Under review as a conference paper at ICLR 2026

GRAPHOMNI: A COMPREHENSIVE AND EXTENSIBLE
BENCHMARK FRAMEWORK FOR LARGE LANGUAGE
MODELS ON GRAPH-THEORETIC TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces GRAPHOMNI, a comprehensive benchmark designed to
evaluate the reasoning capabilities of LLMs on graph-theoretic tasks articulated in
natural language. GRAPHOMNI spans diverse graph types, serialization formats,
and prompting schemes, substantially extending upon prior efforts in both scope
and depth. Through systematic evaluation, we uncover critical interactions among
these dimensions, revealing their decisive impact on model performance. Our
experiments show that state-of-the-art closed-source models such as Claude-3.5 and
o4-mini consistently lead overall, yet still leave considerable headroom, while open-
source models display pronounced sensitivity to various design choices. Beyond
the standard scope, larger graphs, real-world graphs, and additional NP-hard
tasks are further discussed. We further analyze efficiency via output token usage,
highlighting cost—accuracy trade-offs, and introduce a reinforcement learning-based
optimizer that adaptively selects factor combinations, reducing evaluation cost by
75% while retaining strong accuracy. This flexible and extensible benchmark not
only deepens understanding of LLM performance on structured graph reasoning but
also establishes a robust foundation for advancing model design and evaluation. The
code and datasets are available at https://anonymous.4open.science/r/ID-14092.

Evaluation Pipeline

Graph Theoretic Questions
Local Properties

Q: Are the following two nodes connected? Q 2
Q: Determine if the following graph (=) [
has any cycles. =1=)

Barabasi Erdds Scale
Global Properties Albert Rényi Free % CoT K,sgm
Q: Count the number of triangles
in this undirected graph.
Q: Compute the diameter of the graph ABCD

A:Yes, they are connected.

A:Thereisacycle:B->C->
D->B. So, the graph
contains a cycle.

A:There are 2 triangles:
(A,B,C)and (B, C, D).

A:The longest shortest path
is from U1 to V3, which

0o

*2Y

takes 4 steps: U1 -> V1 ->

AB,C B Q: <Graph Theoretic Question> U2->V2->U3->V3.
_@ represented by the edge set below. ®® g Ao G <Prompt Scheme: Few-shot Example Diameter is 4.
—— Q: Find the shortest path CAD B[1001] B, D) <Serialization Format: Target Graph> .
AD Ciioor) BD) ° Pos A:A->B->D->F
from node A to node F. ©® ob:8c [1 cp Let's think step by step. <Chain of T> (Length: 3)
Q: Perform a breadth-first traversal ad DLo110} The triangle X-Y-Z exists because .. ot
* jjacency Adjacency ~ Edge Answer AA->B->C->D->E
starting from node A List Matrix Set
Discussions
Factors Performance Heatmap Error case studies Findings
Not fine-grained _ | Our fine-grained Given graph{f¥, your task is <triangle counting>. Finding 1: High variability underscores the
2 How many triangles are in this graph? need for comprehensive evaluation across
- < 2 ° Ina simple graph, # triangles = int (# nodes / 3). all benchmarking dimensions
J [’ & So # of triangles is 26/3 ~=8 Finding 2: LLM sometimes can not understand

Incorrectly assumption of # triangles formula. important concept in graph reasoning
Serialization Performance Prompt Prompt Valid triangle needs all three nodes mutually connected Finding 3: -

Figure 1: GRAPHOMNI Evaluation Pipeline. We convert graph-theoretic tasks into text-based
questions about local and global properties. In the adjustable settings, we vary three dimensions, i.e.,
graph type, serialization format, and prompt scheme, and then generate every possible combination.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a transformative force in natural language process-
ing (NLP), demonstrating state-of-the-art performance in tasks such as open-ended text generation,
summarization, and problem-solving (Radford et al., 2019; Brown et al., 2020; Raffel et al., 2020;

https://anonymous.4open.science/r/ID-14092

Under review as a conference paper at ICLR 2026

Lewis et al., 2020). However, their application to structured reasoning on graph-based data remains
relatively underexplored. Graphs, defined by their nodes and edges, encapsulate complex relation-
ships that are crucial to many real-world applications, including social network analysis (Easley et al.,
2010), recommendation systems (Wu et al., 2022), out-of-distribution detection (Fang et al., 2025a),
and drug discovery (Gaudelet et al., 2021).

Traditional approaches to graph analysis primarily rely on Graph Neural Networks (GNNs) that are
designed with specialized representations and training paradigms tailored for tasks such as node
classification (Wu et al., 2020), link prediction (Zhang & Chen, 2018), and community detection (Su
et al., 2022). In contrast, LLMs are trained on vast quantities of unstructured or semi-structured
text and excel at reasoning about entities and relationships described linguistically, as evidenced
by benchmarks like MMLU (Hendrycks et al., 2021a) and MATH (Hendrycks et al., 2021b). This
discrepancy raises a pivotal question: Can LLMs be effectively harnessed to understand and
manipulate graph-theoretic concepts when graphs are articulated in natural language?

To address this question, a multi-dimensional evaluation is required rather than tuning a single knob.
Prior work has examined individual components in isolation, including prompting strategies (Wang
et al., 2023; Fatemi et al., 2024), textual graph serialization (Xypolopoulos et al., 2024), or specific
graph families (Zhang et al., 2024b), but this piecemeal view obscures how these choices interact. We
therefore vary three interacting dimensions jointly. First, graph type: different graph types exhibit
distinct structures, so we use synthetic generators (ER, BA, scale-free, bipartite) to produce them,
which in turn affects how readily a text description can capture these structures. Second, serialization
format: the same graph written as an adjacency list or matrix, an edge set, or a richer schema can
help or hinder model reading. Third, prompt scheme: the way the question is posed (zero-shot,
few-shot, instructive, algorithmic, chain-of-thought) can shift answers even with identical inputs.
As summarized in Table 1, previous studies do not vary these dimensions together, so they cannot
determine whether gains come from the model, the representation, or the instruction, nor explain why
a setting that benefits one model may harm another. Consequently, we still lack a comprehensive and
robust understanding of LLM capabilities in graph reasoning.

Table 1: Comparison of existing graph-related benchmarks for LLM with our GRAPHOMNI.
We evaluate their inclusion of different types of graphs, serialization formats, and prompt schemes,
noting a gap between recent works and ours. Additionally, GRAPHOMNI is the only work with a
random baseline as well as a modularized and expandable framework design. More related works are
included in Detailed Related Works in Appendix F.

Graph Sources Serializations Prompt Schemes Evaluation Framework
Benchmarks

Samples # Graph Types” Node Size Multiple Types # Types Multiple Types # Types Random Baseline Modularized

LLM4DyG (Zhang et al., 2024b) 900 (100 per task) 4 5t020 X 1 v 4 v X
Graphlnstruct (Luo et al., 2024b) N/A 3 5t035 v 3 X 1 X v
MAGMA (Taylor et al., 2024) ~ 400 1 5t0 50 X 1 X 1 X X
NLGraph (Wang et al., 2023) 5,902 1 5t035 X 1 v 5 v X
GPC (Dai et al., 2024) 350 1 5t035 v 2 X N/A X X
GraphWiz (Chen et al., 2024a) 3,600 1 2 to 100 X 1 X 1 X X
GPT4Graph (Guo et al., 2024a) N/A 1 10 to 20 4 4 v 6 X X
GraphArena (Tang 2025) 10,000 N/A 5 to 30" X 1 X 1 X X
GraphQA (Fatemi et al., 2024) 2,300 7 5t020 X (only via text) 1 v 6 X v
NLGift (Zhang et al., 2024a) 37,000 2 3t025 X 1 X 1 X X
GraphWild (Zhang et al., 2025) 49,224 5 N/A X 1 X 1 N/A N/A
GRAPHOMNI 241,726 7 5t030 4 7 v 9 v v

" Note that # Graph Types is targeted for synthetic datasets and reflects the number of types of random graph generators.
 The range is for all non-trivial tasks, excluding nearest neighbor and shortest distance.

To address this gap, we propose GRAPHOMNI, a unified benchmark with an extensible framework,
summarized in Figure 1. It represents the most comprehensive graph-theory-based evaluation
framework developed to date, compared with all related works in Table 1. It spans various graph
types, serialization formats, and prompt schemes, surpassing previous works in scope and granularity.
Furthermore, our framework is designed as an extensible and flexible evaluation system. Researchers
can easily incorporate new graph generators, serialization methods, and prompt strategies, thereby
ensuring that the benchmark remains current with evolving methodologies in both LLM research and
graph theory. A random baseline is then implemented to ensure a fair evaluation.

With the help of GRAPHOMNI we clearly demonstrate that no single serialization or prompt works
best for all models and accuracy varies widely across graph types, serializations, and prompts, which
validates the need for our multi-dimensional design and per-task configuration. Additionally, model

Under review as a conference paper at ICLR 2026

Llama-3.1 (8B)
Mistral (7B)
Phi-4 (14B)
Qwen2.5 (7B)
Llama-3 (8B)
Qwen2.5 (72B)
Qwen3 (8B)

Claude-3.5
—— Gemini-2.0
—— GPT-4o0
GPT-40-mini
o4-mini

Short. Tri. Short. Tri.

Figure 2: Radar charts comparing the performance of open-source (top row) and closed-source
(bottom row) LLMs across six canonical graph reasoning tasks at three difficulty levels.

performance requires further improvement overall: Claude-3.5 and 04-mini lead across tasks and
difficulty levels, yet even they fall short of the near-perfect accuracy a non-specialist human evaluator
could achieve on 5-30 node problems given sufficient time. To verify the robustness of the evaluation
results, we extend the analysis to larger graphs, NP-hard tasks, and conduct a representativeness check
on real-world graphs, all of which yield the same trends. Motivated by these results, we introduce a
simple RL-inspired selector that chooses the optimal settings (prompt + serialization) for each task,
thereby improving accuracy at a minimal extra cost. We summarize our contributions as:

Novel benchmark: We introduce GRAPHOMNI, the most comprehensive benchmark to our
knowledge for evaluating graph-theoretic reasoning in LLMs, covering a wide range of synthetic
graph types, diverse serialization formats, and varied prompt schemes.

Comprehensive evaluation framework: We design a flexible and extensible evaluation framework
that allows for the seamless addition or removal of graph generators, serialization methods, and
prompt schemes, ensuring adaptability to future research developments. We also include extended
studies on larger graphs (30-50 nodes), real-world datasets, and NP-Hard tasks, which together
confirm the robustness and transferability of our conclusions.

Insightful empirical observations: State-of-the-art models still exhibit considerable room for
improvement overall. Our experiments reveal substantial performance variance, with notable accuracy
differences across different serialization and prompting configurations, emphasizing the need for
comprehensive evaluation across all dimensions to provide fair and trustworthy understandings.

Practical methods inspired by observations: Motivated by the above observations, we develop an
RL-based adaptive mechanism that dynamically selects the optimal factors, achieving near-optimal
performance with only a small exploration cost.

2 GRAPHOMNI

Overview and Statistics. GRAPHOMNI rigorously evaluates LLM performance on graph reasoning
by examining the interplay between graph structure, textual representation, and prompt formulation.
It comprises four key components: Benchmark Tasks, Graph Types, Prompt Schemes, and Serial-
ization Formats. Figure 1 illustrates how these four components form our end-to-end evaluation
pipeline. Benchmark Tasks cover canonical graph problems that test both local and global reasoning.
Graph Types are defined by diverse synthetic datasets generated by different random graph genera-
tors, including stochastic, scale-free, and bipartite models. Prompt Schemes incorporate various
query designs such as algorithmic, chain-of-thought, k-shot, instructive, and zero-shot approaches.
Serialization Formats convert graph data into text using methods like adjacency lists, matrices, and
the GMoL. Moreover, we have designed three difficulty modes for all graph-related tasks, determined
by the number of nodes: Easy (5—10 nodes), Medium (10-20 nodes), and Hard (20-30 nodes). This
unified and extensible framework distinguishes itself by integrating multiple dimensions of graph
reasoning into a single evaluation platform, thereby providing comprehensive insights into LLM

Under review as a conference paper at ICLR 2026

performance on complex, structured data. The basic statistics of GRAPHOMNI are presented in
Table 2, while token statistics for different combinations are shown in Figure 3. In summary, our
dataset contains a total of 241,726 queries. More detailed statistics are in Appendix B.

Graph Tasks. We consider 6 canonical tasks that cap-
ture both local and global properties of graphs, thereby
requiring diverse reasoning capabilities from LLMs.
Connectivity involves determining whether a path exists
between two designated nodes, testing the model’s under-
standing of local linkages. Cycle detection requires ver- 150
ifying the presence of any cycle, which probes the model’s
ability to recognize recurring patterns in connectivity.
Diameter calculation demands calculating the max-

suayoL ued
N
(=]
(=]

imum distance between any two nodes, thereby challeng- 500

ing the model to grasp the global network structure. BFS o aigorithm A
order tests the ability to generate an ordered sequence 03;3;;;;M s
of nodes as encountered in a breadth-first search, assess- Qg 3OMN PRI
ing sequential output and structured reasoning. Triangle Sy Kanot ek o
counting requires precise numerical enumeration of 3- e i

cycles, blending quantitative precision with structural in-
sight. Shortest path tasks compel the model to identify
the most efficient route between two nodes. Collectively,
these tasks provide a robust measure of performance across
both binary decisions and nuanced numerical analyses. For
more details on the design of the graph task, please refer to Appendix A.3, where we further discuss
the rationale behind the task selection and analyze the distinct capability demands of each task in
Appendix A.3.1. We also include NP-hard tasks for extended discussion, elaborated in Appendix C.4.

Figure 3: Token usage for prompt-
serialization combinations by GPT-4
tokenizer. More detailed statistics are
included in Figures 6a and 6b.

Graph Generators (Types of Graphs). To mirror the diversity found in real-world net-
works, our benchmark incorporates a broad array of graph families of 7 types, each pre-
senting unique structural characteristics that challenge LLM reasoning. ER Graphs are gen-
erated by random sampling from the space of all graphs with n vertices. Within this fam-

ily, ERM employs a fixed edge count m, randomly chosen between 1 and w, while
ERP uses a probability-based approach with an edge probability drawn uniformly from [0, 1].
Extending these models to capture structured varia-

tions, Bipartite ER Graphs (denoted as BERM and BERP) Taple 2: Statistical summary of
impose bipartite constraints that yield additional topo- GRAPHOMNI over tasks at all difficulty
logical diversity. To reflect the power-law distribu- Jevels. More statistics are in Table 7.

tions prevalent in real-world networks, we include
Barabasi-Albert Graphs(BAG), generated by ini-
tializing a complete graph of mg vertices (with my
randomly chosen up to 7) and sequentially adding Numbers 88956 87318 65452
nodes that form m = mg + 1 connections via pref- Av8- Nodes 8.01 14.70 26.61
erential attachment. Recognizing that many practical Avg. Edges 11.70 34.51 71.60
networks are hierarchical or tree-like, we extend BAG

to Barabasi-Albert Forests(BAF) by enforcing an acyclic topology. Moreover, our framework
features Scale-Free (SF) Graphs generated via a degree-weighted random connection strategy,
which can yield multiple disconnected components, offering a complementary perspective to BAG.
A detailed description of each type of graph can be found in Appendix A.4, where we also provide
the detailed rationale for this selection and empirical evidence showing that even within the 5-30
node range, the chosen generators yield statistically distinct and representative structural regimes in
Appendix A.4.1.

Difficulty Easy Medium Hard

Prompt Schemes. Recognizing that the formulation of query prompts critically influences LLM
reasoning, our benchmark systematically evaluates 9 distinct prompt schemes that vary in the degree
of explicit guidance provided. The k-Shot prompts supply multiple exemplars from simpler graph
instances to prime the model with relevant examples. The Algorithm prompts (Wang et al., 2023)
explicitly delineate a well-known algorithm (such as BFS or Dijkstra), offering clear procedural
instructions. In contrast, Chain-of-Thought (CoT) prompts (Wei et al., 2022) encourage the model to
articulate intermediate reasoning steps, thereby exposing its internal thought process. The Instruct

Under review as a conference paper at ICLR 2026

prompts use directive language tailored for instruction-based models to elicit focused responses.
All three types above come with few-shot examples. For cases requiring minimal intervention, the
0-Shot (i.e., plain) prompts pose bare questions without supplementary cues. To further investigate
the impact of reasoning visibility, we also include variants without few-shot examples, such as @-CoT,
0-Instruct, and @-Algorithm, which deliberately restrict the exposure of intermediate solution
steps, as well as LTM prompts that employ least-to-most prompting. The detailed design process and
some examples of the prompt program are shown in Appendix A.5.

Serialization Formats. Since LLMs operate on textual inputs, the method by which graphs are
serialized has a profound impact on the clarity and accessibility of structural information. Our
benchmark examines 7 distinct serialization formats that offer varied representations of graph
topology. The Graph Modeling Language(GMoL) provides a structured, tag-based representation
that mirrors hierarchical data organization. In contrast, the Adjacency Set and Edge Set formats
offer succinct listings of node neighbors and edges, respectively, emphasizing compactness. The
Edge List format, which may incorporate additional details such as edge weights, serves as a more
verbose alternative. Moreover, the Adjacency Matrix and Adjacency List formats balance detail
and conciseness differently depending on the graph density, and the Graph Markup Language(GMaL)
(Brandes et al., 2013) is an XML-based file format used to describe graph structures, including nodes,
edges, and their attributes. Specific examples of graph serialization formats are in Appendix A.6.

3 EXPERIMENTAL SETTING

We evaluate the graph reasoning capabilities of various LLMs on a diverse set of tasks and difficulty
levels. Our protocol highlights the impact of different dimensions in Section 2 on model performance.

Random Baselines. To assess the intrinsic graph reasoning ability of our models, we include a
random baseline for each task. Appendix A.2 shows its detailed design process. These baselines
provide a clear reference point for evaluating how much the LLMs improve upon chance performance
when reasoning about graph-theoretic properties expressed in natural language.

Models and Configurations. We evaluate a diverse suite of LLMs spanning both open-source
and closed-source categories. Our open-source models include Llama-3, Llama-3.1, Mistral,
Phi-4, Qwen-2.5, and Qwen-3, while our closed-source models consist of Claude-3.5, Gemini-2.0,
GPT-40, GPT-40-mini and o4-mini (versions and sources of the LLMs applied can be found in
Appendix A.1). The model selection here is designed to provide coverage of the widely used LLMs
of different sizes, reasoning types, and whether they are open-sourced or not, based on the budget
and availability of models at the time of the work. We also try our best to include models with better
performance on GRAPHOMNI than comparable alternatives to make our conclusion convincing. In
all experiments related to few-shot examples, five exemplars are prepended to the prompt (i.e., k=5).
More implementation details can be found in Appendix A.

Evaluation Metrics. Evaluation of LLM responses is conducted using predefined binary accuracy
metrics, assigning an output of 1 for correct responses and 0 for incorrect responses. For qualitative
tasks, such as Connectivity verification and Cycle detection, correctness is determined by
identifying and verifying key phrases in the model’s output (e.g., “yes, there is a cycle” or “yes, there
is a path”) against the ground truth (GT). For numerical tasks, such as Triangle counting and
Diameter calculation, correctness is assessed by extracting numerical values that follow specific
key phrases (e.g., “the number of triangles is” or “the diameter is”’) and directly comparing these
numerical outputs to the corresponding ground truth values. For tasks with multiple valid solutions,
specifically BFS order and Shortest path, evaluation is conducted using a rule-based function.
This evaluation process involves identifying key phrases, such as “The BFS traversal starting from
node X is” or “The shortest path from node X to node Y is,” to extract the model’s response. Based
on this extraction, we evaluate the model’s response using a task-specific rule-based algorithm that
verifies solutions for tasks and assigns a score of 1 when the response matches one of the correct
answers. The detailed rationale for the choice of the metrics is included in Appendix C.6.

5

Under review as a conference paper at ICLR 2026

Table 3: Benchmark Results of Representative LLMs Across Tasks (Mean+95% CI Margin).
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best per-
formance in its category. The complete results are included in Table 13.

Open-source Models Closed-source Models

Task Difficulty). 003.1(8B) Mistral 7B) Phi-d (14B) Qwen-2.5(72B) Qwen-2.5(7B) Qwen-3(8B) Claude-35 GPTdo Gemini-20 odemini Rondom
E 18.6043.02 13754144 33034732 7141345 21465426 65875550 OLADsl65 81484322 90312230 9546078 0.00
BES order M 527093 3361044 12498324 47805530 6056141 53304542 | 68254296 5507450 68404395 79.3762.08 | 0.00
H 0630.19 03430.14 265:080 22.03:439 138037 29534425 | 268042.64 21584369 27774334 32456388 | 000
E 79534203 79905189 56293858 | O024%189 S8.10£146 97174129 | 98.38:0.60 05632130 9261142 98233063 | 6749
Comnectivity M 79475200 80.60:192 54383799 BO6REIS6 8723£1.60 9687+116 | 99112039 05.12+137 93.60+1.10 98.72+052 | 7075
H 74588267 74774246 4839+750 84095198 81.1942.02 92894207 | 96.99+148 90.59:2.19 87.99+1.67 92.02:399 | 66.36
E 35495090 55442096 4525:590 | 74004334 62.19£185 90308233 | 8256:389 85088207 62308332 97974071 | 5000
Cycle M 55.6941.08 53712072 4426£543 71.99£3.34 62074180 89.66+2.07 | 80.80+3.94 8535:230 60294322 97.75:0.76 | 50.00
H 5240147 51643102 40643497 68404273 SS.8842.14 86.81£2.27 | 80104397 82963255 58308280 95614123 | 5000
E 41274537 28552428 42813506 | 7850:L16 45084417 77566277 | 83715126 63995219 79142194 98.88+0.15 | 1120
Diameter M 27204420 15175257 28494400 52304000 27314316 6L71:228 | 71225130 52644305 49526214 72844182 | 670
H 18634327 697:126 1771302 29.59£2.48 15274247 39834267 | 56706202 45604324 23456297 34614284 | 372
E 38754581 31182443 42613888 9003227 4746876 71695517 | 94356293 92175191 8175:470 95.0843.06 | 5000
Shortest M WRALAS6 19892305 33924768 SLITEB03 35534680 69608550 | 91276284 8484203 R0.67:415 92604349 | 5000
H 23034385 1221£195 26605626 ~ 72.53:429 28314550 64288560 | 87.888336 74.98:4.17 T8.16£4.55 88.63:4.44 | 50.00
E 14974153 I187%132 12884205 36572440 18565124 41363463 | 43415164 3632£154 50338231 84.5450.56 | 2.13
Triangle M 8.56+0.92 5.86+0.73 7.54+1.33 14.52+2.63 9.18+0.73 26.95+2.44 24.00£0.77 20.00£0.72 28.12+1.65 48.13+1.46 1.62
H 4955060 255:044 438x104 473158 4455058 19544134 | 15924072 12814088 15554120 17.53:143 | 182

4 RESULTS AND ANALYSIS

4.1 MAIN RESULTS

We evaluate model performance comprehensively across four main dimensions: model overall ca-
pability, graph type, effectiveness of prompting strategy, and impact of serialization format. This
multifaceted evaluation offers a comprehensive understanding of the most effective approaches for
graph algorithm tasks. Our analysis systematically considers each task at varying difficulty levels
(easy/medium/hard). To isolate each dimension, we control for other variables when assessing a
particular aspect and calculate the mean accuracy with a 95% confidence interval (Mean+95% CI
Margin) across all combinations of the remaining factors. For example, when evaluating model
capability, we compute statistics across all combinations of graph types, prompts, and serialization
formats while holding the model constant. The evaluation results from the model capability perspec-
tive are presented in Table 3 and Figure 2. To provide a comprehensive view, we present additional
experimental results in Appendix E.l examining prompt schemes, serialization formats, and graph
types across collective results (Tables 14, 15, 16), open-source models (Tables 17, 18, 19), and
closed-source models (Tables 20, 21, 22). These controlled evaluations yield complementary insights
summarized across multiple perspectives. Additionally, example input/output pairs are provided for
clarity in Appendix E.5.

Result ®: High variability underscores the need for comprehensive evaluation across all
benchmarking dimensions. Detailed analysis reveals substantial variability in LLM performance
across different combinations of serialization formats, prompting schemes, and graph types. This
variability highlights the need for a comprehensive evaluation across all benchmarking dimensions.
The performance heatmaps, presented in Appendix E.2, illustrate the accuracy of different prompt
schemes and serialization formats across tasks, models, and difficulty levels. The performance
heatmaps show that no single serialization or prompting strategy consistently outperforms others
across all tasks and difficulty levels. Instead, optimal results require careful and adaptive selection of
serialization-prompt combinations, explicitly tailored to task characteristics such as structured graph-
theoretic reasoning tasks. For instance, in the case of GPT-40, depicted in Figure 4, accuracy gaps of
up to 40% occur when varying input representations within the same task and model, indicating a
significant sensitivity to input formatting, which is also observed in other domains, like evaluation of
vision language models (VLMs) (Feizi et al., 2025). These observations emphasize that evaluating
LLMs comprehensively across interconnected dimensions, i.e., serialization formats and prompting
schemes, is essential for fairly assessing their capabilities in graph reasoning tasks.

Result ®: Model performance still has considerable room for improvement. Models generally
demonstrate reasonable performance across tasks, underscoring their inherent potential in graph
reasoning when appropriately guided. Notably, o4-mini delivers remarkable performance, frequently
surpassing other closed-source models across most tasks and setting a new benchmark overall.
However, the performance gap remains large on the hard difficulty tasks, particularly BFS order,
Diameter calculation, and Triangle counting, which require full, global information of the
graph. Here, even 04-mini’s performance drops to as low as 32.45% on BFS order (Hard), 34.61%

Under review as a conference paper at ICLR 2026

on Diameter calculation (Hard), and 17.53% on Triangle counting (Hard), underscoring the
remaining challenge in holistic graph reasoning. Therefore, substantial room for improvement persists
relative to ideal human-level outcomes, primarily due to the scarcity of structured graph-theoretic
content in typical web corpora used for LLM pretraining. Among open-source alternatives, Qwen-3
remains the top performer but continues to lag behind leading closed-source models, such as 04-mini
and Claude-3.5, suggesting a meaningful room for advancement in open-source solutions.

Result ®: Common Errors Reveal Fundamental Gaps in Graph Reasoning. Our error analysis
highlights representative categories of errors commonly observed in incorrect LLM responses: A.
Misinterpretation of serialization formats: Models occasionally struggled to accurately interpret
serialized graph representations, resulting in misunderstandings of the underlying graph structure,
such as BFS order case I, Connectivity case |, and Triangle counting case 2 in the Appendix;
B. Incorrect reasoning about graph-theoretic concepts: LLMs frequently exhibited fundamental
misunderstandings of basic graph definitions and problem-solving methods. In the error cases
Triangle counting case 1, incorrect responses inaccurately estimated the number of triangles as
approximately one-third of the number of nodes. For the error cases Diameter calculation case I,
some models erroneously identified the diameter as the length of the longest path, rather than correctly
defining it as the length of the longest shortest path between any two nodes. These representative
errors underscore critical areas for improvement in the graph reasoning capabilities of current LLMs.
Additional error cases and analyses are provided in Appendix E.4.

Easy Medium Hard

(34 0.711 [0.617 | 0.680 0,531 0.629
[T 0.699 | 0.633 0.688 |0.559 0.551 0.648
PRI 0.691 0.590 0.664 | 0.543 [EXLLN 0.609

LACTIGIGY 0.785 0.777 0.773 0.762 , 0.793 ' 0.801

(RIS 0.648 0.648 0.707 0.641 0523 0531 0.613
[PLYANENCY 0.590 | 0.562 0423)i} 0.256 0.208
0.637 0.454 0.345
0.648 [105835) 0.680 (LN 0.411 NOCUYA 0.387 0.232
(WELIRYER 0.652 | 0.570 [l 0.565 o.m 0.262

0-Algorithm XY L) 0.621 0.547 m O 0.281 0.234 m 0.613 0.440 0226 0.167
0348 0352 [OXZAN (75l 0405 0.452 0333 0.256
(B 0.715 0.641 0.758 0.625 0.504 0.641
0594 0.715 0.645
0.652 0.582 0.652
(YITAEICN 0.531 0.551 [0.571 T 0345 0.196

(XS 0.734 | 0.629 0.789 0.676 0535 0520 0.570
0203 0309 [HAKIY 0464 0435 0464 0232 0.232
0.688 0.660) 0.695
(XTI] 0.664 | 0.590
0.625 0.566 0.621

Prompt Schemes

81 0.684 0.621 0.754 0551 0.684 0562 0539 0.602 [IECIINEPNN 0.574 [0530 (UL 0292 0.202
AL AM As EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6
Accuracy Range Accuracy Range Accuracy Range

Figure 4: Performance heatmaps for different prompt schemes and serialization formats on
Diameter calculation of GPT-40. The color intensity represents the accuracy, with darker colors
indicating better performance. The red solid and yellow dashed line indicates Best and Second Best
Performance, respectively.

4.2 FINE-GRAINED EMPIRICAL FINDINGS ON MODEL PERFORMANCE

In this section, we dive deeper into our empirical results, identifying detailed performance patterns
and revealing nuanced interactions across various evaluation dimensions. We present here the two
most critical findings, while additional observations are available in Appendix E.6.

Finding ®: Domain-specific knowledge significantly improves model performance on graph-
theoretic tasks. Algorithm-based prompts, explicitly detailing graph-theoretic algorithms, consis-
tently improved model accuracy in structured reasoning tasks such as BFS order and Diameter
calculation (Table 14). This result highlights the value of incorporating explicit domain knowledge
into prompts, particularly when tasks require step-by-step algorithmic reasoning. From Diameter
calculation case 1 and Triangle counting case I, it shows that when employing plain prompts,
the LLM’s response does not accurately reflect the appropriate method for solving the relevant task.

Finding ®: Scaling raises the floor, while reasoning lifts the ceiling. A targeted comparison of
Qwen-2.5 (7B), Qwen-2.5 (72B), and Qwen-3 (8B) (Table 11) highlights complementary effects.
Scaling within the same family (7B to 72B) yields consistent improvements on easier tasks and
splits, such as BFS order, Shortest path, and Diameter calculation (Easy/Medium). By
contrast, a reasoning model at a comparable size, i.e., Qwen-3 (8B), delivers larger gains on the
hardest regimes that require multi-step exploration and combinatorial checks, including BFS order,
Diameter calculation, and Triangle counting (Hard). Together, these results indicate that
scaling predominantly improves robustness on simpler instances, while reasoning-centric design is
more effective for pushing the upper bound of graph reasoning ability (details in Appendix C.5).

Under review as a conference paper at ICLR 2026

Performance by Prompt Schemes and Tasks Performance by Prompt Schemes and Tasks
1.0 = Bfs order
I Connectivity
0.8 =3 Cycle
0.8 [Diameter
[Shortest
v 0.6 v EEE Triangle
< &06
& 5
o 0.4 [
= =04
0.2 0.2
00 X .ot o SRR X .ot o0 © cof ot W X SR x x
W €0, g0 w0 ™ g0t (Y (o€t co RN o L D LU PV gt A S O
“\st e N o,.°;_>\ o)" [\$ 0_\“r,t o RY g"“ o \“r,te_\“:'c— 1 o,.°‘ [\$ 'S
Prompt Schemes Prompt Schemes
(a) Open-source models. (b) Closed-source models.

Figure 5: Accuracy of open-source versus closed-source models with different prompt schemes.
(a) and (b) show the average performance with a 95% confidence interval for open/closed-source
models across various prompt schemes and tasks, with z-axis sorted by mean accuracy.

Finding ©: Divergent impacts of prompt schemes — Open-source models benefit from multi-shot
exemplars, whereas they do not help closed-source models much. In Figures 5a and 5b, the
open-source model achieves the highest average accuracy with prompt schemes that incorporate shots.
However, for the closed-source model, prompt schemes show more complexity. Only considering
prompt patterns, @-CoT performs second to best, @-Algorithm worst, but both surpass k-shot.
However, adding shots improves Algorithm’s overall accuracy, suggesting that shots enhance the
model’s understanding of Algorithm-based prompts. Yet, this effect is not universal: shots may hinder
comprehension in particularly challenging tasks, as noted in Finding @ Appendix E.6.

4.3 EXTENDED STUDY AND DISCUSSION

Scaling to Larger Graphs (Beyond 30 Nodes). We extend the evaluation to graphs with 30-50
nodes, sampling 50 graphs per generator and ~3k test cases overall (details in Appendix C.1). As the
results in Table 8 show, the performance degrades as graph size increases, particularly for tasks with
sequential or combinatorial requirements: accuracy on BFS order and Triangle counting drops
sharply, reflecting the added difficulty of maintaining frontiers or enumerating subgraphs over longer
horizons. By contrast, tasks such as Connectivity and Cycle detection remain relatively stable,
consistent with their reliance on local connectivity checks. Importantly, despite the absolute drop in
scores, the relative ranking of models and the performance gap between open- and closed-source
systems remain nearly identical to the 5-30 node Hard split, confirming that the benchmark’s
conclusions are robust under further scaling of graph size.

Representative Check on Real-World Graphs. We further test whether our synthetic setup transfers
to real data by evaluating on two representative domains: IMDB-MULTT (social/interaction) and
ogbg-molhiv (molecular), yielding ~3.6k samples across six tasks (details in Appendix C.2). Results
in Table 9 corroborate our findings: (i) Connectivity and Cycle detection are consistently easiest;
(ii) ordered-path tasks (BFS order, Shortest path, Diameter calculation)remain substantially
harder, dominated by serialization and memory errors; and (iii) Triangle counting is the most
challenging. However, because many public graphs are sparse and connected, specific tasks become
easier than in our synthetic regime (e.g., Connectivity saturates near 100% for strong models). This
shows that real-world graphs alone can under-stress graph reasoning. Together with prior works
that adopt synthetic-only designs (Fatemi et al., 2024; Chen et al., 2024a; Luo et al., 2024b), our
results validate real graphs as a sound check, but reaffirm that synthetic graphs provide a systematic
evaluation with balanced structural coverage, controllability, and contamination-free conditions. The
detailed rationale is elaborated in Appendix C.3.

Exploration on NP-Hard Tasks. As a complementary stress test, we also consider two classical
NP-hard problems, Hamiltonian cycle detection and Max-Cut (details in Appendix C.4). Results
in Table 10 show accuracy patterns aligned with our six canonical tasks: open-source models
remain near random, while closed-source reasoning-oriented models attain noticeably higher but
still imperfect scores. This indicates that the core conclusions of GRAPHOMNI naturally extend to
NP-hard problems. Interestingly, however, LLMs do not exhibit the same graded difficulty separation
between polynomial-time and NP-hard tasks as human solvers: accuracy tends to collapse uniformly

Under review as a conference paper at ICLR 2026

across NP-hard regimes just like polynomial tasks. Thus, while useful as a complementary check,
NP-hard tasks do not add progressive challenge in the same way as our tractable yet demanding suite,
reinforcing why the latter remain the centerpiece of GRAPHOMNI.

Efficiency-accuracy trade-off. Besides accuracy, we also analyze inference efficiency by measuring
the number of output tokens produced across models (details in Appendix E.7). The results reveal
a clear trade-off: accuracy gains often come at the cost of longer responses, but models navigate
this balance differently. Closed-source models (e.g., GPT-40, Claude-3.5) reach high accuracy with
compact generations under 300 tokens, while 04-mini relies on very long chains of thought (over
1.6K tokens) to achieve similar accuracy (Figure 32). By contrast, open-source models such as Llama-
3.1 and Qwen-2.5 (7B) must generate substantially longer outputs to achieve high performance,
whereas shorter responses are correlated with lower accuracy. These trends persist across difficulty
levels, task types, serialization formats, and prompt schemes (Tables 23-26). Overall, efficiency,
measured by output length, emerges as an additional axis of divergence across LLMs, reinforcing the
importance of evaluating not only correctness but also the cost of achieving it.

4.4 REINFORCEMENT LEARNING (RL)-BASED PROMPT SEARCH INSPIRED BY GRAPHOMNI

Our benchmark evaluates three key dimensions, graph type, serialization format, and prompt scheme,
to underscore the critical role of transforming graph structures into textual inputs for LLM inference.
While GraphOmni provides comprehensive insights into how different dimensions affect LLM
inference, we still face a concrete, actionable question: Given many interacting dimensions, which
prompt configuration is best for a specific graph reasoning task? In this section, we want to identify
the optimal combination strategies (serialization format; prompt scheme, etc.) that enhance the
effectiveness of textual representations, thereby improving LLM performance in graph reasoning
and understanding tasks. We define the process of converting graph structures into textual inputs
tailored to a specific task as the serialization process. To operationalize this serialization process, we
introduce an RL-based search method as a diagnostic tool within our benchmark, enabling automatic
selection of effective serialization strategies.

Specifically, RL transforms optimizing the serialization process into a sequential decision-making
problem for each type and difficulty of the task. There are T" decision epochs, and each decision
epoch determines one component of the serialization strategy. Then we provide a predetermined
order to specify a sequence of action spaces {A; }1=1,... 1 (e.g., A; can be all candidate prompts).
We set the initial state sg as the specific type and difficulty of the task. Then at decision epoch
t=1,...,T, we choose an action a; € A; based on the previous actions ay, . ..,a;_1. Then the
state s; consists of the task type and difficulty (initial state sg) together with the previously selected
serialization components. This corresponds to a policy 7; : Sp X Ay X - - - x Ay 1 — A, where Sy is
the state space of the initial state sg. For any instance s (e.g., a query for Connectivity task in easy
mode for a specific graph), a binary reward, denoted by 7(s, a1, ..., ar), is incurred at the end of the
decision epoch, which is set to 1 if the LLM correctly answers the specific query under the selected
serialization strategy (a1, ..., ar) and to 0 otherwise. For each type and difficulty of the task, our
objective is to maximize the expected reward of choosing the serialization strategy a1, ..., ar:

max E[r(s,a1,...,a7)|so],
{‘ﬂ't}tzl,,.,,T

where the expectation is taken with respect to the problem instance s and the (random) answer output
by an LLM (affected by the randomness of the LLM, e.g., the temperature parameter). Note that (i)
so 1s part of the instance information s, and (ii) we fix the type and difficulty of the task, and the
only randomness in terms of s is from graph generation. To approximate this objective function,
we generate N different graphs for each type of query. We assess the performance of RL using the
average reward across the IV graphs, which essentially is the accuracy of the serialization strategy for
a specific graph-related task across these N graphs.

Consider the problem of dealing with high-dimensional, complex state spaces in serialization process,
we employ the Deep (Q-Network (DQN) (Mnih et al., 2013) to implement RL, which employs a
neural network as a function approximator for the Q-function. Specifically, we use a neural network
@t(SO, ai,...,as; 0;) parameterized by 6, to approximate the corresponding @ (so, a1, ..., a;) for
the actions or factors considered in serialization process. Each (Q-network is modeled as a three-layer
multilayer perceptron with ReLU activations. Training minimizes the mean squared error loss, and

Under review as a conference paper at ICLR 2026

action selection follows an e-greedy policy, where € linearly decays from 1.0 to a minimum of 0.01.
Then we design the RL-Opt (RL-guided Optimal Serialization Selection) experiment, where we
leverage existing benchmark data to apply RL for evaluating computational cost and validating
the effectiveness of the derived optimal strategy. Additionally, we introduce the RL-Scale (RL
Scalability in Serialization Expansion) experiment to analyze how RL’s computational cost scales
when incorporating additional factors in the serialization process. All detailed information can be
found in Appendix D.

In RL-Opt, the serialization process involved three key factors based on our benchmark’s results:
serialization format, prompt scheme, and the choice of open-source language models. To evaluate the
effectiveness of RL in identifying the optimal combination, we employ two key metrics: Cost and
Rate. To evaluate RL’s effectiveness in finding the optimal combination, we use two metrics: (a) Cost
is the ratio of explored combinations: Cost = % where k is the number of explored combinations,
and K is the total number of combinations; (b) Rate = %, where acc, is the accuracy of RL’s
best-found combination and accy,.x is the highest accuracy in the benchmark data. Results are in
Table 4. The results demonstrate that, at only 25% of the original cost, the RL-based method is still
able to maintain an average success rate of 0.9, indicating its capability to significantly reduce the
time required to search for optimal combinations while preserving the quality of the outcomes.

Table 4: Performance summary of RL-Opt, averaged across all instances of a specific experimental
case, reducing the cost to about 25% of the original, maintaining an average success rate of 0.9.

Task Mode Avg Cost Avg Rate Task Mode Avg Cost Avg Rate

Easy 0.2203 0.9740 Easy 0.2244 0.9883

BES order Medium 0.2251 0.9045 Connectivity Medium 0.2263 0.9875
Hard 0.2279 0.7812 Hard 0.2238 0.9871

Easy 0.2229 0.9757 Easy 0.2263 0.9728

Cycle Medium 0.2263 09833 Diameter Medium 0.2181 0.9541
Hard 0.2203 0.9584 Hard 0.2235 0.9471

Easy 0.2244 0.9636 Easy 0.2276 0.9061

Shortest path Medium 0.2159 0.9856 Triangle Medium 0.2206 0.8456
Hard 0.2187 0.9073 Hard 0.2235 0.7321

5 CONCLUSION

We introduced GRAPHOMNI, a comprehensive benchmark framework for systematically evaluating
the graph reasoning capabilities of LLMs. By analyzing critical dimensions, including graph types,
serialization formats, and prompt schemes, we provided extensive insights into the strengths and
limitations of current LLMs. Our empirical findings emphasize that no single serialization or
prompting strategy consistently outperforms others. Motivated by these insights, we propose a
reinforcement learning-based approach that dynamically selects the optimal serialization-prompt
pairings, leading to significant improvements in accuracy. GRAPHOMNI’s modular and extensible
design establishes a robust foundation for future research, facilitating advances toward general-
purpose graph reasoning models.

10

Under review as a conference paper at ICLR 2026

Ethics Statement We confirm that this research complies with all applicable ethical guidelines and
does not present any ethical issues.

Reproducibility Statement We have taken extensive measures to ensure the reproducibility of our
work. The source code and data resources are released at https://anonymous.4open.science/r/ID- 14092
and https://huggingface.co/datasets/Good AIResearch/GraphOmni-anon, respectively.

Our experimental setup, including model configurations and evaluation protocols, is fully described in
Section 3 in the main content and Section A in Appendix. For transparency, we provide comprehensive
coverage of input—output examples (Section E.5) and error cases (Section E.4) in Appendix, enabling
a thorough understanding and verification of the reported results.

Together, these resources support faithful reproduction and further exploration of our findings.

REFERENCES

W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Proceedings of
the 32nd Annual ACM Symposium on Theory of Computing (STOC), pp. 171-180, 2000. doi:
10.1145/335305.335326.

R. Albert and A.-L. Barabdsi. Emergence of scaling in random networks. Science, 286(5439):
509-512, 1999. doi: 10.1126/science.286.5439.509.

Ulrik Brandes, Markus Eiglsperger, Jiirgen Lerner, and Christian Pich. Graph markup language
(graphml). 2013.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS 20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM Comput. Surv., 38(1):2—es, June 2006. ISSN 0360-0300. doi: 10.1145/1132952.1132954.
URL https://doi.org/10.1145/1132952.1132954.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language model
for graph computational problems. In Proceedings of KDD 2024, 2024a. doi: 10.1145/3637528.
3672010.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. arXiv preprint arXiv:2402.08170, 2024b.

Xinnan Dai, Haohao Qu, Yifen Shen, Bohang Zhang, Qihao Wen, Wenqi Fan, Dongsheng Li, Jiliang
Tang, and Caihua Shan. How do large language models understand graph patterns? a benchmark
for graph pattern comprehension. arXiv preprint arXiv:2410.05298, 2024.

Debarati Das, Ishaan Gupta, Jaideep Srivastava, and Dongyeop Kang. Which modality should
i use - text, motif, or image? : Understanding graphs with large language models, 2024.
arXiv:2311.09862v2.

David Easley, Jon Kleinberg, et al. Networks, crowds, and markets: Reasoning about a highly
connected world, volume 1. Cambridge university press Cambridge, 2010.

P. Erd6s and A. Rényi. On the evolution of random graphs. Publications of the Mathematical Institute
of the Hungarian Academy of Sciences, 5:17-61, 1960.

11

https://anonymous.4open.science/r/ID-14092
https://huggingface.co/datasets/GoodAIResearch/GraphOmni-anon
https://doi.org/10.1145/1132952.1132954

Under review as a conference paper at ICLR 2026

Xiang Fang, Arvind Easwaran, Blaise Genest, and Ponnuthurai Nagaratnam Suganthan. Adaptive
hierarchical graph cut for multi-granularity out-of-distribution detection. IEEE Transactions on
Artificial Intelligence, 2025a.

Yi Fang, Dongzhe Fan, Sirui Ding, Ninghao Liu, and Qiaoyu Tan. Uniglm: Training one unified
language model for text-attributed graph embedding. In Proceedings of the Eighteenth ACM
International Conference on Web Search and Data Mining (WSDM), 2025b. doi: 10.1145/3701551.
3703586.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In Proceedings of ICLR 2024, 2024.

Aarash Feizi, Sai Rajeswar, Adriana Romero-Soriano, Reihaneh Rabbany, Spandana Gella, Valentina
Zantedeschi, and Jodo Monteiro. Pairbench: A systematic framework for selecting reliable judge
vlms. arXiv preprint arXiv:2502.15210, 2025.

Yifan Feng, Chengwu Yang, Xingliang Hou, Shaoyi Du, Shihui Ying, Zongze Wu, and Yue Gao.
Beyond graphs: Can large language models comprehend hypergraphs? In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
28qOQwjuma.

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu,
Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al. Utilizing graph ma-
chine learning within drug discovery and development. Briefings in bioinformatics, 22(6):bbab159,
2021.

E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141-1144, 1959. doi:
10.1214/a0ms/1177706098.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gptd4graph: Can large
language models understand graph structured data? an empirical evaluation and benchmarking,
2024a. arXiv:2305.15066v2.

Kai Guo, Zewen Liu, Zhikai Chen, Hongzhi Wen, Wei Jin, Jiliang Tang, and Yi Chang. Learning
on graphs with large language models (Ilms): A deep dive into model robustness. arXiv preprint
arXiv:2407.12068, 2024b.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering. Advances in Neural Information Processing Systems, 37:132876-132907,
2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2),2021b. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, NIPS °20,
Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Yuntong Hu, Zheng Zhang, and Liang Zhao. Beyond text: A deep dive into large language models’
ability on understanding graph data. arXiv preprint arXiv:2310.04944, 2023.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. In Transactions on Knowledge and Data Engineering (TKDE),
2024a.

12

https://openreview.net/forum?id=28qOQwjuma
https://openreview.net/forum?id=28qOQwjuma
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe

Under review as a conference paper at ICLR 2026

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
Tang, Suhang Wang, Yu Meng, and Jiawei Han. Graph chain-of-thought: Augmenting large
language models by reasoning on graphs. In Findings of the Association for Computational
Linguistics: ACL 2024, pp. 163-184, 2024b. ACL 2024.

Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. Gofa: A generative one-for-all model for joint graph language modeling. arXiv preprint
arXiv:2407.09709, 2024.

M. Latapy, C. Magnien, and N. Del Vecchio. Basic notions for the analysis of large two-mode
networks. Social Networks, 30(1):31-48, 2008. doi: 10.1016/j.socnet.2007.04.006.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 7871-7880, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https://aclanthology.org/2020.acl-main.
703/.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei
Qu, Yangguang Li, Wanli Ouyang, et al. Graphreader: Building graph-based agent to enhance
long-context abilities of large language models. arXiv preprint arXiv:2406.14550, 2024a.

Xin Li, Weize Chen, Qizhi Chu, Haopeng Li, Zhaojun Sun, Ran Li, Chen Qian, Yiwei Wei, Zhiyuan
Liu, Chuan Shi, Maosong Sun, and Cheng Yang. Can large language models analyze graphs like
professionals? a benchmark, datasets and models. In Proceedings of the 38th Conference on
Neural Information Processing Systems (NeurlPS 2024) - Track on Datasets and Benchmarks,
2024b. URL: https://github.com/BUPT-GAMMA/ProGraph.

Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A
survey of graph meets large language model: Progress and future directions. arXiv preprint
arXiv:2311.12399, 2023.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-dataset
zero-shot transferability in graphs. In Proceedings of the KDD Conference, 2024c. doi: 10.1145/
3637528.3671982.

Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor W Chan, and
Jia Li. Glbench: A comprehensive benchmark for graph with large language models. Advances in
Neural Information Processing Systems, 37:42349-42368, 2024d.

Yuankai Luo, Hongkang Li, Qijiong Liu, Lei Shi, and Xiao-Ming Wu. Node identifiers: Compact,
discrete representations for efficient graph learning. arXiv preprint arXiv:2405.16435, 2024a.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, and Xing Xie.
Graphinstruct: Empowering large language models with graph understanding and reasoning
capability, 2024b. arXiv:2403.04483v2.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, and Neil Shah. Position:
Graph foundation models are already here. In Proceedings of the International Conference on
Machine Learning (ICML), 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020. URL
https://arxiv.org/abs/2007.08663.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv preprint
arXiv:2402.05862, 2024.

13

https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2020.acl-main.703/
https://arxiv.org/abs/2007.08663

Under review as a conference paper at ICLR 2026

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), January 2020. ISSN 1532-4435.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. Advances in Neural Information Processing Systems, 37:78320-78370, 2024.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sensitivity
to spurious features in prompt design or: How i learned to start worrying about prompt formatting.
arXiv preprint arXiv:2310.11324, 2023.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sensitivity
to spurious features in prompt design. In International Conference on Learning Representations
(ICLR), 2024.

Chengshuai Shi, Kun Yang, Zihan Chen, Jundong Li, Jing Yang, and Cong Shen. Efficient prompt
optimization through the lens of best arm identification. arXiv preprint arXiv:2402.09723, 2024.

Rok Sosic and Jure Leskovec. Large scale network analytics with snap: Tutorial at the world
wide web 2015 conference. In Proceedings of the 24th International Conference on World
Wide Web, WWW °15 Companion, pp. 1537-1538, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450334730. doi: 10.1145/2740908.2744708. URL
https://doi.org/10.1145/2740908.2744708.

Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Di Jin, et al. A comprehensive survey on community detection with deep learning. IEEE
transactions on neural networks and learning systems, 35(4):4682-4702, 2022.

Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: A uniform language
model fine-tuning framework for attributed graph embedding. In Proceedings of NeurIPS 2023,
2023.

Yanchao Tan, Hang Lv, Xinyi Huang, Jiawei Zhang, Shiping Wang, and Carl Yang. Musegraph:
Graph-oriented instruction tuning of large language models for generic graph mining. arXiv
preprint arXiv:2403.04780, 2024.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491-500, 2024.

Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Grapharena: Evaluating and exploring
large language models on graph computation. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=Y 1r9yCMzeA.

Alexander K. Taylor, Anthony Cuturrufo, Vishal Yathish, Mingyu Derek Ma, and Wei Wang. Are
large-language models graph algorithmic reasoners?, 2024. arXiv:2410.22597v1.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36:30840-30861, 2023.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming Gao, and Julian McAuley. Instructgraph:
Boosting large language models via graph-centric instruction tuning and preference alignment.
arXiv preprint arXiv:2402.08785, 2024a.

Yu Wang, Ryan A Rossi, Namyong Park, Huiyuan Chen, Nesreen K Ahmed, Puja Trivedi, Franck
Dernoncourt, Danai Koutra, and Tyler Derr. Large generative graph models. arXiv preprint
arXiv:2406.05109, 2024b.

14

https://doi.org/10.1145/2740908.2744708
https://openreview.net/forum?id=Y1r9yCMzeA

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1-37, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

Lianghao Xia, Ben Kao, and Chao Huang. Opengraph: Towards open graph foundation models.
arXiv preprint arXiv:2403.01121, 2024.

Yuhao Xu, Xingi Liu, Keyu Duan, Yi Fang, Yu-Neng Chuang, Daochen Zha, and Qiaoyu
Tan. Graphfm: A comprehensive benchmark for graph foundation model. arXiv preprint
arXiv:2406.08310, 2024.

Christos Xypolopoulos, Guokan Shang, Xiao Fei, Giannis Nikolentzos, Hadi Abdine, Iakovos Evdai-
mon, Michail Chatzianastasis, Giorgos Stamou, and Michalis Vazirgiannis. Graph linearization
methods for reasoning on graphs with large language models. arXiv preprint arXiv:2410.19494,
2024.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Bench-
marking and rethinking. Advances in Neural Information Processing Systems, 36:17238—17264,
2023.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Qifan Zhang, Xiaobin Hong, Jianheng Tang, Nuo Chen, Yuhan Li, Wenzhong Li, Jing Tang, and Jia
Li. Geoder: Improving large language model for generalized graph reasoning. In Proceedings
of the 34th ACM International Conference on Information and Knowledge Management, CIKM
’25, pp. 41494159, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
9798400720406. doi: 10.1145/3746252.3761066. URL https://doi.org/10.1145/3746252.3761066.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and Yulia
Tsvetkov. Can llm graph reasoning generalize beyond pattern memorization? In Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 2289-2305, 2024a.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can
large language models solve spatial-temporal problems on dynamic graphs? In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °24). ACM,
2024b. doi: 10.1145/3637528.3671709.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

15

https://doi.org/10.1145/3746252.3761066

Under review as a conference paper at ICLR 2026

Table of Contents for Appendix

A.Experimental Details
AL LLM VEISIONS ...t tttt ettt ettt e e e e e e

A.2 Parameter and Random Baseline Settingscooiiiiiii...

A3 Graph Tasks
A.3.1 Rationale for Selection of Taskscoiiiiiiiiiiiii ..

A4 Graph TYPeS ..ottt
A.4.1 Rationale for Generator Selectiono ...

AS Prompt Format e

A.6 Serialization Format

AT Data EXampleso e

B. Benchmark Statistics
B.1 Basic Statistics of GRAPHOMNI ..ottt

B.2 Token Statistics Of GRAPHOMNI ...ttt

C. Extended Discussion and Ablation Study of GRAPHOMNI
C.1 Study on Larger Graph (Beyond 30 Nodes)............coviiiiiiiiiena...

C.2 Study on Real-World Graphs: Representative Check

C.3 Considerations on Real-World Graphs vs. Synthetic Graphs

C.4 Exploration on NP-Hard Tasks i,

C.5 Scaling vs. Reasoning: Disentangling Their Effects on Graph Reasoning

C.6 Rationale for Binary Metric over Partial Score

D. RL-based Prompt Search Inspired by GRAPHOMNIccouuun.
D.1 Background and Serialization Processooiiiiiiiiiiiiiie...

D.2 Details for RL-Opt Settingot

E. Comprehensive Experimental Results
E.1 Fine-grained Results Across Dimensionocoiiiiiiiina....

E.2 Performance Heatmaps across Tasksc.oiiiiiiiiiiniineennnnn.
E.2.1 Heatmaps for BFS ordero,

E.2.2 Heatmaps for Connectivity ..ot

E.2.3 Heatmaps for Cycle detection,

E.2.4 Heatmaps for Diameter calculationooiiiiat.

E.2.5 Heatmaps for Shortest path i i

E.2.6 Heatmaps for Triangle countingo,

E.3 Graph Type Sensitivity Analysisciiiiiiiiiiiiiiiiin...

E.4 Error Analysis e

E.5 Input/Output Examplesot

E.6 More Findings from Evaluation Results,

E.7 Analysis on Efficiency via Number of Output Tokens

F. Detailed Related Works i
F.1 LLM Applications on Graph Datao ...

F.2 Benchmarks on LLM Application to Graph Data

G. Limitations and Future Directions of GRAPHOMNI
H. Additional Ablation Studies
H.1 Performance v.s. Time Complexity of Tasks

H.2 Scaling Beyond SONOeSuiiiiiii e

H.3 Robustness Check under Prompt Noise (Perturbation)

16

17
17
17
18
18
19
20
21
21
23
26
26
28
28
28
29
30
30
31
33
33
33
34
37
37

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 LLM VERSIONS

Table 5 provides an overview of the diverse suite of large language models (LLMs) evaluated in our
study. Open-source models are hyperlinked to their respective documentation, while closed-source
models are identified by their version numbers. Note that we only uniformly sample 25% of data
when evaluating Qwen-3 due to the limited time after its release, so its result will be only included in
the model-wise statistics, i.e. Table 3 for refernece.

Table 5: Overview of evaluated LLMs. Open-source models are linked, while closed-source models
list their version.

Model Model Link/Version
Llama-3 Meta-Llama-3-8B (Link)
Llama-3.1 Llama-3.1-8B (Link)
Mistral Mistral-7B-v0.3 (Link)
Phi-4 Phi-4-14B (Link)

Qwen-2.5 (7B)
Qwen-2.5 (72B)

Qwen-2.5-7B-Instruct (Link)
Qwen-2.5-72B-Instruct (Link)

Qwen-3 (8B) Qwen-3-8B (Link)

Claude-3.5 claude-3-5-sonnet-20241022
Gemini-2.0 gemini-2.0-flash-001 (Version 1)
GPT-40 gpt-40-2024-08-06
GPT-40-mini gpt-40-mini-2024-07-18
o4-mini 04-mini-2025-04-16

A.2 PARAMETER AND RANDOM BASELINE SETTINGS

Parameter setting. We have studied various methods of representing graphs as text based on a
diverse set of basic graph problems. This appendix details the parameter setting and the design of
the graph input text. For the parameter setting, the temperature is set to 0.7, following the parameter
selection in Wang et al. (2023). The nucleus sampling (top-p) is set to 0.9 for open-source models,
while for closed-source models, the default top-p value is used.

Random Baselines setting. For Cycle detection, the random baseline simply selects an answer
from {True, False}—yielding an expected accuracy of 50%. Since the GT obtained through the
design function has a high proportion of True labels, we iterate through all queries, assuming the
given answer is True. We then use GT for evaluation, leading to the final baseline based on this
assumption. For tasks that require generating numerical outputs (e.g., Diameter calculation
and Triangle counting), the random baseline corresponds to randomly choosing one of the valid
numerical solutions derived from the graph’s structure. For the Diameter calculation task, the
random baseline is determined based on the number of nodes in the graph for each query. Specifically,
we sample a random integer from the range [1, N], where NV is the number of nodes in the graph, and
compare it with the ground truth to compute the baseline performance. For the Triangle counting
task, the random baseline is derived from the estimated upper bound on the number of triangles in the
graph. We compute the maximum possible number of triangles based on the number of nodes and the
task difficulty level, take the smaller value between these estimates, and sample a random integer
from the range [1, M], where M is the determined upper bound. The sampled value is then compared
against the ground truth to obtain the random baseline performance. In contrast, for tasks that require
generating sequences (e.g., BFS order), the number of possible combinations is combinatorially
large, so a random baseline would yield an accuracy that is approximately 0%.

17

https://www.llama.com/llama-downloads/
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/microsoft/phi-4
https://huggingface.co/Qwen/Qwen-2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen-2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen-3-8B

Under review as a conference paper at ICLR 2026

A.3 GRAPH TASKS

We conducted a comprehensive study on a diverse set of fundamental graph problems, including
BFS order, Cycle detection, Connectivity, Diameter calculation, Shortest path, and
Triangle counting. The input text for each task is provided below, where the italicized variables X,

Y denote generic node numbers corresponding to the specific problem under consideration.

Graph Tasks

* BFS-ORDER: Give the bfs traversal order starting from node X.
* CYCLE: Is there a cycle in this graph?

* CONNECTIVITY: Is there a path between node X and node Y?

* DIAMETER: What is the diameter of this graph?

* SHORTEST PATH: Give the shortest path from node X to node Y.
* TRIANGLE: How many triangles are in this graph?

A.3.1 RATIONALE FOR SELECTION OF TASKS

The six core tasks in GRAPHOMNI are deliberately selected to span qualitatively different reasoning
capacities. Their difficulty increases as the model must move from local checks to global traversals,
maintain more intermediate states in working memory, or perform exhaustive combinatorial enu-
meration. Beyond reasoning capacities, variation also arises from how well LLMs internalize task
definitions and from the complexity of output formats. Together, these factors explain the accuracy
gaps observed in Table 3 and highlight why the chosen tasks form a balanced and challenging suite.

Aspect 1: Reasoning capacities required. These tasks are grouped according to the type and depth
of reasoning they demand, ranging from simple global checks to multi-layered traversals and full
combinatorial enumeration.

Here follows a detailed elaboration on these three aspects.

1. Reachability verification (Connectivity, Cycle detection). These tasks require a global

traversal but only a simple decision condition, such as whether the graph is connected or
whether a cycle is present. Most errors stem from serialization misunderstandings (e.g.,
assuming a missing edge exists, in Appendix E.4.3). Once the format is parsed correctly,
accuracy is high.

. Ordered-path reasoning (BFS order, Shortest path, Diameter calculation).

These tasks demand that the model keep a frontier or distance map and then output or
compare those ordered distances. For BFS order, the model must list nodes level-by-level.
In the error case in Appendix E.4.7, failures occur when it forgets whether two previously
visited nodes are connected. Shortest path and Diameter calculation add a final
aggregation step: the former selects the minimum path, the latter the maximum among
all shortest paths. The common mistakes are also mostly about losing track of some vital
information while exploring the graph. Like the one in Appendix E.4.2 for Diameter
calculation, the model forgets two important edges, so the path length is wrong. Accuracy
here for those three tasks is lower than the first type of tasks because the model must track
ordering information across multiple expansion layers.

. Combinatorial enumeration (Triangle counting).

Triangle counting is the most challenging: the model must evaluate every three-node
subset and make sure each sub-traverse is correct. Even given correct execution of the enu-
meration, the counting should be accurate to produce the correct final result. Appendix E.4.6
and E.4.8 document the dominant errors on enumeration over each possible triangle in the
graph (like missing an edge or wrongly assuming one). We also spotted cases that fail on
the counting at the end, too. In sum, performance is strongest when only reachability is
tested, drops when ordered path reasoning is required, and falls sharply when complete
combinatorial enumeration comes into play.

Aspect 2: Task understanding and definition knowledge. LLMs sometimes rely on heuristics rather
than precise textbook definitions, particularly for less common tasks. For example, some models

18

Under review as a conference paper at ICLR 2026

confuse diameter with the longest simple path, producing inflated results (Appendix E.4.1). Others
apply shortcuts such as “triangles = n/3” (Appendix E.4.5), ignoring the need for all three edges to
be present. Such misinterpretations highlight that accuracy depends not only on raw reasoning ability
but also on task comprehension. Our coverage of tasks enable the evaluation on these knowledge of
each model and it does reflect in the results as the error cases mentioned.

Aspect 3: Output format. The output formats of the tasks chosen are also very diverse. Some tasks
here need only a short answer, i.e., “Yes/No” for Connectivity or a single number for Triangle
counting, so there is little room for formatting errors. Meanwhile, BFS order is different: the model
must print a long, strictly level-by-level list of node IDs, and one extra or missing node makes the
whole response wrong. The coverage of different output formats brings challenges to the models.

In summary, these systematic differences validate that the GRAPHOMNI task suite probes diverse
reasoning skills over graphs and exposes where current LLMs struggle most.

A.4 GRAPH TYPES

A primary distinguishing aspect of our benchmark is the inclusion of multiple graph families, each
possessing unique structural properties. All 7 types of graph are highlight in bold:

1. Erdds—-Rényi (ER) Graphs are randomly sampled from the space of all possible graphs with
n vertices, making them well-suited for capturing a wide range of topological and connectivity
properties within a fixed number of vertices.

To enhance the diversity of random graphs, we consider two sampling methods: m-edge sampling
and probability-based sampling, referred to as Erdos—Rényi M-Edges (ERM) (Erd6s & Rényi,
1960) and Erdos—Rényi Probability (ERP) (Gilbert, 1959) respectively.

* ERM: Generates graphs with n vertices and a fixed number of edges m, where m is ran-

domly chosen between 1 and "("271)

* ERP: Constructs graphs with n vertices but an unfixed number of edges, where the edge
probability is randomly sampled as a floating-point value between 0 and 1.

, ensuring that all possible edge counts are considered.

Additionally, we extend these models to bipartite settings:

* Bipartite Erdos—Rényi M-Edges (BERM) and Bipartite Erdos—Rényi Probability
(BERP) graphs (Latapy et al., 2008) are generated using the ERM and ERP sampling
strategies but constrained to bipartite structures.

* These bipartite graphs introduce additional variations in topology and connectivity that
standard ERM and ERP graphs, which are inherently undirected, may not capture.

2. Barabasi-Albert Graphs (BAG) (Albert & Barabasi, 1999) exhibit a power-law degree distri-
bution, where a small number of nodes (hubs) have significantly higher degrees, while most nodes
have relatively few connections. Such structures frequently appear in real-world networks, including
social and biological systems.

While ER graphs, being randomly sampled, may occasionally exhibit power-law degree distributions,
BAGs explicitly model this phenomenon due to their practical prevalence.

* BAGs are constructed by starting with a complete graph of mg vertices and incrementally
adding nodes.

* Each new node forms m connections, where m is proportional to the degrees of existing
nodes (preferential attachment).

* In our dataset, my is randomly sampled with an upper bound of %, and m is set to mg + 1.

Although BAGs generally capture power-law degree distributions, they do not always represent
tree-like structures such as citation networks or hierarchical systems. To address this, we introduce
Barabasi—Albert Forests (BAF) (Albert & Barabasi, 1999), which follow the same generation
process as BAGs but enforce an acyclic structure, ensuring that the result is a forest (a set of trees)
rather than a single connected graph.

19

Under review as a conference paper at ICLR 2026

3. Scale-Free (SF) Graphs (Aiello et al., 2000) Another class of power-law networks that BAGs
may not fully capture is general scale-free (SF) networks. While all BAGs are SF, not all SF graphs
are BA.

* BAGs typically consist of a single connected component, whereas SF graphs can contain
multiple disconnected components.

* To represent SF graphs more comprehensively, we introduce a distinct SF graph generation
process, different from BAGs.

Unlike BAGs, which are constructed through incremental growth and preferential attachment, SF
graphs are generated using a degree-weighted random connection strategy:

e All vertices are created at once.

» Edges are formed probabilistically, where the probability of a connection is proportional to
node degrees.

These fundamental differences in growth dynamics and edge formation result in SF graphs and BAGs
capturing distinct topological properties. By including both, we enhance the diversity of our dataset.

These families challenge LLMs to adapt their reasoning across numerous topological extremes,
from sparse bipartite graphs to highly connected ones. Although future expansions may include
small-world graphs or others, this current selection already covers a rich array of structural profiles as
elaborated in the next section.

A.4.1 RATIONALE FOR GENERATOR SELECTION

The seven generators in GRAPHOMNTI are deliberately selected to provide the most comprehensive
structural coverage possible within the 5-30 node range. Each generator encodes a distinct mo-
tif/structure observed in real-world networks, i.e. random connectivity, scale-free growth, bipartite
affiliation, hierarchical trees or other tendencies, ensuring that the benchmark spans all major regimes
of graph organization. Even at this scale, the underlying generative biases remain evident and produce
meaningful differences in task difficulty and model behavior. By relying on controlled synthetic
generators, GRAPHOMNT achieves balanced representation across families while isolating structural
effects without the confounding noise of empirical data.

To be specific, the selected generators cover a wide range of canonical structures:

1. Erdos-Rényi M-Edges (ERM) & Probability (ERP). Serve as canonical baselines for
random connectivity, yielding binomial/Poisson degree distributions used extensively in the
study of biological and technological networks.

2. Bipartite ERM (BERM) & Bipartite ERP (BERP). Capture two-mode affiliation struc-
tures, such as author—paper and user—item systems, which exhibit realistic clustering and
degree properties.

3. Barabasi—Albert Graphs (BAG). Model scale-free networks with hubs emerging via
preferential attachment, mirroring the structure of the Internet, citation graphs, and social
networks.

4. Barabasi—-Albert Forests (BAF). A specialization of the BA process that produces acyclic
scale-free trees, modeling hierarchical taxonomies such as phylogenies and organizational
charts.

5. Scale-Free (SF) Graphs. Configuration-style models generate prescribed power-law de-
gree sequences, often producing disconnected components akin to regional transport or
communication subnetworks.

To further validate that these generators produce graphs with statistically distinct and meaningful
properties, we conduct two empirical studies. First, we sample 1,000 graphs of 30 nodes each from
the same Barabasi—Albert (BAG) and Erdés—Rényi (ERP) generators used in GRAPHOMNI. As
summarized in Table 6, the two models exhibit clearly different structural characteristics: BA graphs
form hubs with high maximum degree and short paths, while ER graphs display uniform randomness

20

Under review as a conference paper at ICLR 2026

with lower clustering and longer paths. Second, as shown in Table 7 in Appendix B.1, even when
node counts are fixed, the edge counts (and thus average degrees) vary substantially across generators,
providing strong statistical evidence that the structural characteristics of these graph families are
fundamentally distinct. Together, these results confirm that the design of GRAPHOMNI captures the
essential structural diversity needed to probe LLM reasoning.

Table 6: Comparison of structural statistics for 1,000 sampled graphs with 30 nodes. BAG graphs
exhibit hub formation with high maximum degree and short paths, while ERP graphs display more
uniform randomness.

Type Max Degree Clustering Coefficient Avg Path Length
Barabdsi—-Albert (BAG) 19.28 +2.15 0.397 £+ 0.042 1.76 £ 0.014
Erdés—-Rényi (ERP) 10.43 £ 1.35 0.199 £ 0.044 2.07 £ 0.099

A.5 PROMPT SCHEMES

The process of converting a graph into a textual representation is referred to as the serialization
process, which involves two primary considerations in our study: the choice of serialization format
and the selection of the prompting method. we employ a total of nine distinct prompting methods:
Algorithm, CoT, k-shot, Instruct, @-Shot(i.e. plain), 8-CoT, @-Instruct, @-Algorithm, and
LTM. As outlined in the main text, the pairs Algorithm and @-Algorithm, CoT and @-CoT, k-shot
and 0-Shot, and Instruct and @-Instruct share a common structural format, with the first element
in each pair incorporating additional 5 examples. A detailed description of the design for each of
these prompting methods is provided below. In particular, for the algorithmic description components
of Algorithm and 0-Algorithm, we primarily draw upon established methodologies in Wang et al.
(2023) and illustrate them with an example derived from the BFS-order task.

Prompt format

* 0-COT: Let’s think step by step:

o LTM: Let’s break down this problem:

* (0-INSTRUCT: Let’s construct a graph with the nodes and edges first:

* 0-ALGORITHM: To determine the BFS (Breadth-First Search) traversal order, you need to follow these
steps: 1. Initialize: Start by choosing a starting node and enqueue it into a queue. 2. Mark visited: Mark
the starting node as visited to avoid reprocessing. 3. Traverse: While the queue is not empty: Dequeue
anode and add it to the traversal order. For each unvisited neighboring node of the dequeued node,
enqueue it and mark it as visited. 4.Continue the process until all reachable nodes are visited.

A.6 SERIALIZATION FORMATS

This study utilizes seven distinct yet commonly used graph representation formats: Adjacency
Matrix, Adjacency List, Adjacency Set, Edge Set, Edge List, Graph Modeling Language
(GMoL), and Graph Markup Language (GMaL). For the same graph, even when the underlying
information remains consistent, the representation varies across different serialization formats in
textual form. The following section presents specific examples of the same graph depicted in various
serialization formats.

Adjacency Set

{0: {1}, 1: {0, 2}, 2: {13}, 3: {4}, 4: {3, 5}, 5: {4}}

{, 1, 4, 5, (0, 2, 3, 9}

21

Under review as a conference paper at ICLR 2026

A wWw =
g~ N =

Adjacency Matrix

[[01000e0]
[10100e0]
01000 0]
(00001 0]
[000101]
00001 0]]

{o: [11, 1: [e, 21, 2: [1]1, 3: [41, 4: [3, 51, 5: [4]}

<?xml version='1.0' encoding='utf-8'?>
<GMaL xmlns="http://GMaL.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="http://GMaL.graphdrawing.org/xmlns
http://GMalL.graphdrawing.org/xmlns/1.0/GMaL.xsd">
<graph edgedefault="undirected">
<node id="0" />
<node id="1" />
<node id="2" />
<node id="3" />
<node id="4" />
<node id="5" />
<edge source="Q" target="1" />
<edge source="1" target="2" />
<edge source="3" target="4" />
<edge source="4" target="5" />
</graph>
</GMaL>

22

Under review as a conference paper at ICLR 2026

graph [
node [
id 0
label "0"
1
node [
id 1
label "1"
1
node [
id 2
label "2"
1
node [
id 3
label "3"
1
node [
id 4
label "4"
1
node [
id 5
label "5"
1
edge [
source @
target 1
1
edge [
source 1
target 2
1
edge [
source 3
target 4
1
edge [
source 4
target 5
1
]

A.7 DATA EXAMPLES

In order to better show the input example, we select the BFS order task in the serialization format
is the Adjacency List of the complete prompt example, due to space reasons, the middle of the
excessively long part we will use “...”. Each of the following examples is randomly selected from the
source data.

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 4. And the
graph representation of: Adjacency Listis {0: [1], 1: [0, 2, 3, 5, 6], 2: [1, 4], 3: [1], 4: [2], 5: [1, 7], 6:
[11,7: 5, 81, 8: [7]}

Q: Give the bfs traversal order starting from node 4.

A:

23

Under review as a conference paper at ICLR 2026

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 7. And the
graph representation of: Adjacency Listis {1: [0, 2], O0: [1, 3, 4, 5, 6], 2: [1], 3: [0], 4: [0, 8], 5: [0, 71,
6: [0], 7: [5], 8: [4]}

Q: Give the bfs traversal order starting from node 7.

A:

Let’s think step by step:

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 6. And the
graph representation of: Adjacency Listis {1: [0, 2], 0: [1, 3,4, 7, 8], 2: [1], 3: [0], 4: [0, 5], 5: [4, 6],
6: [5], 7: [0], 8: [0]}

Q: Give the bfs traversal order starting from node 6.

A:

Let’s construct a graph with the nodes and edges first:

0-Algorithm

To determine the BFS (Breadth-First Search) traversal order, you need to follow these steps:

1. Initialize: Start by choosing a starting node and enqueue it into a queue.

2. Mark visited: Mark the starting node as visited to avoid reprocessing.

3. Traverse: While the queue is not empty: Dequeue a node and add it to the traversal order. For each
unvisited neighboring node of the dequeued node, enqueue it and mark it as visited.

4.Continue the process until all reachable nodes are visited.

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 7. And the
graph representation of: Adjacency Listis {0: [7,3,2,6,1,8,5],1: [4,6,3,5,0,2],2: [5,0,1, 7], 3:
[7,0,8,1,6,4],4:[1,8,5,7,3,6],5:[2,6,7,8,4,1,0],6: [1,8,5,3,0,4], 7: [0, 3, 5, 4, 8, 2], 8: [4,
6,5,3,7,0]}

Q: Give the bfs traversal order starting from node 7.

A:

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 4. And the
graph representation of: Adjacency Listis {0: [4, 5, 7], 1: [2, 3,4, 5, 6], 2: [1, 3,4, 6], 3: [1,2,5, 6], 4:
[0,1,2,5,6],5:[0, 1,3,4,6,7], 6: [1, 2, 3,4, 5], 7: [0, 5]}

Q: Give the bfs traversal order starting from node 4.

A:

Let’s break down this problem:

24

Under review as a conference paper at ICLR 2026

To determine the BFS (Breadth-First Search) traversal order, you need to follow these steps: 1. Initialize:
Start by choosing a starting node and enqueue it into a queue. 2. Mark visited: Mark the starting node
as visited to avoid reprocessing. 3. Traverse: While the queue is not empty: Dequeue a node and add it
to the traversal order. For each unvisited neighboring node of the dequeued node, enqueue it and mark
it as visited. 4.Continue the process until all reachable nodes are visited.

Given a graph, your task is to determine the BFS traversal order of this graph starting at node 7. And
the graph representation of Adjacency Listis : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [O,
71, 5: [2], 6: [0], 7: [4], 8: [1]}

Q: Give the BFS traversal order starting from node 7.

A: Dequeue node 7. The neighbors are [4], so enqueue node 4. Dequeue node 4. The neighbors of 4 are
[7, 0]. Node 7 is visited, so enqueue node 0. Dequeue node 0. The neighbors of 0 are [1, 2, 3, 6, 4].
Node 4 is already visited, so enqueue node 1. 2, 3, and 6. Dequeue node 1. The neighbors of 1 are [0, 2,
8]. Nodes 0 and 2 are visited, so enqueue node 8. Dequeuenode 2. The neighbors of 2 are [0, 5]. Node
0 is visited, so enqueue node 5. Dequeue node 3. The neighbors of 3 are [0]. Node 0 is visited, so no
new nodes. Dequeue node 6. The neighbors of 6 are [0]. Node O is visited, so no new nodes. Dequeue
node 8. The neighbors of § are [1]. Node 1 is visited, so no new nodes. Dequeue node 5. The neighbors
of 5 are [2]. Node 2 is visited, so no new nodes. All its neighbors have been visited, so the traversal
ends. The BFS traversal order starting from node 71is 7,4, 0, 1, 2, 3, 6, 8, 5.

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 3. And the
graph representation of: Adjacency Listis {0: [3,7,8, 5,6, 1, 4], 1: [4, 10,0, 3,9, 5, 2], 2: [10, 9, 4, 8,
7,3,6,1],3:[0,5,1,4,10,7,8,2],4: [2,9, 1, 10, 6, 3,0], 5: [9, 3,0, 6,7, 8, 1, 10], 6: [10,0, 5,7, 4, 9,
2],7: 8, 10,0, 5,6,2,3],8:[9,7,0,5,2, 3, 10], 9: [8, 10, 2, 5,4, 1, 6], 10: [9,6,7,2,4,1,3,8,5]} Q
Q: Give the bfs traversal order starting from node 3.

A:

Given a graph, your task is to determine the BFS traversal order of this graph starting at node 7. And
the graph representation of Adjacency Listis : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [O,
71, 5: [2], 6: [O], 7: [4], 8: [1]}

Q: Give the BFS traversal order starting from node 7.

A: The BFS traversal starts at node 7. In BES, we visit each node level by level, starting from the node
we begin at (node 7). Here’s the step-by-step breakdown: Start at node 7. The first node in the BFS
traversal is 7. Visit the neighbors of 7. The neighbors of node 7 are just node 4 (since 7 4 is an edge).
So, we enqueue node 4. Visit the neighbors of node 4. The neighbors of node 4 are node 0 (4 0), so
we enqueue node 0. Visit the neighbors of node 0. The neighbors of node 0 are nodes 1, 2, 3, 4 and 6.
Since node 4 has already been visited, we enqueue nodes 1, 2, 3, and 6 in that order. Visit the neighbors
of nodes 1, 2, 3, 6. From this point, the BES continues by visiting any remaining unvisited neighbors of
these nodes in the same manner, reaching node 8 last. Thus, the BFS traversal order starting from node
7is7,4,0,1,2,3,6,8,5. The BFS traversal order starting from node 7 is 7,4,0,1,2,3,6,8,5.

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 28. And
the graph representation of: Adjacency List is {0: [1, 2, 3, 4, 31], 1: [0], 2: [0, 17, 22, 33], 3: [0, 5, 7, 8,
9,10, 13, 15, 16, 19, 22, 23, 24, 26, 27, 28, 31], 4: [0, 6, 8, 10, 14, 15, 24,27, 30], 5: [3, 8], 6: [4], 7:
[3,11, 12, 25], 8: [3, 4, 5, 10, 29], 9: [3], 10: [3, 4, 8, 33], 11: [7, 18, 20], 12: [7, 21], 13: [3], 14: [4],
15: [3, 4, 28, 33], 16: [3], 17: [2, 19, 24], 18: [11, 32], 19: [3, 17], 20: [11], 21: [12], 22: [2, 3], 23: [3],
24: [3, 4, 17], 25: [7], 26: [3], 27: [3, 4, 33], 28: [3, 15], 29: [8], 30: [4], 31: [0, 3], 32: [18], 33: [2, 10,
15, 271}

Q: Give the bfs traversal order starting from node 28.

A:

25

Under review as a conference paper at ICLR 2026

Given a graph, your task is to determine the BFS traversal order of this graph starting at node 7. And
the graph representation of Adjacency Listis : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [O,
71, 5: [2], 6: [0], 7: [4], 8: [1]}

Q: Give the BFS traversal order starting from node 7.

A: The BFS traversal order starting from node 7 is 7,4,0,1,2,3,6,8,5

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 2. And the
graph representation of: Adjacency Listis 0: [6], 1: [6], 2: [6], 3: [6], 4: [6], 5: [6], 6: [0, 1,2, 3,4, 5]
Q: Give the bfs traversal order starting from node 2.

A:

Given a graph, your task is to determine the BES traversal order of this graph starting at node 7. And
the graph representation of Adjacency Listis : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [O,
71, 5: [2], 6: [O], 7: [4], 8: [1]}

Let’s construct a graph with the nodes and edges first.

Q: Give the BFS traversal order starting from node 7.

A: The BFS traversal starts at node 7. In BFS, we visit each node level by level, starting from the node
we begin at (node 7). Here’s the step-by-step breakdown: Start at node 7. The first node in the BFS
traversal is 7. Visit the neighbors of 7. The neighbors of node 7 are just node 4 (since 7 4 is an edge).
So, we enqueue node 4. Visit the neighbors of node 4. The neighbors of node 4 are node 0 (4 0), so
we enqueue node 0. Visit the neighbors of node 0. The neighbors of node 0 are nodes 1, 2, 3, 4 and 6.
Since node 4 has already been visited, we enqueue nodes 1, 2, 3, and 6 in that order. Visit the neighbors
of nodes 1, 2, 3, 6. From this point, the BFS continues by visiting any remaining unvisited neighbors of
these nodes in the same manner, reaching node 8 last. Thus, the BFS traversal order starting from node
7is7,4,0,1,2,3,6,8,5. The BFS traversal order starting from node 7 is 7,4,0,1,2,3,6,8,5.

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 10. And
the graph representation of: Adjacency Listis {0: [4, 14, 1, 11, 5, 13, 2, 12], 1: [12, 4, 10, 2, 0, 3, 14,
11],2: [8,9,1, 13,11, 12, 15, 5, 0], 3: [10, 1, 11, 7, 8], 4: [0, 1, 15, 11, 6, 10], 5: [14, 6, 11, 0, 2, 7], 6:
[5,4, 11, 10, 14], 7: [14, 12,9, 13, 3, 8, 5], 8: [2, 15, 14, 12, 10, 3, 7, 13],9: [2, 7, 15, 12, 14, 13], 10:
[3,1,8,15,4,11,6], 11: [14,2,0, 12,4, 3,5, 6, 10, 1, 13], 12: [1, 13,7, 2, 14, 11, 9, 8, 0], 13: [12, 2,
7,9,0,11,8],14: [7,0, 11,5, 12, 8,9, 1, 6], 15: [4, 9, 8, 2, 10]}

Let’s construct a graph with the nodes and edges first.

Q: Give the bfs traversal order starting from node 10.

A:

B BENCHMARK STATISTICS

This section presents the statistical characteristics of GRAPHOMNI, focusing on the graph families
and token usage. We first detail the statistical properties of graph families used in our benchmark in
Section B.1, followed by an overview of token consumption associated with various prompt schemes
and serialization formats in Section B.2.

B.1 BASIC STATISTICS OF GRAPHOMNI

Table 7 offers a detailed statistical overview of the diverse graph families employed in GRAPHOMNI.
The table reports the average number of nodes and edges for each graph family across tasks such
as BFS order, Connectivity, Cycle detection, Diameter calculation, Shortest path, and
Triangle counting. These statistics are presented for three difficulty levels: easy, medium, and
hard, which reveal the inherent structural complexity differences introduced by the various synthetic
graph generators. The selection of graph families is guided by their unique topological properties
so that each task is evaluated on graphs that best reflect the challenges encountered in practical
applications. In addition, some graph families are omitted from certain tasks because of their intrinsic
structural characteristics; for instance, graphs produced by the BAF and all bipartite graphs are
excluded from triangle detection when they are structurally incapable of forming triangles.

26

Under review as a conference paper at ICLR 2026

Table 7: Statistics of Different Graph Types

Task Graph Type Easy Medium Hard
#Avg Nodes #Avg Edges #Avg Nodes #Avg Edges #Avg Nodes #Avg Edges
BFS-order BAF 8.11 5.78 15.14 11.06 27.86 20.14
BAG 8.19 11.36 13.92 23.28 26.55 82.14
Bipartite-ERM 8.03 6.50 14.44 19.28 27.23 59.36
Bipartite-ERP 7.94 5.44 14.42 16.72 28.86 57.82
ERM 8.22 16.06 13.72 51.92 25.32 135.09
ERP 8.03 13.14 14.33 50.17 24.59 121.77
SF 8.11 9.00 14.81 19.00 27.73 38.00
Connectivity ~BAF 8.14 6.21 13.83 10.67 31.17 27.00
Bipartite-ERM 8.07 7.43 15.33 23.00 30.83 63.00
Bipartite-ERP 8.14 7.57 13.67 20.00 28.17 59.33
ERM 8.07 9.71 13.83 36.67 27.50 102.17
ERP 8.11 10.56 17.83 66.17 26.33 98.00
Cycle BAG 7.93 9.90 14.12 25.10 27.82 59.04
Bipartite-ERM 8.12 7.60 15.62 20.38 28.54 57.96
Bipartite-ERP 8.29 7.12 15.17 17.55 30.25 44.89
ERM 8.19 11.43 15.10 36.43 26.46 58.21
ERP 8.07 9.71 15.40 26.36 26.07 71.18
SF 8.05 8.07 12.71 14.24 25.04 29.71
Diameter BAG 7.98 9.73 14.30 29.91 26.81 92.24
ERM 8.00 19.73 15.22 65.48 25.90 139.79
ERP 8.16 18.61 15.17 70.36 25.19 130.79
SF 7.95 9.14 15.41 19.91 28.48 39.10
Shortest-Path BAF 7.83 6.11 14.17 11.56 25.62 21.71
BAG 7.97 10.72 14.72 31.19 25.29 88.33
Bipartite-ERM 8.06 8.97 14.61 30.58 25.50 94.71
Bipartite-ERP 8.11 9.72 14.61 28.86 25.58 89.00
ERM 8.00 17.42 15.47 67.89 25.96 179.21
ERP 8.03 18.92 15.42 63.14 25.25 165.46
SF 8.03 9.42 15.50 20.03 25.54 35.21
Triangle BAG 8.16 13.12 14.09 25.48 27.72 55.65
ERM 8.06 17.44 13.39 30.81 28.80 62.60
ERP 7.94 16.05 14.16 31.11 27.22 55.28
SF 8.14 9.59 15.61 20.88 28.35 38.58

Note: Graph types are selectively excluded from certain tasks based on their structural properties: (1)
Connectivity excludes BAG as they are inherently connected by construction; (2) Diameter calculation task
excludes BAF and Bipartite-ER graphs due to potentially disconnected components leading to infinite distances;
(3) Triangle counting excludes BAF and Bipartite graphs as they are structurally incapable of forming triangles;
(4) Cycle detection excludes BAF as they are acyclic by definition.

27

Under review as a conference paper at ICLR 2026

B.2 TOKEN STATISTICS OF GRAPHOMNI

Figure 6 offers an overview of token consumption across different dimensions. We use GPT-4
tokenizer here. Token usage is impacted by the choice of prompt scheme and graph serialization
format, interactions between them can further influence the overall token count.

Token Usage by Prompt Scheme and Task Token Usage by Serialization Format and Task
3000 = Cydle
| == Shortest path 3000
= Bfsorder
2500 Brsorde _
i e 2500 .
: | |‘ | g 300
£ 2000 | . ;o
2 i S 2000 J
e I ”I I g : o
" 1500 [iy £ o
3 i g 1500 § o
= 1000 5 g
Z 1000
l 0-Algorithm .
§ i oo ertoT R
500 O-nstruct
0-Shot e
4, Algorithm «
2y <
o
X

(']
RPRCP D I ey
‘go(\x\‘ Wt c°\,;?£‘;o(\‘:\new“ PR oﬁ‘”“ I O
Prompt Scheme Serialization Format
(a) Token usage across different (b) Token usage across different se-(c) Token usage for prompt-
prompt schemes and tasks. rialization formats and tasks serialization format combinations.

Figure 6: Analysis of token usage patterns across different dimensions. (a) shows how token usage
varies across different prompt schemes for each task. (b) illustrates token consumption patterns for
different serialization formats across tasks. (c) provides a 3D surface visualization of the interaction
between prompt schemes and serialization formats regarding token usage. Error bars in (a) and (b)
represent the standard error of the mean.

C EXTENDED STUDY AND DISCUSSION OF GRAPHOMNI

C.1 STUDY ON LARGER GRAPH (BEYOND 30 NODES)

Our benchmark design centers on graphs with 5-30 nodes. While modest compared to real-world
networks, this range is both deliberate and effective. First, it aligns with the context length limits
of current LLMs and matches the scale used in nearly all recent graph reasoning benchmarks (see
Table 3), ensuring comparability. Also, the scale enables us to generate tens of thousands of diverse
queries per task, providing statistically robust performance estimates and clearly separating different
models apart, like open-source from closed-source models. In this sense, the 5-30 node regime is not
a limitation, but a well-calibrated testbed for probing the boundaries of LLM graph reasoning.

To further validate our considerations, we conduct additional experiments on graphs with 30-50
nodes. We sample 50 graphs evenly across all seven generators and evaluate four representative
models, yielding approximately 3k new test cases with varied prompt and serialization settings.
Results are reported in Table 8. As expected, larger graphs further stress performance, especially
on BFS order and Triangle counting. Nevertheless, the relative ranking and accuracy patterns
remain consistent with the 5-30 node Hard split, reinforcing the robustness of our findings.

Table 8: Preliminary results on 30-50 node graphs (EH = Extra Hard). Results on the 5-30 node Hard
split are shown in parentheses. Bold orange / Underlined blue / Light blue highlights indicate
best/second-best/third-best performance in its category.

Task Difficulty) Open-source Mod.els Closed-source Models i
Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (7B) Claude-3.5 o4-mini
BFS order EH 0.70+0.36(0.63) 0.27+0.23 (0.34) 2.55+1.08 (2.65) 1.19+0.52 (1.38) 16.07+2.48 (26.80) 35.39+12.61 (32.43)
Connectivity EH 80.33+£3.24(74.58) 84.11+3.26 (74.77) 51.82+8.23 (48.39) 85.01+3.06(81.19) | 97.92+1.18 (96.99) 91.48+7.80 (92.08)
Cycle EH 56.62+3.16(52.40) 52.62+2.32 (51.64) 49.38+8.09 (40.64) 61.38+2.61 (62.27) | 68.53+5.14 (78.22) 71.66+11.33 (93.06)
Diameter EH 15.39+3.87(18.63) 6.89+2.06(6.97) 16.44+2.89 (17.71) 11.67+2.31 (15.27) | 48.78+4.76 (56.70) 37.89+6.56 (34.61)
Shortest EH 15.56+6.76(23.03) 1.48+2.03 (12.21) 16.30+7.66 (26.60) 11.85+6.62 (28.31) | 57.04+4.46 (87.88) 58.08+4.52 (88.62)
Triangle EH 3.19+0.92(4.95) 2.41+0.65(2.55) 4.35+1.40 (4.38) 4.40+0.80 (4.45) | 12.31+0.82 (15.92) 8.28+4.35 (17.53)

28

Under review as a conference paper at ICLR 2026

C.2 STUDY ON REAL-WORLD GRAPHS: REPRESENTATIVE CHECK

To assess whether our synthetic design translates to real data, we run a focused representative check
on two widely used real-world graph suites from complementary domains: a social/interaction dataset
IMDB-MULTI (Morris et al., 2020) and a molecular graph dataset (ogbg-molhiv) (Hu et al., 2020).
We sample 20 graphs per difficulty per dataset (60 graphs per task in total and thus ~ 3.6k evaluated
samples across tasks with prompt/serialization variants) and test four representative open-source
models plus two closed-source models. Table 9 reports the experimental results.

Finding 1: Conclusions remain consistent. Across all six tasks and difficulty levels, accuracy
patterns on IMDB-MULTTI and ogbg-molhiv closely track the synthetic results: (i) reachability
(Connectivity, Cycle detection) is the easiest regime and exhibits high accuracy once serial-
ization is parsed; (ii) ordered-path tasks (BFS order, Shortest path, Diameter calculation)
remain substantially harder, with error modes dominated by lost ordering or forgotten edges; and
(iii) Triangle counting remains the most difficult due to exhaustive enumeration and arithmetic
reliability. The relative ranking of models is stable, and the gap structure between open- and closed-
source models mirrors the results from standard GRAPHOMNI. In short, the representative real-world
runs perfectly corroborate our synthetic-only conclusions rather than overturning them.

Finding 2: Real graphs often simplify certain tasks. Because many public real graphs are connected
and sparse within the selected ranges, some tasks become easier than in our synthetic distribution.
For example, connectivity saturates for strong models (near 100% on Easy/Medium in Table 9), and
cycle detection displays uniformly higher means than in matched synthetic settings. This is because
the uneven data distribution of real graphs means that nearly all graphs are connected and contain
at least one cycle. This ease does not invalidate the benchmark, but it shows that using real-world
graphs alone can under-stress the tasks that are critical to graph reasoning.

In sum, we include IMDB-MULTT and ogbg-molhiv as a representative check, which validates that
our conclusions persist on real graphs from two major application families (social interaction and
molecular science). However, consistent with both our evidence and prior community practice,
we retain synthetic graphs in GRAPHOMNTI as the default for comprehensive structural coverage,
fine-grained interpretability and control, and contamination-free evaluation.

Table 9: Benchmark results of LLMs across tasks (Mean+95% CI Margin) on real-world
graphs. Results on the standard setting (i.e. = GRAPHOMNI) are shown in parentheses.

Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best per-
formance in its category.

Task

Difficulty

Llama-3.1 (8B)

Open-source Models

Mistral (7B)

Phi-4 (14B)

Qwen-2.5 (7B)

Closed-source Models

Claude-3.5

04-mini

BFS order

45.63+5.22 (18.69)

12.14£2.11 (5.27)
2.9420.90 (0.63)

47.06£3.18 (13.75)
10.24£1.85 (3.36)
0.24+0.27 (0.34)

41.90£8.66 (33.03)
17.86+3.89 (12.49)
4.76£1.77 (2.65)

41.98+7.40 (21.46)
10.3242.49 (6.05)
0.95+0.76 (1.38)

97.14+0.91 (91.42)

76.98+2.79 (68.25)
41.35+3.76 (26.80)

96.46£1.37 (95.46)
86.89+3.94 (79.37)
44.65+9.89 (32.45)

Connectivity

94.21£1.47 (79.53)

88.73+2.37 (79.47)

89.44+2.01 (74.58)

93.57+1.89 (79.90)
88.8122.98 (80.60)
87.303.32 (74.77)

61.59+9.07 (56.29)
53.25+8.09 (54.38)
55.24+7.67 (48.39)

96.35+0.92 (88.10)
93.10+1.67 (87.23)
89.76+2.04 (81.19)

99.92+0.16 (98.38)

99.92+0.16 (99.11)
98.65+0.67 (96.99)

100.00£0.00 (98.23)
99.83+0.23 (98.72)
95.63+3.04 (92.02)

Cycle

56.75£2.62 (55.49)
54.05£2.46 (55.69)
51.03£2.21 (52.40)

51.43+1.56 (55.44)
49.92+1.18 (53.71)
49.84+1.31 (51.64)

51.03+6.82 (45.25)
48.17+5.83 (44.26)
44.68+5.27 (40.64)

59.3742.00 (62.19)
55.63£1.79 (62.07)
54.05£2.20 (58.88)

80.48+4.81 (82.56)

76.51+5.06 (80.80)
71.75+3.87 (80.10)

94.51+2.14 (97.97)
92.19+3.78 (97.75)
89.65+3.40 (95.61)

Diameter

25.48+4.20 (41.27)
15.48+3.51 (27.29)
8.97+3.00 (18.63)

20.95+4.18 (28.55)
8.81£2.24 (15.17)
6.19+£2.58 (6.97)

50.48+5.69 (42.81)
25.16+3.92 (28.49)
14.21%2.36 (17.71)

47.86+3.57 (45.08)

83.33+1.13 (83.71)

23.02+3.29 (27.31)

58.33+2.82 (71.22)

12.86+1.89 (15.27)

43.0242.52 (56.70)

97.30+0.90 (98.88)
84.37+3.89 (72.84)
64.12+7.27 (34.61)

Shortest

39.2145.87 (38.75)
30.16+4.57 (28.84)
22.06+3.73 (23.03)

28.65+4.69 (31.18)
21.83+3.61 (19.89)
14.05+2.51 (12.21)

43.80+8.80 (42.61)
34.44£7.92 (33.92)
30.16£6.43 (26.60)

50.08+9.17 (47.46)
37.14+7.44 (35.53)
29.68+5.65 (28.31)

98.49+1.29 (94.35)
95.71£2.09 (91.27)

92.14+1.80 (87.88)

98.59+1.44 (95.08)
98.39+1.72 (92.60)
95.79+2.91 (88.63)

Triangle

TZm|Zfo|Efon|tEm|EEm|EEm

11.1943.03 (14.97)
6.51£2.03 (8.56)
5.95£2.17 (4.95)

5.32£1.69 (11.87)
1.83+0.84 (5.86)
1.35£0.64 (2.55)

23.81+5.33 (12.88)
14.44+3.61 (7.54)
9.60+3.21 (4.38)

24.44+3.65 (18.56)
11.83+2.51 (9.18)

63.89+3.16 (43.41)

47.30£2.74 (24.00)

9.5242.40 (4.45)

34.84+2.80 (15.92)

81.30+4.10 (84.54)
82.20+3.86 (48.13)
65.29+8.75 (17.53)

29

Under review as a conference paper at ICLR 2026

C.3 CONSIDERATIONS ON REAL-WORLD GRAPHS VS. SYNTHETIC GRAPHS

In designing our benchmark, we considered several possible choices of evaluation substrate, including
both real-world and synthetic graphs. After careful consideration, we opted to primarily use synthetic
graphs, for the following methodological reasons:

1. Coverage and controllability. Our seven classic generators are selected to span the principal
structural motifs (random/Poisson, scale-free, bipartite, hierarchical, small-world), and
they support fine-grained parameter control (e.g., p in Erd6s—Rényi, attachment in BA)
(Chakrabarti & Faloutsos, 2006). This control enables balanced, modular ablations and
isolates causal factors of failure, which typical public real-graph suites do not provide.

2. Representativeness vs. noise in public repositories. Real-graph repositories such as SNAP
(Sosic & Leskovec, 2015) skew toward specific domains (social/web) with narrow size
and density bands. Also, many graphs are connected and share similar sparsity patterns.
This induces structural narrowness and domain bias, and it can reduce task hardness
(e.g., connectivity becomes trivial). Mixing such graphs into a general-purpose reasoning
benchmark, therefore, risks adding noise without broadening structural regimes.

3. Zero contamination. Fully synthetic construction guarantees no overlap with pretraining
corpora, avoiding inflated scores due to memorization or leakage (Hendrycks et al., 2021a).
Given rapidly evolving LLMs and opaque training mixtures, contamination-free evaluation
is essential for credible comparisons.

Meanwhile, synthetic-only evaluation is also standard in prior work. This design choice is not
unique to GRAPHOMNI. Several foundational studies adopt the same ““synthetic only” paradigm to
ensure interpretability and controlled analysis: GraphQA (Fatemi et al., 2024) and GraphlInstruct
(Luo et al., 2024b) both rely solely on synthetic graphs to probe LLM reasoning, while GraphWiz
(Chen et al., 2024a) demonstrates that synthetic graphs can even serve as effective fine-tuning
data. These precedents highlight that synthetic construction is widely accepted in the community
as the most principled way to study graph reasoning in LLMs. At the same time, we note that
the real-graph domains we choose IMDB-MULTI and ogbg-molhiv) align with recent works such
as LLM4Hypergraph (Feng et al., 2025), which employ citation networks and protein structures,
respectively. Thus, our real-graph ablation covers representative application families, while our
synthetic benchmark remains the default for comprehensive coverage and methodological clarity.

C.4 EXPLORATION ON NP-HARD TASKS

To complement our six canonical tasks, we further probe LLM performance on two classical NP-hard
graph problems: Hamiltonian cycle detection and Max-Cut. This evaluation serves as an ablation
rather than a core component of GRAPHOMNI, allowing us to test whether the conclusions from
tractable tasks extend to settings of higher computational complexity.

Experimental setup. We retain the three difficulty splits by node size: Easy (n € [0, 10]), Medium
(n € (10,20]), and Hard (n € (20,25]). Compared to the main benchmark, the Hard regime
uses slightly smaller graphs due to the exponential growth in search space. For Hamiltonian cy-
cle, structural imbalance makes several generators unsuitable (e.g., SF, Bipartite-ERM, BAF, and
Bipartite-ERP rarely admit cycles). We therefore restrict the task to ERM, ERP, and BAG, with
ground-truth labels balanced 50/50 between existence and non-existence of a Hamiltonian cycle.
For clarity, we also report Hamiltonian cycle results on the positive cases separately, since these are
strictly harder: a correct answer must not only assert existence but also return a complete and valid
tour (metric mentioned below). For Max-Cut, all seven graph families are included (SF, ERM, ERP,
BAG, BERP, BAF, and BERM). We sample 18 graphs per split for Hamiltonian cycle and 14 per split for
Max-Cut, yielding just over 6,000 queries across prompt and serialization variants.

Evaluation metrics. As with the canonical tasks, we apply strict binary scoring. For Hamiltonian
cycle, a prediction is marked correct only if: (i) the model explicitly affirms or denies the existence of
a cycle in line with the ground truth, and (ii) when the ground truth is True, the model additionally
outputs a concrete cycle, which we verify with a dedicated checker. Omitting an explicit decision or
producing a non-verifiable tour results in 0. For Max-Cut, we extract both the predicted maximum
cut size and the corresponding bipartition (from phrases such as “the maximum cut size is ...”). A

30

Under review as a conference paper at ICLR 2026

custom validation function checks whether the reported cut matches the ground truth. Full correctness
requires both size and partition to be correct, while partial matches or non-extractable answers are
scored 0.

Results and insights. As summarized in Table 10, performance patterns closely resemble those of the
six canonical tasks: open-source models hover near random, while closed-source reasoning models
achieve substantially higher, but still imperfect, scores. Thus, the core conclusions of GRAPHOMNI
generalize naturally to NP-hard settings. More interestingly, these results highlight how LLMs
perceive task difficulty differently from humans. Whereas human solvers experience a sharp jump in
difficulty between polynomial-time and NP-hard problems, current LLMs instead exhibit a nearly
uniform collapse in accuracy across NP-hard tasks. In other words, scaling to NP-hard does not
introduce a progressive “step up” in challenge for models as it does for humans. This suggests that
including NP-hard tasks may not meaningfully enrich the evaluation landscape, and reinforces our
focus on tractable yet diverse tasks as the primary design of GRAPHOMNI.

Table 10: Benchmark Results of LLMs Across Tasks (Meant95% CI Margin).
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best
performance in its category.

Task Difficult: Open-source Models Closed-source Models
Y Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen2.5 (7B) qwen38 04-mini
E 57.14+2.97 55.47+2.85 57.67+6.25 73.02+2.87 93.74+1.45 97.09+0.88
Hamilton cycle M 54.94+3.40 46.03+£3.05 50.09+6.59 60.14+2.93 84.83+2.38 71.08+2.39
H 54.94+3.61 46.38+3.04 51.85+6.98 60.23+3.05 79.98+2.64 55.56+2.48
E 45.68+4.96 63.67+£7.09 54.67+6.04 73.02+5.14 89.59+2.51 95.24+1.54
Hamilton cycle (Positive Samples) M 50.62+6.90 64.73+7.61 60.85+8.39 71.60£5.30 79.37+4.15 49.56+4.32
H 47.09+6.88 58.38+6.81 55.73+8.13 61.55+6.36 70.90+4.61 18.46+3.64
E 15.10£3.29 11.63+£2.44 23.88+4.69 18.37+2.71 27.96+4.56 61.94+4.27
Max cut M 5.20+1.66 5.10+1.43 6.43+1.81 10.41+1.26 16.94+2.33 28.16+1.80
H 1.22+0.70 0.61+0.47 2.04£1.03 1.12+0.61 9.08+2.17 34.74+3.64

C.5 SCALING VS. REASONING: DISENTANGLING THEIR EFFECTS ON GRAPH REASONING

To contrast model scaling with reasoning-centric improvements, we isolate three Qwen variants:
Qwen-2.5 (7B) as the baseline, Qwen-2.5 (72B) to represent scaling up within the same family, and
Qwen-3 (8B) as a reasoning model at a comparable parameter budget. Table 11 subsets the main
results (Table 3) to these three columns.

Finding 1: Scaling lifts the floor. Relative to Qwen-2.5 (7B), Qwen-2.5 (72B) yields consistent
improvements across nearly all tasks, particularly on the easier splits. For example, accuracy on
BFS order (Easy) rises from 21.46 to 71.41, an absolute gain of nearly 50%, while Shortest path
(Easy) improves from 47.46% to 90.03%, a margin of over 42%. Similarly, Diameter calculation
(Easy) increases by more than 33% (45.08% — 78.50%). Even on Connectivity, which is already
near-saturated, scaling provides modest yet consistent lifts (E/M/H: +2.14%, +2.45%, +2.90%,
respectively). In contrast, on the most combinatorial regime, Triangle counting (Hard), the gain
is negligible (4.45% — 4.73%), suggesting that sheer scale does little to overcome the inherent
difficulty of exhaustive enumeration.

Finding 2: Reasoning lifts the ceiling. When holding parameter count roughly constant, Qwen-3
(8B) substantially outperforms both Qwen-2.5 (7B) and, on several hard splits, even Qwen-2.5 (72B).
For instance, on BFS order (Hard), performance improves from 22.03% to 29.53% compared to
Qwen-2.5 (72B), a relative advantage of more than 7%. On Diameter calculation (Hard), the
margin widens further: 39.83% versus 29.59%, an absolute gain of over 10%. The effect is most
striking on Triangle counting (Hard), where Qwen-3 (8B) achieves 19.54%, far surpassing the
4.73% of Qwen-2.5 (72B). These results indicate that architectural and optimization changes targeted
at reasoning are more effective in extending the upper bound of graph reasoning ability than scaling
alone.

Implication. Scaling and reasoning improve different aspects of performance. Larger models
predominantly strengthen robustness on easier instances, lifting the floor, whereas reasoning-oriented
models better capture multi-hop dependencies and complex subgraph structures, lifting the ceiling. A

31

Under review as a conference paper at ICLR 2026

Table 11: Isolating scaling vs. reasoning effects. Baseline: Qwen-2.5 (7B). Scaling: Qwen-2.5
(72B). Reasoning: Qwen-3 (8B). Bold orange / Underlined blue / Light blue highlights indicate
best/second-best/third-best performance.

Open-source Models

Task Difficult
s T Qwen2.5(72B) Qwen2.5(7B) Qwen3 (8B)
E 7141£345 21464426 65874559 |
BFS order M 47.82+5.30 6.05:1.41 53.30+5.42
H 22.03+4.39 1384037 29.53+4.25
E 90.24+1.89 88.1041.46 97.17+1.29
Connectivity M 89.68+1.56 87.23+1.60 96.87+1.16
H 84.09+1.98 81.19+2.02 92.89+2.07
E 74024334 62.19+1.85 90.30:2.33
Cycle M 71994334 62.07+1.80 89.66+2.07
H 68.40+2.73 58.88+2.14 86.8122.27
E 78.50+1.16 45.08+4.17 77.56x2.77
Diameter M 52324200 2731#3.16 61.7122.28
H 29.59:2.48 15274247 39.83+2.67
E 90.03+2.27 47.46+8.76 77.695.17
Shortest M 81.17+3.03 3553680 69.605.50
H 72.53+429 28314550 64.28+5.60
E 36.57+4.40 18.56+1.24 41.36+4.63
Triangle M 14.5242.63 0.18+0.73 26.95+2.44
H 4.73+1.58 445058 19.54+1.34

32

Under review as a conference paper at ICLR 2026

balanced recipe, i.e. moderate scaling combined with reasoning-oriented objectives, appears most
promising for closing the persistent gaps in BFS order, Diameter calculation, and Triangle
counting.

C.6 RATIONALE FOR BINARY METRIC OVER PARTIAL SCORE

Evaluating graph reasoning outputs with partial credit is appealing in theory, but defining a consistent
and objective scheme across six tasks, seven graph types, seven serializations, and nine prompt
schemes is exceptionally difficult. In practice, two approaches exist: assigning credit based on the
degree of correctness in the final answer, or rewarding intermediate steps and sub-outputs. Both
approaches introduce major challenges. For final answers, it is often ambiguous how to compare
partially correct results (e.g., is overcounting triangles by one preferable to undercounting by one?).
Such ambiguity undermines the credibility of fine-grained scoring. For intermediate steps, reliably
extracting and interpreting model outputs at scale is infeasible, since formatting and reasoning styles
vary widely across models and prompts.

By contrast, binary accuracy against a known ground truth provides a clear and unambiguous
evaluation signal. With the extensive and diverse evaluation set in GRAPHOMNI, binary scoring
captures performance gaps robustly and fairly across models and tasks. While finer-grained metrics
such as edit distance, subtask scoring, or partial correctness may be valuable for training objectives
like reinforcement learning, they extend beyond the present study’s evaluation focus. Incorporating
such measures represents a promising avenue for future work.

D RL-BASED PROMPT SEARCH INSPIRED BY GRAPHOMNI

D.1 BACKGROUND AND SERIALIZATION PROCESS

Our benchmark evaluates three key dimensions—graph type, serialization format, and prompt
scheme—to underscore the critical role of transforming graph structures into textual inputs for LLM
inference. In this section, We want to identify the optimal combination strategies (serialization format;
prompt scheme, etc.) that enhance the effectiveness of textual representations, thereby improving
LLM performance in graph reasoning and understanding tasks. Prior research indicates that while a
particular serialization format or prompt scheme may yield optimal performance in isolation, their
combination does not necessarily lead to the best results, highlighting complex interactions among
various factors. Furthermore, the final performance of LLMs may be influenced by additional factors
that were not systematically examined in our benchmark (e.g., those in Appendix D.3), underscoring
the intricate nature of the graph-to-text transformation process, which extends beyond the scope of
single-factor analysis. This makes finding the optimal serialization strategy complex. We define the
process of converting graph structures into textual inputs tailored to a specific task as the serialization
process. Similar prompt processes are used in NLP. For example, Shi et al. (2024) formulated prompt
formatting as a multi-armed bandit problem; Sclar et al. (2023) employed Thompson sampling
to determine the optimal strategies. For LLM-based graph reasoning, however, previous studies
predominantly focused on single-factor variations. The multiple factor considered in our study
significantly complicates the serialization process—once a particular factor is determined, others are
influenced in complex and often unpredictable ways.

Due to these complexities, it is computationally enormous to find the optimal serialization strategy
by enumerating all possible combinations (termed as grid search in our study). To mitigate this
computational challenge, we propose using RL to find a high-quality serialization strategy under a
limited LLM cost, because of RL’s ability to learn near-optimal strategies in high-dimensional spaces
through exploration and feedback. In the context of RL, we assume that all benchmarking results
(e.g., those in Section 4.1 and 4.2) are not available. Instead, we will repeatedly choose various
serialization strategies, test their performance, and use the results for RL.

Specifically, RL transforms optimizing the serialization process strategy into a sequential decision-
making problem for each type and difficulty of the task. There are T" decision epochs, and each
decision epoch determines one component of the serialization strategy. For example, the decision
horizon is T" = 3 when we aim to identify the optimal combination of the serialization format, prompt
scheme, and LLM. In the T = 3 decision epochs, we sequentially determine the prompt scheme,
serialization format, and LLM. Such an order of optimizing the components of a serialization strategy

33

Under review as a conference paper at ICLR 2026

is predetermined, and we will investigate its impact on the optimization results in future studies. This
predetermined order specifies a sequence of action spaces {A; };=1,._r (e.g., A; can be all candidate
LLMs). We set the initial state sq as the specific type and difficulty of the task.

Then at decision epoch ¢ = 1,...,T, we choose an action a; € A, based on the previous actions
ai,...,a;_1. This corresponds to a policy m; : Sp X Ay X -+ x A1 — Ay, where Sy is the
state space of the initial state sg. For any instance s (e.g., a query for Connectivity task in easy
mode for a specific graph), a binary reward, denoted by 7 (s, a1, . .., ar), is incurred at the end of the
decision epoch, which is set to 1 if the LLM correctly answers the specific query under the selected
serialization strategy (a1, ..., ar) and to 0 otherwise. For each type and difficulty of the task, our
objective is to maximize the expected reward of choosing the serialization strategy a1, ..., ar:

max E[r(s,a1,...,a7)|so],
{ﬂ't}f,:l,...,T
where the expectation is taken with respect to the problem instance s and the (random) answer output
by an LLM (affected by the randomness of the LLM, e.g., the temperature parameter). Note that (i)
so is part of the instance information s, and (ii) we fix the type and difficulty of the task, and the
only randomness in terms of s is from graph generation. To approximate this objective function,
we generate [V different graphs for each type of query. We assess the performance of RL using the
average reward across the N graphs, which essentially is the accuracy of the serialization strategy for
a specific graph-related task across these N graphs.

We use the Q)-learning approach to solve this optimization problem. Let Q:(sg, a1, . .., a:) be the
@-function at decision epoch ¢t = 1,...,T, which represents the optimal reward-to-go if actions
ai,...,a; have been determined at decision epoch ¢ given the initial state sg. These functions satisfy
the Bellman recursion:

Qt(SOaala-~-7at): max Qt+1(50,a17"'aat+1), tzl,aT_l
at+1€A 11

with terminal condition

QT(SOaala .. .,CLT) = E[T(Svaflv s ,CLT)‘SO],

This terminal @-function can be approximated by the accuracy of the LLM answer across the N
generated graphs.

Consider the problem of dealing with high-dimensional, complex state spaces in serialization process,
we employ the Deep Q-Network (DQN) (Mnih et al., 2013) to implement RL, which employs a deep
neural network as a function approximator for the Q-function. Specifically, we use a neural network
Q+(so,a1,...,as;0;) parameterized by 6; to approximate the corresponding Q¢(sg, a1, - . ., a) for
the actions or factors considered in serialization process. Each @Q-network is modeled as a three-layer
multilayer perceptron with ReLU activations. Training minimizes the mean squared error loss, and
action selection follows an e-greedy policy, where ¢ linearly decays from 1.0 to a minimum of 0.01.
The detailed algorithm for each initial state s is provided in Algorithm 1.

We design two experimental settings, RL-Opt and RL-Scale, to assess the effectiveness of our
approach. RL-Opt focuses on a 7' = 3 serialization process—selecting the serialization format,
prompt scheme, and LLM model—and evaluates both LLM cost and the accuracy of identifying the
optimal configuration. RL-Scale extends the scope to include additional factors beyond those in
GRAPHOMNI, investigating the scalability of the RL method for more complex serialization tasks,
with an emphasis on LLM cost.

D.2 DETAILS FOR RL-OPT SETTING

In RL-Opt, we apply RL to find a high-quality serialization strategy under a limited LLM cost. The
serialization process in this case involved three key factors: serialization formats (in total 7), nine
prompt schemes (in total 9), and five open-source language models (including LLaMA3, LLaMA
3.1, Mistral, Phi-4, and Qwen-2.5). The total number of possible combinations in our search space
isgivenby £ = 7 x 9 x 5 = 315. To find a high-quality serialization strategy, we set the total
training episodes to M = 80 and initial learning rate to 0.001 during RL training. We evaluate the
RL performance on 6 tasks in three different modes, resulting in a total of 18 experimental cases.

34

Under review as a conference paper at ICLR 2026

Algorithm 1 RL Framework of GRAPHOMNI

Input: Action spaces {.A;}7_;; number of training episodes M ; exploration rate ; initial state so
Initialization:
Generate N graphs according to the initial state s
Initialize QQ-networks {@t(so, ai,--.,as;0:) Y| with random initialized weights 0;
for episode = 1 to M do
fort =1to7T do
Choose action:
With probability e, select a random action a; € Ay

Otherwise, set a; < arg max Q+(s0,a1, ... at-1,a;60;)
ac At

Execute action and obtain new state:

Update state: {so,a1,...,a;} < {so,a1,...,ai—1} U {as}

@-network update:

Ift =T, set y to be the accuracy of the LLM answer across the N generated graphs

Otherwise, set y + max Quy1(a1,...,a;60i41)
a€A¢11
~ 2
Perform a gradient descent step on (y —Qi(ag,. .. a4 9,5)) with respect to 6,
end for
Decay exploration rate: € <— € - decay rate
end for

For each case, based on our numerical results in Sections 4.1 and 4.2, we know which combination
(serialization format; prompt scheme; LLM) performs the best for each specific graph-related task.
Hence, we can compare the serialization strategy obtained by RL with the ground-truth optimal
strategy.

Specifically, we employ two key metrics. Search Cost: Given that RL explores £ different combina-
k

tions during the training process, we define Cost = =, where k depends on the number of training
episodes and K is the total number of combinations. Rate: Let acc, be the accuracy achieved by
the best combination found by RL, and acc,,,x be the highest accuracy in Sections 4.1 and 4.2.
Then we define Rate = % The results are displayed in Table 4. It can be seen that, with an
approximate 25% reduction in cost, the RL method still maintains an average rate of around 0.9,
indicating its ability to significantly shorten the time required for the search for optimal combinations
while ensuring the quality of the results. This outcome underscores the notable advantages of RL in
the serialization process problem—it can rapidly find high-quality solutions, thereby substantially
reducing computational resources and time costs. Moreover, this approach does not rely heavily on
extensive manual expertise, enhancing the automation of the optimization process. As a result, it
is not only applicable to the factors considered in this study but also adaptable to other factors that

warrant further investigation.

D.3 RL-SCALE

In RL-Scale, we examine the scalability of our RL method by incorporating additional four factors
into the serialization process. Different from RL-Opt that optimizes the LLM model, we fix the
model as Qwen-2.5 and test the performance on the Diameter calculation task in easy mode. The
additional four factors are inspired by Sclar et al. (2023), which are the delimiters between sentences,
the capitalization style of each sentence, the delimiter used to introduce questions and answers, and
the delimiter between words. As before, we still optimize the prompt scheme and the serialization
format. Details of the 6 factors implemented in the serialization process are shown below.

35

Under review as a conference paper at ICLR 2026

6 factors implemented in serialization process

’

* SPACESI1: delimiter between sentences, include:
\n ’ ’ ’ ’ ’ ’ I | ’

R T R A I R S

))) D) ..

) \t) ,) .
e SPACES2: delimiter between words, include: > ’,
lower

Instruct

Adjacency List, GMaL

’

y
)

* Cs: the delimiter used to introduce questions and answers, include: > \n\t’,’ \n ’,’

,,,\t,

» CASE FUNCTION: the overall capitalization mode of each sentences, include:no change, title, upper,
* PROMPTS SCHEME: include: 0-shot, 0-CoT, O-Instruct, 0-Algorithm, LTM, Algorithm, CoT, k-shot,

* SERIALIZATION FORMAT: include: GMoL, Adjacency Set, Edge Set, Edge List, Adjacency Matrix,

<Sep> ,’, , !71 \n !’) \n’,’\t’,, ;

Since the optimal combination in RL-Scale is un-
known, we only focus on the cost of RL finding

Comparison of RL and Grid Search

the near optimal combination. In addition, tak- 80000

ing into account the LLM cost problem and the 00| ;ﬁ T '
performance stability, for each combination, we . Griﬁ search /
took a fixed evaluation of 30 samples to get ac- so000q Exponential fit
curacy and set the temperature to 0. Ultimately, £ soo00 /
we compare the costs of RL and grid search un- § RL Trend
der conditions where the serialization process 'é 40000 500 g
involves 2—6 factors, with the results presented S 30000 250

in Figure 7. For step counts of 2, 3, 4, 5, and 20000

6, the number of combinations explored for RL

is 40, 121, 182, 300, and 632, respectively. In 10000 d
contrast, the number of combinations for Grid 0 , P S
Search is 100, 300, 1200, 8400, and 75600 for ?) Steps) ‘

the same step counts. It shows that RL exhibits a
highly promising trend in terms of the cost asso-
ciated with searching for optimal combinations.
When considering two-step factors, the cost of

Figure 7: RL and Grid Search

RL is comparable to that of grid search. However, as factors or steps increase, the cost growth of RL
is significantly lower than that of grid search. This finding suggests that for serialization process tasks,
RL can adaptively adjust its strategy to better accommodate complex environments, highlighting its

broader potential for application.

Table 12: 2-6 factors, top-3 combinations and corresponding reward from RL-Scale.

Grid research ~ Rank Combination Parameters Reward
1 Edge List,0-shot, Q:, Az, ,, \n \t, no 0.3000
100 2 Edge List,0-shot, Q:, A:, \n, , , no 0.2667
3 Edge List,0-shot, Q:, Az, ,, , no 0.2000
1 Edge List,0-shot, Q:, A:, Il , \t, , no 0.3667
300 2 Edge List,0-shot, Q:, A:, —, \t, \n \t, no 0.3333
3 Edge List,0-shot, Q:, A:, —, \t, -, no 0.3333
1 Edge List,0-shot, Q:, Az, -, , \n, upper 0.4000
1200 2 Edge List,0-shot, Q:, A, I, , ::: , lower 0.4000
3 Edge List,0-shot, Q:, Az, , \t, , upper 0.3667
1 Adjacency Matrix,0-shot, Q:, A:, <sep>, , \n , title 0.5667
8400 2 GMoL,0-shot, Q:, A:, \n, \t, ::: , upper 0.5333
3 GMoL,0-shot, Q:, A:, ;\n, \t, ::: , upper 0.5333
1 Adjacency Set, Algorithm, Q:, A:, I, , : , lower 0.6333
75600 2 Adjacency Set, Algorithm, Q:, A:,Il,,:, no 0.6333
3 Adjacency Matrix,0-shot, Q:, A:, \n, , :, title 0.6000

36

Under review as a conference paper at ICLR 2026

E COMPREHENSIVE EXPERIMENTAL RESULTS

In this section, we include all the experimental results and additional analysis of the GRAPHOMNI as
a reference to support our claims and findings mentioned in Section 4.1. We first present fine-grained
experimental results broken down across main evaluation dimensions in Appendix E.1, followed
by detailed performance heatmaps for all tasks and models in Appendix E.2. Finally, we provide a
comprehensive error analysis with representative cases in Appendix E.4.

E.1 FINE-GRAINED RESULTS ACROSS DIMENSION

In this subsection, we present detailed performance results across model capability, graph type,
prompting schemes, and serialization format impact. Based on the complete evaluation results in
Table 13, we further analyze the results from multiple perspectives, including overall performance
across all models, separate analyses for open-source models, and specific results for closed-source
models. These comprehensive results provide additional evidence supporting our main findings
discussed in Section 4.1.

Table 13: Benchmark Results of LLMs Across Tasks (Mean+95% CI Margin).
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best
performance in its category.

Task Difficulty Open-source Models Closed-source Models Random
Y Llama-3(8B) Llama-3.1(8B) Mistral (7B) Phi-d (14B) Qwen-25(72B) Qwen-25(7B) Qwen-3(8B) Claude-35 GPT-do GPT-do-mini Gemini-20 od-mini
E 15.622.94 18.69£3.02 1375144 33.03:7.32 71411345 2146£426 65878559 | 9142+165 81.48:322 58.75:4.22 90.312.30 9546:0.78 | 0.00
BES order M 404081 527093 336044 12494324 47.824530 6.05£1.41 5330£5.42 | 6825:2.96 55.07+4.50 25.03:3.11 68404395 79.3742.08 | 0.00
H 0.3920.15 0.630.19 034014 2.65:080 22.03+4.39 138:037 29534425 | 2680:2.64 21.58:3.69 6.28:090 27.7743.34 32.45:388 | 0.00
E 78014228 79.53:2.03 79.90+1.89 56294858 90.24+1.89 88.10£146 97.17+129 | 98.38£0.60 95.63:1.30 89.10+232 92.61:142 98234063 | 67.49
Connectivity M 77.78+2.78 79474200 80.60+192 54.38+7.99 B9.68+1.56 8723160 96.87+L16 | 99.11£0.39 95.12£137 91.07+1.42 93.60+1.10 98724052 | 7075
H 68.49+4.49 74582267 74774246 48394750 84.00+198 811942.02 92.89+2.07 | 9699148 90.5942.19 84.82:2.17 87.99+1.67 92024399 | 66.36
E 5384£1.75 55494090 55.444096 45258590 740 62.19+1.85 90.3042.33 | 82.56:3.89 85084227 75.04+2.83 6230£332 97.97:071 | 50.00
Cycle M 42.38%1.13 55.69+1.08 53.71x0.72 44.26+5.43 B 62.07+1.80 89.66+2.07 80.80+3.94 75.79+2.96 60.29+322 97.75+0.76 50.00
H 41245153 52405147 S164£1.02 4064497 6840273 58.88£2.14 86814227 | 80.10+3.97 73468330 58.30:2.80 95.61x1.23 | 50.00
E 2378417 4127£537 2855428 42813506 78.50:L16 45.08+4.17 77.56+2.77 | 83712106 63.99:2.19 37.362.62 79.14:1.94 98.88:0.15 | 11.20
Diameter M 14.29:2.66 27204420 15174257 2849+4.09 52.3242.00 27312316 61712228 | 7122130 52.64£305 22.85:2.97 49.5242.14 72.84%182 | 670
H 8.48£1.75 18.6343.27 697126 17.71£3.02 29.59+2.48 15274247 | 39.83:2.67 | 5670:2.02 45604324 14.98:2.54 2345297 3461284 | 372
E 33.9346.44 3875581 31.18+443 4261888 90.03+2.27 4746£876 77694517 | 94.35:2.93 92.17+191 78.69+4.24 81.75:470 95.08£3.06 | 50.00
Shortest M 2607+496 28.84+456 19.8943.05 33.92:7.68 811743.03 3553680 69.60+5.50 | 91274284 84844293 66313336 80.67+4.15 9260349 | 50.00
H 20004397 2303385 1221195 26.60:626 72534429 28314550 64284560 | 87.88+336 7498+4.17 5473454 78.16+455 88632444 | 50.00
E 9.49+1.02 14974153 1187£132 12.88:2.05 36.57:4.40 1856£124 41.36:4.63 | 43412164 3632154 18514139 5033231 84.54£056 | 2.13
Triangle M 3.06+0.39 8.56+0.92 5.86+0.73 7.54£1.33 9.18+0.73 26.95+2.44 24.00+0.77 20.00+0.72 10.62+0.81 48.13+1.46 1.62
H 182036 4.95£0.60 2555044 438:1.04 4458058 19.54:134 | 15924072 12812088 5.65:0.71 17.53£143 | 1.82

E.1.1 OVERALL RESULTS

Here we present a comprehensive analysis of the overall performance across all evaluation dimensions.
While our main findings in Result @ highlight the moderate performance of models with considerable
room for improvement, the detailed results in Tables 14, 15, and 16 reveal several noteworthy patterns:

Task-specific Performance Variation: The performance varies significantly across different tasks
and difficulty levels. For instance, in Connectivity tasks, models generally achieve higher accuracy
(80%—90% for easy level) compared to more complex tasks like Triangle counting (20%—-30%
for hard level). This suggests that while LLMs can handle basic graph properties well, they struggle
with tasks requiring more sophisticated reasoning and counting.

Difficulty Level Impact: There is a consistent and non-linearly sharp decline in performance as task
difficulty increases. With larger graphs, models face challenges in both processing longer contexts
and conducting more complex reasoning tasks, which typically require longer reasoning paths, more
precise intermediate steps, and more comprehensive exploration of the graph structure. The sharp
performance drop on larger graphs suggests that current LLMs struggle to maintain reliable reasoning
capabilities when faced with extended multi-step graph operations.

Model Type Performance Gap: The performance gap between closed-source and open-source
models is particularly evident in complex tasks. For instance, GPT-40 and Claude-3.5 consistently
outperform other models by a significant margin (15%-20%) in tasks like Diameter calculation
and Triangle counting especially at higher difficulty levels. This reinforces our observation about
the current limitations of open-source models in complex graph reasoning tasks.

Graph Type Impact: The evaluation reveals distinct performance patterns across different graph
types, with certain structures showing clear advantages for specific tasks. Our analysis shows that

37

Under review as a conference paper at ICLR 2026

bipartite graphs (BERM, BERP) tend to exhibit higher performance in connectivity and clustering-related
tasks (Connectivity), potentially due to their explicit partitioning of node sets, which simplifies
certain connectivity relationships for LLMs. For shortest-path (Shortest path) tasks, hierarchical
structures like BAF often show higher accuracy, as the tree-like paths may align well with reasoning
processes for pathfinding. In local pattern identification tasks such as triangle counting (Triangle
counting), simpler graph structures like SF often perform better, possibly because they reduce the
complexity of identifying local patterns. These observations suggest that the interplay between graph
types and task characteristics can significantly influence LLM reasoning behaviors.

Table 14: Benchmark Results of Prompt Schemes Across Tasks (Mean+95% CI Margin of All
Models). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM
E 52.20+7.28 46.54+820 48.42+822 51.49+7.34 63.39+7.10 63.33+6.23 62.93%6.16 56.51+6.45 48.12+8.15
BFS order M 33.63+6.46 33.37+6.89 33.36+6.76 33.94+6.72 43.48+7.23 38.99+6.37 38.61£6.20 33.08+6.09 32.89+6.67
H 13.5743.45 14.46+3.58 13.98+3.50 14.58+3.71 19.37+4.46 14.01+3.42 1327+3.27 11.68+3.01 13.95+3.50
E 85.51£3.01 83.274#5.06 86.86+2.45 82.79+5.40 88.79+2.32 92.35+1.88 92.37£1.57 87.46+2.34 83.00+4.70
Connectivity M 86.34+3.34 83.30+4.89 83.80+3.28 83.36+5.45 88.98+2.05 91.98+1.94 92.07+£1.45 89.24+2.05 83.65+4.17
H 81.76+3.99 78.34+4.87 74.21+4.90 79.80+5.35 82.89+2.52 85.68+2.70 86.41+2.19 85.16+2.57 78.35+4.41
E 71.75£391 64.73+5.07 70.23£3.67 64.93£534 71.28+4.34 73.01+3.62 71.66+3.77 73.12+3.62 68.89+3.90
Cycle M 69.16+4.07 64.50+4.73 67.75£3.99 63.94+5.37 70.02+4.77 71.59+4.06 69.86+4.11 70.40+4.24 67.58+3.85
H 66.27+4.04 62.75+4.47 62.14£4.60 62.54+5.20 67.38+4.79 69.12+4.20 67.95+4.13 68.35+4.14 66.35+3.73
E 51.5246.46 52.66+6.81 52.55£7.06 53.65+6.46 70.28+3.10 62.32+4.95 64.42+4.01 64.65+4.09 53.41+6.66
Diameter M 34.41£535 36.65%£5.50 34.34+5.62 37.54+5.07 50.69+2.97 46.65+4.66 48.00+4.06 47.64+3.93 35.83+5.37
H 19.53£3.90 22.28+3.81 20.59+4.16 22.92+43.71 32.13+3.29 30.80+3.78 32.54+£3.49 31.89+329 21.19+4.09
E 67.58+5.64 57.06+8.17 55.89+8.48 67.1846.33 74.79+6.01 74.73+6.10 75.62%5.76 72.75+6.37 57.17+7.99
Shortest M 59.3246.24 50.97+8.02 50.60+8.14 58.52+6.58 65.09+6.39 66.73+6.09 66.02+6.19 63.98+6.26 51.80+7.73
H 53.14£6.66 48.40+7.89 46.88+8.05 52.54#6.82 56.18+6.72 57.27+6.41 57.10£6.38 54.03+6.43 47.97+7.67
E 28.81+4.95 29.95+5.04 28.00+£5.04 31.22+5.08 32.39+4.75 34.81+5.10 35.03+4.68 33.39+4.57 30.52+4.95
Triangle M 16.01£2.92 17.07+2.83 15.88+2.93 16.97+3.10 16.62+2.86 18.07+3.15 18.67+2.77 18.5242.78 17.11+2.89
H 8.85£1.53 10.14+1.68 8.55+1.56 9.42+1.63 8.21£1.56 9.48+1.81 9.12£1.53 9.54+1.58 9.10£1.47

Table 15: Benchmark Results of Serialization Formats Across Tasks (Mean+95% CI Margin of All
Models). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty AL AM AS EL ES GMaL GMoL
E 63.27£6.63 49.10+7.02 62.54+£6.63 50.40+6.27 51.68+6.37 58.86+6.42 47.54+5.57
BFS order M 47.13+6.74 27.55£5.27 45.1846.56 31.39+5.17 29.5744.96 39.55+5.88 29.56+4.91
H 23.9244.37 5.19+1.16 23.594+4.24 11.40+2.17 9.06+1.69 15.58+2.75 11.50+2.31
E 89.49+3.25 80.92+3.10 89.57+3.20 87.02+3.42 88.50+3.21 88.44+2.96 84.58+2.31
Connectivity M 88.75+3.23 82.63+2.85 89.04+3.09 86.51+3.48 86.72+3.31 88.27£3.04 86.87+2.52
H 85.52+3.48 68.37+2.46 85.68+3.38 82.49+3.65 81.03+3.52 83.83+£3.70 82.87+3.09
E 64.30+3.53 65.75+3.61 64.41£3.50 71.54+3.59 75.38+3.40 76.09+4.26 72.22+3.38
Cycle M 63.35+3.58 62.90+3.51 63.23%3.52 70.55+3.81 72.51+£3.64 73.93+4.43 71.70+3.94
H 61.00£3.59 59.06+2.94 60.20£3.52 69.64+3.95 68.82+3.68 71.42+4.32 70.96+4.24
E 58.31£5.29 58.63+4.95 61.33+£5.09 54.95+5.24 54.51+5.33 62.28+4.87 58.68+5.18
Diameter M 42.89+4.77 39.67+3.83 45.69+4.68 37.78+4.05 35.60+4.18 44.52+4.38 42.98+4.48
H 27.68+4.00 23.65+3.01 29.61+3.82 23.26+2.76 20.03+2.70 29.77+3.63 27.90+3.49
E 75.89+5.76 54.14+5.97 76.60£5.61 72.00+5.63 68.99+5.81 52.85+7.49 68.35+5.23
Shortest M 69.65+6.00 40.94+5.24 69.14+5.68 64.57+5.83 58.30£5.90 52.38+7.34 59.60+5.25
H 65.31+6.09 28.22+4.13 65.794£5.96 55.82+5.90 52.05£5.83 47.88+7.06 53.20+5.42
E 32.03+4.41 27.61+4.08 31.82+4.48 31.70+4.21 30.64+4.06 34.30+4.44 32.89+4.61
Triangle M 17.5042.56 13.50+1.94 17.61+2.60 18.65+2.66 16.45+2.40 18.83+2.71 17.95+2.89
H 8.78+1.42 6.61x1.05 10.35#1.51 9.77+1.38 8.75+1.22 10.34+1.48 9.50%1.59

E.1.2 RESULTS OF OPEN-SOURCE MODELS

Open-source models exhibit several distinct characteristics compared to the overall results. In terms
of prompting schemes (Table 17), more structured approaches show clear advantages: CoT and

38

Under review as a conference paper at ICLR 2026

Table 16: Benchmark Results of Graph Type Across Tasks (Mean+95% CI Margin).

Bold orange / Underlined blue highlights indicate best/second-best performance. “-” indicates
the graph type is not applicable for that task.
Task Difficulty BAF BAG BERM BERP ERM ERP SF
E 43.82+3.13 44.9343.06 53.30+2.77 52.68+2.75 43.49+276 47.82+2.88 48.20+3.08
BFSorder M 35.06£3.03 29.38+2.68 24.96+2.33 34.56£2.58 21.76£1.97 22.48+2.05 26.63%2.57
H 27.58£2.66 7.17+1.17 6.67+0.95 13.79+1.34 4.03+0.70 8.40+1.06 7.40+1.24
E 77.04+1.68 - 88.03+1.48 84.29+1.52 87.02+1.49 86.97+1.54 -
Connectivity M 78.99+1.62 - 86.31£1.52 86.60£1.54 84.61+1.51 86.11%1.56 -
H 65.93+1.75 - 84.18+1.75 82.12+1.67 80.68+1.74 85.28+1.70 -
E - 64.90£1.60 65.98+1.49 65.02+1.39 68.32+41.70 69.25+1.57 61.08+1.40
Cycle M - 60.18+1.73 67.21x1.66 61.41+1.54 65.23+1.86 66.08+1.70 59.101.53
H - 55.20+1.56 64.66+1.91 65.58+1.72 61.97+1.82 62.99+1.81 54.98+1.45
E - 47.3542.10 - - 44.95£2.25 48.9632.23 56.82+2.08
Diameter M - 33.38+1.79 - - 30.64+2.04 35.81+2.21 37.41+1.65
H - 22.78+1.81 - - 20.70£1.92 26.76+2.11 22.10+1.15
E 66.73£2.98 60.06+2.82 57.52+2.82 61.01+2.88 55.12+#2.80 59.53+2.87 = 61.12+2.86
Shortest path M 58.11+3.01 52.88+2.84 48.95+2.76 48724272 4583273 51.55+2.75 57.08+2.88
H 55.62+3.15 46.19+2.97 42.4742.69 39.67+2.85 39.54+2.65 43.36£2.62 48.93+2.89
E - 25.25+1.53 - - 12.54£0.79 17.171.08 = 41.20+2.03
Triangle M - 16.75%1.11 - - 7.38£0.45 9.55+0.56 18.30+1.12
H - 8.99:£0.77 . . 548042 7.56+0.56 8.22+0.58

Instruct prompts consistently outperform simpler schemes like 0-Shot and LTM across most tasks.
This is particularly evident in Connectivity tasks, suggesting that open-source models benefit more
from explicit reasoning guidance.

For serialization formats (Table 18), open-source models show a strong preference for concise
representations. Adjacency List (AL) and Adjacency Set (AS) formats consistently perform better
than more complex formats like GMaL and GMoL. This contrasts with the overall results.

Regarding graph types (Table 19), while the general pattern of task-specific advantages remains
similar to overall results, open-source models show more pronounced performance gaps between
optimal and sub-optimal graph types. For instance, in Triangle counting tasks, SF significantly
outperforms other graph types with a wider margin compared to the overall results.

Table 17: Benchmark Results of Prompt Schemes Across Tasks of Open-source Models (Mean+95%
CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LT™M
E 29.7245.04 20.25%5.44 22.19+5.76 29.64+5.43 44.34+6.33 49.24+6.00 48.84+5.85 41.62+5.48 22.50+5.82
BFS order M 15.25+4.15 14.05+4.83 14.56+4.88 15.98+4.70 25.31+5.94 25.88+5.78 25.344+5.56 19.52+4.83 14.26+4.73
H 7.26+3.03 7.76£3.14 7.24+3.04 7.98+3.11 10.51+£3.54 9.47+3.53 9.18+3.40 6.55+2.61 7.28+3.05
E 78.11%2.96 74.21+5.84 81.31+2.35 74.83+6.44 85.70+2.46 89.23+2.10 89.46+1.64 84.83+2.42 74.19+533
Connectivity M 79.13+£3.60 74.08+5.58 75.56+3.19 74.54+6.48 85.39+2.12 88.40+2.16 88.98+1.42 86.52+2.17 75.15+4.56
H 74.52+429 69.13£5.34 62.30+4.72 71.41+6.22 80.14+2.19 81.68+2.63 83.14+1.86 82.85+2.48 69.05+4.51
E 64.31+328 53.62+4.73 63.66+3.11 55.38+5.41 64.32+4.01 66.89+3.33 64.67+3.40 67.48+3.19 60.90+3.26
Cycle M 61.0243.52 53.61+4.13 59.75+3.36 53.78+5.41 61.55+4.57 63.81+3.73 62.4443.63 64.06+3.88 59.66+3.12
H 58.4243.61 52.68+3.84 51.53+3.83 52.42+5.14 58.25+4.44 61204371 59.80+£3.51 61.39+3.53 58.60+2.91
E 36414549 37.124595 37.36x6.51 40.67+5.67 66.33+2.63 56.63+4.76 60.39+43.27 59.93+3.51 39.13£5.92
Diameter M 22.68+3.90 25.26+4.68 22.36x4.68 27.65+4.24 44.44+2.65 40.30+4.44 42.9343.59 41.45+345 24.25+4.38
H 11.69+2.25 15.25%2.78 12.84+3.17 16.71%2.83 24.70+2.52 25.50+3.29 27.98+3.00 27.2242.93 13.57+3.00
E 55.81+5.40 34.34+7.21 32.39+7.55 52.73+6.28 62.03+6.43 = 65.72+6.36 64.55+6.34 63.04+6.48 34.38+6.84
Shortest M 43.89+5.43 28.21+6.58 28.25+6.95 42.44+592 50.31+6.24 53.78+6.20 52.9446.29 50.08+6.15 29.4446.13
H 36.26£5.51 26.51%6.31 24.50+6.42 35.58+5.60 40.67+6.12 44.11£6.18 43.56+£6.04 39.99+5.93 26.35+5.73
E 14.74£1.98 16.91£3.09 14.22+2.52 19.88+3.43 21.98+3.28 27.3244.52 28.14+3.84 26.35+£3.34 17.79+3.07
Triangle M 7.98+1.39 10.24+1.73 8.37+1.58 9.86+1.87 9.57+x1.97 12.94+2.81 14.13+2.43 13.91+2.23 10.28+1.82
H 5.14+£1.22 6.28+1.48 4.50x1.19 5.96x1.31 4.71x1.31 7.35%1.99 7.53+t1.70 7.49+1.57 5.57+1.08

39

Under review as a conference paper at ICLR 2026

Table 18: Benchmark Results of Serialization Formats Across Tasks of Open-source Models
(Mean95% CI Margin). Bold orange / Underlined blue highlights indicate best/second-best per-

formance.

Task

Difficulty

AL

AM

AS

EL

ES

GMaL

GMoL

BFS order

42.12+5.89
27.55£5.90
15.45+4.36

25.68+5.21
11.9243.59
1.99+0.72

41.0245.77
24.79+5.40
14.60£4.10

30.04+4.94
15.90+3.81
5.87£1.72

30.01+4.73
14.02+3.31
4.63+1.27

39.54+5.84
22.74+4.95
8.99+2.41

31.41+4.67
15.40£3.31
5.41£1.55

Connectivity

83.33+3.84
82.36+3.78
78.43+3.98

74.63£3.50
76.85+3.22
66.16+2.66

83.54+3.79
82.90+3.60
78.89+3.86

80.79+3.99
79.50+4.01
74.26+4.04

82.76+3.78
79.40£3.71
72.53£3.73

82.97+3.43
82.8943.56
77.01+4.25

81.23+2.45
82.11+2.83
77.11£3.48

Cycle

58.7243.30
57.70£3.29
54.64+3.29

59.20£3.30
55.73£3.00
52.54+2.56

59.18+3.31
57.82+3.24
54.50£3.25

62.89+3.39
60.81£3.56
58.80£3.54

66.65+3.27
63.40+3.40
59.95£3.40

65.24+4.14
62.44+4.28
60.04+4.00

64.64+3.20
61.86+3.81
59.54+3.85

Diameter

47.25+5.10
32.28+4.19
18.13£3.07

49.01+4.53
31.91+3.38
19.70+2.24

49.78+4.91
34.83+4.23
20.57£3.23

45.06+4.89
30.61£3.72
19.65+2.70

43.82+4.78
28.06+3.68
16.12+2.39

53.68+4.95
35.40+4.09
22.44+2.89

48.95+5.18
33.50+4.16
19.87+2.82

Shortest

61.38+6.13
52.45+5.93
47.79+5.86

39.46+5.99
27.69+4.83
18.724£3.74

62.90+6.02
54.63+5.79
48.52+5.72

57.99+£5.93
47.2945.55
38.00£5.16

54.26£5.99
41.24+5.35
34.34+4.78

30.52+5.96
25.75+5.41
22.69+5.10

55.14£5.54
45.99+5.22
36.89+4.81

Triangle

Zzw|lrzo|izo|lizo|sgo o

20.03£3.02
10.37£1.79
5.37+1.34

17.87+2.49
8.81x1.35
5.45£1.07

18.98+2.82
10.41£1.83
6.76+1.52

20.52+2.70
11.17£1.65
5.84+1.13

21.13£2.77
10.72£1.70
6.44+1.25

24.76+3.74
12.92+2.19
7.07£1.39

22.42+3.50
11.28+2.06
5.50+1.28

Table 19: Benchmark Results of Graph Type Across Tasks of Open-source Models (Mean+95%

CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance.

indicates the graph type is not applicable for that task.

@ 9

Task

Difficulty

BAF

BAG

BERM

BERP

ERM

ERP

SF

BFS order

31.18+2.30
23.15+2.23
18.06x2.00

31.34+2.18
19.97+1.90
7.31+1.11

41.92+2.08
17.92+1.79
6.36+0.99

41.16+£2.04
24.76+1.87
10.85+1.16

30.59+1.90
14.89+1.41
4.08+0.83

34.53+2.01
15.08+1.41
6.70+1.00

34.43+2.24
18.27+1.86
7.38+1.13

Connectivity

72.16+1.43
74.84+1.43
60.68+1.43

86.82+1.41
83.02+1.42
82.25+1.62

81.79+1.41
84.28+1.45
79.76£1.55

84.65+1.40
80.99+1.38
75.94£1.55

84.10+1.45
82.86+1.44
81.89+1.59

Cycle

60.70+1.34
56.82+1.36
52.15%1.27

62.16+1.36
62.69+1.43
59.50+1.52

63.53%1.36
59.75+1.40
61.04+1.48

63.61+1.44
60.91£1.48
57.73£1.49

64.51+1.39
62.21+1.44
59.09+1.46

59.65+1.33
57.42+1.33
53.36+1.23

Diameter

45.50+1.84
32.72+1.52
19.95£1.26

45.74+2.04
28.87£1.60
16.46+1.24

48.57+1.99
31.85£1.76
20.54+1.33

53.09+1.83
36.16+1.45
20.90+1.04

Shortest

59.63+2.63
49.10+2.53
46.37+2.59

51.54+2.37
42.3242.25
34.28+2.16

49.30+2.39
38.87+2.22
33.36+2.10

52.61+2.46
39.58+2.23
30.18+2.18

46.04+2.32
36.20+2.12
30.50+1.99

50.04+2.37
41.70+2.18
33.90+2.06

52.97+2.46
46.98+2.36
38.55+2.22

Triangle

IZzW|mZW|ZIZH|nEm| 2@ | D Em

19.17£1.27
11.15+0.85

5.00£0.49

11.68+0.95
7.62+0.72
5.67£0.66

13.80£1.02
8.66+0.87
5.78+0.53

35.37+1.73
15.28+1.05
8.13+0.79

40

Under review as a conference paper at ICLR 2026

E.1.3 RESULTS OF CLOSED-SOURCE MODELS

Closed-source models exhibit notably different characteristics compared to their open-source coun-
terparts. For prompting schemes (Table 20), these models show more robust performances across
different prompting methods, with even simple prompts like 0-Shot achieving competitive results.
This is particularly evident in Connectivity tasks, where performance remains consistently high
across most prompting schemes, suggesting less reliance on explicit reasoning guidance.

The serialization format results (Table 21) reveal another key distinction: closed-source models handle
complex formats more effectively. While they perform well with concise formats like AL and AS,
they also show strong performance with structured formats like GMaL, especially in tasks requiring
sophisticated reasoning like Cycle detection and Diameter calculation. This contrasts sharply
with open-source models’ preference for simpler formats.

Regarding graph types (Table 22), closed-source models demonstrate more balanced performance
across different graph structures. For instance, in Triangle counting tasks, while SF still performs
best, the performance gap between different graph types is notably smaller than in open-source
models, suggesting more robust graph structure processing capabilities.

Table 20: Benchmark Results of Prompt Schemes Across Tasks of Closed-source Models (Mean+95%
CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM
E 83.66+3.70 83.34+3.61 85.15+3.08 82.07+3.81 90.06+3.02 83.07+3.53 82.66+3.60 77.35+4.92 83.99+3.24
BFS order M 59.37+4.92 60.42+4.91 59.67+4.68 59.09+5.30 68.91+5.06 57.33+4.97 57.17+4.72 52.05+5.35 58.98+4.71
H 22.41+3.11 23.8543.19 23.41+£3.10 23.82+3.61 31.79+4.30 20.38+2.78 19.01+2.68 18.86+2.90 23.29+3.12
E 95.86+1.05 95.95+1.18 94.64+1.41 93.92+1.60 93.10+1.77 96.72+0.94 96.43+0.92 91.15+2.01 95.34+1.27
Connectivity M 96.43+0.87 96.22+1.01 95.34+1.08 95.71+0.96 94.01+1.35 96.99+0.74 96.39+0.86 93.06+1.54 95.56+1.26
H 91.90+2.12 91.24+2.07 90.89+2.19 91.55+2.04 86.76+2.74 91.28+2.34 90.98+2.27 88.40+2.57 91.37+2.23
E 82.17+3.67 80.28+3.42 79.43+3.52 78.30+3.73 81.03+3.95 81.58+3.22 81.44+327 81.01+3.54 80.08+3.46
Cycle M 80.54+3.54 79.75+3.45 78.96+3.56 78.15+3.55 81.87+3.83 82.49+3.33 80.25+3.73 79.27+4.03 78.67+3.54
H 77.26+3.40 76.84+3.45 76.99+3.62 76.70+3.54 80.15+3.87 80.20+3.71 79.35+3.73 78.08+4.07 77.19+3.54
E 72.68+4.82 74.4245.02 73.82+5.02 71.82+5.47 75.80+3.36 70.29+4.77 70.07+4.65 71.25£4.47 73.39+5.17
Diameter M 50.83+5.17 52.60+4.72 51.12#4.85 51.37+4.68 59.43+2.32 55.54+4.35 55.09+4.23 56.29+3.86 52.05+4.71
H 30.49+4.51 32.11+4.10 31.43+4.30 31.62+4.03 42.53+2.94 38.21+3.90 38.93+3.70 38.44+3.31 31.85+4.34
E 84.07+3.82 88.87+2.80 88.79+2.82 87.42+3.00 92.65+2.03 87.34+4.55 91.11+2.21 86.34+4.99 89.08+2.76
Shortest M 80.93+3.96 82.83+3.74 81.91+3.79 81.03+x3.90 85.77+3.19 84.86+3.11 84.34+3.27 83.45+3.41 83.09+3.71
H 76.76+4.53 79.05+4.48 78.22+4.56 76.28+4.86 77.90+4.42 75.69+4.35 76.05+4.32 73.70+4.50 78.23+4.84
E 48.50+4.79 48.20+4.65 47.29+4.80 47.11+5.09 46.96+4.77 45.29+5.08 44.68+5.02 43.25+525 48.33+4.58
Triangle M 27.25+2.82 26.62+2.82 26.38+2.91 26.92+3.24 26.47+2.58 25.25+2.98 25.02+2.66 24.98+2.90 26.67+2.88
H 14.04+1.22 15.54+1.20 14.23+1.14 14.27+1.47 13.11+126 12.46+1.29 11.34+1.11 12.41+1.38 14.04+1.28

E.2 PERFORMANCE HEATMAPS ACROSS TASKS

In this section, we provide detailed visualizations of model performance through heatmaps, extending
the example shown in Figure 4. These heatmaps illustrate the interaction between prompting schemes
and serialization formats across different tasks and difficulty levels, offering a comprehensive view of
how various methodological combinations affect model performance.

E.2.1 HEATMAPS FOR BFS order TASK

As shown in Figure 8 (featuring Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0), Figure 9 (featuring
Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 10 (featuring Qwen-2.5 (7B),
04-mini), the heatmaps compare different prompt strategies and graph serialization formats under
easy, medium, and hard difficulties for the BFS order task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second—best combinations, respectively.

41

Under review as a conference paper at ICLR 2026

Table 21: Benchmark Results of Serialization Formats Across Tasks of Closed-source Models
(Mean+95% CI Margin), Bold orange / Underlined blue : best performance, Underlined and blue

highlight: second best performance

Task

Difficulty

AL

AM

AS

EL

ES

GMaL

GMoL

BFS order

92.88+1.83
74.53+3.82
35.79+3.30

81.89+3.82
49.43+4.43
9.67+1.14

92.68+1.81
73.71£3.56
36.16+3.18

78.90£3.23
53.07£3.89
19.14+1.89

82.02+3.12
51.34+3.83
15.26+1.50

85.90£2.55
63.09+3.86
24.81+2.21

70.12+3.57
49.39+4.33
20.02+2.24

Connectivity

98.11+0.54
97.70+0.54
95.46+0.98

89.74x1.12
90.73£0.99
71.48+2.03

98.03+0.54
97.63£0.59
95.19+1.08

95.74+1.13
96.32+0.89
94.01£1.09

96.53+0.99
96.96+0.83
92.93+1.27

96.11£1.00
95.81£1.00
93.39+1.48

89.27+1.78
93.53%1.20
90.94+1.44

Cycle

72.12+3.34
71.27+£3.45
69.91+3.34

74.92+3.33
72.94+3.32
68.19+2.55

71.72+3.33
70.82+3.43
68.17£3.35

83.66+2.45
84.19+2.40
84.81+2.42

87.60+1.93
85.26+2.40
81.23+2.64

91.29+2.34
90.03+2.39
87.34+2.64

82.83+2.51
85.48+2.35
86.94+2.62

Diameter

73.80+4.05
57.75%4.10
41.04+3.81

72.10+4.41
50.53£3.49
29.1743.62

77.50£3.57
60.91+3.70
42.25+3.30

68.80+4.60
47.82+3.74
28.3242.59

69.47+4.79
46.15+4.07
25.5242.79

74.33+£3.76
57.28+3.59
40.03£3.70

72.30£3.99
56.24+3.66
39.15+3.24

Shortest

96.21+1.37
93.72+1.32
89.85+2.04

74.70£3.14
59.50£3.52
41.5243.27

95.78+1.55
89.45+2.34
89.97+1.92

91.61+1.89
88.76+1.72
80.77+2.87

89.61+2.27
82.18+2.96
76.84+3.50

84.10£5.04
89.66+1.81
83.15£2.67

86.86+1.44
78.67+£2.45
76.04+2.49

Triangle

ITImIg@m I @mZTm T m| DM

48.83+4.09
27.47£2.30
13.56+0.96

41.24+4.50
20.06£1.98
8.24+0.96

49.80+4.18
27.69+2.33
15.38+0.86

47.36+4.18
29.13+£2.55

15.28+0.98

43.95+4.27
24.48+2.43
11.97+0.88

47.65+4.15
27.10£2.61
14.92+1.15

47.53+4.59
27.28+2.98
15.11£1.38

Table 22: Benchmark Results of Graph Type Across Tasks of Closed-source Models (Mean+95%

CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance.

indicates the graph type is not applicable for that task.

@ 9

Task

Difficulty

BAF

BAG

BERM

BERP

ERM

ERP

SF

BFS order

83.62+1.34
75.54+1.65
61.08+1.79

83.41+1.40
63.93+1.91
18.36+1.33

84.98+1.23
55.38+1.81
16.07£1.06

85.73+1.17
67.58+1.67
28.99+1.18

77.72+1.50
45.67+1.68
10.62+0.91

83.45+1.29
48.93+1.68
20.46x1.22

86.16+1.29
60.08+1.96
19.04+1.41

Connectivity

92.90+0.74
93.29+0.66
83.06+1.27

95.59+0.47
97.06+0.32
92.36+0.87

94.17+0.57
96.53+0.39
91.62+0.88

96.03+£0.40
95.53£0.40
92.49+0.74

96.18+0.42
95.9240.45
95.46+0.49

Cycle

81.22+1.34
77.94+1.39
71.11£1.49

81.07£1.20
83.95+1.17
83.02+1.19

78.68+1.23
77.45%1.27
83.38+1.14

82.18+1.40
82.07+1.41
79.35%1.36

83.77+£1.20
82.82+1.14
80.67+1.33

76.63+1.32
75.76£1.32
70.99+1.41

Diameter

72.16£1.69
53.15£1.69
34.07+1.62

67.11£1.89
48.55+1.74
34.54+1.74

71.21£1.76
57.07+1.55
42.31+1.77

79.98+1.25
56.48+1.47
29.36+0.94

Shortest

90.09+1.26
85.09+1.50
80.552.03

89.28+1.17
85.51+1.26
80.74+1.66

85.05+1.24
80.90+1.17
74.31£1.54

88.60+1.23
80.35+1.19
75.11£1.75

86.36x1.20
79.25£1.45
71.53£1.69

90.60+1.09
83.96+1.26
75.63+£1.48

88.84+1.20
86.53+1.31
80.21+1.67

Triangle

Izm|mzm|Dzo|nEm|Em|DnE@

51.58+1.78
34.13+1.01
17.97+0.62

29.68£1.53
14.28+0.59
8.48+0.38

37.19£1.69
18.81£0.75
13.06£0.48

68.04+1.80
37.47+1.66
14.45+0.60

42

Under review as a conference paper at ICLR 2026

0-Algorithm
0-CoT
O-instruct
0-Shot
Algorithm

CcoT

Prompt Schemes

Instruct

K-Shot

L™

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

0-Algorithm

0-CoT

Odnstruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

0-Algorithm
0-CoT
O-instruct
0-Shot

Algorithm

Prompt Schemes

Figure 8: Performance heatmaps for prompt strategies and serialization formats on the BFS order

0.800

Easy

EL ES

Seri;

ization Formats

0625 0850 0875 0900 025
Accuracy Range

Easy

AS EL
Serialization Formats

Accuracy Range

Serialization Formats

Accuracy Range

Serialization Formats

070 075 080 085
Accuracy Range

0950 0.975

0.90

0.403

0.413

095

Performance Analysis: Claude-3.5 on BFS order

0-Algorithm
0-CoT
O-nstruct
0-Shot

Algorithm

Prompt Schemes

1.000

0-Algorithm

0-CoT

O-nstruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

055

0519

AS

Serialization Formats

0.60

0.490

0529

0757

0.552

e e

075

Accuracy Range

Performance Analysis: GPT-40 on BFS order

0.748

orm

0714

0971

0795

0.824

0614

0576

0452
ES

Accuracy Range

0.80

GMaL.

085

0.305

0.343

0271
GMoL.

Performance Analysis: GPT-40-mini on BFS order

0-Algorithm
0-CoT
O-nstruct
0-Shot
Algorithm

coT

Prompt Schemes

Instruct

K-Shot

m

Performance Analysis: Gemini-2.0 on BFS

0-Algorithm

0-CoT
O-Instruct

0-Shot
Algorithm

CcoT

Prompt Schemes

Instruct

K-Shot

L™

0.438

0.443

0.257

0410

0438

0.438

0176

0.424

AL

0119

0.100

0152

0.086

0.124

0.086

0.062

0.043

0.105
M

Medium
0433 0252 0248
] e o
0433 0271 0248
0262 0267 0252
0433 0248 0.181
LLT) e st
0424 0167 0.167
0205 0405 0.086
0448 0248 0243
AS EL ES

Serialization Formats

02 03
Accuracy Range

0510

0529

e -

05

Medium

0795
0919

0.838

0.952
0833
0.805
osmt |
0814
AS

0.667

0719

0733

0.695

0.838

0.695

0.695

0.590

0.690
EL

ES
Serialization Formats

Accuracy Range

0.262

0.281

0.305

0276

0233

0310

0176

0.290
GMaL.

0819

0757

ot

0819

0.876

0671

0.643

0.567

0.805
GMaL

0.181
0152
0.181
0119
0176
0152
0176
0129
0.181

GMoL.

05

order

0-Algorithm | 0407 | 0.470
0CoT | 0363 0478
p Odnstruct| 0415 0470
H
£ oshot 040 0178
£ [y
& Aigorithm | 042 1 0252
2 e
£ CoT 0385 0.144
H
S instruct 0400 0441
K-Shot 0370 048
LTM 0383 o086
AL AM
015 0
0-Algorithm 029 0.074
0-CoT | 035 0136
o Odnstruct 0326 0089
8
E oshot 0383 0002
2
@ Algorithm JRZTM 0.133
B
E CoT 0304 0.068
O instruct 0400 0.089
KShot 0230 0059
LTM 0304 0119
AL Am
01 o2
0-Algorithm 0081 0.007
0.CoT 0081 0.008
, Odnstruct 0404 0030
8
E oshot 0052 0008
5 Lol |
@ Mgorithm| 0133 | 0037
2 [
E CoT 0411 0.008
2
S instuct 0404 0007
KShot 0059 0.007
LTM oats 0000
AL AM
000 o002 004
O-Algorithm 0267 0.059
0.CoT| 0385 0093
o Odnstruct. 0370 | 0096
H
E oshot 0427
5
3 Algorilhmm 008
s
£ CoT 0385 001
G instruct| 0430 0.059
KShot 0178 0.044
LTM 0a8 0085
AL AWM
01 02

task (Part 1). Models: Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0.

43

—— Best Performance
Second Best

Hard
0437 | o230 013 | 034t
0363 o148 014p 0281
0407 o085 0185 0281
0407 093 0133 0289
0252 0215 | 0400
0400 015 0104 0250
0400 015 0133 0222
0437 0200 0448 0304
0437 | 0200 0441 0341
AS EL ES GMaL
Serialization Formats
2 035 040
Accuracy Range
—— Best Performance
--- Second Best
Hard
0304 0156 0141 0193
0.356 0.126 0.096 0.237
0.333 0.156 0.119 0.207
0.393 0119 0.089 0470
ous ozse | ods
0393 | 0133 0104 0200
0348 0104 0104 022
0304 0119 009% 0200
0407 | o074 oms 0222
AS EL ES GMaL
Serialization Formats
03 04 05 08
Accuracy Range
—— Best Performance
=== Second Best
Hard
oMo 0074 0059 0081
009 0044 0074 0059
oMo 0080 0077 0089
0074 004 0067 0074
0074 0081 009
| 0133 | 0022 0044 008
Tows oo oo oow
o052 0030 00w 0052
o9 0074 0067 0059
AS EL ES GMaL
Serialization Formats
008 012 o

3
Accuracy Range

—— Best Performance
Second Best

Hard
0.437 0274 0.259 0.363
s
= o
AS EL ES GMaL

Serialization Formats

o.
Accuracy Range

0230

0274

0252

0274

031

0193

0.163

0222

0281
GMoL.

0111

0126

0119

0.081

0.348

0.081

0.148

0.141

0119
GMoL

0.030

0.044

0.044

0.037

0.067

0.052

0.022

0.037

0.044
GMoL.

016

0.200

0274

0.259

0385

0.163

0.207

0.074

0304
GMoL.

Under review as a conference paper at ICLR 2026

Performance Analysis: Llama-3 (8B) on BFS order — Best Performance

=== Second Best

Easy Medium Hard
O-Algorithm 033 0092 035 0160 0214 0218 0136 n-AlgurimmrnTns_: 0024 0081 0043 0048 0052 0043 O-Algorithm 0007 0000 0007 0007 0000 0000 0000
0-CoT 0049 0019 004 0015 003 0083 0039 0CoT 083 0o 00 0000 0005 0024 00t 0-CoT 0007 0000 0000 0000 0000 0000 0007
g Onstruct 0020 0005 0005 0024 009 0044 0010 g Odnstruct 0005 000 0005 00M 005 00 0000 g Odnstruct 0000 0000 00M 0000 0000 0000 0000
§ 0.Shot 0306 0083 0277 0165 0189 0209 0160 E, O.Shot 0090 0024 0067 0052 0043 0057 0043 § n-snmrozs-: 0000 0007 0007 0000 0000 0.000
§ Algorithm 0441 0020 0412 0097 0092 0407 0092 é Algorithm 0014 0010 0024 0005 0033 0000 0010 § Algorithm 0000 0.000 ro;w-l 0.007 rn;w- 0007 0.000
g m o160 :'..Eu:' 0 oz om0 o £ cor s | 0% 009 oo oogr oms 0o E ot 000 0000 0000 0007 oan L .EE: om0
st 03 ot | 039 | o oz omt 02 O wswci| 0rs | o 0w 6o 0o 0o 0o vt 6007 0 0000 060 0007 _oae 0o
KShot 0267 otz oar o7 oz o2 ozt Kshot| 105 | oo ome 0wz ooz ooms oast K-Snnl om0 .»EE: oomr ::.EE: om0
LTM 002 0015 0010 0024 0034 0068 0058 LTM 0010 0010 0019 0000 0019 0024 0.020 LTM 0000 0000 0000 0000 0007 0000 0000
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
005 010 015 020 025 030 035 000 002 004 006 008 010 00000 00025 0.0050 00075 0.0100 00125 0.0150 0.0175 00200
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Llama-3.1 (8B) on BFS order
—— Best Performance
=== Second Best
Easy Medium Hard
O-Algorithm | 0.388 0083 0384 0165 0175 0139 0470 O-Algorithm 0100 0033 0105 0043 0057 0038 0052 o-Algorithm| 002z | 0000 0007 0007 0000 0000 0000
0CoT 0044 0029 0092 0049 0039 0053 0083 0CoT 0038 0005 0033 0014 0019 0029 0024 0CoT 0807 000 0007 0007 000 0015 000
g Odnstuct 0053 0019 0078 0034 0044 008 00 g Odnstuct 0014 0000 0014 0024 0014 0014 000 o Olnstuct 0000 000 00K 000 000 0000 0000
E 0.Shot| 0316 0068 0320 0412 0136 0145 0131 E 0.Shot 0062 0014 0057 0052 0029 0043 0029 E ﬂ-Shnl 0008 0015 0000 0007 0007 0000
§ Algorithm 0369 0.107 D 0325 0291 0252 0248 § Algorithm 0.081 0024 0114 0076 0057 0038 0029 § Algorithm 0007 0000 0015 0000 0007 0015 0.000
g‘ coT| 0374 | oiso JoAzml o7 oz oz ezt g‘ CoTraTu 0038 0105 0071 0052 0095 0095 g‘ CoT 0007 oos oot 0007 00fs 0000 0000
€ e 0w ot (07)02t oz ez oz & mewea[am |oom eme oo e o omwr & wsmct oo owo oo | o | oo oawr oo
KShot 0311 otz 0z oats oz 0z oame KShot 0105 0e3 om0 oo ooz oom 0067 KShot 0007 0007 oos o0 oo 0007 ooor
LTM 0131 0030 0126 0083 0073 0078 0073 LTM 0019 0019 0048 0019 0010 0033 0024 LTM 0007 0000 0015 0007 0000 0007 0000
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMolL
Serialization Formats Serialization Formats Serialization Formats
005 010 015 020 025 030 035 040 045 000 002 004 006 008 010 012 014 016 0000 0005 0010 0015 0020 0025 0030 0035 0040
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Mistral (7B) on BFS order
—— Best Performance
=== Second Best
Easy Medium Hard
OAlgorithm 0209 0068 0189 0146 0134 0204 0150 O-Algorithm 0048 0010 0057 0038 0033 0033 0057 O-Algorthm 0000 0000 0000 0000 0000 0007 0007
S instuct 0228 0044 0233 013 041 S nstuct 002 0019 0057 003 0020 008 & Instuct 0000 0000 0007 0000 0000 0000 0007
Kshot 0209 0087 0233 0199 0204 0180 o146 KShot 0048 0024 0052 0052 0052 0038 0033 K-Shot 0000 0.000 ru-15-| 0000 0000 0007 0000
LTM 0160 0034 0131 017 0126 0092 0083 LTM 00s2 0005 0048 0019 0019 0024 0014 M oo o000 | ooz | o;w-: 0007 0000 0000
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
0050 0075 0100 0125 0150 0475 0200 0225 000 001 002 003 004 005 006 007 00000 0.0025 0.0050 00075 0.0100 00125 0.0150 0.0175 0.0200
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Phi-4 (14B) on BFS order
—— Best Performance
-=- Second Best
Easy Medium Hard
OAlgorithm 0044 0015 0063 0010 0005 0097 0020 O-Algorithm 0.019 0005 0019 0000 0000 0014 0010 O-Algorthm 0000 0000 0000 0000 0000 0000 0.000
0CoT 0000 0019 0000 0000 0000 0204 0.180 0CoT 0005 0005 0033 0000 0005 0081 0.020 0CoT 0000 0000 0022 0000 0000 0037 0007
g Onstruct [OM47 | 0% |03 0138 023 0170 0083, Onstuct 0205 002 0124 0048 0082 0010 0005y Odnstruct 0037 0000 0016 0007 0015 0000 0000
E 0Shot 0005 0010 0000 0029 0000 0107 0063 E 0Shot 0000 0000 0000 0005 0000 0033 0014 E 0Shot 0000 0000 0000 0000 0000 0007 0.000
(Emgnmnm X 0.699 UEAIgnmhm 0367 0300 033 0238 0220 0371 0314 §Angnnmm 008 0015 009 0037 0081 008 0081
S nstruct : : N & ovuct[ows | o100 omn 0w os ome ozw & stuer oms ooz 00w oo oes ooz
K-Shot : 0432 0539 KShot 0181 0062 0195 0081 0071 0195 057 K-Shot 0044 0000 0037 0015 0022 0044 0015
LTM 0015 0053 0417 0005 0000 0257 0248 LTM 0014 0038 0062 0005 0000 0095 0.043 LTM 0015 0008 0015 0000 0000 0015 0015
AL AM AS EL ES GMaL GMolL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
00 01 02 03 04 05 06 07 08 000 005 010 015 020 025 030 035 040 000 002 004 006 008 010
Accuracy Range Accuracy Range Accuracy Range

Figure 9: Performance heatmaps for prompt strategies and serialization formats on the BFS order
task (Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

44

Under review as a conference paper at ICLR 2026

Performance Analysis: Qwen2.5 (72B) on BFS order — Best Performance
--- Second Best
Hard

oset [IEEW o1 oaigoritnm 0015 078 ot o024 om

oart [ULZH oz 0-coT 0034 0% 0163 025 01

0-Algorithm 0-Algorithm 0133

0-CoT X 0-CoT 0133

g Odnstruct g Olnstruct 0152 0.438 m 005y Odnstruct 0015 m 0163 0141 0215 0104
E 0-Shot E 0-Shot 0129 0348 0310 E 0-Shot | 0437 | 0025 0126 0141 0207 070
§ Algorithm § Algorithm 0.252 0414 0419 § Algorilhmm 0.037 0207 041 0296 0207
S T instruct 0248 0ase 0362 & instruct| 0393 0015 | 0448 | 0119 0141 0193 019
KShot 0414 0119 0343 0243 0220 035 0262 K-Shot 0081 0030 0104 0089 0030 0156 0119
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL

Serialization Formats Serialization Formats Serialization Formats
05 [07 08 09 02 03 04 05 06 07 08 00 o1 02 03 04 05 06

Accuracy Range Accuracy Range Accuracy Range

Performance Analysis: Qwen2.5 (7B) on BFS order
—— Best Performance
=== Second Best
Easy Medium Hard

OAlgorithm | 0422 | 0112 | 0388 0272 0223 0340 0262 O-Algorithm 0105 0010 0133 0076 0052 0100 0085 Mlgorimm 0000 003 0030 0007 0.007
0CoT 0000 0000 0000 0000 0000 0000 0000 0CoT 0000 0000 0000 0000 0000 0000 0.000 0CoT 0000 0000 0000 0000 0000 0000 0000
g Odnstruct 0000 0000 0000 00W 000 0000 0000 o Odnstruct 0000 0000 000 000 0000 0000 0000, Odnstruct 0000 0000 00M 0000 0000 0000 0000
E n.snmm 0092 | 0442 023 0199 0206 0272 E 0Shot 0119 0014 0157 0067 0062 0076 0071 E oshot 0037 oous | oose | oots oots oo oot
& Agoritm 02 | otss (L o3 o2 03 0ms & Agorihm 018 009 09 06 0057 od9 0A0 B Agortm 0030 oato :'.,Tm'l oots oots ooy ooz
Kshot 03% 0126 03 004 0214 0277 o0zm KShot 0095 00 0114 005t 0oz 0105 002 KShot 0015 om0 602 000 oots 002 0000
LTM 004 0000 0063 0034 0024 0029 0049 LTM 0019 0000 002 0024 0010 0019 0033 LTM 002 0000 0015 0000 0000 0007 0007
AL AM AS EL ES GMaL GMolL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL

Serialization Formats Serialization Formats Serialization Formats

Accuracy Range Accuracy Range Accuracy Range

Performance Analysis: Qwen3 (8B) on BFS order
— Best Performance
===~ Second Best
Easy Medium Hard

0-Algorithm | [k X 0-Algorithm 0.524 0037 032 0193 0148 0267 0119

0-CoT [N X [F2Y o657 o710 K m 0144 0333 0156 0141 0319 0215

g Onstruct o omstruct IS o743 [m 009 038 0170 012 03% 0222
§ 0-Shot § 0-Shot | L ia: : 0705 0085 0333 0207 0141 0400 0230
§ Algorithm § P oe71 0705 0676 0126 [0 0304 0207 0311 0289
g coT g cot [RETRIRTS 0748 o136 MOUM 0363 o200 o03m o027
T instruct SRR o510 | o738 0743 o126 MOUM 0304 0222 0341 o222
K-Shot K-shot TV o714 0096 m 0267 0207 032 0237
LM urm PO 0281 0st 063 LM m 0102 0326 013 0104 0378 0141
Es A AS ES GMalL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
- T B]]
04 05 06 07 08 09 02 03 04 05 06 07 08 09 o1 0z 03 04 05 08 07
Accuracy Range Accuracy Range Accuracy Range

Performance Analysis: 04-mini on BFS order
—— Best Performance

=== Second Best

Easy Medium Hard

0-Algorithm o-aigorithm RO y 0-Algorithm 0441 0304 0200 0378 0356
0.coT o-cor [RXITRINETS 0.coT 0461 031 0244 0370 0407
g Odnstuct g onswuct [RCERIEES g Oinstruct 0426 0281 0207 0363 033
§ 0-Shot E o-shot LRI E 0Shot 0144 036 0230 038 0407
@ Agorithm @ mgoritnm RETIED & Agorithm 0074 | 0385 0281 0141 0207 029
g‘ coT E co [RETRINE §' CoT| 0437 0127 0319 023 0141 029 0289
T instruct T instruct RN & instruct| 0400 0104 0259 0207 o419 0478 0207
K-Shot K-shot (RTINS K-Shot m 0428 m 0244 0141 039 0407
LM B oo | oz LM m 0453 m 0267 0200 031 0304
AS AL AM AS EL ES GMaL GMoL

Serialization Formats Serialization Formats Serialization Formats
.
0% 08 0% 092 09 09 098 100 085 070 0. 0 085 090 095 01 02 03 04 05 06
Accuracy Range Accuracy Range Accuracy Range

Figure 10: Performance heatmaps for prompt strategies and serialization formats on the BFS order
task (Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), 04-mini.

45

Under review as a conference paper at ICLR 2026

E.2.2 HEATMAPS FOR Connectivity TASK

As shown in Figure 11 (featuring Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0), Figure 12 (featur-
ing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)) , Figure 13 (featuring Qwen-2.5 (7B),
04-mini) , the heatmaps compare different prompt strategies and graph serialization formats under
easy, medium, and hard difficulties for the Connectivity task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second—best combinations respectively.

0-Algorithm

0-CoT
O-dnstruct

0-Shot
Algorithm

CoT

Prompt Schemes.

Instruct

K-Shot

L™

0-Algorithm
0-CoT
O-instruct
0-Shot
Algorithm

CcoT

Prompt Schemes

Instruct
K-Shot

L)

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct
K-Shot

L™

0-Algorithm
0-CoT
O-instruct
0-Shot
Algorithm

coT

Prompt Schemes

Instruct

K-Shot

LM

Figure 11: Performance heatmaps for prompt strategies and serialization formats on the Connectivity

065

Serialization Formats

092

Easy

AS

094
Accuracy Ran,

Easy

AS EL

0.96
ge

ES

Serialization Formats

o 0
Accuracy Range

Easy

Serialization Formats

075 080 085
Accuracy Range

0.80 0.85

Accuracy Ra

Serialization Formats

0.90

nge

098

095

0.95

Performance Analysis: Claude-3.5 on Connectivity

Medium

0-Algorithm 0994 1.000

0-CoT 1000 1.000

O-Instruct 0994 1.000
0-Shot 1000 1.000
Algorithm 1000 1000

CoT 1000 0994

Prompt Schemes

1000 0988

1000 1.000

1000 1000
AS
Serialization Formats

100 093 094 095 095 097 098 099 100

Accuracy Range

Performance Analysis: GPT-40 on Connectivity

Medium

0-Algorithm

0-CoT

, Onstruct
H
E oshot
2
5
@ Aigorithm
B
£
2
&
AL AM AS
Serialization Formats
100 0800 0825 0850 0875 0900 0925 050 0975 1000

Accuracy Range

Performance Analysis: GPT-40-mini on Connectivity

Medium

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

Serialization Formats

1.00 070 o075 080 08 080 08
Accuracy Range

Performance Analysis: Gemini-2.0 on Connectivity

Medium

0-Algorithm
0-CoT

O-Instruct

P
8
E oshot
S
& Algorithm
8
£ coT
2
& instruct
K-Shot
LM
AL AM A
Serialization Formats
1.00 0800 0825 0850 0875 0900 0825 0950 0975

Accuracy Range

—— Best Performance
=== Second Best

Hard

0-Algorithm

0-CoT

O-nstruct
0-Shot

Algorithm

Prompt Schemes.

AS
Serialization Formats

o 0
Accuracy Range

—— Best Performance
=== Second Best

Hard

0-Algorithm
0-CoT
O-dnstruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct
K-Shot

L™
AS EL ES
Serialization Formats

065 070 075 080 085 090 09
Accuracy Range

—— Best Performance
=== Second Best

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CcoT

Prompt Schemes

Instruct

K-Shot

L™

ES
Serialization Formats

065 070 075 0.80 0.85 0.90 095

Accuracy Range

—— Best Performance
=== Second Best

Hard

0-Algorithm
0-CoT
Odnstruct
0-Shot
Algorithm

coT

Prompt Schemes

Instruct

K-Shot

LM

AM AS
Serialization Formats

075 060 085 050 095
Accuracy Range

task (Part 1). Models: Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0.

46

Under review as a conference paper at ICLR 2026

Performance Analysis: Llama-3 (8B) on Connectivity —— Best Performance

=== Second Best

Easy Medium Hard

0-Algorithm 0-Algorithm 0726 0732 0744 0-Algorithm 0725 0738

0-CoT 0586 0713

0-CoT 0720 0708 0667

O-Instruct 0577 | 0488 0500

0-CoT
Odnstruct 0344 0377 0381 0328 0332 0193 0348

o Odnstruct " ”
8 8 8
£ oshot E oshot 0810 o702 0774 £ oshot 0717 0783
5 5 5
@ Algorithm @ Algorithm 0881 0881 0869 @ Algorithm LY 0578 " 0898
| B a
£ coT £ 0917 . 0887 0899 £ coT 0635 | 0910
e 2 e
S instruct o 0899 0893 0887 S instruct 0586 | 061
K-Shot 0845 0869 0893 K-Shot 0697 0852
Lm 0702 | 0643 0661 Lm 0598 0619
AS As EL ES AS
Serialization Formats Serialization Formats Serialization Formats
060 065 070 075 080 085 080 050 055 060 065 070 075 08 085 090 02 03 04 05 06 07 08 09
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Llama-3.1 (8B) on Connectivity
—— Best Performance
=== Second Best
Easy Medium Hard
0-Algorithm 0-Algorithm 0705 083 0816
0-CoT 0-CoT 0607 0664 0730
o Onstruct Oinstruct & Onstruct |1 522 (JOER or2
8 H 8
£ oshot E oshot £ oshot ; Y 0.848
5 5 5
@ Algorithm @ Algorithm @ Algorithm LY 2 0520
a B a
£ coT £ coT £ coT % 0857
2 2 2
S instruct o < 0836
065
0.648
AM AS AM AS AS
Serialization Formats Serialization Formats Serialization Formats
065 070 075 080 08 080 060 065 070 075 08 08 080 05 055 060 065 070 075 08 085
Accuracy Range Accuracy Range Accuracy Range

Performance Analysis: Mistral (7B) on Connectivity

= Best Performance
=== Second Best

Easy Medium Hard

0-Algorithm 3 0-Algorithm 0-Algorithm

0-CoT 0-CoT 0-CoT

O-instruct O-Instruct O-instruct

2 ° P
H H 8
E oshot E oshot E oshot
5 5 5
& Algorithm & Algorithm @ Algorithm
s B -4
E CoT £ £ CoT
3 g g
S instruct o S Instruct
K-Shot K-Shot
LM LM
As AS
Serialization Formats Serialization Formats Serialization Formats
060 065 070 075 080 085 080 065 00 0.7 0 085 080 050 085 060 05 070 075 080 085
Accuracy Range Accuracy Range Accuracy Range

Performance Analysis: Phi-4 (14B) on Connectivity

—— Best Performance

-=- Second Best

Easy Medium Hard

3 mm 0137 025 O-Algorithm 0aas osss 04z ooss ooe2

0-CoT 0000 | 0357 0025 0004 0.000

omstruct | 0389 oats oara [T

(R s osr2 oera [asie) oee JEXS s QR ocer | oes

0-CoT 0000 0208 0000 0000 0.000

s EEETR

0-CoT 0000 0097 0000 0000 0.000

o Odnstruct " 2
3 H 3

E oonot 00w oaw ose [oczs! oow [EoEE £ oohot oarz oow oo osia oo [ooRIGIEN 5 oshoc som oo omo ome oo Josc NN
2 £ 2

& Aigorithm XTI 0852 0750 & Algorithm 0815 & Algorithm

i i i
13 CoT LRI 0.821 0.929 0.883 £ CoT 0.881 E
8 g 8
o Instruct EFE] 0.735 0.934 0.923 0.867 o Instruct 0.893 a

P oasr | osss ossz ose2 osts y KeShot 0s39 o548

L™ L™ 0.295 0.799

AL AM AS EL ES GMaL GMoL AS ES AL AM AS EL ES GMoL

Serialization Formats Serialization Formats Serialization Formats
00 02 04 05 08 00 02 04 o 08 00 01 o0z 03 04 05 06 07 08
Accuracy Range Accuracy Range Accuracy Range

Figure 12: Performance heatmaps for prompt strategies and serialization formats on the Connectivity
task (Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

47

Under review as a conference paper at ICLR 2026

Performance Analysis: Qwen2.5 (72B) on Connectivity —— Best Performance

=== Second Best

Medium Hard

0-Algorithm

0-Algorithm 0-Algorithm

0-CoT 0-CoT 0-CoT

O-instruct

o Odnstruct o Odnstruct "
8 8 8
£ oshot E oshot E oshot
S S S
@ Algorithm @ Algorithm @ Algorithm
s B s
£ CoT £ CoT £ coT
3 2 3
A Instruct S Instruct O Instruct
K-Shot K-Shot K-Shot
Lm LM Lm
Serialization Formats Serialization Formats Serialization Formats
070 075 080 08 09 095 100 070 075 080 08 09 09 100 065 070 075 080 08 09 095
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Qwen2.5 (7B) on Connectivit;
ysis: Q (7B) Y —— Best Performance
—=- Second Best
Easy Medium Hard
0-Algorithm 0847 0-Algorithm 0-Algorithm 0848
0CoT 0913 0-CoT 0-CoT 0816
o Odnstruct 008 o Odnstruct o Odnstruct X 0803
8 8 8
£ oshot 0898 g oshot £ oshot 0828
5 5 5
@ Algorithm 0898 @ Aigorithm & Algorithm 0828
g B B
£ CoT 0918 £ CoT £ CoT 0852
3 2 2
& instruct 0829 & instruct & instruct 061
K-Shot 0898 K-Shot K-Shot 0881
L™ 0918 L™ LM 0857
AM AS AS AM AS
Serialization Formats Serialization Formats Serialization Formats
065 070 075 08 08 09 0% 060 065 070 075 080 085 090 095 05 06 07 08 09
Accuracy Range Accuracy Range Accuracy Range

Performance Analysis: Qwen3 (8B) on Connectivity —— Best Performance

=== Second Best

Easy Medium Hard

0-Algorithm 0-Algorithm 1.000 0-Algorithm 0775

0-CoT 0-CoT 0.988 0-CoT 0783

O-instruct 0.750

o Odnstruct o Odnstruct 0.9 ”
8 8 8
E oshot E oshot 0982 E oshot 0730
S 5 S
@ Algorithm & Algorithm 0.9 @ Algorithm 0783
s B s
£ coT £ CoT 1.000 £ coT 0170
3 2 3
@ Instruct S Instruct 1.000 O Instruct 0762
K-Shot K-Shot 1.000 K-Shot 0754
Lm LM 0970 Lm 0742
AS AM AS AS
Serialization Formats Serialization Formats Serialization Formats
070 075 08 085 0% 09 100 070 075 08 08 0% 08 100 075 080 8 090 095 1.00
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: 04-mini on Connectivity
—— Best Performance
-=- Second Best
Medium Hard
0-Algorithm 0-Algorithm 0-Algorithm
0-CoT 0-CoT 0-CoT
o Odnstruct o Odnstruct o Odnstruct
8 8 8
£ oshot E oshot £ oshot
2 2 2
5 N 5 5
@ Algorithm & Algorithm @ Algorithm
| B a
£ coT £ coT £ CoT
g 2 g
S instruct S instruct S instruct
K-Shot K-Shot K-Shot
Lm LM LM
AS EL ES AS EL ES
Serialization Formats Serialization Formats Serialization Formats
050 092 094 096 098 1.00 050 052 8 028 100 05 06 07 08 09 10
Accuracy Range Accuracy Range Accuracy Range

Figure 13: Performance heatmaps for prompt strategies and serialization formats on the Connectivity
task (Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), 04-mini.

48

Under review as a conference paper at ICLR 2026

E.2.3 HEATMAPS FOR Cycle detection TASK

As shown in Figure 14 (featuring Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0), Figure 15 (featur-
ing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 16 (featuring Qwen-2.5 (7B),
04-mini), the heatmaps compare different prompt strategies and graph serialization formats under easy,
medium, and hard difficulties for the Cycle detection task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second—best combinations respectively.

0-Algorithm

0-CoT
0-Instruct

0-Shot
Algorithm

CoT

Prompt Schemes.

Instruct

K-Shot

L™

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes.

Instruct

K-Shot

L™

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct
K-Shot

L™

0-Algorithm
0-CoT
O-instruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

065

AS
Serialization Formats

070

Performance Analysis: Claude-3.5 on Cycle

Medium

0-Algorithm

0-CoT

O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes
Prompt Schemes

Instruct

K-Shot

L™

AS
Serialization Formats

085 070 075

Accuracy Range

075 080 085 095 055 060

%0

Accuracy Range

Performance Analysis: GPT-40 on Cycle

Medium

0-Algorithm

0-CoT

O-Instruct

0-Algorithm

= Best Performance
=== Second Best

0-Algorithm

0-CoT

O-instruct

0-Shot

Algorithm

AS
Serialization Formats

070 080 085 090 095

Accuracy Range

= Best Performance
=== Second Best

Hard

0-CoT

O-instruct

2 a
8 8
E oshot E oshot
S S
@ Algorithm @ Algorithm
B s
£ CoT £
2 3
S Instruct a
K-Shot
LM
AS
Serialization Formats Serialization Formats Serialization Formats
075 080 085 080 09 065 070 075 080 085 090 095 060 085 070 075 080 085 080 085
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: GPT-40-mini on Cycle
—— Best Performance
=== Second Best
Easy Medium Hard
0-Algorithm 0-Algorithm
0-CoT 0-CoT
p Odnstruct o Onstruct
8 8
E oshot E oshot
5 S
@ Algorithm @ Algorithm
8 s
£ CoT E CoT
2 2
a S Instruct

Serialization Formats

070

Instruct

K-Shot

L™

AS
Serialization Formats

AS EL

065 070 075 080
Accuracy Range

075 080 085 080 085 080

Accuracy Range

Performance Analysis: Gemini-2.0 on Cycle

Medium

0516

0-Algorithm

0-CoT

0726 O-instruct

0.655 0-Shot
496 Algorithm

0758

Prompt Schemes
Prompt Schemes

0.786

Instruct |11 0.500

0.806

L™

CoT | L)
0738
L

060 085 070
Accuracy Range

075

Accuracy Range

0-Algorithm

K-Shot
L™
AS
Serialization Formats

080
Accuracy Range

085

—— Best Performance
=== Second Best

Hard

0-CoT
O-Instruct
0-Shot
Algorithm
CoT

-

K-Shot 0500

LT 0732 0821

GMal GMoL.

080 080

065
Accuracy Range

070 075

Figure 14: Performance heatmaps for prompt strategies and serialization formats on the Cycle task
(Part 1). Models: Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0.

49

Under review as a conference paper at ICLR 2026

2646
2647
2648
2649

2650
2651 Performance Analysis: Llama-3 (8B) on Cycle —— Best Performance

--- Second Best
2652 Easy Medium Hard

s s [T s I i [
2653

0-CoT 0.405 - 0417 0401 0417 0373 0389 0-CoT 0387 0417 0405 0333 0375 0327 0351

0-CoT

O-instruct O-Instruct 0421 0421 0421 0393 0433 0.401 Odnstruct 0351 0405 0339 0351 0375 0268 0339

a 2 a
8 8 8
E oshot E oshot - 0397 0440 0425 £ oShot 0411 0446
2655 3 3 3
@ Algorithm @ Algorithm 0429 0.397 0310 02 & Algorithm 0333 0375 0387 0327 0321 0310 0310
s B s
2656 £ CoT E C°Tm 0.405 o4 osss E CoT 0381 04m m 0411 0405 0339
@ instruct a Inslm:l- 0421 0417 0425 S Instruct 0429 m 0411 0411 0399 0411
2657 K-Shot KShot 0420 0385 0397 0409 0369 0369 0320 K-Shot 0446 0435 0423 0399 0357 0405 0304
2658 LM U 0476 oss 0wt oss oam oam oer LM ods4 oa oae oam oans ot oas
ES AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
2659 Serialization Formats Serialization Formats
045 050 055 060 065 030 035 040 045 050 030 035 040 045 050
2660 Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Llama-3.1 (8B) on Cycle
2661 v (8B) ye —— Best Performance
2 2 Second Best
66 Easy Medium Hard
2 6 6 3 0-Algorithm 0-Algorithm 0-Algorithm
0-CoT 0-CoT 0-CoT
2664 o Odnstruct o Odnstruct o Odnstruct
8 8 8
2665 E oshot E oshot [T o542 | 0506 o548 0548
5 5 5
@ Algorithm @ Algorithm @ Algorithm O] m 0583 | 0518
2666 g E H
£ CoT £ coT £ [3d o4ss | oseo [o4ss | 052
2 2 I
2 6 6 7 S instruct S Instruct S instruct 0536 m
K-Shot ! K-Shot 0655 0838 o
2668 L o oss6 os os
AS ES GMaL AS EL
2669 Serialization Formats Serialization Formats Serialization Formats
2670 050 052 Os4 08 058 080 0G2 084 08 045 050 085 080 085 070 o4 o4 050 05 0@ o8
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Mistral (7B) on 1
2672 'erformance Analysi stral (7B) on Cycle Best Performance
=== Second Best
2673 Easy Medium Hard

0-Algorithm

2674 R
2675

0-CoT

O-Instruct O-Instruct O-instruct

? 2 ?
8 8 8
E oshot E oshot E oshot
2676 £ £ s
» Algorithm @ Algorithm ® Algorithm
s B s
2 6 77 E CoT E CoT £
3 g 3
O Instruct S Instruct a
2 6 78 K-Shot K-Shot
2 6 79 L™ L™
AL AM As As EL
2680 Serialization Formats n Formats Serialization Formats
2681 0500 0525 0550 0575 0600 0625 0650 0675 048 050 052 054 05 058 060 040 045 0 055 060
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Phi-4 (14B) on 1
2683 erformance Analysis (C) on Cycle Best Performance
Second Best
2684 Easy Medium Hard
o-aigorithm [N Il T o-aigoritm [T TN oz osst omigorm | oa7s oo osst TN o3 o1ss oz
2685 oGoT omw oo oms oo omz oo | 0us 0coT omz oas oae oo 0w o o 0coT aost oz omi oms o o oam
2686 PRI osis 0575 0S5 o710 oo | o77s o7se [EENERNUSURS 0436 | 0631 © 0726 o778 o700 [EMEINICUTSTORRNETAMEPEN 0500 08500 | o750 | 0577
8 8 8
£ osShot 0012 003 0008 0083 009 0000 0032 5 0Shot 0000 0020 0032 0032 0067 0000 0012 5 0Shot 0012 003 002 0006 0036 0000 0024
£ 2 £
2687 & Agorithm 0563 o056 o6z [TCY & Algorithm 0548 0087 0194 &3 Algorithm
s B s
2 6 8 8 £ CoT 0.591 0611 0639 0575 [coT 0556 055 | 0556 [CoT ¥ 0.524
3 2 2
e Instruct 0.520 0.548 0575 0.587 o Instruct 0.524 0.540 0.595 o 0.583
2689 K-Shot 0563 040 KShot 0ss2 0ss6 | 0536 060 0512
2690 L™ 0583 LM 0567 | 0667 0470 0649
AL AM GMoL GMoL. AL AM AS EL ES GMoL
2691 n Formats Serialization Formats
00 o1 02 03 05 06 07 0w o1 02 04 05 06 07 00 o1 02 03 04 05 06 07
2692 Accuracy Range Accuracy Range Accuracy Range

2693

2694 Figure 15: Performance heatmaps for prompt strategies and serialization formats on the Cycle task
2695 (Part 2). Models: Llama-3 (8B), Llama-3.1 (8§B), Mistral (7B), Phi-4 (14B).

2696

2697

2698

2699

50

Under review as a conference paper at ICLR 2026

Performance Analysi:

Medium

Easy

0-Algorithm 0-Algorithm

0-CoT 0-CoT

O-Instruct

Qwen2.5 (72B) on Cycle

—— Best Performance
Second Best

Hard

0-Algorithm
0-CoT

O-Instruct

o Odnstruct » »
8 8 8
E oshot E oshot E oshot
S S S
@ Algorithm @ Algorithm @ Algorithm
g s 8
£ CoT E CoT £
3 2 13
@ instruct S Instruct o
K-Shot K-Shot
o R
As AL AS As
Serialization Formats Serialization Formats Serialization Formats
055 060 065 070 075 080 08 090 05 055 060 065 070 075 080 08 090 09 055 060 065 070 075 080 08 020
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Qwen2.5 (7B) on 1
erformance Analysis: Qwen2.5 (7B) on Cycle Best Performance
===~ Second Best
Easy Medium Hard
0-Algorithm 0-Algorithm 0-Algorithm
0-CoT 0-CoT 0-CoT
o Odnstruct o Odnstruct o Odnstruct
8 8 8
E oshot E oshot E oot 0554
S S S
@ Algorithm @ Algorithm @ Algorithm 0631
8 g 8
£ CoT E CoT £ CoT 0.583
3 2 2
@ instruct @ Instruct @ Instruct 0554,
K-Shot K-Shot 0583
Lm 0.560
As EL ES As AS EL
Serialization Formats Serialization Formats Serialization Formats
050 055 060 0.70 075 045 050 085 070 075 03 o [6 07
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Qwen3 (8B) on Cycle
s (8B) o4 —— Best Performance
-=- Second Best
Easy Medium Hard
0-Algorithm 0-Algorithm 0-Algorithm
0-CoT 0-CoT 0-CoT
o Odnstruct o Odnstruct o Odnstruct
8 H 8
£ oshot E oshot £ oshot
5 5 5
@ Algorithm @ Algorithm @ Algorithm
a B a
£ coT £ CoT £ CoT
e 2 o
S instruct S Instruct S instruct
K-Shot K-Shot K-Shot
Lm Ltm Lm
Serialization Formats Serialization Formats Serialization Formats
om0 ors 0% 095 100 075 080 T 0 095 1.00 065 070 o7 0% 085 100
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: 04-mini on Cycle
—— Best Performance
-=- Second Best
Easy Medium Hard
0-Algorithm 0-Algorithm 0-Algorithm
0-CoT 0-CoT 0-CoT
o Odnstruct o Odnstruct o Odnstruct
8 H 8
£ oshot E oshot £ oshot
2 2 2
5 5 5
@ Algorithm @ Algorithm @ Algorithm
a 8 a
£ coT £ CcoT £
2 2 2
o o o

Instruct

K-Shot

L™

AM

AS AS

Serialization Formats Serialization Formats

092 0.94 0.96 088

Accuracy Range Accuracy Range

Figure 16: Performance heatmaps for prompt strategies and serialization formats on the Cycle task

AL

AM

AS
Serialization Formats
1.00

088 090 082 094 0.98

Accuracy Range

084 086 0.96

(Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

51

Under review as a conference paper at ICLR 2026

E.2.4 HEATMAPS FOR Diameter calculation TASK

As shown in Figure 17 (featuring Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0), Figure 18 (fea-
turing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 19 (featuring Qwen-2.5
(7B), o4-mini), the heatmaps compare different prompt strategies and graph serialization formats
under easy, medium, and hard difficulties for the Diameter calculation task. The color intensity
encodes accuracy (darker = higher), and solid/dashed boxes highlight best/second-best combinations
respectively.

Claude-3.5 on Diameter

Performance Analysi

—— Best Performance
=== Second Best

Medium

0-Algorithm 0-Algorithm

0-Algorithm

0-CoT 0-CoT 0-CoT

Odnstruct O-instruct Odnstruct

0-Shot 0-Shot 0-Shot

Algorithm Algorithm Algorithm

CoT coT

Prompt Schemes
Prompt Schemes
Prompt Schemes

Instruct

K-Shot

L™

Serialization Formats

ation Formats

Serialization Formats

070 075 080 085 090 05 060 065 070 075 040 045 050 055 060 065
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: GPT-40 on Diameter
—— Best Performance
-=- Second Best
Easy Medium Hard
0-Algorithm o-aigorithm LA) 0-Algorithm 0440 m 0226 067
0.coT [P 0535 050 osn 0-CoT | 0405 0452 m 0333 0256
o Odnstruct p Odnstruct | osl | BV o Onstruct| 0464 0435 0464 | 0232 0232
£ osh N, || o £ osh o o
2 2 2
§ Algorithm § Agorithm [T R é Algorithm 0464 0345
T [N o2 |osez oss2 T instruct 040 o252
(™ 065 | oses oo K-Shot 0345 0196
B o5z | osw osnz LM 022 0202
AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats
|
045 050 055 060 065 070 075 080 03 o 0z o 04 05 08
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: GPT-4 ini on Di
—— Best Performance
-=- Second Best
Easy Medium Hard
O-Algorithm 0371 0324 0398 03% 0273 0367 O-Algorithm 0468 0070 0215 0094 005 0472 0120 OAlgorthm 0048 0060 0125 0048 003 0071 0008
0.CoT 0375 0293 | 0441 0309 0281 0371 0363 0.CoT 0476 0445 0227 0433 017 0203 068 0.CoT 0060 0095 0431 0083 0077 0401 0083
g Oinstuct 0328 05 | OMS | 0202 0277 | 0MfB OM4 , Odnstuct 0T 0121 0191 016 009 0160 01 o Oinsuct 000 0SS 03 0089 00 013 049
E 0-Shot 0281 0288 0379 023 0199 0355 0270 E 0.Shot 0143 0433 0203 0164 0113 0188 0472 5 O-Shot 0089 008 0407 0071 0065 0065 031
"2’ agorithm LI R 0340 0371 «é’ Algorithm 0441 0457 m @ Algorithm | 0417 0208 033 0351 0321
§' CoT 03% 0289 | 0457 0340 0242 | 0414 0375 E CoT 0219 0207 0301 0254 o445 020 0207 §' CoT 0190 043 0461 0473 0080 0214 0443
& nstruct 0383 0285 | 0457 0305 0254 0375 0426 O Instuct 025 0227 0200 0250 0476 0234 & nstuct 0167 008 028 0214 0125 0161 0473
KShot 0332 0332 m oas oxrs osts LD Kshot 022 0277 040 032 020 02 KsShot 0479 0485 0321 0250 0155 0238
LTM 03% 0266 0406 0207 023 0383 0389 LTM o152 o8 0199 009 o421 0a72 0227 LTM 0095 0060 0137 0101 0065 0089 0089
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
.
02 03 o 0s o6 01 o 03 04 0s 01 02 03 04
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Gemini-2.0 on Di
—— Best Performance
-=- Second Best
Easy Medium Hard
0-Algorithm 0855 0-Algorithm O-Algorithm 019 0095 0461 0089 0042 023 0250
0.coT 0863 0-coT 0.CoT 0461 0071 0232 0449 0071 0250 0381
o Onstruct o Odnstruct 0574 , Odnstruct 0443 0030 0208 0431 0071 0214 0250
% 0-Shot g 0-Shot 0555 E 0.Shot 0220 0077 0226 0467 0401 0280 0274
g‘ coT 0742 g‘ coT o574 050 g CoT| 0375 0208 | 044D | 0149 0190 0417
T instruct 021 & instruct 0605 | 0578 S instruct| 0393 0321 0429 0202 0413 0399
K-Shot 0844 K-Shot 050l o625 KShot 0351 0286 0360 0473 061 0381
LM 0836 me 036 X LTM 014 0036 0202 0149 0125 0244
AS EL ES AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
0s0 065 070 075 08 08 030 035 040 050 055 060 065 005 010 o015 025 030 035 040 045

Figure 17: Performance heatmaps for prompt strategies and serialization formats on the Diameter

Accuracy Range Accuracy Range

task (Part 1). Models: Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0.

52

Accuracy Range

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Performance Analysis: Llama-3 (8B) on Diameter

—— Best Performance
=== Second Best

Easy Medium Hard
0-Algorithm 0094 0125 0090 0059 0055 0184 0.094 O-Algorithm 0.035 0066 0055 0035 0016 005 0.020 0-Algorithm 0006 0.071 0030 0024 0000 0018 0.030
0-CoT 0.094 0.113 0.152 0.129 0.086 0.133 0.145 0-CoT 0.066 0.070 0.090 0.051 0.070 0.094 0.070 0-CoT 0.036 0.036 0.048 0.030 0.036 0.030 0.018
2 O-instruct 0.047 0.051 0.062 0.035 0.074 0.074 0.082 2 O-Instruct 0.047 0.031 0.023 0.047 0.008 0.047 0.035 2 O-Instruct 0.018 0.012 0.036 0.000 0.024 0.024 0.024
§ 0.Shot 0070 0160 0133 0055 0066 0262 0437 E 0.Shot 0070 0413 009 0055 0027 0445 002 :E OShot 0042 0083 0089 0054 0006 O0O71 0.065
§ Algomhmm 0am1 --m é’ Algorithm 0269 | 0305 | 0203 0223 0223 ozzr é Algorithm 0143 0479 0202 0113 0143 0185 0125
g CoT 0355 -m 0.383 - 0.398 0.367 g CoT 0.250 0211 II-SIII- 0.258 0.230 0215 0.227 E' CoT 0.107 0.143 0.131 0.149 0.155 0.101 0.119
O Instruct 0367 m 0336 0367 0375 S lnstruct 022 024 0289 0262 0270 0172 0219 & nstuct 0419 0431 019 0431 0185 0125 0118
Kshot | 0371 oasr oam K-shn! 0262 ozms om0z oz Kshm ot o155 oz | oz | oror o
LT™M 0.027 0.035 0.066 0.039 0.059 0.090 0.125 LTM 0.020 0.035 0.027 0.027 0.027 0.020 0.047 LT™ 0.012 0.012 0.000 0.012 -I):ﬂ- 0.012 0.030
AL AM AS EL ES GMaL GMoL AL AM As EL ES GMaL GMoL AL AM As EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Llama-3.1 (8B) on Diameter
—— Best Performance
Second Best
Easy Medium Hard
0-Algorithm ~ 0.234 0.227 0277 0.230 0219 0.367 0.289 0-Algorithm 0.172 0.184 0.168 0.184 0.172 0.203 0.160 0-Algorithm 0.113 0.161 0.077 0.125 0.060 0.125 0.089
0-CoT 0.164 0203 0.250 0234 0.184 0.348 0.195 0-CoT 0.062 0.105 0.102 0.109 0.070 0.188 0.121 0-CoT 0.054 0.054 0.030 0.060 0.065 0.089 0.083
g O-nstruct 0.129 0.180 0172 0.125 0.168 0.250 0176 g O-Instruct 0.059 0113 0.070 0.125 0.066 0.156 0.078 g O-Instruct 0.060 0.065 0.054 0.071 0.060 0.060 0.036
5 0-Shot 0.348 0.355 0.387 0.348 0.348 0316 0.348 E 0-Shot 0.203 0.246 0234 0.266 0.180 0.297 0.203 E 0-Shot 0.179 0238 0.167 0.185 0.107 0.161 0479
@ Algorithm 0727 @ Algurilhm- m 0.207 § Algorithm 0.226 - 0274 0274 0327 03683 0155
g‘ CoT 0.684 g CoT |1 0.402 0312 g CoT 0274 0.381 0.304 0.280 0479
& instruct 0.695 S Instruct | 0 oamt oms & |nsmm- 0292 0387 0280 0202
K-Shot 0.527 K-Shot 0.336 0203 0.398 0375 0.395 0312 0.281 K-Shot 0.232 0.256 0310 0.250 0327 0.262 0.155
LTM 0.109 0113 0.203 0.164 0.180 0.348 0.109 LTM 0078 0.020 0.090 0.102 0.070 0.160 0.086 LTM 0.036 0.036 0.012 0.048 0.042 0.095 0.024
AL AM As EL ES GMaL GMoL AL AM As EL ES GMaL GMoL AL AM As EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
—
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Mistral (7B) on Diameter
—— Best Performance
-=-- Second Best
Easy Medium Hard
O-Algorithm 099 0289 0266 0094 0133 0262 0164 O-Algorithm 0062 0456 0090 008 0039 0191 0168 O-Algorithm 0030 0137 003 0048 003 0107 0.1
0CoT 0464 0152 0207 0433 0152 0476 0472 0CoT 0090 0050 0098 0039 0055 0417 0109 0CoT 0042 0065 0071 0077 0048 0060 0054
o Odnstruct 0020 0055 0031 0008 0016 0020 0004 , Olnstruct 0008 0043 0016 0000 0008 0016 0004 , Odnstruct 0000 0018 0006 0000 0012 0006 0.006
5 oo [EEIRE]) & oo s oo G (] o3 st [0 & wowiom w0 o1 | o
[Instruct m 0.387 0.457 0.398 [Instruct 0.203 0.160 0.246 0.199 0.168 0.164 0.199 [Instruct 0.042 0.060 0.054 0.119 0.083 0.101 0.077
K-Shot m 0.355 0391 K-Shot 0.203 0.230 0.242 0.180 0.227 0.340 0.258 K-Shot 0.107 0.077 0.095 0.065 0.119 0131 0.155
LTM 0.145 0.125 0.199 0.141 0.098 0.195 0.188 LTM 0.062 0.043 0.086 0.047 0.078 0.141 0113 LT™M 0012 0.054 0.024 0.018 0.024 0.042 0.060
AL AM AS EL ES GMaL GMoL AL AM As EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
ization Formats Serialization Formats Serialization Formats
I
01 04 05 06 000 005 010 015 020 025 030 035 000 005 01 1 020
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Phi-4 (14B) on Diameter
—— Best Performance
Second Best
Easy Medium Hard
0-Algorithm | 0.375 0203 0242 0207 0277 0-Algorithm 0.203 0230 0145 0086 0082 0098 0-Algorithm 0101 0.185 0089 0.19 0060 0.012 0.60
0-CoT 0.047 0.180 0.102 0.066 0.062 0.453 0.258 0-CoT 0.102 0.250 0.219 0.082 0.020 0.289 0.184 0-CoT 0.101 0.196 0.107 0.125 0.042 0.256 0.089
@ Odnstruct| 0402 m 0316 0332 0309 MCEOM 0355 , Odnstruct 060 0211 0437 0168 0098 0348 0.417 ,, Onstruct 0030 0101 0030 0054 0036 043 0036
§ o-Shot 0281 0277 | Ll 0336 0000 0.000 % 0-Shot 0191 0180 0203 0262 056 0000 0.031 E 0-Shot 0.113 0208 0238 0185 0101 0030 0071
FJ— FJ——— or (TN S & wgortom o o7 ows o s om ous
B o am | B oo o s ez om B cor con [l ome om oo awo o
T nstruct 06 & instruct| 0367 032 0340 S nstuct 028 0381 0244 03 o5 o3
K-Shot 0742 K-Shot UM o602 | 0523 Kshot 0479 0369 0190 oo L] 0363 0286
L™ (XN 0395 LTM 0230 0340 0266 025 0034 0340 0301 LTM 0089 0274 0161 0161 0413 0282 0125
As GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serial tion Formats Ser n Formats

Accuracy Range

Figure 18: Performance heatmaps for prompt strategies and serialization formats on the Diameter

o 3
Accuracy Range

task (Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

53

Under review as a conference paper at ICLR 2026

Performance Analysis: Qwen2.5 (72B) on Diameter

—— Best Performance
=== Second Best

Easy Medium Hard

O-Algorithm 0455 0467 0167 0.149 0.077 0300 0190

0-Algorithm O-Algorithm 0410 0371

0-CoT 0-CoT [N 0.422 0-CoT 0473 0220 0241 0232 0262 0298 0339

Odnstruct 0208 0220 0304 0202 0185 = 0435 0357

g Odnstruct g Onstruct [LLLE 0430 g
E 0-Shot E 0-Shot E 0.Shot 0208 019 0268 0262 0226 0369 0321
(E Algorithm (‘nt Algorithm (‘nt Algorithm 0350 0345 0363 0407 0345 0351 0399
T nstruct T instruct T nstuct 0345 0274 075 0393 0274 | 0452 |
K-Shot K-Shot K-Shot 0327 033 0345 0369 0280 = 0458 0.446
Lm 0.83 m LTM 0113 0174 0208 0244 0185 0286 0292
AL AM AS EL ES AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Qwen2.5 (7B) on Diameter —— Best Performance
=== Second Best
Easy Medium Hard
OAlgorithm 0141 0215 0456 0141 0417 0207 0188 O-Algorithm 0.098 0425 0098 0047 009 0184 0402 O-Algorthm 0000 0024 0030 0030 0024 0071 0042
0CoT 0379 043 03%5 0332 0270 m 0371 0CoT 0195 0250 0250 0160 0137 0203 0203 0CoT 0143 0196 0425 0419 0107 0437 0137
g Onstruct 032|046t om0z o0z m 0414, Olnstuct 0160 0143 0145 0141 OM1 0242 0164 Olnstuct 0012 OA19 0065 0005 00 0155 0137
E 0.Shot 0312 0410 0355 0211 0234 | 0418 E O.Shot 0160 0281 0207 0125 0191 0234 0312 E 0.Shot 0018 0167 0077 0065 0048 0107 0113
§ Algorithm § Algorithm 0398 0426 0355 0391 0414 § Algorithm 0131 0214 0202 01479 0425 0280 0.196
g‘ coT E CoT 032 0312 0355 g‘ CoT 0286 0280 023 0208 0226 0262
Keshot KShot 0207 03 005 035 025 034 0398 KShot 0413 0m o155 0473 ot 028 oter
LTM 0281 0402 0410 0340 0289 0441 0332 LTM 0117 0242 0250 0160 0141 0223 0.199 LTM 0048 0473 0101 003 0060 0077 0107
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
- ——
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Qwen3 (8B) on Diameter —— Best Performance
=== Second Best
Easy Medium Hard
0-Algorithm 0-Algorithm [{LE 0.605 O-Algorithm 0357 0256 | 0417 0310 0238 0345 0315
0-CoT (B2 oc72 | 0583 o0 0-CoT 0204 0292 0381 0435
g Oinstruct g oinstruct [T m 0625 g Oinstruct 0232 0226 | 0458 0411
5 osnat IR oo [asie] ocs H o-shot | L ozus 0262 | 0ad0 0375
§ Algorithm «é’ P] o652 | 0851 0660 § Alqorimmm 0.292 0232 0423
g‘ CoT E (N4 o766 - 0620 " 0768 §' cnm 0298 0262 | 0446 0429
T instruct & instruct RGN0 IEETS T instruct 0256 X 0256 | 0464 0423
K-Shot K-Shot 0.766 K-Shot [ETN o560 0268 m 0452
Lm LM 0621 LM 0423 o208 [UCUE o4t 0220 | 0458
AS AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
060 065 070 080 085 090 045 050 055 O 065 070 075 025 030 035 045 050 055
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: 04-mini on Diameter
—— Best Performance
=== Second Best
Easy Medium Hard
0-Algorithm 0-Algorithm oonigoritnm [N ores [0k oato a3st oas oam
0-CoT 0-CoT 0-CoT 0250 0365 0250 0363 0286 0327

O-instruct Odnstruct | 0411 0479 | 0452 0310 0357 0232 0381

o Odnstruct » »
8 8 8

E oshot E oshot £ oshot 042 o185 0286 0280 0345
5 5 5

@ Algorithm @ Algorithm @ Algorithm | 0417 0.101 0321 0202 0375
g B k3

£ coT E £ cot [0431 0351 0298 0286
3 2 2

@ Instruct o @ instruct [ULILE 0.208 0375 0363 0369

K-Shot K-shot [UEEH] o.107 0327 0274 0333

Lm LTM 0383 0425 0333 0304 0315

EL ES AS AL AM AS EL ES GMaL GMoL

Serialization Formats Serialization Formats Serialization Formats
0.980 0.985 0995 1.000 055 060 065 080 085 02 05

o. 5 03 4
Accuracy Range Accuracy Range

5 099
Accuracy Range

Figure 19: Performance heatmaps for prompt strategies and serialization formats on the Diameter
task (Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), 04-mini.

54

Under review as a conference paper at ICLR 2026

E.2.5 HEATMAPS FOR Shortest path TASK

As shown in Figure 20 (featuring Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0), Figure 21 (featur-
ing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 22 (featuring Qwen-2.5 (7B),
04-mini), the heatmaps compare different prompt strategies and graph serialization formats under
easy, medium, and hard difficulties for the Shortest path task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second-best combinations, respectively.

Performance Analysis: Claude-3.5 on Shortest
—— Best Performance

=== Second Best

Easy Medium Hard

0-Algorithm 0-Algorithm 0.602 0-Algorithm

0-CoT 0-CoT 0516 0-CoT

O-nstruct O-Instruct 0.561 O-Instruct

0-Shot 0-Shot 0.537 0-Shot

0.889 Algorithm

Algorithm

g
s,

CoT 0.902

Prompt Schemes.
Prompt Schemes
z
g
]

)

3
Prompt Schemes.

Instruct 0.881

K-Shot 0914
L™ 0.557
AS
Serialization Formats Serialization Formats Serialization Formats
09 06 09 05 08 09

07 07 08 6 07
Accuracy Range Accuracy Range Accuracy Range

Performance Analysis: GPT-40 on Shortest
—— Best Performance

=== Second Best

Easy Medium Hard

0-Algorithm 0-Algorithm 0-Algorithm

0-CoT 0-CoT 0-CoT

o Odnstruct o Odnstruct o Odnstruct
8 8 8
E oshot E oshot E oshot
2 2 2
5 S y 5 B
@ Algorithm @ Algorithm @ Algorithm
s B s
£ coT E CoT £
3 2 3
@ instruct S Instruct a
K-Shot K-Shot
LM LM
Serialization Formats Serialization Formats Serialization Formats
065 070 075 080 085 080 095 [06 07 08 08 03 04 05 06 07 08 09
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: GPT-40-mini on Shortest
—— Best Performance
=== Second Best
Easy Medium
0-Algorithm 0919 0-Algorithm 0-Algorithm 0224
0-CoT 0.959 0-CoT 0-CoT 0255
o Odnstruct 0.980 o Odnstruct o Odnstruct 028
8 8 8
£ oshot 0972 £ oshot g oshot 0242
5 5 5
@ Algorithm 0.902 @ Algorithm @ Algorithm 0.158
3 B B
£ coT 0.825 £ CoT £ CoT 0130
2 2 2
& instruct 0.837 S instruct S Instruct 0139
0732 K-Shot K-Shot 0.164
0955 LM LTm 0242
A
Serialization Formats Serialization Formats Serialization Formats
02 o 6 08 04 06 7 08 09 02 o3 06 o7 08
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Gemini-2.0 on Shortest
—— Best Performance
-=- Second Best
Easy Medium Hard
0-Algorithm [{0X X 0557 0-Algorithm 0-Algorithm
0-CoT X 0715 0-CoT 0-CoT
o Odnstruct X 0.683 o Odnstruct o Odnstruct
8 H 8
£ oshot 0610 E oshot £ oshot
5 5 5
@ Algorithm X 0992 @ Algorithm @ Algorithm
a B a
£ coT 0923 [XUN £ CoT £
2 2 2
S instruct 0915 (XM & instruct o
K-Shot ! m 0s07 K-Shot
Lm 0720 0703 LM
GMoL AM - AS
Serialization Formats Serialization Formats Serialization Formats
02 04 06 08 04 05 06 07 08 09 03 04 05 06 07 08 09
Accuracy Range Accuracy Range Accuracy Range

Figure 20: Performance heatmaps for prompt strategies and serialization formats on the Shortest task
(Part 1). Models: Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference pap

er at ICLR 2026

Performance Analysis: Llama-3 (8B) on Shortest

Easy Medium Hard
0~Alqorm|mm 0061 m 0313 m n-Algurilhm- 0078 - 0332 025 0316 0225 OAlgorithm 0339 0042 | 0358 0230 0194 0248 0218
0CoT 0203 0057 0199 013 012 0236 054 0.CoT 0419 0041 0197 015 0070 0476 027 0CoT 0152 0055 0185 0085 0048 0158 0109
g Olnstuct 0045 0041 0061 0012 008 00 0020, Olnstuct 0045 002 005 002 005 008 004 g Odnstuct 008 00 004 0012 0012 0057 005
§ 0:Shot 0081 E 0:shot 0090 0369 § oshot| 0345 0042 | 0321 0259 0206 0303 023
§ Algorithm 0.138 E Algorithm 0.082 0.004 § Algorimm- 0048 | | 0273 0207 o000 0212
g coT 0228 g CoT 048 o012 g‘ o002 [NEEH] 0382 - 0012 0303
& Instruct 0228 nstruct 0.107 0.008 [0036 | LT 0.358 - 0.006 0285
K-Shot 0236 K-Shot 0135 0000 0373 0.067 0327 0345 0000 023
LTM 0065 0012 0073 0024 0061 0142 0479 LTM 0049 0041 0074 0057 0049 0148 0476 LTM 0079 0018 0055 0073 0030 0091 0091
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
]
00 o1 02 03 o4 05 06 07 00 01 02 03 04 05 05 00 01 02 03 04 [
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Llama-3.1 (8B) on Shortest
—— Best Performance
Second Best
Easy Medium Hard
Mgorm.m oz [JIEY oaer os o-nigorit [T o100 TN o3z oas oae aa o-nigoritm [T ooor TN o2t oze7 ozet oa
0CoT 0203 0154 0276 0260 0033 0211 0354 0CoT 0148 0061 0254 0164 0082 0176 0291 0.CoT 0121 003 0267 0158 0091 0164 0212
g Odnstuct 0110 0102 0167 0126 0049 0163 022 p Odnstuct O 0029 OM5 0107 oo 1S g Odnstuct 0115 oo ois 006t 00m 0007 od0s
§ 0:hot 0333 m E 0-hot 0316 E n-shm- 0.097 - 0470 0488 0261 0309
§ Algorithm 0008 | 0394 § Algorithm 0.000 § Algorithm 0388 0.042 0.303
g coT (XN o7 g coT 0.008 g CoT 0.036 0315
[o oo [o
K-Shot (XN oisss K-Shot 0012 K-Shol- 0.091 0279
LTM 0150 0085 023 0191 0183 0195 0289 Lm 0057 0238 0143 0090 0476 0213 LTM 0164 0048 0200 0085 0097 0145 0152
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
- |
01 02 03 o4 05 06 07 08 00 01 02 03 04 05 00 01 02 03 04 05
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Mistral (7B) on Shortest
—— Best Performance
-=-- Second Best
Easy Medium Hard
OAlgorithm 0321 0073 0333 0386 0248 0289 035 O-Algorithm 0221 0041 0270 0221 0168 018 0221 O-Algorithm 0145 0018 0164 0097 0133 0061 0.103
ocorfoma| o o ows aus ame ewn | soor om e amm o m om om oo oo om own o om o
g Odnstuct 014 003 01 08 008 002 008, Olnstuct 0057 00 00 008 0025 0081 0054y Odnstuct 0061 0061 0073 0006 0030 0061 0018
§ o0-Shot| 0382 0413 0362 0301 0272 0280 0313 E OShot 0197 0074 0270 0152 0180 0184 0.180 E OShot 0152 003 0212 0073 0079 0067 0.103
& Agorithm 021 c§ Agorithm | 0328 0052 | 0377 0254 0180 0000 0209 &3 Alqomﬁm 0048 023 013 0133 0006 0433
E‘ CoT 0203 0557 g CoT- 0.0% 0258 0000 E‘ corl_ o261 | 0o 0285 om0t oo | 022
S instruct o211 U0 T stuct 0340 005 | 0389 0324 0266 00m | 073 O instuct| 0261 | 063 0285 OMs o1s2 000 0224
K-Shot 0199 X 0593 KShot 0312 0049 0369 0311 0258 0016 0307 Kshot 02 0012 0248 0133 oA o002 052
L™ 0102 - 023 0248 0179 0220 LTM 0270 00% 015 0139 0131 0156 LTM 0182 0073 0170 0097 0121 0127 0097
AL AM AS EL ES GMaL GMoL AL Am EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats n Formats Serialization Formats
-
00 01 03 4 05 06 000 005 010 020 030 03 040 000 005 o 15 020 025
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Phi-4 (14B) on Shortest B
—— Best Performance
Second Best
Medium Hard
Mlgnrm.m- 0207 0362 0049 O-Algorithm 0184 0090 0352 m 0202 0164 0025 OAlgorithm 0103 0042 0152 0358 0067 0127 0024
0-CoT 0000 0.000 0264 0061 0CoT 0000 0000 0000 0004 0000 0307 0.008 0CoT 0006 0012 0000 0012 0.000 m 0024
o vinstruct JEEER 0:22 o om g o [T oo I o ow o o g vinsc [oo [N o oz ooa aom
§ oshot 0028 0037 0053 0475 § 0Shot 0016 0012 0020 0168 0020 0066 0160 % 0-Shot 0042 0030 0000 0103 0000 0158 0303
g Algorithm g Algorithm 0.045 g Algorithm 088 0024 | 0376
g‘ CoT 0805 g CoT 0.000 g‘ coT 0248 o000 R
T nstruct 0817 & instruet 0000 T instruct 0230 I osis
K-Shot 0825 K-Shot 0.000 K-Shot 088 o000 |12
m LTM 0025 0057 0020 0037 0008 0295 0020 LTM 0073 0061 0073 0018 0042 0255 0012
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
ization Formats Ses n Formats Serialization Formats
—— - —
00 02 08 00 o1 02 06 o7 08 00 o1 02 04 05 06 o7

04 06
Accuracy Range

Figure 21: Performance heatmaps for prompt strategies and serialization formats on the Shortest task

03 o
Accuracy Range

(Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

56

—— Best Performance
=== Second Best

Accuracy Range

Under review as a conference paper at ICLR 2026

0-Algorithm
0-CoT
O-nstruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

0-Algorithm 0427

0-CoT

O-nstruct

0-Shot

Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

0-Algorithm

0-CoT

O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes.

Instruct

K-Shot

L™

0-Algorithm
o-coT
Onstruct
0-shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L™

Figure 22: Performance heatmaps for prompt strategies and serialization formats on the Shortest task

0.000

0.000

0211
AL

0.000

0.000

0.561

0.581

0.049
AM

0618

0614

0541

0638
0.947
0972
0.959
0.980

0541

0072
0943
0951
0935
0939
o1
0850
0s02
0043

AS ES
Serialization Formats

07 08
Accuracy Range

Easy
0846 | 0691 0667
0000 0000 0000

0000 0000 0.000

0220 0454 0236
AS EL ES
Serialization Formats

06
Accuracy Range

Easy

AS EL
Serialization Formats

07
Accuracy Range

Serialization Formats

o 8
Accuracy Range

0724

0.016

0.000

0220
GMaL.

o7

0.854

0.862

0.902

0874
GMoL.

Performance Analysis: Qwen2.5 (72B) on Shortest

Medium

0-Algorithm 0-Algorithm

0-CoT 0-CoT

O-Instruct O-nstruct

0-Shot 0-Shot
Algorithm Algorithm

CoT CcoT

Prompt Schemes
Prompt Schemes

AM AS
Serialization Formats

055 060 065 070 075 080 08 09 095
Accuracy Range

Performance Analysis: Qwen2.5 (7B) on Shortest

Medium
v K o RS oo
0.000 0-CoT 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0-CoT
0000 , Oinstruct 0000 0012 0000 0000 0000 0000 0000 , O-nstruct
H 8
R ECIRCEETY
5 5
@ Algorithm 0316 0.041 @ Algorithm
B |
E CoT 0.332 0.020 E CoT
2 g
S Instruct 0320 0.029 & Instruct
K-Shot 0266 N o | K-Shot
021 LTM 0164 0053 0183 0127 0123 0246 0213 Lm
GMoL AL AM As EL ES GMaL GMoL
Serialization Formats
08 00 01 02 03 04 05 06 07 00
Accuracy Range
Performance Analysis: Qwen3 (8B) on Shortest
Medium
0-Algorithm SIS 0.639 0-Algorithm
2oy 0664 0.676 0-CoT
o Onstruct JREICINC S REY o Odnstruct
8 8
E o-shot T 011 £ oshot
S S
LG 09014 | 0787 0955 @ Algorithm
s g
£ 8 o971 0828 0980 £
2 3
o Instruct SETEY 0.832 0.963 o
K-Shot KL 0.869 0.984
(A} 0652 0.689
AS ES GMaL GMoL
Serialization Formats
09 02 04 06 [
Accuracy Range
Performance Analysis: 04-mini on Shortest
Medium
0-Algorithm [0 0.984 0-Algorithm
0-CoT L] 0.984 0-CoT
o Onstruct T 0975 o Odnstruct
H 8
£ oshot JRET) 0.984 E oshot
5 5
@ Algorithm [} 0975 @ Algorithm
B a
E CoT UELZY 0.984 E CoT
2 2
& 0.984 0.984 o

0.984 0.984

0.980 0.980
AS
Serialization Formats

05 06 7 8
Accuracy Range

0.036

0.000

oo Y

(Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

57

= Best Performance
=== Second Best

Hard

0855 0776

0945 0812

0879 0782

0976 | 0776

0921 0794

0903 0758

0.861

0721

0.891

Serialization Formats

05 06 07 08 09
Accuracy Range

—— Best Performance
=== Second Best

Hard
0121 m 0424 0.388 0.442
00ts 0012 0000 0006 0012 0000
0024 0000 0000 0000 0000 0000
orse [N ok oz [EANCETH
o7 [T oass 032 003 | 0436
0224 QO] 0am0 oote
ome [REN oas2 oam0 oo |LE
0091 | 0448 0376 0412 ooz
0024 0224 o182 0091 o018 0255

AM AS EL ES GMaL GMoL
Serialization Formats

02 03 04 05 06

Accuracy Range

—— Best Performance
=== Second Best

Hard

ES
Serialization Formats

04 08
Accuracy Range

—— Best Performance
=== Second Best

0.564
0612

0.606

0,606

Serialization Formats

05 06 o7 08 09
Accuracy Range

Under review as a conference paper at ICLR 2026

E.2.6 HEATMAPS FOR Triangle counting TASK

As shown in Figure 23 (featuring Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0) , Figure 24
(featuring Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 25 (featuring Qwen-2.5
(7B), o4-mini), the heatmaps compare different prompt strategies and graph serialization formats
under easy, medium, and hard difficulties for the Triangle counting task. The color intensity
encodes accuracy (darker = higher), and solid/dashed boxes highlight best/second—best combinations

respectively.

0-Algorithm m
ver
Onstruct m

0-Shot | 0.469.

wgor [0

CoT | 0461

Prompt Schemes

Instruct |
K-Shot
L™
AL

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT 0414

Prompt Schemes

Instruct 0,344

K-Shot | 0418
LTM 0414

AL

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct
K-Shot 0145
LTM 0203

AL

0-Algorithm
0-CoT
O-Instruct
0-Shot
Algorithm

CoT

Prompt Schemes

Instruct

K-Shot

L)

Figure 23: Performance heatmaps for prompt strategies and serialization formats on the Triangle task
(Part 1). Models: Claude-3.5, GPT-40, GPT-40-mini, Gemini-2.0.

Easy
oars [EETN osss | oaw [eam
oae [oaz o3 | oas
0367 0277 | oam
0344 0273 | o0as7
0.406 0430
0422 0344 | 0469
0.402 0340 | 0453
0332 0352 | 0449
0375 0203 | 0445
Am ES GMal
Serialization Formats
035 040 045 050
Accuracy Range
Easy
03 043 0391 0367 0391
033 043 0418 0391 0434
0340 0414 0395 0363 0352
0300 0445 0422 0375
0312 035 0305 0324 0340
0270 0391 0227 0281 0254
0285 0387 0277 0281 0301
0320 0363 0301 0297 0250
oaua | : 043 0305 0449
AM AS EL ES GMalL
ization Formats
035 040
Accuracy Range
Easy
0176 0207 0207 0230 0230
0472 o211 o227
0164 023 0223 o168 0242
0180 0195 0203 0242 0133
0141 0176 0215 0195 0215
odse oo 014 0234 0242
0145 003 0160 0074 023
0180 0148 0164 0148 0043
ots2 o022 o2t | ozez | 0z
AM AS EL ES GMal
Serialization Formats
010 025

030

015 020
Accuracy Range

Easy

AS

ES
Serialization Formats

035 040 045
Accuracy Range

GMaL.

050 056

0457

0445
GMoL.

0.445

0.340

0.363

0.297

0273

0434
GMoL

0.086

0.250

0242

GMoL.

0.605

0613

0570

0.539

GMoL.

060

Performance Analysis: Claude-3.5 on Triangle

Medium
ﬂ-AIgnrilhm 0215 0277 0250 0211 0250 0215
0CoT 0266 0215 0234 0195 0203 0223 0234
o Odnstruct 0277 0219 0258 0277 0160 0223 0227
g [t
5 oshor izl oxin QSRR fo2iel ouve [iacciioes
q.n“' Algorithm 0246 0219 0277 0270 0242 0270 0266
S nstuct 028 0254 0234 0281 080 0254 025
K-Shot 0258 0203 0227 0242 0176 0246 0281
LTM 0250 0254 0246 0472 0230 0254
AL Am EL ES GMaL GMoL
ation Formats
018 020 02 024 02 028

Accuracy Range

Performance Analysis: GPT-40 on Triangle

Medium
@ Algorithm 0246 0472 0219 0491 0199 0164 0468
S nstuct 0223 0132 0184 o010 os1 076
AL AM As EL GMoL
ation Formats

Accuracy Range

Performance Analysis: GPT-40-mini on Triangle

Medium
OAlgorithm 0417 0051 0121 | 0160 | o117 o015 009
0CoT oose 0078 otsz om0 orm ot
g Odnstuct M3 o 0ms ow7 oa2 oAy 013
E 0Shot 0102 0402 013 0441 0109 005 0043
@ Agorithm 0433 009 0152 009 0055
S nstuct 0070 009 0413 045 009 0053 0082
K-Shot 0113 0105 0137 0062 0082 0082 0051
LM o125 ooss or2t | oteo | odos orzs oars
AL AM As EL ES GMaL GMolL
004 008 oo 1 014 o6

Accuracy Range

Performance Analysis: Gemini-2.0 on Triangle

Medium
O-Algorithm 0328 0238 0305 030 0207 0324 0324
0coT oss ot oz | ows | o2 ose oss
E OShot| 0352 0082 035 0371 0246 0273 0270
qu‘ Algorithm 0203 0266 0293 0258 0207 0359 0309
g CoT 0270 0219 0277 0203 o025 030 022
T nstruct 0281 0254 0277 0285 0250 0262 0262
KShot 0280 0062 0305 0305 0230 0285 0289
LTM 0309 000 0297 0207 0301 0203
AL AM AS EL ES GMaL GMoL
Serialization Formats
010 015 02 025 030 03

Accuracy Range

58

0-Algorithm

Prompt Schemes

0-CoT
Odnstruct
0-Shot
Algorithm
CoT
Instruct
K-Shot

L™

0-Algorithm

Prompt Schemes

0-CoT
O-Instruct
0-Shot
Algorithm
CoT
Instruct

K-Shot

0-Algorithm

Prompt Schemes

0-CoT
O-instruct
0-Shot
Algorithm
coT
Instruct
K-Shot

L™

0-Algorithm

Prompt Schemes

0-CoT
O-Instruct
0-Shot
Algorithm
CcoT
Instruct
K-Shot

5]

—— Best Performance
=== Second Best

Hard
0181 0163 o4 o ois oies o
0175 o134 o169 odss o125 ose o
o175 o1ss ows o o o 0200
=
Toms Dot oms omrs oo otes odse
i .,Eu:l 014 oam om0t oa7s 0200
015 0131 0169 0444 006 0181 0144
0183 0144 o150 05 00 0% 06
0150 0150 o5 oes ooz odes 04z
o1t otes oost otrs ot
AL AM ES GMaL GMoL
Serialization Formats
008 010 o0 om o o om
Accuracy Range
—— Best Performance
=== Second Best
Hard
0131 oo 01 o1 o3t 012
0181 0150 0188 04 o5 ows 013
o6 o1z otss ows o o 0%
01% o5 o163 0125 odss oe o
0086 oms 006 0 oo 04 00w
s omss om3 0w ooz o075 006
oms oms oo 0125 o0 om3 oo
0113 0431 0.150 0138 0113 0.119. 0.106
[ttt
oms om0 [oz | o ot ot owo
AL AM AS EL ES GMaL GMoL
Serialization Formats
006 0o o0 o 0w ot o 02
Accuracy Range
—— Best Performance
=== Second Best
Hard
000 0o ooz oo 0075 oo 003t
008 00 oo 0106 0065 00 0075
0% oo oors o075 oo 0i 0ok
002 000 0o o075 o0 00 0006
%0 aon o6 00 oon
am aon ooss oot oow
0o aon ot oos oon
s oo oo 00 oo 002 oot
00 oo oo oo oo 0081 0080
AL AM AS EL ES GMaL GMoL
Serialization Formats
0 oo o0 o ow
Accuracy Range
—— Best Performance
=== Second Best
Hard
ons ome o5 ot ot o2t9 odse
o oow ows | oaw | o 0163
o150 oot 0iss 0169 ores otst
0169 o006 0206 021 ose o 0219
0175 000 o188 088 05 01 0208
015 00 020 065 o006 ois0 0212
075 aos o150 o8 om3 o125 o
o9 0006 081 0% 04 01 0o
014 oo 0w ot oan o2z ot
AL AM As EL ES GMaL GMoL
Serialization Formats
005 010 015 020

Accuracy Range

Under review as a conference paper at ICLR 2026

Performance Analysis: Llama-3 (8B) on Triangle

= Best Performance
Second Best

Easy Medium Hard
O-Algorithm 0090 0078 0105 0090 0441 0448 0421 O-Algorithm 0.027 0023 0031 0035 0047 ;:uzsi: 05 OAgorithm 00t 00 ov9 00w omn 0025
g Odnstruct 0023 003 007 0035 0023 081 0031 g Olnstruct 003 0016 0020 00 0023 0G5 0023 g Odnstruct 0019 0006 Tows oot oo oots oo
§ CoT 0121 0094 0121 0437 0437 0109 0129 E CoT 0031 0027 0027 0043 003 0016 0027 §' CoT oo omt oom osw eo9 00w oo
K-Shot 0117 0120 0078 0120 0133 0105 0145 KShot 0020 005t oo 00ss | oosz | ooss oo Kshot 00fo oote 0031 0031 1 n;«-: 0013 0006
LTM 0031 003 0027 0055 0043 0070 0082 LTM 0004 0023 0020 0020 0016 0016 0.039 LM oots oozs oo 00w oots oo0 00
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
004 006 008 0f0 012 014 00 oot 002 004 005 008 000 001 002 003 004 005 006
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Llama-3.1 (8B) on Triangle
= Best Performance
=== Second Best
Easy Medium Hard
O-Algorithm 0105 0421 0148 0113 0125 0105 0074 O-Algorithm 0.082 0082 0051 0090 009 0051 003 O-Algorthm 0037 0056 005 0069 0062 005 0037
0CoT 0413 0125 0168 0441 0125 0188 0078 0CoT 0121 0417 0074 0121 0074 0141 0059 0-CoT 0094 0031 0062 0094 OM3 0100 0044
g Odnstruct 0066 004 0062 0074 0089 0090 0051 4 Odnstruct 0035 00 0035 0039 0831 0070 0023 g Olnstruct 0019 0005 0019 0025 0031 00M 0028
E 0-Shot 0152 045 084 0448 0180 0168 0074 E, 0.Shot 0078 0082 0062 0070 0086 0066 0.082 5 O-Shot 0037 005 0031 0044 0050 0044 0044
§ Algorithm 0168 0491 0152 0227 0499 0207 0.160 § Algorithm 0055 0086 0086 0102 0090 0059 0.102 § Algorithm 0,037 0019 0044 0069 0046 0013 0.044
§' CoT 0188 0199 0203 0452 0476 0472 0160 g CoT 0094 0102 0084 0090 0102 0078 0102 g CoT oo oo oo oew 0w 0o 0o
KShot 0413 0168 0203 | 0;1:_: 0258 0180 0.195 KShot 0090 0429 0425 | e 4 oms o7 Kshot 0044 0075 o075 oo 00w 0037 0013
LM oo ooss oost ooss o105 ot 00m LM oose oot ooss oes 00 ooss oost LTM 0025 0025 0031 0037 005 0044 0013
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
005 010 015 020 025 0025 0050 0075 0100 0125 0150 0175 0200 002 oo o0 o1
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Mistral (7B) on Triangle —— Best Performance
=== Second Best
Easy Medium Hard
OAlgorithm 0125 0066 0098 003 0102 0117 0125 O-Algorithm 0070 0043 0055 0047 0035 0078 0094 O-Algorithm 0031 0031 0050 0037 0031
0-CoT 0105 0066 0102 0090 0105 0109 0.3 0CoT 0047 0074 0055 0066 0055 005 0066 0CoT 0031 0037 0044 0031 0044 0031 0.006
g Odnstruct 0004 0035 0012 0008 001 0012 0004 , Ginstuct 0008 0012 0012 0004 0016 0016 0000 g Odnstuct 0000 0019 0005 000D 006 000 000
§ 0-Shot 0137 0098 0109 0109 0129 048 0133 E 0.Shot 0062 0078 0070 00B2 009 00B2 0078 § Oshot 0025 0044 0056 0037 0013 | ™ } oo
:‘2’ Algorithm 0117 0117 0433 0420 0441 0109 0452 1‘2’ Algorithm 0031 0051 0059 0047 0051 003 0012 r‘f’ Agorithm 0013 0013 0025 0019 0006 0013 0000
§' CoT 0180 0120 0464 0133 0160 0176 rnzni: E CoT o078 oo 0AW oo oo oost om g CoT 0031 0025 0019 0006 0019 0019 0006
& nstuct 0476 0148 0160 0191 076 0172 & Instuct 008 0055 0402 | 0413 Dooo oos & instuct 0037 oote 0050 oos oot oot3 oot
KShot 0195 0180 0199 0188 0120 0472 K-Shot 0105 0043 | R ra-m-l 0027 0016 KShot 0031 0013 0025 0025 0037 0000 0000
LTM 0117 0059 0078 0082 0066 0085 0090 LTM ooss 0ot 0o% oo 0os 00s9 oo LTM 0019 0031 0037 004 0037 0031 0013
AL AM AS EL ES GMaL GMolL AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
005 01 15 020 000 002 o 008 010 000 001 002 005 004 005 006 007 008
Accuracy Range Accuracy Range Accuracy Range
Performance Analysis: Phi-4 (14B) on Triangle
—— Best Performance
=== Second Best
Easy Medium Hard
OAlgorithm 0035 0033 0043 0078 0102 0000 0.086 O-Algorithm 0008 0008 0000 0031 0055 0000 0045 O-Algorthm 0000 0000 0006 0000 0025 0000 0.006
0CoT 0000 0000 0008 0004 0043 0004 0020 0CoT 0000 0004 0004 0004 0023 0004 0.004 0CoT 0006 0000 0000 0006 0000 0006 0006
o Odnstruct 0472 0437 0499 0476 0227 0242 0164, Olnstruct 0090 0066 0066 0409 0074 0113 0090 , Onstruct 0006 0031 0013 0069 0019 0069 0019
S osn s oom owe oms o oms 00w 5 oswet oo oo oom oo om ooos o6 5 oSt 6ot oo oo oo oo ome 0o0s
§ Mgotm 000 otz oo ot oo owus o & Agorthm oot G105 ogw 0o 0z 0i0s 01§ Agortm Got9 oo% oot oo oo ous ook
T nstruct 0472 047 0460 0139 0476 0188 & nstuct 0452 0191 009 0105 007 0148 0125 & Instruct 0034 0056 0044 o119 007 0056
LM 006 0148 0141 0238 0238 064 LTM 0051 0082 0098 0105 0105 0137 0062 LTM 0075 0031 0087 0069 0106 0031
AL AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL AM A ES GMaL GMoL
Serialization Formats Serialization Formats Serialization Formats
000 005 o 020 025 030 0000 0025 0050 0075 0100 0425 0150 0475 0200 000 002 004 008 012 014 016

Accuracy Range

Accuracy Range

Accuracy Range

Figure 24: Performance heatmaps for prompt strategies and serialization formats on the Triangle task
(Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

59

Under review as a conference paper at ICLR 2026

Performance Analysis: Qwen2.5 (72B) on Triangle

Easy Medium
OAlgorithm | 0.448 0226 0071 0379 0167 0231 0276 O-Algorithm 0474 0405 0167 0071 0000 0088 0105 0-Algorithm 0.000
ocor [NEEH orer JEETN oam mm 0222 0-CoT 0235 0050 0261 0261 0176 024 0286 0-coT 0.000
g Odnstruct 0200 028 0083 0333 0312 0A09 0378, Odnstuct 0200 0077 0130 022 0077 030 0167 4 Odnstruct 0000
§ u-shot ™ = oan E oshot oo o ons 054 ;'.E.?: oo § oswot oom
& Agoritm 032 0105 otz 0z 033 0125 & Mgoritm 005 000 000 oim 0A0 0071 om0 & Agoritim 0000
S instruct| 0400 025 022 007t S instruct 0031 0083 0430 0062 0000 0256 0222 & Instruct 0000
K-Shot| 0420 0219 0250 0263 | L) KShot 0476 0000 0087 0095 0000 = 0353 0250 K-Shot 0,000
LY oses | NN osss) oz LM 067 0000 0167 0273 0204 0312 033 L™ 0000
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMolL AL
Serialization Formats Serialization Formats
01 02 03 04 05 06 07 000 005 010 015 020 025 030 035 040 000 o
Accuracy Range Accuracy Range
Performance Analysis: Qwen2.5 (7B) on Triangle
Easy Medium
O-Algorithm 0148 0109 0456 0090 0417 0472 0421 O-Algorithm 0.066 0047 0059 0031 0078 0.3 0055 O-Algorithm 0037
0CoT 0207 0133 0206 0199 0472 0223 0199 0CoT 0090 0074 0082 0082 0082 0413 0133 0-CoT 0050
g Oinstuct 0160 0160 0161 0102 0125 018 0472 g Odnstuct 0066 0078 0065 0051 0090 0066 005y Odnstruct 0019
§ 0.Shot 0125 0109 0141 0145 0082 0207 0145 E, O.Shot 0082 0094 0047 0070 0031 0074 0.066 E 0-Shot 0,019
§ Algorithm 0219 0254 0238 0230 0219 0184 0211 § Algorithm 0086 0421 0105 0094 0094 0078 0.098 § Algorithm 0,025
g‘ CoT o2 oz oz oam om0z | : g CoT 025 oo 0M7 0105y 0160 | osse oo g‘ CoT 0081
KShot 0203 0zts o1 02 ot 021 0199 Kshot] o160 } 005 o125 ot oa odos Kshot 0082
LM otes om odss ot oae ores ozt LM ome 005 oos oms oo oo o L ooss
AL AM AS EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL
Serialization Formats Serialization Formats
0100 0125 0150 0175 0200 0225 0250 0275 004 006 008 010 012 014 016 002
Accuracy Range Accuracy Range
Performance Analysis: Qwen3 (8B) on Triangle
Easy Medium
O-Algorithm 0203 0211 0262 0223 0305 0379 025 O-Algorithm 0277 0234 0203 0137 0219 0191 0472 O-Algorithm 0206
0-CoT 0199 0472 0215 0301 0258 0445 0426 0CoT o152 0152 0188 0199 0219 0270 0234 0-CoT 0450
g Odnstruct 0215 0203 0188 0270 025 | 04M 03 o Oinstuct 0195 0Z19 0191 018 0190 0191 012 p Odnstuct 0119
E O-Shot 0207 0172 0215 0266 0227 | 045 0375 E 0.Shot 0195 0288 0188 0176 0219 0223 0223 § 0-Shot 0163
"2’ Algorithm | 0.438 | 0.438 L) «é’ Algorithm 0352 0230 0332 0234 0289 0301 0336 :‘2’ Algorithm 0481
T nstruct I TR PN © ncouct 0s79 odss | 0425 071 031 | O 0422 & Intruct 025
K-Shot| 0430 0332 | LU} KShot 0320 0219 0352 025 0297 0383 0461 K-Shot 0263
LTM 0234 0202 0172 0266 0246 0402 0.426 LTM 0172 0219 0160 0176 0207 0254 084 LM 0463
AL AM A EL ES GMaL GMoL AL AM AS EL ES GMaL GMoL AL
Serialization Formats Serialization Formats
02 03 06 07 015 020 025 040 045 R o
Accuracy Range Accuracy Range
Performance Analysis: 04-mini on Triangle
Easy Medium
0-Algorithm 0828 0-Algorithm | 0477 033 0-Algorithm 0188
0-CoT 0816 0CoT| 0457 0355 0CoT 0.194
g Odnstruct 0855 g Odnstruct | 0det 0363 0504 0520 g Olnstruct 0175
£ oshot 0.836 £ usnmm 0.410 0539 E oshot o188
2 2 2
§ Algorithm 0820 Ep Algorithm | 0457 0.383 é Algorithm 0163
g cor 0859 £ cor s oam £ ot s
2 2 2
& instruct 0840 S instruct 0449 0363 & instruct 0144
K-Shot 0855 K-Shot| 0469 0383 K-Shot 0200
m 0820 Ltm 0348 LTM 0.156
AL AM AL
Serialization Formats Serialization Formats
[
080 082 084 086 088 035 040 055 060 005

Figure 25: Performance heatmaps for prompt strategies and serialization formats on the Triangle task

Accuracy Range

4 E
Accuracy Range

(Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), 04-mini.

60

—— Best Performance
Second Best

Hard
0059 0000 0000 0000 011
0000 o0 ooz oder
0000 0077 0000 0077
0065 0032 0000 0037 0091
0000 0043 0000 0056 0071
0083 0095 0000 0105 0062
0150 0000 0000 0000 0.167
0100 0000 0000 0059 0.0
0000 0042 0143 0034 0000
AM AS EL ES GMaL
Serialization Formats
05 010 015 020 025
Accuracy Range
—— Best Performance
--- Second Best
Hard
0031 0037 0031 0013 004
0025 0062 0025
0013 0025 0019 o062 0031
007 0019 0081 0050 0050
007 0031 003 0031 0050
007 0056 0019 0044 0082
0044 0044 0044 0056 0025
———
0025 0056 00%4 0075 | 006
0os0 oosr ooes oo oot
AM AS EL ES GMaL
Serialization Formats
004 o 0.10
Accuracy Range
—— Best Performance
--- Second Best
Hard
0119 0194 0163 0175 0225
0188 0212 0125 0169 0131
0169 0188 0163 0169 0175
0212 0231 0475 0250 0163
0144 0206 0194 0200 0206
0169 0312 0244 0256
0169 0250 0231 0263 0263
0188 0263 0144 0169 0231
0163 0156 0106 0181 0.156
AM AS EL ES GMaL
Serialization Formats
15 020 2 030
Accuracy Range
—— Best Performance
--- Second Best
Hard
0075 0212 0188 0160 0244
0081 0188 0244 0475
0081 0194 0188 0169 0194
0050 0200 0237 0200 088
0056 0181 0131 01438 0169
0062 0219 0206 0169 0231
0025 0163 0144 0419 0169
0044 0200 0206 0475 0219
0037 0% 0212 0194 0194
AM As EL ES GMaL
Serialization Formats
010 015 020
Accuracy Range

0.000

0.000

0.000

0.100

0.000

0.000

0125
GMoL.

0.025

0.004

0.025

0.044

0.019

0.031

0.019

0.044

0.025
GMoL.

0125

0.144

0413

0.163

0175

0.263
0.150
GMoL.

0231

0219
0250
_———
1 0256
s
0212
0250
0244
GMoL.

o077 | oa7a |

o

Under review as a conference paper at ICLR 2026

E.3 GRAPH TYPE SENSITIVITY ANALYSIS

While our main heatmaps analyze interactions between serialization formats and prompt schemes,
the role of graph types in cross-factor analysis requires a different approach. Creating individual
heatmaps for each graph type x task x difficulty combination would yield over 100+ visualizations,
which would be comprehensive but impractical for interpretation. Instead, we introduce a sensitivity-
based framework that quantifies how graph types respond to factor variations while maintaining both
interpretability and extensibility.

Methodology. For each graph type in a given task-difficulty setting, we compute two metrics by
averaging across all models:

* Prompt Sensitivity (S,): For each serialization format, we calculate the standard deviation of
accuracy across different prompt schemes, then average over all formats. This measures how much
performance fluctuates when changing prompts.

* Format Sensitivity (S): Symmetrically, for each prompt scheme, we calculate the standard
deviation across serialization formats, then average over all prompts.

We visualize each task-difficulty combination as a scatter plot in (S;,, Sr) space, where each bubble
represents a graph type, and color encodes mean performance. Using median splits, we partition the
space into four interpretable quadrants: Robust (low S, low St), Prompt-Critical (high S, low St),
Format-Critical (low Sy, high St), and Both Critical (high S;,, high St).

Key Findings: Figures 26-31 present plots covering all task-difficulty combinations. Based on the
analysis of these data, we arrive at the following insights.

1. Open-source models are much more prompt-sensitive than closed-source ones. Across
different tasks, the prompt sensitivity range of open-source models is consistently larger
than that of closed-source models. For example, in the BFS order — Medium setting, the
prompt sensitivity typically falls between 0.12 and 0.16, whereas that of open-source models
ranges only from 0.02 to 0.05. This indicates that closed-source models rely more heavily
on using an appropriate serialization format to achieve strong performance.

2. Closed-source models are more sensitive to serialization format than open-source
models. Across tasks, the format sensitivity range of closed-source models is generally
higher. For instance, in the Diameter calculation — Easy setting, format sensitivity
falls between 0.03 and 0.06, whereas open-source models range from 0.15 to 0.19. This
suggests that open-source models depend more on advanced prompt-engineering strategies
to improve performance, while closed-source models gain more from suitable serialization
formatting.

Notably, the difference in sensitivity between open-source and closed-source models can be explained
by how LLMs typically process graph reasoning tasks, which can be viewed as involving two stages:
(1) understanding the task itself, and (ii) interpreting the graph-structured input. Closed-source models,
due to their stronger reasoning capabilities, encounter fewer difficulties in task understanding; as a
result, they are more sensitive to the information contained in the graph data—i.e., the serialization
format. In contrast, task understanding plays a more significant role for open-source models, and
prompts exert a more direct influence on this stage than serialization formatting, leading to their
higher prompt sensitivity. This interpretation is also consistent with our earlier finding—Finding
3: Open-source models benefit from multi-shot exemplars, whereas closed-source models do not.
Closed-source models do not require additional exemplars to grasp the task, whereas open-source
models rely more on examples to enhance task comprehension.

Extensibility. This framework directly supports GraphOmni’s extensible design. When adding new
graph families (e.g., real-world networks), researchers can apply the same analytical pipeline to
assess sensitivity profiles before conducting full evaluations. Complete implementation details and
visualization scripts are available in our code repository.

61

Under review as a conference paper at ICLR 2026

Format Sensitivity

Format Sensitivity

Format Sensitivity

Figure 26: Graph type sensitivity analysis for BFS order task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model

BFS order - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical !

©

0.14+

0.13

&)
®
3

Mean Performance

@

0.12

0.114

S
3
>

0.10

®

0.09 076

[, Prompt-Critical
0.07 0.08

0.05 0.06
Prompt Sensitivity

(a) Easy - Closed-Source Models

0.084 Robust ‘
0.04

BFS order - Medi Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical | [{070
0.164 @
0.65
0.154 °
v
060 §
E
0.144 8
055 @
® :
0.134]
® o
o1
0.45
Robust \ Prompt-Critical
0.055 0.060 0.065 0.070 0.075 0.080 0.085
Prompt Sensitivity
(c) Medium - Closed-Source Models
BFS order - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis
Format-Critical | [Both Critical !
0.5
0.16
]
v
0.14 0.4 g
£
£
]
‘t
0.121 o 3{
c
[
£
0.104
® @ L.
0,0B- S R R
Robust | | Prompt-Critical o1
003 004 005 006 007 008 0.09

Prompt Sensitivity

(e) Hard - Closed-Source Models

categories.

62

Format Sensitivity

Format Sensitivity

Format Sensitivity

BFS order - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical
0.28
0.091 @
0.26
0.084
0.24
0.071 @ @ 022
0.20
0.064
@ 0.18
0054 e 0.16
RobustJ | Prompt-Critical
0.10 012 014 0.16

Prompt Sensitivity

(b) Easy - Open-Source Models

BFS order - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical
0.11
0.051
@ 0.10
0.09
0.041
0.08
0.034 @ 0.07
@ 0.06
0.02
Robust | | Prompt-Critical | | 1005
0.03 0.04 0.05 0.06 0.07

Prompt Sensitivity

(d) Medium - Open-Source Models

BFS order - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical !0_035
0.034 @ 0.030
0.025
0.021 a
0.020
0.011 0.015
@ 0.010
0.001
0.005
Robust | Prompt-Critical
000 001 002 003 004

Prompt Sensitivity

(f) Hard - Open-Source Models

Mean Performance

Mean Performance

Mean Performance

Under review as a conference paper at ICLR 2026

Format Sensitivity

Format Sensitivity

Format Sensitivity

Figure 27: Graph type sensitivity analysis for Connectivity task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model

Connectivity - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

0085 T Format-critical | [Both critical !”55

0.060- 0.950

0.0551 0es

0.0504 0.940

0.0454 0.935

0.040+ ERP 0.930
BEFEMM

0.035 0:925
. R —}

0.0301 Robust | | Prompt-Critical || [*°*°

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
Prompt Sensitivity

(a) Easy - Closed-Source Models

Connectivity - Medi Mode (CI d-S ce Models)

Graph Type Sensitivity Analysis

Format-Critical | | Both Critical
i b 0.960
0.05-
0.955
0.950
0.044
0.945
(BERP |
0.940
0.03 @
0.935
0.02 @ 0930
0.925
Robust | Prompt-Critical

0010 0015 0020 0.025 0.030 0.035 0.040 0.045
Prompt Sensitivity

(c) Medium - Closed-Source Models

Connectivity - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical
oRf—— / 094
0.104 Q 0.92

0.90
0.08+

0.88
0.06

0.86
0.04

0.84
0.021 Robust\\ [Prompt-CriticaI 0.82

0020 0025 0030 0035 0.040 0.045 0.050
Prompt Sensitivity

(e) Hard - Closed-Source Models

categories.

Mean Performance

an Performance

Me:

Mean Performance

63

Format Sensitivity

Format Sensitivity

Format Sensitivity

Connectivity - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.0804 Format-CriticaI/\ \\Both Critical !0 82
0.0751 080
0.070- @ 0.78
0.065 @ 0.76
0.060 @ 0.74
0.0554 0.72
0.0504 0.70
O
0.0454 0.68
0.0401 Robust | (Prompt-Critical | | oss

0.075 0.080 0.085 0.090 0.095 0.100 0.105
Prompt Sensitivity

(b) Easy - Open-Source Models

Connectivity - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.0751 Format-Critical | | Both Critical
. D e 0.78
0.070
@ 0.76
0.0651
0.0601 0.74
0.055
@ @ 0.72
0.0501
0.70
0.0454 Robust] | Prompt-Critical
0.08 0.09 0.10 011 0.12

Prompt Sensitivity

(d) Medium - Open-Source Models

Connectivity - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0097 Format-Critical | | Both Critical
3 h 0.75
0.08-
0.70
0.07-
@ 0.65
0.061 @
0.60
0.05-
Robust | t Prompt-Critical | | [0
0.06 0.08 0.10 012 014

Prompt Sensitivity

(f) Hard - Open-Source Models

Mean Performance

Mean Performance

Mean Performance

Under review as a conference paper at ICLR 2026

Cycle - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

@

Format-Critical | | Both Critical

0.15+
0.144
0.13

0.12

®
O

0.114

Format Sensitivity

0.101 @ @

Robust\\ (Prompt-Critical

0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075
Prompt Sensitivity

(a) Easy - Closed-Source Models

0.091

Cycle - Medium Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

0141 Format-Critical |

®

| Both Critical

0.131

0.121

0.11

®

0.10

Format Sensitivity

e
©

Robust\\
0.04

0.091
[Prompt-Critical
0.05 0.06 0.07 0.08
Prompt Sensitivity

(c) Medium - Closed-Source Models

0.08+

Cycle - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

0.14

Format-Critical | | Both Critical

®

0.13

0.121

® ®

0.11

0.10

@

Format Sensitivity

0.091

0.08

(Prompt-Critical
0.04 0.05 0.06
Prompt Sensitivity

(e) Hard - Closed-Source Models

Robust\\
0.03

0.071

0.07

0.75

o
3
3

S
3
3

Mean Performance

o
3
N

°
X
Mean Performance

0.72

) S)
3 3 <
3] N

Mean Performance

o
Y
8

Cycle - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

o
Y
g

S
o
©

Mean Performance

S
I
&

0.57

Format-Critical | | Both Critical
0.07 @
>
2
H O
3
@ 0.06
[
0
-
© BERP
£ 0.05-
£ ®
0.04
Robust\\ Prompt-Critical
009 010 011 012 013 014 015
Prompt Sensitivity
(b) Easy - Open-Source Models
Cycle - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis
Format-Critical | | Both Critical
0.060

‘? 0.0554 @
>
£ 0.0501
"]
é 0.0454 @
3 ®
1°. 0.0404 @
w BERP
0.0354
00301 pobust (Prompt-Critical

0.08 009 010 011

Prompt Sensitivity

(d) Medium - Open-Source Models

006 0.07

Cycle - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.0707 Format-Critical | | Both Critical
0.0654
2 0.060- @
°
=
@ 00551
@
a &
‘g‘ 0.0504
‘6 BERP)
Lo ® S
0.0404
. e ——
0.0354 Robus't] ' \ Prompt'-CrltlcaI
0.06 0.08 0.10 0.12

Prompt Sensitivity

(f) Hard - Open-Source Models

!0 58
0.57

>
@
£

Mean Performance

012

!0 55
054

S
o
@

>
@
0
Mean Performance

>
@

0.50

Figure 28: Graph type sensitivity analysis for Cycle task, comparing open-source and closed-source
models. This comparison reveals whether sensitivity patterns are consistent across model categories.

64

Under review as a conference paper at ICLR 2026

Diameter - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical l
0.08) L 074
0.72
2 0.071
'; 0.70
2
‘@
5 0.68
9 0.064
E 0.66
E
E 0.051 0.64
° 0.62
0.04 {r=mmm (e
Robust | | Prompt-Critical | | {050
0030 0.035 0.040 0.045 0.050 0.055 0.060
Prompt Sensitivity
(a) Easy - Closed-Source Models
Diameter - Medi Mode (Closed-Source Models)
Graph Type Sensitivity Analysis
0.114 Format-Critical | | Both Critical
. h 0.54
0.10-
E 0.52
S
£ 0.091
7]
5 @ 0.50
“ 0.081 ’
ol
]
£
£
E 0.07 0.48
®
. 0.46
Robust | Prompt-Critical
003 004 005 006 0.07
Prompt Sensitivity
(c) Medium - Closed-Source Models
Diameter - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis
0.124{ Format-Critical | | Both Critical H
0.42
0.111
> 0.40
=
.2 0.104
.E. 0.38
g
& 0.09
0.36
g O
‘o' 0.08 034
'S
0.07 @ 0.32
0.064 Robust\\ [Prompt-Critical 7030

0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080
Prompt Sensitivity

(e) Hard - Closed-Source Models

Figure 29: Graph type sensitivity analysis for Diameter task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model

categories.

Mean Performance

Mean Performance

Mean Performance

65

Diameter - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.42
Format-Critical | | Both Critical H
0.07
' 0.40
>
£ 0.06
2
o ®
2 @ 038
& 0.05
ol
®
E
0.36
£ 0.044
0.034 R
Robust | | Prompt-Critical
015 016 017 018 019

Prompt Sensitivity

(b) Easy - Open-Source Models

Diameter - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical

0.050 026

S
N
&

Performance

0.045

S
R

0.0404 023

Format Sensitivity
®

o
o
@
vl

0.0304

Robust | \ Prompt-Critical

011

0.12 0.13 0.14

Prompt Sensitivity

(d) Medium - Open-Source Models

0.10

Diameter - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

.05 RN =R !
0.060
0.15
Z ®
E 0.0554
2
8 4050 o
€ 0.050
w
-
® 0.0454 013
: (&) ®
'S 4
0.040 o
0.0354
Robust | (Prompt-Critical| | [**
0.0301 Robust | (Prompt-Critical | | |

0.065 0.070 0.075 0.080 0.085 0.090 0.095
Prompt Sensitivity

(f) Hard - Open-Source Models

Mean Performance

o

Mean Performance

Under review as a conference paper at ICLR 2026

Shortest path - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical !o.ss
0.124
@ 0.88
>
£ 0.11 4
3 £
-]
S @ 087 £
& 0.101 @ €
s g
® 086 &
£) g
0.094
2 =
0.85
0.084 @
Robust | | Prompt-Critical | | [**
0.05 0.06 0.07 0.08 0.09

Prompt Sensitivity

(a) Easy - Closed-Source Models

Shortest path - Medi Mode (CI d-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical
_— — 0.84
0.204
E 0.181 0.82 @
2 £
S
@ 0.16- E
]
9 ‘t
v 0.80 o
T 0.14 <
. 1 c
; © g
* 0121 078
| & @
[T, o — S,
Robust | Prompt-Critical | | [°7¢

0.035 0.040 0.045 0.050 0.055 0.060 0.065
Prompt Sensitivity

(c) Medium - Closed-Source Models

Shortest path - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

0.80
Format-Critical | | Both Critical
0.30 - S
0.78
2 0.251 @
.2 0.76§
s £
< H
9 204 ° 0.74%
0 [}
- \ o
: ;
~ e
2 0.151 =
0.70
0.104 . @
Robust | [Prompt-Critical | | |
002 003 004 005 006 007

Prompt Sensitivity

(e) Hard - Closed-Source Models

Figure 30: Graph type sensitivity analysis for Shortest path task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model

categories.

66

Format Sensitivity

Format Sensitivity

Format Sensitivity

Shortest path - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.22 Format-Critical | | Both Critical Io 48
0.46
0.204
0.44
0.18 0.42
@ 0.40
0.164
0.38
0.36
0.141
0.34
0.124 Robust | [Prompt-CriticaI

018 020 022 024 026 028 0.30
Prompt Sensitivity

(b) Easy - Open-Source Models

Shortest path - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.224 Format-Critical | | Both Critical I
Gl C 036
0.204 0.34
0.184 0.32
0.161 0.30
0.144 0.28
0.26
0.12-
0.24
0.101 Robust | {Prompt-CriticaI
012 014 016 018 020 022 024

Prompt Sensitivity

(d) Medium - Open-Source Models

Shortest path - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis
!0 350

0.325

Format-Critical | LBoth Critical

0.2504

0.2254

0.2004 0.300

0.275

@ 0.250

0.225

0.1754

0.1504

0.1254

0.200
0.100+

0.175
0.0754

Robust\\ (Prompt-Critical

0.08 010 012 0.14 0.16 0.18 0.20 0.22 0.24
Prompt Sensitivity

(f) Hard - Open-Source Models

0.150

Mean Performance

Mean Performance

Under review as a conference paper at ICLR 2026

Triangle - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical

0.60
!u 55

0.0704
0.0651 e 0.50
£ g
2 0.060- . <
b 045 @
& E
4]
3 0.055 DAOE
- a
© 0.0504 c
£ 035 ®
- [
£ 0.0451 @ s
. 0.30
0.0404
0.25
0.0351 Robust | {Prompt-CriticaI
L—+o0.20

0.02 003 004 005 006 007
Prompt Sensitivity

(a) Easy - Closed-Source Models

- Medi

Triangl Mode (CI d-Source Models)

Graph Type Sensitivity Analysis

Format-Critical | | Both Critical | [1,,4
0.06 " ——_—
@ 0.26
2 0.051 024 o
= Iv)
2 £
.‘F‘: ° 0.22 E
5 0.041 ozo‘g
v]
E o
£ 018 §
5 0.031 2
o =
L] 0.16
0.024 0.14
Robust\\ Prompt-Critical 0.12
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Prompt Sensitivity
(c) Medium - Closed-Source Models
Triangle - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis
0.061 Format-Critical | {Both Critical I
e S — 0.16
0.05 @ 0.15
>
- 1
:E 0. 14E
-
@ 0.041 013 E
< S
2 £
- @ 012
£ 0.03 £
= 011 Q@
2
0.024 0.10
S S P S 0.09
Robust | | Prompt-Critical
0.01 U

0.015 0020 0025 0030 0035

Prompt Sensitivity

(e) Hard - Closed-Source Models

Triangle - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

Format-Critical | | Both Critical | [{o.2s0

0.044 ° 0.225
.A? 0.200
2
= 0.031
g 0.175
[}
3
- 0.150
©
£ 0.02-
=
2 0125
0.014 0.100
Robust \ (Prompt-CriticaI 0.075

002 0.3 0.04 005 0.06 007 0.08 0.09
Prompt Sensitivity

(b) Easy - Open-Source Models

Triangle - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.030 s P
Format-Critical | | Both Critical I
_ [0

0.0254

0.09
>
=
2 0.0204 e
'a 0.08
c
&
0.0154
E 0.07
£ ®
=
S
& 0.0101 0.06

0.0054 - 0.05

Robust | Prompt-Critical

0010 0.015 0.020 0.025 0.030 0.035 0.040
Prompt Sensitivity

(d) Medium - Open-Source Models

Triangle - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

0.0254

Format-Critical | | Both Critical

0.044
!0.042
0.0204
0.040

>
2
S
k= 0.038
2 0.0151 °
3 ‘ 0.036
B &
§ 0.010 0034
'S
0.032
0.0054 0.030
Robust | [Prompt-CriticaI

0.0079.0100.0129.0150.0179.0200.0229.025@.0275
Prompt Sensitivity

(f) Hard - Open-Source Models

Mean Performance

Mean Performance

Mean Performance

Figure 31: Graph type sensitivity analysis for Triangle task, comparing open-source and closed-source
models. This comparison reveals whether sensitivity patterns are consistent across model categories.

67

Under review as a conference paper at ICLR 2026

E.4 ERROR ANALYSIS

This subsection presents an in-depth analysis of common error patterns observed in model responses.
We categorize representative error cases and provide concrete examples to illustrate the specific
challenges LLMs face in graph reasoning tasks. This detailed error analysis extends the brief
discussion of error categories presented in Result ® in Section 4.1.

E.4.1 Diameter calculation CASE 1

Diameter

* QUERY: Given a graph, your task is to determine the diameter of this graph. Graph: Adjacency Matrix
is
[O11111111]

[101011111]

[1T10111111]

[101011111]

[T11101111]

[T11110111]

[T11111011]

[T11111101]

[T11111110]]

Q: What is the diameter of this graph?
A:

* TASK INFO: diameter,easy , 0-shot, Adjacency Matrix

* GROUND TRUTH: 2.0

* MODEL: Mistral

* WRONG ANSWER: the diameter of the given graph is 7.
explanation: to find the diameter of a graph, we first find the shortest path between every pair of vertices
using a shortest path algorithm like dijkstra’s or floyd-warshall. however, since the graph is unweighted,
we can find the diameter by simply considering the longest path between any two vertices.
in this case, the longest path we can find is: - vertex 0 -> vertex 1 -> vertex 2 -> vertex 3 -> vertex 4 ->
vertex 5 -> vertex 6 -> vertex 7 -> vertex 8
the number of edges in this path is 8 - 1 =7, so the diameter of the graph is 7.

* ERROR CAUSE ANALYSIS: This answer does not accurately define the concept of diameter. In the
reasoning process, it mentions "first find the shortest path between every pair of vertices," which is
correct. However, the final description refers to "the longest path," which can be misleading. In fact,
the diameter is defined as the longest of all shortest paths rather than the longest path between any two
vertices. Therefore, this explanation does not fully align with the formal definition of diameter.

68

Under review as a conference paper at ICLR 2026

E.4.2 Diameter calculation CASE 2

Diameter

* QUERY: Given a graph, your task is to determine the diameter of this graph. Graph: Adjacency List is
{0:[1,2,3,4,5,8,10, 11, 13, 15], 1: [0, 2, 3, 4,5, 6, 13, 15], 2: [0, 1, 3,4, 5,6, 7,9, 12, 14], 3: [0, 1, 2,
4,5,7,11,13,14],4: [0, 1,2,3,5,6,7,8,17],5: [0, 1,2, 3,4, 8,9], 6: [2,1,4,9],7: [2,4, 3, 10, 14,
15, 16], 8: [5, 4,0, 12, 16, 17], 9: [6, 2, 5, 10, 11, 12], 10: [0, 9, 7], 11: [3, 9, O], 12: [2, 9, 8], 13: [3, 0,
1], 14: [2,3,7],15: [7, 1, 0, 16], 16: [15,7, 8, 17], 17: [16, 8, 4]}

Q: What is the diameter of this graph?

A: Let’s break down this problem:

TASK INFO: diameter, medium, LTM, Adjacency List

GROUND TRUTH: 3.0

MODEL: Qwen-3

WRONG ANSWER:

To determine the **diameter** of a graph, we must identify the **longest shortest path** between any
two nodes in the graph. This involves computing the **shortest path** between all pairs of nodes and
then finding the **maximum** of these values.

Step 1: Understanding the Graph The graph is represented as an **adjacency list** with 18 nodes
(0 through 17). The graph appears to be **connected**, which is essential for the diameter to be
well-defined. We will use **Breadth-First Search (BFS)** from each node to compute the shortest
paths to all other nodes.

Step 2: Strategy - For each node, perform BFS to find the shortest distances to all other nodes. -
Keep track of the **maximum shortest distance** found across all node pairs. - The **maximum** of
these distances is the **diameter**.

Step 3: Key Observations and Calculations Through careful inspection and BFS traversal, the
longest shortest path was found to be between the following pairs of nodes:

- **Node 12 to Node 15*%*: Path: 12 -9 — 5 — 0 — 15 (4 steps) Alternatively: 12 -8 -4 — 1 —
15 (4 steps)

- **Node 9 to Node 16**: Path: 9 — 2 — 4 — 8 — 16 (4 steps)

- **Node 12 to Node 15** and **Node 9 to Node 16** are two such pairs where the **shortest path is
exactly 4 steps**.

Other pairs were found to have shorter distances (e.g., 2 or 3 steps). No pair was found to have a shortest
path longer than 4 steps.

Final Result Since the **longest shortest path** in the graph is **4 steps**, the **diameter** of
the graph is:
$$ {4} $$

* ERROR CAUSE ANALYSIS: This result fails to find a shorter path because it ignores the two critical
edges 7-15 and 7-16 in the graph.12 To 15 there is actually a 3-step shorter path: e.g., 12 -2 — 7 —
15. For 9 to 16 there is a 3-step path: 9 — 10 — 7 — 16. Once these two edges are taken into account,
it can be seen that no two points in the graph have a shortest path of more than 3 steps. these two edges
into account, it follows that no two points in the graph have shorter paths than 3 steps. Therefore, the
diameter of the graph is indeed 3, not 4.

69

Under review as a conference paper at ICLR 2026

E.4.3 Connectivity CASE 1

Connectivity

* QUERY: Determine if there is a path between two nodes in the graph. Graph: Edge List is
31
42
54
65
75
Q: Is there a path between node 1 and node 5?
A:
Let’s break down this problem:
* TASK INFO: connectivity, easy, LTM, Edge List
* MODEL: Mistral
* GROUND TRUTH: False
* WRONG ANSWER:
1. we have a graph with 7 nodes (1 to 7) and 6 edges.

2. to find a path between two nodes, we can use depth-first search (dfs) or breadth-first search (bfs).
both algorithms will help us traverse the graph and find a path if one exists.

3. in this case, we will use dfs because it is more efficient for sparse graphs like this one.
4. we start at node 1. since there is an edge from node 1 to node 4, we visit node 4.

5. from node 4, we find an edge to node 5, so we have found a path from node 1 to node 5.
6. therefore, there is a path between nodes 1 and 5 in the graph.

so the answer is: yes, there is a path between node 1 and node 5.

* ERROR CAUSE ANALYSIS: This answer misunderstands the EL serialization format. Although it
correctly states the number of nodes and edges, it incorrectly assumes that there is an edge between
nodes 1 and 4. This mistake leads to incorrect conclusions in the subsequent reasoning.

70

Under review as a conference paper at ICLR 2026

E.4.4 Cycle detection CASE 1

Adjacency List is

Q: Is there a cycle in this graph?

A:

Let’s think step by step:

TASK INFO: cycle, medium, 0-CoT, Adjacency List
MODEL: claude-3-5-sonnet-20241022

GROUND TRUTH: False

WRONG ANSWER:

1) First, let’s understand the connections:
- Node 0 connects to 1,2,3,4,6

- Node 1 connects to 0,9

- Node 2 connects to 0,7,8

- Node 3 connects to 0,5

- Node 4 connects to 0

- Node 5 connects to 3

- Node 6 connects to O

- Node 7 connects to 2

- Node 8 connects to 2

- Node 9 connects to 1

2) Looking at some paths:

-0— 1 — 0 (This is a cycle!)

-0 — 2 — 0 (This is another cycle!)
-0 — 3 — 0 (This is another cycle!)

return paths.
Yes, there are multiple cycles in this graph.

* QUERY: Given a graph representation, your task is determining whether the graph has a cycle Graph:

{0: [1, 2,3, 4,6], 1: [0, 9], 2: [0, 7, 8], 3: [0, 51, 4: [0], 5: [3], 6: [O], 7: [2], 8: [2], 9: [1]}

Let’s analyze this graph to find if it contains any cycles:

3) The graph has multiple cycles. The simplest ones are between node 0 and its neighbors that have

ERROR CAUSE ANALYSIS: This answer misunderstands cycle detection in an graph. Although it
correctly lists the connections between nodes, it incorrectly assumes that a direct backtracking step
(e.g.,0 — 1 — 0) forms a cycle. In an graph, a valid cycle must involve at least three distinct nodes.
This mistake leads to incorrect conclusions about the presence of multiple cycles.

71

Under review as a conference paper at ICLR 2026

E.4.5 Triangle counting CASE 1

QUERY: Given a graph, your task is to determine how many triangles in this

graph. Graph: GraphML is <?xml version="1.0" encoding="utf-8’?> <graphml
xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemal ocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgedefault="undirected"><node
id="0"/>

<node id="1"/>

<node id="2"/>

<edge source="19" target="21"/>

<edge source="19" target="25"/>
</graph></graphml>

Q: How many triangles are in this graph?

A:

TASK INFO: triangle, hard, 0-shot, GraphML
MODEL: Mistral

GROUND TRUTH: 47

WRONG ANSWER:

to find the number of triangles in a graph, we can use the formula for the number of triangles in a simple
graph, which is given by n / 3, where n is the number of triples of distinct vertices that form a triangle.
in this graph, we have 26 nodes, so we would calculate 26 / 3 = 8.666666666666667, but since we
cannot have a fraction of a triangle, we round down to 8. therefore, there are 8 triangles in this graph.
ERROR CAUSE ANALYSIS: This analysis misunderstands triangle counting in a graph. While it
correctly identifies sets of three nodes, it incorrectly assumes that the number of triangles can be
calculated as /3. In a graph, a valid triangle requires all three nodes to be mutually connected. This
mistake reflects a lack of proper understanding of the graph’s topological structure

72

Under review as a conference paper at ICLR 2026

E.4.6 Triangle counting CASE 2

* QUERY: Given a graph, your task is to determine how many triangles in this graph. Graph: Adjacency
Listis {1: [0], 0: [1, 2, 3, 6], 2: [0, 7], 3: [0, 4, 5, 6], 4: [3, 6], 5: [3], 6: [0, 3, 4, 8], 7: [2], 8: [6]}

Q: How many triangles are in this graph?

A:

TASK INFO: triangle, easy, 0-shot, Adjacency List

MODEL: Qwen-2.5

GROUND TRUTH: 2

WRONG ANSWER:

to determine the number of triangles in the graph, we need to find sets of three vertices where each pair
of vertices is connected by an edge. given the adjacency list, we can go through each vertex and check
all possible combinations of its neighbors to see if they form a triangle.

here’s the adjacency list for reference: “* 1: [0], O: [1, 2, 3, 6], 2: [0, 7], 3: [0, 4, 5, 6], 4: [3, 6], 5: [3],
6: [0, 3,4, 8], 7: [2], 8: [6] “*

let’s go through the vertices and their neighbors to find triangles:

1. **vertex 0:** - neighbors: [1, 2, 3, 6] - check combinations: - (1, 2): not connected - (1, 3): not
connected - (1, 6): not connected - (2, 3): not connected - (2, 6): not connected - (3, 6): yes, connected
(forms triangle (0, 3, 6))

2. **vertex 1:** - neighbors: [0] - only one neighbor, so no triangles.

3. *#*vertex 2:** - neighbors: [0, 7] - check combinations: - (0, 7): yes, connected (forms triangle (0, 2,
7))

4. **vertex 3:** - neighbors: [0, 4, 5, 6] - check combinations: - (0, 4): yes, connected (forms triangle
(0, 3, 4)) - (0, 5): not connected - (0, 6): yes, connected (forms triangle (0, 3, 6)) - (4, 5): not connected
- (4, 6): yes, connected (forms triangle (3, 4, 6)) - (5, 6): not connected

5. **vertex 4:** - neighbors: [3, 6] - check combinations: - (3, 6): yes, connected (forms triangle (3, 4,
0))

6. **vertex 5:** - neighbors: [3] - only one neighbor, so no triangles.

7. **vertex 6:** - neighbors: [0, 3, 4, 8] - check combinations: - (0, 3): yes, connected (forms triangle
(0, 3, 6)) - (0, 4): yes, connected (forms triangle (3, 4, 6)) - (0, 8): not connected - (3, 4): yes, connected
(forms triangle (3, 4, 6)) - (3, 8): not connected - (4, 8): not connected

8. **vertex 7:** - neighbors: [2] - only one neighbor, so no triangles.

9. **vertex 8:** - neighbors: [6] - only one neighbor, so no triangles.

summarizing the triangles found: - (0, 3, 6) - (0, 2,7) - (0, 3, 4) - (3, 4, 6)

thus, the number of triangles in the graph is **4**,

ERROR CAUSE ANALYSIS: The understanding of the serialization format is incorrect in this answer.
Even though it successfully prints out the AL serialization format, in its reasoning process, it incorrectly
assumes that node 7 and node O are connected, and that node 4 and node O are connected, which
ultimately leads to an incorrect result.

73

Under review as a conference paper at ICLR 2026

E.4.7 BFS order CASE 1

* QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting at node 2.
And the graph representation of: Adjacency Matrix is

[[0111101]
[TO11111]
[1100000]
[1100010]
[1100000]
[0101000]
[1100000]]
Q: Give the bfs traversal order starting from node 2.
A:
* TASK INFO: bfsorder, easy, 0-shot, Adjacency Matrix
e MODEL: Qwen-2.5
* STARTING NODE: 2
* WRONG ANSWER:
to determine the bfs traversal order starting from node 2, we follow these steps:
1. **initialize**: start with node 2. add it to the queue and mark it as visited.

2. **process the queue**: remove the first node from the queue and visit it. then, add its unvisited
neighbors to the queue.

3. **repeat**: continue the process until the queue is empty.
given the adjacency matrix:

\[

\begin{bmatrix}
0&1T&1&1&1&08&1\\
1&08&1&1T&1 &1 &1\\
1&18&08&08&0&0 &0 \\
1&1&08&0&08&1 &0 \\
1&18&08&08&0&0 &0 \\
08&1&0&1&0&0&0\\
1&18&08&08&0&0 &0 \\
\end{bmatrix}

\]

let’s perform the bfs:
1. **start at node 2**: - queue: [2] - visited: [2]
2. **dequeue node 2**: - visit node 2 - add its unvisited neighbors (nodes 1, 3, 4, 6) to the queue. -
queue: [1, 3, 4, 6] - visited: [2, 1, 3, 4, 6]
3. **dequeue node 1**: - visit node 1 - add its unvisited neighbors (nodes 2, 3, 4, 5, 6) to the queue.
nodes 2 and 6 are already visited. - queue: [3, 4, 5, 6] - visited: [2, 1, 3, 4, 5, 6]
4. **dequeue node 3**: - visit node 3 - add its unvisited neighbors (nodes 2, 1) to the queue. nodes 2
and 1 are already visited. - queue: [4, 5, 6] - visited: [2, 1, 3, 4, 5, 6]
5. **dequeue node 4**: - visit node 4 - add its unvisited neighbors (nodes 2, 3, 6) to the queue. nodes
2, 3, and 6 are already visited. - queue: [5, 6] - visited: [2, 1, 3,4, 5, 6]
6. **dequeue node 5**: - visit node 5 - add its unvisited neighbors (nodes 1, 4) to the queue. nodes 1
and 4 are already visited. - queue: [6] - visited: [2, 1, 3,4, 5, 6]
7. **dequeue node 6**: - visit node 6 - add its unvisited neighbors (nodes 2, 4) to the queue. nodes 2
and 4 are already visited. - queue: [] - visited: [2, 1, 3, 4, 5, 6]
the bfs traversal order starting from node 2 is: **2, 1, 3, 4, 5, 6**. note that the order of visiting

* ERROR CAUSE ANALYSIS: The understanding of the serialization format is incorrect in this answer.
Even though it successfully prints out the AM serialization format, in its reasoning process, it incorrectly
assumes that node 2 and node 0 do not have connectivity, which ultimately leads to an incorrect result.

74

Under review as a conference paper at ICLR 2026

E.4.8 Triangle counting CASE 3

* QUERY: Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(0, 1), (1,2), (0, 4), (0, 3), (1, 8), (0, 6), (0, 2), (2, 5), (4, 1)}
Q: How many triangles are in this graph?
A: The graph contains 3 nodes that form a triangle (0, 1, and 2), resulting in 1 triangle. So the number
of triangles is 1.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(0, 1), (0, 7), (0, 4), (1, 5), (0, 3), (2, 3), (0, 2), (2, 6), (0, 5)}
Q: How many triangles are in this graph?
A: This graph includes edges that connect nodes to form two distinct triangles, namely (0, 1, 5) and (0,
2, 3). The graph contains two triangles: (0, 1, 5) and (0, 2, 3). So the number of triangles is 2.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(0,1),3,4),(2,7),(1,4),0,2), 5, 6), (3, 06), (2,5, (1, 3)}
Q: How many triangles are in this graph?
A: A graph with edges forming a single triangle: (4, 1, 3). The graph contains one triangle, formed by
nodes (4, 1, 3). So the number of triangles is 1.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(4,3),(1,5),(4,6), (4,2), (3,0, (0, 6), (4,5), (0, 2), 3, 6), (1, 0)}
Q: How many triangles are in this graph?
A: The edges in this graph create two triangles: (0, 3, 6) and (3, 6, 4). The graph contains two triangles:
(0, 3, 6) and (3, 6, 4). So the number of triangles is 2.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{3,4), (5, 1), (5,7),(0,2), (8, 3),(0,5), (0, 8), (2, 5), (1, 3), (7, 4), (6, 8), (5, 6), (5, 3), (0, 7), (2, 4), (2,
D, (2,7), (6, 1),(6,7), (5, 8), 8, 1), (1,4, (0,6),(2,3), (6,3)}
Q: How many triangles are in this graph?
A: A dense graph with many edges, resulting in 26 distinct triangles formed by various combinations of

nodes. The graph contains 26 triangles formed by various combinations of nodes. So the number of
triangles is 26.

Given a graph, your task is to determine how many triangles in this graph.

Graph: Edge Set is

{(4.3). (5. 1), (5. 7). (8, 3). (8, 6). (2. 5). (7. 4), (6. 5). (5. 0). (8, 2), (0, 1), (2, 4), 2. 7). (6. 1), (7. 3). (6,
7,8, 1),(8,7),(0,3),(2,0),(1,4),(2,6),(6,3)}

Q: How many triangles are in this graph?

A:

TASK INFO:

triangle, easy, CoT, Edge Set

GROUND TRUTH: 16

MODEL: 04-mini

WRONG ANSWER:

To count triangles, list each triple i,j,k with i<j<k and check all three edges. Doing so yields these 17
distinct triangles:

(0,1,5), (0,2,3), (0,2,5), (1,5,6), (1,6,8), (2,4,7), (2,5,6), (2,5,7), (2,6,7), (2,6,8), (2,7,8), (3.,4,7), (3,6,7),
(3,6,8), (3,7.8), (5,6,7), (6,7,8).

So the number of triangles is 17.

ERROR CAUSE ANALYSIS: This answer misinterprets the connectivity of node 2 and node 3 and ends
up thinking that 0, 2, 3 forms a triangle, leading to a final error.

75

Under review as a conference paper at ICLR 2026

E.5 INPUT/OUTPUT EXAMPLES

We show more model input and output examples here. Query is the input to the model and Answer

is the model output. Due to space reasons, in the middle of the excessively long part we will use “...”.
Each of the following examples is randomly selected from the query.

Connectivity

* QUERY:Determine if there is a path between two nodes in the graph.
Graph: Edge Set is {(6, 18), (7, 26), (3, 22), (5, 19), (9, 17), (9, 26), (0, 23), (1, 15), (6, 11),
(7, 10), (6, 20), (7, 19), (5, 12), (8, 11), (9, 10), (3, 24), (9, 19), (1, 17), (6, 13), (7, 12), (7,
21), (3, 17), (9, 12), (3, 26), (5, 23), (9, 21), (8, 25), (3, 19), (5, 16), (4, 18), (9, 14), (5, 25),
(1, 21), (4, 11), (5, 18), (9, 16), (8, 20), (1, 14), (2, 13), (1, 23), (2, 22), (3, 14), (5, 11), (4,
13), (3, 23), (4, 22), (8, 13), (8, 22), (1, 16), (0, 18), (2, 15), (0, 27), (6, 24), (3, 16), (5, 13),
(4, 24), (8, 15), (0, 11), (8, 24), (1, 18), (0, 20), (2, 17), (2, 26), (7, 25), (3, 18), (4, 17), (4,
26), (8, 17), (1, 11), (5, 27), (8, 26), (9, 25), (0, 22), (2, 19), (6, 10), (6, 19), (7, 18), (3, 11),
4, 10), (7, 27), (4, 19), (8, 10), (5, 20), (1, 13), (0, 15), (9, 18), (9, 27), (6, 12), (7, 20), (4,
12), (4, 21), (9, 11), (0, 17), (2, 14), (0, 26), (2, 23), (6, 14), (6, 23), (7, 22), (8, 14), (9, 13),
(3, 27), (5, 24), (8, 23), (9, 22), (0, 19), (2, 16), (7, 15), (6, 25), (7, 24), (3, 20), (5, 17), (9,
15), (0, 12), (5, 26), (9, 24), (0, 21)}
Q: Is there a path between node 27 and node 25?
A:
Let’s construct a graph with the nodes and edges first:

* TASK INFO: connectivity, hard, O-Instruct, Edge Set

* MODEL: claude-3-5-sonnet-20241022

e ACCURACY: 1

* GROUND TRUTH: True

* ANSWER: Let me help you find if there’s a path between node 27 and node 25.

Looking at the edge set, I can see that: - Node 27 is connected to nodes 3, 5, 7, and 9 - Node
25 is connected to nodes 6, 7, 8, and 9

We can find a path from node 27 to node 25: 27 — 7 — 25 (direct connection through node
7)

Since we can find at least one path between node 27 and node 25 (through node 7), there is
definitely a path between these two nodes.

The answer is yes.

76

Under review as a conference paper at ICLR 2026

Connectivity

* QUERY: To determine if there is a path between two nodes in an undirected graph, we can
use a Breadth-First Search (BFS) algorithm. BFS is an algorithm that starts at one node and
explores all of its neighbors before moving on to the next level of neighbors. By exploring
each node in the graph, the algorithm can determine if there is a path between two nodes.

Determine if there is a path between two nodes in the graph.
Graph: Edge Set is {(0, 7), (3, 8), (5, 8), (3, 7), (6, 8), (1, 8), (5, 7), (6, 7), (1,7), (4, 8), (4, 7),
2,8)}
Q: Is there a path between node 5 and node 7?
A:
* TASK INFO: connectivity, easy, 0-Algorithm, Edge Set
* MODEL: Mistral
* ACCURACY:
1
* GROUND TRUTH:True
* ANSWER: yes, there is a path between node 5 and node 7. one possible path is: 5 -> 8 -> 7
here’s the code for the bfs algorithm in python:
“* from collections import deque
def bfs(graph, start, end):
visited = set()
queue = deque([start])
while queue:
current = queue.popleft()
if current == end:
return true
if current not in visited:
visited.add(current)
for neighbor in graph[current]:
queue.append(neighbor)
return false
example usage
graph =
0: [4, 3],
: [7, 41,
= 8],
1,
[0, 1, 7],
2 8],
: [7, 8],
: [0, 1, 6, 3, 5],
:[2,6,5, 3]
print(bfs(graph, 5, 7)) # output: true “*
in this code, ‘graph° is a dictionary where the keys are the nodes and the values are lists of
their neighbors. the ‘bfs‘ function takes in the graph, the start node, and the end node, and
returns ‘true‘ if there is a path between the two nodes, and ‘false‘ otherwise. the function
uses a queue to keep track of the nodes to be visited, and a set to keep track of the visited

nodes to avoid visiting the same node multiple times. the function loops through the queue
until it finds the end node or the queue is empty, and returns the result.

® N WU AW

77

Under review as a conference paper at ICLR 2026

Connectivity

* QUERY: Determine if there is a path between two nodes in the graph. Graph: GraphML is

<node id="1"/>
<node id="2"/>

<edge source="4" target="5"/>
<edge source="4" target="6"/>
<edge source="4" target="7"/>
</graph></graphml>
Q: Is there a path between node 1 and node 0?
A:
Let’s think step by step:
e TASK INFO: connectivity, easy, 0-CoT, GraphML
* MODEL: Llama3.1
* ACCURACY: 0
* GROUND TRUTH: True

¢ ANSWER: the first step is to convert the given graphml into a format that can be used in the
java code. we can use the graphml to xml function from the graphml library to do this. the
second step is to create a graph from the xml string. we can use the graphmlreader class to do
this. the third step is to find the nodes with id 1 and 0. we can use the getnodes method of the
graph to do this. the fourth step is to check if there is a path between the two nodes. we can
use the haspath method of the graph to do this. the fifth step is to return the result. we can use
the print function to do this.
“‘java import org.graphstream.graph.graph;
import org.graphstream.graph.implementations.singlegraph;
import org.graphstream.graph.implementations.graphmlreader;
import org.graphstream.graph.implementations.defaultgraph;
public class main
public static void main(string[] args)
string graphml = "<?xml version="1.0’ encoding="utf-8’ 7><graphml
xmlns=http://graphml.graphdrawing.org/xmlInsxmlns:xsi=http://www.w3.0rg/2001/xmlschema-
instancexsi:schemalocation=http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd><graph edgede-
fault=iindirected$<node id=0/><node id=5/><node id=6/><node id=7/><node
id=i/><node id=2/><node id=3/><node id=4/><edge source=(ftarget=5/><edge

source=Otarget=6/><edge source=0farget="7/><edge source=5target=1/><edge
source=>5target=3/><edge source=>5target=4/><edge source=6target=1/><edge
source=btarget=2/><edge source=btarget=3/><edge source=btarget=4/><edge
source=7target=1/><edge source="target=2/><edge source="target=3/><edge

source=7target=4/></graph></graphml>";

graph graph = new singlegraph("graph");

graph.read(graphml);

string nodel ="1";

string node0 = "0";

boolean ispath = graph.haspath(nodel, node0);
system.out.println(ispath);

this will print: false. there is no path between node 1 and node 0.

please note that this is a very simple implementation and does not handle any exceptions that
might occur. in a real-world application, you would want to add error handling code.

78

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph, your task is to determine the diameter of this graph. Graph:
Adjacency List is {0: [1], 1: [0, 2, 4, 5, 6, 7, 8, 11, 12], 2: [1, 3, 9], 3: [2], 4: [1], 5:
[1], 6: [1], 7: [1, 101, 8: [1], 9: [2], 10: [7], 11: [1], 12: [1]}

Q: What is the diameter of this graph?
A:

* TASK INFO: diameter, medium, 0-shot, Adjacency List

* MODEL: Phi-4

* ACCURACY: 0

¢ GROUND TRUTH:4.0

* ANSWER:

3

79

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph, your task is to determine the diameter of this graph. Graph:
Adjacency List is {0: [1], 1: [0, 2, 4, 5, 6, 7, 8, 11, 12], 2: [1, 3, 9], 3: [2], 4: [1], 5:
[1], 6: [1], 7: [1, 101, 8: [1], 9: [2], 10: [7], 11: [1], 12: [1]}

Q: What is the diameter of this graph?
A:

* TASK INFO: diameter, medium, 0-shot, Adjacency List

* MODEL: gemini-2.0-flash-001

* ACCURACY: |

* GROUND TRUTH: 4.0

* ANSWER:

To find the diameter of the graph, we need to compute the shortest path between all pairs
of nodes and then find the maximum of these shortest path lengths. The given graph has 13
nodes (0 to 12).

Here’s how we can determine the shortest paths:

* **¥Node 0:** Only connected to Node 1, distance 1. * **Node 1:** The central node,
connected to 0, 2,4, 5,6, 7,8, 11, 12. * **Node 2:** Connected to 1 and 3, 9. * **Node
3:** Connected to 2. * **Node 4, 5, 6, 8, 11, 12:** Only connected to 1. * **Node 7:**
Connected to 1 and 10. * **Node 9:** Connected to 2. * **Node 10:** Connected to 7.

Let’s analyze some key distances:

* Distance(0, x): 2 forxin 2,4, 5, 6,7, 8,9, 11, 12, otherwise infinity
* Distance(0, 3): 3

* Distance(0, 10): 3

* Distance(1, x): 1 forxinO0, 2,4,5,6,7,8, 11, 12
* Distance(1, 3): 2

* Distance(1, 9): 2

* Distance(1, 10): 2

* Distance(2, X):

*1forxinl,3,9
*2forxin0,4,5,6,7,8,11, 12

* 3 for x in 10

* Distance(3, x):

* 1 for x in 2

*2forxinl,9
*3forxin0,4,5,6,7,8, 11,12

*4 for x in 10

* Distance(9, x):

* 1 for x in 2

*2forxinl, 3
*3forxin0,4,5,6,7,8, 11,12

*4 for x in 10

* Distance(10, x):

* 1 forxin7

*2forxin 1
*3forxinO0,2,4,5,6,8,9,11, 12

* 4 for x in 3

Now, let’s find the maximum shortest path:
* Distance(3, 10) =4

* Distance(9, 10) =4

It appears 4 is the maximum distance.
The diameter is 4.

80

Under review as a conference paper at ICLR 2026

* QUERY: To calculate the diameter of the graph, you can use BES based on the following tips
1. identify all nodes in the graph.

2. For each node in the graph , perform BFS to compute the shortest path from that node to
all other nodes.

3. calculate the shortest path from node u to all other nodes.

4. Find the longest shortest path.

5. Repeat the process and update the diameter of the graph.

6. Return the diameter of the graph.

Given a graph, your task is to determine the diameter of this graph.

And the graph representation of Edge Set is :

{0, 1), (1, 2), (0, 4), (0. 3), (1, 8), 0. 6). (0, 2), (2, 5). (4, 7))

Q: What is the diameter of this graph?

A: Identify all nodes: The graph has nodes O to 8. Perform BEFS from node 0. The longest
shortest path is 2 edges (to node 5, 7 or 8). Perform BFS from node 1. The longest shortest
path is 3 edges (to node 7). Perform BFS from node 2. The longest shortest path is 3 edges
(to node 7). Perform BFS from node 3. The longest shortest path is 3 edges (to node 5, 7 or
8). Perform BFS from node 4. The longest shortest path is 3 edges (to node 5 or 8). Perform
BFS from node 5. The longest shortest path is 4 edges (to node 7). Perform BFS from node
6. The longest shortest path is 3 edges (to node 5, 7, or 8). Perform BFS from node 7. The
longest shortest path is 4 edges (to node 8). Perform BEFS from node 8. The longest shortest
path is 4 edges (to node 7). Based on all the results above, the maximum shortest path is 4
edges. So the diameter is 4.0.

Given a graph, your task is to determine the diameter of this graph. Graph: Edge Set is
{(7,17), (4, 12), (3, 16), (5, 10), (9, 14), (0, 14), (1, 12), (7, 10), (6, 8), (7, 13), (6, 17), (3, 9),
(3, 6), (0, 1), (5, 15), (11, 16), (1, 8), (6, 7), (4, 7), (12, 14), (3, 11), (3, 17), (9, 12), (1, 4), (10,
13), (11, 15), (2, 15)}
Q: What is the diameter of this graph?
A:

* TASK INFO: diameter, medium, Algorithm, Edge Set

* MODEL: Mistral

* ACCURACY: 0

* GROUND TRUTH: 6.0

* ANSWER: identify all nodes: the graph has nodes 0 to 17. perform bfs from node 0. the
longest shortest path is 3 edges (to node 14). perform bfs from node 1. the longest shortest
path is 3 edges (to node 12). perform bfs from node 2. the longest shortest path is 3 edges (to
node 15). perform bfs from node 3. the longest shortest path is 3 edges (to node 16, 9, 17 or
6). perform bfs from node 4. the longest shortest path is 2 edges (to node 12). perform bfs
from node 5. the longest shortest path is 3 edges (to node 15). perform bfs from node 6. the
longest shortest path is 2 edges (to node 7, 17 or 3). perform bfs from node 7. the longest
shortest path is 3 edges (to node 17, 13, 10, 5 or 4). perform bfs from node 8. the longest
shortest path is 2 edges (to node 1, 6 or 17). perform bfs from node 9. the longest shortest
path is 3 edges (to node 14). perform bfs from node 10. the longest shortest path is 3 edges
(to node 7, 13). perform bfs from node 11. the longest shortest path is 3 edges (to node 16,
17 or 3). perform bfs from node 12. the longest shortest path is 2 edges (to node 4, 14 or 1).
perform bfs from node 13. the longest shortest path is 3 edges (to node 7, 10). perform bfs
from node 14. the longest shortest path is 2 edges (to node 0, 4, 12 or 9). perform bfs from
node 15. the longest shortest path is 3 edges (to node 2, 5 or 11). perform bfs from node 16.
the longest shortest path is 3 edges (to node 3, 11, 17 or 11). perform bfs from node 17. the
longest shortest path is 3 edges (to node 3, 6, 7 or 13). based on all the results above, the
longest shortest path is 3 edges. so the diameter is 3.0.

81

Under review as a conference paper at ICLR 2026

* QUERY: To calculate the diameter of the graph, you can use BFS based on the following tips
1. identify all nodes in the graph. 2. For each node in the graph , perform BFS to compute
the shortest path from that node to all other nodes. 3. calculate the shortest path from node u
to all other nodes. 4. Find the longest shortest path. 5. Repeat the process and update the
diameter of the graph. 6. Return the diameter of the graph.

Given a graph, your task is to determine the diameter of this graph. And the graph representa-
tion of Edge List is :

Q: What is the diameter of this graph?

Given a graph, your task is to determine the diameter of this graph. Graph: Edge List is
03
12
13
15
16
24
26
36
45
46
Q: What is the diameter of this graph?
A:
e TASK INFO: diameter, easy, Algorithm, Edge List
* MODEL: gpt-40-mini
* ACCURACY: 1
* GROUND TRUTH:3.0
* ANSWER:

To determine the diameter of the graph represented by the given edge list, we will follow the
outlined steps:

1. **Identify all nodes**: The nodes present in the edge list are 0, 1, 2, 3, 4, 5, and 6. Thus,
the set of nodes is {0, 1, 2, 3, 4, 5, 6}.

2. **Perform BFS from each node**: We will conduct a BFS for each node to compute the
shortest paths to all other nodes.

- **From node 0**: Shortest paths are {0: 0, 3: 1} — max distance = 1

- **From node 1**: Shortest paths are {1: 0,2: 1,3: 1,5: 1, 6: 1, 4: 2} — max distance = 2
- **From node 2**: Shortest paths are {2: 0, 1: 1,4: 1,5: 2, 6: 1, 3: 2} — max distance = 2
- **From node 3**: Shortest paths are {3: 0, 1: 1, 6: 1,2: 2,4: 2, 5: 2} — max distance = 2
- **From node 4**: Shortest paths are {4: 0, 2: 1 1,6: 1, 1: 2,3: 2} — max distance = 2
- **From node 5**: Shortest paths are {5: 0, 1: 1 1,2:2,6: 2,3: 3} — max distance =3
- **From node 6**: Shortest paths are {6: 0, 1: 1,2: 1,3: 1,4: 1, 5: 2} — max distance =2
3. **Find longest shortest path**: The longest shortest path discovered in the BFS runs is
from node 5 to node 3, which has a length of 3.

4. **Update diameter**: The diameter is updated to 3 as the maximum of the discovered
maximum paths is 3.

5. **Return the diameter**: The diameter of the graph is thus recorded.

Final Answer: The diameter of this graph is **3**,

E)

5 B D e B

£} s

82

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph, your task is to determine how many triangles in this graph. Graph:
Graph Modelling Language is
graph [
node [
id0
label "0"
]
edge [
source 1
target 4
]
edge [
source 1
target 5
]
edge [
source 1
target 6
]
edge [
source 2
target 6
]
]
Q: How many triangles are in this graph?
A:
Let’s break down this problem:
* TASK INFO: triangle, easy, LTM, Graph Modelling Language
¢ MODEL: Qwen-2.5
* ACCURACY: 0
* GROUND TRUTH: 1
* ANSWER:
a triangle in a graph is a set of three nodes where each node is connected to the other two. in
other words, if nodes a, b, and ¢ form a triangle, then there must be an edge between a and b,
b and c, and ¢ and a.
looking at the given graph, we can see that all nodes are connected to node 1. however, there
is no direct connection between any of the other nodes. therefore, no three nodes form a
triangle.
so, the answer is O triangles. you are an ai assistant. you will be given a task. you must
generate a detailed0 answer.

&3

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph, your task is to determine how many triangles in this graph. Graph:
Adjacency Matrix is
[[0111011010]

[1011100010]

[1100001001]

[1100100000]

[0101010100]

[1000100100]

[1010000001]

[0000110000]

[1100000000]
[0010001000]]
Q: How many triangles are in this graph?
A:
Let’s construct a graph with the nodes and edges first:

e TASK INFO: triangle, medium, O-Instruct, Adjacency Matrix

e MODEL: llama3

* ACCURACY: 0

* GROUND TRUTH:7

* ANSWER:
a: node 0:
a: node 1:
a: node 2:
a: node 3:
a: node 4:
a: node 5:
a: node 6:
a: node 7:
a: node 8:
a: node 9:

a: node 10:

a

a

a

a

a

a

a

a

a

d

—_—N = O =N =N = =

:node 11:
: node 12:
: node 13:
: node 14:
: node 15:
: node 16:
: node 17:
: node 18: 0

: now, we have to find all the triangles in this graph. we will use the following algorithm to
o this.

O = O = = =N =

84

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge List is :
01

81

Let’s construct a graph with the nodes and edges first.

Q: How many triangles are in this graph?

A: The graph contains 3 nodes that form a triangle (0, 1, and 2), resulting in 1 triangle. So the
number of triangles is 1.

Given a graph, your task is to determine how many triangles in this graph. Graph: Edge List
is

10
20
21
31
41
24
15
52
61
17
81
84
79
110
104
Let’s construct a graph with the nodes and edges first.
Q: How many triangles are in this graph?
A:
* TASK INFO: triangle, medium, Instruct, Edge List
e MODEL: claude-3-5-sonnet-20241022 SF
* ACCURACY: 1
* GROUND TRUTH:5
* ANSWER:
Let me help identify the triangles in this graph.

Looking at the edge list, I’ll find sets of three nodes where all three nodes are connected to
each other.

Let’s check the triangles:

1. Triangle (0, 1, 2): - Edge 1-0 exists - Edge 2-0 exists - Edge 2-1 exists

2. Triangle (1, 2, 4): - Edge 1-2 exists - Edge 2-4 exists - Edge 1-4 exists

3. Triangle (1, 2, 5): - Edge 1-2 exists - Edge 2-5 exists - Edge 1-5 exists

4. Triangle (1, 4, 8): - Edge 1-4 exists - Edge 4-8 exists - Edge 1-8 exists

5. Triangle (1, 4, 10): - Edge 1-4 exists - Edge 4-10 exists - Edge 1-10 exists
After checking all possible combinations, I found 5 triangles in the graph.
The number of triangles is 5.

85

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph, your task is to determine how many triangles in this graph.
Graph: Adjacency Setis {0: {8, 1, 3, 6}, 1: {0,3,5},2: {3,4,5,7},3: {0, 1,2,4,7},4: {2,
3,6,7,8},5: {1,2},6: {0,8,4,7},7: {2,3,4,6},8: {0,4,6}}

Q: How many triangles are in this graph?
A:
Let’s think step by step:

* TASK INFO: triangle, easy, 0-CoT Adjacency Set

* MODEL: Mistral

* ACCURACY: 1

* GROUND TRUTH:8

* ANSWER:

1. we know that a triangle has 3 vertices.

2. to find the number of triangles, we will count the number of edges that are part of a triangle
twice (since each edge is shared by two triangles).

3. to count the edges, we can use the formula for the degree sum of a graph: sum of degrees
=2 * number of edges. the sum of the degrees of all vertices in the graph is 36.

4. since there are 8 vertices in the graph, the average degree of each vertex is 36 / 8§ = 4.5.
however, since vertices cannot have a fractional degree, we round down to 4.

5. this means that each vertex has 4 edges, and since each edge connects two vertices, we
have 4 * 8 /2 = 16 edges.

6. since each edge is part of 2 triangles, the number of triangles is 16 /2 = 8.
so, there are 8 triangles in the given graph.

86

Under review as a conference paper at ICLR 2026

BFS order

* QUERY: Given a graph, your task is to determine the BFS traversal order of this graph starting
at node 7.

[[011110100]

[010000000]]

Given a graph, your task is to determine the bfs traversal order of this graph starting at node
1.

And the graph representation of: Adjacency Matrix is
[[0110000000000]
[1011111000000]
[1101010001000]
[0110101110101]
[0101000100100]
[0110000000000]
[0101000010001]
[0001100001000]
[0001001000010]
[0010000100010]
[0001100000000]
[0000000011000]
[0001001000000]]

Let’s construct a graph with the nodes and edges first.

Q: Give the bfs traversal order starting from node 1.

A:
* TASK INFO: bfsorder, medium, Instruct, Adjacency Matrix
* MODEL: gpt-40
* ACCURACY: 1
* STARTING NODE: 1
* ANSWER: We begin the BFS traversal from node 1. Here is the breakdown of the traversal:

1. Start at node 1. The first node in the BFS traversal is 1. 2. Visit the neighbors of node 1.
The neighbors of node 1 are nodes 0, 2, 3, 4, 5, and 6. We enqueue all these nodes. 3. Visit
the next node in the queue, which is node 0. Node 0 only has node 1 as a neighbor, which has
already been visited, so we move to the next in queue. 4. Visit node 2. The neighbors of node
2 are nodes 0, 1, 3, 5, and 9. Nodes 0, 1, and 5 are already visited or enqueued, so we enqueue
node 3 and 9. 5. Visit node 3. The neighbors of node 3 are nodes 1, 2, 4, 6, 7, 8, 10, and 12.
We enqueue nodes 4, 6, 7, 8, 10, and 12. 6. Visit node 4. Node 4’s neighbors are nodes 1, 3,
7, and 10. All these nodes are either visited or enqueued. 7. Visit node 5. Node 5°s neighbors
are nodes 1 and 2, which are already visited. 8. Visit node 6. Node 6’s neighbors are nodes 1,
3, 8, and 12. Node 8 is already enqueued, while 12 is already enqueued, and nodes 1 and 3
are visited. 9. Visit node 9. Node 9’s neighbors are nodes 2, 7, and 11. Nodes 2 is visited,
while we enqueue nodes 7 and 11. 10. Visit node 7. Node 7’s neighbors are nodes 3, 4, and
9. These nodes have been visited or enqueued. 11. Visit node 10. Node 10’s neighbors are
nodes 3, 4. These are already visited. 12. Visit node 8. Node 8’s neighbors are nodes 3 and 6.
These are already visited. 13. Visit node 12. Neighbors are nodes 3 and 6. These are already
visited. 14. Visit the last node in the queue, which is node 11. Node 11°s neighbors are nodes
8 and 9. These nodes have already been visited.

Thus, the BES traversal order starting from node 1is 1,0, 2, 3,4, 5,6,9,7, 10, 8, 12, 11.

&7

Under review as a conference paper at ICLR 2026

BFS order

* QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting
at node 7.

And the graph representation of: Edge List is 3 2
41

52

65

70

82

97

103

Q: Give the bfs traversal order starting from node 7.
A:

Let’s break down this problem:

TASK INFO: bfsorder, medium, LTM, Edge List
MODEL: gpt-40-mini BAF

ACCURACY: 1

STARTING NODE: 7

ANSWER:

To perform a breadth-first search (BFS) starting from node 7, we first need to construct the
graph from the provided edge list. The edge list indicates connections between nodes as
follows:

- 3 is connected to 2 - 4 is connected to 1 - 5 is connected to 2 - 6 is connected to 5 - 7 is
connected to 0 - 8 is connected to 2 - 9 is connected to 7 - 10 is connected to 3 From this edge
list, we can represent the graph as an adjacency list:

“0: [7]1: [4]2:[3,5,8]3:[2,10] 4: [1]5: [2, 6] 6: [5] 7: [0,9] 8: [2] 9: [7] 10: [3] «“
Now, we will perform the BFS traversal starting from node 7:

1. Initialize a queue and a visited set.

2. Enqueue the starting node (7).

3. Dequeue a node, process it, and enqueue its unvisited neighbors.
The BFS traversal process:

- Start with node 7, enqueue it. (Queue: [7])

- Dequeue 7, visit it. (Visited: [7])

- Enqueue its neighbor 0 (Queue: [0])

- Enqueue its other neighbor 9 (Queue: [0, 9])

- Dequeue 0, visit it. (Visited: [7, 0])

- No unvisited neighbors.

- Dequeue 9, visit it. (Visited: [7, 0, 9])

- Enqueue its neighbor 7, but it is already visited.

At this point, the queue is empty, and the BES is complete.

Thus, the BES traversal order starting from node 7 is:

**A: 7,0, 9%*

88

Under review as a conference paper at ICLR 2026

BFS order

* QUERY: To determine the BFS (Breadth-First Search) traversal order, you need to follow these steps: 1.
Initialize: Start by choosing a starting node and enqueue it into a queue. 2. Mark visited: Mark the
starting node as visited to avoid reprocessing. 3. Traverse: While the queue is not empty: Dequeue
a node and add it to the traversal order. For each unvisited neighboring node of the dequeued node,
enqueue it and mark it as visited. 4.Continue the process until all reachable nodes are visited.

Given a graph, your task is to determine the bfs traversal order of this graph starting at node 4. And the
graph representation of: Edge Set is {(11, 36), (5, 25), (32, 3), (4, 33), (14, 31), (0, 14), (5, 22), (4, 30),
(11, 17), (0, 26), (18, 1), (11, 35), (12, 0), (1, 27), (10, 2), (11, 7), (0, 16), (0, 13), (0, 19), (10, 20), (1,
23), (21, 5), (0, 34), (16, 24), (1, 29), (28, 4), (9, 6), (0, 15)}

Q: Give the bfs traversal order starting from node 4.

A:

TASK INFO:

bfsorder, hard, 0-Algorithm, Edge Set

MODEL: Qwen-3

ACCURACY: 0

STARTING NODE: 4

ANSWER:

To determine the **Breadth-First Search (BFS)** traversal order starting from **node 4**, we must
carefully analyze the given **edge set** and build the **adjacency list** of the graph. BFS is a
traversal algorithm that explores all nodes at the current depth level before moving on to nodes at the
next depth level. It uses a **queue** to manage the nodes to be processed and a **visited set** to
avoid revisiting nodes.

#i## Step 1: Analyze the Edge Set

The edge set is:

“{(11, 36), (5, 25), (32, 3), (4, 33), (14, 31), (0, 14), (5, 22), (4, 30), (11, 17), (0, 26), (18, 1), (11, 35),
(12, 0), (1, 27), (10, 2), (11, 7), (0, 16), (0, 13), (0, 19), (10, 20), (1, 23), (21, 5), (0, 34), (16, 24), (1,
29), (28, 4), (9, 6), (0, 15)} «“

We can construct the **adjacency list** by iterating through each edge and adding both directions
(since the graph is undirected).

Step 2: Build the Adjacency List

From the edge set, we find the neighbors of **node 4**: - (4, 33) — node 4 is connected to node 33 -
(4, 30) — node 4 is connected to node 30 - (28, 4) — node 4 is connected to node 28

So, **node 4’s neighbors are 33, 30, and 28**.

Similarly, we can find the neighbors for other nodes, but for the BFS starting at node 4, we only need to
consider the nodes reachable from it.

Step 3: Perform BFS

We initialize: - **Queue**: [4] - **Visited Set**: 4 - **Traversal Order**: []

Now, we follow the BFS algorithm step-by-step:

1. **Dequeue 4** — Add to traversal order — **[4]** - Neighbors: 33, 30, 28 — all unvisited -
Enqueue: [33, 30, 28] - Mark visited: 4, 33, 30, 28

2. **Dequeue 33** — Add to traversal order — **[4, 33]** - Neighbors: only 4 (already visited) -
Queue: [30, 28]

3. **Dequeue 30** — Add to traversal order — **[4, 33, 30]** - Neighbors: only 4 (already visited) -
Queue: [28]

4. **Dequeue 28** — Add to traversal order — **[4, 33, 30, 28]** - Neighbors: only 4 (already
visited) - Queue: empty

Final Result

All reachable nodes from node 4 have been visited in the order: “‘ 4 — 33 — 30 — 28 “¢

Final Answer

$$ {4, 33, 30,28} $$

&9

Under review as a conference paper at ICLR 2026

BFS order

* QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting

at node 7.
And the graph representation of: GraphML is <?xml version="1.0
encoding="utf-8" 7> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgede-
fault="undirected"><node id="0"/> <node id="1"/> <node id="2"/>

<edge source="5" target="18"/> <edge source="8" target="18"/> <edge source="9"
target="13"/> <edge source="9" target="16"/> <edge source="16" target="19"/>
</graph></graphml>
Q: Give the bfs traversal order starting from node 7.
A:
Let’s construct a graph with the nodes and edges first:

* TASK INFO: bfsorder, hard, O-Instruct, GraphML

* MODEL: claude-3-5-sonnet-20241022 SF

* ACCURACY: 1

* STARTING NODE: 7

* ANSWER:
Let me help you find the BFS traversal order starting from node 7.
1) Starting at node 7, we first visit its adjacent nodes: - Node 7 is connected to nodes 0 and 5
2) Next level (visiting neighbors of 0 and 5): From node O: - Connected to 1, 2, 3, 4, 6, 19
From node 5: - Connected to 12, 15, 16, 18
3) Next level (visiting unvisited neighbors of previous level): From the previous nodes’
connections: - Node 1 connects to 14 - Node 2 connects to 9 - Node 4 connects to 8, 10, 11,
17, 20 - Node 9 connects to 13
Following BFS rules, visiting level by level: - First: 7 - Second: 0, 5 - Third: 1, 2, 3, 4, 6, 19,
12, 15, 16, 18 - Fourth: 14,9, 8, 10, 11, 17, 20, 13
The BFS traversal order starting from node 7 is
7,0,5,1,2,3,4,6,19,12,15,16,18,14,9,8,10,11,17,20,13

90

Under review as a conference paper at ICLR 2026

BFS order

* QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting
at node 2.

And the graph representation of: Adjacency Set is
{0: {8,2,4,6},1: {8,3,4,5},2: {0,7},3: {1,4,6,7},4: {0, 1, 3,5,6,8},5: {1,4,6},6:
{0,3,4,5,8},7: {2,3},8: {0, 1,4, 6}}
Q: Give the bfs traversal order starting from node 2.
A:
Let’s break down this problem:

* TASK INFO: bfsorder, easy, LTM, Adjacency Set

e MODEL: Qwen-2.5

* ACCURACY: 0

* STARTING NODE: 2

* ANSWER:

1. **identify the starting node and the adjacency set:** - we start at node 2. - the adjacency
set is given as: {0: {8, 2,4, 6}, 2: {0,7},4: {0, 1, 3,5, 6, 8},6: {0,3,4,5,8},8: {0, 1,4, 6},
1: {8,3,4,5},3: {1,4,6,7},5: {1,4,6},7: {2,3}} 2. *¥*perform bfs traversal:** - **step
1:#% start at node 2. - **step 2:** add all adjacent nodes of 2 to the queue and mark them
as visited. - node 2 is adjacent to node 0 and node 7. - add 0 and 7 to the queue. - **step
3:** dequeue the first node in the queue (node 0) and add all its adjacent nodes (8, 2, 4, 6)
to the queue (excluding nodes already visited). - add 8, 4, and 6 to the queue. - **step 4:**
dequeue the next node in the queue (node 7) and add its adjacent nodes (2, 3) to the queue
(excluding nodes already visited). - add 3 to the queue. - **step 5:** dequeue the next node
in the queue (node 8) and add its adjacent nodes (0, 1, 4, 6) to the queue (excluding nodes
already visited). - add 1 to the queue. - **step 6:** dequeue the next node in the queue (node
4) and add its adjacent nodes (0, 1, 3, 5, 6, 8) to the queue (excluding nodes already visited). -
add 5 to the queue. - **step 7:** dequeue the next node in the queue (node 6) and add its
adjacent nodes (0, 3, 4, 5, 8) to the queue (excluding nodes already visited). - no new nodes
are added as all are already visited. - **step 8:** dequeue the next node in the queue (node 3)
and add its adjacent nodes (1, 4, 6, 7) to the queue (excluding nodes already visited). - no
new nodes are added as all are already visited. - **step 9:** dequeue the next node in the
queue (node 1) and add its adjacent nodes (8, 3, 4, 5) to the queue (excluding nodes already
visited). - no new nodes are added as all are already visited. - **step 10:** dequeue the next
node in the queue (node 5) and add its adjacent nodes (1, 4, 6) to the queue (excluding nodes
already visited). - no new nodes are added as all are already visited.

3. **list the order of nodes visited:** - the order of nodes visited in bfs starting from node 2
is: 2,0,7,8,4,6,3,1,5

therefore, the bfs traversal order starting from node 2 is: 2,0, 7, 8, 4, 6, 3, 1, 5.

91

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph representation, your task is to determine whether the graph has a
cycle
And the graph representation of Graph Modelling Language is :

Given a graph representation, your task is determining whether the graph has a cycle Graph:
Graph Modelling Language is graph [
node [
id 0
label "0"
]
node [
id 1
label "1"
]
node [
id 2
label "2"
]
node [
id 3
label "3"
]
edge [
source 0
target 8
]
edge [
source 1
target 2
]
edge [
source 1
target 4
]
edge [
source 3
target 7
]
]
Q: Is there a cycle in this graph?
A:
* TASK INFO: cycle, easy, k-shot, Graph Modelling Language
* MODEL: Mistral
* ACCURACY: |
* GROUND TRUTH: True
* ANSWER:
yes, there is a cycle in this graph.

92

Under review as a conference paper at ICLR 2026

* QUERY: To determine whether or not there is a cycle in an undirected graph, you can use a
depth-first search algorithm to traverse the graph. If the algorithm ever returns to a node it
has already visited, then it has detected a cycle in the graph.

Given a graph representation, your task is determining whether the graph has a cycle

Graph: GraphML is <?xml version="1.0’ encoding="utf-
87> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgede-
fault="undirected"><node id="0"/>

<node id="1"/>
<node id="2"/>
<node id="3"/>
<node id="4"/>
<node id="5"/>
<node id="6"/>
<node id="7"/>
<node id="8"/>
<node id="9"/>
<edge source="0" target="1"/>
<edge source="0" target="2"/>
<edge source="0" target="3"/>
<edge source="0" target="5"/>
<edge source="0" target="6"/>
<edge source="0" target="8"/>
<edge source="0" target="9"/>
<edge source="1" target="4"/>
<edge source="2" target="7"/>
</graph></graphml>
Q: Is there a cycle in this graph?
A:
* TASK INFO: cycle, medium, 0-Algorithm, GraphML
* MODEL: claude-3-5-sonnet-20241022
* ACCURACY: 1
* GROUND TRUTH: False
* ANSWER:
Let me analyze this graph:

1. The graph has 10 nodes (0-9) 2. Looking at the edges: - Node 0 connects to nodes 1, 2,
3,5,6,8,and 9 - Node 1 connects to nodes 0 and 4 - Node 2 connects to nodes 0 and 7 -
Nodes 3, 5, 6, 8, and 9 only connect to node O - Node 4 only connects to node 1 - Node 7
only connects to node 2

In this graph, there is no cycle. The graph forms a star-like structure with node O as the
center, and some nodes (1 and 2) having additional connections to nodes 4 and 7 respectively.
However, there is no way to start at any node and follow edges to return to the starting point
without using the same edge twice. The structure is essentially tree-like.

No, there is no cycle in this graph.

93

Under review as a conference paper at ICLR 2026

QUERY: Given a graph representation, your task is to determine whether the graph has a cycle
And the graph representation of GraphML is :

Q: Is there a cycle in this graph? A: No, there is no cycle in this graph.

Given a graph representation, your task is determining whether the graph has a cycle
Graph: GraphML is

<edge source="4" target="6"/>

<edge source="5" target="6"/>
</graph></graphml>

Q: Is there a cycle in this graph?

A:

TASK INFO: cycle, easy, CoT, GraphML
MODEL: Qwen-2.5

ACCURACY: 0

GROUND TRUTH: False

ANSWER:

the edges (6,5), (5,6) form a cycle, so yes, there is a cycle in this graph. given the graph representation
in graphml format:

“‘xml <?xml version="1.0" encoding="utf-8’ ?> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.0rg/2001/

xmlschema-instance" xsi:schemalocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> <graph edgedefault="undirected">

<node id="0"/>

<node id="6"/>

<node id="5"/>

<node id="1"/>

<node id="4"/>

<node id="3"/>

<node id="2"/>

<edge source="0" target="6"/>
<edge source="6" target="5"/>
<edge source="6" target="1"/>
<edge source="6" target="4"/>
<edge source="6" target="3"/>
<edge source="6" target="2"/>
</graph>

</graphml>

we need to determine if there is a cycle in the graph.

analysis: - node 6 is connected to nodes 0, 5, 1, 4, 3, and 2. - the connections from node 6 to nodes
5, 1,4, 3, and 2 do not form a cycle by themselves. - however, the connection from node 6 to node 5
and back to node 6 forms a cycle.

conclusion: the edges (6, 5) and (5, 6) form a cycle.

answer:

q: is there a cycle in this graph?

a: yes, there is a cycle in this graph. the cycle is formed by the edges (6, 5) and (5, 6).

94

Under review as a conference paper at ICLR 2026

* QUERY: Given a graph representation, your task is determining whether the graph has a cycle
Graph: Edge Set is {(4, 6), (3, 10), (0, 2), (9, 14), (0, 8), (1, 3), (0, 17), (13, 14), (2, 17), (3, 9), (3, 6), (3,
15), (0, 1), (0, 7), (0, 4), (0, 16), (0, 13), (3, 5), (3, 11), (3, 17), (0, 3), (0, 12), (2, 3), (0, 15), (7, 8)}
Q: Is there a cycle in this graph?

A:

Let’s think step by step:

TASK INFO: cycle, medium, 0-CoT, Edge Set

MODEL: gpt-40-mini

ACCURACY: 1

GROUND TRUTH: True

ANSWER:

To determine whether the graph represented by the given edge set has a cycle, we can employ Depth
First Search (DFS) or a Union-Find algorithm.

1. **Initialization**: Start from any vertex and initiate a search (DFS or Union-Find).

2. **Tracking Visits**: Keep a record of visited nodes. For DFS, maintain a parent reference to detect
back edges.

3. **Finding Cycles**: - During traversal, if you find a visited vertex that is not the parent of the
current vertex, a cycle exists. - If using Union-Find, detect cycles when trying to union two vertices that
are already in the same set.

For the provided edge set, we systematically traverse each edge.
Edges:

-(4,6)

- (3, 10)

-(0,2)

-9, 14)

-(0,8)

-(1,3)

-(0, 17)

- (13, 14)

-(2,17)

-3,9)

-(3,6)

- (3,15

-0, 1)

-(0,7)

-(0,4)

- (0, 16)

- (0, 13)

-(3,5)

-(3,11)

-3, 17)

-(0,3)

-(0,12)

-(2,3)

- (0, 15)

-(7,8)

Analysis: From the edges: - The edge (3, 6) and (3, 5) suggests multiple connections around vertex
3. - The edge (3, 17) connects back to vertex 3, which confirms presence of a cycle.
Conclusion: Yes, the graph has a cycle.

95

Under review as a conference paper at ICLR 2026

* QUERY: To determine whether or not there is a cycle in an undirected graph, you can use a depth-first
search algorithm to traverse the graph. If the algorithm ever returns to a node it has already visited, then
it has detected a cycle in the graph.

Given a graph representation, your task is to determine whether the graph has a cycle

And the graph representation of Adjacency Setis : {3: {4, 5}, 4: {3}, 5: {2, 3}, 1: {0}, 0: {1, 2}, 2: {O,
51}

Q: Is there a cycle in this graph?

A: DFS traversal visits nodes {0, 1, 2, 5, 3, 4}. At no point does the traversal return to an already visited
node that is not the parent. Hence, no cycle is detected.

Given a graph representation, your task is to determine whether the graph has a cycle

And the graph representation of Adjacency Setis : {3: {0, 2,4, 5}, 5: {3}, 1: {0,4},0: {1, 3}, 4: {1,
3}, 2: {3}}

Q: Is there a cycle in this graph?

A: During DFS, the traversal path includes nodes {0, 1, 4, 3, 5, 2}. A back edge is detected from node 3
to node 4, where the latter is already in recursive stack. So, there is a cycle in this graph.

Given a graph representation, your task is to determine whether the graph has a cycle

And the graph representation of Adjacency Setis: {7: {1, 3,5}, 1: {7}, 5: {6,7}, 0: {2}, 2: {0, 4, 6},
3: {7}, 4: {2},6: {2,5}}

Q: Is there a cycle in this graph?

A: DFS visits nodes {0, 2, 4, 6,5, 7, 1, 3}. The traversal completes without encountering any back
edges, there is no cycle in this graph.

Given a graph representation, your task is to determine whether the graph has a cycle

And the graph representation of Adjacency Setis : {0: {1, 2}, 1: {0, 4}, 2: {0, 6}, 6: {2, 4},5: {3}, 3:
{5,7},4: {1,6,7},7: {3,4}}

Q: Is there a cycle in this graph?

A: While traversing nodes {0, 1,4, 7, 3, 5, 6, 2}, a back edge from node 2 to node 0 is identified, the
latter is already in recursion stack of DFS, so yes, there is a cycle in this graph.

Given a graph representation, your task is to determine whether the graph has a cycle

And the graph representation of Adjacency Setis : {1: {0, 2, 3,4, 5,6},3: {0, 1,2,4,5,6},2: {0, 1, 3,
4,5,6},4:{0,1,2,3,5,6},6: {0,1,2,3,4,5},0: {1,2,3,4,5,6},5: {0, 1,2,3,4,6}}

Q: Is there a cycle in this graph?

A: This graph contains multiple cycles. During DFS, cycles are detected through paths like {3-4-6-3},
{1-2-3-1}, and {4-5-6-4}. Multiple back edges indicate the presence of several cycles.

Given a graph representation, your task is determining whether the graph has a cycle

Graph: Adjacency Setis {0: {1, 2, 3,4, 5, 6, 18, 20, 30}, 1: {0,2,3,4,5,6,21},2: {0,1,3,4,5,6,7,
24,25},3: {0, 1,2,32,4,5,6,28},4: {0,1,2,3,5,6, 14, 23},5: {0, 1,2, 3,4, 6,10, 11, 31}, 6: {0, 1,
2,3,4,5,8,9,12,13,17, 19, 22, 26, 27}, 7: {2}, 8: {6}, 9: {6}, 10: {5}, 11: {5}, 12: {6, 15}, 13: {16,
6}, 14: {4}, 15: {12}, 16: {13}, 17: {6}, 18: {0}, 19: {6}, 20: {0}, 21: {1}, 22: {29, 6}, 23: {4}, 24:
{2},25: {2},26: {6},27: {6},28: {3},29: {22}, 30: {0}, 31: {5}, 32: {3}}

Q: Is there a cycle in this graph?

A:

TASK INFO: cycle, hard, Algorithm, Adjacency Set

MODEL: 04-mini-2025-04-16

ACCURACY: 1

GROUND TRUTH: True

ANSWER:

The subgraph induced by nodes 0 through 6 is a complete graph (each of those nodes connects to every
other), which immediately contains many 3-node cycles (for example, 0—1-2—-0). Therefore, this graph
definitely has a cycle. Yes, there is a cycle in this graph

96

Under review as a conference paper at ICLR 2026

Shortest path

* QUERY: We can use a Depth-First Search (DFS) algorithm to find the shortest path between
two given nodes in an undirected graph. The basic idea is to start at one of the nodes and use
DFS to explore all of its adjacent nodes. At each node, you can keep track of the distance
it takes to reach that node from the starting node. Once you have explored all the adjacent
nodes, you can backtrack and pick the node which has the shortest distance to reach the
destination node.

Given a graph representation, your task is to compute shortest path between the specified two
nodes

And the graph representation of Edge List is :
08

06
Q: Give the shortest path from node 5 to node 8.

A: We use Depth-First Search (DFS) starting from node 5. First, we explore the neighbors
of node 5, which is connected to node 0. From node 0, we explore its neighbors, node
2,3,5,1,6,8,4. And we find that node 0 is connected to node 8. Therefore, the shortest path
from node 5 to node 8 is 5,0,8.

Given a graph representation, your task is to compute shortest path between the specified two
nodes.

And the graph representation of: Edge Listis O 1
02
12
32
31
30
43
41
40
51
54
53
64
63
61
73
70
76
84
83
81
Q: Give the shortest path from node 0 to node 1.
A:
* TASK INFO: shortest path, easy, Algorithm, Edge List
e MODEL: llama3
* ACCURACY: 1
¢ STARTING AND ENDING NODE: 0, 1
* ANSWER:

we use depth-first search (dfs) starting from node 0. first, we explore its neighbor node 1.
therefore, the shortest path from node O to node 1 is 0,1.

97

Under review as a conference paper at ICLR 2026

Shortest path

* QUERY: Given a graph representation, your task is to compute shortest path between the
specified two nodes

And the graph representation of Adjacency Listis: {0: [8, 4, 3, 2, 5, 1, 6], 8: [0], 4: [0], 3:
[0], 2: [0], 5: [0], 1: [O], 6: [O]}

Q: Give the shortest path from node 5 to node 8.

A: The shortest path from node 5 to node 8 is 5,0,8.

Given a graph representation, your task is to compute shortest path between the specified two
nodes

And the graph representation of Adjacency Listis : {0: [1], 1: [0, 2, 3,4, 5, 6, 8], 2: [1, 7], 3:
[1],4: [1], 5: [11, 6: [1],7: [2], 8: [1]}

Q: Give the shortest path from node 3 to node 7.

A: The shortest path from node 3 to node 7 is 3,1,2,7.

Given a graph representation, your task is to compute shortest path between the specified two
nodes

And the graph representation of Adjacency Listis : {3: [1, 7, 4, 6], 1:
2,6,5,71,0:[8,6,2,7],6:[0,5,4,8,7,1,3],7: [3,5,0,6, 1, 8], 5: [7,
3],2:[1,8,5,0]}

Q: Give the shortest path from node 4 to node 2.

A: The shortest path from node 4 to node 2 is 4,8,2.

Given a graph representation, your task is to compute shortest path between the specified two
nodes

And the graph representation of Adjacency Listis : {0: [6, 7], 6: [0], 7: [0, 1, 3], 1: [5, 7], 5:
[11, 2: [4], 4: [2, 3], 3: [4, 7]}

Q: Give the shortest path from node 6 to node 5.

A: The shortest path from node 6 to node 5 is 6,0,7,1,5.

Given a graph representation, your task is to compute shortest path between the specified two
nodes

And the graph representation of Adjacency Listis : {0: [1, 2, 4, 5], 1: [0, 2, 3, 6], 2: [0, 1, 3,
5], 3: [1, 2, 4], 4: [3,0], 5: [0, 2, 6], 6: [1, 5]} Q: Give the shortest path from node 6 to node
0.

A: The shortest path from node 6 to node 0 is 6,1,0.

Given a graph representation, your task is to compute shortest path between the specified two
nodes.

And the graph representation of: Adjacency Listis {O: [1, 2], 1: [0, 2, 3, 5, 6, 7], 2: [1, 0, 3,
4,5],3:[2,1,4,7],4: [2,3,6],5:[1,2],6: [4, 1], 7: [1, 3]}
Q: Give the shortest path from node 3 to node 2.
A:
* TASK INFO: shortest path, easy, k-shot, Adjacency List
e MODEL: Qwen-2.5
¢ ACCURACY: 0
¢ STARTING AND ENDING NODE: 3, 2
¢ ANSWER:
the shortest path from node 3 to node 2 is 3,1,2.

98

Under review as a conference paper at ICLR 2026

L]

L]

L]

Shortest path

QUERY: Given a graph representation, your task is to compute shortest path between the
specified two nodes.

And the graph representation of: GraphML is <?xml version="1.0
encoding="utf-8" 7> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgede-
fault="undirected"><node id="0"/>

<node id="1"/>

<node id="2"/>

<node id="3"/>

<node id="4"/>

<node id="5"/>

<node id="6"/>

<edge source="0" target="1"/>

<edge source="0" target="2"/>

<edge source="0" target="3"/>

<edge source="0" target="6"/>

<edge source="3" target="4"/>

<edge source="3" target="5"/>

</graph></graphml>

Q: Give the shortest path from node 2 to node 1.

A:

Let’s construct a graph with the nodes and edges first:

TASK INFO:

shortest path, easy, O-Instruct, GraphML

MODEL: Qwen-2.5

ACCURACY: 0

STARTING AND ENDING NODE: 2, 1

ANSWER:

-nodes: 0, 1, 2, 3,4, 5, 6 - edges: (0, 1), (0, 2), (0, 3), (0, 6), (3,4), (3,5)
now, we want to find the shortest path from node 2 to node 1.
we can use the breadth-first search (bfs) algorithm to find the shortest path in an unweighted
graph.

bfs traversal of the graph starting from node 2:

1. start at node 2 2. visit node O (since it’s directly connected to node 2) 3. visit nodes 1, 3,
and 6 (all directly connected to node 0)

since node 1 is one of the visited nodes, the shortest path from node 2 to node 1 is:
2->0->1

you are an ai assistant. user will provide you with a task. your goal is to complete the task as
faithfully as you can. you will ask for clarification in cases where the task is not clear. you
will not make any assumptions and you will not introduce any information not provided in
the input.

99

Under review as a conference paper at ICLR 2026

Shortest path

* QUERY: Given a graph representation, your task is to compute shortest path between the
specified two nodes

And the graph representation of Adjacency Setis: {0: {1, 2, 3,4, 5, 6, 8}, 8: {0}, 4: {0}, 3:
{0}, 2: {0}, 5: {0}, 1: {0}, 6: {O}}

Let’s construct a graph with the nodes and edges first.

Q: Give the shortest path from node 5 to node 8.

A: To find the shortest path from node 5 to node 8, let’s explore the graph: Node 5 is directly
connected to node 0 (via the edge 0 5). Node 0 is directly connected to node 8 (via the edge 0
8). Thus, the shortest path from node 5 to node 8 is 5,0,8.

Given a graph representation, your task is to compute shortest path between the specified two
nodes.

And the graph representation of: Adjacency Set is
{3: {8,9,6},8: {1,2,3,4},4: {8,9,6,7},6: {1,2,3,4}, 1: {8,9, 10, 6}, 2: {8, 9, 10, 6},
10: {0, 1,2},9: {0, 1,2,3,4},7: {4},0: {9, 10,5}, 5: {0}}
Let’s construct a graph with the nodes and edges first.
Q: Give the shortest path from node 6 to node 5.
A:
* TASK INFO: shortest path, medium, Instruct, Adjacency Set
* MODEL: claude-3-5-sonnet-20241022
* ACCURACY: 1
* STARTING AND ENDING NODE: 6, 5
* ANSWER:
Let me help find the shortest path from node 6 to node 5 in this graph.

Let’s analyze the possible paths: 1. Node 6 is connected to nodes 1, 2, 3, and 4 2. To reach
node 5, we need to go through node 0 (as node 5 is only connected to node 0) 3. To reach
node 0, we can go through either node 9 or node 10 4. From node 6: - We can reach node 1
or node 2, which both connect to nodes 9 and 10 - Through node 9 or 10, we can reach node
0 - From node 0, we can reach node 5

The shortest path would be:
6—+1—-9—-0—=5

or

6—+2—-9—-0—=5

(both paths have the same length)
The shortest path is 6,1,9,0,5

100

Under review as a conference paper at ICLR 2026

Shortest path

* QUERY:

Given a graph representation, your task is to compute shortest path between the specified two
nodes. And the graph representation of: Edge List is

01
20
30
04
25
61
70
82
48
90
94
100
114
Q: Give the shortest path from node 1 to node 2. A: Let’s think step by step:
e TASK INFO: shortest path,medium,0-CoT,Edge List
¢ MODEL: 04-mini-2025-04-16
* ACCURACY: 1
¢ STARTING AND ENDING NODE: 1,2
* ANSWER: We can use a breadth-first search starting from node 1:

1. Start at node 1. Neighbors are 0, 6. 2. Visit node 0 (distance 1). Its neighbors are 1, 2, 3, 4,
7,9, 10. We discover node 2 here. 3. We stop as soon as we reach node 2.

Reconstructing the path gives 1 — 0 — 2.
The shortest path from node 1 to node 2 is 1,0,2.

E.6 MORE FINDINGS FROM EVALUATION RESULTS

Finding ®: Serialization exhibits task-dependent effects, with both open-source and closed-
source models excelling at concise and structured representations. From Tables 18 and 21, the
formats most suitable for open-source and closed-source models vary across tasks such as Diameter
calculation, Triangle counting, Shortest pathand Cycle detection. In open-source models,
nearly every task exhibits a preference for a distinct format. In contrast, closed-source models tend to
perform well with formats such as Adjacency List (AL) and Adjacency Set (AS), yet Graph Markup
Language (GMalL) also achieves superior performance in certain tasks. Taking the Cycle detection
benchmark as an example, the Edge Set (ES) format outperforms other alternatives, whereas in closed-
source models, formats like Graph Markup Language (GMaL) demonstrate marked advantages. Such
task-specific preferences for serialization formats further highlight the importance and significance of
GRAPHOMNL

Finding ®: Complex multi-step prompts can negatively impact the performance of closed-
source models. In the Triangle counting task, open-source models performed very well with
more examples in Instruct and k-shot scenario, while closed-source models excelled using minimal
prompting strategies such as 0-Algorithm, which avoid elaborate reasoning steps or intermediate
explicit guidance (Tables 17, 20 in Appendix E.1). This pattern suggests that complex or abstract
multi-step prompts can confound closed-source models in certain challenging tasks.

101

Under review as a conference paper at ICLR 2026

E.7 ANALYSIS ON EFFICIENCY VIA NUMBER OF OUTPUT TOKENS

To assess inference efficiency, we measure the total number of output tokens each model pro-
duces—tokenized consistently with the OpenAI GPT-3.5-turbo tokenizer'—and analyze how token
counts vary across four key dimensions: difficulty levels (Table 23), task categories (Table 24),
serialization formats (Table 25), and prompt schemes (Table 26). The average token counts under
each condition are reported in these tables, together with the main results of accuracy, providing a
comprehensive view of the trade-offs between output verbosity and model performance across our
benchmark.

E.7.1 OVERALL ANALYSIS

Model Response Length vs Accuracy

1400

._.
N
=]
S
\.

=

o

o
—

Avg. Response Token Count
(=] ©
o o
o o
—
—

:
<"
/

N
o
o

Figure 32: Average output tokens versus overall accuracy across all graph-theoretic tasks.
Models are ordered by the average performance. Models in are open-source models while
others in Red are closed-source ones.

Figure 32 highlights two distinct patterns. Closed-source models—GPT-40, Claude-3.5, and Gemini-
2.0—achieve the highest accuracy while keeping total output below roughly 300 tokens, showing
tight control over generation length. 04-mini, a reasoning-focused model stands out: its final answers
remain short (about 100 tokens), but it adds a lengthy chain-of-thought (up to 1.6 K tokens), yielding
strong accuracy with markedly larger overall output. Open-source models display a different trend.
Llama-3.1 and Qwen-2.5 match the best accuracies only when they generate much longer responses,
whereas Llama-3 and Mistral remain shorter and less accurate. These contrasts persist across difficulty
levels, task categories, serialization formats, and prompt schemes, as detailed in Tables 23-26.

E.7.2 ANALYSIS CONCERNING DIFFICULTY OF TASK

Table 23: Average output tokens per model at each difficulty level (Easy, Medium, Hard).
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number of
output tokens.

Difficulty Llama-3 (8B) Llama-3.1(8B) Mistral (7B) Phi-4 (14B) Qwen-2.5(7B) Claude-3.5 GPT-40 GPT-4o-mini Gemini-2.0 & Average

Answer Reasoning
easy 210.51 1050.08 37591 517.31 881.82 198.82 257.17 248.50 440.26 143.87 841.68 469.63
hard 292.46 994.80 419.36 644.85 873.01 182.71 263.71 217.44 411.54 70.25 1660.83 548.27
medium 267.18 1018.81 408.88 632.09 903.56 197.35 278.82 246.52 481.29 120.70 1367.97 538.47

Average 256.72 1021.23 401.38 598.08 886.13 192.96 266.57 237.49 44437 111.61 1290.16

Table 23 presents the token output across different models under varying levels of task difficulty.
Overall, most models exhibit small variation in output length as task difficulty increases. However, a

"Note that the number of the reasoning of 04-mini is obtained from the metadata of each API call.

102

Under review as a conference paper at ICLR 2026

notable exception is the reasoning model, which demonstrates a distinct pattern: as task difficulty
rises, the number of tokens in the final answer tends to decrease, while the length of the reasoning
process correspondingly increases.

E.7.3 ANALYSIS CONCERNING TASK TYPE

Table 24: Average output tokens per model for each graph-theoretic task.
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number of
output tokens.

Task type Llama-3(8B) Llama-3.1 (8B) Mistral (7B) Phi-d (14B) Qwen25(7B) Claude35 GPT-do GPT-do-mini Gemini20 _ VMM pvergee
Answer Reasoning

BFS order 288.58 897.44 39437 582.88 859.08 24348 51106 435.15 63890 269.69 1666.66 | 617.03
Connectivity 176.60 919.75 37553 565.78 630.62 13371 154.63 130.19 137.39 96.13 547.11 35159
Cycle detection 266.47 828.07 362.82 477.68 73521 17649 13292 125.41 118.81 10038 564.12 | 353.49
Diameter calculation 269.48 87837 391.86 502.67 79225 236.41 259.02 285.96 51327 81.00 | 1839.11 | 549.95
Shortest path 286.65 1839.88 525.77 946.46 1491.21 12757 149.54 187.84 351.89 91.59 73550 | 612.17
Triangle counting 231.02 768.90 347.19 489.85 80221 24697 424.23 295.00 925.66 8055 215673 | 61530
Average 253.13 1022.07 399.59 59422 885.10 194.11 271.90 243.26 447.66 119.89 125154

Further insights can be drawn from Table 24, which reveals a clear correlation between output
tokens and task type. Specifically, tasks such as Connectivity and Cycle detection consistently
yield significantly shorter outputs compared to other tasks, as they are relatively easier compared
to others. Among open-source models, the Shortest path task results in the longest outputs,
whereas for closed-source models, the BFS order and Triangle counting task generate the highest
average token counts . In the case of the reasoning model, the token output associated with the
reasoning process increases markedly with the complexity and difficulty of the task—particularly
when considering task accuracy. For instance, in the Triangle counting task, the reasoning
component alone produces an average of over 2000 tokens, highlighting the model’s tendency to
elaborate more extensively as task complexity increases.

E.7.4 ANALYSIS CONCERNING SERIALIZATION FORMATS

Table 25: Average output tokens per model under different serialization formats.
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number
of output tokens.

Serialization format Llama-3 (8B) Llama-3.1(8B) Mistral (7B) Phi-4 (14B) Qwen-2.5(7B) Claude-3.5 GPT-d4o GPT-do-mini Gemini-2.0 od-mini Average
Answer Reasoning

Adjacency List 260.58 958.19 393.76 505.19 792.85 199.83 28026 23454 45560 12391 111890 | 48396

Adjacency Matrix 288.42 897.05 400.13 555.10 862.35 198.44 291.62 24348 536.80 105.28 1535.59 537.66

Adjacency Set 256.95 962.41 390.89 509.12 787.49 199.17 284.96 237.48 49791 119.09 1144.19 489.97

Edge List 239.61 930.70 38371 526.96 805.14 19593 26744 261.68 44574 11761 126025 | 494.07

Edge Set 246.07 914.69 405.22 511.70 823.50 203.51 285.23 269.78 497.43 114.47 1282.32 504.90

Graph Modelling Language 267.75 853.42 335.60 544.70 787.79 181.31 22191 180.38 339.59 114.18 1238.94 460.51

GraphML 212.87 1650.01 481.76 1000.29 1351.85 179.31 23597 248.29 358.25 114.39 1195.50 639.50

Average 253.18 1023.78 399.58 593.29 887.28 193.93 266.77 239.38 44733 115.56 1253.67

Table 25 presents the influence of different graph serialization formats on the number of output
tokens generated by various models. Overall, more complex formats—such as GMaL and Adjacency
Matrix—tend to induce longer outputs, whereas simpler formats—such as Adjacency List and Edge
List—are associated with significantly shorter outputs. Among the evaluated models, open-source
models such as Llama-3.1 and Qwen-2.5 consistently produce a higher number of tokens across most
formats. This effect is particularly pronounced for Llama-3.1 under the GMaL format, where its
output length reaches a peak. In contrast, closed-source models generally yield more concise outputs,
with Claude-3.5 being especially compact. An exception is observed in o4-mini, whose output length
is substantially higher due to the inclusion of intermediate reasoning steps.

E.7.5 ANALYSIS CONCERNING PROMPT SCHEMES

Table 26 further examines the impact of different prompting strategies on model output. Prompts
that involve reasoning or instruction (e.g., CoT, Instruct, and O-Instruct) significantly increase output
length, a trend that is particularly salient in open-source models. For instance, under the O-Instruct
prompt, both Llama-3.1 and o4-mini produce extended outputs. In contrast, prompts with no

103

Under review as a conference paper at ICLR 2026

Table 26: Average output tokens per model for each prompt scheme.
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number of
output tokens.

04-mini

Prompt Scheme Llama-3 (8B) Llama-3.1(8B) Mistral (7B) Phi-4 (14B) Qwen-2.5(7B) Claude-3.5 GPT-40 GPT-do-mini Gemini-2.0 _—~ ~ Average
Answer Reasoning

0-Algorithm 283.43 1071.04 484.71 434.10 953.42 206.22 305.95 237.04 684.95 123.07 1223.52 546.13
0-CoT 308.61 1114.37 346.42 145.13 763.46 221.08 385.55 386.72 55895 156.72 122345 510.04
O-Instruct 308.80 1151.98 391.51 643.39 690.56 204.07 334.83 370.93 54426 137.55 1229.01 546.08
Algorithm 202.15 964.36 456.40 815.85 946.63 215.10 245.75 225.96 349.02 120.56 1313.74 532.32
CoT 192.88 916.17 378.05 851.34 1042.81 164.95 154.63 203.33 253.13 92.06 1271.55 501.90
Instruct 212.82 987.20 355.99 917.42 1043.12 176.66 169.42 210.20 255.77 119.57 1302.98 522.83
LT™M 303.64 1116.18 405.24 361.22 694.98 205.71 347.82 339.98 579.05 142.44 1239.87 521.47
K-Shot 160.98 760.10 440.39 1024.57 1009.45 170.52 196.37 39.37 270.99 67.35 1277.14 492.47
0-shot 305.27 1133.08 337.44 146.16 841.05 181.03 260.59 140.92 529.71 80.78 1201.01 468.82
Average 253.18 1023.83 399.57 593.24 887.27 193.93 266.77 239.38 447.32 115.56 1253.59

instruction (0-shot) or few-shot examples (K-Shot) tend to yield shorter outputs. Closed-source
models exhibit relatively stable output lengths across prompt types, suggesting stronger control over
generation behavior.

E. 7.6 COST-ACCURACY TRADEOFF ANALYSIS

Table 27: Per-Query Inference Cost Analysis. Costs are calculated based on cur-
rent API pricing (as of November 2025) with average input tokens of 933 per query.

Bold orange / Underlined blue / Light purple highlights indicate lowest/second-lowest/third-
lowest cost in each category.

Model | Input Cost () Output Cost (§) Total Cost ($)
‘ Open-Source Models
Llama-3.1 (8B) 0.000019 0.000031 0.000049
Mistral (7B) 0.000187 0.000080 0.000267
Phi-4 (14B) 0.000056 0.000084 0.000140
Qwen-2.5 (7B) 0.000037 0.000089 0.000126
Closed-Source Models
Claude-3.5 0.002799 0.002894 0.005694
GPT-40 0.002333 0.002666 0.004998
GPT-40-mini 0.000140 0.000142 0.000282
Gemini-2.0 0.000093 0.000178 0.000271
04-mini 0.001026 0.006168 0.007194

Table 27 presents per-query inference costs based on current API pricing. Cost varies by three orders
of magnitude across models, ranging from $0.000049 (Llama-3/Llama-3.1) to $0.007194 (04-mini)
per query. Open-source models uniformly cost less than $0.0003 per query, while closed-source
models span from $0.000271 (Gemini-2.0) to $0.007194 (04-mini).

Figure 33 visualizes the cost-(mean) accuracy tradeoff on all tasks. 04-mini achieves the highest
accuracy (80.96%) but incurs the highest cost. Notably, no model dominates across all metrics.
The optimal choice depends on application requirements: open-source models for cost-sensitive
deployments with relaxed accuracy constraints, Gemini-2.0 or GPT-40-mini for balanced cost-
performance, Claude-3.5 or GPT-40 for high-accuracy applications, and 04-mini when maximizing
accuracy justifies premium costs. For full benchmark evaluation (241,726 queries), total costs range
from $11.85 (Llama-3) to $1,739 (04-mini), a 147 x difference that has significant implications for
large-scale graph reasoning deployments.

F DETAILED RELATED WORKS

Integrating LLMs with graph-structured data merges linguistic reasoning capabilities with structural
representation insights. While comprehensive discussions on LLM-graph integration can be found in

104

Under review as a conference paper at ICLR 2026

Cost-Accuracy Tradeoff Across Evaluated Models
1071 |

[Open-Source 04-mini
© Closed-Source GPT-40| Q
(@] Claude-3.5
-
2
]
v
wn
o
o
a 110
M
=)
=
oy
s
1 Gemini-2.0
o Mistral b
s o | Crriomin ¢
e -
Phi-4
= Qwen-2.5
g B
O 107
D |_JLlama-S.l

Llama-3

3b 4‘0 5‘0 6‘0 7b 8‘0
Mean Accuracy (%)

Figure 33: Cost-accuracy tradeoff across evaluated models on average. Each point represents a
model’s mean accuracy versus per-query inference cost (log scale).

Appendix F.1, recent benchmarks specifically targeting LLM applications for graph reasoning, such as
LLM4DyG (Zhang et al., 2024b), GraphTMI (Das et al., 2024), GraphInstruct (Luo et al., 2024b), and
MAGMA (Taylor et al., 2024), have highlighted substantial progress and persistent limitations. These
benchmarks reveal issues including narrow graph diversity, scalability constraints, and pronounced
sensitivity to input formatting. Studies on graph pattern comprehension and multi-hop reasoning
(Dai et al., 2024; Wang et al., 2023; Jin et al., 2024b) further emphasize brittleness under complex
or noisy data conditions. Empirical analyses conducted by GPT4Graph (Guo et al., 2024a) and
GraphWiz (Chen et al., 2024a) underscore performance gaps relative to specialized graph models
and highlight computational inefficiencies. Additionally, recent contributions through transformer
scaling studies (Sanford et al., 2024), comprehensive benchmarks like GraphFM (Xu et al., 2024)
and GLBench (Li et al., 2024d), and specialized datasets (Yan et al., 2023; Fatemi et al., 2024)
have provided valuable yet often limited insights. ProGraph (Li et al., 2024b) offers innovation but
introduces extra computational overhead due to external dependencies. A detailed summary of these
benchmark-related works is available as follows.

F.1 LLM APPLICATIONS ON GRAPH DATA

The intersection of LLMs and graph-structured data has emerged as an active research domain,
combining the nuanced contextual reasoning abilities of LLMs with the structural representational
power of traditional Graph Neural Networks (GNNs). Initial studies addressed fundamental challenges
such as reducing sensitivity to prompt formulation (Sclar et al., 2024) and enabling zero-shot cross-
dataset transferability (Li et al., 2024c). These foundational efforts have supported the development
of generative models that jointly leverage textual and structural graph information, creating unified
semantic embeddings for enhanced performance (Wang et al., 2024b; Fang et al., 2025b; Li et al.,
2024a; Kong et al., 2024).

Subsequent research built upon these foundations by focusing on enhancing the robustness of LLMs
when applied to graph tasks (Guo et al., 2024b) and advancing techniques for effectively translating
complex graph structures into natural language, notably through methods like graph-syntax trees
(Zhao et al., 2023). Recent advancements have directly embedded graph reasoning capabilities within
LLM architectures, significantly extending their application beyond purely textual domains (Hu
et al., 2023). In this context, specific methodologies have been developed, embedding graph learning
modules and leveraging instruction tuning for improved alignment between structural data and LLM
input modalities (Chai et al., 2023; Tang et al., 2024).

Parallel efforts have provided extensive overviews of the evolving field through comprehensive sur-
veys (Li et al., 2023; Jin et al., 2024a), highlighting foundational concepts such as Graph Foundation

105

Under review as a conference paper at ICLR 2026

Models that employ dedicated graph vocabularies for effective cross-domain learning (Mao et al.,
2024). Concurrently, advances in parameter-efficient encoding techniques, exemplified by GraphTo-
ken (Perozzi et al., 2024), and retrieval-augmented frameworks such as G-Retriever (He et al., 2024),
have further refined the processing and utilization of graph structures. Moreover, assistant-based
frameworks employing instruction-tuning strategies, including LLaGA (Chen et al., 2024b) and
InstructGraph (Wang et al., 2024a), demonstrated significant potential for enabling LLMs to produce
high-quality graph-structured outputs through preference-aligned interactions.

Complementing these directions, significant innovations have emerged within graph representation
learning, exemplified by models like OpenGraph (Xia et al., 2024) and MuseGraph (Tan et al.,
2024), which integrate scalable transformers, data augmentation, and graph-specific instruction
tuning for robust zero-shot performance and general graph mining applications. Additional methods
employing compact node identifiers (Luo et al., 2024a) and attributed random walks for fine-tuning
(Tan et al., 2023) have notably improved inference efficiency, collectively illustrating a coherent
evolution towards integrated frameworks that effectively harness the combined strengths of LLMs
and graph-centric approaches.

F.2 BENCHMARKS ON LLM APPLICATION TO GRAPH DATA

Recent benchmarks assessing LLM capabilities on graph reasoning tasks have significantly advanced
understanding yet still present important limitations. Benchmarks such as LLM4DyG (Zhang et al.,
2024b), which emphasizes spatial-temporal dynamics, typically neglect the complexity inherent to
static graph structures. Similarly, GraphTMI (Das et al., 2024), exploring various graph input modali-
ties (text, motif, image), has exposed inherent trade-offs between token efficiency and representational
expressiveness, potentially impacting scalability.

Other benchmarks, including GraphlInstruct (Luo et al., 2024b) and MAGMA (Taylor et al., 2024),
incorporate traditional graph reasoning tasks with explanatory strategies but remain limited by
small-scale graph sizes and lack comprehensive coverage across diverse graph structures. Studies
specifically targeting graph pattern recognition and natural-language-based graph problem-solving
(Dai et al., 2024; Wang et al., 2023) have further revealed pronounced sensitivity to input formats,
resulting in brittleness under complex or noisy conditions. Additionally, frameworks designed to
mitigate multi-hop reasoning inaccuracies through graph-centric reasoning chains (Jin et al., 2024b)
and examinations of generalization beyond memorized patterns (Zhang et al., 2024a) continue to
illustrate significant unresolved challenges.

Empirical assessments conducted by initiatives such as GPT4Graph (Guo et al., 2024a) and instruction-
tuned benchmarks like GraphWiz (Chen et al., 2024a) highlight persistent performance gaps com-
pared to specialized graph neural architectures, accompanied by elevated computational demands.
More recent contributions, including scaling analyses of transformer models (Sanford et al., 2024),
comprehensive benchmarks like GraphFM (Xu et al., 2024) and GLBench (Li et al., 2024d), and
specialized datasets such as CS-TAG (Yan et al., 2023) and encoding studies (Fatemi et al., 2024),
have substantially enriched the literature but remain constrained by challenges related to homogeneity,
training inefficiencies, and limited scalability. While innovative, solutions such as ProGraph (Li et al.,
2024b), employing programming-based integration and external API retrieval, introduce additional
computational overhead and dependencies.

G LIMITATIONS AND FUTURE DIRECTIONS OF GRAPHOMNI

While GRAPHOMNI significantly advances the evaluation of large language models (LLMs) on
graph-theoretic tasks, several considerations highlight opportunities for future enhancement:

* Diversity of Tasks: The benchmark presently includes key canonical tasks, which may not
fully represent the diversity of graph-related problems encountered in practice. Expand-
ing the task set to include dynamic, temporal, or heterogeneous graph challenges could
offer deeper insights into model performance. Future work should focus on defining and
integrating tasks that capture evolving network structures and multi-relational data.

* Generalizability of Findings: GRAPHOMNI evaluates LLMs under controlled experimental
conditions, which might not entirely reflect performance in less structured, real-world

106

Under review as a conference paper at ICLR 2026

environments. Future work could include testing the generalizability of models across
various practical conditions, such as noisy data, incomplete graphs, or domain-specific
variations, to better understand the robustness and applicability of LLMs.

Addressing these aspects will further enhance the robustness, applicability, and inclusivity of
GRAPHOMNI, fostering wider adoption and deeper insights into LLM performance.

H ADDITIONAL ABLATION STUDIES

H.1 PERFORMANCE VS. TIME COMPLEXITY OF TASKS
H.1.1 TIME COMPLEXITY ANALYSIS

The time complexities are determined based on well-established algorithms in graph theory (we are
aware more efficient algorithms are available, especially for Diameter calculation and Triangle
counting, but we use the most naive implementations since they typically reflect how LLMs approach
these tasks):

* Connectivity: O(V + E) — Determined via a single breadth-first search (BFS) or depth-
first search (DFS) traversal starting from one node to check reachability to another node.

* Cycle detection: O(V + E’) — Implemented using DFS with back-edge detection; each
node and edge is visited at most once.

* BFS order: O(V + E) — Standard breadth-first traversal visits each node once and
examines each edge once.

Shortest path: O(V + E) for unweighted graphs using BFS, or O(E + V' log V') for
weighted graphs using Dijkstra’s algorithm. Since our benchmark uses unweighted graphs,
we report O(V + E).

* Diameter calculation: O(V(V + E)) — Requires computing all-pairs shortest paths,
typically achieved by running BFS from each node, resulting in O (V') BFS operations each
costing O(V + E).

* Triangle counting: O(V®) naively by checking all triplets of nodes, or O(V - d3,,) with
neighbor-based enumeration where d,y is the average degree. For dense graphs or without

optimizations, this remains the most computationally intensive task.

H.1.2 ALIGNMENT ANALYSIS

Tables 28, 29, and 30 demonstrate partial alignment between computational complexity and LLM
difficulty. At the extremes, correspondence is clear: Triangle counting (O(V?)) achieves only
15.45% accuracy (closed-source, Hard) and 6.77% (open-source, Hard), while Connectivity (O(V +
E)) reaches 91.90% and 75.97% respectively. Similarly, Diameter calculation (O(V(V + E)))
yields 40.09% (closed-source) and 21.33% (open-source), ranking as the second-hardest task both
algorithmically and empirically.

However, among tasks with identical O(V + E) complexity, performance diverges substantially.
Connectivity maintains 91.90% accuracy on hard instances, while BFS order collapses to 27.15%,
a 64.75 percentage point gap despite equivalent asymptotic complexity. This divergence indicates
that computational complexity alone does not determine LLM difficulty.

H.1.3 FACTORS BEYOND COMPUTATIONAL COMPLEXITY

Three task characteristics account for this divergence. First, output structure critically impacts
performance: binary decisions (Connectivity, Cycle detection) achieve 91.90% and 79.24%,
while sequence generation (BFS order) and numerical enumeration (Triangle counting, Diameter
calculation) fall to 27.15%, 15.45%, and 40.09% respectively. Second, error propagation varies
by task type—sequence tasks suffer cascading failures where single errors invalidate entire outputs, as
evidenced by BFS order’s severe 62.52% performance drop. Third, reasoning scope distinguishes
task difficulty: local reasoning tasks (Connectivity, Cycle detection) degrade minimally (4.31%,

107

Under review as a conference paper at ICLR 2026

2.74%), while global reasoning tasks requiring complete graph traversal (Diameter calculation,
BFS order) drop sharply (41.34%, 62.52%).

Table 30 quantifies these effects: open-source models degrade 16.93% on average from Easy to Hard,
while closed-source models drop 26.26%. Crucially, this degradation correlates more strongly with
reasoning scope and output structure than with algorithmic complexity—BFS order (O(V + E))
degrades more severely than Diameter calculation (O(V(V + E))), demonstrating that maintain-
ing sequential dependencies in textual representations poses greater challenges than computational
intensity per se.

H.1.4 CONCLUSION

Our analysis reveals that computational complexity establishes a baseline for LLM difficulty, as
evidenced by Triangle counting and Diameter calculation ranking as both algorithmically
expensive and empirically challenging. However, output structure and reasoning scope play equally
critical roles. The 64.75 percentage point gap between Connectivity and BFS order—both
O(V + E) tasks—demonstrates that LLMs struggle disproportionately with maintaining long-range
sequential dependencies, performing combinatorial enumeration, and generating outputs under strict
ordering constraints. These limitations manifest independently of algorithmic complexity and persist
across all evaluated models (Tables 28-30), indicating fundamental constraints in how current
LLM architectures encode and manipulate graph-structured information through natural language
representations.

Table 28: Open-Source LLM Performance Across Tasks Ranked by Computational Complexity
(Mean Accuracy %). Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

Easy (5-10 nodes)
Phi-4 Qwen-2.5-72B Qwen-2.5-7B Qwen-3
12.88 36.57 18.56 41.36
78.50 71.56
71.41 65.87
90.03 77.69
74.02 90.30
90.24 97.17

Hard (20-30 nodes)
Phi-4 Qwen-2.5-72B Qwen-2.5-7B Qwen-3
4.38 4.73 445 19.54
17.71 15.27 39.83
2.65 1.38 29.53
26.60 28.31 64.28
40.64 58.88 86.81
48.39 81.19 92.89

Task Time C

Llama-3.1 Mistral
11.87
28.55
13.75
3118
55.44
79.90 56.29

Llama-3.1 Mistral
4.95 2.55
18.63 6.97
0.63 0.34
23.03 12.21
52.40 51.64
74.58 74.77

oV
O(V(V+E))
O(V+E)
O(V+E)
O(V+E)
O(V+E)

Triangle
Diameter
BFS order
Shortest path
Cycle
Connectivity

Table 29: Closed-Source LLM Performance Across Tasks Ranked by Computational Complexity
(Mean Accuracy %). Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

. . Easy (5-10 nodes) Hard (20-30 nodes)
Task Time Complexity - — — —
Claude-3.5 GPT-40 Gemini-2.0 o04-mini | Claude-3.5 GPT-40 Gemini-2.0 04-mini
Triangle O(V?) 43.41 36.32 50.33 84.54 15.92 12.81 15.55 17.53
Diameter O(V(V+E)) 83.71 63.99 79.14 98.88 56.70 45.60 23.45 34.61
BFS order O(V+E) 91.42 81.48 90.31 95.46 26.80 21.58 27.77 32.45
Shortest path O(V+E) 94.35 92.17 81.75 95.08 87.88 74.98 78.16 88.63
Cycle O(V+E) 82.56 85.08 62.30 97.97 80.10 82.96 58.30 95.61
Connectivity O(V+E) 98.38 95.63 92.61 98.23 96.99 90.59 87.99 92.02

Table 30: Aggregate Performance Comparison by Model Category and Task Complexity with
Performance Degradation. Accuracy (%) with color intensity indicating performance level. A shows
Easy—Hard performance drop.

Open-Source Closed-Source

Task Time Complexity Fasy Hard A Fasy Hard A

Triangle O(V?) 2270 B 1593 | 53.65 1545 3820
Diameter O(V(V+E)) [5230 21.33 3097 | 8143 40.09 —41.34
BFS order O(V+E) 37.37 [JEEBI 2794 | 89.67 27.15 —62.52
Shortest path O(V+E) 5462 37.83 1679 | 90.84 8241 —8.43
Cycle O(V+E) 63.78 59.76 —4.02 | 81.98 7924 274
Connectivity O(V+E) 81.87 7597 590 | 9621 9190 43I
Mean 5211 3518 1693 | 8230 56.04 —26.26

108

Under review as a conference paper at ICLR 2026

H.2 SCALING BEYOND 50 NODES

To address scale concerns, we extend evaluation to 50-100 node graphs on representative models
(Qwen-2.5-72B and 04-mini). Table 31 compares performance against the 20—30 node Hard split.

Performance degrades uniformly as graph size increases, but the fundamental patterns remain un-
changed. Task difficulty ranking stays identical: Triangle counting and BFS order remain
hardest, while Connectivity and Cycle detection remain most stable. Relative model perfor-
mance gaps persist at similar magnitudes across scales. Critically, no new failure modes emerge, i.e.,
the same challenges identified in smaller graphs (combinatorial enumeration, sequential dependencies,
serialization sensitivity) simply intensify.

These results confirm that our 5-30 node design captures the essential reasoning challenges. Larger
graphs amplify these challenges quantitatively but reveal no new qualitative phenomena, validating
our focus on controlled-scale evaluation where reasoning capability, rather than resource constraints,
determines performance.

Table 31: Results on 50-100 node graphs (EEH = Extremely Extra Hard). Results on the 20-30 node
Hard split are shown in parentheses for comparison. Bold orange / Underlined blue highlights
indicate best/second-best performance.

. Open-source Model | Closed-source Model

Task Difficulty | =) fen-2.5 (72B) o4-mini
BFS order EEH 8.19+2.03 (22.03) 10.23£2.07 (32.45)
Connectivity EEH 62.00+4.90 (84.09) 81.86+8.24 (92.02)
Cycle EEH 37.78+4.11 (68.40) 74.81+£4.90 (95.61)
Diameter EEH 8.89+2.39 (29.59) 40.44+3.76 (34.61)
Shortest path EEH 33.28+6.09 (72.53) 68.51+11.04 (88.63)

Triangle EEH 2.36+0.67 (4.73) 2.85+0.71 (17.53)

H.3 ROBUSTNESS CHECK UNDER PROMPT NOISE (PERTURBATION)

To address concerns about robustness to natural language variation, we conduct a supplementary
evaluation examining model sensitivity to paraphrased prompts. In our main evaluation, we deliber-
ately use deterministic phrasing within each prompt scheme to isolate the effects of our three core
dimensions, i.e., graph types, serialization formats, and prompt schemes, without confounding factors
from linguistic variation. This controlled design allows us to systematically attribute performance
differences to structural representation choices (serialization formats) and reasoning guidance strate-
gies (prompt schemes) rather than to incidental phrasing variations. However, real-world applications
inevitably encounter diverse linguistic expressions of the same semantic content, and robustness to
such variation is a practical concern. We therefore design a controlled perturbation framework to
assess whether our conclusions remain stable under realistic linguistic variation.

H.3.1 DESIGN OF THE STUDY

Task and Sample Selection. We choose to conduct this robustness analysis on BFS order. This
choice is motivated by three considerations: (1) it is among the most challenging tasks in our
benchmark, exhibiting substantial performance gaps across models and difficulty levels; (2) it
requires complex structured output (a full node ordering), making it potentially more sensitive to
prompt variations that might affect the model’s understanding of output format requirements; and (3)
given limited time and budget constraints, concentrating on a single representative hard task allows
for deeper analysis. From the full BFS order dataset, we subsample 4,000 instances to balance
coverage across graph types, serialization formats, prompt schemes, and difficulty levels.

Perturbation Design. Our perturbation framework defines noisy prompts as semantically equivalent
(so it is still a problem with the same answer) but syntactically diverse variants of the original prompts.

109

Under review as a conference paper at ICLR 2026

[52.1% l 47.9% l a l Word l

Original Algorithm Explanation

To| [determingl tne ors [(BPesdtRTFirSESeara ¢ raversa _ order, you need to follow these steps:

e St rRIBYIeHossing) + storting node and [BRGUENE) it [ERES) @ queve.|

B vor« [VESTRGAHaRKIthe StartingInode) o< visited [€0) [3Uo1d) [Reprocessing!

Bl a node [@Ad] add it to [Ehel [ERaversall [ordery) [For] [each] invisited | [node] [of] tne [dequeued Rode, enquetie 3€| =nd mark B8 as visited.
4.Continue the process until all reachable nodes are visited.

Perturbed Algorithm Explanation

WereTs) [FOIESIFRG) the ors traversa 1 [order| [of [graph:

FRSEIPIERIAUR <tarting node and B8 1t [B] 2 queve. mark [as visited (58] (W) (AORTEICRECKIEEISERIRY

Fheny) (Keep) (25ing) (WRETEIVOUR) oucuc [Has) (Fodes) (i) [EEEITaKEoUE) - noce [FRomfEhelfrontl] oo it to [your) (Fesult) [HESE)) (3nd) [For) [every) (Reignoor) [ERat) [Rasnielbecnvisitealyetjaaa tnentia) <o [queus) anc
ark [ERER) as visited

Keep 'this [up until lyou've 'seen levery node \you can reach.

Figure 34: Example of algorithm explanation perturbation. The original formal, numbered description
(left) is transformed into conversational phrasing (right) while preserving algorithmic correctness.
Highlighted changes show systematic replacement of technical terms with colloquial alternatives.
Word-level changes: 47.9%.

And they are generated through systematic paraphrasing of natural-language components while
maintaining the absolute structural preservation of graph data. The design adheres to three core
principles:

1. Semantic Equivalence: All perturbations preserve the semantic content and task requirements
through lexical substitution, syntactic restructuring, and stylistic variation. So it is designed
to test linguistic invariance.

2. Structural Preservation: Graph representations remain character-for-character identical
across all perturbations. This ensures that performance variation reflects model sensitivity
to linguistic expression rather than changes in the underlying graph structure. In this way,
the nature of the problem does not change much, and the ground truth results will still be
the same.

3. Comprehensive Coverage: Perturbations span all nine prompt types in our framework
(Algorithm, CoT, k-shot, Instruct, LTM, and their variants) and all seven serialization
formats (Adjacency Matrix, Adjacency List, Adjacency Set, Edge List, Edge Set, GMoL,
GMal).

Perturbation Methodology. We construct task-specific variation pools for each perturbable com-
ponent. For prompts containing algorithmic explanations, we develop multiple human-authored
paraphrases that express the same procedural steps using different vocabulary, sentence structures,
and explanatory styles. Figure 34 illustrates a representative example: the original formal description
uses a numbered list structure with technical terminology (“Initialize”, “enqueue”,“dequeue”, ‘Mark
visited”), while the perturbed version adopts a conversational flow with colloquial alternatives (“First”,
“pick your”, “put it in, “take out”, “Mark it as visited so we don’t check it again”). The transfor-
mation achieve 47.9% word-level change while maintaining algorithmic correctness and semantic

equivalence.

For few-shot answer components, we generate variations that maintain identical logical reasoning
and final answers while modifying transitional phrases and technical terminology. Figure 35 demon-

CEINNTS

strates this approach: the original example uses formal procedural terms (“Dequeue”, “neighbors”,

CLINT3

“enqueue”, “visited”) that are systematically replaced with more natural alternatives (“Extract from
queue”, “neighboring nodes”, “insert into queue”, “seen”). This achieves 17.5% word-level change
through 29 replacements with 82.5% similarity, preserving the reasoning structure while varying
linguistic expression. For instructional components, we create alternatives for opening statements,
reasoning indicators, and procedural connectives. For task descriptions in minimal prompts, we

paraphrase the task specification itself.

The perturbation process employs delimiter-based component extraction to precisely identify natural
language elements while avoiding graph data. Specifically, we identify boundaries between natural
language answers and graph representations (e.g., “And the graph representation of [format] is™)

110

Under review as a conference paper at ICLR 2026

[82.5%] 17.5%] 29 [Word]

[E————

Original Few-Shot Example

Q: Give the BFS traversal order starting from node 7.
A: Dequeue node 7. The neighbors are [4], so enqueue rnode 4. Dequeue node 4. The neighbors of 4 are [7, 0]. Node 7 is visited, so enqueue node 0. Dequeue nods 0. The neighbors of © are [1, 2, 3, 6, 4]
Node 4 is already visited, so enqueue node 1. 2, 3, and 6. Dequeue node 1. The neighbors of 1 are [0, 2, 8]. Nodes @ and 2 are visited, so enqueue node 5. Dequeuenode 2. The neighbors of 2 are [0, 5]. Node @
is visited, so enqueue node 5. Dequeue node 3. The neighbors of 3 are [0]. Node © is visited, so no new nodes. Dequeue node 6. The meighbors of 6 are [0]. Node @ is visited, so no new nodes. Dequeue node
8. The neighbors of & are [1]. Node 1 is visited, so no new nodes. Dequeue node 5. The meighbors of 5 are [2]. Node 2 is 'visited, so no new nodes. All its neighbors have been visited, so the traversal ends.

The BFS traversal order starting from node 7 is 7, 4, 0, 1, 2, 3, 6, 8, 5.

Given a graph, your task is to determine the BFS traversal order of this graph starting at node 5.

Perturbed Few-Shot Example

Q: Give the BFS traversal order starting from node 7.
A: Extract from queue node 7. The neighboring nodes are [4], so dnsert into queue node 4. Extract from queue node 4. The neighboring nodes of 4 are [7, ©]. Node 7 is seen, so insert into queue node 0.
Extract from queue node 0. The neighboring nodes of @ are [1, 2, 3, 6, 4]. Node 4 is already seen, so insert into queue node 1. 2, 3, and 6. Extract from queue node 1. The neighboring nodes of 1 are [0, 2,
8]. Nodes © and 2 are seen, so insert into queue node 8. Extract from queuenode 2. The neighboring nodes of 2 are [0, 5]. Node © is seen, so insert into queue node S. Extract from queue node 3. The
neighboring nodes of 3 are [0]. Node © is seen, o no new nodes. Extract from queue node 6. The neighboring nodes of 6 are [0]. Node © is seen, so no new nodes. Extract from queue node 8. The neighboring

nodes of & are [1]. Node 1 Extract from queue node 5. The neighboring nodes of 5 are [2]. Node 2 is seem, so no new nodes. All its neighboring nodes have been seem, so the

traversa 1 ends. The BFS trai node 7 i5 7, 4, 0, 1, 2, 3, 6, 8, 5.

Given a graph, your task is to determine the BFS traversal order of this graph starting at node 5

Figure 35: Example of few-shot answer perturbation. The original formal reasoning (left) is para-
phrased with natural language variation (right) while maintaining identical logical structure and
final answer. Color-coded highlights show systematic terminology replacement (e.g., “Dequeue” —

99 ¢

“Extract from queue”,“visited” — “seen”’). Word-level changes: 17.5%.

to ensure that variations are applied exclusively to linguistic content. For each prompt, we ran-
domly sample variations from component-specific pools matched to the prompt’s (prompt scheme,
serialization format) combination, apply targeted string replacement using bounded pattern
matching, and verify post-perturbation that all graph representations remain unchanged through
format-specific validation procedures.

Quality Assurance. To guarantee structural preservation, we implement multi-level verification:
format-specific validation for each of the seven serialization types (e.g., character-level comparison
of matrix blocks, structural validation for GML/GraphML, exact content matching for list and set
formats), automated testing on representative samples spanning all prompt-serialization combinations,
and per-instance validation confirming preservation before evaluation. Our implementation achieves
100% graph structure preservation across all perturbations while successfully modifying 87.9% of
prompts of the samples (with the remaining 12.1% representing cases where random sampling selects
the original phrasing).

Summary. This framework enables systematic evaluation of whether model performance and
our main conclusions remain stable under realistic linguistic variation, providing evidence for the
robustness of our findings beyond the specific phrasings used in the primary benchmark.

H.3.2 EXPERIMENTAL RESULTS AND ANALYSIS

Experimental Setting. We evaluate two representative models from our main benchmark: 04-mini
(top-performing closed-source reasoning model) and Qwen-2.5-72B (strongest open-source model).
These models provide coverage of both closed-source and open-source categories and exhibited the
highest performance in our main evaluation. We report results aggregated across prompt schemes
and serialization formats separately, as well as fine-grained breakdowns per model, to assess whether
our main conclusions about representation sensitivity remain stable under linguistic perturbation.

Overall Results. Tables 32 and 33 present results averaged across both models. Several key patterns
emerge:

Preservation of relative performance patterns. The relative rankings of prompt schemes and serializa-
tion formats remain largely stable between original and perturbed conditions. For prompt schemes
(Table 32), Algorithm, CoT, and Instruct consistently rank among the top three performers in Easy
mode under both conditions, while 0-Shot maintains strong performance in Medium and Hard modes.
For serialization formats (Table 33), AL and AS consistently dominate across all difficulty levels

111

Under review as a conference paper at ICLR 2026

in both original and perturbed settings, with AL achieving 92.26% to 93.41% (Easy), 83.44% to
83.56% (Medium), and 48.27% to 50.33% (Hard). The persistence of these rankings confirms that
our main finding holds under linguistic variation, as no single configuration works universally, but
certain formats consistently outperform others.

Evidence of real perturbation effects. While relative patterns are preserved, absolute performance
values shift measurably between conditions. For example, CoT improves from 85.26% to 90.98%
in Easy mode, while K-Shot shows variation from 80.48% to 78.36%. These changes confirm that
our perturbations introduce meaningful variation rather than being trivial paraphrases. We note that
performance differences may be partially attributable to the subsampling from the full dataset to
4,000 instances, though the consistency of relative patterns suggests this effect is limited.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM

84.71+8.99 78.36+10.06 82.3249.07 83.2249.08 85.82+47.12 85.26+7.45 86.86+6.13 80.48+8.52 83.88+8.58
65.82+12.78 64.46+12.61 64.97£11.99 66.90£13.59 66.29£10.15 61.97£11.01 62.31£9.35 54.18+14.67 65.48+11.94
32.22+#10.81 31.8749.64 29.4249.90 31.69+10.66 26.93+8.37 22.67+6.51 20.90+6.63 20.26+8.55 29.18+10.15

84.98£14.09 75.50+14.08 85.54+£9.64 79.13x15.83 85.8249.49 90.98+7.83 78.21+16.30 78.36+10.79 87.59+10.59
70.78+16.77 70.58+11.78 60.24+18.49 76.93+x13.23 66.22+14.67 58.44+10.42 70.90£11.63 54.65+16.17 68.73+14.16
34.26+£19.27 28.38+12.29 27.46+14.77 41.06£15.69 26.93+12.75 22.38+9.41 18.75£7.55 21.27+12.25 32.37+12.90

Original

Perturbed

Tzw| zzw

Table 32: Performance of Prompt Schemes with perturbed prompt (Mean+95% CI Margin of All
Models). Averaged over o4mini and Qwen-2.5-72B. Bold orange / Underlined blue / Light purple
highlights indicate best/second-best/third-best performance in each difficulty level.

Task Difficulty AL AM AS EL ES GMaL GMoL
E 92.26+3.71 75.24+10.67 91.88+3.76 82.28+7.11 82.17+6.40 85.68+4.64 74.51+8.09
Original M 83.4445.82 46.03£13.79 79.44+6.32 59.84+7.94 53.39+7.86 67.04+6.66 56.01+10.77
H 48.27+6.14 7.46+2.72 48.23+6.57 20.74+3.70 15.56+2.76 26.95+3.29 23.46+5.37
E 93.41+£5.30 74.08+15.27 87.40+7.19 80.64+15.75 81.91+8.49 85.60+8.14 77.67+12.33
Perturbed M 83.56+11.24 52.54+14.98 83.93£7.28 61.40+11.35 57.99£11.80 62.85£10.07 60.51+14.09
H 50.33+10.84 6.97+6.66 50.02+13.24 22.52+8.83 24.93x11.77 19.24+6.17 22.38+8.42

Table 33: Performance of Serialization Formats with perturbed prompt (Mean+95%
CI Margin of All Models). Averaged over o4-mini and Qwen-2.5-72B.

Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best
performance in each difficulty level.

Fine-Grained Results. Tables 34-37 break down results per model, revealing differential robustness
characteristics:

04-mini exhibits high robustness. The closed-source reasoning model shows remarkable stability
across perturbations (Tables 34 and 35). For serialization formats, AL maintains 98.54% to 97.89%
(Easy), 91.75% to 92.20% (Medium), and 54.24% to 56.08% (Hard), with minimal changes in
ranking. For prompt schemes, the relative ordering remains nearly identical between conditions,
with only minor absolute shifts (e.g., 0-Algorithm improves from 95.84% to 97.64% in Easy mode).
This stability suggests that 04-mini’s reasoning capabilities are relatively invariant to surface-level
linguistic variation, consistent with its design for robust multi-step reasoning.

QOwen-2.5-72B shows greater sensitivity. The open-source model exhibits larger absolute performance
shifts and wider confidence intervals under perturbation (Tables 36 and 37). For example, in
serialization formats, performance on AS varies from 86.68% to 77.64% (Easy) and 47.74% to
52.59% (Hard), with substantially increased variance (e.g., Hard mode: 10.30 to 27.65). Similarly,
prompt scheme performance shows notable fluctuation (e.g., CoT: 75.10% to 85.22% in Easy, 47.82%
to 46.85% in Medium). However, crucially, the relative rankings remain consistent: AL and AS
continue to outperform other serializations, and Algorithm/CoT/Instruct remain competitive prompt
schemes. This indicates that while open-source models may be more sensitive to phrasing variations,
our comparative conclusions about which representations work better are robust.

Summary. Our robustness analysis demonstrates that the main conclusions of GRAPHOMNI remain
stable under realistic linguistic perturbation. While absolute performance values shift measurably,

112

Under review as a conference paper at ICLR 2026

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LT™M
E 95.84+229 94.66+3.43 = 96.53+1.96 94.66+2.76 = 97.02£2.05 95.42+1.58 96.32+2.16 93.90+2.26 94.80£2.51
Original M 83.06£6.30 80.88+5.51 80.34+7.04 ~ 84.08£5.94 77.28+5.58 76.12+6.47 73.74+6.33 79.73+6.15 79.12+6.32
H 37.88+12.33 38.07£11.51 35.77+13.43 39.31+14.47 26.98+10.81 26.26+7.98 21.48+7.40 31.85x11.55 34.45£12.51
E 97.64£1.76 95.54+2.69 97.39£1.95 96.36+3.85 9520+4.17 95.9242.65 94.71+3.32 93.37+2.53 95.48+2.82
Perturbed M 89.42+4.41 81.41+4.49 7527+8.19 86.36+7.86 74.24+8.63 68.37%11.29 71.33+9.88 78.26+6.93 78.76+9.51
H 41.10£19.67 33.05+£16.53 33.75+16.26 50.55£15.98 27.23+13.65 24.28+10.70 27.30+6.95 35711220 34.86+17.31

Table 34: Performance of Prompt Schemes with perturbed prompt (Mean+95% CI Margin of All
Models) on 04-mini. Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

Task Difficulty AL AM AS EL ES GMaL GMoL
E 98.54+0.63 96.06+1.47 97.09£1.40 95.74+1.14 95.25+1.00 94.71x1.51 90.83+2.72
Original M 91.75+1.49 74.71x1.86 87.20+4.62 74.92+2.89 69.10+2.66 79.63+3.63 78.31%1.97
H 54.24+5.95 12.83+1.73 48.7248.78 27.49+2.78 19.01+3.80 31.11+4.72 33.74+4.02
E 97.89+£1.76 96.99+2.15 97.17£2.64 95.29+2.12 95.20+2.90 94.20+2.81 93.39+2.76
Perturbed M 92.20+2.48 73.15+5.68 87.2247.43 76.96+6.46 67.16+£7.90 72.84+6.68 77.57+5.61
H 56.08+10.23 13.51+12.75 47.74+7.90 31.36+12.84 28.68+9.58 24.25+7.84 33.20%11.99

Table 35: Performance of Serialization Formats with perturbed prompt (Mean+95% CI Margin of All
Models) on 04-mini. Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LT™

73.58+13.66 62.07+9.30 68.10£9.70 71.78+13.48 74.62+7.41 75.10£10.29 77.39£6.59 67.06+8.88 72.95+12.65
48.57%16.95 48.03+17.71 49.59£16.46 49.73£19.69 55.31+16.14 47.82+15.08 50.88+13.11 28.64+7.72 51.84+18.43
26.56+£17.71 25.67+14.87 23.07+13.88 24.07+14.43 26.88£13.67 19.08+10.17 20.32+11.63 8.68+3.39 23.92+15.94

72.33£25.53 52.11%15.51 71.71x1431 61.91%26.30 72.70+16.55 85.224#16.18 55.11+29.20 60.84+12.59 78.39+21.24
52.14+27.47 57.94+21.58 42.71£3528 65.93+£25.51 58.20£27.85 46.85£13.95 70.40£23.79 27.10+£14.46 58.70+25.48
28.39432.49 23.71£18.80 20.12#26.21 31.56£26.38 26.62+22.75 20.16£17.12 11.43£10.14 1.05£2.06 29.87+20.35

Original

Perturbed

rIzm|lzzm

Table 36: Performance of Prompt Schemes with perturbed prompt (Mean+95% CI Margin of
All Models) on Qwen-2.5-72B. Bold orange / Underlined blue / Light purple highlights indicate
best/second-best/third-best performance in each difficulty level.

Task Difficulty AL AM AS EL ES GMaL GMoL
E 85.98+4.51 54.4248.08 86.68+5.68 68.82+6.28 69.09£2.97 = 76.65+3.28 58.20+3.92
Original M 75.1348.68 17.35+3.83 =~ 71.69+9.52 44.76+6.41 37.67+4.27 54.44+4.82 33.70+3.43
H 42.30+9.52 2.08+0.76 47.74+10.30 13.99+2.60 12.10£2.53 22.80+2.67 13.17£2.23
E 87.65+10.82 51.17+21.97 77.64+11.01 47.66+34.42 68.62+11.31 75.94+14.67 59.99+20.12
Perturbed M 74.92421.42 29.36+22.16 80.64+12.64 45.83x16.54 47.68+£22.05 50.00£17.76 38.57+23.07
H 43.85£19.81 1.25+2.45 52.59+27.65 13.67+9.54 21.18+21.98 13.59+8.54 11.57+6.71

Table 37: Performance of Serialization Formats with perturbed prompt (Mean+95% CI Margin of
All Models) on Qwen-2.5-72B. Bold orange / Underlined blue / Light purple highlights indicate
best/second-best/third-best performance in each difficulty level.

113

Under review as a conference paper at ICLR 2026

confirming that perturbations introduce real variation rather than trivial paraphrases, the relative
performance patterns across prompt schemes and serialization formats are preserved. Specifically,
the finding that no single configuration works universally, but that certain serialization-prompt
combinations consistently outperform others, holds across both original and perturbed conditions.
The differential sensitivity between models (04-mini showing higher robustness than Qwen-2.5-72B)
provides an additional dimension for understanding model capabilities. These results validate the
reliability of our benchmark findings while highlighting that prompt perturbation represents a valid
and interesting dimension for future investigation. Importantly, our extensible framework design
readily accommodates such extensions: future work could systematically incorporate perturbation
as an additional evaluation axis alongside graph types, serialization formats, and prompt schemes,
enabling deeper exploration of linguistic robustness in graph reasoning tasks.

THE USE OF LARGE LANGUAGE MODELS

We declare that we only use LLM to aid or polish writing in this paper. Of course, we use LLMs to
do inference in our experiment since we need to evaluate them on GRAPHOMNI.

114

