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Figure 1: Scenes generated by our framework, TRELLISWorld, using only natural language in-
put. Users may provide fine-grained prompts for specific regions, enabling semantically consistent
gradual transitions: e.g., from a dense commercial district with greens, into low-density residential
zones.

ABSTRACT

Text-driven 3D scene generation holds promise for a wide range of applications,
from virtual prototyping to AR/VR and simulation. However, existing methods
are often constrained to single-object generation, require domain-specific train-
ing, or lack support for full 360-degree viewability. In this work, we present a
training-free approach to 3D scene synthesis by repurposing general-purpose text-
to-3D object diffusion models as modular tile generators. We reformulate scene
generation as a multi-tile denoising problem, where overlapping 3D regions are
independently generated and seamlessly blended via weighted averaging. This
enables scalable synthesis of large, coherent scenes while preserving local seman-
tic control. Our method eliminates the need for scene-level datasets or retrain-
ing, relies on minimal heuristics, and inherits the generalization capabilities of
object-level priors. We demonstrate that our approach supports diverse scene lay-
outs, efficient generation, and flexible editing, establishing a simple yet powerful
foundation for general-purpose, language-driven 3D scene construction. We will
release the full implementation upon publication.

1 INTRODUCTION

Generating 3D worlds from text represents a longstanding goal at the intersection of computer graph-
ics, machine learning, and human-computer interaction. Enabling users to describe a virtual world
in natural language and synthesize an editable 3D environment would transform multiple domains.
For example, in creative content design, this could accelerate ideation workflows, allowing a game
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designer to rapidly prototype a level using coarse spatial prompts, or enabling a video creator to
synthesize a virtual scene as a storytelling background.

Recent advances in 3D content generation, ranging from SDS-based methods distilling 2D priors
into neural fields (Poole et al.l 2022; Wang et al., 2023} 2022; Tang et al., [2024b), to multi-view
diffusion for geometric consistency (Liu et al.,|2023b; [Shi et al.| 2023|2024 |Liu et al., 2024), and
emerging 3D-native models like DiTs (Peebles & Xiel [2023; [Hong et al., 2024b; [Lai et al., 2025
Zhang et al.,[2024b)), have significantly improved 3D object synthesis. However, these methods are
predominantly limited to single-object generation, with limited progress toward generating entire
3D scenes.

While directly generating 3D scenes is an active research direction, current scene-generation models
tend to be either (1) domain-specific, trained on narrow datasets like indoor rooms or driving scenes;
or (2) produce image-based representations such as panoramic or spherical projections, which are
not designed for full 360-degree spatial interaction or view synthesis. This limitation arises from
limited large-scale, diverse, general-purpose datasets for 3D scenes comparable to those available in
2D vision or object-centric 3D generation. Scenes contain long-range dependencies, heterogeneous
object types, and complex spatial arrangements that are difficult to annotate and curate. Therefore,
a method that can leverage object-centric generation to generate scenes is highly desired.

Recently, SynCity (Engstler et al. [2025) demonstrates promising results in adapting object gener-
ators for city-scale scene generation. However, its dependence on 2D inpainting (Lugmayr et al.,
2022) introduces a fundamental limitation. Errors in the image domain can propagate and destabi-
lize the 3D reconstruction. This raises a natural question: can we instead generate scenes directly in
3D space, bypassing the need for 2D intermediate representations?

In this work, we introduce TRELLISWorld, a training-free approach to text-driven 3D scene gener-
ation by leveraging general-purpose text-to-3D object diffusion models for scene composition. Our
key insight is to reformulate global 3D scene synthesis as a multi-tile denoising problem, wherein
the scene is partitioned into spatially overlapping regions that are independently denoised and later
blended using a weighted averaging scheme in one diffusion step. This formulation offers a practical
and scalable alternative to end-to-end scene-level training, enabling high-quality scene generation
at significantly reduced cost. We will release the full implementation upon publication. Our method
offers several advantages:

* Training-free and editable: Taking advantages of 3D environments’ multi-scale signal
structure, our approach requires no scene-level dataset or fine-tuning. It inherits editability
and generalization capabilities from the underlying object-level generator, e.g., TRELLIS
(Xiang et al., [2025]).

» Simple and general: Our method requires minimal task-specific heuristics, making it
broadly applicable across diverse scene types.

* Scalable and smooth: Compared to prior methods, our tile-wise approach is computation-
ally efficient, blends overlapping regions smoothly, and enables generations of significantly
larger and more coherent scenes.

2 RELATED WORK

2.1 FOUNDATION OF RECONSTRUCTION AND OBJECT GENERATION

Benefiting from recent advances in 3D representations for reconstruction, such as NeRF (Mildenhall
et al., 20205 |Yu et al., 2021; Miiller et al., 2022} |[Shue et al., |2022; |Chen et al., 2022; Kerbl et al.,
2023 Zhang et al.,[2020; Barron et al., 2021520225 2023)), Score Distillation Sampling (SDS)-based
methods (Poole et al., 2022} |Wang et al., 2023} 2022} [Tang et al.| [2024b)) distill the knowledge of
2D diffusion models into the creation of 3D objects using differentiable rendering. Specifically,
NeRF++ (Zhang et al.| 2020), combined with ProlificDreamer (Wang et al., [2023), demonstrates
the first possibility of generating 3D scenes by distilling 2D diffusion with an added density prior.
Later, multi-view diffusion methods (Liu et al., [2023b; |Shi et al.| 2023} 2024; [Liu et al., 2024)
were proposed to address the Janus (multi-face) problem. However, as SDS depends on test-time
optimization, object generation can take up to 40 minutes. To overcome this, methods like LRM have
been proposed to generate 3D representations directly from images (Liu et al.,|2023a; Hong et al.,
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Figure 2: Illustration of our tiled diffusion process. We first split the scene noise into multiple tiles
to denoise each tile in parallel. Then we take the weighted average described in[Equation I|for each
tile and aggregate the result to obtain the scene noise for previous timesteps. This process is detailed

by[Fquation 3

2024b} |Gao et al., [2024; [Lai et al., [2025) and texts (Jun & Nichol, 2023} [Hong et al [2024a}; [Zhang
et al., 2024b). Although none of these works aim to generate large-scale scenes, their technologies

lay the foundation for 3D scene generation.

2.2 SCENE GENERATION BASED ON 2D GENERATION

While SDS-based methods above often focus on novel view synthesis or scene reconstruction, an-
other line of work leverages the capabilities of 2D diffusion models without relying on test-time
optimization. Early works extend a single image autoregressively into a video sequence, guided
by camera trajectories (Liu et al. 2021}, [Li et al, 2022} [Chai et all, 2023}, [Cai et al.} [2023). These
methods often project depth-estimated results into point clouds and fill in the missing regions under
different camera extrinsics. While initial work focused mainly on natural scenes, the introduction
of generic 2D diffusion models expanded the domain (Fridman et al.} 2023}, [Shriram et al.} 2025}
Chung et al}, 2023)), and the integration of large language models (LLMs) enabled more diverse
scene generation (Yu et al, 2024} 2025} [Team et al., 2025). However, these works are limited to
generating panoramic images or incomplete 3D representations that can only be viewed from a re-
stricted set of camera extrinsics. A generic 3D generator capable of producing complete meshes
remains necessary.

2.3  SCENE GENERATION BASED ON 3D SCENE-NATIVE GENERATION

3D-native generation methods are promising alternatives to produce complete 3D representations,
but they often rely on domain-specific training and are unable to generate generic scenes using
natural language prompts (Lee et al., 2024} [Tang et al.| [2024a; Meng et al., 2025} [Lee et al.| [2025).
For instance, works like InfiniCity (Lin et al., 2023} [Xie et al., [2025bja) depend heavily on RGB-
D, semantic, or normal maps derived from satellite imagery. CityDreamer4D
decomposes the generation task into multiple sub-tasks: layout, background, buildings, vehicles, and
roads, each handled by a separate neural network. BlockFusion (Wu et al.,[2024)) uses autoregressive
inference, while MIDI (Huang et al} [2025) employs multi-instance attention to scale object-level
generation to scenes, both trained on dedicated 3D datasets (Fu et al, 2021} 2020). In contrast
to publicly accessible 3D object datasets like Objaverse (Deitke et al., 2022} , which contain
over 10 million internet-sourced objects, the largest 3D scene dataset, FurniScene, contains only
100k rooms with 89 object classes (Zhang et al.| [2024d). To the best of our knowledge, no openly
available generic 3D scene dataset currently exists. Thus, a method that does not rely on curated 3D
scene datasets but can still generate 3D representations across domains is highly desirable.

2.4 SCENE GENERATION BASED ON 3D OBJECT GENERATION

There are two categories of works that utilize 3D object generators to build scenes. The first category
focuses on generating individual 3D objects and uses LLMs, visual-language models (VLMs), or
image-based techniques to infer plausible object positions and orientations 2023;
et all 2023} |Li et all 2023). GALA3D employs SDS and additional physical
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losses to refine LLM-generated scene layouts from textual descriptions. CAST (Yao et al.| [2025)
constructs a relational graph, constraint graph, and multiple masks from a single image to generate
both object instances without occlusion and their spatial arrangement, using physical losses for
consistency. However, these methods either depend on image inputs, limiting composition outside
the view frustum, or rely on LLM reasoning, which often fails to produce accurate coordinates and
complex inter-object relationships.

The second category relies on the inpainting capability of 3D diffusion models to compose and
blend scenes from object-level generations. Most relevant to our work, SynCity (Engstler et al.,
2025)) generates object tiles autoregressively through a loop of 2D inpainting, 3D generation, and
rendering. After generation, it fixes seams between tiles using 3D inpainting. To ensure consistency
between 3D tiles and to avoid occlusions during 2D inpainting, multiple heuristics, such as cutting
off parts of generated meshes for occlusion-free renderings, are applied. However, these heuristics
reduce generalizability beyond urban scenes and increase failure cases.

3 METHOD

The core of TRELLISWorld is a tiled diffusion with cosine blending. We first formulate the problem

in[subsection 3.1] then give a general method in [subsection 3.2] We then describe how we actually
implement this method using TRELLIS in|subsection 3.3|

3.1 PROBLEM FORMULATION

Given a text-conditioned 3D generative diffusion model 6 (a velocity field (Lipman et al., [2023))
that is capable of generating a 3D structure of size S® from a text prompt p, our goal is to generate a
large-scale 3D world with arbitrary size (X x Y x Z) >> S3 that is consistent with the prompt. To
simplify our explanation, without loss of generalizability, we assume 6 is a pixel-diffusion, meaning
that the forward and reverse diffusion process are on actual value instead of on compressed latent
by autoencoders. Therefore, each object sample can be represented with a tensor R °. We further
assume that 6 is trained on general object distribution. To generate worlds using object-level 3D
generator, we leverage the local generation capability of 6 while ensuring global coherence through
careful conditioning and blending techniques.

3.2 TILED DIFFUSION

In this section, we demonstrate a simple method to convert a general 3D object generator into a
general 3D scene generator.

We first initialize the entire world W of size (X, Y, Z) with Gaussian noise W ~ N(0,I). We then
divide the world into overlapping cubic tiles {w;} of size (5,5, S) with a stride of (s, s, s) where
s < S to ensure overlap between adjacent tiles. For each diffusion step, we process each tile {w; }
in parallel and then aggregate the weighted average result to update the world W. The weight for
each tile is defined by a 3D cosine mask that emphasizes the center of the tile and tapers off towards
the edges, ensuring smooth transitions between adjacent tiles. See [Figure 2]for visualization.

Formally, let v(*¥%) to be a voxel that has global position (x,y,2) and let f,, : N®> — Z3 be a
function to map global position into local position relative to tile w;. Intuitively, if the resulting
position f,,, () is in the set {0,...,.S — 1}?, then the tile w; covers the voxel at this input global
position.

We define the weighting on local position (z’,y’, 2’) to be:

ﬂ_l : 1o ) _ 3
H COS<7T<S+1 2)) if (/,y,2') €{0,...,5 -1}

/ / /
ﬁ(z,y,z): de{x/7y/7z/}
0 otherwise

)

Then, the update rule for each voxel v(*¥+%) in the world W at diffusion step ¢ is given by:
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3.3 IMPLEMENTATION

We build our method based on TRELLIS-text (Xiang et al.,|2025), which is a text-conditioned dif-
fusion transformer for 3D object generation. To perform object-level inference with TRELLIS, the
process begins by denoising a 16° noised latent using the TRELLIS structure diffusion transformer
6,. The resulting latent is decoded by TRELLIS sparse structure decoder to a 643 occupancy grid
(SS). This dense 643 tensor is converted into a noisy sparse tensor by retaining only regions where
the occupancy value exceeds zero and apply noise ~ A(0, I) onto those regions. The sparse tensor
is subsequently denoised using the TRELLIS structure latent diffusion transformer 0, resulting in a
structured latent representation (SLAT). Finally, the SLAT is decoded using the TRELLIS structure
latent Gaussian decoder to produce a Gaussian Splatting representation (Kerbl et al., 2023)).

As described above, TRELLIS is a multi-stage latent diffusion model where #; operates on dense
tensors and 6, operates on sparse tensors. We perform tiled diffusion with minimal modification
on both stages: the input tiles to 61, 6> are in encoded latent space and the corresponding masks are
down-sampled by 4x. The blending and aggregation steps described in[subsection 3.2]are performed
in the latent space, followed by decoding back to the voxel space and/or Gaussian Splatting space
after the diffusion process is complete. Importantly, such decoding should also be done in a tiled
manner. Since TRELLIS structure latent Gaussian decoder is not a probabilistic model, we set the
stride s = S to disable blending.

4 EXPERIMENTS

We ablate our method in[subsection 4.1]and compare blend quality, perceptual alignments, and com-
putational cost with SynCity in [subsection 4.2| and [subsection 4.3] All experiments are conducted
using classification-free guidance (Ho & Salimans, 2022) cfg = 7.5, stride s = % and diffusion
step size 25 on Euler sampler.

4.1 ABLATION

Tiled Diffusion A naive approach is to generate the world by stitching together multiple object
generation results autoregressively, ensuring context alignment of neighboring tiles using inpainting.
However, this leads to less coherent generation at the tile edges, as shown in

Blending We replace our blending method with a simple averaging aggregation. This results in
visible seams across tile borders, as shown in

Tiled Decoder We compare decoding using our tiled decoder with decoding the entire world at
once in Removing the tiled decoder shows artifacts on generated Gaussian Splatting.

4.2 QUALITATIVE COMPARISON

We compare our method with SynCity (Engstler et al., [2025). showcases generation results
across multiple prompts using the same 4x3x1 tile size. Our method tends to generate larger scenes
and provides more natural blending across tiles compared to SynCity. For additional generation

results of TRELLISWorld, see[Figure 11| and [Figure 12]in[Appendix Al

Furthermore, our method is more robust compared to autoregressive methods based on image in-
painting. For example, SynCity relies on heuristics such as cropping the 3D generation to avoid
occlusion before applying 2D inpainting. Such heuristics are prone to failure when the 2D diffusion
model mimics the cropped content, producing 3D tiles with artifacts, as shown in[Figure 7]




Under review as a conference paper at ICLR 2026

Forest

Desert

g
7]
w
o
v ! (4
B8 5]
s i
3 £
& p ot
"’;—_:r

r |
P
[
=
e
=) .
e
= !
z
PR S R
T i

4 o U

O e el N
o) . -"-G‘LE’! i #

2 S

.. -&L’P

Figure 3: Top-down views of a generated 4x3x1 scene (not cherry-picked) using (a) an autoregres-
sive method based on inpainting and (b) our method. Our method consistently shows better blending
between tiles across different themes.

Lego Tile

(a) without blending

(b) TRELLISWorld (our)

Figure 4: Comparison (not cherry-picked) showing the effectiveness of blending. (a) Without blend-
ing, the “room” example tends to generate walls around tile borders, and the “lego tile” example
produces a colored edge along tile borders, which is undesirable. (b) Tile borders become less no-
ticeable with blending.

4.3 QUANTITATIVE COMPARISON

Perceptual Alignments To compare perceptual alignments with SynCity using CLIP score based
on clip-vit-base-patch32 model (Radford et al.| 2021), we uniformly rendered 18 views at close
distance from 15 generation results each of size 4x3x1 across diverse prompts. We adopt the same

9% 9

set of prompts (e.g., “city”, "medieval”, ”desert”, ...) for both methods following the procedure

detailed in[subsection A.1] The result in only shows marginal improvements as CLIP score

does not directly measure blending quality across tiles.
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(a) with tiled-decading (b) without tiled-decoding

Figure 5: Comparison example with 3x2x1 city tiles for (a) decoding using our tiled decoding
method and (b) decoding the entire generation at once. We observe severe artifacts when decoding
without our tiled decoder.

Cyberpunk Minecraft

(a) SynCity

(b) TRELLISWorld (our)

Figure 6: Qualitative comparison (not cherry-picked) between SynCity (Engstler et al.| 2025)) and
TRELLISWorld (our method). All generations use 4x3x1 tiles under the same Gaussian Splatting
resolution. Our method demonstrates seamless blending between tiles, whereas tile boundaries in
SynCity are easily noticeable.

(a) Generated Previous Tiles {b) Apply Cropping (c) Inpainted Image (b) Generated Next Tile

Figure 7: Limitations of world generation using autoregressive image inpainting methods described
by SynCity (Engstler et al.}[2025)). In SynCity, to prevent tall buildings from previous tiles from oc-
cluding the next tile, the previously generated result in (a) is cropped to (b), producing an inpainted
image with artifacts in (c). The object generator is then conditioned on image (c) to generate Gaus-
sian Splatting (d), which contains inherited artifacts.

Computational Cost All experiments are run on a single NVIDIA GeForce RTX 4090 GPU
(48GB). Without any optimization, [Table 2] shows that our method achieves a 5x speedup and sig-
nificantly less memory compared to SynCity (Engstler et al.,|2025)) for generating tiles of the same
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Table 1: Perceptual scores with standard deviation and confidence intervals across different meth-
ods. Our proposed method achieves the highest CLIP (Radford et al.}[2021)) and the second-lowest
standard deviation, indicating better alignment with users’ prompts.

Method CLIP Mean{ CLIPSTD | 95% Confidence

SynCity 0.260202 0.023223 [0.257264, 0.263140]
inpaint baseline 0.264191 0.025335 [0.260986, 0.267397]
w/o blending 0.262029 0.027042 [0.258608, 0.265450]
TRELLISWorld 0.265201 0.024958 [0.262043, 0.268358]

Table 2: Computational resources required to generate a scene. All experiments are conducted on
the same 4 x 3 tile layout, and all SS and SLAT samples are generated using 25 diffusion steps.

Method Total Time  Time per Tile VRAM Consumption
SynCity 76 min 46 sec 384 sec ~48 GB
TRELLISWorld 14 min 24 sec 72 sec <16 GB

Figure 8: City scene expansion results (not cherry-picked) using TRELLISWorld. Given the leftmost
1x1x1 tile as input, the model generates a 3x3x1 extended scene. Three diverse outputs are shown
to the right, demonstrating variations.

Figure 9: Generation result (not cherry-picked) showing a smooth and natural transition from
”Spring forest tile... blooming flowers...” (bottom-left) to ”Winter ice lake... skating marks...” (top-
right).

size and resolution. Moreover, because our method does not rely on autoregressive inference, larger
scenes can potentially be parallelized across multiple GPUs for further speedup.

5 APPLICATIONS

Editing or Expanding Existing Worlds Our method can expand already-generated scenes by ini-

tializing the noise with parts of the ground truth, as shown in|[Figure §|and detailed in[subsection A.2}
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Figure 10: Examples of three-dimensional tiling. The left scene is created using a uniform prompt:
”A group of fish swimming in the air”. The right scenes are two variations created using area-
specific prompting.

Area-Specific Prompting Our method allows users to specify different prompts at each location.
We demonstrate this capability in[Figure 9| See [subsection A.l1|for details on creating area-specific
prompts.

Three-Dimensional Tiling While most macro-structures on Earth are constrained to two-
dimensional surfaces, our method naturally generalizes to the generation of three-dimensional
macro-structures, such as a group of fish, or 3D blending using the area-specific prompting tech-
nique described above, as shown in To our knowledge, no existing method offers this
level of flexibility.

6 LIMITATIONS

While our method successfully generates coherent scenes without training, it presents several limi-
tations for future investigations:

Dependence on Base Models As a training-free approach, our method is inherently constrained
by the capabilities of the underlying base models. In particular, the performance of TRELLIS di-
rectly limits both the visual fidelity and efficiency of our scene generation pipeline.

Object-Level Separation To ensure global scene coherence, our method performs generation in
a single batch. As a result, it lacks the ability to disentangle individual objects post-generation.

7 CONCLUSION

We presented TRELLISWorld, a training-free framework for text-driven 3D scene generation that
composes large-scale environments by repurposing object-level diffusion models through a tiled
denoising formulation. By leveraging spatial overlap and cosine-weighted blending, our method
enables semantically coherent, scalable, and editable 3D world synthesis without retraining. Ex-
periments demonstrate that TRELLISWorld outperforms existing autoregressive approaches in both
visual coherence and computational efficiency, while supporting flexible applications such as lo-
calized prompting. Our results establish a simple yet extensible foundation for general-purpose
language-guided 3D scene construction, bridging the gap between object-level priors and world-
scale generation.
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A APPENDIX

A.1 TEXT PROMPT

Our method gives the user explicit control of the 3D prompts used in generation. Below is an
example of 3D prompt we use to generate our 4 x 3 x 1 city theme:
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prompt = [[
["Dense low-rise residential block with small shops and narrow
streets, square tile"],
["Cluster of mid-rise apartments with pastel facades and tree-lined
sidewalks, square tile"],
["Modern commercial zone with glass offices, cafes, and public
seating, square tile"],
1, 0
["Mixed-use area with offices, apartments, and green courtyards,
square tile"],
["Urban block with mid-rise towers, parking lots, and small plazas,
square tile"],
["Dense retail and commercial buildings near busy intersection,
square tile"],
I, 0
["Residential zone with consistent low-rise buildings and local shops
, square tile"],
["Compact city block with modern mid-rises and organized street grid,
square tile"],
["Edge of city with fewer high-rises and more greenery, square tile
"],
1, 0
["Park extension with dense trees and a water feature, square tile"],
["Community recreation area with playgrounds and open lawns, square
tile"],
["Park transition with scattered cultural buildings and trees, square
tile"],
11

LIRS 9 < 99 ¢

For other themes (“city”, “medieval”, “desert”, “cyberpunk”, “ancient Rome”, “minecraft”, “forest”,
il 13 Akl 13 bEl (13 2 13 29 13

“ocean”, “winter”, “lego”, “park”, “amusement park”, “airport”, “college”, “room”), we ask LLMs
to generate similar prompts using in-context learning from the city prompt above.

A.2  INPAINT
Our method can fill missing regions or extend a user-provided tile. We use RePaint (Lugmayr et al.,

2022)) with a Gaussian-blurred mask to partially preserve the edges of the input tile. This encourages
smoother transitions between the generated and existing content.

A.3 ADDITIONAL QUALITATIVE RESULTS

[Figure 11]and[Figure 12|shows additional generation result of TRELLISWorld.

A.4 DISCLOSURE

We made use of LLMs to polish writing. We made sure that our input text to LLMs will not be used
for training purposes.
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