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Abstract

We study the generalization behavior of over-parameterized fixed basis regression models,
which subsumes random feature models, extreme learning machines and are a special ver-
sion of adaptive basis regression models like feed-forward neural networks. We distinguish
between strict generalization, which requires recovery of the true target structure through re-
covery of the true coefficients in basis expansion of it, and weak generalization, which requires
the minimization of test error alone. To characterize these, we introduce the sampling and
expressivity thresholds, which complement the well-known interpolation threshold, which
compares the training data size with model complexity. Our analysis shows that strict gen-
eralization which enables out-of-domain approximation i.e extrapolation, are unattainable in
over-parameterized regimes, while weak generalization remains feasible for in-domain tasks.
Moreover, using Bernstein bases and the Weierstrass Approximation Theorem, we further
prove that weak generalization is theoretically always achievable for closed and bounded
continuous one-dimensional functions within the training domain, a result re-emphasized
from approximation theory. We also study condition number of feature matrix and reveal
insights into choice of basis of the model vs stability. Our work refines the understanding of
generalization in over-parameterized learning and connects classical approximation theory
with modern machine learning. Finally, we discuss applications for deep neural networks
and quantum machine learning. While limited to one-dimensional continuous functions with
fixed bases, this analysis offers simple and refined insights into the fundamental trade-offs
for over-parameterized models beyond comparison of model complexity and sample size.

1 Introduction

The recent success of deep learning has renewed interest in the surprising generalization capabilities of
over-parameterized models. Classical learning theory suggests that models with more parameters than data
points should overfit, yet in practice such models often generalize well. This paradox motivates fundamental
questions about the nature of generalization in modern machine learning. Several phenomena are discussed
today by ML/AI experts in trying to understand the generalization properties of deep neural networks.
These include:

• Double Descent: Traditionally, increasing model complexity indefinitely is expected to improve
training performance indefinitely but worsen test performance due to overfitting. This can be found
in many articles and textbooks, including Bishop and Nasrabadi (2006); Geman et al. (1992); Klein-
berg and Weinberger (2015). However, in some learning scenarios, test error has been observed to
first increase (the classical overfitting regime) and then decrease again as model complexity keeps
growing, thus resulting in a Double Descent curve. This phenomenon appears across different axes
of complexity, leading to classifications such as model-wise Double Descent, sample-wise Double
Descent Nakkiran (2019), and epoch-wise Double Descent Nakkiran et al. (2021). Variants such as
sparse Double Descent have also been reported, further highlighting the ubiquity and richness of the
behavior. It remains as one of the candidates to explain the success of deep-learning Belkin et al.
(2019); Schaeffer et al. (2023); Stephenson and Lee (2021). However, it does not completely explain
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the success of deep learning or general as despite double descent a model can generalize badly as
seen in Figure 1.

• Benign Overfitting: The phenomenon of overfitting has not only been a curiosity for mathemati-
cians and machine learning experts, but also physicists. There is a humorous take on overfitting
coined as “Von-Neumann’s elephant” which was termed when Enrico Fermi was once discussing his
results with Von-Neumann Dyson et al. (2004): “with four parameters I can fit an elephant, and
with five I can make him wiggle his trunk”. Traditionally, overfitting is associated with poor gener-
alization. However, recent work has shown that in certain conditions we can achieve near perfect fit
on training data and still generalize well, especially in the presence of over-parameterization Belkin
et al. (2019). This counterintuitive behavior in comparison to traditional understanding is known as
benign overfitting Bartlett et al. (2020). We can conclude from Figure 1, that Double Descent does
not always lead to Benign Overfitting. In that case it is either model dependent or more specifically
conditional on more factors than the model. However, it is clear that Benign overfitting with Double
Descent is certainly the requirement of over-parameterized architectures, there does not exist univer-
sal conditions that guarantee such. The definition of benign overfitting does not have a universally
accepted metric and it depends on the context of acceptable error for the task. In Mallinar et al.
(2022) there are attempts to distinguish levels of overfitting and classify them as benign, tempered
and catastrophic overfitting.

• Implicit regularization during optimization: When we are in over-parameterized regime, there
are infinitely many solutions to the problem, as we are dealing with an under-determined problem.
It has been shown that under certain conditions, gradient descent and several other optimization
algorithms tend towards minimum norm solutions of these infinitely possible solutions, even when
we are in over-parametrized regime. For linearized problems the minimum norm solution is unique
and equal to the closed-form solution obtained using the pseudo-inverse method ((Neyshabur, 2017;
Gunasekar et al., 2018; Soudry et al., 2018; Woodworth et al., 2020)). However, the results are
still folklore with limited theoretical proof. There is no proof explaining if it is guaranteed with
any or specific weight initializations. Moreover, training aspect alone cannot explain the success
of deep-learning without understanding its’ feature learning aspects. Also, generalization in over-
parameterized regimes is not only limited to models which are trained by optimization methods, it
can also be seen if we use Pseudo-inverse methods or other methods as such.

• Grokking: Grokking refers to a surprising behavior where a model initially overfits over the training
data, but after continued training over several epochs, without any changes in architecture, data, or
optimization parameters, suddenly transitions to delayed generalization. This delayed emergence of
generalization remains an open problem and has sparked renewed interest in the temporal dynamics
of learning in neural networks Power et al. (2022); de Mello Koch and Ghosh (2025).

• Neural Network Gaussian Process (NNGP) Correspondence: From a theoretical stand-
point, the correspondence between neural networks and Gaussian processes (NN-GP) has provided
valuable insights into the inductive biases of deep learning models Neal (2012); Lee et al. (2017);
Yang (2019). However, this perspective is limited to the infinite-width regime and without account-
ing the training of the networks. While the NN-GP correspondence helps characterize the prior over
functions induced by specific architectures and activation functions, it does not address the dynamics
of training or the learnability of features. For that we need to linearize the neural networks through
NTK limit Jacot et al. (2018); Vyas et al. (2022), where essentially the networks loose its’ feature
learning capabilities.

These are just a few different cases in the plethora of different phenomena and directions, discussed in
deep learning literature today. Despite progress, key theoretical questions remain. For example, why good
generalization sometimes cannot be observed in the over-parameterized regime, despite double descent? An
example is shown in Figure 1, where there is double descent, but the model has wrongly approximated
the function in the over-parameterized regime. Other fundamental questions include the role of the model
function class and out-of-domain generalization, where the trained model is tested over a different domain
than that of the training data, e.g. for extrapolation tasks.
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In our article we aim to understand generalization in the over-parameterized regime in more details. We
introduce two distinct notions of generalization: strict generalization, which requires both low residual error
and accurate recovery of the target function’s underlying coefficients or features irrespective of the training
domain; and weak generalization, which focuses solely on minimizing test error, regardless of whether the true
target structure is learned. Weak generalization is the usual notion of generalization in machine learning.
To characterize strict generalization, we define two novel conceptual thresholds: the sampling threshold and
the expressivity threshold, which complement the well-known interpolation threshold in the context of double
descent.

We demonstrate that, within the over-parameterized regime, strict generalization is fundamentally unattain-
able in the fixed basis regression setting. As a consequence, out-of-domain approximation, which depends
on true function recovery, is also unachievable in such regimes. Nonetheless, we show that in-domain ap-
proximation, where the training and test domains coincide, remains feasible through weak generalization i.e.
even without learning the true underlying features/coefficients.

We further investigate whether weak generalization can be achieved by indefinitely increasing the model
complexity. Using Bernstein basis functions and a version of the Weierstrass Approximation Theorem,
we show that for any closed and bounded continuous function in one dimension, weak generalization is
theoretically always achievable in the over-parameterized regime, but only for in-domain approximation.
The proof of the Weierstrass approximation theorem is well known in the mathematics community, but a
perspective on its implications on over-parameterized machine learning is mostly missing.

This work provides a refined perspective on the generalization behavior of over-parameterized machine learn-
ing models by studying the in-domain and out-of-domain approximation capabilities of a specific machine
learning model and tries to contribute to closing the theoretical gap in understanding the success and limits
of deep learning.

1.1 Related Works

In Muthukumar et al. (2020); Subramanian (2022), the problem of signal reconstruction and regression using
basis expansion models in machine learning is investigated. In this work they study over-parameterized
models from the perspective of learning the coefficients of the true function in the basis expansion. These
works examine test error across various basis functions and sampling schemes with respect to the increase
in model complexity(Fig. 2 in (Subramanian, 2022)). Peters and Schuld (2023) is an article in similar
spirit directed towards quantum machine learning. It explores the effect of various encoding schemes for the
quantum states for a quantum neural network. From the insights gained in our study, it is evident that these
articles primarily focus on strict generalization defined in our article. Furthermore, the conditions required
for achieving strict generalization is lightly discussed in these articles.

Our work differs from these studies and extends their findings in several key ways. First, we provide a refined
classification of generalization into strict and weak forms, which has not been addressed in prior works.
While Muthukumar et al. (2020); Subramanian (2022) predominantly emphasizes strict generalization, we
demonstrate that generalization can also be achieved through an alternative approach, which we term weak
generalization. Additionally, we establish necessary conditions for strict generalization and show that out-of-
domain approximation of ground truth is not achievable in over-parameterized regimes. We also introduce
new thresholds; namely sampling and expressivity thresholds, which are missing from the discussion on the
generalization capabilities of over-parameterized models. Finally, we prove that for in-domain approximation
using the Bernstein basis as the model basis, it can be guaranteed for any one-dimensional, closed, and
bounded continuous function in highly over-parameterized regime, through weak generalization. It is a
result in approximation theory which is re-emphasized in Machine learning context in this article.

Previous works like that of Poggio et al. (2019) have studied double descent in the condition number of the
feature matrix, but it was limited to only random matrices. We study the behavior of condition number
for various feature matrices and study if there is any correlation between the behavior of condition number
and test error with respect to increasing model complexity. We attempt to answer how important a lower
condition number is (in comparison to choice of the model basis and the conditions derived for strict gen-
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Figure 1: We approximate a 1D continuous target function (black dashed curve) using (a) a partial Fourier
series and (c) linear combination of Legendre polynomial basis, in a basis expansion model. We discuss the
model in more detail in section 2. The function is sampled at discrete training points (red), and the resulting
fits are shown in (blue). Panel (b) shows the test error versus model complexity (up to p = 200) for the
Fourier series fit, trained on n = 25 points. The characteristic Double Descent phenomenon is observed;
however, the approximation remains poor in the highly over-parameterized regime, despite Double Descent.
Panel (d) presents the corresponding error curve for the Legendre polynomial fit under the same training
conditions. A modest improvement in generalization is observed with this alternative basis. Beyond the
choice of basis can other important factors significantly influence the behavior of the error curve ?

eralization) for a good approximation of the ground truth, which is unanswered in the respective previous
article.

The intent of this article is primarily theoretical, but its impact lies in clarifying concepts that affect both
practical ML and theory.

1.2 Outline of the article

Our manuscript is organized as follows. In section 2 we discuss the setup of the regression task and the model
used. We define important terms used in the article, like strict generalization and weak generalization and
the newly introduced thresholds sampling threshold and expressivity threshold. We also discuss the sampling
schemes as we will learn later about their impact on generalization. In section 3, we explore the concept of
strict generalization. We prove the conditions needed to obtain it and also prove an important result that
it is not possible to achieve it in the over-parameterized regime for basis expansion models. We also argue
that hence, extrapolation (i.e. learning features outside training domain) is not possible in such models
in over-parameterized regimes. In section 4 we discuss the concept of weak generalization and showcase
that it is possible to achieve it in the over-parameterized regime, however only when the problem is not
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of extrapolation. Moreover, we prove that good approximation is guaranteed in weak sense by Bernstein
basis expansion model, which already well known in mathematical community but not emphasized enough
in machine learning. In section 5 the effect of sampling noise on the model with respect to the choice of
basis in the basis expansion. In this section we argue that the ill-conditioning of the model is secondary to
the choice of the model basis. Once a model basis is chosen it can be regularized. In section 6 we discuss
the insights we gain from this article into deep-learning. How our work is related to the insights from the
infinite width expansion of the neural networks and how ours is a bottom-up approach while the previous
is a top-down approach. How violation of the conditions in Theorem 3.1 leads them to weak generalization
rather than strict one. section 7 discusses the insights gained in Quantum Machine Learning from our work.
In Appendix: Appendix A we discuss the properties of various basis used and the sampling procedures.
In Appendix: Appendix B we prove the corollary related to Theorem 3.1. In Appendix: Appendix C we
showcase a proof related to noise and stability of the model. Appendix: Appendix D discusses a real-world
example and puts our results into effect.

2 Setup

Consider the problem of approximating a 1-d continuous function on a closed and bounded domain ([a, b])
denoted by g(x). We call it as the target/true function or ground truth.

Let ntrain training points be sampled from the function, restricted to domain [atrain, btrain], with some
sampling error ϵ, such that the sampled training points are g̃(xtrain

i ) = g(xtrain
i )+ϵi, where i = 0, ...., ntrain−

1. This gives us the training dataset (xtrain
i , g̃(xtrain

i )). The test of the approximation capability of a model
is in the domain [a, b]. If [a, b] = [atrain, btrain], then it is considered in-domain approximation and if
[atrain, btrain] ⊂ [a, b] it is considered out-of-domain approximation (extrapolation). The test set is given as
(xtest

i , g(xtest
i )). Note, we do not consider any sampling error in the test set as we intend to understand the

theoretical approximation capabilities of a model.

Before moving further let us recall the difference between interpolation and approximation. While inter-
polating a function we intend our model to pass through the training points, while in approximation we
care more about approximating the underlying function represented by the data. Overfitting happens when
the function passes through the training points, but does not approximate the function. The latter part is
important. Hence, as you can predict already, overfitting is a nuisance in the approximation tasks and not
for interpolation. If there is no sampling noise, a good approximation should also pass through the training
points.

2.1 Sampling

Let the true function (in the domain [a, b]) be

g(x) =
d−1∑
j=0

ϕt(x; wj)ctrue
j , (1)

where d ∈ Z+ is the number of “continuous basis functions” (ϕt(x, w)) in linear expansion of the true function.
There is no restriction on the value of d and it can be infinite too. The combination of d, ϕt(x; wj) and
ctrue generates different continuous functions in the domain of the basis used. If ϕ are polynomial bases, w
represents the degree of the polynomial or if it is non-polynomial basis like sine or cosine, it is the frequency.
More generally, in our article we consider w to be fixed set of hyper-parameters and belonging to the set
{w0, ...., wd−1}.

Note, that basis expansion type models for regression like polynomial regression, neural networks or kernel
methods (implicitly) ideally should fit functions which can be exactly expanded into a certain basis. Hence
we consider functions of the type Equation 1. However, most functions in applications cannot be expanded
as such. In such scenarios, we perform surrogate modeling, i.e., approximate the ground truth by some basis
expansion, given by the Equation 1. Hence, in practice, we are indirectly approximating functions of the type
Equation 1. For example, approximation of gravitational potential of Earth which is a complicated function,
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Figure 2: (a) Schematic comparison of fixed basis regression model and feed-forward neural network. The
neural networks can be called as adaptive basis regression model. In the latter case we learn the weights
(and bias), while in the previous case it is fixed. This understanding can help generalize the results and
understanding of this article to deep learning. (b) Diagram showing taxonomy of basis expansion models.
Linear regression model is the most restricted case of it. LR represents Linear Regression, PR represents
Polynomial (monomial basis) regression, FBR represents Fixed basis regression (the model we use in this
article), ELM represents Extreme Learning Machine model, * represents the group of all model which can be
non-linear in features but linear in learnable weights. When we generalize outside these models we achieve
the neural network model.

but we approximate it by a Legendre polynomial of certain order according to the type of application the
approximation will be used Hofmann-Wellenhof and Moritz (2006). We discuss such a scenario when the
ground truth is not of the type Equation 1 through a real-world example in more detail in Appendix D.

The sampled training point vector can be written as

˜̄gtrain = ḡtrain + Ē = Φtrain
t c̄true + Ē, (2)

where Ē ∈ Rntrain represents the error vector in sampling, Φtrain
t ∈ Rntrain×d and ctrue ∈ Rd, and Φtrain

t is
the true feature matrix defined in training domain. In general in this article we use the symbol Φ, possibly
with subscripts and superscripts, to denote a matrix with entries Φij = ϕ(xi, wj).

The inputs can be sampled uniformly spaced, randomly or with certain sequence, i.e. at nodes of polynomials.
We define it in Appendix A.

2.2 Model

To approximate the functions consider a model defined as

y(xi) =
p−1∑
j=0

ϕm(xi; wj)cj ȳ = Φmc̄, (3)

where p ∈ Z+. The model is a linear combination of the basis functions ϕm generated at points x. If
x = xtrain/test then Φm = Φtrain/test

m and Φtrain/test
m ∈ Rntrain/test×p. The coefficient vector is c̄ ∈ Rp. At

the training points we consider
ȳtrain = ˜̄gtrain. (4)

Let us try to understand the relation of this model to other well-known methods in machine-learning Figure 2.

We consider w to be fixed (in both the target function and the model) in this article for simplicity. However,
the coefficients c are learnable. Hence, we call it the “fixed basis regression" model.

If we restrict the basis to ϕm(xi, w0) = 1 and ϕm(xi, w1) = xi, (y(xi) = w0 + w1xi) then it is a Linear
regression model. If ϕm is a monomial basis, then it is nothing but Polynomial regression. If w is random
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Pseudo-Inverse (Φ#
p×n) Identity

(n > p) (Φ†Φ)−1
p×pΦ†

p×n Φ#Φ = I

(n = p) Φ−1
n=p×n=p Φ−1(x)Φ(x) = ΦΦ−1 = I

(n < p) Φ†
p×n(ΦΦ†)−1

n×n ΦΦ# = I

Table 1: This table gives expression of Moore-Penrose Pseudo Inverse in different regions, and their proper-
ties. † represents transpose-conjugate of the matrix.

and c is learnable, it represents an Extreme Learning Machine model. If the ϕm were Fourier basis, it would
represent Random Fourier features model. If w was learnable by the model, it would be a single-layer feed-
forward neural network (without bias term). We showcase the relation in increasing level of complexity in
Figure 2. Hence, the understanding of the model considered in this article leads us to gain insights into
many other related models.

Note, as w are fixed, the number of learnable parameters in this model are p. Moreover, the choice of Φm

can be different from the true Φt and, normally, c̄ is different from c̄true and it is to be learned. Crucially,
the choice of model parameters (p) can also be different to the number of features in the true function (d).
This is because both Φt and d (and also c̄true) are unknown to the learner, in general. In some examples
though d can be known. For instance, for the problem of signal reconstruction (a type of approximation
problem where both the true basis Φt and the band-limit d is known) in signal processing the band-limit d
is e.g. 22 kHz for audio signals.

2.3 Training

Once, the model basis is chosen we should perform rescaling of the domain of the dataset to the domain in
which the model basis is defined. This process is a homeomorphism and does not affect the structure and
topological properties of the true function. For example, Legendre basis is only defined between the domain
x ∈ [−1.0, 1.0].

Now, the task of training is to find the optimal coefficients of the model called c̄opt such that we fit the
model y to resemble the true function g. This can be done by various methods, like using pseudo-inverse or
with optimization methods like gradient descent. Pseudo-Inverse methods provide a closed form solution.
However, they are only theoretically possible to be applied in cases where the model is linear in parameters.
Moreover, where there are large datasets or many parameters, pseudo-inverse methods are not practical due
to computational limitations. On the other hand, gradient descent methods solve the issues affecting the
pseudo-inverse methods. However, they do not provide closed form true solution always and can get stuck
in poor local minima (for non-convex loss functions) and provide wrong solutions. As our model is linear in
parameters and we are trying to understand the theoretical basis of generalization, we use the pseudo-inverse
solution, so as to obtain the true solution of the problem always.

Using the Pseudo-inverse method the optimal set of coefficients to fit the model to true function is

c̄opt = Φtrain#

m ȳtrain = Φtrain#

m (Φtrain
t c̄true + Ē) (5)

We used Equation 2, Equation 3 and Equation 4. The symbol # denotes the pseudo-inverse, and we remind
that c̄opt ∈ Rp×1 and Φtrain#

m ∈ Rp×ntrain . There are three different cases of pseudo-inverse that may arise
depending on its dimension, shown in Table 1, considering that Φ is always full rank, which is guaranteed
if w are unique. The expression in the second equality shows the mathematical relation between the true
coefficients c̄true and the trained coefficients c̄opt. In general, these can only be equal if the model basis
functions and the true basis functions agree and there is no noise.

We can check if the learned c̄opt effectively predicts the training points via

ˆ̄ytrain = Φtrain
m c̄opt = Φtrain

m Φtrain#

m (Φtrain
t c̄true + Ē), (6)
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where we used Equation 5 and Equation 2 and we denoted with ˆ̄ytrain ∈ Rntrain the predicted vector. From
now on, we will use the hat symbol (ˆ) to denote predicted quantities.

It is well known that good training can sometimes be misleading for approximation task. What matters in a
good machine learning model for approximation is that it performs well on unknown points. These unknown
points can be of two types, one inside domain and other outside domain as discussed earlier. As we will
prove and demonstrate, the latter can only be achieved by strict generalization, while the previous one can
be achieved by both strict and weak generalization. We will define these in a mathematical form once we
discuss more nuances.

Along these lines, consider unknown data points that were not used in training the model

ˆ̄ytest = Φtest
m c̄opt = Φtest

m Φtrain#

m (Φtrain
t c̄true + Ē). (7)

where ˆ̄ytest ∈ Rntest is the predicted vector. Here, Φtest ∈ Rntest×p. Note that Φtest
m is defined on test inputs

lying in the range [a, b], which can be different from [atrain, btrain]. We consider ntest ≫ ntrain so as to
theoretically better evaluate the capabilities of the model.

Now, we can check the training and testing performance of the model in unknown parts by using the metric
called “residual" as given below

R̄train/test = ˆ̄ytrain/test − ḡtrain/test (8)

Note that in case of training the second term is Equation 4 while in case of testing it is nothing but the true
function at the test points without any sampling error, as discussed earlier for theoretical purposes.

Having said this, let us classify generalization. This nuanced understanding of generalization, leads us
to understand the conundrum around generalization capabilities of over-parameterized machine learning
models. It also showcases the limits of the over-parameterized models in terms of approximation.
Definition 2.1. We define strict generalization when R̄test = 0̄ and c̄opt

p×1 = c̄true,pad
p×1 , namely when the

residual is zero and we have also perfectly learnt the coefficients.

In the above definition
c̄true,pad

p×1 =
(

c̄true
d×1

0(p−d)×1

)
p×1

(9)

Since the objective is to learn the true coefficients of the underlying function, such generalization enables
extrapolation, that is, predicting function behavior outside the training domain. This kind of out-of-domain
approximation is powerful because it allows us to make predictions even in regions where no data was
observed during training.

However, we must be cautious: extrapolation is only reliable in cases where the function exhibits repeating
structure across the domain. For example, linear and periodic functions possess globally consistent patterns,
which makes them inherently suitable for extrapolation. In contrast, non-linear, non-periodic functions
typically lack such regularity, so extrapolation is only an approximation and becomes increasingly unreliable
the farther we move from the training domain. In mathematical terms to represent the same function in a
different domain we need a different set of c̄true. It changes the farther we go away from the training domain.

This limitation arises because the training domain is smaller than the test domain, and the optimal coef-
ficients learned from the training data may not generalize well to unseen regions. As a result, the learned
coefficients may diverge from the true coefficients, leading to poor fits or entirely incorrect predictions in
regions far from the training set. For this reason, when working with complex, non-linear, non-periodic func-
tions, we usually assume that the test domain is near the training domain. That said, when out-of-domain
approximation is achieved, it represents a strong and meaningful form of generalization—it implies that the
model has captured some deeper structure of the function that holds even in regions it has never seen before.

However, generalization can also be achieved without learning the true coefficients (features), as we will
showcase later in this article.
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Parametrization Sampling Expressivity
Under n < p n < d p < d

Threshold n = p n = d p = d
Over n > p n > d p > d

Table 2: Table depicting various regions of the learning space.

Definition 2.2. We define weak generalization when R̄test = 0 even if we do not learn the true coefficients.

We showcase that such generalization then is only restricted to the training domain (i.e. in-domain regression)
and we cannot extrapolate in such a case if we do not learn the true coefficients.

Let us now understand the criteria required for strict generalization and weak generalization. Also, let us
prove/disprove which type of generalization we can observe in over-parameterized regime with experimental
proof.

3 Strict Generalization

To understand the generalization properties in more detail we need to define new thresholds apart from the
interpolation threshold (also called “parametrization threshold" in Table 2). We call the condition where
n = d, the “sampling threshold" (ST) and the condition where p = d, the “expressivity threshold" (ET)
and, as already mentioned, when n = p we call it the “interpolation threshold" (IT). See also Table 2 for a
summary of the various regimes. As we sweep the number of parameters p while keeping n constant we pass
through the ET, but the condition that we are below ST or not is decided when we choose the number of
training data points (n), and it is not visible on the learning curve plots.

Let us derive the conditions needed for strict generalization and understand the regions in which we can
obtain it.
Theorem 3.1. The necessary conditions for c̄opt = c̄true,pad in the fixed basis regression model are

1. Zero sampling-noise contribution: Φtrain#

m Ē = 0̄

2. Enough Expressivity: p ≥ d.

3. Sampling sufficiency: n ≥ d.

4. Under-parameterization: n ≥ p.

5. Span-inclusion: Span{ϕt(xi; w)}n
i=1 ⊆ Span{ϕm(xi; w)}n

i=1.

The most important implication in terms of approximation capabilities in over-parameterized regimes is that
we cannot have strict generalization in an over-parametrized regime with the fixed basis regression model.

Proof. Let us start with Equation 9. We know that from Equation 5 and Equation 2 that

c̄opt = Φtrain#

m Φtrain
t c̄true + Φtrain#

m Ē (10)

For Equation 9 to be true we need either Φ#
mĒ = 0̄ or the sampling noise Ē = 0̄. This gives us the first

criterion. So Equation 9 reduces to obtaining conditions for

c̄opt = Φtrain#

m Φtrain
t c̄true = c̄true,pad. (11)

This implies that the necessary condition for it to be true is

Φtrain#

m Φtrain
t =

(
Id×d

0(p−d)×d

)
p×d

= Ipad
p×d. (12)

9
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As Rank(Ipad) = d, we see that we should have p ≥ d. This gives us the second criteria, that the model has
to be expressive enough, and it is decided by the “expressive threshold".

Let us write
Φtrain#

m =
(

Ad×n

B(p−d)×n

)
p×n

, (13)

so according to Equation 12 we should have

AΦtrain
t = Id×d, (14)

BΦtrain
t = 0(p−d)×d. (15)

The first equation implies that A must be left inverse of Φtrain
t , only then can it be satisfied. As left

inverse only exists if n ≥ d, i.e. the number of training points needs to cross the sampling threshold,
for c̄opt = c̄true,pad. This leads us to the third condition for obtaining strict generalization. This criteria is
similar to the “Shannon-Nyquist sampling theorem" in signal reconstruction theory and Sampling complexity
in PAC theory Kearns and Vazirani (1994); Ehrenfeucht et al. (1989). Moreover,

Im(Φtrain
t ) ⊆ Ker(B), (16)

namely the column space of Φtrain
t is contained in the null-space/kernel of B. A null-space of B is a set of

all vectors v̄ such that Bv̄ = 0̄. Note, that v̄ need not be zero vector always, for it to be true. Now, let
Rank(B) = r, then by the Rank-Nullity Theorem,

Rank(B) + Nullity(B) = r + dim(Ker(B)) = dim(Dom(B)) = n (17)

Here Dom means “Domain" and dim is to represent “dimensions". This gives us dim(ker(B)) = n − r,
i.e. any of set of vectors in Ker(B) can have atmost n − r linearly independent vectors. Now according to
Equation 16, dim(Im(Φt(x)) ≤ dim(Ker(B)). This means d ≤ n − r. Now, the rank r can be either n or
p − d, as we are considering full rank assumption. Suppose r = n, then we get d ≤ 0, which is not possible
as d is an integer greater than or equal to 1, hence, for strict generalization r cannot be equal to n. Suppose
we use r = p − d, then d ≤ n − (p − d), this gives us the criteria that n ≥ p, for Equation 15 to be satisfied.
Satisfying all these conditions leads us to obtain c̄opt = c̄true,pad.

Merely satisfying Equation 9 does not lead to strict generalization, we also need according to Equation 8,
R̄test = Φtest

m c̄opt − Φtest
t c̄true = Φtest

m c̄true,pad − Φtest
t c̄true = 0̄, for this along with Equation 9 we need

Φtrain
m = (Φtrain

t |Φ′

n×(p−d))n×p (i.e. Span{ϕtrain
t (x; w)} ⊆ Span{ϕtest

m (x; w)}) .

If we achieve all the conditions mentioned above and learn the true coefficients, then R̄test ≈ 0̄, leading to
strict generalization. However, we may not be able to learn it if the size of training domain is very small
compared to the test domain for a general set of functions (except linear and periodic functions), as we
discussed in previous section. This finishes the proof.

Let us now justify the previous result using examples. Before going ahead we need to emphasize that to
compare behavior across datasets and scales we will use “normalized root mean square" rather than “root
mean square" error. Note that it does not change the behavior of the error except that it rescales the error
for comparison. The equation for normalized root mean square is given as

NRMSEtrain =

√
1

ntrain

∑n
i=1 Rtrain2

i

(ymax − ymin)train
, (18)

where R̄train is the residual in the equation Equation 8. Similarly we can define the NRMSEtest for the test
error.

We illustrate our result using one-dimensional continuous function constructed from a Chebyshev polynomial
basis of maximum degree d = 13. The training dataset consists of n = 26 noise-free points, restricted in the
domain [−0.5, 0.5]. We intend to perform out-of-domain approximation in the region [−1.0, 1.0]. Note that

10
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Figure 3: (a) NRMSE (log-scale) v/s model parameters (p). We are interested in out-of-domain approx-
imation and demonstrating the observations of Theorem 3.1. The true function is generated from linear
combination of Chebyshev polynomial basis. It can however be any other type of 1-d continuous function.
The order of Chebyshev polynomial is d = 13. We consider n = 40 randomly spaced noise-less training
points, restricted to the domain [−0.5, 0.5] and test the approximation in the domain [−1.0, 1.0]. We are
above the sampling threshold ((n = 40) ≥ (d = 13)). Inset shows approximation at p = 13 and p = 145.
We observe that p = d = 13 the model extrapolates, while at p = 145 (over-parameterized regime) the
extrapolation capability is lost. (b–c) Histogram comparing c̄opt and c̄true at p = 13 and p = 145. At p = 13,
the model learns the true coefficients as expected from Theorem 3.1 and looses it in the over-parameterized
regime at p = 145.

we are well above the sampling threshold (n = d). The model is built using a Chebyshev basis, identical to
that of the true function. In particular, as we increase the complexity of the model (p), and when it is equal
to the highest degree of the true function (d) (p = d), all the conditions required for strict generalization are
met, as stated in Theorem 3.1. In this regime, the model achieves perfect extrapolation. The corresponding
results are presented in Figure 3. We plot the normalized root mean square error (NRMSE) as a function
of the model complexity p. Additionally, we compare the true coefficient vector (c̄true) with the learned
coefficients (c̄opt) both at p = d and at an over-parameterized setting p ≫ d. The associated fitted functions
at these complexities are also shown to illustrate the behavior of the model. We can also observe that we do
not achieve strict generalization and hence out-of-domain approximation in the over-parametrized regime,
which is one of the main results of the theorem above.

11
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We are still unaware of the precise structure of the matrix Φ′
n×(p−d) that is required for achieving sustained

strict generalization in the regime d < p < n. While we observe generalization exactly at p = d satisfying
the conditions above, increasing model complexity beyond this point does not guarantee that the learned
coefficients will match the true coefficients—unless additional conditions are satisfied.

We refer to this intermediate region, where d < p < n but strict generalization can still occur under specific
structural constraints, as the “extrapolation regime". This regime represents a phase in the learning process
where strict generalization is possible but not guaranteed, depending on the nature of Φ′ and the alignment
between the model and the true function.
Corollary 3.2. Strict generalization in the extrapolation regime (d < p < n) occurs only for an orthogonal
basis in the fixed basis regression model, even if all the conditions proved in Theorem 3.1 are satisfied.

Check Appendix B for the proof.

We should note that when we are dealing with discrete orthogonal polynomial basis; they are usually or-
thogonal with respect to some weighting function (W ) which depends on the input (x), i.e.

n−1∑
i=0

ϕa(xi)ϕb(xi)W (xi) = cbδa,b (19)

Where cb is a real number. Some orthogonal polynomials (like Legendre) have a weighting function equal to
1, even the basis like Fourier basis have a weighting function equal to 1. However, orthogonal polynomials like
Chebyshev have a non-constant weighting function. Monomial basis do not form an orthogonal polynomial
basis. Hence we cannot expect strict generalization for them in the described region, unless we consider it
into account. We can always absorb the weighting function inside the orthogonal polynomial basis and avoid
the weighting function, when choosing a model.

Let us demonstrate this understanding in Figure 4 while approximating the function outside the training
domain in the region [−1.0, 1.0]. We consider a function generated from the Fourier basis. The highest
frequency of the basis considered is fmax = 6, this leads to the true complexity of the function to d =
2fmax + 1 = 13. We consider a model with a Fourier basis for regression and consider n = 35 noiseless
training points which are randomly spaced in the domain [−0.5, 0.5]. This way we are above the sampling
threshold (i.e. n = d). As we increase the model-complexity (p) and we surpass the expressive threshold
(p = d), we satisfy all the conditions needed for strict generalization. However, as we increase the model
complexity in the region (d < p ≤ n), because the Fourier basis is orthogonal to each other, we can sustain
the strict generalization in the extrapolation regime discussed in Corollary Corollary 3.2.

To conclude the discussion on strict generalization, let us observe, what happens when we violate one of the
assumptions in Theorem 3.1. Let us consider that we do not sample enough Figure 5(a) i.e. do not surpass
the sampling threshold (n = d). We consider another case where we do not choose a right basis Figure 5(b).
What happens if we violate both Figure 5(c). All of the scenarios show that we achieve Double Descent but
we do not generalize well in the over-parameterized regime.

The code for these demonstrations can be found (to be added later)

4 Weak Generalization

We previously demonstrated that strict generalization is not achievable in the over-parameterized regime,
which in turn led us to conclude that even out-of-domain approximation fails under such conditions. Now,
let us explore whether in-domain approximation is feasible in the over-parameterized setting.

Can this be achieved without recovering the true coefficients (or features) of the target function? Is it
necessary to adhere to the specific conditions we derived earlier for in-domain approximation, or can we
succeed without them? Furthermore, in the previous section, we observed that strict generalization requires
the model’s basis to closely match that of the target function. Does this constraint also apply here? Or is
it sufficient to use a more flexible basis—such as one with universal approximation capabilities?

12
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Ultimately, this discussion helps us understand the core puzzle: Why is it that an over-parameterized model,
despite being under-determined can still approximate a target function effectively within the training domain?

Let us recall “Weierstrass approximation theorem" from approximation theory Rudin (1976). It states that
Theorem 4.1. For any real continuous function g(x) defined on a closed and bounded interval [a, b], there
exist polynomials yp(x), where p is highest degree in the polynomial, such that limp→∞ yp(x) = g(x) uniformly
for all points in the domain.

In the language of Machine learning, y represents the model we use for learning and g is the true function.
As the order of the polynomial basis increase to infinity, (in our fixed basis regression model, it is the number
of parameters) limp→∞ yp(x) = g(x) for such functions; R̄test = 0̄, provided that sampling noise is negligible
(Ē = 0̄). Note that this theorem is applicable when the domain of the polynomial is same as the domain of
the function to be approximated. This theorem strengthens the notion of generalization in over-parametrized
regime for in-domain generalization of continuous functions. Moreover, we recall from approximation theory
that Bernstein polynomial basis achieves this irrespective of the target function (it has to be continuous).
However, other polynomial basis like Chebyshev basis or Legendre basis cannot achieve this.

Note, this theorem is different from the Universal approximation theorem Cybenko (1989), which does not
concern itself with the number of parameters/neurons used to approximate a target function.

It shows us that it is not surprising that we observe generalization in over-parameterized regime, despite it
contradicting the conventional notion of “statistical learning theory".

4.1 Heuristic proof of weak generalization in over-parameterized regime using Bernstein basis

Let us study the notable case of using Bernstein basis for fixed basis regression model. The proof of Weier-
strass approximation is available in textbooks, but we prove it again here in the machine learning perspective
and showcase that it (in-domain) approximates continuous functions in over-parameterized regimes, irrespec-
tive of learning the true coefficients of the true function and irrespective to the type of the target function
(except that it has to be continuous and lie in the range [0, 1]).

The Bernstein basis is defined as

Φmi,j
= bj,p−1(xi) =

(
p − 1

j

)
xj

i (1 − xi)p−1−j , (20)

where here x ∈ [0, 1]. Note, through out this section, we will consider the training domain as same as
test domain. It can be observed that the Bernstein basis is nothing but the probability mass function of
a binomial distribution. This plays an important role in its being a universal model basis for in-domain
generalization. The feature matrix of this basis is

Φm =

 b0,p−1 (x0) b1,p−1 (x0) · · · bp−1,p−1 (x0)
...

b0,p−1 (xn−1) b1,p−1 (xn−1) · · · bp−1,p−1 (xn−1)


n×p

. (21)

By De-Moivre Laplace theorem, for p → ∞ such polynomials can be approximated by a Gaussian distribution

lim
p→∞

bj,p−1 (xi) = e−(j−µi)2/2σ2
i√

2πσ2
i

, (22)

where µi = (p − 1)xi and σ2
i = (p − 1)xi(1 − xi). We demonstrate this behavior in Figure 6, for various

sampling schemes. We can write
lim

p→∞
Φmi,j

≈ aiδj,⌊(p−1)xi⌋, (23)

where ai is some positive real number and ⌊ ⌋, represent the floor function, as the index has to be an integer.
So,

lim
p→∞

Φmc̄ ≈ lim
p→∞

p−1∑
j=0

ai δ⌊(p−1)xi⌋,j cj , where δ ∈ Rn×p, c ∈ Rp. (24)
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The right inverse of δ matrix given here, when p > n, is approximately equal to δT . We showcase this in the
Figure 7.

The optimal coefficients using the training inputs can then be written as using the Pseudo-inverse methods
as

lim
p→∞

copt ≈ a−1
i δj,⌊(p−1)xtrain

i
⌋y(xtrain

i ), (25)

lim
p→∞

copt
j ≈ a−1

j y( j

p − 1). (26)

This indicates that copt passes through the sampled points. We showcase this behavior in Figure 8.

Now definition of test residual Equation 8 and Equation 23

R̄test = ˆ̄ytest − ḡtest = Φtest
m c̄opt − ḡtest (27)

= ak(δ⌊(p−1)xtest
k

⌋,j)y( j

(p − 1))a−1
j − ḡtest = y(xtest

k ) − g(xtest
k ). (28)

If there was no error in sampling the training points, it will not propagate into the test prediction and
ȳtest becomes equal to ḡtest, making the residual equal to zero (otherwise non-zero according to the noise in
sampling).

We illustrate this phenomenon in Figure 9. The true underlying function is constructed using a Legendre
basis of maximum degree d = 17. Using n = 50 training points sampled uniformly from the domain [0, 1], we
fit a fixed-basis regression model. We use the domain because, Bernstein basis is restricted to this domain.
When evaluating this model in the same domain using an over-parameterized representation via the Bernstein
basis, we observe that the model continues to generalize well despite the increased model complexity. Backed
by the proof above we can see that this behavior is a direct consequence of the Weierstrass approximation
theorem, stated above. While this result is fundamental in approximation theory, it is often overlooked
in discussions within the machine learning community. Recognizing its implications sheds light on why
in-domain approximation of function in over-parameterized regimes should not be surprising.

This behavior is a direct consequence of the Weierstrass approximation theorem, stated above. While this
result is fundamental in approximation theory, it is often overlooked in discussions within the machine
learning community. Recognizing its implications sheds light on why in-domain approximation of function
in over-parameterized regimes should not be surprising. Figure 11 uses the same function as in Figure 10.
We can observe that Chebyshev polynomial basis does not gener- alize well in the over-parametrized regime.
Showcasing that Weierstrass approximation showcases that generalization in over-parameterized regimes for
in-domain approximation of continuous functions can be achieved, but not with any type of polynomial.

Figure 10 uses the same function as in Figure 9. We can observe that Chebyshev polynomial basis does
not generalize well in the over-parametrized regime. Showcasing that Weierstrass approximation showcases
that generalization in over-parameterized regimes for in-domain approximation of continuous functions can
be achieved, but not with any type of polynomial.
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Figure 4: We showcase sustained strict generalization in the “extrapolation regime" for out-of-domain ap-
proximation. Main plot considers NRMSE (log-scale) v/s model parameters (p). The true function is
a periodic function which can be written using Fourier basis which is orthogonal basis. In this case
d = 2 ∗ fmax + 1 = 17 ∗ 2 + 1 = 35. We consider n = 60 uniformly spaced training points, restricted
to the domain [−0.48, 0.48] and the test domain is [−1.0, 1.0]. We are above the sampling threshold
((n = 60) ≥ (d = 35)). (a) Showcases error (NRMSE) v/s model complexity as we increase the number
of parameter p. Inset plots show the fit at p = 35, 60, 120. We can observe that we loose the extrapolation
capability at p = 120 as expected from the Theorem 3.1. The sustained strict generalization between ET
and IT is guaranteed in this case for Fourier basis (as it is orthogonal) by Corollary 3.2. (b–d) Histograms
comparing c̄opt and c̄true. They demonstrate the coefficients are exactly learned at p = 35 and p = 60 (which
is in the region d < p ≤ n ), but it is lost in over-parameterized regime p = 120 as expected by Theorem 3.1.
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Figure 5: Illustration of different types of model violations. In (d) we observe triple descent behavior at
(n = d) as observed in d’Ascoli et al. (2020).
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Figure 6: We plot the values of the Bernstein basis design matrix. It can be seen that we observe the gaussian
distribution with mean at points given by limp→∞ bj,p−1 (xi) = e
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Figure 7: We consider a δn×p (n = 10 and p = 200) matrix defined in Equation 23, where xi are (n = 10)
generated randomly in the domain [0, 1]. (b) Showcases that the right inverse of such a matrix is its’ transpose
when p ≥ n. (a) Showcases the transpose of δ matrix is not its left inverse.
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Figure 8: In these plots we showcase that the coefficients become approximately equivalent to the sampled
training data points, when we use Bernstein basis for regression. (a) Shows the in-domain approximation
of function generated using Fourier basis, with highest frequency equal to 17 and 90 training data points.
The points are sampled randomly. The plot is generated at 700 model parameters. (b) Shows the histogram
of true and learned coefficients. It can be seen that their values are equivalent to that of the training data
points. (c) Shows the in-domain approximation of function generated using Legendre basis, with highest
frequency equal to 17 and 50 training data points. The plot is generated at 150 model parameters. (d)
Shows the histogram of true and learned coefficients. It can be seen again that their values are equivalent to
that of the training data points. In both (b) and (d) plots, we should point out that the true coefficients are
restricted behind the expressive threshold and are not visible as their values are way less than the learned
coefficients.
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Figure 9: (a) In this figure we plot NRMSE error v/s Model complexity, in log scale. The problem is of
approximating a function generated using Legendre basis of highest degree d = 17 in the domain [0, 1].
We sample n = 50 samples at random points. We use Bernstein basis for defining the model. The figures
in the inset showcase the approximations over various model complexities. It can be seen that the model
generalizes well even beyond over-parameterized regime. This is a demonstration of Weierstrass approxima-
tion theorem, which strengthens our observation of phenomenon like benign overfitting and generalization in
over-parameterized regime. (b) In this subfigure we showcase histogram of learned coefficients (copt) and true
coefficients (ctrue) superimposed by the values of the training data points, at various model complexities.
We can observe the property of learned coefficients when using Bernstein coefficients in the histograms at
over-parameterized regime.
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Figure 10: (a) In this figure we plot NRMSE error v/s Model complexity, in log scale. The problem is of
approximating a function generated using Legendre basis of highest degree d = 17 in the domain [0, 1]. We
sample n = 50 samples at random points. We use Chebyshev basis for defining the model, rather than
Legendre. The figures in the inset showcase the approximations over various model complexities. It can be
seen that this time the model does not generalize well beyond over-parameterized regime, unlike in the case
of Bernstein basis. This showcases that not all polynomials can achieve the approximation capability in the
over-parametrized regime. (b) In this subfigure we showcase histogram of learned coefficients (copt) and true
coefficients (ctrue) superimposed by the values of the training data points, at various model complexities.
We can observe that the learned coefficients (copt) do not match the value of the training points unlike in
the case of Bernstein basis.
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Figure 11: We consider various feature matrices used in the model and plot their condition number v/s
parameters (highest degree of the basis) in the model. We consider n = 60 training points which are
randomly spaced in (a) and uniformly spaced in (b). The red dashed line represents the interpolation
threshold. The plot shows Fourier basis to be most stable while Monomial basis to be ill-conditioned even
after the interpolation threshold. We can observe double descent behavior in the condition number for other
bases.

5 Importance of stability and noise sensitivity

In Theorem 3.1 we sidelined the noise in sampling, let us understand the effect of noise in estimating the
true coefficients. This is necessary for getting a complete picture.

According to Equation 10, the second term Φtrain#

m Ē is the error in the learning of true coefficients if there
is error in the inputs themselves. It can be shown that the ratio of the relative error in learned coefficients to
the relative error in training data is bounded by the condition number Strang (2012) of the feature matrix
itself. For derivation check Appendix C

∥Φtrain#

m Ē∥
∥Ē∥

∥ȳtrain∥
∥Φtrain#

m ȳtrain∥
≤ κ(Φtrain

m ). (29)

Let us plot the condition number for various model feature matrices, in their respective domains they are
defined in, with randomly as well as uniformly spaced inputs xtrain in that domain Figure 11.

The error part in the test residual R̄test due to sampling error in the training data is Φtest
m Φtrain#

m . As
Φtrain#

m appears in the error in the test residual, and κ(Φtrain#

m ) = κ(Φtrain
m ) we currently only care about

its’ condition number, by exploiting the sub-multiplicativity property of the condition numbers.

Let us understand the result in detail. It shows that the maximum of the ratio of the relative error in the
learned coefficients to the relative error in the training data is highly regular for the Fourier feature matrix,
while for the Monomial feature matrix it is highest, irrespective of the sampling choice. Moreover, we see
that for the case of monomials it does not show significant double descent, while for others it is significant.
We surprisingly observe double descent in the condition numbers of these feature matrices, just like the
observation of test errors. A similar observation was also reported for Random Matrices and Radial Kernel
in Poggio et al. (2019).

However, we should note that despite the model improving its condition number in over-parameterized, we
cannot learn the true coefficients according to Theorem 3.1, in that regime. The condition number of the
feature matrix is only important until and unless the conditions of Theorem 3.1 are met for out-of-domain
approximation tasks.

Moreover, in the case of in-domain approximation, we observe that despite Chebyshev basis or Fourier
features being highly conditioned in over-parameterized regimes, the condition number does not predict the
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Figure 12: Frobenius norm of the pseudo-inverse of the feature matrices of the model v/s model parameters.
The inputs are randomly sampled in the respective domains. The Frobenius norm measures the expected
variance in the output with respect to error in the input, if it is a gaussian noise. We sample points It can
be seen that it also showcases double descent behavior.

test error behavior. We can observe that a model with Bernstein features is able to approximate well in
the over-parameterized regime Figure 9 rather than the Chebyshev features Figure 10. We observe similar
behavior for Fourier basis Figure 1. This shows that the choice of basis for approximation is more important
than the condition number of the feature matrices, both for in-domain and out-of-domain approximation
tasks. Condition numbers, alternatively, only decide the effect of noise in training data on the approximation.
Moreover, the ill-conditioning of the model can be regularized by different techniques once the model basis
is chosen for specific task, taking into account the condition number of the feature matrix for that number
of parameters and training data.

Condition number of the Hessian matrix of the loss function can affect the convergence properties while
training using gradient descent, however we do not delve into this in this article Recht (2013), as we have
used closed form solution using pseudo-inverse.

Let us now calculate the variance in the learned coefficients in comparison to the noise in the training data.
If Ē ∼ N (0, ϵI) (i.e. Gaussian noise) and if v̄ = Φtrain#

m Ē then

E(∥v̄∥2) = ϵ2Tr(Φtrain#

m (Φtrain#

m )T ) = ϵ2∥Φtrain#

m ∥2
F = ϵ2

r∑
i=1

σ2
i , (30)

where ∥Φtrain#

m ∥F is known as the Frobenius Norm of the matrix and it is equal to trace or root of sum of
the square of singular values of that matrix Strang (2012). In contrast to the condition number we now have
an idea of how much training data noise is mapped to learned coefficients. Let us find it for various features
Figure 12.

The stability of the model through condition number and its relation to double descent is studied in Poggio
et al. (2019); Chen and Schaeffer (2021); Rangamani et al. (2020).
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Figure 13: (a) We consider a true function defined by a Legendre polynomial basis defined in the domain
[−1, 1]. Let it be of order d = 20. We sample n = 40 training points in the domain [−0.5, 0.5] at uniform
spacing with Gaussian sampling noise mean 0 and noise standard deviation 0.05. The true coefficients are
randomly generated. The plot represents the approximation with a single hidden layer neural network with
p = 120 neurons. Which means the model is over-parameterized. We train using BFGS and it can be seen
that the model fits the function very well (b) It plots the true coefficients with the weights of the neural
network between the hidden layer and output. We can observe that they do not match. Indicating that
feedforward neural networks generalize weakly.

6 Insights into deep learning

Let us understand if neural networks, when they approximate well, do they learn the coefficients defining
the function (i.e. they obtain strict generalization or not). We use a single hidden layer neural network with
one single input and output and ’tanh()’ activation function. It gives us a model function

y(xtrain
i ) =

∑
w

ϕm(xi; wj , bj)cj (31)

ȳtrain = Φtrain
m c̄ (32)

This model is different from Equation 3, in the sense that in this case w is learnable and we have an added
parameter b (i.e. bias). In the neural network model sense the weights between the input and the hidden
layer are represented by w and the weights between hidden layer and output are represented by c. The
function ϕ() in this model cannot be a polynomial as the degree of a polynomial basis cannot be learned
through any known training algorithms like Gradient descent or Pseudo-Inverse.

To demonstrate that feedforward neural networks perform "weak generalization", let us consider a true
function defined by Equation 1. Let us consider that it is defined by a Legendre polynomial basis defined in
the domain [−1, 1]. Let it be of order d = 20. We sample n = 40 training points at uniform spacing with
Gaussian sampling noise mean 0 and noise standard deviation 0.05. We consider p = 120 neurons, leading
us to 3 × p unknowns. The true coefficients are randomly generated. Let us perform training from the
sampled data using “BFGS" method (rather than Gradient Descent) for better convergence to the solution.
The results are shown in Figure 13.

It can be observed that the model generalizes very well in the training domain. However, it does not learn
the true coefficients, leading us to conclude that it generalizes weakly according to definition Definition 2.2.
Moreover, as we have proven that there is no restriction for weak generalization in over-parameterized
regime, we can observe good in-domain approximation. However, according to Theorem 3.1 as we cannot
truly learn features in over-parameterized regimes, it hints us towards the explanation that neural networks,
in most cases, would not learn the true features of the target function, outside the training domain in the
over-parameterized regime, despite generalizing well during in-domain approximation, because according to
condition 5 of Theorem 3.1 the activation function of the neural network in most cases does not match the
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features representing the true function. Neural network models like SIREN which use periodic activation
functions, strengthen our viewpoint Ziyin et al. (2020); Sitzmann et al. (2020).

Our work is complementary to the study of deep learning models in infinite-width limit Jacot et al. (2018).
However, our approach is a bottoms-up approach rather than top-down approach of the infinite-width frame-
work. In that framework the neural network turns into a model which performs linear regression with non-
linear fixed features. Let us denote the network model with parameters θ and input x as f(x; θ). The Taylor
expansion around initial parameters θ0 gives

f(x; θ) = f(x; θ0) + ∇θf(x; θ0)T (θ − θ0) + 1
2! (θ − θ0)T Hf (θ̃)(θ − θ0) + · · · (33)

in the infinite width limit and with particular initializations the Jacobian term becomes constant in param-
eters and the Hessian term (and other higher order terms) becomes negligible Lee et al. (2019). This leads
us to

f(x; θ) ≈
∑

j

ϕj(x; θ0)cj , (34)

where the first term in Equation 33 can be considered a constant offset term and the Jacobian can be written
as ∇θf(x; θ0)T ≈ ϕj(x; θ0). As j → ∞, this model is always over-parameterized when trying to approximate
a function, hence it leads to weak generalization, i.e. the network looses the ability to extrapolate and
performs weak generalization.

7 Insights into Quantum Machine Learning

Generalization in quantum machine learning is also not completely understood Gil-Fuster et al. (2024).
While bounds based on “conventional” statistical learning theory can be applied when the model class is
suitably constrained Banchi et al. (2021; 2024); Caro et al. (2021; 2022); Du et al. (2021; 2023), they are
known to be vacuous in the over-parametrized regime. On the other hand, benign overfitting and double
descent were both observed in the quantum setting Peters and Schuld (2023); Kempkes et al. (2025).

It is important to remark that it is not fully clear yet whether over-parametrization is readily applicable to
the quantum setting. This is due to several challenges: on one hand, training gets complicated because of
the lack of a simple backpropagation algorithm Abbas et al. (2023); on the other hand, hardware constraints
make extremely challenging to significantly increase either the depth or the width of quantum neural networks
Schuld and Petruccione (2021). Even to address these challenges, a hardware-friendly approach to achieve
over-parametrization with quantum models has been recently proposed Tognini et al. (2025), which is based
on a mixture of quantum experts.

We now discuss the applications of our findings for the quantum machine learning community. First, our
results are directly applicable to quantum extreme learning machines and quantum reservoir computing
Innocenti et al. (2023); Mujal et al. (2021); Nakajima et al. (2019), since both of them can be expressed as
in our Equation 3, where ϕm(x, w) are the “reservoir functions” that, in the quantum setting, are obtained
by creating a suitably complex quantum state, e.g. by letting a simple quantum state evolve according to a
complex Hamiltonian, and then performing fixed measurements. Here the parameters w define the internal
dynamics of the quantum system, e.g. the Hamiltonian parameters, and the measurement settings. Our
results can be applied to better understand which reservoir functions can guarantee better generalization
and stability against noise.

Another application is for models constructed via classical shadows Jerbi et al. (2024), since some of them
can also be expressed as a linear model Equation 3 where the basis functions are obtained by first loading
data into quantum states (in a non-linear way) and then measuring certain observables.

Finally we discuss applications for quantum neural networks, which are among the most popular quantum
machine learning models Schuld and Petruccione (2021). Even such models can be linearized via natural
tangent kernel Liu et al. (2022); Shirai et al. (2024); Girardi and De Palma (2025) and thus be expressed
as Equation 3, though the validity of such approximation is not completely understood. General quantum
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neural networks defined through common quantum gates, even with reuploading layers Pérez-Salinas et al.
(2020), can always be expressed as a partial Fourier series Schuld et al. (2021)

f(x, θ) =
∑
ω∈Ω

cω(θ)eiωx, (35)

where the expansion coefficients cω(θ) depend in a complex way on the network parameters θ (e.g. qubit
rotations) and the space of possible frequencies Ω may grow exponentially with the number of qubits and
circuit layers. Because of Equation 35, most common quantum neural networks can be expressed as a linear
model in a Fourier-like space, though with expansion coefficients that depend in a non-linear way on the
trainable parameters. Nonetheless, quantum neural networks often display generalization properties similar
to the ones that we observe with Fourier models, or the related Chebyshev polynomials, e.g. the “spiky”
behaviour that may eventually lead to benign overfitting Peters and Schuld (2023).

8 Conclusion

Despite observation of Double Descent we could observe that models did not generalize well in the over-
parameterized regime. We also try to understand that despite the problem being under-determined in this
regime it approximates well. This led us to understand that there are two types of generalization possibilities.
One, where we not only limit the residual error to a very small value but also learn the features of the true
function globally, we call this as “strict generalization". On the other hand we can achieve very small residual
error irrespective of learning the true features of the function to be approximated. We call this as “weak
generalization". We argue that while with strict generalization we can achieve out-of-domain approximation
of a continuous function, with weak generalization we only achieve in-domain approximation.

We derive the necessary conditions for strict generalization in Theorem 3.1. In doing so, we learn that
strict generalization cannot be achieved in the over-parametrized regime for a fixed basis regression model
Figure 2. It holds insights into the adaptive basis regression model, which is nothing but a vanilla neural
network. We additionally define new thresholds, i.e. “Sampling threshold" (which indicates the minimum
number of samples needed in comparison to the highest complexity of the function to be approximated) and
also “Expressive threshold" (which indicates the minimum model complexity needed to approximate the true
function). These thresholds bring fresh perspective to the theory of over-parameterized models.

We then study weak generalization, which can be achieved by both satisfying the conditions for strict
generalization or without satisfying them, when performing in-domain approximation specifically. When we
do not satisfy the conditions for strict generalization we can still achieve approximation even in the over-
parametrized regime for in-domain approximation. We showcase this using a model which uses Bernstein
basis. We remind that this is backed by the Weierstrass approximation theorem, which is well known in
approximation theory but often ignored in Machine learning literature. We finally concluded by showcasing
that not all polynomials (unlike Bernstein basis) can guarantee generalization in the over-parameterized
regime. Which we can also observe in the Double Descent literature, where despite drop in the test error,
the model does not generalize well. Moreover, we do not observe significant Double Descent in the test error
in our approximation using the Bernstein basis, which emphasizes that observation of Double Descent is not
absolutely necessary for in-domain approximation in over-parameterized regime.

Later we study the stability and noise sensitivity of the model for various basis. We realize the condition
number of the Pseudo-inverse of the feature matrix (worst case amplification of noise) and its Frobenius
norm (Expected variance in solution due to Gaussian noise), both showcase double descent. We also notice
that the double descent in these metrics need not follow the same dynamics for test residuals. It leads us
to showcase that a well-conditioned model is important but it is secondary to having the conditions for
generalization being met, i.e. the choice of model basis with respect to the problem. Once the basis is chosen
and there is enough expressivity and samples we can regularize the model to make it well-conditioned.

These observations lead us to gain insights in the success and limitations of deep-learning, despite them being
over-parameterized. We showcase empirically that feed-forward neural networks achieve weak generalization
in most cases (when the activation functions do not match the features of the target function). As weak
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generalization has no restrictions, unlike strict generalization, to be obtained in the over-parameterized
regime, we can observe it. As weak generalization restricts us to in-domain approximations only, we can
observe why over-parameterized neural networks in those cases are not capable of feature learning outside
training domain.

Our work is limited to 1-d continuous functions, though it can be generalized to higher dimensions. We
would also need a rigorous exploration of the cases where the function to be approximated is discontinuous.
Moreover, we only focus supervised learning model like fixed basis regression model. We choose this model
as (a) it is fundamental to Machine learning (b) it is easy to find the closed form solution for this model
without getting involved in the issues with optimization problems and (c) it is a special case of adaptive basis
regression models, which are nothing but vanilla feed-forward neural networks. Having said this, there are
some non-basis expansion models like symbolic regression Dick and Owen (2024) and self-supervised learning
models Lupidi et al. (2023), which are speculated to show no double descent behavior. These speculations
are empirical and a rigorous proof is lacking. We believe that adopting the concepts in this article to study
feed-forward neural networks should be a natural extension. However, in doing so we would get involved
in the complexities of backpropagation as no closed form solution method exists for such method. There
are several alternatives to backpropagation in deep learning literature which can provide a way to study
over-parameterized generalization in deep learning models Lillicrap et al. (2016); Hinton (2022); Li et al.
(2025)

We expect that our work will bring a fresh perspective in the quest to understand generalization in over-
parametrized regimes and close the gap on understanding generalization in deep learning, thus showing us
direction to making even more efficient deep learning algorithms.
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A Various feature matrices and sampling schemes

Let us define the various features used in the article, the domain in which they are defined and if they are
orthogonal, the weight metric under which the basis is orthogonal.

Property Legendre Basis Chebyshev Basis
(First Kind)

Fourier Basis (Real
Form)

Monomial Basis

Definition
Domain

x ∈ [−1, 1] x ∈ [−1, 1] x ∈ [0, 1] or [−π, π] (We
feature scale to [−1, 1])

x ∈ R (We feature
scale to [−1, 1])

Weight
Function

w(x) = 1 w(x) = 1√
1−x2 w(x) = 1 Not orthogonal

Basis func-
tions

Pj(x) =
1, x, 1

2 (3x2 − 1), . . .
Tj(x) = 1, x, 2x2 −
1, . . .

Fj(x) =
1, cos(2πx), sin(2πx) . . .

Mj(x) =
1, x, x2, ....

Table 3: Comparison of Legendre, Chebyshev, and Fourier bases

Using the information above, various feature matrices can be generated. For example for the Legendre
polynomial basis, the Feature matrix is given as

Φ =


P0(x1) P1(x1) P2(x1) · · · Pd−1(x1)
P0(x2) P1(x2) P2(x2) · · · Pd−1(x2)

...
...

...
. . .

...
P0(xn) P1(xn) P2(xn) · · · Pd−1(xn)

 =


1 x1

1
2 (3x2

1 − 1) 1
2 (5x3

1 − 3x1) 1
8 (35x4

1 − 30x2
1 + 3) · · ·

1 x2
1
2 (3x2

2 − 1) 1
2 (5x3

2 − 3x2) 1
8 (35x4

2 − 30x2
2 + 3) · · ·

...
...

...
...

...
. . .

1 xn
1
2 (3x2

n − 1) 1
2 (5x3

n − 3xn) 1
8 (35x4

n − 30x2
n + 3) · · ·


(36)

Similarly, other feature matrices can be generated for the model. from Table 3.

B Proof of Corollary 3.2

We add the proof of Corollary 3.2 here, which is derived from the Theorem 3.1

Proof. In general, a vector v̄ ∈ Ker(M), iff x is orthogonal to each row of M . This is according to the
definition of orthogonality itself.

Now, according to Equation 16 for ensuring sustained strict generalization in the region between d < p ≤ n
columns of Φt(x) need to be orthogonal to rows of B.

That means that ’Φt’ and ’Φm’ need to have an orthogonal basis for strict generalization in the strict
generalization regime, for fixed basis regression model.

If the basis are not orthogonal, we cannot extend the strict generalization in this region and it would only
occur at p = d i.e. at expressive threshold ( provided that we are above sampling threshold n ≥ d), provided
that other requirements are also fulfilled.

C Proof of how worst case noise amplification is bounded by condition number

The ratio of the relative error in learned coefficients to the relative error in training data is given as
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Figure 14: Representation of the temperature field given by Equation 42. WE scaled the boundaries to lie
between [−1, 1; −1, 1]

∥Φtrain#

m Ē∥
∥Ē∥

∥ȳtrain∥
∥Φtrain#

m ȳtrain∥
= ∥Φtrain#

m Ē∥
∥Ē∥

∥Φtrain
m c̄∥
∥c̄∥

(37)

We used the relation Equation 3 in the previous equation. We also know that, ∥Φtrain#
m Ē∥

∥Ē∥ ≤ σmax(Φtrain#

m )

and ∥Φtrain
m c̄∥
∥c̄∥ ≤ σmax(Φtrain

m ), where σmax() represents the largest singular value of that matrix. The largest
simgular value is nothing but the 2-norm of the matrix. The definition of condition number of Φtrain

m is such
that

κ(Φtrain
m ) = σmax(Φtrain

m )σmax(Φtrain#

m ) (38)

which leads us to the relation that the ratio of the relative errors in the learned coefficients to the relative
error in training data to be bounded by the condition number Equation 29

D Real world example

D.1 Strict Generalization and surrogate model reconstruction of a temperature field

As an illustrative real-world case of strict generalization, we consider the reconstruction of the steady-
state temperature field on a 2-D surface. Temperature field reconstruction refers to estimating the spatial
distribution of temperature over a domain using sparse or noisy observations. This arises in simulations,
inverse problems, meteorology, and sensor networks, where full field measurements are often impractical.

This is formulated as an inverse problem, where we aim to infer hidden properties of a system from observed
measurements, in contrast to a direct problem Nakamura and Potthast (2015). In our setup, we generate a
synthetic temperature field (known to us but hidden from the reconstruction model), and task the model with
recovering it from partial observations. Moreover, as an added complexity, we pose this as an extrapolation
problem where we are unable to get enough observations in some parts of the problem, maybe due to
limitations of the instrument.

We use a Chebyshev basis to first approximate the true field. This makes our problem that of a surrogate
model Forrester et al. (2008). A surrogate model (or metamodel) is any computationally inexpensive ap-
proximation of a more complex, expensive-to-evaluate function. Instead of solving full physics-based PDEs
(like Navier-Stokes, heat equation, etc.), we project the field onto a set of Chebyshev polynomials, reducing
the problem to a small set of coefficients. We can then reconstruct or predict the field values efficiently using
this surrogate.
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Let us understand when we can surrogate a model. Let us consider a function g(x) (for example e−x2). This
function is not a basis expansion of Chebyshev basis. However, we can approximate it in this basis, calling
the expansion as surrogate of the actual function. The Chebyshev expansion of a function g(x) on [−1, 1] is

g(x) ∼ gsurrogate(x) = a0

2 +
∞∑

i=1
aiTi(x), (39)

where the coefficients are given by

ai = 2
π

∫ 1

−1

g(x) Ti(x)√
1 − x2

dx, i ≥ 0. (40)

Using numerical integration we can find the coefficient of expansion as Table 4. Note, the value of the
coefficients reduces as the degree i increases of the expansion. In such scenarios we can safely surrogate the
ground truth into another basis expansion.

We emphasize that this expansion is not the same as the approximation using regression methods. This is
because for evaluating the expansion coefficients we need to know the ground truth as evident in Equation 40.
In Pseudo-inverse methods of approximating the ground truth we have no knowledge of the true function.

Table 4: Chebyshev coefficients ai for f(x) = e−x2 on [−1, 1]
i ai

0 1.290070540898
1 0.000000000000
2 -0.312841606370
3 0.000000000000
4 0.038704115419
5 0.000000000000
6 -0.003208683015
7 0.000000000000
8 0.000199919238
9 0.000000000000

10 -0.000009975211
11 0.000000000000
12 0.000000415017

The example of surrogate models also serves as a demonstration of the limits of extrapolation capabilities of
the model, when the model features do not match the exact true features of the ground truth, as given by
the conditions in Theorem 3.1.

In the 2-d case (assuming that the function represents a temperature field) we can expand the true function
as given below

T (x, y) ≈
d∑

i=0

e∑
j=0

ctrue
ij Ti(x) Tj(y) (41)

where T (x, y) is approximated temperature field as a function of spatial coordinates x and y,. Ti(x), Tj(y)
are Chebyshev polynomials of the first kind (orthogonal basis functions). ctrue

ij are Spectral coefficients to
be determined from data or projection. d, e are Order (or degree) of the polynomial expansion in x and y,
respectively.

Now, to evaluate generalization performance in inverse modeling, we construct a synthetic temperature field
T (x, y) defined over a 2-D spatial domain. The field is designed to exhibit a combination of smooth global
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Figure 15: Values of the coefficients in Chebyshev expansion of the true temperature field. We can see that
the values of ci,j are approximately equal to zero for values above i = 10 and j = 10 in the Equation 41.
Hence, we consider the true coefficients for surrogate modeling to be d = 10 and e = 10.

trends, localized sources and sinks, spatial oscillations, and stochastic perturbations, mimicking complex real-
world thermodynamic behavior. This field is known to us, but to the approximating algorithm later, we will
feed the samples from this field, to showcase our understanding on approximation and strict generalization
in the main article.

D.2 Temperature field generation

The temperature at location (x, y) ∈ R2 is given by:

T (x, y) = Tambient + (Ts − Tambient) e−λc(x2+y2)

+ A1 sin(2x) cos(3y) e−λ1((x−2)2+(y−1)2)

+ A2 e−λ2((x+3)2+(y−4)2)

+ A3 e−λxx2−λyy2

+ αxx + αyy

+ β sin
(
0.5x2 + 0.3y2)

+ σ · η(x, y)

+ Asink e−λs((x−xs)2+(y−ys)2) (42)

where:

• Tambient is the ambient background temperature.

• Ts is the strength of the central Gaussian heat source, with decay rate λc.

• The second term models a spatially oscillatory source centered at (0.3, 1), with amplitude A1 and
decay λ1.

• The third term models a distant source centered at (−3, 4), with amplitude A2.

• The fourth term is an anisotropic Gaussian source with independent decay rates λx, λy, and ampli-
tude A3 ∼ U(0, 1).

• The fifth term introduces a linear gradient field with coefficients αx, αy ∼ U(0, 2).
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Figure 16: Reconstructed temperature fields from the sampled points. The samples are sparse outside a
certain radius in this case it is r = 0.75. We can see that at p, q = 10, that is the model complexity, we
see best reconstruction, the model also extrapolates in the sparsely sampled region. The model looses it
reconstruction capability if we increase the parameters further than that.

• The sixth term is a smooth nonlinear perturbation with amplitude β ∼ U(0, 1).

• The seventh term is spatial white noise, where η(x, y) ∼ N (0, 1) and noise scale σ ∼ U(0, 1).

• The final term is a temperature sink centered at (xs, ys) = (0.25, −0.5), with amplitude Asink < 0
and decay λs.

This construction ensures that the true field is challenging test case for generalization in reconstruction
models. The field looks as Figure 14.

Let us see if surrogate modeling using Chebyshev basis works for such a temperature field. If we take
this ground truth and decompose it into Chebyshev basis, we get Figure 15, using the method given in
Equation 41.

It can be seen that ci,j values above i = 10 and j = 10 are essentially zero. Hence, we consider the true
coefficients for surrogate modeling to be d = 10 and e = 10.

D.3 Reconstruction

Let us now reconstruct the field from samples taken from the temperature field. We emphasize that the
approximation algorithm does not have the information of the true coefficients. We generate the learned
coefficients using the training model using Chebyshev basis over the samples from the temperature field.
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Figure 17: Comparison of true and learned coefficients. We see that the learned coefficients approximately
match

Moreover, we consider that the samples are sparse in a region outside a certain radius from the center.
Consider, it to be limitation due to instrumentation. It also makes this a problem of extrapolation or
out-of-domain approximation.

We take ntrain = 700 samples. We train using pseudo-inverse, as we require a closed-form solution for
theoretical insights. The percentage of samples outside the radius r = 0.75 is 5% of the total samples. Let
us see if we can reconstruct as well as extrapolate outside this radius.

We plot the reconstruction as we increase the number of parameters of the model p and q and compare
the true coefficients to learned coefficients at p = 10 and q = 10, which is the actual effective order of the
temperature field in the Chebyshev basis.

We consider the number of parameters according to the conditions of Theorem 3.1. We demonstrate the
results in Figure 16

It can be seen that we have n > d, e that is, we were well above the sampling threshold. The noise
was sufficiently low, the surrogate approximation basis was appropriately chosen and that when the model
parameters were p, q = d, e we saw the best reconstruction as well as extrapolation in the sparsely sampled
domain. We see that for lower model parameter values we do not have enough expressivity and for more
parameter values we observe that the reconstruction degrades. This is the demonstration of the conditions
given by Theorem 3.1. In fact, we also learn the exact true coefficients Figure 17.

If we just increase the order of the polynomial model. We observe that the test error is least at the order
(10, 10), as expected, as this is the true order of the surrogate ground truth of the true function Figure 18,
or the expressive threshold of the surrogate. In short, when we approximate the true function g(x) using
a surrogate model g̃(x), which itself is a function from a restricted function class. This introduces an
approximation error due to the limited expressiveness of the surrogate itself. This adds extra error and it is
very high in comparison to our observations of ideal strict generalization, as we are working with a surrogate
model, where the ground truth is not exactly decomposed into a linear combination of certain basis Φt.

This finishes our demonstration of real world application demonstration of our findings. We used a surrogate
model setting to also demonstrate the limitation in which the model basis do not match exactly to the ground
truth in an ideal scenario.
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