. Second, using Bernstein basis function as an example and the Weierstrass Approximation
Theorem, we prove that weak generalization is theoretically guaranteed for any closed and bounded contin-
uous function in one dimension in highly over-parameterized regimes trained with pseudo-inverse. In such
scenarios parameters or its non-identifiable counterparts are not learned. This result highlights that over-
parameterization can sometimes enable in-domain approximation regardless of the training method, while
extrapolation requires additional constraints or use of optimization schemes rather than complete solutions
like Pseudo-inverse.

By establishing a clear distinction between strict and weak generalization, introducing novel thresholds for
fixed basis regression models, and providing rigorous guarantees for in-domain approximation, our work
offers a refined theoretical perspective on over-parameterized learning. Our primary motive in this article
is of classification of the modes of generalization and its behavior. These insights can clarify the success
and limitations of deep learning and extend naturally to related frameworks, including quantum machine
learning.

1.1 Relevant Phenomena and Related Works

Over-parameterized models exhibit several phenomena that partially explain their generalization behavior,
yet key gaps remain.

Double Descent: Contrary to classical bias—variance intuition, test error can initially increase and then
decrease as model complexity grows (Nakkiran) [2019; Nakkiran et al., [2021; Belkin et al., |2019). Variants
include model-wise, sample-wise, and epoch-wise double descent. Several questions still remain, for example,
while double descent illustrates that over-parameterization need not induce catastrophic overfitting (Bartlett
et al 2020), it does not guarantee accurate recovery of the target function. Similar insights have been ex-
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plored in quantum machine learning, emphasizing feature encoding and generalization (Peters and Schuld,
2023). These works largely address strict generalization, with limited consideration of in-domain approxi-
mation or weak generalization. Other studies have examined the role of feature matrix condition numbers
in double descent (Poggio et al., [2019)), but their scope is restricted to random matrices and does not clarify
how model basis choice or identifiability conditions affect approximation quality.

Benign Overfitting: Certain over-parameterized models perfectly fit training data yet generalize well
(Bartlett et al., 2020). This behavior depends on model structure, data distribution, and optimization
method. Importantly, low test error does not imply faithful function reconstruction, highlighting the dis-
tinction between weak and strict generalization.

Implicit Regularization: Optimization algorithms such as gradient descent bias solutions toward
minimum-norm or low-rank parameter configurations (Neyshabur} 2017; |Gunasekar et al. |2018; |Soudry!
et al.,|2018)). Such implicit biases can facilitate generalization without explicit regularization, but their effect
is limited to particular optimization schemes and initialization regimes.

Grokking: Delayed generalization emerges after prolonged training despite early overfitting (Power et al.)
2022; [de Mello Koch and Ghoshl [2025)). This phenomenon emphasizes temporal dynamics of learning and
suggests that standard static analyses may be insufficient to fully characterize generalization.

NNGP and Mean-Field Correspondences: Infinite-width neural networks converge to Gaussian pro-
cesses (NNGP) (Neal, |2012; [Lee et al.l 2017) or admit mean-field PDE descriptions of gradient descent
dynamics (Mei et al |2018)). While these frameworks reveal inductive biases of architectures, they often
ignore finite-width effects and feature learning dynamics (Jacot et al.l 2018} |Golikov et al., [2022).

Singular Learning Theory: By considering the many-to-one mapping from parameter space to function
space, singular learning theory introduces the real log-canonical threshold (RLCT) to quantify effective
model complexity (Watanabe) [2024; Wei et al.} |2022). Although this theory advances understanding of over-
parameterized models, it primarily addresses post-training scenarios and Bayesian generalization, leaving
open questions about dynamic learning and in-domain vs out-of-domain approximation.

Other heuristic insights include the Lottery Ticket Hypothesis (Frankle and Carbinl 2018), spectral bias
(Rahaman et al.| [2019), and ReLLU network spline interpretations (Sahs et al., [2022; |Balestriero et al. [2018)).

1.2 Our contribution

We emphasize that

1.3 Outline of the Article

The remainder of the manuscript is organized as follows:

. — Problem Setup: We formalize the regression task, define the fixed basis model, and
introduce key concepts including strict vs weak generalization and the sampling and expressivity
thresholds. We define identifiability of a model and focus our work to identifiable models. We discuss
Sampling schemes and their influence on generalization.

. — Strict Generalization: We analyze conditions for strict generalization in over-
parameterized regimes and prove its impossibility using pseudo-inverse training. Implications for
out-of-domain extrapolation are presented.

. ~ Weak Generalization: We demonstrate that weak generalization is achievable in-
domain, even in over-parameterized settings. Using Bernstein basis functions, we show that any
one-dimensional closed and bounded continuous function can be approximated near training points.

. — Effect of Noise: We study the impact of sampling noise and model basis choice on
generalization, highlighting the relative importance of basis selection and regularization.
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. — Parameter Classification: We classify parameters in the model space according to
their generalization properties and clarify the conditions under which strict generalization may be
recovered via optimization-based training even in over-parameterized regime.

. — Insights for Deep Learning: We discuss implications of our findings for over-
parameterized neural networks, including when weak generalization emerges and the role of ar-
chitecture and initialization.

. — Insights for Quantum ML: We extend the framework to quantum machine learning
models and discuss implications for feature encoding and generalization.

Appendices: Technical details on basis properties, sampling procedures, proofs of corollaries, noise stability,
and a real-world example.

2 Setup

Consider the problem of approximating a 1-d continuous function on a closed and bounded domain ([a, b])
denoted by g(x). We call it as the target/true function or ground truth.

Let nyprqin training points be sampled from the function, restricted to domain [atrqin, btrain], With some
sampling error €, such that the sampled training points are §(z{"*") = g(zi"*") +¢;, where i = 0, ..., Nypain —
1. This gives us the training dataset (274", §(x!"*")). The test of the approximation capability of a model
is in the domain [a,b]. If [a,b] = [@train, Dtrain), then it is considered in-domain approximation and if
[@train, birain] C [a,b] it is considered out-of-domain approzimation (extrapolation). The test set is given as
(zlest g(xles?)). Note, we do not consider any sampling error in the test set as we intend to understand the

theoretical approximation capabilities of a model.

Before moving further let us recall the difference between interpolation and approximation. While inter-
polating a function we intend our model to pass through the training points, while in approximation we
care more about approximating the underlying function represented by the data. Overfitting happens when
the function passes through the training points, but does not approximate the function. The latter part is
important. Hence, as you can predict already, overfitting is a nuisance in the approximation tasks and not
for interpolation. If there is no sampling noise, a good approximation should also pass through the training
points.

2.1 Sampling

Let the true function (in the domain [a, b]) be

d—1

@) =Y delaswy)e™e, (1)

Jj=0

where d € 7. is the number of “continuous basis functions” (¢¢(x, w)) in linear expansion of the true function.
There is no restriction on the value of d and it can be infinite too. The combination of d, ¢;(x;w;) and
c'"ue generates different continuous functions in the domain of the basis used. If ¢ are polynomial bases, w
represents the degree of the polynomial or if it is non-polynomial basis like sine or cosine, it is the frequency.
More generally, in our article we consider w to be fixed set of hyper-parameters and belonging to the set

{’LU(), ....,wdfl}.

Note, that basis expansion type models for regression like polynomial regression, neural networks or kernel
methods (implicitly) ideally should fit functions which can be exactly expanded into a certain basis. Hence
we consider functions of the type However, most functions in applications cannot be expanded
as such. In such scenarios, we perform surrogate modeling, i.e., approximate the ground truth by some basis
expansion, given by the Hence, in practice, we are indirectly approximating functions of the type
For example, approximation of gravitational potential of Earth which is a complicated function,
but we approximate it by a Legendre polynomial of certain order according to the type of application the
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(a) (b)

Figure 1: (a) Schematic comparison of fixed basis regression model and feed-forward neural network. The
neural networks can be called as adaptive basis regression model. In the latter case we learn the weights
(and bias), while in the previous case it is fixed. This understanding can help generalize the results and
understanding of this article to deep learning. (b) Diagram showing taxonomy of basis expansion models.
Linear regression model is the most restricted case of it. LR represents Linear Regression, PR represents
Polynomial (monomial basis) regression, FBR represents Fixed basis regression (the model we use in this
article), ELM represents Extreme Learning Machine model, * represents the group of all model which can be
non-linear in features but linear in learnable weights. When we generalize outside these models we achieve
the neural network model.

approximation will be used Hofmann-Wellenhof and Moritz| (2006). We discuss such a scenario when the
ground truth is not of the type [Equation 1] through a real-world example in more detail in

The sampled training point vector can be written as

ét'r‘ain — gtrain + E — (I)irainatrue 4 E, (2)

where E € R™rain represents the error vector in sampling, 17" € R™rainXd and ¢t7¢ € R4, and L™ is
the true feature matrix defined in training domain. In general in this article we use the symbol @, possibly
with subscripts and superscripts, to denote a matrix with entries ®,; = ¢(z;, w;).

The inputs can be sampled uniformly spaced, randomly or with certain sequence, i.e. at nodes of polynomials.

We define it in [Appendix B}

2.2 Model

To approximate the functions consider a model defined as
p—1
y(x;) = Z Pm (T3 w;)c; y =P, (3)
j=0

where p € Z,. The model is a linear combination of the basis functions ¢,, generated at points z. If

train/test train/test , . .
T = Tyrain/test then @y, = @ﬁam/ “*" and <I>nrlam/ ' € R™Mrain/testXP - The coefficient vector is ¢ € RP. At
the training points we consider

gtrain — :train. (4)

Let us try to understand the relation of this model to other well-known methods in machine-learning

We consider w to be fixed (in both the target function and the model) in this article for simplicity. However,
the coefficients ¢ are learnable. Hence, we call it the “fized basis regression" model.

If we restrict the basis to ¢, (z;,wo) = 1 and ¢y, (z;, w1) = x4, (y(x;) = wo + wix;) then it is a Linear
regression model. If ¢,, is a monomial basis, then it is nothing but Polynomial regression. If w is random
and c is learnable, it represents an Extreme Learning Machine model. If the ¢,, were Fourier basis, it would
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represent Random Fourier features model. If w was learnable by the model, it would be a single-layer feed-
forward neural network (without bias term). We showcase the relation in increasing level of complexity in
Hence, the understanding of the model considered in this article leads us to gain insights into
many other related models.

Note, as w are fixed, the number of learnable parameters in this model are p. Moreover, the choice of ®,,
can be different from the true ®; and, normally, ¢ is different from ¢'"“¢ and it is to be learned. Crucially,
the choice of model parameters (p) can also be different to the number of features in the true function (d).
This is because both ®; and d (and also ¢!"%¢) are unknown to the learner, in general. In some examples
though d can be known. For instance, for the problem of signal reconstruction (a type of approximation
problem where both the true basis ®; and the band-limit d is known) in signal processing the band-limit d
is e.g. 22 kHz for audio signals.

2.3 Identifiability of a model

It is important to distinguish between identifiability of a model and non-identifiability of model dependent
on mapping from parameter space to the model function class. Let us define global identifiability of a model
mathematically.

Let X be the input domain and let F C {f : X — R} be a hypothesis (model) class indexed by a parameter
space C' C RP. Let
M:C— F, ¢ fz

denote the parameter-to-function map induced by the model. If the mapping is many-to-one it is called as
non-identifiable model.

Definition 2.1 (Identifiability). The model is said to be identifiable if the map M is injective, i.e.

fa(x) = fo(x) VzeX = é =éa. (5)

Equivalently, distinct parameters correspond to distinct functions in the hypothesis class. If the injectivity
condition is violated, it is a functionally-non-identifiable |(Chatterjee and Sudijono| (2025)); [Zhao et al.| (2025)).

The non-identifiability of a basis expansion parametric model is dependent on the symmetries of the model
basis used. We add example of identifiability and prove that fixed-basis regression model is identifiable in

the [Xppendix A

Let us define data dependent identifiablity here

Given a finite training set {z;}?, C X, define the restriction map

M, : 0 = R", QH(fH(xl)vfo(xn))

The model is said to be data identifiable if the map M,, is injective, otherwise it is data non-identifiable

This notion of identifiability is about mapping from parameter space to discrete points (training inputs and
predicted outputs) on model function class. Hence, it becomes data dependent identifiability in comparison
to equation [f

A model can be identifiable but it can be data non-identifiable. For example, polynomial regression is
model-identifiable in under-parameterized regime, however in over-parameterized regime there are infinitely
many possible parameters vectors which pass exactly through the training data points making the model,
data-unidentifiable.

2.4 Training

Once, the model basis is chosen we should perform rescaling of the domain of the dataset to the domain in
which the model basis is defined. This process is a homeomorphism and does not affect the structure and
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Pseudo-Inverse (@fxn) Identity
(n>p) (‘I”‘Ii)lpw‘l’pm _ FPp = [ _
(n=p) P in—p O I(2)®(x) =00 =1
(n<p) | B, (@0, 207 — 1

Table 1: This table gives expression of Moore-Penrose Pseudo Inverse in different regions, and their proper-
ties. T represents transpose-conjugate of the matrix.

topological properties of the true function. For example, Legendre basis is only defined between the domain
z € [-1.0,1.0].

Now, the task of training is to find the optimal coefficients of the model called ¢°?* such that we fit the
model y to resemble the true function g. This can be done by various methods, like using pseudo-inverse or
with optimization methods like gradient descent. Pseudo-Inverse methods provide unique solutions, i.e the
solution which is closest to the origin. However, they are only theoretically possible to be applied in cases
where the model is linear in parameters. Moreover, in case of large datasets or many parameters, pseudo-
inverse methods are not practical due to computational limitations. On the other hand, gradient descent
methods solve the issues affecting the pseudo-inverse methods. However, they are iterative and slow and
depend highly on initialization sometimes making them as a random guess, without using known structure
of the solution. Moreover, they can get stuck in local minima of train loss if the function is non-convex and
avoid reaching global minima, which is both boon and bane as we discuss in As our model is linear
in parameters and we are trying to understand the theoretical basis of generalization, we first focus on the
pseudo-inverse solution, which always leads us to zero train loss parameter solutions which have minimum 2
norm.

Using the Pseudo-inverse method the optimal set of coefficients to fit the model to true function is

—opt __ train® —train o train® train =true n
¢ - (pm Yy - (I)m ((I)t c + E) (6)

We used [Equation 2 [Equation 3|and |[Equation 4 The symbol # denotes the pseudo-inverse, and we remind
that ¢Pt € RPX! and @ir@in™ ¢ RP*™rain . There are three different cases of pseudo-inverse that may arise
depending on its dimension, shown in [Table 1| considering that ® is always full rank, which is guaranteed
if w are unique. The expression in the second equality shows the mathematical relation between the true
coefficients ¢7%¢ and the trained coefficients ¢°P!. In general, these can only be equal if the model basis

functions and the true basis functions agree and there is no noise.

opt

We can check if the learned c°P* effectively predicts the training points via

Ztrain __ Fgtrainzopt __ Ftrain train¥ train ztrue n
Y - ‘I)’m ¢ - (I)m (bm (q)t c + E)7 (7)

where we used [Equation 6|and [Equation 2{and we denoted with y!7%" € R™trein the predicted vector. From
now on, we will use the hat symbol () to denote predicted quantities.

It is well known that good training can sometimes be misleading for approximation task. What matters in a
good machine learning model for approximation is that it performs well on unknown points. These unknown
points can be of two types, one inside domain and other outside domain as discussed earlier. As we will
prove and demonstrate, the latter can only be achieved by strict generalization, while the previous one can
be achieved by both strict and weak generalization. We will define these in a mathematical form once we
discuss more nuances.

Along these lines, consider unknown data points that were not used in training the model
@test _ (I)fzstéopt _ (I)fsstq);:’ain# (cbﬁrainétrue + E) (8)

where y'*t € R™es is the predicted vector. Here, !5t € R™tst*P_ Note that ®°** is defined on test inputs
lying in the range [a,b], which can be different from [atrain, btrain]. We consider niest >> Nirqain SO as to
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theoretically better evaluate the capabilities of the model. If the test points are uniformly distributed and
their number tends to infinity, the test loss converges, in a functional sense, to the true loss. This limiting
quantity is entirely model-dependent and characterizes the intrinsic limitations of the model: it measures the
error that remains even in the presence of perfect, noiseless data, reflecting what the model is fundamentally
incapable of representing.

Now, we can check the training and testing performance of the model in unknown parts by using the metric
called “residual" as given below

ptrain/test __ Atrain/test —train/test
Rireinftest — jraintest_girain) ©)

Note that in case of training the second term is [Equation 4] while in case of testing it is nothing but the true
function at the test points without any sampling error, as discussed earlier for theoretical purposes.

Having said this, let us classify generalization. This nuanced understanding of generalization, leads us
to understand the conundrum around generalization capabilities of over-parameterized machine learning
models. It also showcases the limits of the over-parameterized models in terms of approximation.

Definition 2.2 (Strict Generalization). We say that strict generalization is achieved if and only if

1. Zero Test Residual (Functional Exactness).
Riest = 0.
2. Recovery of True Coefficients up to Symmetry (Structural Exactness).
Copt € O(Etrue,pad)-

Here, G denotes the group of functional symmetries of the model acting on the coefficient space, such that

D¢ =P,,(9-0), Vg € G Vz € [a,b]

The corresponding functional equivalence class (orbit) of a coefficient vector ¢ is defined as

O(c)={g-clgeG}.

For identifiable models, this symmetry group is trivial, implying g = I.

In the above definition for fixed basis regression models

Strue

—true,pad __ Cax1

cpprem [ (10)
(pfd)Xl p><1

Since the objective is to learn the true coefficients of the underlying function, such generalization enables
extrapolation, that is, predicting function behavior outside the training domain.

However, we must be cautious: extrapolation is only reliable in cases where the function exhibits repeating
structure across the domain. For example, linear and periodic functions possess globally consistent patterns,
which makes them inherently suitable for extrapolation. In contrast, non-linear, non-periodic functions
typically lack such regularity, so extrapolation is only an approximation and becomes increasingly unreliable
the farther we move from the training domain. In mathematical terms to represent the same function in a
different domain we need a different set of ¢/"%¢. It changes the farther we go away from the training domain.

However, generalization can also be achieved without learning the true coefficients (features), as we will
showcase later in this article.
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Parametrization Sampling Expressivity
Under p<n n<d p<d
Threshold p=n n=d p=d
Over p>n n>d p>d

Table 2: Table depicting various regions of the learning space.

Definition 2.3. We define weak generalization when R**** = ( even if we do not learn the true coefficients
or its’ non-identifiable counterparts.

We showcase that such generalization then is only restricted to the training domain (i.e. in-domain regression)
and we cannot extrapolate in such a case if we do not learn the true coefficients.

Let us now understand the criteria required for strict generalization and weak generalization. Also, let us
prove/disprove which type of generalization we can observe in over-parameterized regime with experimental
proof.

3 Strict Generalization

To understand the generalization properties in more detail we need to define new thresholds apart from the
interpolation threshold (also called “parametrization threshold" in |Table 2)). We call the condition where
n = d, the “sampling threshold" (ST) and the condition where p = d, the “expressivity threshold" (ET)
and, as already mentioned, when n = p we call it the “interpolation threshold" (IT). See also for a
summary of the various regimes. As we sweep the number of parameters p while keeping n constant we pass
through the ET, but the condition that we are below ST or not is decided when we choose the number of
training data points (n), and it is not visible on the learning curve plots.

Let us derive the conditions needed for strict generalization and understand the regions in which we can
obtain it.

— ptrue,pad

Theorem 3.1. The necessary conditions for c°Pt in the fized basis regression model trained using

pseudo-inverse method are
1. Zero sampling-noise contribution: @Z“i"#E =0
2. Enough Expressivity: p > d.
3. Sampling sufficiency: n > d.
4. Under-parameterization: n > p.
5. Span-inclusion: Span{¢:(z;;w)}™ ; C Span{dm, (z;; w)}r ;.

The most important implication in terms of approximation capabilities in over-parameterized regimes is that
we cannot have strict generalization in an over-parametrized regime with the fixed basis regression model.

Proof. Let us start with We know that from [Equation 6] and [Equation 2| that

Eo;Dt — (I)igain# (I)]tfrainétrue 4 (I)tmrain#Ev (11)
For [Equation 10| to be true we need either ®# E = 0 or the sampling noise E = 0. This gives us the first
criterion. So reduces to obtaining conditions for

Eopt — q)z;azn# q)irain(—:true — Etrue,pad. (12)

This implies that the necessary condition for it to be true is

| . < I >
(I)trazn# Pptrain — dxd _ Ipad ) 13
m t 0(p7d)><d oxd pXxd ( )
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As Rank(17%?) = d, we see that we should have p > d. This gives us the second criteria, that the model has
to be expressive enough, and it is decided by the “expressive threshold".

(b:,’;ain# — ‘ Adxn ) ’ (14)
B(p—d)xn pxn

so according to we should have

Let us write

AR = Tyyq, (15)
B® ™ = 0(p—a)xa- (16)

The first equation implies that A must be left inverse of ®"%" only then can it be satisfied. As left
inverse only exists if n > d, i.e. the number of training points needs to cross the sampling threshold,
for ¢ort = gtruerad  This leads us to the third condition for obtaining strict generalization. This criteria is
similar to the “Shannon-Nyquist sampling theorem" in signal reconstruction theory and Sampling complexity
in PAC theory Kearns and Vazirani| (1994); Ehrenfeucht et al.| (1989). Moreover,

Im(®"") C Ker(B), (17)

namely the column space of @zmi" is contained in the null-space/kernel of B. A null-space of B is a set of
all vectors v such that Bv = 0. Note, that v need not be zero vector always, for it to be true. Now, let
Rank(B) = r, then by the Rank-Nullity Theorem,

Rank(B) + Nullity(B) = r + dim(Ker(B)) = dim(Dom(B)) =n (18)

Here Dom means “Domain" and dim is to represent “dimensions". This gives us dim(ker(B)) = n — r,
i.e. any of set of vectors in Ker(B) can have atmost n — r linearly independent vectors. Now according to
dim(Im(®4(x)) < dim(Ker(B)). This means d < n — r. Now, the rank r can be either n or
p — d, as we are considering full rank assumption. Suppose r = n, then we get d < 0, which is not possible
as d is an integer greater than or equal to 1, hence, for strict generalization r cannot be equal to n. Suppose
we use r = p — d, then d < n — (p — d), this gives us the criteria that n > p, for to be satisfied.
Satisfying all these conditions leads us to obtain Pt = gtrue.pad,

Merely satisfying does not lead to strict generalization, we also need according to Equation 9}
Rtest = Qtestgopt — plesigirue — Qestatruepad _ plestatrue — ) for this along with [Equation 10| we need
Pirain — ((I)?‘“”|<I>nx(p_d))nxp (i.e. Span{@!"®"(x;w)} C Span{@test(z;w)}) .

If we achieve all the conditions mentioned above and learn the true coefficients, then R**** ~ 0, leading to
strict generalization. However, we may not be able to learn it if the size of training domain is very small
compared to the test domain for a general set of functions (except linear and periodic functions), as we
discussed in previous section. This finishes the proof. O

Let us now justify the previous result using examples. Before going ahead we need to emphasize that to
compare behavior across datasets and scales we will use “normalized root mean square" rather than “root
mean square' error. Note that it does not change the behavior of the error except that it rescales the error
for comparison. The equation for normalized root mean square is given as

1 n train?
Vit SR

Ntrain

(ymar - ymin)”ain

NRMSE;qin =

; (19)

where RY"*™ is the residual in the equation Similarly we can define the NRMSEy,,; for the test

error.

We illustrate our result using one-dimensional continuous function constructed from a Chebyshev polynomial
basis of maximum degree d = 13. The training dataset consists of n = 26 noise-free points, restricted in the
domain [—0.5,0.5]. We intend to perform out-of-domain approximation in the region [—1.0,1.0]. Note that
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Train and Test Error (NRMSE) vs. Model Complexity
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Figure 2: (a) NRMSE (log-scale) v/s model parameters (p). We are interested in out-of-domain approx-
imation and demonstrating the observations of The true function is generated from linear
combination of Chebyshev polynomial basis. It can however be any other type of 1-d continuous function.
The order of Chebyshev polynomial is d = 13. We consider n = 40 randomly spaced noise-less training
points, restricted to the domain [—0.5,0.5] and test the approximation in the domain [—1.0,1.0]. We are
above the sampling threshold ((n = 40) > (d = 13)). Inset shows approximation at p = 13 and p = 145.
We observe that p = d = 13 the model extrapolates, while at p = 145 (over-parameterized regime) the
extrapolation capability is lost. (b—c) Histogram comparing ¢?* and ¢"“¢ at p = 13 and p = 145. At p = 13,
the model learns the true coefficients as expected from and looses it in the over-parameterized
regime at p = 145.

we are well above the sampling threshold (n = d). The model is built using a Chebyshev basis, identical to
that of the true function. In particular, as we increase the complexity of the model (p), and when it is equal
to the highest degree of the true function (d) (p = d), all the conditions required for strict generalization are
met, as stated in In this regime, the model achieves perfect extrapolation. The corresponding
results are presented in We plot the normalized root mean square error (NRMSE) as a function
of the model complexity p. Additionally, we compare the true coefficient vector (c*“¢) with the learned
coefficients (¢°P') both at p = d and at an over-parameterized setting p > d. The associated fitted functions
at these complexities are also shown to illustrate the behavior of the model. We can also observe that we do
not achieve strict generalization and hence out-of-domain approximation in the over-parametrized regime,
which is one of the main results of the theorem above.

11
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We are still unaware of the precise structure of the matrix @;X(pf d) that is required for achieving sustained

strict generalization in the regime d < p < n. While we observe generalization exactly at p = d satisfying
the conditions above, increasing model complexity beyond this point does not guarantee that the learned
coefficients will match the true coeflicients—unless additional conditions are satisfied.

We refer to this intermediate region, where d < p < n but strict generalization can still occur under specific
structural constraints, as the “extrapolation regime". This regime represents a phase in the learning process
where strict generalization is possible but not guaranteed, depending on the nature of ®’ and the alignment
between the model and the true function.

Corollary 3.2. Strict generalization in the extrapolation regime (d < p < n) occurs only for an orthogonal
basis in the fized basis regression model, even if all the conditions proved in[Theorem 3.1] are satisfied.

Check for the proof.

We should note that when we are dealing with discrete orthogonal polynomial basis; they are usually or-
thogonal with respect to some weighting function (W) which depends on the input (), i.e.

S 6 20) ) W (1) = cudas (20)
1=0

Where ¢, is a real number. Some orthogonal polynomials (like Legendre) have a weighting function equal to
1, even the basis like Fourier basis have a weighting function equal to 1. However, orthogonal polynomials like
Chebyshev have a non-constant weighting function. Monomial basis do not form an orthogonal polynomial
basis. Hence we cannot expect strict generalization for them in the described region, unless we consider it
into account. We can always absorb the weighting function inside the orthogonal polynomial basis and avoid
the weighting function, when choosing a model.

Let us demonstrate this understanding in while approximating the function outside the training
domain in the region [—1.0,1.0]. We consider a function generated from the Fourier basis. The highest
frequency of the basis considered is f,q. = 6, this leads to the true complexity of the function to d =
2fmaz +1 = 13. We consider a model with a Fourier basis for regression and consider n = 35 noiseless
training points which are randomly spaced in the domain [—0.5,0.5]. This way we are above the sampling
threshold (i.e. m = d). As we increase the model-complexity (p) and we surpass the expressive threshold
(p = d), we satisfy all the conditions needed for strict generalization. However, as we increase the model
complexity in the region (d < p < n), because the Fourier basis is orthogonal to each other, we can sustain
the strict generalization in the extrapolation regime discussed in Corollary

To conclude the discussion on strict generalization, let us observe, what happens when we violate one of the
assumptions in Let us consider that we do not sample enough a) i.e. do not surpass
the sampling threshold (n = d). We consider another case where we do not choose a right basis b).
What happens if we violate both c). All of the scenarios show that we achieve Double Descent but
we do not generalize well in the over-parameterized regime if we use Pseudo-inverse method for training the
model. This also showcases that the usual bias-variance tradeoff behavior applies to strict generalization and
models trained using pseudo-inverse method. What happens with gradient descent is discussed in

4 \Weak Generalization

We previously demonstrated that strict generalization is not achievable in the over-parameterized regime,
which in turn led us to conclude that even out-of-domain approximation fails under such conditions. Now,
let us explore whether in-domain approximation is feasible in the over-parameterized setting.

Can this be achieved without recovering the true coefficients (or features) of the target function? Is it
necessary to adhere to the specific conditions we derived earlier for in-domain approximation, or can we
succeed without them? Furthermore, in the previous section, we observed that strict generalization requires
the model’s basis to closely match that of the target function. Does this constraint also apply here? Or is
it sufficient to use a more flexible basis—such as one with universal approximation capabilities?

12
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Ultimately, this discussion helps us understand the core puzzle: Why is it that an over-parameterized model,
despite being under-determined can still approximate a target function effectively within the training domain?

Let us recall “Weierstrass approximation theorem" from approximation theory Rudin| (1976)). It states that

Theorem 4.1. For any real continuous function g(x) defined on a closed and bounded interval [a,b], there
exist polynomials y, (), where p is highest degree in the polynomial, such that lim,_,« y,(z) = g(z) uniformly
for all points in the domain.

In the language of Machine learning, y represents the model we use for learning and g is the true function.
As the order of the polynomial basis increase to infinity, (in our fixed basis regression model, it is the number
of parameters) lim,_,o y,(x) = g(z) for such functions; R**** = 0, provided that sampling noise is negligible
(E = 0). Note that this theorem is applicable when the domain of the polynomial is same as the domain of
the function to be approximated. This theorem strengthens the notion of generalization in over-parametrized
regime for in-domain generalization of continuous functions. Moreover, we recall from approximation theory
that Bernstein polynomial basis achieves this irrespective of the target function (it has to be continuous).
However, other polynomial basis like Chebyshev basis or Legendre basis cannot achieve this.

Note, this theorem is different from the Universal approximation theorem |Cybenko| (1989), which does not
concern itself with the number of parameters/neurons used to approximate a target function.

It shows us that it is not surprising that we observe generalization in over-parameterized regime, despite it
contradicting the conventional notion of “statistical learning theory".

4.1 Heuristic proof of weak generalization in over-parameterized regime using Bernstein basis

Let us study the notable case of using Bernstein basis for fixed basis regression model. The proof of Weier-
strass approximation is available in textbooks, but we prove it again here in the machine learning perspective
and showcase that it (in-domain) approximates continuous functions in over-parameterized regimes, irrespec-
tive of learning the true coefficients of the true function and irrespective to the type of the target function
(except that it has to be continuous and lie in the range [0, 1]).

The Bernstein basis is defined as

p—1\ ; L
By = biga() = (7 el =g 1)
where here x € [0,1]. Note, through out this section, we will consider the training domain as same as
test domain. It can be observed that the Bernstein basis is nothing but the probability mass function of
a binomial distribution. This plays an important role in its being a universal model basis for in-domain
generalization. The feature matrix of this basis is

bo,p—1 (z0) bip—1(x0) -+ bp_1p-1(z0)
3, = : : (22)

bop—1(Tn—1) bip—1(Tn-1) -+ bp—1p—1(Tn-1) nxp

By De-Moivre Laplace theorem, for p — oo such polynomials can be approximated by a Gaussian distribution

e—(G—ni)*/207
lim bj,pfl (CL'Z) =, (23)

p—oo 2mo?

where p; = (p — 1)a; and 02 = (p — 1)a;(1 — x;). We demonstrate this behavior in for various
sampling schemes. We can write
im @, ; = aidj | (p-1)a, ] (24)

p—o0

where a; is some positive real number and | |, represent the floor function, as the index has to be an integer.
So,

p—1
p1LH;O D, C~ pan;oZOai O (p—1)ws),j Cj» Where 6 € R™*P c € RP. (25)
J:
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The right inverse of § matrix given here, when p > n, is approximately equal to §7. We showcase this in the

The optimal coefficients using the training inputs can then be written as using the Pseudo-inverse methods
as

ph_{g(, P & a;léj,“pfl)z?-amjy(wﬁmm), (26)
. opt ., —1 .7
phﬁnolo i’ ~a; y(pi_ 1). (27)

This indicates that ¢°P* passes through the sampled points. We showcase this behavior in

Now definition of test residual [Equation 9| and [Equation 24]

Rtest —_ thest _ gtest — q)ﬁrelst(—:opt _ gtest (28)

—1 _ ~test __

j es €es
= ak((;L(pﬂ)z;;stJ,j)y(m)% g y(zi*) — g(@ie™). (29)

If there was no error in sampling the training points, it will not propagate into the test prediction and
7%t becomes equal to g*®*', making the residual equal to zero (otherwise non-zero according to the noise in

sampling).

We illustrate this phenomenon in The true underlying function is constructed using a Legendre
basis of maximum degree d = 17. Using n = 50 training points sampled uniformly from the domain [0, 1], we
fit a fixed-basis regression model. We use the domain because, Bernstein basis is restricted to this domain.
When evaluating this model in the same domain using an over-parameterized representation via the Bernstein
basis, we observe that the model continues to generalize well despite the increased model complexity. Backed
by the proof above we can see that this behavior is a direct consequence of the Weierstrass approximation
theorem, stated above. While this result is fundamental in approximation theory, it is often overlooked
in discussions within the machine learning community. Recognizing its implications sheds light on why
in-domain approximation of function in over-parameterized regimes should not be surprising.

This behavior is a direct consequence of the Weierstrass approximation theorem, stated above. While this
result is fundamental in approximation theory, it is often overlooked in discussions within the machine
learning community. Recognizing its implications sheds light on why in-domain approximation of function
in over-parameterized regimes should not be surprising. Figure 11 uses the same function as in Figure 10.
We can observe that Chebyshev polynomial basis does not gener- alize well in the over-parametrized regime.
Showcasing that Weierstrass approximation showcases that generalization in over-parameterized regimes for
in-domain approximation of continuous functions can be achieved, but not with any type of polynomial.

uses the same function as in We can observe that Chebyshev polynomial basis does not
generalize well in the over-parametrized regime. Showcasing that Weierstrass approximation showcases that
generalization in over-parameterized regimes for in-domain approximation of continuous functions can be
achieved, but not with any type of polynomial.
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Train and Test Error (NRMSE) vs. Model Complexity
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Figure 3: We showcase sustained strict generalization in the “extrapolation regime" for out-of-domain ap-
proximation. Main plot considers NRMSE (log-scale) v/s model parameters (p). The true function is
a periodic function which can be written using Fourier basis which is orthogonal basis. In this case
d=2% fpe: +1 =172+ 1 = 35. We consider n = 60 uniformly spaced training points, restricted
to the domain [—0.48,0.48] and the test domain is [-1.0,1.0]. We are above the sampling threshold
((n = 60) > (d = 35)). (a) Showcases error (NRMSE) v/s model complexity as we increase the number
of parameter p. Inset plots show the fit at p = 35,60,120. We can observe that we loose the extrapolation
capability at p = 120 as expected from the The sustained strict generalization between ET
and IT is guaranteed in this case for Fourier basis (as it is orthogonal) by (b—d) Histograms
comparing ¢°P* and ¢'"“¢. They demonstrate the coefficients are exactly learned at p = 35 and p = 60 (which
is in the region d < p < n ), but it is lost in over-parameterized regime p = 120 as expected by
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Figure 4: Ilustration of different types of model violations. In (d) we observe triple descent behavior at
(n = d) as observed in |d’Ascoli et al.| (2020).
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Bernstein Design Matrix ® (n = 10, p = 300)

Bernstein Design Matrix ® (n = 10, p = 300)
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Figure 5: We plot the values of the Bernstein basis design matrix. It can be seen that we observe the gaussian
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Figure 6: We consider a d,,x, (n = 10 and p = 200) matrix defined in [Equation 24) where z; are (n = 10)
generated randomly in the domain [0, 1]. (b) Showcases that the right inverse of such a matrix is its’ transpose
when p > n. (a) Showcases the transpose of § matrix is not its left inverse.
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Figure 7: In these plots we showcase that the coefficients become approximately equivalent to the sampled
training data points, when we use Bernstein basis for regression. (a) Shows the in-domain approximation
of function generated using Fourier basis, with highest frequency equal to 17 and 90 training data points.
The points are sampled randomly. The plot is generated at 700 model parameters. (b) Shows the histogram
of true and learned coefficients. It can be seen that their values are equivalent to that of the training data
points. (c¢) Shows the in-domain approximation of function generated using Legendre basis, with highest
frequency equal to 17 and 50 training data points. The plot is generated at 150 model parameters. (d)
Shows the histogram of true and learned coefficients. It can be seen again that their values are equivalent to
that of the training data points. In both (b) and (d) plots, we should point out that the true coefficients are
restricted behind the expressive threshold and are not visible as their values are way less than the learned
coeflicients.
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Figure 8: (a) In this figure we plot NRMSE error v/s Model complexity, in log scale. The problem is of
approximating a function generated using Legendre basis of highest degree d = 17 in the domain [0, 1].
We sample n = 50 samples at random points. We use Bernstein basis for defining the model. The figures
in the inset showcase the approximations over various model complexities. It can be seen that the model
generalizes well even beyond over-parameterized regime. This is a demonstration of Weierstrass approxima-
tion theorem, which strengthens our observation of phenomenon like benign overfitting and generalization in
over-parameterized regime. (b) In this subfigure we showcase histogram of learned coefficients (c°P?) and true
coefficients (c!"*¢) superimposed by the values of the training data points, at various model complexities.
We can observe the property of learned coefficients when using Bernstein coefficients in the histograms at
over-parameterized regime.
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Train and Test Error (NRMSE) vs. Model Complexity
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Figure 9: (a) In this figure we plot NRMSE error v/s Model complexity, in log scale. The problem is of
approximating a function generated using Legendre basis of highest degree d = 17 in the domain [0,1]. We
sample n = 50 samples at random points. We use Chebyshev basis for defining the model, rather than
Legendre. The figures in the inset showcase the approximations over various model complexities. It can be
seen that this time the model does not generalize well beyond over-parameterized regime, unlike in the case
of Bernstein basis. This showcases that not all polynomials can achieve the approximation capability in the
over-parametrized regime. (b) In this subfigure we showcase histogram of learned coefficients (¢°P*) and true
coefficients (c!"“¢) superimposed by the values of the training data points, at various model complexities.
We can observe that the learned coefficients (c,p:) do not match the value of the training points unlike in
the case of Bernstein basis.
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Figure 10: We consider various feature matrices used in the model and plot their condition number v/s
parameters (highest degree of the basis) in the model. We consider n = 60 training points which are
randomly spaced in (a) and uniformly spaced in (b). The red dashed line represents the interpolation
threshold. The plot shows Fourier basis to be most stable while Monomial basis to be ill-conditioned even
after the interpolation threshold. We can observe double descent behavior in the condition number for other
bases.

5 Importance of stability and noise sensitivity

In we sidelined the noise in sampling, let us understand the effect of noise in estimating the
true coeflicients. This is necessary for getting a complete picture.

According to [Equation 11} the second term (I’ff;‘”"#E’ is the error in the learning of true coefficients if there
is error in the inputs themselves. It can be shown that the ratio of the relative error in learned coefficients to
the relative error in training data is bounded by the condition number Strang (2012]) of the feature matrix

itself. For derivation check [Appendix D]

(I)trm'n#E —train )
|| m__ H tHy #_t” i S K(@ﬁ;mn)- (30)
B [[@gemTytrom|

Let us plot the condition number for various model feature matrices, in their respective domains they are
defined in, with randomly as well as uniformly spaced inputs "™ in that domain

The error part in the test residual Ryes; due to sampling error in the training data is @Z‘i“@fﬁbam#. As
dtrain® ahpears in the error in the test residual, and (79" ) = k(®Lrein) we currently only care about

its’ condition number, by exploiting the sub-multiplicativity property of the condition numbers.

Let us understand the result in detail. Tt shows that the maximum of the ratio of the relative error in the
learned coefficients to the relative error in the training data is highly regular for the Fourier feature matrix,
while for the Monomial feature matrix it is highest, irrespective of the sampling choice. Moreover, we see
that for the case of monomials it does not show significant double descent, while for others it is significant.
We surprisingly observe double descent in the condition numbers of these feature matrices, just like the
observation of test errors. A similar observation was also reported for Random Matrices and Radial Kernel
in |Poggio et al.| (2019).

However, we should note that despite the model improving its condition number in over-parameterized, we
cannot learn the true coefficients according to in that regime. The condition number of the
feature matrix is only important until and unless the conditions of are met for out-of-domain
approximation tasks.

Moreover, in the case of in-domain approximation, we observe that despite Chebyshev basis or Fourier
features being highly conditioned in over-parameterized regimes, the condition number does not predict the
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Frobenius Norm of Pseudoinverses of feature matrices vs parameters (n=50)
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Figure 11: Frobenius norm of the pseudo-inverse of the feature matrices of the model v/s model parameters.
The inputs are randomly sampled in the respective domains. The Frobenius norm measures the expected
variance in the output with respect to error in the input, if it is a gaussian noise. We sample points It can
be seen that it also showcases double descent behavior.

test error behavior. We can observe that a model with Bernstein features is able to approximate well in
the over-parameterized regime rather than the Chebyshev features This shows that the
choice of basis for approximation is more important than the condition number of the feature matrices, both
for in-domain and out-of-domain approximation tasks. Condition numbers, alternatively, only decide the
effect of noise in training data on the approximation. Moreover, the ill-conditioning of the model can be
regularized by different techniques once the model basis is chosen for specific task, taking into account the
condition number of the feature matrix for that number of parameters and training data.

Condition number of the Hessian matrix of the loss function can affect the convergence properties while
training using gradient descent, however we do not delve into this in this article (2013)), as we have
used closed form solution using pseudo-inverse.

Let us now calculate the variance in the learned coefficients in comparison to the noise in the training data.
If E ~ N(0,€l) (i.e. Gaussian noise) and if v = @fﬁ‘”"#E then

s
E([o]*) = ETr(@fe " (@ ")) = e f = o7, (31)
i=1

where ||<I>f,7;“i"# || is known as the Frobenius Norm of the matrix and it is equal to trace or root of sum of
the square of singular values of that matrix (2012). In contrast to the condition number we now have
an idea of how much training data noise is mapped to learned coefficients. Let us find it for various features

The stability of the model through condition number and its relation to double descent is studied in [Poggio
let al] (2019)); [Chen and Schaeffer| (2021)); Rangamani et al| (2020).

6 Insights into the idea of Implicit Regularization of Gradient Descent
Initializing close to zero leads us to minimum L2 norm solution as it is closest to zero vector. Minimum L1

norm cannot be close to zero as there can be one element which is very high making the length of the vector
very high but it can be sparser than the min L2 norm solution.
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6.1 Classification of parameters

In this section we formally classify parameters into various sets, from our understanding from previous
sections. We will define these sets for model-identifiable models only.

Let us define the set of all parameter vectors in the parameter space of the model as C' C RP. Note that the
dimensions of this parameter space is different than the dimensions of true parameter space for a identifiable
model, let us denote it by C; C R?, hence "¢ € C.

Let us denote true loss as L., i.e. the loss considering we have infinite noiseless-test points on the domain
on which the ground truth is defined. Let us not give it any functional form for generality.

e True loss minimizer set
Cirue—min = argmingec Lipye(¢) This set represents the best approximation of g(z), the ground
truth by the chosen model on all points on which the ground truth is defined.

e Zero True loss parameters

Csg = {¢ € C : Lipye(c) = 0}. This is the set of parameters which makes true loss zero, hence
in such a case we approximate the function at all points in domain of the true function. This is
the case of strict generalization and parameter recovery up to the functional identifiability of the
model. For functionally identifiable models, this is a singleton set as there is an injective mapping
between parameter space and model function class. In our case in where we train an
identifiable model with pseudo-inverse method, it is equal to ¢"*P%? This makes its’ true loss
like a convex bowl, if the model is expressive enough. However, for functionally non-identifiable
models (like neural networks), this set is non-singleton and there can be many parameter vectors in
this set which can make true loss zero Chatterjee and Sudijono| (2025)), leading to multiple global
minima. For example, one could permute the weights between neurons in each layer and the output
variable would still be the same, or multiple periodic symmetry introduced if learnable sin features
are introduced with sin activation in neural networks [Zhao et al.| (2025). If Cirye—zero 7 @ then
Cirue—zero = Ctrue—min as the minimum of a true loss is zero.

e Training loss minimizer set
Cirain—min = argmMingec Lirqin(¢) This is the set of parameters which minimize the training loss.
Minimization of training loss is not equivalent to approximation of the ground truth.

e Zero Train loss parameters
Ctrain—zero = {C € C : Lrqin(¢) = 0}. This set is non-singleton for the fixed basis regression model
we consider, in the over-parameterized regime. This makes the train loss function have multiple
global minima. There are infinitely many possibilities of parameter vectors which can make train
loss zero. In fact, Cirain—zero 1S an affine subspace of dimension p—n (assuming the design matrix ®
has full row rank). All these parameter vectors perfectly fit the training data, i.e., for each training
input x;, the model prediction equals the training output y;. For existence of this set, conditions of

[Theorem 3.1l need not be satisfied.

e Zero train loss parameters with minimum 2 norm
Con = argmingec,,.,. ... ||¢l|l2 This is the set of all minimum 2-norm parameter vectors which
make train loss zero. This is exactly the solution which a pseudo-inverse method finds for fixed basis
regression models. It is also the solutions which vanilla gradient descent finds when initialized at
zero vector, with small enough learning rate and sufficient epochs, this property is termed as implicit
regularization of gradient descent. This set is singleton for fixed basis regression models.

e Weak generalizing parameters
Consider a neighborhood around each training point x; N; = {x : ||z — z;|| < €}, then
Cuwg = {c € C:y(x) = g(zx),Vz € |J;_, N;} This is the set of all parameters which approximate
the ground truth not only at the training point but also in a neighborhood around it. One of the
example of existence of such set of parameters is the example of Bernstein basis. Such parameters

can exist even if Cy4 set does not (i.e. conditions of [Theorem 3.1)) are not met) as demonstrated.
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Another such example of parametric methods is that of spline methods and neural networks with
ReLLU activation |Balestriero et al.| (2018), where the true parameters are not learned but the function
is fitted near the training points. These are the parameter vectors we achieve when we approximate
a continuous function using Bernstein basis in The existence of these parameters is not
dependent on the conditions of A rigorous study of existence and properties of such
parameters is an open problem.

Let us understand what if the condition of under-parameterization of[Theorem 3.1]is violated. Cl, is singleton
and lies on a hyperplane in the model parameter space of an identifiable model as Cop = ¢truerad provided
other conditions of [Theorem 3.1] are satisfied.

When we use vanilla gradient descent and initialize model parameters near zero vector, it chooses the
minimum 2-norm training solution C),a, as it is closest to the origin, this set is singleton for an identifiable
model and is a subset of Cirain—zero. However, Cy, which is the true solution is not the same as Chyon.
This vector exists no matter the size of the model parameter space if other conditions of are
satisfied. It can be reached by an optimization solution which chooses the local minima (like vanilla gradient
descent) if we initialize our parameters near Cl,.

Let us demonstrate this[Figure 12| The setup in this demonstration is identical to that of except that
we now compare pseudo-inverse training with gradient descent initialized close to the true parameter values

in the model’s parameter space. The configuration in already partially satisfies the conditions
of As expected, pseudo-inverse training fails to achieve strict generalization in the over-
parameterized regime, whereas gradient descent succeeds when started near the true coefficients ¢t"#¢-Pad,

However, it may remain a random guess in an over-parameterized situation to reach Cyg, as it needs knowledge
of elements of Cy, itself. This also showcases that we should avoid using pseudo-inverse methods in over-
parameterized regime if we intend to achieve strict generalization.

7 Insights into deep learning

Let us understand if neural networks, when they approximate well, do they learn the coefficients upto the
functional identifiability (i.e. they obtain strict generalization or not). We use a single hidden layer neural
network with one single input and output and ’tanh()’ activation function. It gives us a model function

Y@ ) = b (i ws,by)e; (32)
gtrain _ @%ainé (33)

This model is different from in the sense that in this case w is learnable and we have an added
parameter b (i.e. bias). In the neural network model sense the weights between the input and the hidden
layer are represented by w and the weights between hidden layer and output are represented by c. The
model now strictly becomes functionally non-identifiable [Zhao et al.| (2025]).

To demonstrate that feedforward neural networks also perform "weak generalization", let us consider a true
function defined by Let us consider that it is defined by a Legendre polynomial basis in the
domain [—1,1]. Let it be of order d = 20. We sample n = 40 training points at uniform spacing with
Gaussian sampling noise mean 0 and noise standard deviation 0.05. We consider p = 120 neurons, leading us
to 3 X p unknowns. The true coefficients are randomly generated. Let us perform training from the sampled
data using “Gradient Descent" method. The results are shown in

It can be observed that the model generalizes very well in the training domain. However, it does not learn
the true coefficients, leading us to conclude that it generalizes weakly according to definition
Moreover, as we have proven that there is no restriction for weak generalization in over-parameterized
regime, we can observe good in-domain approximation. However, according to as we cannot
truly learn features in over-parameterized regimes, it hints us towards the explanation that neural networks,
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Normalized RMSE vs Model Complexity
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Figure 12: The setup in this demonstration is same as in except that we compare the pseudo-
inverse training with gradient descent near true parameter values in the model parameter space. The setup
in already partially satisfies the requirements of It can be observed that pseudo-
inverse training does not achieve strict generalization in over-parameterized regime however as expected,
however gradient descent does, if initialized near true coefficients &"*¢P*? in the model parameter space.

in most cases, would not learn the true features of the target function, outside the training domain in the
over-parameterized regime, despite generalizing well during in-domain approximation, because according to
condition 5 of [Theorem 3.1] the activation function of the neural network in most cases does not match the
features representing the true function. Neural network models like SIREN which use periodic activation
functions, strengthen our viewpoint |Ziyin et al.| (2020)); |Sitzmann et al.| (2020)).

Our work is complementary to the study of deep learning models in infinite-width limit \Jacot et al.| (2018)).
However, our approach is a bottoms-up approach rather than top-down approach of the infinite-width frame-
work. In that framework the neural network turns into a model which performs linear regression with non-
linear fixed features. Let us denote the network model with parameters 6 and input x as f(x;6). The Taylor
expansion around initial parameters 6y gives

1 .
f(;0) = f(500) + Vo f(x;60)" (0 — 60) + 50— 00)" Hy(0)(0 — o) + - - (34)
in the infinite width limit and with particular initializations the Jacobian term becomes constant in param-

eters and the Hessian term (and other higher order terms) becomes negligible [Lee et al.| (2019). This leads
us to

f(z:0) ~ Zgz)j(m;eo)cj, (35)
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Neural Network Weak generalization demonstration

Comparison of True Coefficients and Hidden-to-Output Weights
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Figure 13: (a) We consider a true function defined by a Legendre polynomial basis defined in the domain
[-1,1]. Let it be of order d = 20. We sample n = 40 training points in the domain [—0.5,0.5] at uniform
spacing with Gaussian sampling noise mean 0 and noise standard deviation 0.05. The true coefficients are
randomly generated. The plot represents the approximation with a single hidden layer neural network with
p = 120 neurons. Which means the model is over-parameterized. We train using GD and it can be seen that
the model fits the function very well (b) It plots the true coefficients with the weights of the neural network
between the hidden layer and output. We can observe that they do not match. Indicating that feedforward
neural networks generalize weakly.

where the first term in can be considered a constant offset term and the Jacobian can be written
as Vo f(x;00)" = ¢j(x;6p). As j — oo, this model is always over-parameterized when trying to approximate
a function, hence it leads to weak generalization, i.e. the network looses the ability to extrapolate and
performs weak generalization.

8 Insights into Quantum Machine Learning

Generalization in quantum machine learning is also not completely understood |Gil-Fuster et al.| (2024).
While bounds based on “conventional” statistical learning theory can be applied when the model class is
suitably constrained [Banchi et al.| (2021} [2024); |Caro et al.| (2021} |2022); Du et al.| (2021} [2023)), they are
known to be vacuous in the over-parametrized regime. On the other hand, benign overfitting and double
descent were both observed in the quantum setting Peters and Schuld| (2023); Kempkes et al.| (2025).

It is important to remark that it is not fully clear yet whether over-parametrization is readily applicable to
the quantum setting. This is due to several challenges: on one hand, training gets complicated because of
the lack of a simple backpropagation algorithm [Abbas et al.| (2023); on the other hand, hardware constraints
make extremely challenging to significantly increase either the depth or the width of quantum neural networks
Schuld and Petruccione (2021). Even to address these challenges, a hardware-friendly approach to achieve
over-parametrization with quantum models has been recently proposed [Tognini et al.| (2025)), which is based
on a mixture of quantum experts.

We now discuss the applications of our findings for the quantum machine learning community. First, our
results are directly applicable to quantum extreme learning machines and quantum reservoir computing
Innocenti et al.| (2023)); Mujal et al.| (2021)); Nakajima et al.| (2019), since both of them can be expressed as
in our where ¢,,(z,w) are the “reservoir functions” that, in the quantum setting, are obtained
by creating a suitably complex quantum state, e.g. by letting a simple quantum state evolve according to a
complex Hamiltonian, and then performing fixed measurements. Here the parameters w define the internal
dynamics of the quantum system, e.g. the Hamiltonian parameters, and the measurement settings. Our
results can be applied to better understand which reservoir functions can guarantee better generalization
and stability against noise.
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Another application is for models constructed via classical shadows |Jerbi et al. (2024), since some of them
can also be expressed as a linear model where the basis functions are obtained by first loading
data into quantum states (in a non-linear way) and then measuring certain observables.

Finally we discuss applications for quantum neural networks, which are among the most popular quantum
machine learning models Schuld and Petruccione| (2021)). Even such models can be linearized via natural
tangent kernel [Liu et al. (2022); [Shirai et al. (2024)); |Girardi and De Palma) (2025) and thus be expressed
as though the validity of such approximation is not completely understood. General quantum
neural networks defined through common quantum gates, even with reuploading layers [Pérez-Salinas et al.
(2020), can always be expressed as a partial Fourier series |Schuld et al.| (2021))

flz,0) = Z o (0)e™?, (36)

weN

where the expansion coefficients ¢, (#) depend in a complex way on the network parameters 6 (e.g. qubit
rotations) and the space of possible frequencies 2 may grow exponentially with the number of qubits and
circuit layers. Because of [Equation 36, most common quantum neural networks can be expressed as a linear
model in a Fourier-like space, though with expansion coefficients that depend in a non-linear way on the
trainable parameters. Nonetheless, quantum neural networks often display generalization properties similar
to the ones that we observe with Fourier models, or the related Chebyshev polynomials, e.g. the “spiky”
behaviour that may eventually lead to benign overfitting |Peters and Schuld| (2023).

9 Conclusion

Despite observation of Double Descent we could observe that models did not generalize well in the over-
parameterized regime. We also try to understand that despite the problem being under-determined in this
regime it approximates well. This led us to understand that there are two types of generalization possibilities.
One, where we not only limit the residual error to a very small value but also learn the features of the true
function globally, we call this as “strict generalization". On the other hand we can achieve very small residual
error irrespective of learning the true features of the function to be approximated. We call this as “weak
generalization". We argue that while with strict generalization we can achieve out-of-domain approximation
of a continuous function, with weak generalization we only achieve in-domain approximation. This distinction
is also partially backed by the spline theory of ReLLU networks, which showcase that they behave essentially
like adaptive linear spline regression models |Sahs et al.| (2022)); Balestriero et al.| (2018]).

We derive the necessary conditions for strict generalization in fixed basis regression models trained using
pseudo-inverse exact methods These methods fall into the category of functionally identifiable
models [Zhao et al.| (2025), and we restrict our analysis to such models only. In doing so, we learn that
strict generalization cannot be achieved in the over-parametrized regime for a fixed basis regression model
trained using pseudo-inverse methods which usually find the minimum 2 norm training solution.
Satisfying, the classical bias-variance trade off observation. However, we showcase why gradient descent can
surpass this in probabilistic sense (i.e. dependent on initalization) in Moreover, we provide a
taxonomy of various parameter sets observable in model parameter space. It holds insights into the adaptive
basis regression model, which is nothing but a vanilla neural network. We additionally define new thresholds,
i.e. “Sampling threshold" (which indicates the minimum number of samples needed in comparison to the
highest complexity of the function to be approximated) and also “Expressive threshold" (which indicates
the minimum model complexity needed to approximate the true function) for fixed basis regression models.
These thresholds bring fresh perspective and easily interpretable versions to understand theory of over-
parameterized machine learning.

We then study weak generalization in such models, which can be achieved without satisfying conditions of
strict generalization, when performing in-domain approximation specifically. We showcase this using a model
which uses Bernstein basis. We remind that this is backed by the Weierstrass approximation theorem, which
is well known in approximation theory, but is not studied from classification of generalization behavior and
parameter sets as we do in this article.
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Later we study the stability and noise sensitivity of the model for various basis. We realize the condition
number of the Pseudo-inverse of the feature matrix (worst case amplification of noise) and its Frobenius
norm (Expected variance in solution due to Gaussian noise), both showcase double descent. We also notice
that the double descent in these metrics need not follow the same dynamics for test residuals. It leads us
to showcase that a well-conditioned model is important but it is secondary to having the conditions for
generalization being met, i.e. the choice of model basis with respect to the problem. Once the basis is chosen
and there is enough expressivity and samples we can regularize the model to make it well-conditioned.

These observations lead us to gain insights in the success and limitations of deep-learning, despite them being
over-parameterized. We showcase empirically that feed-forward neural networks achieve weak generalization
in most cases (when the activation functions do not match the features of the target function). As weak
generalization has no restrictions, unlike strict generalization, to be obtained in the over-parameterized
regime, we can observe it. As weak generalization restricts us to in-domain approximations only, we can
observe why over-parameterized neural networks in those cases are not capable of feature learning outside
training domain.

Our work primarily acts as an important taxonomical and theoretical study rather than a study deriving
limits and metrics. The derivations and observations resolve several conundrums by providing simple insights,
and leave several other studies open. For example, our work is limited to 1-d continuous functions, though it
can be generalized to higher dimensions. We would also need a rigorous exploration of the cases where the
function to be approximated is discontinuous. Moreover, we only focus supervised learning model like fixed
basis regression model. We choose this model as (a) it is fundamental to Machine learning (b) it is easy to
find the closed form solution for this model without getting involved in the issues with optimization problems
and (c) it is a special case of adaptive basis regression models, which are nothing but vanilla feed-forward
neural networks. Having said this, there are some non-basis expansion models like symbolic regression |Dick
and Owen| (2024) and self-supervised learning models [Lupidi et al.| (2023), which are speculated to show no
double descent behavior. These speculations are empirical, and a rigorous proof is lacking. A rigorous study
of the weakly generalizing parameter sets in model parameter space is lacking. Their existence conditions,
uniqueness and conditions to converge to these solutions using optimizing algorithms is lacking.

We expect that our work will bring a fresh perspective in the quest to understand generalization in
over-parametrized regimes and close the gap on understanding generalization in deep learning and over-
parametrized machine learning, thus showing us direction to making even more efficient and interpretable
deep learning algorithms.
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A Identifiability of Fixed Basis Regression

Proposition (ldentifiability of Fixed Basis Regression)
Consider the fixed basis regression (FBR) model defined in Equation (3):
p—1
y(l‘) = Z¢m(z;wj)cja (37)
7=0

where the basis functions {¢y, (-; wj)}fgé are fixed and the coeflicient vector ¢ € R? constitutes the learnable
parameters.

Assume that the basis functions are linearly independent on the domain X, i.e.

p—1
Zajqu(x;wj) =0 VzeX = a;=0 Vj. (38)
=0

Then the fixed basis regression model is globally identifiable in the sense of when equality of
model outputs is considered over the entire domain X (equivalently, in the limit n — 00).

Proof
Recall from that a model is identifiable if the parameter-to-function map
M:0 = F, c fe(v)

is injective. For the fixed basis regression model,
p—1
fo@) =) dm(ziwy)c;.
j=0

Assume that there exist two parameter vectors ¢, &2 € R? such that

f5(1) (13) = fE(z) (ZL‘) Ve e X. (39)

Substituting the model definition into Equation equation [39] yields

p—1 p—1
> om@iw) =D P dumlziwy), VreX.
§=0 j=0
Rearranging terms,
p—1
(cg»l) - C»2)> Om(z;w;) =0, VeeX (40)
j=0



Under review as submission to TMLR

Define a; := cg-l) — Y, By the assumed linear independence of the basis functions (Equation equation ,

Equation equation [40] implies
a; = 0 Vj

Hence,
5(1) _ 5(2).

Therefore, the parameter-to-function map M is injective, and the fixed basis regression model is globally
identifiable. 0

Remark (Model vs. Data ldentifiability)

Earlier proposition establishes model identifiability, which is a property of the mapping from parameter space
to function space. This should be distinguished from data-dependent identifiability , where
the mapping is restricted to a finite set of training inputs. In particular, although fixed basis regression is
globally identifiable, it may become data non-identifiable in over-parameterized regimes (p > n).

Counterexample: A Non-ldentifiable Model

Example (Two-Layer Neural Network). Consider a single-hidden-layer neural network with scalar
output and no bias:

fo(z) = Z%‘ o(w;z), (41)

where 6 = {(a;,w;)}?_, are the model parameters and o(-) is a nonlinear activation function.

For any permutation 7 of {1,...,p}, define a new parameter set
aj = Qr(j), Wi = Wa(j)-
Then
P p
Zajo(wjx) = Zdjo(wjx) Vo € X,
j=1 j=1
while 6 # 6.

Hence, the parameter-to-function map is many-to-one, and the model is non-identifiable in the sense of
Definition 2.1.

The non-identifiability in earlier example arises from intrinsic symmetries in the parameterization. Fixed
basis regression does not admit such symmetries, since the basis functions are fixed and linearly independent.

B Various feature matrices and sampling schemes
Let us define the various features used in the article, the domain in which they are defined and if they are
orthogonal, the weight metric under which the basis is orthogonal.

Using the information above, various feature matrices can be generated. For example for the Legendre
polynomial basis, the Feature matrix is given as

P()(CEl) Pl(l'l) PQ(.Tl) Pdfl(l'l) 1 X1 %(3%%—1) %(5.@?—3%1) %(35$%—30$%+3)
o — Py(xze) Pi(za) Po(x2) -+ Py_1(z2) B 1 xzy 5(323—-1) 5(528 —3x2) (3523 — 303 + 3)
Py(zn) Pi(rn) Polxn) -+ Pa—i(zn) 1 =z, £(322-1) 3(52% —3x,) g(35z} — 3022 +3)

(42)
Similarly, other feature matrices can be generated for the model. from
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Property Legendre Basis Chebyshev Basis | Fourier Basis (Real | Monomial Basis
(First Kind) Form)

Definition x € [-1,1] x € [-1,1] x € [0,1] or [—m, 7] (We | z € R (We feature

Domain feature scale to [—1, 1]) scale to [—1,1])

Weight w(z) =1 w(z) = 11_I2 w(z) =1 Not orthogonal

Function

Basis func- | Pj(x) = | Tj(z) = 1,2,22% — | Fj(x) = | M;(z) =

tions ,x,%(3x2 —1),... | 1,... 1, cos(2mx), sin(27x) . .. 1,2, 22, ...

Table 3: Comparison of Legendre, Chebyshev, and Fourier bases

True Image

: 30
0.75
20
0.50
10
0.25
0.00 0
~0.25 _10
~0.50
=20
-0.75
-30
~1.00

—1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Temperature scale

Figure 14: Representation of the temperature field given by We scaled the boundaries to lie
between [—1,1; —1,1]

C  Proof of [Corallary 3.2

We add the proof of here, which is derived from the

Proof. In general, a vector v € Ker(M), iff  is orthogonal to each row of M. This is according to the
definition of orthogonality itself.

Now, according to for ensuring sustained strict generalization in the region between d < p <n
columns of ®;(x) need to be orthogonal to rows of B.

That means that ®;” and '®,,” need to have an orthogonal basis for strict generalization in the strict
generalization regime, for fixed basis regression model.

If the basis are not orthogonal, we cannot extend the strict generalization in this region and it would only
occur at p = d i.e. at expressive threshold ( provided that we are above sampling threshold n > d), provided
that other requirements are also fulfilled. O

D Proof of how worst case noise amplification is bounded by condition number

The ratio of the relative error in learned coefficients to the relative error in training data is given as

[ 1 7 | S 2 B L e (43)
1B [[@pem® girain|| 1] el
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rain¥
Lot ® B
ILE]l

We used the relation [Equation 3|in the previous equation. We also know that, < Umaw(q)f;“m#)

train = .
and % < Omaz (P4, where 044 () Tepresents the largest singular value of that matrix. The largest

simgular value is nothing but the 2-norm of the matrix. The definition of condition number of ®{r*" is such
that

K(@%ain) _ Umaw(q)%ain)amaw ((I)z;ain#

) (44)
which leads us to the relation that the ratio of the relative errors in the learned coefficients to the relative
error in training data to be bounded by the condition number

E Real world example

E.1 Strict Generalization and surrogate model reconstruction of a temperature field

As an illustrative real-world case of strict generalization, we consider the reconstruction of the steady-
state temperature field on a 2-D surface. Temperature field reconstruction refers to estimating the spatial
distribution of temperature over a domain using sparse or noisy observations. This arises in simulations,
inverse problems, meteorology, and sensor networks, where full field measurements are often impractical.

This is formulated as an inverse problem, where we aim to infer hidden properties of a system from observed
measurements, in contrast to a direct problem [Nakamura and Potthast| (2015). In our setup, we generate a
synthetic temperature field (known to us but hidden from the reconstruction model), and task the model with
recovering it from partial observations. Moreover, as an added complexity, we pose this as an extrapolation
problem where we are unable to get enough observations in some parts of the problem, maybe due to
limitations of the instrument.

We use a Chebyshev basis to first approximate the true field. This makes our problem that of a surrogate
model [Forrester et al.| (2008)). A surrogate model (or metamodel) is any computationally inexpensive ap-
proximation of a more complex, expensive-to-evaluate function. Instead of solving full physics-based PDEs
(like Navier-Stokes, heat equation, etc.), we project the field onto a set of Chebyshev polynomials, reducing
the problem to a small set of coefficients. We can then reconstruct or predict the field values efficiently using
this surrogate.

Let us understand when we can surrogate a model. Let us consider a function g(z) (for example 6’12). This
function is not a basis expansion of Chebyshev basis. However, we can approximate it in this basis, calling
the expansion as surrogate of the actual function. The Chebyshev expansion of a function g(z) on [—1,1] is

a o0
g(.’E) ~ gsurrogate(x) = ?0 + Zasz(ﬁ% (45)
1=1

where the coeflicients are given by

2 e,
alfﬂ/&md, > 0. (46)

Using numerical integration we can find the coefficient of expansion as Note, the value of the
coeflicients reduces as the degree ¢ increases of the expansion. In such scenarios we can safely surrogate the
ground truth into another basis expansion.

We emphasize that this expansion is not the same as the approximation using regression methods. This is
because for evaluating the expansion coefficients we need to know the ground truth as evident in[Equation 46]
In Pseudo-inverse methods of approximating the ground truth we have no knowledge of the true function.

The example of surrogate models also serves as a demonstration of the limits of extrapolation capabilities of
the model, when the model features do not match the exact true features of the ground truth, as given by

the conditions in [Theorem 3.11
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Table 4: Chebyshev coefficients a; for f(z) = e=* on [-1,1]
(3 a;
1.290070540898
0.000000000000
-0.312841606370
0.000000000000
0.038704115419
0.000000000000
-0.003208683015
0.000000000000
0.000199919238
9 | 0.000000000000
10 | -0.000009975211
11 | 0.000000000000
12 | 0.000000415017

0O Tt Wi~ O

True Chebyshev Coefficients (c_(i,j))

20.0 === i-boundary 10
=== j-boundary
17.5

Coefficient values

Figure 15: Values of the coefficients in Chebyshev expansion of the true temperature field. We can see that
the values of ¢; ; are approximately equal to zero for values above ¢ = 10 and j = 10 in the
Hence, we consider the true coefficients for surrogate modeling to be d = 10 and e = 10.

In the 2-d case (assuming that the function represents a temperature field) we can expand the true function
as given below

d
T(e,y) = Y03 Tia) () (a7)

where T'(z,y) is approximated temperature field as a function of spatial coordinates « and y,. T;(x), T} (y)
are Chebyshev polynomials of the first kind (orthogonal basis functions). cg"e are Spectral coefficients to
be determined from data or projection. d,e are Order (or degree) of the polynomial expansion in z and y,
respectively.

Now, to evaluate generalization performance in inverse modeling, we construct a synthetic temperature field
T(z,y) defined over a 2-D spatial domain. The field is designed to exhibit a combination of smooth global
trends, localized sources and sinks, spatial oscillations, and stochastic perturbations, mimicking complex real-
world thermodynamic behavior. This field is known to us, but to the approximating algorithm later, we will
feed the samples from this field, to showcase our understanding on approximation and strict generalization
in the main article.
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Sparse Samples (Biased)
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Figure 16: Reconstructed temperature fields from the sampled points. The samples are sparse outside a
certain radius in this case it is r = 0.75. We can see that at p,q = 10, that is the model complexity, we
see best reconstruction, the model also extrapolates in the sparsely sampled region. The model looses it
reconstruction capability if we increase the parameters further than that.

E.2 Temperature field generation

The temperature at location (r,y) € R? is given by:

T((E, y) = Tambient + (Ts - Tambient) e_AC($2+y2)
+ Aj sin(2z) cos(3y) e M (@2 + (-1
4 Ay e 2 (@+3)*+(y-4)%)

+ Age e My

+ o + ayy

+ Bsin (0.5z% 4 0.3y%)

+o-n(z,y)

+ Agink e As((z=20)*+(y—vs)?) (48)

where:

o Tambient 1S the ambient background temperature.
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True Chebyshev Coefficients (deg=10,10) Learned Coefficients from Data
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Figure 17: Comparison of true and learned coefficients. We see that the learned coefficients approximately
match

o T is the strength of the central Gaussian heat source, with decay rate A..

e The second term models a spatially oscillatory source centered at (0.3,1), with amplitude A; and
decay ;.

¢ The third term models a distant source centered at (—3,4), with amplitude As.

o The fourth term is an anisotropic Gaussian source with independent decay rates A., A, and ampli-
tude Az ~ U(0,1).

o The fifth term introduces a linear gradient field with coefficients o, o, ~ U(0, 2).
o The sixth term is a smooth nonlinear perturbation with amplitude 8 ~ U(0, 1).
e The seventh term is spatial white noise, where n(z,y) ~ AN (0,1) and noise scale o ~ U(0, 1).

e The final term is a temperature sink centered at (xs,ys) = (0.25,—0.5), with amplitude Agnx < 0
and decay Ag.

This construction ensures that the true field is challenging test case for generalization in reconstruction

models. The field looks as

Let us see if surrogate modeling using Chebyshev basis works for such a temperature field. If we take
this ground truth and decompose it into Chebyshev basis, we get using the method given in
Fquation 47

It can be seen that c;; values above ¢ = 10 and j = 10 are essentially zero. Hence, we consider the true
coeflicients for surrogate modeling to be d = 10 and e = 10.

E.3 Reconstruction

Let us now reconstruct the field from samples taken from the temperature field. We emphasize that the
approximation algorithm does not have the information of the true coefficients. We generate the learned
coefficients using the training model using Chebyshev basis over the samples from the temperature field.
Moreover, we consider that the samples are sparse in a region outside a certain radius from the center.
Consider, it to be limitation due to instrumentation. It also makes this a problem of extrapolation or
out-of-domain approximation.
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Train vs Test Error
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Figure 18: Train/Test error v/s order of the model basis of the surrogate for the ground truth.

We take nipqin = 700 samples. We train using pseudo-inverse, as we require a closed-form solution for
theoretical insights. The percentage of samples outside the radius r = 0.75 is 5% of the total samples. Let
us see if we can reconstruct as well as extrapolate outside this radius.

We plot the reconstruction as we increase the number of parameters of the model p and ¢ and compare
the true coefficients to learned coefficients at p = 10 and ¢ = 10, which is the actual effective order of the
temperature field in the Chebyshev basis.

We consider the number of parameters according to the conditions of We demonstrate the
results in

It can be seen that we have n > d,e that is, we were well above the sampling threshold. The noise
was sufficiently low, the surrogate approximation basis was appropriately chosen and that when the model
parameters were p,q = d, e we saw the best reconstruction as well as extrapolation in the sparsely sampled
domain. We see that for lower model parameter values we do not have enough expressivity and for more
parameter values we observe that the reconstruction degrades. This is the demonstration of the conditions

given by In fact, we also learn the exact true coefficients

If we just increase the order of the polynomial model. We observe that the test error is least at the order
(10,10), as expected, as this is the true order of the surrogate ground truth of the true function
or the expressive threshold of the surrogate. In short, when we approximate the true function g(z) using
a surrogate model §(z), which itself is a function from a restricted function class. This introduces an
approximation error due to the limited expressiveness of the surrogate itself. This adds extra error and it is
very high in comparison to our observations of ideal strict generalization, as we are working with a surrogate
model, where the ground truth is not exactly decomposed into a linear combination of certain basis ®;.

This finishes our demonstration of real world application demonstration of our findings. We used a surrogate
model setting to also demonstrate the limitation in which the model basis do not match exactly to the ground
truth in an ideal scenario.
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