
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPHOMNI: A COMPREHENSIVE AND EXTENSIBLE
BENCHMARK FRAMEWORK FOR LARGE LANGUAGE
MODELS ON GRAPH-THEORETIC TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces GRAPHOMNI, a comprehensive benchmark designed to
evaluate the reasoning capabilities of LLMs on graph-theoretic tasks articulated in
natural language. GRAPHOMNI spans diverse graph types, serialization formats,
and prompting schemes, substantially extending upon prior efforts in both scope
and depth. Through systematic evaluation, we uncover critical interactions among
these dimensions, revealing their decisive impact on model performance. Our
experiments show that state-of-the-art closed-source models such as Claude-3.5 and
o4-mini consistently lead overall, yet still leave considerable headroom, while open-
source models display pronounced sensitivity to various design choices. Beyond
the standard scope, larger graphs, real-world graphs, and additional NP-hard
tasks are further discussed. We further analyze efficiency via output token usage,
highlighting cost–accuracy trade-offs, and introduce a reinforcement learning-based
optimizer that adaptively selects factor combinations, reducing evaluation cost by
75% while retaining strong accuracy. This flexible and extensible benchmark not
only deepens understanding of LLM performance on structured graph reasoning but
also establishes a robust foundation for advancing model design and evaluation. The
code and datasets are available at https://anonymous.4open.science/r/ID-14092.

Performance

Graph Theoretic Questions

Local Properties

Adjustable Settings AnswersLLM

Evaluation Pipeline

Q: Count the number of triangles
in this undirected graph.
Q: Compute the diameter of the graph
represented by the edge set below.
Q: Find the shortest path
from node A to node F.
Q: Perform a breadth-�rst traversal
starting from node A ...

Erdős
Rényi

Barabási
Albert

Scale
Free

...

A B

C D

A: B, C
B: A, D
C: A, D
D: B, C

 A B C D
A [0 1 1 0]
B [1 0 0 1]
C [1 0 0 1]
D [0 1 1 0]

(A, B)
(A, C)
(B, D)
(C, D)

Edge
Set

Adjacency
Matrix

Adjacency
List

Q: Are the following two nodes connected?
Q: Determine if the following graph
 has any cycles.

A: Yes, they are connected.
A: There is a cycle: B -> C ->
 D -> B. So, the graph
 contains a cycle.
A: There are 2 triangles:
 (A, B, C) and (B, C, D).
A: The longest shortest path
 is from U1 to V3, which
 takes 4 steps: U1 -> V1 ->
 U2 -> V2 -> U3 -> V3.
 Diameter is 4.
A: A -> B -> D -> F
 (Length: 3)
A: A -> B -> C -> D -> E

Global Properties

Graph Types

Serialization Formats

Prompt Schemes

Combination of three dims
Q: <Graph Theoretic Question>
<Prompt Scheme: Few-shot Example>
<Serialization Format: Target Graph>
Let's think step by step. <Chain of T>
- The triangle X-Y-Z exists because ...
Answer:

Discussions
Factors Performance Heatmap

Not �ne-grained

Serialization Performance Prompt

Error case studies
Given graph , your task is <triangle counting>.
How many triangles are in this graph?
In a simple graph, # triangles = int (# nodes / 3).
So # of triangles is 26/3 ~=8
Incorrectly assumption of # triangles formula.
Valid triangle needs all three nodes mutually connected

Our �ne-grained

Prompt

Se
ria

liz
at

io
n

Plain CoT K-shot CoT

...

Findings
Finding 1: High variability underscores the
need for comprehensive evaluation across
all benchmarking dimensions
Finding 2: LLM sometimes can not understand
important concept in graph reasoning...Finding 3:

Figure 1: GRAPHOMNI Evaluation Pipeline. We convert graph-theoretic tasks into text-based
questions about local and global properties. In the adjustable settings, we vary three dimensions, i.e.,
graph type, serialization format, and prompt scheme, and then generate every possible combination.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a transformative force in natural language process-
ing (NLP), demonstrating state-of-the-art performance in tasks such as open-ended text generation,
summarization, and problem-solving (Radford et al., 2019; Brown et al., 2020; Raffel et al., 2020;

1

https://anonymous.4open.science/r/ID-14092

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Lewis et al., 2020). However, their application to structured reasoning on graph-based data remains
relatively underexplored. Graphs, defined by their nodes and edges, encapsulate complex relation-
ships that are crucial to many real-world applications, including social network analysis (Easley et al.,
2010), recommendation systems (Wu et al., 2022), out-of-distribution detection (Fang et al., 2025a),
and drug discovery (Gaudelet et al., 2021).

Traditional approaches to graph analysis primarily rely on Graph Neural Networks (GNNs) that are
designed with specialized representations and training paradigms tailored for tasks such as node
classification (Wu et al., 2020), link prediction (Zhang & Chen, 2018), and community detection (Su
et al., 2022). In contrast, LLMs are trained on vast quantities of unstructured or semi-structured
text and excel at reasoning about entities and relationships described linguistically, as evidenced
by benchmarks like MMLU (Hendrycks et al., 2021a) and MATH (Hendrycks et al., 2021b). This
discrepancy raises a pivotal question: Can LLMs be effectively harnessed to understand and
manipulate graph-theoretic concepts when graphs are articulated in natural language?

To address this question, a multi-dimensional evaluation is required rather than tuning a single knob.
Prior work has examined individual components in isolation, including prompting strategies (Wang
et al., 2023; Fatemi et al., 2024), textual graph serialization (Xypolopoulos et al., 2024), or specific
graph families (Zhang et al., 2024b), but this piecemeal view obscures how these choices interact. We
therefore vary three interacting dimensions jointly. First, graph type: different graph types exhibit
distinct structures, so we use synthetic generators (ER, BA, scale-free, bipartite) to produce them,
which in turn affects how readily a text description can capture these structures. Second, serialization
format: the same graph written as an adjacency list or matrix, an edge set, or a richer schema can
help or hinder model reading. Third, prompt scheme: the way the question is posed (zero-shot,
few-shot, instructive, algorithmic, chain-of-thought) can shift answers even with identical inputs.
As summarized in Table 1, previous studies do not vary these dimensions together, so they cannot
determine whether gains come from the model, the representation, or the instruction, nor explain why
a setting that benefits one model may harm another. Consequently, we still lack a comprehensive and
robust understanding of LLM capabilities in graph reasoning.

Table 1: Comparison of existing graph-related benchmarks for LLM with our GRAPHOMNI.
We evaluate their inclusion of different types of graphs, serialization formats, and prompt schemes,
noting a gap between recent works and ours. Additionally, GRAPHOMNI is the only work with a
random baseline as well as a modularized and expandable framework design. More related works are
included in Detailed Related Works in Appendix F.

Benchmarks Graph Sources Serializations Prompt Schemes Evaluation Framework

Samples # Graph Types* Node Size Multiple Types # Types Multiple Types # Types Random Baseline Modularized

LLM4DyG (Zhang et al., 2024b) 900 (100 per task) 4 5 to 20 ✗ 1 ✓ 4 ✓ ✗
GraphInstruct (Luo et al., 2024b) N/A 3 5 to 35 ✓ 3 ✗ 1 ✗ ✓
MAGMA (Taylor et al., 2024) ∼ 400 1 5 to 50 ✗ 1 ✗ 1 ✗ ✗
NLGraph (Wang et al., 2023) 5,902 1 5 to 35 ✗ 1 ✓ 5 ✓ ✗
GPC (Dai et al., 2024) 350 1 5 to 35 ✓ 2 ✗ N/A ✗ ✗
GraphWiz (Chen et al., 2024a) 3,600 1 2 to 100 ✗ 1 ✗ 1 ✗ ✗
GPT4Graph (Guo et al., 2024a) N/A 1 10 to 20 ✓ 4 ✓ 6 ✗ ✗
GraphArena (Tang et al., 2025) 10,000 N/A 5 to 30† ✗ 1 ✗ 1 ✗ ✗
GraphQA (Fatemi et al., 2024) 2,300 7 5 to 20 ✗ (only via text) 1 ✓ 6 ✗ ✓
NLGift (Zhang et al., 2024a) 37,000 2 3 to 25 ✗ 1 ✗ 1 ✗ ✗
GraphWild (Zhang et al., 2025) 49,224 5 N/A ✗ 1 ✗ 1 N/A N/A

GRAPHOMNI 241,726 7 5 to 30 ✓ 7 ✓ 9 ✓ ✓

* Note that # Graph Types is targeted for synthetic datasets and reflects the number of types of random graph generators.
† The range is for all non-trivial tasks, excluding nearest neighbor and shortest distance.

To address this gap, we propose GRAPHOMNI, a unified benchmark with an extensible framework,
summarized in Figure 1. It represents the most comprehensive graph-theory-based evaluation
framework developed to date, compared with all related works in Table 1. It spans various graph
types, serialization formats, and prompt schemes, surpassing previous works in scope and granularity.
Furthermore, our framework is designed as an extensible and flexible evaluation system. Researchers
can easily incorporate new graph generators, serialization methods, and prompt strategies, thereby
ensuring that the benchmark remains current with evolving methodologies in both LLM research and
graph theory. A random baseline is then implemented to ensure a fair evaluation.

With the help of GRAPHOMNI we clearly demonstrate that no single serialization or prompt works
best for all models and accuracy varies widely across graph types, serializations, and prompts, which
validates the need for our multi-dimensional design and per-task configuration. Additionally, model

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

BFS

Cnt.Cy.

Dia.

Short. Tri.

0.00
0.25

0.50
0.75

1.00

Easy

Zoomed View

BFS

Cnt.Cy.

Dia.

Short. Tri.

0.00
0.25

0.50
0.75

1.00

Medium

Zoomed View

BFS

Cnt.Cy.

Dia.

Short. Tri.

0.00
0.25

0.50
0.75

1.00

Hard

Zoomed View

Llama-3.1 (8B)
Mistral (7B)
Phi-4 (14B)
Qwen2.5 (7B)
Llama-3 (8B)
Qwen2.5 (72B)
Qwen3 (8B)

BFS

Cnt.Cy.

Dia.

Short. Tri.

0.100
0.325

0.550
0.775

1.000

Easy

Zoomed View

BFS

Cnt.Cy.

Dia.

Short. Tri.

0.00
0.25

0.50
0.75

1.00

Medium

Zoomed View

BFS

Cnt.Cy.

Dia.

Short. Tri.

0.00
0.25

0.50
0.75

1.00

Hard

Zoomed View

Claude-3.5
Gemini-2.0
GPT-4o
GPT-4o-mini
o4-mini

Figure 2: Radar charts comparing the performance of open-source (top row) and closed-source
(bottom row) LLMs across six canonical graph reasoning tasks at three difficulty levels.

performance requires further improvement overall: Claude-3.5 and o4-mini lead across tasks and
difficulty levels, yet even they fall short of the near-perfect accuracy a non-specialist human evaluator
could achieve on 5–30 node problems given sufficient time. To verify the robustness of the evaluation
results, we extend the analysis to larger graphs, NP-hard tasks, and conduct a representativeness check
on real-world graphs, all of which yield the same trends. Motivated by these results, we introduce a
simple RL-inspired selector that chooses the optimal settings (prompt + serialization) for each task,
thereby improving accuracy at a minimal extra cost. We summarize our contributions as:

❊ Novel benchmark: We introduce GRAPHOMNI, the most comprehensive benchmark to our
knowledge for evaluating graph-theoretic reasoning in LLMs, covering a wide range of synthetic
graph types, diverse serialization formats, and varied prompt schemes.

❊ Comprehensive evaluation framework: We design a flexible and extensible evaluation framework
that allows for the seamless addition or removal of graph generators, serialization methods, and
prompt schemes, ensuring adaptability to future research developments. We also include extended
studies on larger graphs (30–50 nodes), real-world datasets, and NP-Hard tasks, which together
confirm the robustness and transferability of our conclusions.

❊ Insightful empirical observations: State-of-the-art models still exhibit considerable room for
improvement overall. Our experiments reveal substantial performance variance, with notable accuracy
differences across different serialization and prompting configurations, emphasizing the need for
comprehensive evaluation across all dimensions to provide fair and trustworthy understandings.

❊ Practical methods inspired by observations: Motivated by the above observations, we develop an
RL-based adaptive mechanism that dynamically selects the optimal factors, achieving near-optimal
performance with only a small exploration cost.

2 GRAPHOMNI

Overview and Statistics. GRAPHOMNI rigorously evaluates LLM performance on graph reasoning
by examining the interplay between graph structure, textual representation, and prompt formulation.
It comprises four key components: Benchmark Tasks, Graph Types, Prompt Schemes, and Serial-
ization Formats. Figure 1 illustrates how these four components form our end-to-end evaluation
pipeline. Benchmark Tasks cover canonical graph problems that test both local and global reasoning.
Graph Types are defined by diverse synthetic datasets generated by different random graph genera-
tors, including stochastic, scale-free, and bipartite models. Prompt Schemes incorporate various
query designs such as algorithmic, chain-of-thought, k-shot, instructive, and zero-shot approaches.
Serialization Formats convert graph data into text using methods like adjacency lists, matrices, and
the GMoL. Moreover, we have designed three difficulty modes for all graph-related tasks, determined
by the number of nodes: Easy (5–10 nodes), Medium (10–20 nodes), and Hard (20–30 nodes). This
unified and extensible framework distinguishes itself by integrating multiple dimensions of graph
reasoning into a single evaluation platform, thereby providing comprehensive insights into LLM

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

performance on complex, structured data. The basic statistics of GRAPHOMNI are presented in
Table 2, while token statistics for different combinations are shown in Figure 3. In summary, our
dataset contains a total of 241,726 queries. More detailed statistics are in Appendix B.

Seria
liza

tio
n Form

at
AL

AM
AS

EL
ES

GMaL

GMoL

Prompt Scheme

0-Algorithm
0-CoT

0-Instruct
0-Shot
Algorithm

CoT
Instruct

K-Shot
LTM

M
ean Tokens

500
1000
1500
2000
2500
3000
3500

Figure 3: Token usage for prompt-
serialization combinations by GPT-4
tokenizer. More detailed statistics are
included in Figures 6a and 6b.

Graph Tasks. We consider 6 canonical tasks that cap-
ture both local and global properties of graphs, thereby
requiring diverse reasoning capabilities from LLMs.
Connectivity involves determining whether a path exists
between two designated nodes, testing the model’s under-
standing of local linkages. Cycle detection requires ver-
ifying the presence of any cycle, which probes the model’s
ability to recognize recurring patterns in connectivity.
Diameter calculation demands calculating the max-
imum distance between any two nodes, thereby challeng-
ing the model to grasp the global network structure. BFS
order tests the ability to generate an ordered sequence
of nodes as encountered in a breadth-first search, assess-
ing sequential output and structured reasoning. Triangle
counting requires precise numerical enumeration of 3-
cycles, blending quantitative precision with structural in-
sight. Shortest path tasks compel the model to identify
the most efficient route between two nodes. Collectively,
these tasks provide a robust measure of performance across
both binary decisions and nuanced numerical analyses. For
more details on the design of the graph task, please refer to Appendix A.3, where we further discuss
the rationale behind the task selection and analyze the distinct capability demands of each task in
Appendix A.3.1. We also include NP-hard tasks for extended discussion, elaborated in Appendix C.4.

Graph Generators (Types of Graphs). To mirror the diversity found in real-world net-
works, our benchmark incorporates a broad array of graph families of 7 types, each pre-
senting unique structural characteristics that challenge LLM reasoning. ER Graphs are gen-
erated by random sampling from the space of all graphs with n vertices. Within this fam-
ily, ERM employs a fixed edge count m, randomly chosen between 1 and n(n−1)

2 , while
ERP uses a probability-based approach with an edge probability drawn uniformly from [0, 1].

Table 2: Statistical summary of
GRAPHOMNI over tasks at all difficulty
levels. More statistics are in Table 7.

Difficulty Easy Medium Hard

Numbers 88956 87318 65452
Avg. Nodes 8.01 14.70 26.61
Avg. Edges 11.70 34.51 77.60

Extending these models to capture structured varia-
tions, Bipartite ER Graphs (denoted as BERM and BERP)
impose bipartite constraints that yield additional topo-
logical diversity. To reflect the power-law distribu-
tions prevalent in real-world networks, we include
Barabási–Albert Graphs(BAG), generated by ini-
tializing a complete graph of m0 vertices (with m0

randomly chosen up to n
3) and sequentially adding

nodes that form m = m0 + 1 connections via pref-
erential attachment. Recognizing that many practical
networks are hierarchical or tree-like, we extend BAG
to Barabási–Albert Forests(BAF) by enforcing an acyclic topology. Moreover, our framework
features Scale-Free (SF) Graphs generated via a degree-weighted random connection strategy,
which can yield multiple disconnected components, offering a complementary perspective to BAG.
A detailed description of each type of graph can be found in Appendix A.4, where we also provide
the detailed rationale for this selection and empirical evidence showing that even within the 5–30
node range, the chosen generators yield statistically distinct and representative structural regimes in
Appendix A.4.1.

Prompt Schemes. Recognizing that the formulation of query prompts critically influences LLM
reasoning, our benchmark systematically evaluates 9 distinct prompt schemes that vary in the degree
of explicit guidance provided. The k-Shot prompts supply multiple exemplars from simpler graph
instances to prime the model with relevant examples. The Algorithm prompts (Wang et al., 2023)
explicitly delineate a well-known algorithm (such as BFS or Dijkstra), offering clear procedural
instructions. In contrast, Chain-of-Thought(CoT) prompts (Wei et al., 2022) encourage the model to
articulate intermediate reasoning steps, thereby exposing its internal thought process. The Instruct

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

prompts use directive language tailored for instruction-based models to elicit focused responses.
All three types above come with few-shot examples. For cases requiring minimal intervention, the
0-Shot (i.e., plain) prompts pose bare questions without supplementary cues. To further investigate
the impact of reasoning visibility, we also include variants without few-shot examples, such as 0-CoT,
0-Instruct, and 0-Algorithm, which deliberately restrict the exposure of intermediate solution
steps, as well as LTM prompts that employ least-to-most prompting. The detailed design process and
some examples of the prompt program are shown in Appendix A.5.

Serialization Formats. Since LLMs operate on textual inputs, the method by which graphs are
serialized has a profound impact on the clarity and accessibility of structural information. Our
benchmark examines 7 distinct serialization formats that offer varied representations of graph
topology. The Graph Modeling Language(GMoL) provides a structured, tag-based representation
that mirrors hierarchical data organization. In contrast, the Adjacency Set and Edge Set formats
offer succinct listings of node neighbors and edges, respectively, emphasizing compactness. The
Edge List format, which may incorporate additional details such as edge weights, serves as a more
verbose alternative. Moreover, the Adjacency Matrix and Adjacency List formats balance detail
and conciseness differently depending on the graph density, and the Graph Markup Language(GMaL)
(Brandes et al., 2013) is an XML-based file format used to describe graph structures, including nodes,
edges, and their attributes. Specific examples of graph serialization formats are in Appendix A.6.

3 EXPERIMENTAL SETTING

We evaluate the graph reasoning capabilities of various LLMs on a diverse set of tasks and difficulty
levels. Our protocol highlights the impact of different dimensions in Section 2 on model performance.

Random Baselines. To assess the intrinsic graph reasoning ability of our models, we include a
random baseline for each task. Appendix A.2 shows its detailed design process. These baselines
provide a clear reference point for evaluating how much the LLMs improve upon chance performance
when reasoning about graph-theoretic properties expressed in natural language.

Models and Configurations. We evaluate a diverse suite of LLMs spanning both open-source
and closed-source categories. Our open-source models include Llama-3, Llama-3.1, Mistral,
Phi-4, Qwen-2.5, and Qwen-3, while our closed-source models consist of Claude-3.5, Gemini-2.0,
GPT-4o, GPT-4o-mini and o4-mini (versions and sources of the LLMs applied can be found in
Appendix A.1). The model selection here is designed to provide coverage of the widely used LLMs
of different sizes, reasoning types, and whether they are open-sourced or not, based on the budget
and availability of models at the time of the work. We also try our best to include models with better
performance on GRAPHOMNI than comparable alternatives to make our conclusion convincing. In
all experiments related to few-shot examples, five exemplars are prepended to the prompt (i.e., k=5).
More implementation details can be found in Appendix A.

Evaluation Metrics. Evaluation of LLM responses is conducted using predefined binary accuracy
metrics, assigning an output of 1 for correct responses and 0 for incorrect responses. For qualitative
tasks, such as Connectivity verification and Cycle detection, correctness is determined by
identifying and verifying key phrases in the model’s output (e.g., “yes, there is a cycle” or “yes, there
is a path”) against the ground truth (GT). For numerical tasks, such as Triangle counting and
Diameter calculation, correctness is assessed by extracting numerical values that follow specific
key phrases (e.g., “the number of triangles is” or “the diameter is”) and directly comparing these
numerical outputs to the corresponding ground truth values. For tasks with multiple valid solutions,
specifically BFS order and Shortest path, evaluation is conducted using a rule-based function.
This evaluation process involves identifying key phrases, such as “The BFS traversal starting from
node X is” or “The shortest path from node X to node Y is,” to extract the model’s response. Based
on this extraction, we evaluate the model’s response using a task-specific rule-based algorithm that
verifies solutions for tasks and assigns a score of 1 when the response matches one of the correct
answers. The detailed rationale for the choice of the metrics is included in Appendix C.6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Benchmark Results of Representative LLMs Across Tasks (Mean±95% CI Margin).
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best per-

formance in its category. The complete results are included in Table 13.

Task Difficulty Open-source Models Closed-source Models RandomLlama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (72B) Qwen-2.5 (7B) Qwen-3 (8B) Claude-3.5 GPT-4o Gemini-2.0 o4-mini

BFS order
E 18.69±3.02 13.75±1.44 33.03±7.32 71.41±3.45 21.46±4.26 65.87±5.59 91.42±1.65 81.48±3.22 90.31±2.30 95.46±0.78 0.00
M 5.27±0.93 3.36±0.44 12.49±3.24 47.82±5.30 6.05±1.41 53.30±5.42 68.25±2.96 55.07±4.50 68.40±3.95 79.37±2.08 0.00
H 0.63±0.19 0.34±0.14 2.65±0.80 22.03±4.39 1.38±0.37 29.53±4.25 26.80±2.64 21.58±3.69 27.77±3.34 32.45±3.88 0.00

Connectivity
E 79.53±2.03 79.90±1.89 56.29±8.58 90.24±1.89 88.10±1.46 97.17±1.29 98.38±0.60 95.63±1.30 92.61±1.42 98.23±0.63 67.49
M 79.47±2.00 80.60±1.92 54.38±7.99 89.68±1.56 87.23±1.60 96.87±1.16 99.11±0.39 95.12±1.37 93.60±1.10 98.72±0.52 70.75
H 74.58±2.67 74.77±2.46 48.39±7.50 84.09±1.98 81.19±2.02 92.89±2.07 96.99±1.48 90.59±2.19 87.99±1.67 92.02±3.99 66.36

Cycle
E 55.49±0.90 55.44±0.96 45.25±5.90 74.02±3.34 62.19±1.85 90.30±2.33 82.56±3.89 85.08±2.27 62.30±3.32 97.97±0.71 50.00
M 55.69±1.08 53.71±0.72 44.26±5.43 71.99±3.34 62.07±1.80 89.66±2.07 80.80±3.94 85.35±2.30 60.29±3.22 97.75±0.76 50.00
H 52.40±1.47 51.64±1.02 40.64±4.97 68.40±2.73 58.88±2.14 86.81±2.27 80.10±3.97 82.96±2.55 58.30±2.80 95.61±1.23 50.00

Diameter
E 41.27±5.37 28.55±4.28 42.81±5.06 78.50±1.16 45.08±4.17 77.56±2.77 83.71±1.26 63.99±2.19 79.14±1.94 98.88±0.15 11.20
M 27.29±4.20 15.17±2.57 28.49±4.09 52.32±2.00 27.31±3.16 61.71±2.28 71.22±1.30 52.64±3.05 49.52±2.14 72.84±1.82 6.70
H 18.63±3.27 6.97±1.26 17.71±3.02 29.59±2.48 15.27±2.47 39.83±2.67 56.70±2.02 45.60±3.24 23.45±2.97 34.61±2.84 3.72

Shortest
E 38.75±5.81 31.18±4.43 42.61±8.88 90.03±2.27 47.46±8.76 77.69±5.17 94.35±2.93 92.17±1.91 81.75±4.70 95.08±3.06 50.00
M 28.84±4.56 19.89±3.05 33.92±7.68 81.17±3.03 35.53±6.80 69.60±5.50 91.27±2.84 84.84±2.93 80.67±4.15 92.60±3.49 50.00
H 23.03±3.85 12.21±1.95 26.60±6.26 72.53±4.29 28.31±5.50 64.28±5.60 87.88±3.36 74.98±4.17 78.16±4.55 88.63±4.44 50.00

Triangle
E 14.97±1.53 11.87±1.32 12.88±2.05 36.57±4.40 18.56±1.24 41.36±4.63 43.41±1.64 36.32±1.54 50.33±2.31 84.54±0.56 2.13
M 8.56±0.92 5.86±0.73 7.54±1.33 14.52±2.63 9.18±0.73 26.95±2.44 24.00±0.77 20.00±0.72 28.12±1.65 48.13±1.46 1.62
H 4.95±0.69 2.55±0.44 4.38±1.04 4.73±1.58 4.45±0.58 19.54±1.34 15.92±0.72 12.81±0.88 15.55±1.29 17.53±1.43 1.82

4 RESULTS AND ANALYSIS

4.1 MAIN RESULTS

We evaluate model performance comprehensively across four main dimensions: model overall ca-
pability, graph type, effectiveness of prompting strategy, and impact of serialization format. This
multifaceted evaluation offers a comprehensive understanding of the most effective approaches for
graph algorithm tasks. Our analysis systematically considers each task at varying difficulty levels
(easy/medium/hard). To isolate each dimension, we control for other variables when assessing a
particular aspect and calculate the mean accuracy with a 95% confidence interval (Mean±95% CI
Margin) across all combinations of the remaining factors. For example, when evaluating model
capability, we compute statistics across all combinations of graph types, prompts, and serialization
formats while holding the model constant. The evaluation results from the model capability perspec-
tive are presented in Table 3 and Figure 2. To provide a comprehensive view, we present additional
experimental results in Appendix E.1 examining prompt schemes, serialization formats, and graph
types across collective results (Tables 14, 15, 16), open-source models (Tables 17, 18, 19), and
closed-source models (Tables 20, 21, 22). These controlled evaluations yield complementary insights
summarized across multiple perspectives. Additionally, example input/output pairs are provided for
clarity in Appendix E.5.

Result ❶: High variability underscores the need for comprehensive evaluation across all
benchmarking dimensions. Detailed analysis reveals substantial variability in LLM performance
across different combinations of serialization formats, prompting schemes, and graph types. This
variability highlights the need for a comprehensive evaluation across all benchmarking dimensions.
The performance heatmaps, presented in Appendix E.2, illustrate the accuracy of different prompt
schemes and serialization formats across tasks, models, and difficulty levels. The performance
heatmaps show that no single serialization or prompting strategy consistently outperforms others
across all tasks and difficulty levels. Instead, optimal results require careful and adaptive selection of
serialization-prompt combinations, explicitly tailored to task characteristics such as structured graph-
theoretic reasoning tasks. For instance, in the case of GPT-4o, depicted in Figure 4, accuracy gaps of
up to 40% occur when varying input representations within the same task and model, indicating a
significant sensitivity to input formatting, which is also observed in other domains, like evaluation of
vision language models (VLMs) (Feizi et al., 2025). These observations emphasize that evaluating
LLMs comprehensively across interconnected dimensions, i.e., serialization formats and prompting
schemes, is essential for fairly assessing their capabilities in graph reasoning tasks.

Result ❷: Model performance still has considerable room for improvement. Models generally
demonstrate reasonable performance across tasks, underscoring their inherent potential in graph
reasoning when appropriately guided. Notably, o4-mini delivers remarkable performance, frequently
surpassing other closed-source models across most tasks and setting a new benchmark overall.
However, the performance gap remains large on the hard difficulty tasks, particularly BFS order,
Diameter calculation, and Triangle counting, which require full, global information of the
graph. Here, even o4-mini’s performance drops to as low as 32.45% on BFS order (Hard), 34.61%

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

on Diameter calculation (Hard), and 17.53% on Triangle counting (Hard), underscoring the
remaining challenge in holistic graph reasoning. Therefore, substantial room for improvement persists
relative to ideal human-level outcomes, primarily due to the scarcity of structured graph-theoretic
content in typical web corpora used for LLM pretraining. Among open-source alternatives, Qwen-3
remains the top performer but continues to lag behind leading closed-source models, such as o4-mini
and Claude-3.5, suggesting a meaningful room for advancement in open-source solutions.

Result ❸: Common Errors Reveal Fundamental Gaps in Graph Reasoning. Our error analysis
highlights representative categories of errors commonly observed in incorrect LLM responses: A.
Misinterpretation of serialization formats: Models occasionally struggled to accurately interpret
serialized graph representations, resulting in misunderstandings of the underlying graph structure,
such as BFS order case 1, Connectivity case 1, and Triangle counting case 2 in the Appendix;
B. Incorrect reasoning about graph-theoretic concepts: LLMs frequently exhibited fundamental
misunderstandings of basic graph definitions and problem-solving methods. In the error cases
Triangle counting case 1, incorrect responses inaccurately estimated the number of triangles as
approximately one-third of the number of nodes. For the error cases Diameter calculation case 1,
some models erroneously identified the diameter as the length of the longest path, rather than correctly
defining it as the length of the longest shortest path between any two nodes. These representative
errors underscore critical areas for improvement in the graph reasoning capabilities of current LLMs.
Additional error cases and analyses are provided in Appendix E.4.

AL AM AS EL ES GMaL GMoL
Serialization Formats

0-Algorithm
0-CoT

0-Instruct
0-Shot

Algorithm
CoT

Instruct
K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.680 0.641 0.723 0.488 0.520 0.621 0.609

0.734 0.629 0.789 0.488 0.582 0.676 0.664

0.648 0.648 0.707 0.535 0.555 0.641 0.629

0.715 0.641 0.758 0.520 0.531 0.625 0.598

0.785 0.777 0.773 0.762 0.793 0.801 0.766

0.711 0.617 0.680 0.496 0.531 0.629 0.633

0.699 0.633 0.688 0.559 0.551 0.648 0.594

0.691 0.590 0.664 0.543 0.414 0.609 0.625

0.684 0.621 0.754 0.512 0.551 0.684 0.656

Easy

AL AM AS EL ES GMaL GMoL
Serialization Formats

0.547 0.512 0.566 0.281 0.234 0.512 0.613

0.535 0.520 0.570 0.348 0.352 0.621 0.543

0.523 0.531 0.613 0.293 0.309 0.547 0.562

0.594 0.500 0.641 0.297 0.309 0.590 0.562

0.688 0.660 0.695 0.598 0.594 0.715 0.645

0.648 0.535 0.680 0.383 0.402 0.664 0.590

0.652 0.582 0.652 0.418 0.445 0.652 0.570

0.625 0.566 0.621 0.402 0.270 0.531 0.551

0.562 0.539 0.602 0.359 0.320 0.574 0.547

Medium

AL AM AS EL ES GMaL GMoL
Serialization Formats

0.470 0.440 0.506 0.226 0.167 0.601 0.482

0.405 0.452 0.500 0.333 0.256 0.571 0.494

0.464 0.435 0.464 0.232 0.232 0.619 0.506

0.488 0.423 0.518 0.256 0.208 0.560 0.470

0.637 0.518 0.560 0.464 0.345 0.637 0.518

0.595 0.411 0.607 0.387 0.232 0.536 0.560

0.565 0.470 0.613 0.440 0.262 0.589 0.577

0.571 0.500 0.542 0.345 0.196 0.613 0.470

0.530 0.476 0.542 0.292 0.202 0.625 0.518

Hard

0.5 0.6 0.7 0.8
Accuracy Range

0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.2 0.3 0.4 0.5 0.6
Accuracy Range

Figure 4: Performance heatmaps for different prompt schemes and serialization formats on
Diameter calculation of GPT-4o. The color intensity represents the accuracy, with darker colors
indicating better performance. The red solid and yellow dashed line indicates Best and Second Best
Performance, respectively.

4.2 FINE-GRAINED EMPIRICAL FINDINGS ON MODEL PERFORMANCE

In this section, we dive deeper into our empirical results, identifying detailed performance patterns
and revealing nuanced interactions across various evaluation dimensions. We present here the two
most critical findings, while additional observations are available in Appendix E.6.

Finding ❶: Domain-specific knowledge significantly improves model performance on graph-
theoretic tasks. Algorithm-based prompts, explicitly detailing graph-theoretic algorithms, consis-
tently improved model accuracy in structured reasoning tasks such as BFS order and Diameter
calculation (Table 14). This result highlights the value of incorporating explicit domain knowledge
into prompts, particularly when tasks require step-by-step algorithmic reasoning. From Diameter
calculation case 1 and Triangle counting case 1, it shows that when employing plain prompts,
the LLM’s response does not accurately reflect the appropriate method for solving the relevant task.

Finding ❷: Scaling raises the floor, while reasoning lifts the ceiling. A targeted comparison of
Qwen-2.5 (7B), Qwen-2.5 (72B), and Qwen-3 (8B) (Table 11) highlights complementary effects.
Scaling within the same family (7B to 72B) yields consistent improvements on easier tasks and
splits, such as BFS order, Shortest path, and Diameter calculation (Easy/Medium). By
contrast, a reasoning model at a comparable size, i.e., Qwen-3 (8B), delivers larger gains on the
hardest regimes that require multi-step exploration and combinatorial checks, including BFS order,
Diameter calculation, and Triangle counting (Hard). Together, these results indicate that
scaling predominantly improves robustness on simpler instances, while reasoning-centric design is
more effective for pushing the upper bound of graph reasoning ability (details in Appendix C.5).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Instruct CoT
K-Shot

Algorith
m

0-Algorith
m

0-Shot LTM
0-Instruct

0-CoT

Prompt Schemes

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

c

Performance by Prompt Schemes and Tasks

(a) Open-source models.

Algorith
m

0-CoT CoT LTM
Instruct

0-Instruct

0-Algorith
m

0-Shot
K-Shot

Prompt Schemes

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

c

Performance by Prompt Schemes and Tasks

(b) Closed-source models.

Figure 5: Accuracy of open-source versus closed-source models with different prompt schemes.
(a) and (b) show the average performance with a 95% confidence interval for open/closed-source
models across various prompt schemes and tasks, with x-axis sorted by mean accuracy.

Finding ❸: Divergent impacts of prompt schemes – Open-source models benefit from multi-shot
exemplars, whereas they do not help closed-source models much. In Figures 5a and 5b, the
open-source model achieves the highest average accuracy with prompt schemes that incorporate shots.
However, for the closed-source model, prompt schemes show more complexity. Only considering
prompt patterns, 0-CoT performs second to best, 0-Algorithm worst, but both surpass k-shot.
However, adding shots improves Algorithm’s overall accuracy, suggesting that shots enhance the
model’s understanding of Algorithm-based prompts. Yet, this effect is not universal: shots may hinder
comprehension in particularly challenging tasks, as noted in Finding ❺ Appendix E.6.

4.3 EXTENDED STUDY AND DISCUSSION

Scaling to Larger Graphs (Beyond 30 Nodes). We extend the evaluation to graphs with 30–50
nodes, sampling 50 graphs per generator and ∼3k test cases overall (details in Appendix C.1). As the
results in Table 8 show, the performance degrades as graph size increases, particularly for tasks with
sequential or combinatorial requirements: accuracy on BFS order and Triangle counting drops
sharply, reflecting the added difficulty of maintaining frontiers or enumerating subgraphs over longer
horizons. By contrast, tasks such as Connectivity and Cycle detection remain relatively stable,
consistent with their reliance on local connectivity checks. Importantly, despite the absolute drop in
scores, the relative ranking of models and the performance gap between open- and closed-source
systems remain nearly identical to the 5–30 node Hard split, confirming that the benchmark’s
conclusions are robust under further scaling of graph size.

Representative Check on Real-World Graphs. We further test whether our synthetic setup transfers
to real data by evaluating on two representative domains: IMDB-MULTI (social/interaction) and
ogbg-molhiv (molecular), yielding ∼3.6k samples across six tasks (details in Appendix C.2). Results
in Table 9 corroborate our findings: (i) Connectivity and Cycle detection are consistently easiest;
(ii) ordered-path tasks (BFS order, Shortest path, Diameter calculation) remain substantially
harder, dominated by serialization and memory errors; and (iii) Triangle counting is the most
challenging. However, because many public graphs are sparse and connected, specific tasks become
easier than in our synthetic regime (e.g., Connectivity saturates near 100% for strong models). This
shows that real-world graphs alone can under-stress graph reasoning. Together with prior works
that adopt synthetic-only designs (Fatemi et al., 2024; Chen et al., 2024a; Luo et al., 2024b), our
results validate real graphs as a sound check, but reaffirm that synthetic graphs provide a systematic
evaluation with balanced structural coverage, controllability, and contamination-free conditions. The
detailed rationale is elaborated in Appendix C.3.

Exploration on NP-Hard Tasks. As a complementary stress test, we also consider two classical
NP-hard problems, Hamiltonian cycle detection and Max-Cut (details in Appendix C.4). Results
in Table 10 show accuracy patterns aligned with our six canonical tasks: open-source models
remain near random, while closed-source reasoning-oriented models attain noticeably higher but
still imperfect scores. This indicates that the core conclusions of GRAPHOMNI naturally extend to
NP-hard problems. Interestingly, however, LLMs do not exhibit the same graded difficulty separation
between polynomial-time and NP-hard tasks as human solvers: accuracy tends to collapse uniformly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

across NP-hard regimes just like polynomial tasks. Thus, while useful as a complementary check,
NP-hard tasks do not add progressive challenge in the same way as our tractable yet demanding suite,
reinforcing why the latter remain the centerpiece of GRAPHOMNI.

Efficiency–accuracy trade-off. Besides accuracy, we also analyze inference efficiency by measuring
the number of output tokens produced across models (details in Appendix E.7). The results reveal
a clear trade-off: accuracy gains often come at the cost of longer responses, but models navigate
this balance differently. Closed-source models (e.g., GPT-4o, Claude-3.5) reach high accuracy with
compact generations under 300 tokens, while o4-mini relies on very long chains of thought (over
1.6K tokens) to achieve similar accuracy (Figure 32). By contrast, open-source models such as Llama-
3.1 and Qwen-2.5 (7B) must generate substantially longer outputs to achieve high performance,
whereas shorter responses are correlated with lower accuracy. These trends persist across difficulty
levels, task types, serialization formats, and prompt schemes (Tables 23–26). Overall, efficiency,
measured by output length, emerges as an additional axis of divergence across LLMs, reinforcing the
importance of evaluating not only correctness but also the cost of achieving it.

4.4 REINFORCEMENT LEARNING (RL)-BASED PROMPT SEARCH INSPIRED BY GRAPHOMNI

Our benchmark evaluates three key dimensions, graph type, serialization format, and prompt scheme,
to underscore the critical role of transforming graph structures into textual inputs for LLM inference.
While GraphOmni provides comprehensive insights into how different dimensions affect LLM
inference, we still face a concrete, actionable question: Given many interacting dimensions, which
prompt configuration is best for a specific graph reasoning task? In this section, we want to identify
the optimal combination strategies (serialization format; prompt scheme, etc.) that enhance the
effectiveness of textual representations, thereby improving LLM performance in graph reasoning
and understanding tasks. We define the process of converting graph structures into textual inputs
tailored to a specific task as the serialization process. To operationalize this serialization process, we
introduce an RL-based search method as a diagnostic tool within our benchmark, enabling automatic
selection of effective serialization strategies.

Specifically, RL transforms optimizing the serialization process into a sequential decision-making
problem for each type and difficulty of the task. There are T decision epochs, and each decision
epoch determines one component of the serialization strategy. Then we provide a predetermined
order to specify a sequence of action spaces {At}t=1,...,T (e.g., At can be all candidate prompts).
We set the initial state s0 as the specific type and difficulty of the task. Then at decision epoch
t = 1, . . . , T , we choose an action at ∈ At based on the previous actions a1, . . . , at−1. Then the
state st consists of the task type and difficulty (initial state s0) together with the previously selected
serialization components. This corresponds to a policy πt : S0×A1×· · ·×At−1 7→ At, where S0 is
the state space of the initial state s0. For any instance s (e.g., a query for Connectivity task in easy
mode for a specific graph), a binary reward, denoted by r(s, a1, . . . , aT), is incurred at the end of the
decision epoch, which is set to 1 if the LLM correctly answers the specific query under the selected
serialization strategy (a1, . . . , aT) and to 0 otherwise. For each type and difficulty of the task, our
objective is to maximize the expected reward of choosing the serialization strategy a1, . . . , aT :

max
{πt}t=1,...,T

E[r(s, a1, . . . , aT)|s0],

where the expectation is taken with respect to the problem instance s and the (random) answer output
by an LLM (affected by the randomness of the LLM, e.g., the temperature parameter). Note that (i)
s0 is part of the instance information s, and (ii) we fix the type and difficulty of the task, and the
only randomness in terms of s is from graph generation. To approximate this objective function,
we generate N different graphs for each type of query. We assess the performance of RL using the
average reward across the N graphs, which essentially is the accuracy of the serialization strategy for
a specific graph-related task across these N graphs.

Consider the problem of dealing with high-dimensional, complex state spaces in serialization process,
we employ the Deep Q-Network (DQN) (Mnih et al., 2013) to implement RL, which employs a
neural network as a function approximator for the Q-function. Specifically, we use a neural network
Q̂t(s0, a1, . . . , at; θt) parameterized by θt to approximate the corresponding Qt(s0, a1, . . . , at) for
the actions or factors considered in serialization process. Each Q-network is modeled as a three-layer
multilayer perceptron with ReLU activations. Training minimizes the mean squared error loss, and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

action selection follows an ϵ-greedy policy, where ϵ linearly decays from 1.0 to a minimum of 0.01.
Then we design the RL-Opt (RL-guided Optimal Serialization Selection) experiment, where we
leverage existing benchmark data to apply RL for evaluating computational cost and validating
the effectiveness of the derived optimal strategy. Additionally, we introduce the RL-Scale (RL
Scalability in Serialization Expansion) experiment to analyze how RL’s computational cost scales
when incorporating additional factors in the serialization process. All detailed information can be
found in Appendix D.

In RL-Opt, the serialization process involved three key factors based on our benchmark’s results:
serialization format, prompt scheme, and the choice of open-source language models. To evaluate the
effectiveness of RL in identifying the optimal combination, we employ two key metrics: Cost and
Rate. To evaluate RL’s effectiveness in finding the optimal combination, we use two metrics: (a) Cost
is the ratio of explored combinations: Cost = k

K , where k is the number of explored combinations,
and K is the total number of combinations; (b) Rate = acc∗

accmax
, where acc∗ is the accuracy of RL’s

best-found combination and accmax is the highest accuracy in the benchmark data. Results are in
Table 4. The results demonstrate that, at only 25% of the original cost, the RL-based method is still
able to maintain an average success rate of 0.9, indicating its capability to significantly reduce the
time required to search for optimal combinations while preserving the quality of the outcomes.

Table 4: Performance summary of RL-Opt, averaged across all instances of a specific experimental
case, reducing the cost to about 25% of the original, maintaining an average success rate of 0.9.

Task Mode Avg Cost Avg Rate Task Mode Avg Cost Avg Rate

BFS order
Easy 0.2203 0.9740

Connectivity
Easy 0.2244 0.9883

Medium 0.2251 0.9045 Medium 0.2263 0.9875
Hard 0.2279 0.7812 Hard 0.2238 0.9871

Cycle
Easy 0.2229 0.9757

Diameter
Easy 0.2263 0.9728

Medium 0.2263 0.9833 Medium 0.2181 0.9541
Hard 0.2203 0.9584 Hard 0.2235 0.9471

Shortest path
Easy 0.2244 0.9636

Triangle
Easy 0.2276 0.9061

Medium 0.2159 0.9856 Medium 0.2206 0.8456
Hard 0.2187 0.9073 Hard 0.2235 0.7321

5 CONCLUSION

We introduced GRAPHOMNI, a comprehensive benchmark framework for systematically evaluating
the graph reasoning capabilities of LLMs. By analyzing critical dimensions, including graph types,
serialization formats, and prompt schemes, we provided extensive insights into the strengths and
limitations of current LLMs. Our empirical findings emphasize that no single serialization or
prompting strategy consistently outperforms others. Motivated by these insights, we propose a
reinforcement learning-based approach that dynamically selects the optimal serialization-prompt
pairings, leading to significant improvements in accuracy. GRAPHOMNI’s modular and extensible
design establishes a robust foundation for future research, facilitating advances toward general-
purpose graph reasoning models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement We confirm that this research complies with all applicable ethical guidelines and
does not present any ethical issues.

Reproducibility Statement We have taken extensive measures to ensure the reproducibility of our
work. The source code and data resources are released at https://anonymous.4open.science/r/ID-14092
and https://huggingface.co/datasets/GoodAIResearch/GraphOmni-anon, respectively.

Our experimental setup, including model configurations and evaluation protocols, is fully described in
Section 3 in the main content and Section A in Appendix. For transparency, we provide comprehensive
coverage of input–output examples (Section E.5) and error cases (Section E.4) in Appendix, enabling
a thorough understanding and verification of the reported results.

Together, these resources support faithful reproduction and further exploration of our findings.

REFERENCES

W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Proceedings of
the 32nd Annual ACM Symposium on Theory of Computing (STOC), pp. 171–180, 2000. doi:
10.1145/335305.335326.

R. Albert and A.-L. Barabási. Emergence of scaling in random networks. Science, 286(5439):
509–512, 1999. doi: 10.1126/science.286.5439.509.

Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich. Graph markup language
(graphml). 2013.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM Comput. Surv., 38(1):2–es, June 2006. ISSN 0360-0300. doi: 10.1145/1132952.1132954.
URL https://doi.org/10.1145/1132952.1132954.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language model
for graph computational problems. In Proceedings of KDD 2024, 2024a. doi: 10.1145/3637528.
3672010.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. arXiv preprint arXiv:2402.08170, 2024b.

Xinnan Dai, Haohao Qu, Yifen Shen, Bohang Zhang, Qihao Wen, Wenqi Fan, Dongsheng Li, Jiliang
Tang, and Caihua Shan. How do large language models understand graph patterns? a benchmark
for graph pattern comprehension. arXiv preprint arXiv:2410.05298, 2024.

Debarati Das, Ishaan Gupta, Jaideep Srivastava, and Dongyeop Kang. Which modality should
i use - text, motif, or image? : Understanding graphs with large language models, 2024.
arXiv:2311.09862v2.

David Easley, Jon Kleinberg, et al. Networks, crowds, and markets: Reasoning about a highly
connected world, volume 1. Cambridge university press Cambridge, 2010.

P. Erdős and A. Rényi. On the evolution of random graphs. Publications of the Mathematical Institute
of the Hungarian Academy of Sciences, 5:17–61, 1960.

11

https://anonymous.4open.science/r/ID-14092
https://huggingface.co/datasets/GoodAIResearch/GraphOmni-anon
https://doi.org/10.1145/1132952.1132954

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiang Fang, Arvind Easwaran, Blaise Genest, and Ponnuthurai Nagaratnam Suganthan. Adaptive
hierarchical graph cut for multi-granularity out-of-distribution detection. IEEE Transactions on
Artificial Intelligence, 2025a.

Yi Fang, Dongzhe Fan, Sirui Ding, Ninghao Liu, and Qiaoyu Tan. Uniglm: Training one unified
language model for text-attributed graph embedding. In Proceedings of the Eighteenth ACM
International Conference on Web Search and Data Mining (WSDM), 2025b. doi: 10.1145/3701551.
3703586.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In Proceedings of ICLR 2024, 2024.

Aarash Feizi, Sai Rajeswar, Adriana Romero-Soriano, Reihaneh Rabbany, Spandana Gella, Valentina
Zantedeschi, and João Monteiro. Pairbench: A systematic framework for selecting reliable judge
vlms. arXiv preprint arXiv:2502.15210, 2025.

Yifan Feng, Chengwu Yang, Xingliang Hou, Shaoyi Du, Shihui Ying, Zongze Wu, and Yue Gao.
Beyond graphs: Can large language models comprehend hypergraphs? In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
28qOQwjuma.

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu,
Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al. Utilizing graph ma-
chine learning within drug discovery and development. Briefings in bioinformatics, 22(6):bbab159,
2021.

E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959. doi:
10.1214/aoms/1177706098.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
language models understand graph structured data? an empirical evaluation and benchmarking,
2024a. arXiv:2305.15066v2.

Kai Guo, Zewen Liu, Zhikai Chen, Hongzhi Wen, Wei Jin, Jiliang Tang, and Yi Chang. Learning
on graphs with large language models (llms): A deep dive into model robustness. arXiv preprint
arXiv:2407.12068, 2024b.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering. Advances in Neural Information Processing Systems, 37:132876–132907,
2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021b. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20,
Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Yuntong Hu, Zheng Zhang, and Liang Zhao. Beyond text: A deep dive into large language models’
ability on understanding graph data. arXiv preprint arXiv:2310.04944, 2023.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. In Transactions on Knowledge and Data Engineering (TKDE),
2024a.

12

https://openreview.net/forum?id=28qOQwjuma
https://openreview.net/forum?id=28qOQwjuma
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
Tang, Suhang Wang, Yu Meng, and Jiawei Han. Graph chain-of-thought: Augmenting large
language models by reasoning on graphs. In Findings of the Association for Computational
Linguistics: ACL 2024, pp. 163–184, 2024b. ACL 2024.

Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. Gofa: A generative one-for-all model for joint graph language modeling. arXiv preprint
arXiv:2407.09709, 2024.

M. Latapy, C. Magnien, and N. Del Vecchio. Basic notions for the analysis of large two-mode
networks. Social Networks, 30(1):31–48, 2008. doi: 10.1016/j.socnet.2007.04.006.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 7871–7880, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https://aclanthology.org/2020.acl-main.
703/.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei
Qu, Yangguang Li, Wanli Ouyang, et al. Graphreader: Building graph-based agent to enhance
long-context abilities of large language models. arXiv preprint arXiv:2406.14550, 2024a.

Xin Li, Weize Chen, Qizhi Chu, Haopeng Li, Zhaojun Sun, Ran Li, Chen Qian, Yiwei Wei, Zhiyuan
Liu, Chuan Shi, Maosong Sun, and Cheng Yang. Can large language models analyze graphs like
professionals? a benchmark, datasets and models. In Proceedings of the 38th Conference on
Neural Information Processing Systems (NeurIPS 2024) - Track on Datasets and Benchmarks,
2024b. URL: https://github.com/BUPT-GAMMA/ProGraph.

Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A
survey of graph meets large language model: Progress and future directions. arXiv preprint
arXiv:2311.12399, 2023.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-dataset
zero-shot transferability in graphs. In Proceedings of the KDD Conference, 2024c. doi: 10.1145/
3637528.3671982.

Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor W Chan, and
Jia Li. Glbench: A comprehensive benchmark for graph with large language models. Advances in
Neural Information Processing Systems, 37:42349–42368, 2024d.

Yuankai Luo, Hongkang Li, Qijiong Liu, Lei Shi, and Xiao-Ming Wu. Node identifiers: Compact,
discrete representations for efficient graph learning. arXiv preprint arXiv:2405.16435, 2024a.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, and Xing Xie.
Graphinstruct: Empowering large language models with graph understanding and reasoning
capability, 2024b. arXiv:2403.04483v2.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, and Neil Shah. Position:
Graph foundation models are already here. In Proceedings of the International Conference on
Machine Learning (ICML), 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020. URL
https://arxiv.org/abs/2007.08663.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv preprint
arXiv:2402.05862, 2024.

13

https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2020.acl-main.703/
https://arxiv.org/abs/2007.08663

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), January 2020. ISSN 1532-4435.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. Advances in Neural Information Processing Systems, 37:78320–78370, 2024.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sensitivity
to spurious features in prompt design or: How i learned to start worrying about prompt formatting.
arXiv preprint arXiv:2310.11324, 2023.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sensitivity
to spurious features in prompt design. In International Conference on Learning Representations
(ICLR), 2024.

Chengshuai Shi, Kun Yang, Zihan Chen, Jundong Li, Jing Yang, and Cong Shen. Efficient prompt
optimization through the lens of best arm identification. arXiv preprint arXiv:2402.09723, 2024.

Rok Sosic and Jure Leskovec. Large scale network analytics with snap: Tutorial at the world
wide web 2015 conference. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15 Companion, pp. 1537–1538, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450334730. doi: 10.1145/2740908.2744708. URL
https://doi.org/10.1145/2740908.2744708.

Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Di Jin, et al. A comprehensive survey on community detection with deep learning. IEEE
transactions on neural networks and learning systems, 35(4):4682–4702, 2022.

Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: A uniform language
model fine-tuning framework for attributed graph embedding. In Proceedings of NeurIPS 2023,
2023.

Yanchao Tan, Hang Lv, Xinyi Huang, Jiawei Zhang, Shiping Wang, and Carl Yang. Musegraph:
Graph-oriented instruction tuning of large language models for generic graph mining. arXiv
preprint arXiv:2403.04780, 2024.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491–500, 2024.

Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Grapharena: Evaluating and exploring
large language models on graph computation. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=Y1r9yCMzeA.

Alexander K. Taylor, Anthony Cuturrufo, Vishal Yathish, Mingyu Derek Ma, and Wei Wang. Are
large-language models graph algorithmic reasoners?, 2024. arXiv:2410.22597v1.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36:30840–30861, 2023.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming Gao, and Julian McAuley. Instructgraph:
Boosting large language models via graph-centric instruction tuning and preference alignment.
arXiv preprint arXiv:2402.08785, 2024a.

Yu Wang, Ryan A Rossi, Namyong Park, Huiyuan Chen, Nesreen K Ahmed, Puja Trivedi, Franck
Dernoncourt, Danai Koutra, and Tyler Derr. Large generative graph models. arXiv preprint
arXiv:2406.05109, 2024b.

14

https://doi.org/10.1145/2740908.2744708
https://openreview.net/forum?id=Y1r9yCMzeA

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Lianghao Xia, Ben Kao, and Chao Huang. Opengraph: Towards open graph foundation models.
arXiv preprint arXiv:2403.01121, 2024.

Yuhao Xu, Xinqi Liu, Keyu Duan, Yi Fang, Yu-Neng Chuang, Daochen Zha, and Qiaoyu
Tan. Graphfm: A comprehensive benchmark for graph foundation model. arXiv preprint
arXiv:2406.08310, 2024.

Christos Xypolopoulos, Guokan Shang, Xiao Fei, Giannis Nikolentzos, Hadi Abdine, Iakovos Evdai-
mon, Michail Chatzianastasis, Giorgos Stamou, and Michalis Vazirgiannis. Graph linearization
methods for reasoning on graphs with large language models. arXiv preprint arXiv:2410.19494,
2024.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Bench-
marking and rethinking. Advances in Neural Information Processing Systems, 36:17238–17264,
2023.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Qifan Zhang, Xiaobin Hong, Jianheng Tang, Nuo Chen, Yuhan Li, Wenzhong Li, Jing Tang, and Jia
Li. Gcoder: Improving large language model for generalized graph reasoning. In Proceedings
of the 34th ACM International Conference on Information and Knowledge Management, CIKM
’25, pp. 4149–4159, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
9798400720406. doi: 10.1145/3746252.3761066. URL https://doi.org/10.1145/3746252.3761066.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and Yulia
Tsvetkov. Can llm graph reasoning generalize beyond pattern memorization? In Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 2289–2305, 2024a.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can
large language models solve spatial-temporal problems on dynamic graphs? In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’24). ACM,
2024b. doi: 10.1145/3637528.3671709.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

15

https://doi.org/10.1145/3746252.3761066

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table of Contents for Appendix
Page

A. Experimental Details . 17
A.1 LLM Versions . 17
A.2 Parameter and Random Baseline Settings . 17
A.3 Graph Tasks . 18

A.3.1 Rationale for Selection of Tasks . 18
A.4 Graph Types . 19

A.4.1 Rationale for Generator Selection . 20
A.5 Prompt Format . 21
A.6 Serialization Format . 21
A.7 Data Examples . 23

B. Benchmark Statistics . 26
B.1 Basic Statistics of GRAPHOMNI . 26
B.2 Token Statistics of GRAPHOMNI . 28

C. Extended Discussion and Ablation Study of GRAPHOMNI . 28
C.1 Study on Larger Graph (Beyond 30 Nodes) . 28
C.2 Study on Real-World Graphs: Representative Check . 29
C.3 Considerations on Real-World Graphs vs. Synthetic Graphs 30
C.4 Exploration on NP-Hard Tasks . 30
C.5 Scaling vs. Reasoning: Disentangling Their Effects on Graph Reasoning 31
C.6 Rationale for Binary Metric over Partial Score . 33

D. RL-based Prompt Search Inspired by GRAPHOMNI . 33
D.1 Background and Serialization Process . 33
D.2 Details for RL-Opt Setting . 34

E. Comprehensive Experimental Results . 37
E.1 Fine-grained Results Across Dimension . 37
E.2 Performance Heatmaps across Tasks . 41

E.2.1 Heatmaps for BFS order . 41
E.2.2 Heatmaps for Connectivity . 46
E.2.3 Heatmaps for Cycle detection . 49
E.2.4 Heatmaps for Diameter calculation . 52
E.2.5 Heatmaps for Shortest path . 55
E.2.6 Heatmaps for Triangle counting . 58

E.3 Graph Type Sensitivity Analysis . 61
E.4 Error Analysis . 68
E.5 Input/Output Examples . 76
E.6 More Findings from Evaluation Results . 101
E.7 Analysis on Efficiency via Number of Output Tokens . 102

F. Detailed Related Works . 104
F.1 LLM Applications on Graph Data . 105
F.2 Benchmarks on LLM Application to Graph Data . 106

G. Limitations and Future Directions of GRAPHOMNI . 106
H. Additional Ablation Studies . 107

H.1 Performance v.s. Time Complexity of Tasks . 107
H.2 Scaling Beyond 50 Nodes . 109
H.3 Robustness Check under Prompt Noise (Perturbation) . 109

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 LLM VERSIONS

Table 5 provides an overview of the diverse suite of large language models (LLMs) evaluated in our
study. Open-source models are hyperlinked to their respective documentation, while closed-source
models are identified by their version numbers. Note that we only uniformly sample 25% of data
when evaluating Qwen-3 due to the limited time after its release, so its result will be only included in
the model-wise statistics, i.e. Table 3 for refernece.

Table 5: Overview of evaluated LLMs. Open-source models are linked, while closed-source models
list their version.

Model Model Link/Version

Llama-3 Meta-Llama-3-8B (Link)
Llama-3.1 Llama-3.1-8B (Link)
Mistral Mistral-7B-v0.3 (Link)
Phi-4 Phi-4-14B (Link)
Qwen-2.5 (7B) Qwen-2.5-7B-Instruct (Link)
Qwen-2.5 (72B) Qwen-2.5-72B-Instruct (Link)
Qwen-3 (8B) Qwen-3-8B (Link)

Claude-3.5 claude-3-5-sonnet-20241022
Gemini-2.0 gemini-2.0-flash-001 (Version 1)
GPT-4o gpt-4o-2024-08-06
GPT-4o-mini gpt-4o-mini-2024-07-18
o4-mini o4-mini-2025-04-16

A.2 PARAMETER AND RANDOM BASELINE SETTINGS

Parameter setting. We have studied various methods of representing graphs as text based on a
diverse set of basic graph problems. This appendix details the parameter setting and the design of
the graph input text. For the parameter setting, the temperature is set to 0.7, following the parameter
selection in Wang et al. (2023). The nucleus sampling (top-p) is set to 0.9 for open-source models,
while for closed-source models, the default top-p value is used.

Random Baselines setting. For Cycle detection, the random baseline simply selects an answer
from {True, False}—yielding an expected accuracy of 50%. Since the GT obtained through the
design function has a high proportion of True labels, we iterate through all queries, assuming the
given answer is True. We then use GT for evaluation, leading to the final baseline based on this
assumption. For tasks that require generating numerical outputs (e.g., Diameter calculation
and Triangle counting), the random baseline corresponds to randomly choosing one of the valid
numerical solutions derived from the graph’s structure. For the Diameter calculation task, the
random baseline is determined based on the number of nodes in the graph for each query. Specifically,
we sample a random integer from the range [1, N], where N is the number of nodes in the graph, and
compare it with the ground truth to compute the baseline performance. For the Triangle counting
task, the random baseline is derived from the estimated upper bound on the number of triangles in the
graph. We compute the maximum possible number of triangles based on the number of nodes and the
task difficulty level, take the smaller value between these estimates, and sample a random integer
from the range [1,M], where M is the determined upper bound. The sampled value is then compared
against the ground truth to obtain the random baseline performance. In contrast, for tasks that require
generating sequences (e.g., BFS order), the number of possible combinations is combinatorially
large, so a random baseline would yield an accuracy that is approximately 0%.

17

https://www.llama.com/llama-downloads/
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/microsoft/phi-4
https://huggingface.co/Qwen/Qwen-2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen-2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen-3-8B

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 GRAPH TASKS

We conducted a comprehensive study on a diverse set of fundamental graph problems, including
BFS order, Cycle detection, Connectivity, Diameter calculation, Shortest path, and
Triangle counting. The input text for each task is provided below, where the italicized variables X,
Y denote generic node numbers corresponding to the specific problem under consideration.

Graph Tasks

• BFS-ORDER: Give the bfs traversal order starting from node X.
• CYCLE: Is there a cycle in this graph?
• CONNECTIVITY: Is there a path between node X and node Y?
• DIAMETER: What is the diameter of this graph?
• SHORTEST PATH: Give the shortest path from node X to node Y.
• TRIANGLE: How many triangles are in this graph?

A.3.1 RATIONALE FOR SELECTION OF TASKS

The six core tasks in GRAPHOMNI are deliberately selected to span qualitatively different reasoning
capacities. Their difficulty increases as the model must move from local checks to global traversals,
maintain more intermediate states in working memory, or perform exhaustive combinatorial enu-
meration. Beyond reasoning capacities, variation also arises from how well LLMs internalize task
definitions and from the complexity of output formats. Together, these factors explain the accuracy
gaps observed in Table 3 and highlight why the chosen tasks form a balanced and challenging suite.

Aspect 1: Reasoning capacities required. These tasks are grouped according to the type and depth
of reasoning they demand, ranging from simple global checks to multi-layered traversals and full
combinatorial enumeration.

Here follows a detailed elaboration on these three aspects.

1. Reachability verification (Connectivity, Cycle detection). These tasks require a global
traversal but only a simple decision condition, such as whether the graph is connected or
whether a cycle is present. Most errors stem from serialization misunderstandings (e.g.,
assuming a missing edge exists, in Appendix E.4.3). Once the format is parsed correctly,
accuracy is high.

2. Ordered-path reasoning (BFS order, Shortest path, Diameter calculation).
These tasks demand that the model keep a frontier or distance map and then output or
compare those ordered distances. For BFS order, the model must list nodes level-by-level.
In the error case in Appendix E.4.7, failures occur when it forgets whether two previously
visited nodes are connected. Shortest path and Diameter calculation add a final
aggregation step: the former selects the minimum path, the latter the maximum among
all shortest paths. The common mistakes are also mostly about losing track of some vital
information while exploring the graph. Like the one in Appendix E.4.2 for Diameter
calculation, the model forgets two important edges, so the path length is wrong. Accuracy
here for those three tasks is lower than the first type of tasks because the model must track
ordering information across multiple expansion layers.

3. Combinatorial enumeration (Triangle counting).
Triangle counting is the most challenging: the model must evaluate every three-node
subset and make sure each sub-traverse is correct. Even given correct execution of the enu-
meration, the counting should be accurate to produce the correct final result. Appendix E.4.6
and E.4.8 document the dominant errors on enumeration over each possible triangle in the
graph (like missing an edge or wrongly assuming one). We also spotted cases that fail on
the counting at the end, too. In sum, performance is strongest when only reachability is
tested, drops when ordered path reasoning is required, and falls sharply when complete
combinatorial enumeration comes into play.

Aspect 2: Task understanding and definition knowledge. LLMs sometimes rely on heuristics rather
than precise textbook definitions, particularly for less common tasks. For example, some models

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

confuse diameter with the longest simple path, producing inflated results (Appendix E.4.1). Others
apply shortcuts such as “triangles ≈ n/3” (Appendix E.4.5), ignoring the need for all three edges to
be present. Such misinterpretations highlight that accuracy depends not only on raw reasoning ability
but also on task comprehension. Our coverage of tasks enable the evaluation on these knowledge of
each model and it does reflect in the results as the error cases mentioned.

Aspect 3: Output format. The output formats of the tasks chosen are also very diverse. Some tasks
here need only a short answer, i.e., “Yes/No” for Connectivity or a single number for Triangle
counting, so there is little room for formatting errors. Meanwhile, BFS order is different: the model
must print a long, strictly level-by-level list of node IDs, and one extra or missing node makes the
whole response wrong. The coverage of different output formats brings challenges to the models.

In summary, these systematic differences validate that the GRAPHOMNI task suite probes diverse
reasoning skills over graphs and exposes where current LLMs struggle most.

A.4 GRAPH TYPES

A primary distinguishing aspect of our benchmark is the inclusion of multiple graph families, each
possessing unique structural properties. All 7 types of graph are highlight in bold:

1. Erdős–Rényi (ER) Graphs are randomly sampled from the space of all possible graphs with
n vertices, making them well-suited for capturing a wide range of topological and connectivity
properties within a fixed number of vertices.

To enhance the diversity of random graphs, we consider two sampling methods: m-edge sampling
and probability-based sampling, referred to as Erdős–Rényi M-Edges (ERM) (Erdős & Rényi,
1960) and Erdős–Rényi Probability (ERP) (Gilbert, 1959) respectively.

• ERM: Generates graphs with n vertices and a fixed number of edges m, where m is ran-
domly chosen between 1 and n(n−1)

2 , ensuring that all possible edge counts are considered.
• ERP: Constructs graphs with n vertices but an unfixed number of edges, where the edge

probability is randomly sampled as a floating-point value between 0 and 1.

Additionally, we extend these models to bipartite settings:

• Bipartite Erdős–Rényi M-Edges (BERM) and Bipartite Erdős–Rényi Probability
(BERP) graphs (Latapy et al., 2008) are generated using the ERM and ERP sampling
strategies but constrained to bipartite structures.

• These bipartite graphs introduce additional variations in topology and connectivity that
standard ERM and ERP graphs, which are inherently undirected, may not capture.

2. Barabási–Albert Graphs (BAG) (Albert & Barabási, 1999) exhibit a power-law degree distri-
bution, where a small number of nodes (hubs) have significantly higher degrees, while most nodes
have relatively few connections. Such structures frequently appear in real-world networks, including
social and biological systems.

While ER graphs, being randomly sampled, may occasionally exhibit power-law degree distributions,
BAGs explicitly model this phenomenon due to their practical prevalence.

• BAGs are constructed by starting with a complete graph of m0 vertices and incrementally
adding nodes.

• Each new node forms m connections, where m is proportional to the degrees of existing
nodes (preferential attachment).

• In our dataset, m0 is randomly sampled with an upper bound of n
3 , and m is set to m0 + 1.

Although BAGs generally capture power-law degree distributions, they do not always represent
tree-like structures such as citation networks or hierarchical systems. To address this, we introduce
Barabási–Albert Forests (BAF) (Albert & Barabási, 1999), which follow the same generation
process as BAGs but enforce an acyclic structure, ensuring that the result is a forest (a set of trees)
rather than a single connected graph.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

3. Scale-Free (SF) Graphs (Aiello et al., 2000) Another class of power-law networks that BAGs
may not fully capture is general scale-free (SF) networks. While all BAGs are SF, not all SF graphs
are BA.

• BAGs typically consist of a single connected component, whereas SF graphs can contain
multiple disconnected components.

• To represent SF graphs more comprehensively, we introduce a distinct SF graph generation
process, different from BAGs.

Unlike BAGs, which are constructed through incremental growth and preferential attachment, SF
graphs are generated using a degree-weighted random connection strategy:

• All vertices are created at once.

• Edges are formed probabilistically, where the probability of a connection is proportional to
node degrees.

These fundamental differences in growth dynamics and edge formation result in SF graphs and BAGs
capturing distinct topological properties. By including both, we enhance the diversity of our dataset.

These families challenge LLMs to adapt their reasoning across numerous topological extremes,
from sparse bipartite graphs to highly connected ones. Although future expansions may include
small-world graphs or others, this current selection already covers a rich array of structural profiles as
elaborated in the next section.

A.4.1 RATIONALE FOR GENERATOR SELECTION

The seven generators in GRAPHOMNI are deliberately selected to provide the most comprehensive
structural coverage possible within the 5–30 node range. Each generator encodes a distinct mo-
tif/structure observed in real-world networks, i.e. random connectivity, scale-free growth, bipartite
affiliation, hierarchical trees or other tendencies, ensuring that the benchmark spans all major regimes
of graph organization. Even at this scale, the underlying generative biases remain evident and produce
meaningful differences in task difficulty and model behavior. By relying on controlled synthetic
generators, GRAPHOMNI achieves balanced representation across families while isolating structural
effects without the confounding noise of empirical data.

To be specific, the selected generators cover a wide range of canonical structures:

1. Erdős–Rényi M-Edges (ERM) & Probability (ERP). Serve as canonical baselines for
random connectivity, yielding binomial/Poisson degree distributions used extensively in the
study of biological and technological networks.

2. Bipartite ERM (BERM) & Bipartite ERP (BERP). Capture two-mode affiliation struc-
tures, such as author–paper and user–item systems, which exhibit realistic clustering and
degree properties.

3. Barabási–Albert Graphs (BAG). Model scale-free networks with hubs emerging via
preferential attachment, mirroring the structure of the Internet, citation graphs, and social
networks.

4. Barabási–Albert Forests (BAF). A specialization of the BA process that produces acyclic
scale-free trees, modeling hierarchical taxonomies such as phylogenies and organizational
charts.

5. Scale-Free (SF) Graphs. Configuration-style models generate prescribed power-law de-
gree sequences, often producing disconnected components akin to regional transport or
communication subnetworks.

To further validate that these generators produce graphs with statistically distinct and meaningful
properties, we conduct two empirical studies. First, we sample 1,000 graphs of 30 nodes each from
the same Barabási–Albert (BAG) and Erdős–Rényi (ERP) generators used in GRAPHOMNI. As
summarized in Table 6, the two models exhibit clearly different structural characteristics: BA graphs
form hubs with high maximum degree and short paths, while ER graphs display uniform randomness

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

with lower clustering and longer paths. Second, as shown in Table 7 in Appendix B.1, even when
node counts are fixed, the edge counts (and thus average degrees) vary substantially across generators,
providing strong statistical evidence that the structural characteristics of these graph families are
fundamentally distinct. Together, these results confirm that the design of GRAPHOMNI captures the
essential structural diversity needed to probe LLM reasoning.

Table 6: Comparison of structural statistics for 1,000 sampled graphs with 30 nodes. BAG graphs
exhibit hub formation with high maximum degree and short paths, while ERP graphs display more
uniform randomness.

Type Max Degree Clustering Coefficient Avg Path Length

Barabási–Albert (BAG) 19.28 ± 2.15 0.397 ± 0.042 1.76 ± 0.014
Erdős–Rényi (ERP) 10.43 ± 1.35 0.199 ± 0.044 2.07 ± 0.099

A.5 PROMPT SCHEMES

The process of converting a graph into a textual representation is referred to as the serialization
process, which involves two primary considerations in our study: the choice of serialization format
and the selection of the prompting method. we employ a total of nine distinct prompting methods:
Algorithm, CoT, k-shot, Instruct, 0-Shot(i.e. plain), 0-CoT, 0-Instruct, 0-Algorithm, and
LTM. As outlined in the main text, the pairs Algorithm and 0-Algorithm, CoT and 0-CoT, k-shot
and 0-Shot, and Instruct and 0-Instruct share a common structural format, with the first element
in each pair incorporating additional 5 examples. A detailed description of the design for each of
these prompting methods is provided below. In particular, for the algorithmic description components
of Algorithm and 0-Algorithm, we primarily draw upon established methodologies in Wang et al.
(2023) and illustrate them with an example derived from the BFS-order task.

Prompt format

• 0-COT: Let’s think step by step:
• LTM: Let’s break down this problem:
• 0-INSTRUCT: Let’s construct a graph with the nodes and edges first:
• 0-ALGORITHM: To determine the BFS (Breadth-First Search) traversal order, you need to follow these

steps: 1. Initialize: Start by choosing a starting node and enqueue it into a queue. 2. Mark visited: Mark
the starting node as visited to avoid reprocessing. 3. Traverse: While the queue is not empty: Dequeue
a node and add it to the traversal order. For each unvisited neighboring node of the dequeued node,
enqueue it and mark it as visited. 4.Continue the process until all reachable nodes are visited.

A.6 SERIALIZATION FORMATS

This study utilizes seven distinct yet commonly used graph representation formats: Adjacency
Matrix, Adjacency List, Adjacency Set, Edge Set, Edge List, Graph Modeling Language
(GMoL), and Graph Markup Language (GMaL). For the same graph, even when the underlying
information remains consistent, the representation varies across different serialization formats in
textual form. The following section presents specific examples of the same graph depicted in various
serialization formats.

Adjacency Set

{0: {1}, 1: {0, 2}, 2: {1}, 3: {4}, 4: {3, 5}, 5: {4}}

Edge Set

{(0, 1), (4, 5), (1, 2), (3, 4)}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Edge List

0 1
1 2
3 4
4 5

Adjacency Matrix

[[0 1 0 0 0 0]
[1 0 1 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 1 0]
[0 0 0 1 0 1]
[0 0 0 0 1 0]]

Adjacency List

{0: [1], 1: [0, 2], 2: [1], 3: [4], 4: [3, 5], 5: [4]}

GMaL

<?xml version='1.0' encoding='utf-8'?>
<GMaL xmlns="http://GMaL.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://GMaL.graphdrawing.org/xmlns
http://GMaL.graphdrawing.org/xmlns/1.0/GMaL.xsd">

<graph edgedefault="undirected">
<node id="0" />
<node id="1" />
<node id="2" />
<node id="3" />
<node id="4" />
<node id="5" />
<edge source="0" target="1" />
<edge source="1" target="2" />
<edge source="3" target="4" />
<edge source="4" target="5" />

</graph>
</GMaL>

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

GMoL
graph [

node [
id 0
label "0"

]
node [

id 1
label "1"

]
node [

id 2
label "2"

]
node [

id 3
label "3"

]
node [

id 4
label "4"

]
node [

id 5
label "5"

]
edge [

source 0
target 1

]
edge [

source 1
target 2

]
edge [

source 3
target 4

]
edge [

source 4
target 5

]
]

A.7 DATA EXAMPLES

In order to better show the input example, we select the BFS order task in the serialization format
is the Adjacency List of the complete prompt example, due to space reasons, the middle of the
excessively long part we will use “...”. Each of the following examples is randomly selected from the
source data.

0-Shot
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 4. And the
graph representation of: Adjacency List is {0: [1], 1: [0, 2, 3, 5, 6], 2: [1, 4], 3: [1], 4: [2], 5: [1, 7], 6:
[1], 7: [5, 8], 8: [7]}
Q: Give the bfs traversal order starting from node 4.
A:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0-CoT
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 7. And the
graph representation of: Adjacency List is {1: [0, 2], 0: [1, 3, 4, 5, 6], 2: [1], 3: [0], 4: [0, 8], 5: [0, 7],
6: [0], 7: [5], 8: [4]}
Q: Give the bfs traversal order starting from node 7.
A:
Let’s think step by step:

0-Instruct
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 6. And the
graph representation of: Adjacency List is {1: [0, 2], 0: [1, 3, 4, 7, 8], 2: [1], 3: [0], 4: [0, 5], 5: [4, 6],
6: [5], 7: [0], 8: [0]}
Q: Give the bfs traversal order starting from node 6.
A:
Let’s construct a graph with the nodes and edges first:

0-Algorithm

To determine the BFS (Breadth-First Search) traversal order, you need to follow these steps:
1. Initialize: Start by choosing a starting node and enqueue it into a queue.
2. Mark visited: Mark the starting node as visited to avoid reprocessing.
3. Traverse: While the queue is not empty: Dequeue a node and add it to the traversal order. For each
unvisited neighboring node of the dequeued node, enqueue it and mark it as visited.
4.Continue the process until all reachable nodes are visited.
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 7. And the
graph representation of: Adjacency List is {0: [7, 3, 2, 6, 1, 8, 5], 1: [4, 6, 3, 5, 0, 2], 2: [5, 0, 1, 7], 3:
[7, 0, 8, 1, 6, 4], 4: [1, 8, 5, 7, 3, 6], 5: [2, 6, 7, 8, 4, 1, 0], 6: [1, 8, 5, 3, 0, 4], 7: [0, 3, 5, 4, 8, 2], 8: [4,
6, 5, 3, 7, 0]}
Q: Give the bfs traversal order starting from node 7.
A:

LTM
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 4. And the
graph representation of: Adjacency List is {0: [4, 5, 7], 1: [2, 3, 4, 5, 6], 2: [1, 3, 4, 6], 3: [1, 2, 5, 6], 4:
[0, 1, 2, 5, 6], 5: [0, 1, 3, 4, 6, 7], 6: [1, 2, 3, 4, 5], 7: [0, 5]}
Q: Give the bfs traversal order starting from node 4.
A:
Let’s break down this problem:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm

To determine the BFS (Breadth-First Search) traversal order, you need to follow these steps: 1. Initialize:
Start by choosing a starting node and enqueue it into a queue. 2. Mark visited: Mark the starting node
as visited to avoid reprocessing. 3. Traverse: While the queue is not empty: Dequeue a node and add it
to the traversal order. For each unvisited neighboring node of the dequeued node, enqueue it and mark
it as visited. 4.Continue the process until all reachable nodes are visited.
Given a graph, your task is to determine the BFS traversal order of this graph starting at node 7. And
the graph representation of Adjacency List is : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [0,
7], 5: [2], 6: [0], 7: [4], 8: [1]}
Q: Give the BFS traversal order starting from node 7.
A: Dequeue node 7. The neighbors are [4], so enqueue node 4. Dequeue node 4. The neighbors of 4 are
[7, 0]. Node 7 is visited, so enqueue node 0. Dequeue node 0. The neighbors of 0 are [1, 2, 3, 6, 4].
Node 4 is already visited, so enqueue node 1. 2, 3, and 6. Dequeue node 1. The neighbors of 1 are [0, 2,
8]. Nodes 0 and 2 are visited, so enqueue node 8. Dequeuenode 2. The neighbors of 2 are [0, 5]. Node
0 is visited, so enqueue node 5. Dequeue node 3. The neighbors of 3 are [0]. Node 0 is visited, so no
new nodes. Dequeue node 6. The neighbors of 6 are [0]. Node 0 is visited, so no new nodes. Dequeue
node 8. The neighbors of 8 are [1]. Node 1 is visited, so no new nodes. Dequeue node 5. The neighbors
of 5 are [2]. Node 2 is visited, so no new nodes. All its neighbors have been visited, so the traversal
ends. The BFS traversal order starting from node 7 is 7, 4, 0, 1, 2, 3, 6, 8, 5.
...
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 3. And the
graph representation of: Adjacency List is {0: [3, 7, 8, 5, 6, 1, 4], 1: [4, 10, 0, 3, 9, 5, 2], 2: [10, 9, 4, 8,
7, 3, 6, 1], 3: [0, 5, 1, 4, 10, 7, 8, 2], 4: [2, 9, 1, 10, 6, 3, 0], 5: [9, 3, 0, 6, 7, 8, 1, 10], 6: [10, 0, 5, 7, 4, 9,
2], 7: [8, 10, 0, 5, 6, 2, 3], 8: [9, 7, 0, 5, 2, 3, 10], 9: [8, 10, 2, 5, 4, 1, 6], 10: [9, 6, 7, 2, 4, 1, 3, 8, 5]} Q
Q: Give the bfs traversal order starting from node 3.
A:

CoT
Given a graph, your task is to determine the BFS traversal order of this graph starting at node 7. And
the graph representation of Adjacency List is : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [0,
7], 5: [2], 6: [0], 7: [4], 8: [1]}
Q: Give the BFS traversal order starting from node 7.
A: The BFS traversal starts at node 7. In BFS, we visit each node level by level, starting from the node
we begin at (node 7). Here’s the step-by-step breakdown: Start at node 7. The first node in the BFS
traversal is 7. Visit the neighbors of 7. The neighbors of node 7 are just node 4 (since 7 4 is an edge).
So, we enqueue node 4. Visit the neighbors of node 4. The neighbors of node 4 are node 0 (4 0), so
we enqueue node 0. Visit the neighbors of node 0. The neighbors of node 0 are nodes 1, 2, 3, 4 and 6.
Since node 4 has already been visited, we enqueue nodes 1, 2, 3, and 6 in that order. Visit the neighbors
of nodes 1, 2, 3, 6. From this point, the BFS continues by visiting any remaining unvisited neighbors of
these nodes in the same manner, reaching node 8 last. Thus, the BFS traversal order starting from node
7 is 7, 4, 0, 1, 2, 3, 6, 8, 5. The BFS traversal order starting from node 7 is 7,4,0,1,2,3,6,8,5.
...
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 28. And
the graph representation of: Adjacency List is {0: [1, 2, 3, 4, 31], 1: [0], 2: [0, 17, 22, 33], 3: [0, 5, 7, 8,
9, 10, 13, 15, 16, 19, 22, 23, 24, 26, 27, 28, 31], 4: [0, 6, 8, 10, 14, 15, 24, 27, 30], 5: [3, 8], 6: [4], 7:
[3, 11, 12, 25], 8: [3, 4, 5, 10, 29], 9: [3], 10: [3, 4, 8, 33], 11: [7, 18, 20], 12: [7, 21], 13: [3], 14: [4],
15: [3, 4, 28, 33], 16: [3], 17: [2, 19, 24], 18: [11, 32], 19: [3, 17], 20: [11], 21: [12], 22: [2, 3], 23: [3],
24: [3, 4, 17], 25: [7], 26: [3], 27: [3, 4, 33], 28: [3, 15], 29: [8], 30: [4], 31: [0, 3], 32: [18], 33: [2, 10,
15, 27]}
Q: Give the bfs traversal order starting from node 28.
A:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

K-Shot
Given a graph, your task is to determine the BFS traversal order of this graph starting at node 7. And
the graph representation of Adjacency List is : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [0,
7], 5: [2], 6: [0], 7: [4], 8: [1]}
Q: Give the BFS traversal order starting from node 7.
A: The BFS traversal order starting from node 7 is 7,4,0,1,2,3,6,8,5
....
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 2. And the
graph representation of: Adjacency List is 0: [6], 1: [6], 2: [6], 3: [6], 4: [6], 5: [6], 6: [0, 1, 2, 3, 4, 5]
Q: Give the bfs traversal order starting from node 2.
A:

Instruct
Given a graph, your task is to determine the BFS traversal order of this graph starting at node 7. And
the graph representation of Adjacency List is : {0: [1, 2, 3, 4, 6], 1: [0, 2, 8], 2: [0, 1, 5], 3: [0], 4: [0,
7], 5: [2], 6: [0], 7: [4], 8: [1]}
Let’s construct a graph with the nodes and edges first.
Q: Give the BFS traversal order starting from node 7.
A: The BFS traversal starts at node 7. In BFS, we visit each node level by level, starting from the node
we begin at (node 7). Here’s the step-by-step breakdown: Start at node 7. The first node in the BFS
traversal is 7. Visit the neighbors of 7. The neighbors of node 7 are just node 4 (since 7 4 is an edge).
So, we enqueue node 4. Visit the neighbors of node 4. The neighbors of node 4 are node 0 (4 0), so
we enqueue node 0. Visit the neighbors of node 0. The neighbors of node 0 are nodes 1, 2, 3, 4 and 6.
Since node 4 has already been visited, we enqueue nodes 1, 2, 3, and 6 in that order. Visit the neighbors
of nodes 1, 2, 3, 6. From this point, the BFS continues by visiting any remaining unvisited neighbors of
these nodes in the same manner, reaching node 8 last. Thus, the BFS traversal order starting from node
7 is 7, 4, 0, 1, 2, 3, 6, 8, 5. The BFS traversal order starting from node 7 is 7,4,0,1,2,3,6,8,5.
...
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 10. And
the graph representation of: Adjacency List is {0: [4, 14, 1, 11, 5, 13, 2, 12], 1: [12, 4, 10, 2, 0, 3, 14,
11], 2: [8, 9, 1, 13, 11, 12, 15, 5, 0], 3: [10, 1, 11, 7, 8], 4: [0, 1, 15, 11, 6, 10], 5: [14, 6, 11, 0, 2, 7], 6:
[5, 4, 11, 10, 14], 7: [14, 12, 9, 13, 3, 8, 5], 8: [2, 15, 14, 12, 10, 3, 7, 13], 9: [2, 7, 15, 12, 14, 13], 10:
[3, 1, 8, 15, 4, 11, 6], 11: [14, 2, 0, 12, 4, 3, 5, 6, 10, 1, 13], 12: [1, 13, 7, 2, 14, 11, 9, 8, 0], 13: [12, 2,
7, 9, 0, 11, 8], 14: [7, 0, 11, 5, 12, 8, 9, 1, 6], 15: [4, 9, 8, 2, 10]}
Let’s construct a graph with the nodes and edges first.
Q: Give the bfs traversal order starting from node 10.
A:

B BENCHMARK STATISTICS

This section presents the statistical characteristics of GRAPHOMNI, focusing on the graph families
and token usage. We first detail the statistical properties of graph families used in our benchmark in
Section B.1, followed by an overview of token consumption associated with various prompt schemes
and serialization formats in Section B.2.

B.1 BASIC STATISTICS OF GRAPHOMNI

Table 7 offers a detailed statistical overview of the diverse graph families employed in GRAPHOMNI.
The table reports the average number of nodes and edges for each graph family across tasks such
as BFS order, Connectivity, Cycle detection, Diameter calculation, Shortest path, and
Triangle counting. These statistics are presented for three difficulty levels: easy, medium, and
hard, which reveal the inherent structural complexity differences introduced by the various synthetic
graph generators. The selection of graph families is guided by their unique topological properties
so that each task is evaluated on graphs that best reflect the challenges encountered in practical
applications. In addition, some graph families are omitted from certain tasks because of their intrinsic
structural characteristics; for instance, graphs produced by the BAF and all bipartite graphs are
excluded from triangle detection when they are structurally incapable of forming triangles.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 7: Statistics of Different Graph Types

Task Graph Type
Easy Medium Hard

#Avg Nodes #Avg Edges #Avg Nodes #Avg Edges #Avg Nodes #Avg Edges

BFS-order BAF 8.11 5.78 15.14 11.06 27.86 20.14
BAG 8.19 11.36 13.92 23.28 26.55 82.14
Bipartite-ERM 8.03 6.50 14.44 19.28 27.23 59.36
Bipartite-ERP 7.94 5.44 14.42 16.72 28.86 57.82
ERM 8.22 16.06 13.72 51.92 25.32 135.09
ERP 8.03 13.14 14.33 50.17 24.59 121.77
SF 8.11 9.00 14.81 19.00 27.73 38.00

Connectivity BAF 8.14 6.21 13.83 10.67 31.17 27.00
Bipartite-ERM 8.07 7.43 15.33 23.00 30.83 63.00
Bipartite-ERP 8.14 7.57 13.67 20.00 28.17 59.33
ERM 8.07 9.71 13.83 36.67 27.50 102.17
ERP 8.11 10.56 17.83 66.17 26.33 98.00

Cycle BAG 7.93 9.90 14.12 25.10 27.82 59.04
Bipartite-ERM 8.12 7.60 15.62 20.38 28.54 57.96
Bipartite-ERP 8.29 7.12 15.17 17.55 30.25 44.89
ERM 8.19 11.43 15.10 36.43 26.46 58.21
ERP 8.07 9.71 15.40 26.36 26.07 71.18
SF 8.05 8.07 12.71 14.24 25.04 29.71

Diameter BAG 7.98 9.73 14.30 29.91 26.81 92.24
ERM 8.00 19.73 15.22 65.48 25.90 139.79
ERP 8.16 18.61 15.17 70.36 25.19 130.79
SF 7.95 9.14 15.41 19.91 28.48 39.10

Shortest-Path BAF 7.83 6.11 14.17 11.56 25.62 21.71
BAG 7.97 10.72 14.72 31.19 25.29 88.33
Bipartite-ERM 8.06 8.97 14.61 30.58 25.50 94.71
Bipartite-ERP 8.11 9.72 14.61 28.86 25.58 89.00
ERM 8.00 17.42 15.47 67.89 25.96 179.21
ERP 8.03 18.92 15.42 63.14 25.25 165.46
SF 8.03 9.42 15.50 20.03 25.54 35.21

Triangle BAG 8.16 13.12 14.09 25.48 27.72 55.65
ERM 8.06 17.44 13.39 30.81 28.80 62.60
ERP 7.94 16.05 14.16 31.11 27.22 55.28
SF 8.14 9.59 15.61 20.88 28.35 38.58

Note: Graph types are selectively excluded from certain tasks based on their structural properties: (1)
Connectivity excludes BAG as they are inherently connected by construction; (2) Diameter calculation task
excludes BAF and Bipartite-ER graphs due to potentially disconnected components leading to infinite distances;
(3) Triangle counting excludes BAF and Bipartite graphs as they are structurally incapable of forming triangles;
(4) Cycle detection excludes BAF as they are acyclic by definition.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.2 TOKEN STATISTICS OF GRAPHOMNI

Figure 6 offers an overview of token consumption across different dimensions. We use GPT-4
tokenizer here. Token usage is impacted by the choice of prompt scheme and graph serialization
format, interactions between them can further influence the overall token count.

Algorith
m
Instruct CoT

K-Shot

0-Algorith
m

0-Instruct
0-CoT LTM

0-Shot

Prompt Scheme

0

500

1000

1500

2000

2500

3000

M
ea

n
To

ke
ns

Token Usage by Prompt Scheme and Task
Cycle
Shortest path
Bfsorder
Connectivity
Diameter
Triangle

(a) Token usage across different
prompt schemes and tasks.

GMaL
GMoL AM AL AS ES EL

Serialization Format

0

500

1000

1500

2000

2500

3000

M
ea

n
To

ke
ns

Token Usage by Serialization Format and Task
Cycle
Shortest path
Bfsorder
Connectivity
Diameter
Triangle

(b) Token usage across different se-
rialization formats and tasks

Seria
liza

tio
n Form

at
AL

AM
AS

EL
ES

GMaL

GMoL

Prompt Scheme

0-Algorithm
0-CoT

0-Instruct
0-Shot
Algorithm

CoT
Instruct

K-Shot
LTM

M
ean Tokens

500
1000
1500
2000
2500
3000
3500

(c) Token usage for prompt-
serialization format combinations.

Figure 6: Analysis of token usage patterns across different dimensions. (a) shows how token usage
varies across different prompt schemes for each task. (b) illustrates token consumption patterns for
different serialization formats across tasks. (c) provides a 3D surface visualization of the interaction
between prompt schemes and serialization formats regarding token usage. Error bars in (a) and (b)
represent the standard error of the mean.

C EXTENDED STUDY AND DISCUSSION OF GRAPHOMNI

C.1 STUDY ON LARGER GRAPH (BEYOND 30 NODES)

Our benchmark design centers on graphs with 5–30 nodes. While modest compared to real-world
networks, this range is both deliberate and effective. First, it aligns with the context length limits
of current LLMs and matches the scale used in nearly all recent graph reasoning benchmarks (see
Table 3), ensuring comparability. Also, the scale enables us to generate tens of thousands of diverse
queries per task, providing statistically robust performance estimates and clearly separating different
models apart, like open-source from closed-source models. In this sense, the 5–30 node regime is not
a limitation, but a well-calibrated testbed for probing the boundaries of LLM graph reasoning.

To further validate our considerations, we conduct additional experiments on graphs with 30–50
nodes. We sample 50 graphs evenly across all seven generators and evaluate four representative
models, yielding approximately 3k new test cases with varied prompt and serialization settings.
Results are reported in Table 8. As expected, larger graphs further stress performance, especially
on BFS order and Triangle counting. Nevertheless, the relative ranking and accuracy patterns
remain consistent with the 5–30 node Hard split, reinforcing the robustness of our findings.

Table 8: Preliminary results on 30–50 node graphs (EH = Extra Hard). Results on the 5–30 node Hard
split are shown in parentheses. Bold orange / Underlined blue / Light blue highlights indicate
best/second-best/third-best performance in its category.

Task Difficulty Open-source Models Closed-source Models
Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (7B) Claude-3.5 o4-mini

BFS order EH 0.70±0.36(0.63) 0.27±0.23 (0.34) 2.55±1.08 (2.65) 1.19±0.52 (1.38) 16.07±2.48 (26.80) 35.39±12.61 (32.43)

Connectivity EH 80.33±3.24(74.58) 84.11±3.26 (74.77) 51.82±8.23 (48.39) 85.01±3.06(81.19) 97.92±1.18 (96.99) 91.48±7.80 (92.08)

Cycle EH 56.62±3.16(52.40) 52.62±2.32 (51.64) 49.38±8.09 (40.64) 61.38±2.61 (62.27) 68.53±5.14 (78.22) 71.66±11.33 (93.06)

Diameter EH 15.39±3.87(18.63) 6.89±2.06(6.97) 16.44±2.89 (17.71) 11.67±2.31 (15.27) 48.78±4.76 (56.70) 37.89±6.56 (34.61)

Shortest EH 15.56±6.76(23.03) 1.48±2.03 (12.21) 16.30±7.66 (26.60) 11.85±6.62 (28.31) 57.04±4.46 (87.88) 58.08±4.52 (88.62)

Triangle EH 3.19±0.92(4.95) 2.41±0.65(2.55) 4.35±1.40 (4.38) 4.40±0.80 (4.45) 12.31±0.82 (15.92) 8.28±4.35 (17.53)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C.2 STUDY ON REAL-WORLD GRAPHS: REPRESENTATIVE CHECK

To assess whether our synthetic design translates to real data, we run a focused representative check
on two widely used real-world graph suites from complementary domains: a social/interaction dataset
IMDB-MULTI (Morris et al., 2020) and a molecular graph dataset (ogbg-molhiv) (Hu et al., 2020).
We sample 20 graphs per difficulty per dataset (60 graphs per task in total and thus ∼3.6k evaluated
samples across tasks with prompt/serialization variants) and test four representative open-source
models plus two closed-source models. Table 9 reports the experimental results.

Finding 1: Conclusions remain consistent. Across all six tasks and difficulty levels, accuracy
patterns on IMDB-MULTI and ogbg-molhiv closely track the synthetic results: (i) reachability
(Connectivity, Cycle detection) is the easiest regime and exhibits high accuracy once serial-
ization is parsed; (ii) ordered-path tasks (BFS order, Shortest path, Diameter calculation)
remain substantially harder, with error modes dominated by lost ordering or forgotten edges; and
(iii) Triangle counting remains the most difficult due to exhaustive enumeration and arithmetic
reliability. The relative ranking of models is stable, and the gap structure between open- and closed-
source models mirrors the results from standard GRAPHOMNI. In short, the representative real-world
runs perfectly corroborate our synthetic-only conclusions rather than overturning them.

Finding 2: Real graphs often simplify certain tasks. Because many public real graphs are connected
and sparse within the selected ranges, some tasks become easier than in our synthetic distribution.
For example, connectivity saturates for strong models (near 100% on Easy/Medium in Table 9), and
cycle detection displays uniformly higher means than in matched synthetic settings. This is because
the uneven data distribution of real graphs means that nearly all graphs are connected and contain
at least one cycle. This ease does not invalidate the benchmark, but it shows that using real-world
graphs alone can under-stress the tasks that are critical to graph reasoning.

In sum, we include IMDB-MULTI and ogbg-molhiv as a representative check, which validates that
our conclusions persist on real graphs from two major application families (social interaction and
molecular science). However, consistent with both our evidence and prior community practice,
we retain synthetic graphs in GRAPHOMNI as the default for comprehensive structural coverage,
fine-grained interpretability and control, and contamination-free evaluation.

Table 9: Benchmark results of LLMs across tasks (Mean±95% CI Margin) on real-world
graphs. Results on the standard setting (i.e. GRAPHOMNI) are shown in parentheses.
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best per-

formance in its category.

Task Difficulty Open-source Models Closed-source Models
Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (7B) Claude-3.5 o4-mini

BFS order
E 45.63±5.22 (18.69) 47.06±3.18 (13.75) 41.90±8.66 (33.03) 41.98±7.40 (21.46) 97.14±0.91 (91.42) 96.46±1.37 (95.46)
M 12.14±2.11 (5.27) 10.24±1.85 (3.36) 17.86±3.89 (12.49) 10.32±2.49 (6.05) 76.98±2.79 (68.25) 86.89±3.94 (79.37)
H 2.94±0.90 (0.63) 0.24±0.27 (0.34) 4.76±1.77 (2.65) 0.95±0.76 (1.38) 41.35±3.76 (26.80) 44.65±9.89 (32.45)

Connectivity
E 94.21±1.47 (79.53) 93.57±1.89 (79.90) 61.59±9.07 (56.29) 96.35±0.92 (88.10) 99.92±0.16 (98.38) 100.00±0.00 (98.23)
M 88.73±2.37 (79.47) 88.81±2.98 (80.60) 53.25±8.09 (54.38) 93.10±1.67 (87.23) 99.92±0.16 (99.11) 99.83±0.23 (98.72)
H 89.44±2.01 (74.58) 87.30±3.32 (74.77) 55.24±7.67 (48.39) 89.76±2.04 (81.19) 98.65±0.67 (96.99) 95.63±3.04 (92.02)

Cycle
E 56.75±2.62 (55.49) 51.43±1.56 (55.44) 51.03±6.82 (45.25) 59.37±2.00 (62.19) 80.48±4.81 (82.56) 94.51±2.14 (97.97)
M 54.05±2.46 (55.69) 49.92±1.18 (53.71) 48.17±5.83 (44.26) 55.63±1.79 (62.07) 76.51±5.06 (80.80) 92.19±3.78 (97.75)
H 51.03±2.21 (52.40) 49.84±1.31 (51.64) 44.68±5.27 (40.64) 54.05±2.20 (58.88) 71.75±3.87 (80.10) 89.65±3.40 (95.61)

Diameter
E 25.48±4.20 (41.27) 20.95±4.18 (28.55) 50.48±5.69 (42.81) 47.86±3.57 (45.08) 83.33±1.13 (83.71) 97.30±0.90 (98.88)
M 15.48±3.51 (27.29) 8.81±2.24 (15.17) 25.16±3.92 (28.49) 23.02±3.29 (27.31) 58.33±2.82 (71.22) 84.37±3.89 (72.84)
H 8.97±3.00 (18.63) 6.19±2.58 (6.97) 14.21±2.36 (17.71) 12.86±1.89 (15.27) 43.02±2.52 (56.70) 64.12±7.27 (34.61)

Shortest
E 39.21±5.87 (38.75) 28.65±4.69 (31.18) 43.89±8.80 (42.61) 50.08±9.17 (47.46) 98.49±1.29 (94.35) 98.59±1.44 (95.08)
M 30.16±4.57 (28.84) 21.83±3.61 (19.89) 34.44±7.92 (33.92) 37.14±7.44 (35.53) 95.71±2.09 (91.27) 98.39±1.72 (92.60)
H 22.06±3.73 (23.03) 14.05±2.51 (12.21) 30.16±6.43 (26.60) 29.68±5.65 (28.31) 92.14±1.80 (87.88) 95.79±2.91 (88.63)

Triangle
E 11.19±3.03 (14.97) 5.32±1.69 (11.87) 23.81±5.33 (12.88) 24.44±3.65 (18.56) 63.89±3.16 (43.41) 81.30±4.10 (84.54)
M 6.51±2.03 (8.56) 1.83±0.84 (5.86) 14.44±3.61 (7.54) 11.83±2.51 (9.18) 47.30±2.74 (24.00) 82.20±3.86 (48.13)
H 5.95±2.17 (4.95) 1.35±0.64 (2.55) 9.60±3.21 (4.38) 9.52±2.40 (4.45) 34.84±2.80 (15.92) 65.29±8.75 (17.53)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.3 CONSIDERATIONS ON REAL-WORLD GRAPHS VS. SYNTHETIC GRAPHS

In designing our benchmark, we considered several possible choices of evaluation substrate, including
both real-world and synthetic graphs. After careful consideration, we opted to primarily use synthetic
graphs, for the following methodological reasons:

1. Coverage and controllability. Our seven classic generators are selected to span the principal
structural motifs (random/Poisson, scale-free, bipartite, hierarchical, small-world), and
they support fine-grained parameter control (e.g., p in Erdős–Rényi, attachment in BA)
(Chakrabarti & Faloutsos, 2006). This control enables balanced, modular ablations and
isolates causal factors of failure, which typical public real-graph suites do not provide.

2. Representativeness vs. noise in public repositories. Real-graph repositories such as SNAP
(Sosic & Leskovec, 2015) skew toward specific domains (social/web) with narrow size
and density bands. Also, many graphs are connected and share similar sparsity patterns.
This induces structural narrowness and domain bias, and it can reduce task hardness
(e.g., connectivity becomes trivial). Mixing such graphs into a general-purpose reasoning
benchmark, therefore, risks adding noise without broadening structural regimes.

3. Zero contamination. Fully synthetic construction guarantees no overlap with pretraining
corpora, avoiding inflated scores due to memorization or leakage (Hendrycks et al., 2021a).
Given rapidly evolving LLMs and opaque training mixtures, contamination-free evaluation
is essential for credible comparisons.

Meanwhile, synthetic-only evaluation is also standard in prior work. This design choice is not
unique to GRAPHOMNI. Several foundational studies adopt the same “synthetic only” paradigm to
ensure interpretability and controlled analysis: GraphQA (Fatemi et al., 2024) and GraphInstruct
(Luo et al., 2024b) both rely solely on synthetic graphs to probe LLM reasoning, while GraphWiz
(Chen et al., 2024a) demonstrates that synthetic graphs can even serve as effective fine-tuning
data. These precedents highlight that synthetic construction is widely accepted in the community
as the most principled way to study graph reasoning in LLMs. At the same time, we note that
the real-graph domains we choose (IMDB-MULTI and ogbg-molhiv) align with recent works such
as LLM4Hypergraph (Feng et al., 2025), which employ citation networks and protein structures,
respectively. Thus, our real-graph ablation covers representative application families, while our
synthetic benchmark remains the default for comprehensive coverage and methodological clarity.

C.4 EXPLORATION ON NP-HARD TASKS

To complement our six canonical tasks, we further probe LLM performance on two classical NP-hard
graph problems: Hamiltonian cycle detection and Max-Cut. This evaluation serves as an ablation
rather than a core component of GRAPHOMNI, allowing us to test whether the conclusions from
tractable tasks extend to settings of higher computational complexity.

Experimental setup. We retain the three difficulty splits by node size: Easy (n ∈ [0, 10]), Medium
(n ∈ (10, 20]), and Hard (n ∈ (20, 25]). Compared to the main benchmark, the Hard regime
uses slightly smaller graphs due to the exponential growth in search space. For Hamiltonian cy-
cle, structural imbalance makes several generators unsuitable (e.g., SF, Bipartite-ERM, BAF, and
Bipartite-ERP rarely admit cycles). We therefore restrict the task to ERM, ERP, and BAG, with
ground-truth labels balanced 50/50 between existence and non-existence of a Hamiltonian cycle.
For clarity, we also report Hamiltonian cycle results on the positive cases separately, since these are
strictly harder: a correct answer must not only assert existence but also return a complete and valid
tour (metric mentioned below). For Max-Cut, all seven graph families are included (SF, ERM, ERP,
BAG, BERP, BAF, and BERM). We sample 18 graphs per split for Hamiltonian cycle and 14 per split for
Max-Cut, yielding just over 6,000 queries across prompt and serialization variants.

Evaluation metrics. As with the canonical tasks, we apply strict binary scoring. For Hamiltonian
cycle, a prediction is marked correct only if: (i) the model explicitly affirms or denies the existence of
a cycle in line with the ground truth, and (ii) when the ground truth is True, the model additionally
outputs a concrete cycle, which we verify with a dedicated checker. Omitting an explicit decision or
producing a non-verifiable tour results in 0. For Max-Cut, we extract both the predicted maximum
cut size and the corresponding bipartition (from phrases such as “the maximum cut size is ...”). A

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

custom validation function checks whether the reported cut matches the ground truth. Full correctness
requires both size and partition to be correct, while partial matches or non-extractable answers are
scored 0.

Results and insights. As summarized in Table 10, performance patterns closely resemble those of the
six canonical tasks: open-source models hover near random, while closed-source reasoning models
achieve substantially higher, but still imperfect, scores. Thus, the core conclusions of GRAPHOMNI
generalize naturally to NP-hard settings. More interestingly, these results highlight how LLMs
perceive task difficulty differently from humans. Whereas human solvers experience a sharp jump in
difficulty between polynomial-time and NP-hard problems, current LLMs instead exhibit a nearly
uniform collapse in accuracy across NP-hard tasks. In other words, scaling to NP-hard does not
introduce a progressive “step up” in challenge for models as it does for humans. This suggests that
including NP-hard tasks may not meaningfully enrich the evaluation landscape, and reinforces our
focus on tractable yet diverse tasks as the primary design of GRAPHOMNI.

Table 10: Benchmark Results of LLMs Across Tasks (Mean±95% CI Margin).
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best

performance in its category.

Task Difficulty Open-source Models Closed-source Models
Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen2.5 (7B) qwen38 o4-mini

Hamilton cycle
E 57.14±2.97 55.47±2.85 57.67±6.25 73.02±2.87 93.74±1.45 97.09±0.88
M 54.94±3.40 46.03±3.05 50.09±6.59 60.14±2.93 84.83±2.38 71.08±2.39
H 54.94±3.61 46.38±3.04 51.85±6.98 60.23±3.05 79.98±2.64 55.56±2.48

Hamilton cycle (Positive Samples)
E 45.68±4.96 63.67±7.09 54.67±6.04 73.02±5.14 89.59±2.51 95.24±1.54
M 50.62±6.90 64.73±7.61 60.85±8.39 71.60±5.30 79.37±4.15 49.56±4.32
H 47.09±6.88 58.38±6.81 55.73±8.13 61.55±6.36 70.90±4.61 18.46±3.64

Max cut
E 15.10±3.29 11.63±2.44 23.88±4.69 18.37±2.71 27.96±4.56 61.94±4.27
M 5.20±1.66 5.10±1.43 6.43±1.81 10.41±1.26 16.94±2.33 28.16±1.80
H 1.22±0.70 0.61±0.47 2.04±1.03 1.12±0.61 9.08±2.17 34.74±3.64

C.5 SCALING VS. REASONING: DISENTANGLING THEIR EFFECTS ON GRAPH REASONING

To contrast model scaling with reasoning-centric improvements, we isolate three Qwen variants:
Qwen-2.5 (7B) as the baseline, Qwen-2.5 (72B) to represent scaling up within the same family, and
Qwen-3 (8B) as a reasoning model at a comparable parameter budget. Table 11 subsets the main
results (Table 3) to these three columns.

Finding 1: Scaling lifts the floor. Relative to Qwen-2.5 (7B), Qwen-2.5 (72B) yields consistent
improvements across nearly all tasks, particularly on the easier splits. For example, accuracy on
BFS order (Easy) rises from 21.46 to 71.41, an absolute gain of nearly 50%, while Shortest path
(Easy) improves from 47.46% to 90.03%, a margin of over 42%. Similarly, Diameter calculation
(Easy) increases by more than 33% (45.08%→ 78.50%). Even on Connectivity, which is already
near-saturated, scaling provides modest yet consistent lifts (E/M/H: +2.14%, +2.45%, +2.90%,
respectively). In contrast, on the most combinatorial regime, Triangle counting (Hard), the gain
is negligible (4.45% → 4.73%), suggesting that sheer scale does little to overcome the inherent
difficulty of exhaustive enumeration.

Finding 2: Reasoning lifts the ceiling. When holding parameter count roughly constant, Qwen-3
(8B) substantially outperforms both Qwen-2.5 (7B) and, on several hard splits, even Qwen-2.5 (72B).
For instance, on BFS order (Hard), performance improves from 22.03% to 29.53% compared to
Qwen-2.5 (72B), a relative advantage of more than 7%. On Diameter calculation (Hard), the
margin widens further: 39.83% versus 29.59%, an absolute gain of over 10%. The effect is most
striking on Triangle counting (Hard), where Qwen-3 (8B) achieves 19.54%, far surpassing the
4.73% of Qwen-2.5 (72B). These results indicate that architectural and optimization changes targeted
at reasoning are more effective in extending the upper bound of graph reasoning ability than scaling
alone.

Implication. Scaling and reasoning improve different aspects of performance. Larger models
predominantly strengthen robustness on easier instances, lifting the floor, whereas reasoning-oriented
models better capture multi-hop dependencies and complex subgraph structures, lifting the ceiling. A

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 11: Isolating scaling vs. reasoning effects. Baseline: Qwen-2.5 (7B). Scaling: Qwen-2.5
(72B). Reasoning: Qwen-3 (8B). Bold orange / Underlined blue / Light blue highlights indicate
best/second-best/third-best performance.

Task Difficulty Open-source Models
Qwen2.5 (72B) Qwen2.5 (7B) Qwen3 (8B)

BFS order
E 71.41±3.45 21.46±4.26 65.87±5.59
M 47.82±5.30 6.05±1.41 53.30±5.42
H 22.03±4.39 1.38±0.37 29.53±4.25

Connectivity
E 90.24±1.89 88.10±1.46 97.17±1.29
M 89.68±1.56 87.23±1.60 96.87±1.16
H 84.09±1.98 81.19±2.02 92.89±2.07

Cycle
E 74.02±3.34 62.19±1.85 90.30±2.33
M 71.99±3.34 62.07±1.80 89.66±2.07
H 68.40±2.73 58.88±2.14 86.81±2.27

Diameter
E 78.50±1.16 45.08±4.17 77.56±2.77
M 52.32±2.00 27.31±3.16 61.71±2.28
H 29.59±2.48 15.27±2.47 39.83±2.67

Shortest
E 90.03±2.27 47.46±8.76 77.69±5.17
M 81.17±3.03 35.53±6.80 69.60±5.50
H 72.53±4.29 28.31±5.50 64.28±5.60

Triangle
E 36.57±4.40 18.56±1.24 41.36±4.63
M 14.52±2.63 9.18±0.73 26.95±2.44
H 4.73±1.58 4.45±0.58 19.54±1.34

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

balanced recipe, i.e. moderate scaling combined with reasoning-oriented objectives, appears most
promising for closing the persistent gaps in BFS order, Diameter calculation, and Triangle
counting.

C.6 RATIONALE FOR BINARY METRIC OVER PARTIAL SCORE

Evaluating graph reasoning outputs with partial credit is appealing in theory, but defining a consistent
and objective scheme across six tasks, seven graph types, seven serializations, and nine prompt
schemes is exceptionally difficult. In practice, two approaches exist: assigning credit based on the
degree of correctness in the final answer, or rewarding intermediate steps and sub-outputs. Both
approaches introduce major challenges. For final answers, it is often ambiguous how to compare
partially correct results (e.g., is overcounting triangles by one preferable to undercounting by one?).
Such ambiguity undermines the credibility of fine-grained scoring. For intermediate steps, reliably
extracting and interpreting model outputs at scale is infeasible, since formatting and reasoning styles
vary widely across models and prompts.

By contrast, binary accuracy against a known ground truth provides a clear and unambiguous
evaluation signal. With the extensive and diverse evaluation set in GRAPHOMNI, binary scoring
captures performance gaps robustly and fairly across models and tasks. While finer-grained metrics
such as edit distance, subtask scoring, or partial correctness may be valuable for training objectives
like reinforcement learning, they extend beyond the present study’s evaluation focus. Incorporating
such measures represents a promising avenue for future work.

D RL-BASED PROMPT SEARCH INSPIRED BY GRAPHOMNI

D.1 BACKGROUND AND SERIALIZATION PROCESS

Our benchmark evaluates three key dimensions—graph type, serialization format, and prompt
scheme—to underscore the critical role of transforming graph structures into textual inputs for LLM
inference. In this section, We want to identify the optimal combination strategies (serialization format;
prompt scheme, etc.) that enhance the effectiveness of textual representations, thereby improving
LLM performance in graph reasoning and understanding tasks. Prior research indicates that while a
particular serialization format or prompt scheme may yield optimal performance in isolation, their
combination does not necessarily lead to the best results, highlighting complex interactions among
various factors. Furthermore, the final performance of LLMs may be influenced by additional factors
that were not systematically examined in our benchmark (e.g., those in Appendix D.3), underscoring
the intricate nature of the graph-to-text transformation process, which extends beyond the scope of
single-factor analysis. This makes finding the optimal serialization strategy complex. We define the
process of converting graph structures into textual inputs tailored to a specific task as the serialization
process. Similar prompt processes are used in NLP. For example, Shi et al. (2024) formulated prompt
formatting as a multi-armed bandit problem; Sclar et al. (2023) employed Thompson sampling
to determine the optimal strategies. For LLM-based graph reasoning, however, previous studies
predominantly focused on single-factor variations. The multiple factor considered in our study
significantly complicates the serialization process—once a particular factor is determined, others are
influenced in complex and often unpredictable ways.

Due to these complexities, it is computationally enormous to find the optimal serialization strategy
by enumerating all possible combinations (termed as grid search in our study). To mitigate this
computational challenge, we propose using RL to find a high-quality serialization strategy under a
limited LLM cost, because of RL’s ability to learn near-optimal strategies in high-dimensional spaces
through exploration and feedback. In the context of RL, we assume that all benchmarking results
(e.g., those in Section 4.1 and 4.2) are not available. Instead, we will repeatedly choose various
serialization strategies, test their performance, and use the results for RL.

Specifically, RL transforms optimizing the serialization process strategy into a sequential decision-
making problem for each type and difficulty of the task. There are T decision epochs, and each
decision epoch determines one component of the serialization strategy. For example, the decision
horizon is T = 3 when we aim to identify the optimal combination of the serialization format, prompt
scheme, and LLM. In the T = 3 decision epochs, we sequentially determine the prompt scheme,
serialization format, and LLM. Such an order of optimizing the components of a serialization strategy

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

is predetermined, and we will investigate its impact on the optimization results in future studies. This
predetermined order specifies a sequence of action spaces {At}t=1,...,T (e.g., At can be all candidate
LLMs). We set the initial state s0 as the specific type and difficulty of the task.

Then at decision epoch t = 1, . . . , T , we choose an action at ∈ At based on the previous actions
a1, . . . , at−1. This corresponds to a policy πt : S0 × A1 × · · · × At−1 7→ At, where S0 is the
state space of the initial state s0. For any instance s (e.g., a query for Connectivity task in easy
mode for a specific graph), a binary reward, denoted by r(s, a1, . . . , aT), is incurred at the end of the
decision epoch, which is set to 1 if the LLM correctly answers the specific query under the selected
serialization strategy (a1, . . . , aT) and to 0 otherwise. For each type and difficulty of the task, our
objective is to maximize the expected reward of choosing the serialization strategy a1, . . . , aT :

max
{πt}t=1,...,T

E[r(s, a1, . . . , aT)|s0],

where the expectation is taken with respect to the problem instance s and the (random) answer output
by an LLM (affected by the randomness of the LLM, e.g., the temperature parameter). Note that (i)
s0 is part of the instance information s, and (ii) we fix the type and difficulty of the task, and the
only randomness in terms of s is from graph generation. To approximate this objective function,
we generate N different graphs for each type of query. We assess the performance of RL using the
average reward across the N graphs, which essentially is the accuracy of the serialization strategy for
a specific graph-related task across these N graphs.

We use the Q-learning approach to solve this optimization problem. Let Qt(s0, a1, . . . , at) be the
Q-function at decision epoch t = 1, . . . , T , which represents the optimal reward-to-go if actions
a1, . . . , at have been determined at decision epoch t given the initial state s0. These functions satisfy
the Bellman recursion:

Qt(s0, a1, . . . , at) = max
at+1∈At+1

Qt+1(s0, a1, . . . , at+1), t = 1, . . . , T − 1

with terminal condition

QT (s0, a1, . . . , aT) = E[r(s, a1, . . . , aT)|s0],

This terminal Q-function can be approximated by the accuracy of the LLM answer across the N
generated graphs.

Consider the problem of dealing with high-dimensional, complex state spaces in serialization process,
we employ the Deep Q-Network (DQN) (Mnih et al., 2013) to implement RL, which employs a deep
neural network as a function approximator for the Q-function. Specifically, we use a neural network
Q̂t(s0, a1, . . . , at; θt) parameterized by θt to approximate the corresponding Qt(s0, a1, . . . , at) for
the actions or factors considered in serialization process. Each Q-network is modeled as a three-layer
multilayer perceptron with ReLU activations. Training minimizes the mean squared error loss, and
action selection follows an ϵ-greedy policy, where ϵ linearly decays from 1.0 to a minimum of 0.01.
The detailed algorithm for each initial state s0 is provided in Algorithm 1.

We design two experimental settings, RL-Opt and RL-Scale, to assess the effectiveness of our
approach. RL-Opt focuses on a T = 3 serialization process—selecting the serialization format,
prompt scheme, and LLM model—and evaluates both LLM cost and the accuracy of identifying the
optimal configuration. RL-Scale extends the scope to include additional factors beyond those in
GRAPHOMNI, investigating the scalability of the RL method for more complex serialization tasks,
with an emphasis on LLM cost.

D.2 DETAILS FOR RL-OPT SETTING

In RL-Opt, we apply RL to find a high-quality serialization strategy under a limited LLM cost. The
serialization process in this case involved three key factors: serialization formats (in total 7), nine
prompt schemes (in total 9), and five open-source language models (including LLaMA3, LLaMA
3.1, Mistral, Phi-4, and Qwen-2.5). The total number of possible combinations in our search space
is given by E = 7 × 9 × 5 = 315. To find a high-quality serialization strategy, we set the total
training episodes to M = 80 and initial learning rate to 0.001 during RL training. We evaluate the
RL performance on 6 tasks in three different modes, resulting in a total of 18 experimental cases.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Algorithm 1 RL Framework of GRAPHOMNI

Input: Action spaces {At}Tt=1; number of training episodes M ; exploration rate ϵ; initial state s0
Initialization:
Generate N graphs according to the initial state s0
Initialize Q-networks {Q̂t(s0, a1, . . . , at; θt)}Tt=1 with random initialized weights θt
for episode = 1 to M do

for t = 1 to T do
Choose action:
With probability ϵ, select a random action at ∈ At

Otherwise, set at ← arg max
a∈At

Q̂t(s0, a1, . . . , at−1, a; θt)

Execute action and obtain new state:
Update state: {s0, a1, . . . , at} ← {s0, a1, . . . , at−1} ∪ {at}
Q-network update:
If t = T , set y to be the accuracy of the LLM answer across the N generated graphs
Otherwise, set y ← max

a∈At+1

Q̂t+1(a1, . . . , a; θt+1)

Perform a gradient descent step on
(
y − Q̂t(a1, . . . , at; θt)

)2

with respect to θt

end for
Decay exploration rate: ϵ← ϵ · decay rate

end for

For each case, based on our numerical results in Sections 4.1 and 4.2, we know which combination
(serialization format; prompt scheme; LLM) performs the best for each specific graph-related task.
Hence, we can compare the serialization strategy obtained by RL with the ground-truth optimal
strategy.

Specifically, we employ two key metrics. Search Cost: Given that RL explores k different combina-
tions during the training process, we define Cost = k

K , where k depends on the number of training
episodes and K is the total number of combinations. Rate: Let acc∗ be the accuracy achieved by
the best combination found by RL, and accmax be the highest accuracy in Sections 4.1 and 4.2.
Then we define Rate = acc∗

accmax
. The results are displayed in Table 4. It can be seen that, with an

approximate 25% reduction in cost, the RL method still maintains an average rate of around 0.9,
indicating its ability to significantly shorten the time required for the search for optimal combinations
while ensuring the quality of the results. This outcome underscores the notable advantages of RL in
the serialization process problem—it can rapidly find high-quality solutions, thereby substantially
reducing computational resources and time costs. Moreover, this approach does not rely heavily on
extensive manual expertise, enhancing the automation of the optimization process. As a result, it
is not only applicable to the factors considered in this study but also adaptable to other factors that
warrant further investigation.

D.3 RL-SCALE

In RL-Scale, we examine the scalability of our RL method by incorporating additional four factors
into the serialization process. Different from RL-Opt that optimizes the LLM model, we fix the
model as Qwen-2.5 and test the performance on the Diameter calculation task in easy mode. The
additional four factors are inspired by Sclar et al. (2023), which are the delimiters between sentences,
the capitalization style of each sentence, the delimiter used to introduce questions and answers, and
the delimiter between words. As before, we still optimize the prompt scheme and the serialization
format. Details of the 6 factors implemented in the serialization process are shown below.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

6 factors implemented in serialization process

• SPACES1: delimiter between sentences, include: ’ – ’, ’ <sep> ’, ’ , ’, ’ \n ’, ’ \n’, ’\t’, ’ ;
\n’, ’ ’, ’ . ’, ’ || ’

• CS: the delimiter used to introduce questions and answers, include: ’ \n\t’, ’ \n ’, ’ : ’, ’ :: ’,
’ \t’, ’ ::’, ’ ’, ’ - ’, ’ :’, ’ ::: ’

• SPACES2: delimiter between words, include: ’ ’,’ ’,’\t’
• CASE FUNCTION: the overall capitalization mode of each sentences, include:no change, title, upper,

lower
• PROMPTS SCHEME: include: 0-shot, 0-CoT, 0-Instruct, 0-Algorithm, LTM, Algorithm, CoT, k-shot,

Instruct
• SERIALIZATION FORMAT: include: GMoL, Adjacency Set, Edge Set, Edge List, Adjacency Matrix,

Adjacency List, GMaL

2 3 4 5 6

Steps

0

10000

20000

30000

40000

50000

60000

70000

80000

C
om

bi
na

tio
ns

Comparison of RL and Grid Search

RL
Polynomial fit
Grid search
Exponential fit

250

500

RL Trend

Figure 7: RL and Grid Search

Since the optimal combination in RL-Scale is un-
known, we only focus on the cost of RL finding
the near optimal combination. In addition, tak-
ing into account the LLM cost problem and the
performance stability, for each combination, we
took a fixed evaluation of 30 samples to get ac-
curacy and set the temperature to 0. Ultimately,
we compare the costs of RL and grid search un-
der conditions where the serialization process
involves 2–6 factors, with the results presented
in Figure 7. For step counts of 2, 3, 4, 5, and
6, the number of combinations explored for RL
is 40, 121, 182, 300, and 632, respectively. In
contrast, the number of combinations for Grid
Search is 100, 300, 1200, 8400, and 75600 for
the same step counts. It shows that RL exhibits a
highly promising trend in terms of the cost asso-
ciated with searching for optimal combinations.
When considering two-step factors, the cost of
RL is comparable to that of grid search. However, as factors or steps increase, the cost growth of RL
is significantly lower than that of grid search. This finding suggests that for serialization process tasks,
RL can adaptively adjust its strategy to better accommodate complex environments, highlighting its
broader potential for application.

Table 12: 2–6 factors, top-3 combinations and corresponding reward from RL-Scale.

Grid research Rank Combination Parameters Reward

100
1 Edge List,0-shot, Q:, A:, , , \n \t, no 0.3000
2 Edge List,0-shot, Q:, A:, \n, , , no 0.2667
3 Edge List,0-shot, Q:, A:, , , , no 0.2000

300
1 Edge List,0-shot, Q:, A:, || , \t, , no 0.3667
2 Edge List,0-shot, Q:, A:, – , \t, \n \t, no 0.3333
3 Edge List,0-shot, Q:, A:, – , \t, - , no 0.3333

1200
1 Edge List,0-shot, Q:, A:, – , , \n , upper 0.4000
2 Edge List,0-shot, Q:, A:, || , , ::: , lower 0.4000
3 Edge List,0-shot, Q:, A:, , \t, , upper 0.3667

8400
1 Adjacency Matrix,0-shot, Q:, A:, <sep> , , \n , title 0.5667
2 GMoL,0-shot, Q:, A:, \n, \t, ::: , upper 0.5333
3 GMoL,0-shot, Q:, A:, ; \n, \t, ::: , upper 0.5333

75600
1 Adjacency Set, Algorithm, Q:, A:, || , , : , lower 0.6333
2 Adjacency Set, Algorithm, Q:, A:, || , , : , no 0.6333
3 Adjacency Matrix,0-shot, Q:, A:, \n, , :, title 0.6000

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E COMPREHENSIVE EXPERIMENTAL RESULTS

In this section, we include all the experimental results and additional analysis of the GRAPHOMNI as
a reference to support our claims and findings mentioned in Section 4.1. We first present fine-grained
experimental results broken down across main evaluation dimensions in Appendix E.1, followed
by detailed performance heatmaps for all tasks and models in Appendix E.2. Finally, we provide a
comprehensive error analysis with representative cases in Appendix E.4.

E.1 FINE-GRAINED RESULTS ACROSS DIMENSION

In this subsection, we present detailed performance results across model capability, graph type,
prompting schemes, and serialization format impact. Based on the complete evaluation results in
Table 13, we further analyze the results from multiple perspectives, including overall performance
across all models, separate analyses for open-source models, and specific results for closed-source
models. These comprehensive results provide additional evidence supporting our main findings
discussed in Section 4.1.

Table 13: Benchmark Results of LLMs Across Tasks (Mean±95% CI Margin).
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best

performance in its category.

Task Difficulty Open-source Models Closed-source Models
Random

Llama-3 (8B) Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (72B) Qwen-2.5 (7B) Qwen-3 (8B) Claude-3.5 GPT-4o GPT-4o-mini Gemini-2.0 o4-mini

BFS order
E 15.62±2.94 18.69±3.02 13.75±1.44 33.03±7.32 71.41±3.45 21.46±4.26 65.87±5.59 91.42±1.65 81.48±3.22 58.75±4.22 90.31±2.30 95.46±0.78 0.00
M 4.04±0.81 5.27±0.93 3.36±0.44 12.49±3.24 47.82±5.30 6.05±1.41 53.30±5.42 68.25±2.96 55.07±4.50 25.03±3.11 68.40±3.95 79.37±2.08 0.00
H 0.39±0.15 0.63±0.19 0.34±0.14 2.65±0.80 22.03±4.39 1.38±0.37 29.53±4.25 26.80±2.64 21.58±3.69 6.28±0.90 27.77±3.34 32.45±3.88 0.00

Connectivity
E 78.01±2.28 79.53±2.03 79.90±1.89 56.29±8.58 90.24±1.89 88.10±1.46 97.17±1.29 98.38±0.60 95.63±1.30 89.10±2.32 92.61±1.42 98.23±0.63 67.49
M 77.78±2.78 79.47±2.00 80.60±1.92 54.38±7.99 89.68±1.56 87.23±1.60 96.87±1.16 99.11±0.39 95.12±1.37 91.07±1.42 93.60±1.10 98.72±0.52 70.75
H 68.49±4.49 74.58±2.67 74.77±2.46 48.39±7.50 84.09±1.98 81.19±2.02 92.89±2.07 96.99±1.48 90.59±2.19 84.82±2.17 87.99±1.67 92.02±3.99 66.36

Cycle
E 53.84±1.75 55.49±0.90 55.44±0.96 45.25±5.90 74.02±3.34 62.19±1.85 90.30±2.33 82.56±3.89 85.08±2.27 75.04±2.83 62.30±3.32 97.97±0.71 50.00
M 42.38±1.13 55.69±1.08 53.71±0.72 44.26±5.43 71.99±3.34 62.07±1.80 89.66±2.07 80.80±3.94 85.35±2.30 75.79±2.96 60.29±3.22 97.75±0.76 50.00
H 41.24±1.53 52.40±1.47 51.64±1.02 40.64±4.97 68.40±2.73 58.88±2.14 86.81±2.27 80.10±3.97 82.96±2.55 73.46±3.30 58.30±2.80 95.61±1.23 50.00

Diameter
E 23.78±4.17 41.27±5.37 28.55±4.28 42.81±5.06 78.50±1.16 45.08±4.17 77.56±2.77 83.71±1.26 63.99±2.19 37.36±2.62 79.14±1.94 98.88±0.15 11.20
M 14.29±2.66 27.29±4.20 15.17±2.57 28.49±4.09 52.32±2.00 27.31±3.16 61.71±2.28 71.22±1.30 52.64±3.05 22.85±2.97 49.52±2.14 72.84±1.82 6.70
H 8.48±1.75 18.63±3.27 6.97±1.26 17.71±3.02 29.59±2.48 15.27±2.47 39.83±2.67 56.70±2.02 45.60±3.24 14.98±2.54 23.45±2.97 34.61±2.84 3.72

Shortest
E 33.93±6.44 38.75±5.81 31.18±4.43 42.61±8.88 90.03±2.27 47.46±8.76 77.69±5.17 94.35±2.93 92.17±1.91 78.69±4.24 81.75±4.70 95.08±3.06 50.00
M 26.07±4.96 28.84±4.56 19.89±3.05 33.92±7.68 81.17±3.03 35.53±6.80 69.60±5.50 91.27±2.84 84.84±2.93 66.31±3.36 80.67±4.15 92.60±3.49 50.00
H 20.00±3.97 23.03±3.85 12.21±1.95 26.60±6.26 72.53±4.29 28.31±5.50 64.28±5.60 87.88±3.36 74.98±4.17 54.73±4.54 78.16±4.55 88.63±4.44 50.00

Triangle
E 9.49±1.02 14.97±1.53 11.87±1.32 12.88±2.05 36.57±4.40 18.56±1.24 41.36±4.63 43.41±1.64 36.32±1.54 18.51±1.39 50.33±2.31 84.54±0.56 2.13
M 3.06±0.39 8.56±0.92 5.86±0.73 7.54±1.33 14.52±2.63 9.18±0.73 26.95±2.44 24.00±0.77 20.00±0.72 10.62±0.81 28.12±1.65 48.13±1.46 1.62
H 1.82±0.36 4.95±0.69 2.55±0.44 4.38±1.04 4.73±1.58 4.45±0.58 19.54±1.34 15.92±0.72 12.81±0.88 5.65±0.71 15.55±1.29 17.53±1.43 1.82

E.1.1 OVERALL RESULTS

Here we present a comprehensive analysis of the overall performance across all evaluation dimensions.
While our main findings in Result ❶ highlight the moderate performance of models with considerable
room for improvement, the detailed results in Tables 14, 15, and 16 reveal several noteworthy patterns:

Task-specific Performance Variation: The performance varies significantly across different tasks
and difficulty levels. For instance, in Connectivity tasks, models generally achieve higher accuracy
(80%–90% for easy level) compared to more complex tasks like Triangle counting (20%–30%
for hard level). This suggests that while LLMs can handle basic graph properties well, they struggle
with tasks requiring more sophisticated reasoning and counting.

Difficulty Level Impact: There is a consistent and non-linearly sharp decline in performance as task
difficulty increases. With larger graphs, models face challenges in both processing longer contexts
and conducting more complex reasoning tasks, which typically require longer reasoning paths, more
precise intermediate steps, and more comprehensive exploration of the graph structure. The sharp
performance drop on larger graphs suggests that current LLMs struggle to maintain reliable reasoning
capabilities when faced with extended multi-step graph operations.

Model Type Performance Gap: The performance gap between closed-source and open-source
models is particularly evident in complex tasks. For instance, GPT-4o and Claude-3.5 consistently
outperform other models by a significant margin (15%–20%) in tasks like Diameter calculation
and Triangle counting especially at higher difficulty levels. This reinforces our observation about
the current limitations of open-source models in complex graph reasoning tasks.

Graph Type Impact: The evaluation reveals distinct performance patterns across different graph
types, with certain structures showing clear advantages for specific tasks. Our analysis shows that

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

bipartite graphs (BERM, BERP) tend to exhibit higher performance in connectivity and clustering-related
tasks (Connectivity), potentially due to their explicit partitioning of node sets, which simplifies
certain connectivity relationships for LLMs. For shortest-path (Shortest path) tasks, hierarchical
structures like BAF often show higher accuracy, as the tree-like paths may align well with reasoning
processes for pathfinding. In local pattern identification tasks such as triangle counting (Triangle
counting), simpler graph structures like SF often perform better, possibly because they reduce the
complexity of identifying local patterns. These observations suggest that the interplay between graph
types and task characteristics can significantly influence LLM reasoning behaviors.

Table 14: Benchmark Results of Prompt Schemes Across Tasks (Mean±95% CI Margin of All
Models). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM

BFS order
E 52.20±7.28 46.54±8.20 48.42±8.22 51.49±7.34 63.39±7.10 63.33±6.23 62.93±6.16 56.51±6.45 48.12±8.15
M 33.63±6.46 33.37±6.89 33.36±6.76 33.94±6.72 43.48±7.23 38.99±6.37 38.61±6.20 33.08±6.09 32.89±6.67
H 13.57±3.45 14.46±3.58 13.98±3.50 14.58±3.71 19.37±4.46 14.01±3.42 13.27±3.27 11.68±3.01 13.95±3.50

Connectivity
E 85.51±3.01 83.27±5.06 86.86±2.45 82.79±5.40 88.79±2.32 92.35±1.88 92.37±1.57 87.46±2.34 83.00±4.70
M 86.34±3.34 83.30±4.89 83.80±3.28 83.36±5.45 88.98±2.05 91.98±1.94 92.07±1.45 89.24±2.05 83.65±4.17
H 81.76±3.99 78.34±4.87 74.21±4.90 79.80±5.35 82.89±2.52 85.68±2.70 86.41±2.19 85.16±2.57 78.35±4.41

Cycle
E 71.75±3.91 64.73±5.07 70.23±3.67 64.93±5.34 71.28±4.34 73.01±3.62 71.66±3.77 73.12±3.62 68.89±3.90
M 69.16±4.07 64.50±4.73 67.75±3.99 63.94±5.37 70.02±4.77 71.59±4.06 69.86±4.11 70.40±4.24 67.58±3.85
H 66.27±4.04 62.75±4.47 62.14±4.60 62.54±5.20 67.38±4.79 69.12±4.20 67.95±4.13 68.35±4.14 66.35±3.73

Diameter
E 51.52±6.46 52.66±6.81 52.55±7.06 53.65±6.46 70.28±3.10 62.32±4.95 64.42±4.01 64.65±4.09 53.41±6.66
M 34.41±5.35 36.65±5.50 34.34±5.62 37.54±5.07 50.69±2.97 46.65±4.66 48.00±4.06 47.64±3.93 35.83±5.37
H 19.53±3.90 22.28±3.81 20.59±4.16 22.92±3.71 32.13±3.29 30.80±3.78 32.54±3.49 31.89±3.29 21.19±4.09

Shortest
E 67.58±5.64 57.06±8.17 55.89±8.48 67.18±6.33 74.79±6.01 74.73±6.10 75.62±5.76 72.75±6.37 57.17±7.99
M 59.32±6.24 50.97±8.02 50.60±8.14 58.52±6.58 65.09±6.39 66.73±6.09 66.02±6.19 63.98±6.26 51.80±7.73
H 53.14±6.66 48.40±7.89 46.88±8.05 52.54±6.82 56.18±6.72 57.27±6.41 57.10±6.38 54.03±6.43 47.97±7.67

Triangle
E 28.81±4.95 29.95±5.04 28.00±5.04 31.22±5.08 32.39±4.75 34.81±5.10 35.03±4.68 33.39±4.57 30.52±4.95
M 16.01±2.92 17.07±2.83 15.88±2.93 16.97±3.10 16.62±2.86 18.07±3.15 18.67±2.77 18.52±2.78 17.11±2.89
H 8.85±1.53 10.14±1.68 8.55±1.56 9.42±1.63 8.21±1.56 9.48±1.81 9.12±1.53 9.54±1.58 9.10±1.47

Table 15: Benchmark Results of Serialization Formats Across Tasks (Mean±95% CI Margin of All
Models). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty AL AM AS EL ES GMaL GMoL

BFS order
E 63.27±6.63 49.10±7.02 62.54±6.63 50.40±6.27 51.68±6.37 58.86±6.42 47.54±5.57
M 47.13±6.74 27.55±5.27 45.18±6.56 31.39±5.17 29.57±4.96 39.55±5.88 29.56±4.91
H 23.92±4.37 5.19±1.16 23.59±4.24 11.40±2.17 9.06±1.69 15.58±2.75 11.50±2.31

Connectivity
E 89.49±3.25 80.92±3.10 89.57±3.20 87.02±3.42 88.50±3.21 88.44±2.96 84.58±2.31
M 88.75±3.23 82.63±2.85 89.04±3.09 86.51±3.48 86.72±3.31 88.27±3.04 86.87±2.52
H 85.52±3.48 68.37±2.46 85.68±3.38 82.49±3.65 81.03±3.52 83.83±3.70 82.87±3.09

Cycle
E 64.30±3.53 65.75±3.61 64.41±3.50 71.54±3.59 75.38±3.40 76.09±4.26 72.22±3.38
M 63.35±3.58 62.90±3.51 63.23±3.52 70.55±3.81 72.51±3.64 73.93±4.43 71.70±3.94
H 61.00±3.59 59.06±2.94 60.20±3.52 69.64±3.95 68.82±3.68 71.42±4.32 70.96±4.24

Diameter
E 58.31±5.29 58.63±4.95 61.33±5.09 54.95±5.24 54.51±5.33 62.28±4.87 58.68±5.18
M 42.89±4.77 39.67±3.83 45.69±4.68 37.78±4.05 35.60±4.18 44.52±4.38 42.98±4.48
H 27.68±4.00 23.65±3.01 29.61±3.82 23.26±2.76 20.03±2.70 29.77±3.63 27.90±3.49

Shortest
E 75.89±5.76 54.14±5.97 76.60±5.61 72.00±5.63 68.99±5.81 52.85±7.49 68.35±5.23
M 69.65±6.00 40.94±5.24 69.14±5.68 64.57±5.83 58.30±5.90 52.38±7.34 59.60±5.25
H 65.31±6.09 28.22±4.13 65.79±5.96 55.82±5.90 52.05±5.83 47.88±7.06 53.20±5.42

Triangle
E 32.03±4.41 27.61±4.08 31.82±4.48 31.70±4.21 30.64±4.06 34.30±4.44 32.89±4.61
M 17.50±2.56 13.50±1.94 17.61±2.60 18.65±2.66 16.45±2.40 18.83±2.71 17.95±2.89
H 8.78±1.42 6.61±1.05 10.35±1.51 9.77±1.38 8.75±1.22 10.34±1.48 9.50±1.59

E.1.2 RESULTS OF OPEN-SOURCE MODELS

Open-source models exhibit several distinct characteristics compared to the overall results. In terms
of prompting schemes (Table 17), more structured approaches show clear advantages: CoT and

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 16: Benchmark Results of Graph Type Across Tasks (Mean±95% CI Margin).
Bold orange / Underlined blue highlights indicate best/second-best performance. “-” indicates

the graph type is not applicable for that task.

Task Difficulty BAF BAG BERM BERP ERM ERP SF

BFS order
E 43.82±3.13 44.93±3.06 53.30±2.77 52.68±2.75 43.49±2.76 47.82±2.88 48.20±3.08
M 35.06±3.03 29.38±2.68 24.96±2.33 34.56±2.58 21.76±1.97 22.48±2.05 26.63±2.57
H 27.58±2.66 7.17±1.17 6.67±0.95 13.79±1.34 4.03±0.70 8.40±1.06 7.40±1.24

Connectivity
E 77.04±1.68 - 88.03±1.48 84.29±1.52 87.02±1.49 86.97±1.54 -
M 78.99±1.62 - 86.31±1.52 86.60±1.54 84.61±1.51 86.11±1.56 -
H 65.93±1.75 - 84.18±1.75 82.12±1.67 80.68±1.74 85.28±1.70 -

Cycle
E - 64.90±1.60 65.98±1.49 65.02±1.39 68.32±1.70 69.25±1.57 61.08±1.40
M - 60.18±1.73 67.21±1.66 61.41±1.54 65.23±1.86 66.08±1.70 59.10±1.53
H - 55.20±1.56 64.66±1.91 65.58±1.72 61.97±1.82 62.99±1.81 54.98±1.45

Diameter
E - 47.35±2.10 - - 44.95±2.25 48.96±2.23 56.82±2.08
M - 33.38±1.79 - - 30.64±2.04 35.81±2.21 37.41±1.65
H - 22.78±1.81 - - 20.70±1.92 26.76±2.11 22.10±1.15

Shortest path
E 66.73±2.98 60.06±2.82 57.52±2.82 61.01±2.88 55.12±2.80 59.53±2.87 61.12±2.86
M 58.11±3.01 52.88±2.84 48.95±2.76 48.72±2.72 45.83±2.73 51.55±2.75 57.08±2.88
H 55.62±3.15 46.19±2.97 42.47±2.69 39.67±2.85 39.54±2.65 43.36±2.62 48.93±2.89

Triangle
E - 25.25±1.53 - - 12.54±0.79 17.17±1.08 41.20±2.03
M - 16.75±1.11 - - 7.38±0.45 9.55±0.56 18.30±1.12
H - 8.99±0.77 - - 5.48±0.42 7.56±0.56 8.22±0.58

Instruct prompts consistently outperform simpler schemes like 0-Shot and LTM across most tasks.
This is particularly evident in Connectivity tasks, suggesting that open-source models benefit more
from explicit reasoning guidance.

For serialization formats (Table 18), open-source models show a strong preference for concise
representations. Adjacency List (AL) and Adjacency Set (AS) formats consistently perform better
than more complex formats like GMaL and GMoL. This contrasts with the overall results.

Regarding graph types (Table 19), while the general pattern of task-specific advantages remains
similar to overall results, open-source models show more pronounced performance gaps between
optimal and sub-optimal graph types. For instance, in Triangle counting tasks, SF significantly
outperforms other graph types with a wider margin compared to the overall results.

Table 17: Benchmark Results of Prompt Schemes Across Tasks of Open-source Models (Mean±95%
CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM

BFS order
E 29.72±5.04 20.25±5.44 22.19±5.76 29.64±5.43 44.34±6.33 49.24±6.00 48.84±5.85 41.62±5.48 22.50±5.82
M 15.25±4.15 14.05±4.83 14.56±4.88 15.98±4.70 25.31±5.94 25.88±5.78 25.34±5.56 19.52±4.83 14.26±4.73
H 7.26±3.03 7.76±3.14 7.24±3.04 7.98±3.11 10.51±3.54 9.47±3.53 9.18±3.40 6.55±2.61 7.28±3.05

Connectivity
E 78.11±2.96 74.21±5.84 81.31±2.35 74.83±6.44 85.70±2.46 89.23±2.10 89.46±1.64 84.83±2.42 74.19±5.33
M 79.13±3.60 74.08±5.58 75.56±3.19 74.54±6.48 85.39±2.12 88.40±2.16 88.98±1.42 86.52±2.17 75.15±4.56
H 74.52±4.29 69.13±5.34 62.30±4.72 71.41±6.22 80.14±2.19 81.68±2.63 83.14±1.86 82.85±2.48 69.05±4.51

Cycle
E 64.31±3.28 53.62±4.73 63.66±3.11 55.38±5.41 64.32±4.01 66.89±3.33 64.67±3.40 67.48±3.19 60.90±3.26
M 61.02±3.52 53.61±4.13 59.75±3.36 53.78±5.41 61.55±4.57 63.81±3.73 62.44±3.63 64.06±3.88 59.66±3.12
H 58.42±3.61 52.68±3.84 51.53±3.83 52.42±5.14 58.25±4.44 61.20±3.71 59.80±3.51 61.39±3.53 58.60±2.91

Diameter
E 36.41±5.49 37.12±5.95 37.36±6.51 40.67±5.67 66.33±2.63 56.63±4.76 60.39±3.27 59.93±3.51 39.13±5.92
M 22.68±3.90 25.26±4.68 22.36±4.68 27.65±4.24 44.44±2.65 40.30±4.44 42.93±3.59 41.45±3.45 24.25±4.38
H 11.69±2.25 15.25±2.78 12.84±3.17 16.71±2.83 24.70±2.52 25.50±3.29 27.98±3.00 27.22±2.93 13.57±3.00

Shortest
E 55.81±5.40 34.34±7.21 32.39±7.55 52.73±6.28 62.03±6.43 65.72±6.36 64.55±6.34 63.04±6.48 34.38±6.84
M 43.89±5.43 28.21±6.58 28.25±6.95 42.44±5.92 50.31±6.24 53.78±6.20 52.94±6.29 50.08±6.15 29.44±6.13
H 36.26±5.51 26.51±6.31 24.50±6.42 35.58±5.60 40.67±6.12 44.11±6.18 43.56±6.04 39.99±5.93 26.35±5.73

Triangle
E 14.74±1.98 16.91±3.09 14.22±2.52 19.88±3.43 21.98±3.28 27.32±4.52 28.14±3.84 26.35±3.34 17.79±3.07
M 7.98±1.39 10.24±1.73 8.37±1.58 9.86±1.87 9.57±1.97 12.94±2.81 14.13±2.43 13.91±2.23 10.28±1.82
H 5.14±1.22 6.28±1.48 4.50±1.19 5.96±1.31 4.71±1.31 7.35±1.99 7.53±1.70 7.49±1.57 5.57±1.08

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 18: Benchmark Results of Serialization Formats Across Tasks of Open-source Models
(Mean±95% CI Margin). Bold orange / Underlined blue highlights indicate best/second-best per-
formance.

Task Difficulty AL AM AS EL ES GMaL GMoL

BFS order
E 42.12±5.89 25.68±5.21 41.02±5.77 30.04±4.94 30.01±4.73 39.54±5.84 31.41±4.67
M 27.55±5.90 11.92±3.59 24.79±5.40 15.90±3.81 14.02±3.31 22.74±4.95 15.40±3.31
H 15.45±4.36 1.99±0.72 14.60±4.10 5.87±1.72 4.63±1.27 8.99±2.41 5.41±1.55

Connectivity
E 83.33±3.84 74.63±3.50 83.54±3.79 80.79±3.99 82.76±3.78 82.97±3.43 81.23±2.45
M 82.36±3.78 76.85±3.22 82.90±3.60 79.50±4.01 79.40±3.71 82.89±3.56 82.11±2.83
H 78.43±3.98 66.16±2.66 78.89±3.86 74.26±4.04 72.53±3.73 77.01±4.25 77.11±3.48

Cycle
E 58.72±3.30 59.20±3.30 59.18±3.31 62.89±3.39 66.65±3.27 65.24±4.14 64.64±3.20
M 57.70±3.29 55.73±3.00 57.82±3.24 60.81±3.56 63.40±3.40 62.44±4.28 61.86±3.81
H 54.64±3.29 52.54±2.56 54.50±3.25 58.80±3.54 59.95±3.40 60.04±4.00 59.54±3.85

Diameter
E 47.25±5.10 49.01±4.53 49.78±4.91 45.06±4.89 43.82±4.78 53.68±4.95 48.95±5.18
M 32.28±4.19 31.91±3.38 34.83±4.23 30.61±3.72 28.06±3.68 35.40±4.09 33.50±4.16
H 18.13±3.07 19.70±2.24 20.57±3.23 19.65±2.70 16.12±2.39 22.44±2.89 19.87±2.82

Shortest
E 61.38±6.13 39.46±5.99 62.90±6.02 57.99±5.93 54.26±5.99 30.52±5.96 55.14±5.54
M 52.45±5.93 27.69±4.83 54.63±5.79 47.29±5.55 41.24±5.35 25.75±5.41 45.99±5.22
H 47.79±5.86 18.72±3.74 48.52±5.72 38.00±5.16 34.34±4.78 22.69±5.10 36.89±4.81

Triangle
E 20.03±3.02 17.87±2.49 18.98±2.82 20.52±2.70 21.13±2.77 24.76±3.74 22.42±3.50
M 10.37±1.79 8.81±1.35 10.41±1.83 11.17±1.65 10.72±1.70 12.92±2.19 11.28±2.06
H 5.37±1.34 5.45±1.07 6.76±1.52 5.84±1.13 6.44±1.25 7.07±1.39 5.50±1.28

Table 19: Benchmark Results of Graph Type Across Tasks of Open-source Models (Mean±95%
CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance. “-”
indicates the graph type is not applicable for that task.

Task Difficulty BAF BAG BERM BERP ERM ERP SF

BFS order
E 31.18±2.30 31.34±2.18 41.92±2.08 41.16±2.04 30.59±1.90 34.53±2.01 34.43±2.24
M 23.15±2.23 19.97±1.90 17.92±1.79 24.76±1.87 14.89±1.41 15.08±1.41 18.27±1.86
H 18.06±2.00 7.31±1.11 6.36±0.99 10.85±1.16 4.08±0.83 6.70±1.00 7.38±1.13

Connectivity
E 72.16±1.43 - 86.82±1.41 81.79±1.41 84.65±1.40 84.10±1.45 -
M 74.84±1.43 - 83.02±1.42 84.28±1.45 80.99±1.38 82.86±1.44 -
H 60.68±1.43 - 82.25±1.62 79.76±1.55 75.94±1.55 81.89±1.59 -

Cycle
E - 60.70±1.34 62.16±1.36 63.53±1.36 63.61±1.44 64.51±1.39 59.65±1.33
M - 56.82±1.36 62.69±1.43 59.75±1.40 60.91±1.48 62.21±1.44 57.42±1.33
H - 52.15±1.27 59.50±1.52 61.04±1.48 57.73±1.49 59.09±1.46 53.36±1.23

Diameter
E - 45.50±1.84 - - 45.74±2.04 48.57±1.99 53.09±1.83
M - 32.72±1.52 - - 28.87±1.60 31.85±1.76 36.16±1.45
H - 19.95±1.26 - - 16.46±1.24 20.54±1.33 20.90±1.04

Shortest
E 59.63±2.63 51.54±2.37 49.30±2.39 52.61±2.46 46.04±2.32 50.04±2.37 52.97±2.46
M 49.10±2.53 42.32±2.25 38.87±2.22 39.58±2.23 36.20±2.12 41.70±2.18 46.98±2.36
H 46.37±2.59 34.28±2.16 33.36±2.10 30.18±2.18 30.50±1.99 33.90±2.06 38.55±2.22

Triangle
E - 19.17±1.27 - - 11.68±0.95 13.80±1.02 35.37±1.73
M - 11.15±0.85 - - 7.62±0.72 8.66±0.87 15.28±1.05
H - 5.00±0.49 - - 5.67±0.66 5.78±0.53 8.13±0.79

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

E.1.3 RESULTS OF CLOSED-SOURCE MODELS

Closed-source models exhibit notably different characteristics compared to their open-source coun-
terparts. For prompting schemes (Table 20), these models show more robust performances across
different prompting methods, with even simple prompts like 0-Shot achieving competitive results.
This is particularly evident in Connectivity tasks, where performance remains consistently high
across most prompting schemes, suggesting less reliance on explicit reasoning guidance.

The serialization format results (Table 21) reveal another key distinction: closed-source models handle
complex formats more effectively. While they perform well with concise formats like AL and AS,
they also show strong performance with structured formats like GMaL, especially in tasks requiring
sophisticated reasoning like Cycle detection and Diameter calculation. This contrasts sharply
with open-source models’ preference for simpler formats.

Regarding graph types (Table 22), closed-source models demonstrate more balanced performance
across different graph structures. For instance, in Triangle counting tasks, while SF still performs
best, the performance gap between different graph types is notably smaller than in open-source
models, suggesting more robust graph structure processing capabilities.

Table 20: Benchmark Results of Prompt Schemes Across Tasks of Closed-source Models (Mean±95%
CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM

BFS order
E 83.66±3.70 83.34±3.61 85.15±3.08 82.07±3.81 90.06±3.02 83.07±3.53 82.66±3.60 77.35±4.92 83.99±3.24
M 59.37±4.92 60.42±4.91 59.67±4.68 59.09±5.30 68.91±5.06 57.33±4.97 57.17±4.72 52.05±5.35 58.98±4.71
H 22.41±3.11 23.85±3.19 23.41±3.10 23.82±3.61 31.79±4.30 20.38±2.78 19.01±2.68 18.86±2.90 23.29±3.12

Connectivity
E 95.86±1.05 95.95±1.18 94.64±1.41 93.92±1.60 93.10±1.77 96.72±0.94 96.43±0.92 91.15±2.01 95.34±1.27
M 96.43±0.87 96.22±1.01 95.34±1.08 95.71±0.96 94.01±1.35 96.99±0.74 96.39±0.86 93.06±1.54 95.56±1.26
H 91.90±2.12 91.24±2.07 90.89±2.19 91.55±2.04 86.76±2.74 91.28±2.34 90.98±2.27 88.40±2.57 91.37±2.23

Cycle
E 82.17±3.67 80.28±3.42 79.43±3.52 78.30±3.73 81.03±3.95 81.58±3.22 81.44±3.27 81.01±3.54 80.08±3.46
M 80.54±3.54 79.75±3.45 78.96±3.56 78.15±3.55 81.87±3.83 82.49±3.33 80.25±3.73 79.27±4.03 78.67±3.54
H 77.26±3.40 76.84±3.45 76.99±3.62 76.70±3.54 80.15±3.87 80.20±3.71 79.35±3.73 78.08±4.07 77.19±3.54

Diameter
E 72.68±4.82 74.42±5.02 73.82±5.02 71.82±5.47 75.80±3.36 70.29±4.77 70.07±4.65 71.25±4.47 73.39±5.17
M 50.83±5.17 52.60±4.72 51.12±4.85 51.37±4.68 59.43±2.32 55.54±4.35 55.09±4.23 56.29±3.86 52.05±4.71
H 30.49±4.51 32.11±4.10 31.43±4.30 31.62±4.03 42.53±2.94 38.21±3.90 38.93±3.70 38.44±3.31 31.85±4.34

Shortest
E 84.07±3.82 88.87±2.80 88.79±2.82 87.42±3.00 92.65±2.03 87.34±4.55 91.11±2.21 86.34±4.99 89.08±2.76
M 80.93±3.96 82.83±3.74 81.91±3.79 81.03±3.90 85.77±3.19 84.86±3.11 84.34±3.27 83.45±3.41 83.09±3.71
H 76.76±4.53 79.05±4.48 78.22±4.56 76.28±4.86 77.90±4.42 75.69±4.35 76.05±4.32 73.70±4.50 78.23±4.84

Triangle
E 48.50±4.79 48.20±4.65 47.29±4.80 47.11±5.09 46.96±4.77 45.29±5.08 44.68±5.02 43.25±5.25 48.33±4.58
M 27.25±2.82 26.62±2.82 26.38±2.91 26.92±3.24 26.47±2.58 25.25±2.98 25.02±2.66 24.98±2.90 26.67±2.88
H 14.04±1.22 15.54±1.20 14.23±1.14 14.27±1.47 13.11±1.26 12.46±1.29 11.34±1.11 12.41±1.38 14.04±1.28

E.2 PERFORMANCE HEATMAPS ACROSS TASKS

In this section, we provide detailed visualizations of model performance through heatmaps, extending
the example shown in Figure 4. These heatmaps illustrate the interaction between prompting schemes
and serialization formats across different tasks and difficulty levels, offering a comprehensive view of
how various methodological combinations affect model performance.

E.2.1 HEATMAPS FOR BFS order TASK

As shown in Figure 8 (featuring Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0), Figure 9 (featuring
Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 10 (featuring Qwen-2.5 (7B),
o4-mini), the heatmaps compare different prompt strategies and graph serialization formats under
easy, medium, and hard difficulties for the BFS order task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second–best combinations, respectively.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 21: Benchmark Results of Serialization Formats Across Tasks of Closed-source Models
(Mean±95% CI Margin), Bold orange / Underlined blue : best performance, Underlined and blue
highlight: second best performance

Task Difficulty AL AM AS EL ES GMaL GMoL

BFS order
E 92.88±1.83 81.89±3.82 92.68±1.81 78.90±3.23 82.02±3.12 85.90±2.55 70.12±3.57
M 74.53±3.82 49.43±4.43 73.71±3.56 53.07±3.89 51.34±3.83 63.09±3.86 49.39±4.33
H 35.79±3.30 9.67±1.14 36.16±3.18 19.14±1.89 15.26±1.50 24.81±2.21 20.02±2.24

Connectivity
E 98.11±0.54 89.74±1.12 98.03±0.54 95.74±1.13 96.53±0.99 96.11±1.00 89.27±1.78
M 97.70±0.54 90.73±0.99 97.63±0.59 96.32±0.89 96.96±0.83 95.81±1.00 93.53±1.20
H 95.46±0.98 71.48±2.03 95.19±1.08 94.01±1.09 92.93±1.27 93.39±1.48 90.94±1.44

Cycle
E 72.12±3.34 74.92±3.33 71.72±3.33 83.66±2.45 87.60±1.93 91.29±2.34 82.83±2.51
M 71.27±3.45 72.94±3.32 70.82±3.43 84.19±2.40 85.26±2.40 90.03±2.39 85.48±2.35
H 69.91±3.34 68.19±2.55 68.17±3.35 84.81±2.42 81.23±2.64 87.34±2.64 86.94±2.62

Diameter
E 73.80±4.05 72.10±4.41 77.50±3.57 68.80±4.60 69.47±4.79 74.33±3.76 72.30±3.99
M 57.75±4.10 50.53±3.49 60.91±3.70 47.82±3.74 46.15±4.07 57.28±3.59 56.24±3.66
H 41.04±3.81 29.17±3.62 42.25±3.30 28.32±2.59 25.52±2.79 40.03±3.70 39.15±3.24

Shortest
E 96.21±1.37 74.70±3.14 95.78±1.55 91.61±1.89 89.61±2.27 84.10±5.04 86.86±1.44
M 93.72±1.32 59.50±3.52 89.45±2.34 88.76±1.72 82.18±2.96 89.66±1.81 78.67±2.45
H 89.85±2.04 41.52±3.27 89.97±1.92 80.77±2.87 76.84±3.50 83.15±2.67 76.04±2.49

Triangle
E 48.83±4.09 41.24±4.50 49.80±4.18 47.36±4.18 43.95±4.27 47.65±4.15 47.53±4.59
M 27.47±2.30 20.06±1.98 27.69±2.33 29.13±2.55 24.48±2.43 27.10±2.61 27.28±2.98
H 13.56±0.96 8.24±0.96 15.38±0.86 15.28±0.98 11.97±0.88 14.92±1.15 15.11±1.38

Table 22: Benchmark Results of Graph Type Across Tasks of Closed-source Models (Mean±95%
CI Margin). Bold orange / Underlined blue highlights indicate best/second-best performance. “-”
indicates the graph type is not applicable for that task.

Task Difficulty BAF BAG BERM BERP ERM ERP SF

BFS order
E 83.62±1.34 83.41±1.40 84.98±1.23 85.73±1.17 77.72±1.50 83.45±1.29 86.16±1.29
M 75.54±1.65 63.93±1.91 55.38±1.81 67.58±1.67 45.67±1.68 48.93±1.68 60.08±1.96
H 61.08±1.79 18.36±1.33 16.07±1.06 28.99±1.18 10.62±0.91 20.46±1.22 19.04±1.41

Connectivity
E 92.90±0.74 - 95.59±0.47 94.17±0.57 96.03±0.40 96.18±0.42 -
M 93.29±0.66 - 97.06±0.32 96.53±0.39 95.53±0.40 95.92±0.45 -
H 83.06±1.27 - 92.36±0.87 91.62±0.88 92.49±0.74 95.46±0.49 -

Cycle
E - 81.22±1.34 81.07±1.20 78.68±1.23 82.18±1.40 83.77±1.20 76.63±1.32
M - 77.94±1.39 83.95±1.17 77.45±1.27 82.07±1.41 82.82±1.14 75.76±1.32
H - 71.11±1.49 83.02±1.19 83.38±1.14 79.35±1.36 80.67±1.33 70.99±1.41

Diameter
E - 72.16±1.69 - - 67.11±1.89 71.21±1.76 79.98±1.25
M - 53.15±1.69 - - 48.55±1.74 57.07±1.55 56.48±1.47
H - 34.07±1.62 - - 34.54±1.74 42.31±1.77 29.36±0.94

Shortest
E 90.09±1.26 89.28±1.17 85.05±1.24 88.66±1.23 86.36±1.20 90.60±1.09 88.84±1.20
M 85.09±1.50 85.51±1.26 80.90±1.17 80.35±1.19 79.25±1.45 83.96±1.26 86.53±1.31
H 80.55±2.03 80.74±1.66 74.31±1.54 75.11±1.75 71.53±1.69 75.63±1.48 80.21±1.67

Triangle
E - 51.58±1.78 - - 29.68±1.53 37.19±1.69 68.04±1.80
M - 34.13±1.01 - - 14.28±0.59 18.81±0.75 37.47±1.66
H - 17.97±0.62 - - 8.48±0.38 13.06±0.48 14.45±0.60

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.985 0.917 0.990 0.850 0.883 0.976 0.816

1.000 0.947 0.995 0.796 0.883 0.961 0.796

1.000 0.942 0.985 0.786 0.879 0.937 0.820

0.995 0.942 0.981 0.806 0.874 0.971 0.816

0.990 0.995 1.000 0.937 0.976 0.995 0.942

0.947 0.913 0.932 0.806 0.869 0.913 0.879

0.942 0.888 0.917 0.806 0.883 0.869 0.854

0.990 0.947 0.971 0.869 0.874 0.932 0.908

0.995 0.927 0.990 0.830 0.835 0.947 0.796

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.852 0.590 0.814 0.510 0.548 0.776 0.576

0.852 0.652 0.800 0.495 0.562 0.719 0.614

0.795 0.686 0.833 0.476 0.514 0.767 0.614

0.857 0.643 0.819 0.500 0.548 0.790 0.605

0.876 0.748 0.871 0.695 0.690 0.843 0.781

0.786 0.624 0.824 0.562 0.552 0.695 0.614

0.819 0.629 0.819 0.562 0.533 0.681 0.619

0.814 0.710 0.781 0.538 0.548 0.710 0.614

0.810 0.676 0.790 0.495 0.557 0.748 0.571

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.407 0.170 0.437 0.230 0.133 0.341 0.230

0.363 0.178 0.363 0.148 0.148 0.281 0.274

0.415 0.170 0.407 0.185 0.185 0.281 0.252

0.400 0.178 0.407 0.193 0.133 0.289 0.274

0.452 0.252 0.467 0.252 0.215 0.400 0.311

0.385 0.144 0.400 0.156 0.104 0.259 0.193

0.400 0.141 0.400 0.156 0.133 0.222 0.163

0.370 0.148 0.437 0.200 0.148 0.304 0.222

0.393 0.186 0.437 0.200 0.141 0.341 0.281

Hard

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Accuracy Range

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Accuracy Range

0.15 0.20 0.25 0.30 0.35 0.40 0.45
Accuracy Range

Performance Analysis: Claude-3.5 on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.947 0.869 0.956 0.733 0.738 0.767 0.583

0.922 0.850 0.932 0.723 0.772 0.835 0.583

0.922 0.893 0.947 0.738 0.816 0.786 0.549

0.922 0.854 0.903 0.723 0.782 0.786 0.573

1.000 0.976 0.990 0.913 0.913 0.956 0.850

0.971 0.903 0.966 0.680 0.680 0.825 0.612

0.985 0.883 0.976 0.694 0.718 0.850 0.621

0.917 0.854 0.932 0.524 0.694 0.748 0.612

0.913 0.874 0.932 0.757 0.820 0.830 0.558

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.714 0.519 0.748 0.386 0.386 0.548 0.305

0.724 0.490 0.771 0.452 0.381 0.586 0.329

0.743 0.467 0.748 0.452 0.443 0.500 0.286

0.743 0.529 0.714 0.395 0.405 0.505 0.329

0.981 0.757 0.971 0.748 0.576 0.819 0.633

0.776 0.552 0.795 0.424 0.290 0.562 0.362

0.810 0.538 0.824 0.405 0.333 0.605 0.405

0.662 0.429 0.614 0.338 0.310 0.557 0.343

0.776 0.443 0.748 0.438 0.452 0.552 0.271

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.296 0.074 0.304 0.156 0.141 0.193 0.111

0.356 0.136 0.356 0.126 0.096 0.237 0.126

0.326 0.089 0.333 0.156 0.119 0.207 0.119

0.363 0.042 0.393 0.119 0.089 0.170 0.081

0.748 0.133 0.785 0.348 0.259 0.452 0.348

0.304 0.068 0.393 0.133 0.104 0.200 0.081

0.400 0.089 0.348 0.104 0.104 0.222 0.148

0.230 0.059 0.304 0.119 0.096 0.200 0.141

0.304 0.119 0.407 0.074 0.119 0.222 0.119

Hard

0.6 0.7 0.8 0.9 1.0
Accuracy Range

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

Performance Analysis: GPT-4o on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.791 0.383 0.782 0.587 0.558 0.568 0.403

0.801 0.408 0.850 0.510 0.524 0.689 0.413

0.816 0.675 0.786 0.597 0.699 0.646 0.437

0.650 0.272 0.621 0.607 0.704 0.607 0.383

0.738 0.650 0.801 0.738 0.568 0.801 0.359

0.840 0.403 0.874 0.578 0.549 0.612 0.398

0.816 0.660 0.791 0.374 0.417 0.568 0.461

0.583 0.228 0.549 0.238 0.296 0.500 0.388

0.791 0.422 0.850 0.607 0.646 0.704 0.447

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.438 0.119 0.433 0.252 0.248 0.262 0.181

0.443 0.100 0.538 0.243 0.233 0.281 0.152

0.462 0.152 0.433 0.271 0.248 0.305 0.181

0.257 0.086 0.262 0.267 0.252 0.276 0.119

0.410 0.124 0.433 0.248 0.181 0.400 0.176

0.438 0.086 0.490 0.143 0.157 0.233 0.152

0.438 0.062 0.424 0.167 0.167 0.310 0.176

0.176 0.043 0.205 0.105 0.086 0.176 0.129

0.424 0.105 0.448 0.248 0.243 0.290 0.181

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.081 0.007 0.119 0.074 0.059 0.081 0.030

0.081 0.008 0.096 0.044 0.074 0.059 0.044

0.104 0.030 0.119 0.089 0.037 0.089 0.044

0.052 0.008 0.074 0.044 0.067 0.074 0.037

0.133 0.037 0.170 0.074 0.081 0.096 0.067

0.111 0.008 0.133 0.022 0.044 0.089 0.052

0.104 0.007 0.096 0.052 0.037 0.037 0.022

0.059 0.007 0.052 0.030 0.037 0.052 0.037

0.119 0.000 0.119 0.074 0.067 0.059 0.044

Hard

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

0.1 0.2 0.3 0.4 0.5
Accuracy Range

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Accuracy Range

Performance Analysis: GPT-4o-mini on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.990 0.830 0.990 0.937 0.985 0.981 0.777

0.976 0.840 0.990 0.922 0.942 0.976 0.709

0.995 0.937 0.976 0.922 0.913 0.942 0.704

0.981 0.820 0.971 0.917 0.917 0.990 0.728

0.971 0.898 0.981 0.971 0.985 0.956 0.879

0.976 0.850 0.971 0.874 0.942 0.917 0.718

0.966 0.820 0.971 0.893 0.922 0.913 0.728

0.922 0.864 0.932 0.786 0.971 0.908 0.563

0.981 0.869 0.985 0.859 0.908 0.971 0.718

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.824 0.386 0.795 0.667 0.671 0.819 0.600

0.900 0.486 0.919 0.719 0.767 0.757 0.519

0.833 0.510 0.838 0.733 0.681 0.771 0.519

0.848 0.438 0.843 0.695 0.700 0.819 0.552

0.948 0.529 0.952 0.838 0.848 0.876 0.757

0.867 0.333 0.833 0.695 0.729 0.671 0.490

0.819 0.357 0.805 0.695 0.671 0.643 0.533

0.543 0.471 0.571 0.590 0.695 0.567 0.314

0.824 0.452 0.814 0.690 0.681 0.805 0.571

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.267 0.059 0.296 0.259 0.200 0.237 0.200

0.385 0.093 0.437 0.274 0.259 0.363 0.274

0.370 0.096 0.348 0.296 0.200 0.363 0.259

0.459 0.127 0.393 0.281 0.215 0.370 0.252

0.644 0.089 0.652 0.459 0.415 0.511 0.385

0.385 0.051 0.474 0.267 0.274 0.296 0.163

0.430 0.059 0.422 0.230 0.193 0.222 0.207

0.178 0.044 0.163 0.274 0.215 0.170 0.074

0.348 0.085 0.348 0.244 0.215 0.370 0.304

Hard

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

Performance Analysis: Gemini-2.0 on BFS order Best Performance
Second Best

Figure 8: Performance heatmaps for prompt strategies and serialization formats on the BFS order
task (Part 1). Models: Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.330 0.092 0.354 0.160 0.214 0.218 0.136

0.049 0.019 0.044 0.015 0.034 0.083 0.039

0.029 0.005 0.005 0.024 0.019 0.044 0.010

0.306 0.083 0.277 0.165 0.189 0.209 0.160

0.141 0.029 0.112 0.097 0.092 0.107 0.092

0.388 0.160 0.383 0.291 0.296 0.340 0.262

0.354 0.136 0.383 0.267 0.262 0.291 0.257

0.267 0.121 0.301 0.175 0.228 0.252 0.204

0.029 0.015 0.010 0.024 0.034 0.068 0.058

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.105 0.024 0.081 0.043 0.048 0.052 0.043

0.033 0.000 0.024 0.000 0.005 0.024 0.014

0.005 0.010 0.005 0.000 0.005 0.014 0.000

0.090 0.024 0.067 0.052 0.043 0.057 0.043

0.014 0.010 0.024 0.005 0.033 0.000 0.010

0.105 0.033 0.095 0.038 0.067 0.086 0.062

0.119 0.024 0.100 0.043 0.062 0.067 0.043

0.105 0.033 0.086 0.062 0.062 0.086 0.057

0.010 0.010 0.019 0.000 0.019 0.024 0.029

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.007 0.000 0.007 0.007 0.000 0.000 0.000

0.007 0.000 0.000 0.000 0.000 0.000 0.007

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.015 0.000 0.007 0.007 0.000 0.000 0.000

0.000 0.000 0.015 0.007 0.015 0.007 0.000

0.000 0.000 0.000 0.007 0.000 0.015 0.000

0.007 0.007 0.000 0.000 0.007 0.000 0.000

0.022 0.000 0.022 0.015 0.007 0.015 0.000

0.000 0.000 0.000 0.000 0.007 0.000 0.000

Hard

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Accuracy Range

0.00 0.02 0.04 0.06 0.08 0.10
Accuracy Range

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Accuracy Range

Performance Analysis: Llama-3 (8B) on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.388 0.083 0.364 0.165 0.175 0.199 0.170

0.044 0.029 0.092 0.049 0.039 0.053 0.083

0.053 0.019 0.078 0.034 0.044 0.053 0.039

0.316 0.068 0.320 0.112 0.136 0.146 0.131

0.369 0.107 0.466 0.325 0.291 0.252 0.248

0.374 0.150 0.427 0.267 0.223 0.291 0.257

0.383 0.141 0.437 0.257 0.238 0.262 0.272

0.311 0.102 0.291 0.218 0.257 0.252 0.218

0.131 0.039 0.126 0.083 0.073 0.078 0.073

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.100 0.033 0.105 0.043 0.057 0.038 0.052

0.038 0.005 0.033 0.014 0.019 0.029 0.024

0.014 0.000 0.014 0.024 0.014 0.014 0.010

0.062 0.014 0.057 0.052 0.029 0.043 0.029

0.081 0.024 0.114 0.076 0.057 0.038 0.029

0.148 0.038 0.105 0.071 0.052 0.095 0.095

0.162 0.038 0.133 0.062 0.052 0.129 0.067

0.105 0.033 0.110 0.062 0.052 0.086 0.067

0.019 0.019 0.048 0.019 0.010 0.033 0.024

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.022 0.000 0.007 0.007 0.000 0.000 0.000

0.007 0.000 0.007 0.007 0.000 0.015 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.044 0.008 0.015 0.000 0.007 0.007 0.000

0.007 0.000 0.015 0.000 0.007 0.015 0.000

0.007 0.008 0.015 0.007 0.015 0.000 0.000

0.007 0.000 0.015 0.022 0.000 0.007 0.000

0.007 0.007 0.015 0.000 0.007 0.007 0.007

0.007 0.000 0.015 0.007 0.000 0.007 0.000

Hard

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Accuracy Range

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Accuracy Range

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Accuracy Range

Performance Analysis: Llama-3.1 (8B) on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.209 0.068 0.189 0.146 0.184 0.204 0.150

0.155 0.049 0.170 0.107 0.126 0.136 0.097

0.107 0.049 0.107 0.058 0.063 0.058 0.044

0.165 0.063 0.184 0.092 0.141 0.150 0.141

0.150 0.073 0.180 0.097 0.102 0.121 0.112

0.218 0.053 0.214 0.107 0.170 0.248 0.170

0.228 0.044 0.233 0.136 0.141 0.214 0.243

0.209 0.087 0.233 0.199 0.204 0.180 0.146

0.160 0.034 0.131 0.117 0.126 0.092 0.083

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.048 0.010 0.057 0.038 0.033 0.033 0.057

0.048 0.005 0.019 0.029 0.033 0.024 0.019

0.033 0.000 0.038 0.005 0.005 0.024 0.024

0.043 0.005 0.071 0.014 0.048 0.033 0.033

0.043 0.014 0.062 0.019 0.019 0.029 0.048

0.048 0.010 0.062 0.038 0.038 0.033 0.024

0.052 0.019 0.076 0.057 0.038 0.029 0.048

0.048 0.024 0.052 0.052 0.052 0.038 0.033

0.052 0.005 0.048 0.019 0.019 0.024 0.014

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.000 0.000 0.000 0.000 0.000 0.007 0.007

0.007 0.000 0.015 0.000 0.000 0.000 0.007

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.007 0.000 0.000 0.000

0.022 0.007 0.007 0.007 0.000 0.000 0.007

0.015 0.000 0.007 0.000 0.000 0.000 0.000

0.000 0.000 0.007 0.000 0.000 0.000 0.007

0.000 0.000 0.015 0.000 0.000 0.007 0.000

0.007 0.000 0.022 0.015 0.007 0.000 0.000

Hard

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Accuracy Range

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Accuracy Range

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Accuracy Range

Performance Analysis: Mistral (7B) on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.044 0.015 0.063 0.010 0.005 0.097 0.029

0.000 0.019 0.000 0.000 0.000 0.204 0.180

0.447 0.194 0.359 0.136 0.233 0.170 0.053

0.005 0.010 0.000 0.029 0.000 0.107 0.063

0.733 0.738 0.709 0.592 0.592 0.782 0.699

0.801 0.631 0.820 0.432 0.510 0.714 0.646

0.786 0.650 0.786 0.490 0.544 0.777 0.675

0.631 0.422 0.617 0.320 0.432 0.578 0.539

0.015 0.053 0.117 0.005 0.000 0.257 0.248

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.019 0.005 0.019 0.000 0.000 0.014 0.010

0.005 0.005 0.033 0.000 0.005 0.081 0.029

0.205 0.052 0.124 0.048 0.052 0.019 0.005

0.000 0.000 0.000 0.005 0.000 0.033 0.014

0.367 0.300 0.338 0.238 0.229 0.371 0.314

0.395 0.205 0.386 0.176 0.143 0.310 0.262

0.419 0.190 0.390 0.148 0.152 0.276 0.276

0.181 0.062 0.195 0.081 0.071 0.195 0.157

0.014 0.038 0.062 0.005 0.000 0.095 0.043

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.022 0.000 0.000 0.037 0.007

0.037 0.000 0.015 0.007 0.015 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.007 0.000

0.089 0.015 0.096 0.037 0.081 0.089 0.081

0.111 0.025 0.089 0.037 0.037 0.059 0.052

0.089 0.022 0.119 0.037 0.030 0.059 0.022

0.044 0.000 0.037 0.015 0.022 0.044 0.015

0.015 0.008 0.015 0.000 0.000 0.015 0.015

Hard

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Accuracy Range

0.00 0.02 0.04 0.06 0.08 0.10
Accuracy Range

Performance Analysis: Phi-4 (14B) on BFS order Best Performance
Second Best

Figure 9: Performance heatmaps for prompt strategies and serialization formats on the BFS order
task (Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.937 0.437 0.927 0.680 0.748 0.840 0.583

0.738 0.408 0.762 0.617 0.636 0.675 0.510

0.796 0.476 0.709 0.733 0.752 0.786 0.515

0.932 0.442 0.947 0.689 0.665 0.767 0.583

0.879 0.689 0.859 0.699 0.660 0.806 0.631

0.932 0.684 0.961 0.621 0.665 0.743 0.650

0.854 0.723 0.908 0.820 0.718 0.738 0.655

0.811 0.558 0.820 0.519 0.646 0.733 0.607

0.859 0.481 0.908 0.816 0.728 0.811 0.505

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.795 0.133 0.743 0.443 0.381 0.533 0.371

0.781 0.133 0.748 0.543 0.371 0.514 0.271

0.762 0.152 0.738 0.486 0.438 0.590 0.305

0.848 0.129 0.824 0.500 0.348 0.524 0.310

0.829 0.252 0.800 0.481 0.414 0.676 0.419

0.748 0.252 0.743 0.329 0.352 0.552 0.371

0.738 0.248 0.705 0.519 0.438 0.552 0.362

0.414 0.119 0.343 0.243 0.229 0.395 0.262

0.848 0.143 0.810 0.486 0.419 0.562 0.362

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.585 0.015 0.615 0.178 0.111 0.244 0.111

0.511 0.034 0.556 0.156 0.163 0.259 0.119

0.459 0.015 0.519 0.163 0.141 0.215 0.104

0.437 0.025 0.578 0.126 0.141 0.207 0.170

0.511 0.037 0.511 0.207 0.111 0.296 0.207

0.348 0.017 0.385 0.089 0.141 0.237 0.119

0.393 0.015 0.444 0.119 0.141 0.193 0.119

0.081 0.030 0.104 0.089 0.030 0.156 0.119

0.481 0.000 0.585 0.133 0.111 0.244 0.119

Hard

0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

Performance Analysis: Qwen2.5 (72B) on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.422 0.112 0.388 0.272 0.223 0.340 0.262

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.471 0.092 0.442 0.238 0.199 0.296 0.272

0.432 0.155 0.495 0.301 0.243 0.354 0.335

0.534 0.233 0.544 0.296 0.335 0.345 0.301

0.515 0.218 0.505 0.282 0.277 0.413 0.325

0.354 0.126 0.393 0.204 0.214 0.277 0.238

0.049 0.000 0.063 0.034 0.024 0.029 0.049

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.105 0.010 0.133 0.076 0.052 0.100 0.095

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.119 0.014 0.157 0.067 0.062 0.076 0.071

0.138 0.019 0.119 0.076 0.057 0.119 0.100

0.229 0.024 0.205 0.052 0.067 0.110 0.090

0.157 0.033 0.190 0.043 0.043 0.124 0.062

0.095 0.024 0.114 0.057 0.029 0.105 0.062

0.019 0.000 0.029 0.024 0.010 0.019 0.033

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.052 0.000 0.030 0.030 0.007 0.052 0.007

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.037 0.008 0.044 0.015 0.015 0.030 0.015

0.030 0.000 0.044 0.015 0.015 0.037 0.022

0.037 0.000 0.037 0.015 0.007 0.022 0.015

0.022 0.000 0.044 0.007 0.007 0.015 0.007

0.015 0.000 0.022 0.000 0.015 0.022 0.000

0.022 0.000 0.015 0.000 0.000 0.007 0.007

Hard

0.0 0.1 0.2 0.3 0.4 0.5
Accuracy Range

0.00 0.05 0.10 0.15 0.20
Accuracy Range

0.00 0.01 0.02 0.03 0.04 0.05
Accuracy Range

Performance Analysis: Qwen2.5 (7B) on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.539 0.316 0.364 0.398 0.301 0.665 0.350

0.650 0.437 0.408 0.393 0.388 0.854 0.534

0.631 0.393 0.403 0.383 0.359 0.845 0.558

0.602 0.481 0.408 0.451 0.330 0.883 0.568

0.874 0.845 0.898 0.767 0.709 0.869 0.820

0.961 0.976 0.942 0.893 0.840 0.951 0.874

0.947 0.903 0.908 0.845 0.772 0.898 0.820

0.888 0.898 0.898 0.806 0.733 0.888 0.786

0.602 0.447 0.398 0.369 0.325 0.820 0.432

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.438 0.324 0.243 0.238 0.257 0.524 0.310

0.657 0.295 0.357 0.324 0.229 0.710 0.357

0.652 0.348 0.343 0.267 0.190 0.743 0.357

0.571 0.333 0.343 0.324 0.214 0.705 0.329

0.871 0.705 0.833 0.643 0.633 0.676 0.633

0.914 0.800 0.895 0.714 0.648 0.748 0.619

0.910 0.738 0.871 0.614 0.524 0.743 0.533

0.843 0.681 0.800 0.600 0.567 0.714 0.624

0.543 0.281 0.281 0.233 0.238 0.638 0.290

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.356 0.037 0.326 0.193 0.148 0.267 0.119

0.548 0.144 0.333 0.156 0.141 0.319 0.215

0.541 0.096 0.348 0.170 0.126 0.356 0.222

0.541 0.085 0.333 0.207 0.141 0.400 0.230

0.659 0.126 0.578 0.304 0.207 0.311 0.289

0.741 0.136 0.674 0.363 0.200 0.311 0.237

0.681 0.126 0.607 0.304 0.222 0.341 0.222

0.541 0.096 0.519 0.267 0.207 0.326 0.237

0.496 0.102 0.326 0.133 0.104 0.378 0.141

Hard

0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

Performance Analysis: Qwen3 (8B) on BFS order Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.990 0.956 0.990 0.961 0.937 0.971 0.903

0.976 0.927 0.990 0.985 0.961 0.927 0.859

0.985 0.971 0.985 0.971 0.971 0.966 0.908

0.976 0.942 0.947 0.971 0.976 0.947 0.869

1.000 0.995 0.990 0.937 0.937 0.981 0.951

0.990 0.976 0.932 0.942 0.942 0.942 0.956

0.995 0.985 0.976 0.947 0.961 0.908 0.971

0.985 0.942 0.956 0.937 0.937 0.932 0.883

0.971 0.951 0.971 0.966 0.951 0.951 0.874

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.938 0.781 0.952 0.781 0.748 0.852 0.762

0.914 0.776 0.886 0.776 0.690 0.810 0.810

0.914 0.752 0.938 0.762 0.676 0.829 0.752

0.952 0.762 0.938 0.814 0.743 0.848 0.829

0.890 0.771 0.848 0.724 0.695 0.695 0.786

0.924 0.743 0.757 0.686 0.657 0.752 0.810

0.886 0.705 0.776 0.681 0.614 0.733 0.767

0.938 0.714 0.848 0.757 0.700 0.829 0.795

0.900 0.719 0.905 0.762 0.695 0.819 0.738

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.637 0.141 0.548 0.304 0.289 0.378 0.356

0.563 0.161 0.585 0.333 0.244 0.370 0.407

0.578 0.126 0.615 0.281 0.207 0.363 0.333

0.689 0.144 0.607 0.326 0.230 0.348 0.407

0.504 0.074 0.385 0.281 0.141 0.207 0.296

0.437 0.127 0.319 0.230 0.141 0.296 0.289

0.400 0.104 0.259 0.207 0.119 0.178 0.237

0.511 0.126 0.481 0.244 0.141 0.319 0.407

0.563 0.153 0.585 0.267 0.200 0.341 0.304

Hard

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Accuracy Range

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

Performance Analysis: o4-mini on BFS order Best Performance
Second Best

Figure 10: Performance heatmaps for prompt strategies and serialization formats on the BFS order
task (Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

E.2.2 HEATMAPS FOR Connectivity TASK

As shown in Figure 11 (featuring Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0), Figure 12 (featur-
ing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)) , Figure 13 (featuring Qwen-2.5 (7B),
o4-mini) , the heatmaps compare different prompt strategies and graph serialization formats under
easy, medium, and hard difficulties for the Connectivity task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second–best combinations respectively.

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.944 1.000 1.000 1.000 1.000 0.959

1.000 0.944 1.000 0.995 0.985 1.000 0.964

1.000 0.929 1.000 0.990 0.990 1.000 0.964

1.000 0.934 1.000 0.995 0.995 1.000 0.969

1.000 0.969 1.000 1.000 1.000 1.000 0.964

1.000 0.974 1.000 0.985 0.995 1.000 0.964

1.000 0.969 1.000 0.985 1.000 0.995 0.954

1.000 0.883 1.000 0.980 0.995 1.000 0.939

1.000 0.934 1.000 0.990 0.974 1.000 0.974

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.994 0.952 0.994 1.000 1.000 1.000 0.988

1.000 0.952 1.000 1.000 0.994 1.000 0.988

0.994 0.958 0.994 1.000 1.000 1.000 0.988

1.000 0.940 1.000 1.000 0.994 1.000 0.988

1.000 0.976 1.000 1.000 1.000 1.000 0.988

1.000 0.988 1.000 0.994 1.000 1.000 0.988

1.000 0.982 1.000 0.988 0.994 1.000 0.982

1.000 0.929 1.000 1.000 1.000 0.994 0.994

1.000 0.946 1.000 1.000 0.988 1.000 0.988

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.848 1.000 0.996 0.992 0.996 0.988

1.000 0.811 1.000 0.996 0.992 1.000 0.992

1.000 0.832 1.000 0.996 0.992 1.000 0.992

1.000 0.807 0.996 0.992 0.988 0.996 0.988

1.000 0.869 0.996 0.992 0.980 1.000 0.988

0.992 0.844 1.000 0.996 0.980 0.996 0.992

0.988 0.857 0.992 0.996 0.980 1.000 0.988

0.992 0.754 0.992 0.992 0.988 1.000 0.988

1.000 0.828 1.000 0.988 0.984 1.000 0.992

Hard

0.90 0.92 0.94 0.96 0.98 1.00
Accuracy Range

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Accuracy Range

0.80 0.85 0.90 0.95 1.00
Accuracy Range

Performance Analysis: Claude-3.5 on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.985 0.913 0.985 1.000 0.995 0.990 0.974

0.995 0.888 0.995 0.995 1.000 1.000 0.934

0.990 0.867 1.000 0.995 0.980 0.995 0.908

1.000 0.878 1.000 0.990 0.995 0.990 0.939

0.980 0.755 0.929 0.929 0.913 0.913 0.786

0.980 0.934 1.000 0.964 0.990 0.980 0.908

0.995 0.918 0.990 0.974 0.990 0.974 0.923

0.964 0.857 0.974 0.959 0.969 0.959 0.908

1.000 0.872 1.000 0.990 0.980 1.000 0.913

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.976 0.875 0.976 0.994 0.994 0.988 0.970

0.988 0.905 0.988 0.988 0.988 0.994 0.952

0.994 0.851 1.000 0.982 0.988 1.000 0.935

0.988 0.893 0.994 0.982 0.988 1.000 0.940

0.911 0.780 0.869 0.827 0.857 0.923 0.833

0.988 0.917 0.994 0.988 0.970 0.976 0.887

0.988 0.911 0.988 0.994 0.976 0.982 0.940

0.970 0.821 0.982 0.976 0.940 0.970 0.857

0.994 0.881 0.994 0.988 1.000 1.000 0.940

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.967 0.770 0.980 0.975 0.947 0.988 0.947

0.967 0.738 0.967 0.959 0.918 0.984 0.885

0.984 0.779 0.984 0.971 0.926 0.996 0.906

0.975 0.766 0.975 0.955 0.939 0.980 0.922

0.857 0.611 0.877 0.791 0.832 0.824 0.746

0.988 0.738 0.963 0.918 0.939 0.930 0.861

0.959 0.770 0.984 0.934 0.914 0.955 0.914

0.975 0.693 0.963 0.918 0.885 0.955 0.832

0.967 0.750 0.975 0.963 0.939 0.992 0.910

Hard

0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Accuracy Range

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

Performance Analysis: GPT-4o on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.974 0.867 1.000 0.929 0.974 0.934 0.811

0.969 0.847 0.980 0.954 0.959 0.949 0.760

0.985 0.847 0.980 0.969 0.939 0.939 0.714

0.929 0.852 0.913 0.832 0.862 0.883 0.628

0.985 0.679 0.949 0.770 0.954 0.816 0.801

0.985 0.842 0.980 0.964 0.939 0.959 0.801

0.990 0.872 0.995 0.883 0.954 0.918 0.816

0.929 0.776 0.913 0.816 0.837 0.796 0.612

0.949 0.857 0.985 0.980 0.954 0.969 0.730

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.976 0.893 0.994 0.976 0.958 0.952 0.911

0.946 0.845 0.946 0.935 0.940 0.935 0.804

0.940 0.839 0.929 0.923 0.875 0.929 0.851

0.946 0.929 0.946 0.935 0.911 0.929 0.839

0.982 0.881 0.976 0.815 0.958 0.952 0.911

0.994 0.881 0.952 0.946 0.923 0.940 0.935

0.940 0.857 0.994 0.917 0.923 0.845 0.905

0.905 0.887 0.911 0.845 0.899 0.833 0.690

0.946 0.762 0.940 0.911 0.958 0.905 0.821

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.947 0.717 0.934 0.898 0.918 0.930 0.865

0.914 0.684 0.922 0.881 0.848 0.943 0.783

0.877 0.676 0.893 0.869 0.824 0.926 0.762

0.951 0.738 0.959 0.926 0.885 0.926 0.881

0.955 0.742 0.877 0.750 0.664 0.672 0.877

0.939 0.721 0.955 0.885 0.816 0.885 0.783

0.926 0.721 0.926 0.885 0.803 0.832 0.791

0.910 0.738 0.902 0.861 0.861 0.836 0.709

0.939 0.648 0.922 0.869 0.848 0.930 0.783

Hard

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

Performance Analysis: GPT-4o-mini on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.908 0.944 0.903 0.949 0.954 0.827 0.949

1.000 0.852 0.995 0.985 0.929 1.000 0.883

0.944 0.908 0.908 0.923 0.898 0.913 0.781

0.929 0.893 0.944 0.908 0.969 0.903 0.867

0.969 0.908 0.964 0.954 0.990 0.939 0.898

0.985 0.934 0.964 0.995 1.000 0.964 0.934

0.990 0.954 0.959 0.969 1.000 0.918 0.934

0.872 0.883 0.944 0.750 0.719 0.908 0.918

0.974 0.883 0.980 0.923 0.939 0.929 0.832

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.893 0.929 0.905 0.929 0.970 0.851 0.976

0.988 0.869 0.976 0.970 0.994 0.952 0.923

0.964 0.929 0.952 0.935 0.952 0.851 0.905

0.946 0.905 0.940 0.911 0.982 0.833 0.952

0.964 0.851 0.958 0.946 0.982 0.911 0.940

0.970 0.899 0.964 0.988 0.994 0.958 0.976

0.958 0.946 0.946 0.952 0.982 0.929 0.982

0.940 0.905 0.940 0.899 0.798 0.917 0.929

0.988 0.839 0.994 0.946 0.988 0.881 0.923

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.791 0.791 0.754 0.926 0.967 0.803 0.975

0.922 0.795 0.918 0.918 0.934 0.865 0.930

0.877 0.758 0.918 0.906 0.939 0.824 0.930

0.865 0.758 0.832 0.877 0.947 0.824 0.898

0.922 0.721 0.885 0.889 0.934 0.873 0.902

0.930 0.779 0.926 0.971 0.955 0.893 0.975

0.922 0.799 0.926 0.934 0.934 0.844 0.955

0.824 0.738 0.816 0.918 0.889 0.807 0.828

0.947 0.766 0.926 0.930 0.939 0.865 0.926

Hard

0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
Accuracy Range

0.75 0.80 0.85 0.90 0.95
Accuracy Range

Performance Analysis: Gemini-2.0 on Connectivity Best Performance
Second Best

Figure 11: Performance heatmaps for prompt strategies and serialization formats on the Connectivity
task (Part 1). Models: Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.765 0.806 0.770 0.689 0.755 0.745 0.816

0.750 0.776 0.770 0.679 0.724 0.791 0.791

0.612 0.653 0.653 0.679 0.648 0.750 0.719

0.791 0.791 0.786 0.709 0.755 0.821 0.821

0.929 0.648 0.903 0.913 0.893 0.893 0.801

0.908 0.704 0.908 0.878 0.893 0.893 0.837

0.867 0.735 0.908 0.913 0.883 0.847 0.821

0.872 0.592 0.872 0.847 0.832 0.883 0.770

0.689 0.653 0.673 0.633 0.643 0.668 0.730

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.756 0.875 0.726 0.732 0.744 0.762 0.875

0.738 0.768 0.720 0.708 0.667 0.845 0.768

0.506 0.542 0.577 0.488 0.500 0.619 0.619

0.804 0.851 0.810 0.702 0.774 0.845 0.881

0.917 0.774 0.881 0.881 0.869 0.881 0.798

0.929 0.863 0.917 0.887 0.899 0.905 0.786

0.857 0.774 0.899 0.893 0.887 0.857 0.804

0.863 0.738 0.845 0.869 0.893 0.845 0.839

0.661 0.708 0.702 0.643 0.661 0.667 0.708

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.750 0.725 0.738 0.725 0.758 0.627 0.865

0.689 0.586 0.713 0.680 0.639 0.340 0.783

0.344 0.377 0.381 0.328 0.332 0.193 0.348

0.820 0.717 0.783 0.725 0.832 0.598 0.852

0.877 0.578 0.898 0.857 0.824 0.713 0.783

0.877 0.635 0.910 0.881 0.840 0.697 0.779

0.881 0.586 0.861 0.857 0.848 0.684 0.742

0.877 0.697 0.852 0.877 0.869 0.701 0.668

0.607 0.598 0.619 0.594 0.529 0.234 0.570

Hard

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

Performance Analysis: Llama-3 (8B) on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.842 0.821 0.832 0.755 0.791 0.827 0.837

0.811 0.765 0.781 0.653 0.679 0.735 0.791

0.811 0.776 0.806 0.673 0.679 0.750 0.791

0.842 0.801 0.827 0.699 0.781 0.806 0.765

0.872 0.607 0.827 0.852 0.918 0.852 0.776

0.923 0.704 0.944 0.878 0.939 0.883 0.796

0.939 0.806 0.934 0.837 0.898 0.923 0.827

0.827 0.638 0.832 0.765 0.832 0.816 0.673

0.801 0.801 0.724 0.622 0.668 0.673 0.770

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.821 0.863 0.821 0.762 0.786 0.821 0.827

0.786 0.744 0.792 0.685 0.690 0.792 0.792

0.744 0.726 0.690 0.589 0.577 0.714 0.762

0.833 0.857 0.839 0.726 0.726 0.792 0.685

0.839 0.720 0.851 0.863 0.839 0.863 0.827

0.881 0.821 0.899 0.833 0.899 0.875 0.827

0.899 0.863 0.911 0.869 0.887 0.887 0.875

0.869 0.804 0.863 0.821 0.851 0.887 0.720

0.780 0.655 0.756 0.661 0.613 0.702 0.810

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.844 0.705 0.836 0.770 0.807 0.816 0.816

0.738 0.607 0.664 0.549 0.607 0.730 0.701

0.549 0.484 0.541 0.533 0.480 0.672 0.635

0.811 0.738 0.832 0.766 0.779 0.848 0.721

0.852 0.668 0.832 0.816 0.750 0.820 0.791

0.832 0.775 0.848 0.828 0.811 0.857 0.857

0.840 0.816 0.844 0.783 0.770 0.836 0.865

0.844 0.807 0.844 0.865 0.852 0.865 0.783

0.676 0.623 0.668 0.590 0.578 0.648 0.676

Hard

0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Accuracy Range

Performance Analysis: Llama-3.1 (8B) on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.847 0.806 0.852 0.735 0.755 0.883 0.832

0.816 0.556 0.832 0.765 0.791 0.776 0.719

0.735 0.694 0.781 0.689 0.765 0.704 0.740

0.888 0.806 0.883 0.806 0.862 0.893 0.852

0.862 0.673 0.811 0.786 0.857 0.842 0.755

0.872 0.704 0.872 0.872 0.883 0.811 0.847

0.842 0.663 0.867 0.832 0.811 0.847 0.765

0.903 0.704 0.903 0.878 0.898 0.893 0.832

0.806 0.648 0.791 0.740 0.842 0.704 0.658

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.863 0.869 0.863 0.786 0.768 0.899 0.875

0.810 0.619 0.804 0.726 0.762 0.768 0.786

0.643 0.655 0.702 0.667 0.696 0.726 0.685

0.899 0.863 0.893 0.887 0.827 0.905 0.899

0.833 0.756 0.839 0.804 0.827 0.845 0.798

0.839 0.804 0.863 0.810 0.768 0.887 0.893

0.881 0.738 0.845 0.750 0.804 0.851 0.851

0.893 0.839 0.899 0.887 0.905 0.881 0.845

0.821 0.661 0.839 0.690 0.792 0.738 0.661

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.807 0.738 0.820 0.717 0.701 0.877 0.861

0.783 0.566 0.758 0.750 0.701 0.844 0.717

0.619 0.496 0.586 0.529 0.529 0.709 0.467

0.885 0.766 0.881 0.799 0.775 0.893 0.865

0.787 0.689 0.783 0.734 0.742 0.803 0.742

0.803 0.648 0.824 0.721 0.705 0.775 0.824

0.799 0.693 0.811 0.734 0.721 0.795 0.779

0.877 0.766 0.873 0.832 0.836 0.885 0.865

0.717 0.602 0.721 0.672 0.730 0.701 0.680

Hard

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Accuracy Range

Performance Analysis: Mistral (7B) on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.648 0.612 0.673 0.536 0.648 0.230 0.520

0.000 0.097 0.000 0.000 0.000 0.566 0.490

0.796 0.592 0.842 0.760 0.867 0.832 0.827

0.010 0.000 0.000 0.020 0.000 0.097 0.163

0.949 0.811 0.888 0.852 0.750 0.357 0.842

0.949 0.821 0.954 0.929 0.883 0.464 0.786

0.923 0.735 0.934 0.923 0.867 0.944 0.842

0.857 0.689 0.852 0.842 0.816 0.510 0.643

0.031 0.102 0.087 0.046 0.209 0.832 0.719

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.661 0.696 0.613 0.482 0.542 0.137 0.250

0.000 0.208 0.000 0.000 0.000 0.690 0.500

0.655 0.518 0.625 0.625 0.750 0.893 0.667

0.012 0.000 0.000 0.012 0.000 0.060 0.185

0.946 0.774 0.851 0.815 0.643 0.411 0.875

0.917 0.673 0.952 0.881 0.875 0.405 0.696

0.917 0.726 0.899 0.893 0.839 0.857 0.869

0.857 0.649 0.869 0.839 0.762 0.464 0.673

0.125 0.351 0.351 0.060 0.256 0.690 0.821

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.566 0.484 0.443 0.344 0.422 0.049 0.082

0.000 0.357 0.025 0.004 0.000 0.738 0.582

0.389 0.316 0.373 0.504 0.459 0.861 0.258

0.000 0.012 0.000 0.008 0.000 0.045 0.246

0.881 0.730 0.811 0.762 0.598 0.496 0.783

0.852 0.582 0.865 0.840 0.770 0.406 0.447

0.840 0.631 0.840 0.848 0.746 0.877 0.836

0.791 0.561 0.852 0.783 0.689 0.381 0.648

0.139 0.443 0.340 0.041 0.295 0.717 0.799

Hard

0.0 0.2 0.4 0.6 0.8
Accuracy Range

0.0 0.2 0.4 0.6 0.8
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

Performance Analysis: Phi-4 (14B) on Connectivity Best Performance
Second Best

Figure 12: Performance heatmaps for prompt strategies and serialization formats on the Connectivity
task (Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.714 0.811 0.709 0.689 0.673 0.750 0.847

0.816 0.852 0.867 0.944 0.964 0.990 0.923

0.862 0.872 0.934 0.867 0.913 0.888 0.913

0.862 0.862 0.898 0.954 0.974 0.929 0.923

0.908 0.913 0.852 0.827 0.862 0.949 0.898

0.918 0.913 0.944 0.995 0.995 1.000 0.964

0.918 0.923 0.964 0.964 0.995 0.974 0.949

0.944 0.862 0.939 0.974 0.985 0.990 0.944

0.872 0.842 0.847 0.949 0.959 0.980 0.934

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.821 0.869 0.750 0.696 0.679 0.851 0.875

0.869 0.875 0.881 0.917 0.881 0.964 0.893

0.869 0.869 0.857 0.839 0.887 0.911 0.923

0.893 0.899 0.899 0.911 0.923 0.923 0.952

0.810 0.875 0.869 0.792 0.792 0.923 0.929

0.911 0.887 0.952 0.982 0.994 0.994 0.952

0.899 0.917 0.946 0.869 0.935 0.964 0.964

0.923 0.881 0.929 0.970 0.946 1.000 0.940

0.887 0.887 0.887 0.917 0.893 0.970 0.940

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.770 0.742 0.807 0.648 0.652 0.828 0.898

0.828 0.734 0.857 0.844 0.758 0.934 0.889

0.852 0.738 0.873 0.779 0.811 0.836 0.910

0.885 0.746 0.898 0.848 0.820 0.939 0.902

0.742 0.766 0.816 0.705 0.742 0.873 0.930

0.848 0.750 0.889 0.889 0.898 0.971 0.963

0.840 0.762 0.889 0.791 0.857 0.971 0.930

0.906 0.742 0.885 0.873 0.881 0.971 0.955

0.877 0.746 0.889 0.795 0.750 0.971 0.885

Hard

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

Performance Analysis: Qwen2.5 (72B) on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.842 0.612 0.847 0.832 0.852 0.867 0.770

0.954 0.832 0.913 0.923 0.954 0.893 0.867

0.934 0.847 0.908 0.918 0.929 0.857 0.821

0.913 0.786 0.898 0.903 0.934 0.923 0.872

0.888 0.724 0.898 0.898 0.908 0.959 0.867

0.893 0.827 0.918 0.913 0.949 0.918 0.918

0.908 0.801 0.929 0.934 0.923 0.893 0.903

0.888 0.776 0.898 0.872 0.883 0.898 0.878

0.903 0.811 0.918 0.898 0.913 0.878 0.913

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.845 0.661 0.869 0.893 0.881 0.875 0.869

0.893 0.768 0.917 0.875 0.875 0.875 0.893

0.893 0.708 0.917 0.887 0.827 0.887 0.875

0.839 0.589 0.839 0.887 0.899 0.905 0.893

0.899 0.774 0.887 0.940 0.893 0.881 0.851

0.917 0.815 0.917 0.923 0.911 0.911 0.899

0.905 0.798 0.952 0.935 0.899 0.946 0.893

0.929 0.774 0.923 0.905 0.923 0.899 0.911

0.887 0.792 0.899 0.863 0.923 0.875 0.875

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.836 0.717 0.889 0.869 0.881 0.848 0.836

0.889 0.693 0.906 0.762 0.807 0.816 0.758

0.807 0.672 0.824 0.668 0.463 0.803 0.758

0.840 0.549 0.889 0.783 0.816 0.828 0.832

0.852 0.730 0.861 0.865 0.807 0.828 0.762

0.852 0.750 0.799 0.881 0.816 0.852 0.779

0.885 0.799 0.848 0.885 0.861 0.861 0.852

0.918 0.672 0.885 0.902 0.869 0.881 0.852

0.840 0.725 0.836 0.836 0.803 0.857 0.803

Hard

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.5 0.6 0.7 0.8 0.9
Accuracy Range

Performance Analysis: Qwen2.5 (7B) on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.995 0.913 0.995 0.985 0.980 1.000 0.964

0.990 0.944 0.995 0.985 0.990 1.000 0.862

1.000 0.898 0.995 1.000 0.964 1.000 0.898

1.000 0.908 1.000 0.995 0.980 1.000 0.878

1.000 0.959 1.000 1.000 1.000 0.995 0.969

1.000 0.959 1.000 1.000 1.000 1.000 0.964

1.000 0.954 1.000 0.995 1.000 1.000 0.974

0.995 0.903 1.000 1.000 0.995 1.000 0.673

0.995 0.918 0.990 1.000 0.949 1.000 0.918

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.935 1.000 0.982 0.958 1.000 0.988

0.988 0.935 0.988 0.976 0.952 1.000 0.917

0.988 0.911 0.994 0.988 0.881 1.000 0.952

0.982 0.917 0.982 0.994 0.887 1.000 0.946

0.994 0.964 0.994 0.982 0.988 1.000 0.982

1.000 0.946 1.000 0.976 0.970 1.000 0.976

1.000 0.976 1.000 0.976 0.976 1.000 0.970

1.000 0.917 1.000 0.994 0.970 1.000 0.690

0.994 0.935 0.970 0.988 0.905 1.000 0.952

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.984 0.775 0.980 0.955 0.922 0.992 0.996

0.975 0.783 0.980 0.971 0.910 1.000 0.930

0.984 0.750 0.988 0.947 0.844 1.000 0.930

0.988 0.730 0.971 0.926 0.852 1.000 0.951

1.000 0.783 1.000 0.939 0.926 0.959 0.984

1.000 0.770 1.000 0.943 0.922 0.996 0.967

1.000 0.762 1.000 0.939 0.922 0.975 0.943

1.000 0.754 1.000 0.939 0.951 0.996 0.725

0.963 0.742 0.971 0.959 0.832 1.000 0.947

Hard

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

Performance Analysis: Qwen3 (8B) on Connectivity Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.929 1.000 0.985 1.000 0.995 0.974

1.000 0.923 1.000 0.974 0.969 0.995 0.964

1.000 0.929 1.000 1.000 0.995 1.000 0.944

1.000 0.939 1.000 0.990 0.974 1.000 0.974

0.995 0.954 0.990 0.980 0.995 1.000 0.959

1.000 0.969 1.000 1.000 1.000 1.000 0.964

1.000 0.969 0.995 1.000 1.000 1.000 0.964

1.000 0.883 1.000 1.000 1.000 1.000 0.959

1.000 0.929 1.000 0.985 0.990 1.000 0.954

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.958 1.000 1.000 1.000 0.994 0.982

1.000 0.946 1.000 1.000 0.988 0.994 0.988

1.000 0.958 1.000 0.994 1.000 1.000 0.958

1.000 0.935 1.000 0.988 0.994 1.000 0.970

0.988 0.970 0.994 0.994 0.994 1.000 0.970

1.000 0.946 1.000 1.000 1.000 0.994 0.994

1.000 0.958 1.000 1.000 0.994 1.000 0.982

1.000 0.893 1.000 1.000 1.000 1.000 0.946

1.000 0.958 1.000 0.988 1.000 1.000 0.976

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.602 1.000 0.992 0.996 1.000 0.963

1.000 0.594 1.000 0.959 0.947 1.000 0.967

0.996 0.578 1.000 0.996 0.971 0.996 0.939

0.996 0.582 1.000 0.992 0.959 1.000 0.967

0.996 0.480 1.000 0.980 0.980 0.984 0.922

1.000 0.475 1.000 0.992 0.984 1.000 0.947

1.000 0.480 1.000 0.996 0.988 0.988 0.963

1.000 0.459 1.000 0.992 1.000 0.992 0.934

1.000 0.557 1.000 0.984 0.980 0.996 0.939

Hard

0.90 0.92 0.94 0.96 0.98 1.00
Accuracy Range

0.90 0.92 0.94 0.96 0.98 1.00
Accuracy Range

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy Range

Performance Analysis: o4-mini on Connectivity Best Performance
Second Best

Figure 13: Performance heatmaps for prompt strategies and serialization formats on the Connectivity
task (Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

E.2.3 HEATMAPS FOR Cycle detection TASK

As shown in Figure 14 (featuring Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0), Figure 15 (featur-
ing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 16 (featuring Qwen-2.5 (7B),
o4-mini), the heatmaps compare different prompt strategies and graph serialization formats under easy,
medium, and hard difficulties for the Cycle detection task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second–best combinations respectively.

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.706 0.738 0.758 0.929 0.948 0.996 0.992

0.563 0.627 0.571 0.937 0.944 0.976 0.948

0.560 0.655 0.563 0.921 0.944 0.992 0.933

0.571 0.631 0.575 0.944 0.944 0.988 0.948

0.802 0.849 0.798 0.917 0.964 0.992 0.968

0.643 0.766 0.619 0.881 0.937 0.996 0.933

0.623 0.774 0.631 0.873 0.933 0.996 0.944

0.623 0.754 0.631 0.873 0.933 0.992 0.976

0.556 0.647 0.579 0.937 0.948 0.992 0.929

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.679 0.671 0.687 0.889 0.881 0.956 0.972

0.556 0.591 0.563 0.952 0.921 0.944 0.960

0.563 0.595 0.567 0.917 0.933 0.972 0.960

0.563 0.611 0.567 0.897 0.917 0.944 0.960

0.802 0.786 0.746 0.909 0.948 0.972 0.976

0.655 0.754 0.615 0.889 0.909 0.952 0.960

0.611 0.738 0.611 0.913 0.921 0.956 0.968

0.595 0.718 0.619 0.905 0.921 0.956 0.972

0.544 0.595 0.563 0.905 0.948 0.937 0.944

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.679 0.661 0.690 0.863 0.845 0.875 0.964

0.560 0.565 0.577 0.952 0.911 0.899 0.970

0.565 0.571 0.583 0.946 0.923 0.893 0.982

0.571 0.589 0.577 0.946 0.935 0.869 0.976

0.815 0.720 0.714 0.905 0.970 0.976 0.994

0.619 0.673 0.637 0.911 0.935 0.905 0.964

0.613 0.708 0.601 0.929 0.940 0.917 0.970

0.613 0.673 0.613 0.929 0.935 0.917 0.964

0.565 0.577 0.565 0.952 0.929 0.893 0.982

Hard

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

Performance Analysis: Claude-3.5 on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.821 0.829 0.845 0.877 0.901 0.984 0.960

0.706 0.849 0.710 0.881 0.925 0.972 0.821

0.635 0.849 0.651 0.893 0.917 0.956 0.810

0.647 0.806 0.679 0.889 0.905 0.964 0.857

0.925 0.885 0.937 0.917 0.881 0.881 0.825

0.940 0.925 0.933 0.774 0.833 0.817 0.726

0.921 0.944 0.933 0.802 0.873 0.833 0.718

0.929 0.905 0.948 0.770 0.833 0.849 0.762

0.651 0.861 0.694 0.913 0.937 0.968 0.817

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.798 0.750 0.790 0.821 0.853 0.968 0.952

0.694 0.825 0.718 0.889 0.901 0.980 0.877

0.619 0.825 0.635 0.881 0.893 0.968 0.857

0.643 0.774 0.643 0.849 0.865 0.964 0.857

0.937 0.869 0.940 0.909 0.940 0.921 0.873

0.972 0.889 0.925 0.837 0.869 0.909 0.794

0.933 0.897 0.952 0.845 0.893 0.901 0.813

0.937 0.917 0.917 0.845 0.873 0.885 0.829

0.655 0.825 0.619 0.873 0.873 0.960 0.853

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.720 0.720 0.720 0.720 0.738 0.851 0.935

0.655 0.744 0.607 0.798 0.810 0.958 0.946

0.625 0.756 0.595 0.792 0.780 0.935 0.970

0.679 0.714 0.655 0.792 0.810 0.935 0.940

0.857 0.792 0.810 0.869 0.863 0.964 0.935

0.881 0.869 0.845 0.893 0.935 0.976 0.881

0.893 0.845 0.851 0.881 0.929 0.958 0.875

0.875 0.887 0.845 0.893 0.929 0.958 0.881

0.667 0.738 0.637 0.780 0.810 0.929 0.935

Hard

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

Performance Analysis: GPT-4o on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.611 0.603 0.631 0.790 0.829 0.980 0.873

0.655 0.639 0.619 0.825 0.873 0.948 0.722

0.615 0.639 0.591 0.798 0.861 0.897 0.714

0.615 0.627 0.611 0.802 0.857 0.937 0.718

0.806 0.583 0.655 0.817 0.861 0.726 0.655

0.806 0.643 0.591 0.829 0.849 0.909 0.647

0.750 0.667 0.611 0.825 0.877 0.897 0.742

0.710 0.690 0.687 0.837 0.885 0.917 0.710

0.615 0.671 0.631 0.813 0.861 0.944 0.679

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.603 0.607 0.579 0.794 0.770 0.948 0.933

0.651 0.591 0.611 0.758 0.821 0.893 0.813

0.552 0.571 0.567 0.810 0.806 0.857 0.833

0.607 0.635 0.579 0.810 0.798 0.921 0.837

0.774 0.710 0.710 0.817 0.901 0.865 0.810

0.742 0.687 0.683 0.861 0.940 0.901 0.774

0.750 0.607 0.766 0.889 0.905 0.869 0.746

0.675 0.639 0.623 0.881 0.837 0.925 0.829

0.587 0.567 0.579 0.817 0.790 0.913 0.825

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.595 0.619 0.583 0.756 0.690 0.857 0.940

0.601 0.601 0.571 0.798 0.708 0.780 0.839

0.536 0.542 0.548 0.720 0.708 0.851 0.893

0.565 0.655 0.554 0.804 0.744 0.917 0.881

0.708 0.583 0.613 0.893 0.792 0.929 0.917

0.714 0.655 0.607 0.899 0.821 0.958 0.833

0.744 0.619 0.607 0.923 0.845 0.935 0.750

0.595 0.601 0.571 0.917 0.726 0.929 0.839

0.542 0.601 0.554 0.768 0.732 0.827 0.875

Hard

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

Performance Analysis: GPT-4o-mini on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.516 0.520 0.520 0.556 0.679 0.861 0.520

0.516 0.512 0.512 0.758 0.774 0.869 0.706

0.500 0.516 0.512 0.758 0.726 0.873 0.742

0.512 0.520 0.500 0.631 0.655 0.825 0.488

0.504 0.500 0.504 0.500 0.496 0.397 0.817

0.583 0.504 0.560 0.714 0.758 0.825 0.687

0.500 0.571 0.575 0.500 0.786 0.821 0.746

0.500 0.500 0.579 0.508 0.806 0.500 0.806

0.516 0.524 0.508 0.778 0.738 0.813 0.750

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.512 0.528 0.516 0.583 0.591 0.829 0.762

0.512 0.516 0.504 0.754 0.806 0.833 0.730

0.516 0.516 0.508 0.754 0.794 0.869 0.802

0.508 0.520 0.504 0.647 0.603 0.802 0.746

0.504 0.500 0.524 0.504 0.512 0.468 0.536

0.500 0.552 0.500 0.742 0.837 0.817 0.500

0.500 0.500 0.563 0.500 0.500 0.484 0.762

0.500 0.500 0.500 0.500 0.500 0.500 0.500

0.512 0.520 0.512 0.778 0.770 0.790 0.730

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.506 0.500 0.500 0.625 0.601 0.732 0.685

0.500 0.512 0.500 0.738 0.750 0.774 0.702

0.500 0.512 0.500 0.780 0.726 0.827 0.780

0.500 0.512 0.500 0.643 0.601 0.690 0.696

0.500 0.524 0.500 0.500 0.548 0.518 0.512

0.548 0.560 0.500 0.911 0.506 0.494 0.464

0.542 0.500 0.500 0.643 0.500 0.500 0.571

0.500 0.500 0.500 0.500 0.500 0.500 0.500

0.500 0.500 0.500 0.738 0.708 0.732 0.821

Hard

0.4 0.5 0.6 0.7 0.8
Accuracy Range

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Accuracy Range

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

Performance Analysis: Gemini-2.0 on Cycle Best Performance
Second Best

Figure 14: Performance heatmaps for prompt strategies and serialization formats on the Cycle task
(Part 1). Models: Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.496 0.536 0.524 0.484 0.560 0.528 0.548

0.437 0.413 0.405 0.433 0.512 0.488 0.544

0.448 0.440 0.401 0.472 0.444 0.460 0.456

0.512 0.508 0.532 0.512 0.579 0.532 0.536

0.560 0.635 0.611 0.575 0.579 0.571 0.667

0.579 0.575 0.587 0.520 0.579 0.683 0.611

0.567 0.591 0.563 0.607 0.552 0.603 0.611

0.560 0.651 0.627 0.567 0.571 0.683 0.690

0.492 0.444 0.472 0.472 0.472 0.512 0.540

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.484 0.468 0.484 0.460 0.444 0.480 0.480

0.405 0.452 0.417 0.401 0.417 0.373 0.389

0.452 0.421 0.421 0.421 0.393 0.433 0.401

0.472 0.500 0.452 0.464 0.397 0.440 0.425

0.429 0.397 0.421 0.421 0.365 0.310 0.290

0.480 0.405 0.536 0.381 0.440 0.417 0.353

0.468 0.421 0.437 0.496 0.448 0.417 0.425

0.429 0.385 0.397 0.409 0.369 0.369 0.321

0.476 0.456 0.476 0.405 0.401 0.393 0.417

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.500 0.500 0.500 0.458 0.446 0.530 0.446

0.387 0.417 0.405 0.333 0.375 0.327 0.351

0.351 0.405 0.339 0.351 0.375 0.268 0.339

0.488 0.512 0.470 0.470 0.411 0.530 0.446

0.393 0.375 0.387 0.327 0.321 0.310 0.310

0.452 0.381 0.411 0.500 0.411 0.405 0.339

0.512 0.429 0.494 0.411 0.411 0.399 0.411

0.446 0.435 0.423 0.399 0.357 0.405 0.304

0.464 0.470 0.476 0.429 0.435 0.417 0.405

Hard

0.45 0.50 0.55 0.60 0.65
Accuracy Range

0.30 0.35 0.40 0.45 0.50
Accuracy Range

0.30 0.35 0.40 0.45 0.50
Accuracy Range

Performance Analysis: Llama-3 (8B) on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.532 0.560 0.540 0.556 0.520 0.567 0.532

0.484 0.504 0.484 0.536 0.575 0.500 0.540

0.524 0.532 0.512 0.556 0.599 0.544 0.603

0.571 0.575 0.544 0.571 0.595 0.520 0.575

0.524 0.575 0.567 0.512 0.540 0.579 0.500

0.560 0.595 0.556 0.595 0.595 0.528 0.556

0.532 0.548 0.552 0.552 0.544 0.544 0.532

0.595 0.591 0.575 0.663 0.663 0.611 0.548

0.583 0.500 0.552 0.548 0.587 0.524 0.583

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.552 0.548 0.480 0.575 0.516 0.575 0.544

0.512 0.508 0.492 0.548 0.532 0.504 0.548

0.492 0.444 0.496 0.500 0.520 0.587 0.548

0.579 0.560 0.563 0.575 0.599 0.528 0.583

0.567 0.508 0.587 0.560 0.611 0.516 0.591

0.536 0.571 0.548 0.611 0.583 0.532 0.571

0.556 0.563 0.548 0.540 0.556 0.536 0.651

0.560 0.563 0.619 0.702 0.627 0.619 0.595

0.587 0.532 0.528 0.583 0.627 0.532 0.560

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.560 0.542 0.536 0.536 0.560 0.554 0.548

0.506 0.411 0.423 0.554 0.554 0.488 0.494

0.381 0.363 0.363 0.446 0.440 0.530 0.494

0.542 0.506 0.548 0.548 0.601 0.554 0.524

0.560 0.452 0.583 0.518 0.512 0.554 0.470

0.494 0.560 0.488 0.542 0.494 0.518 0.565

0.482 0.536 0.470 0.452 0.536 0.494 0.577

0.560 0.655 0.536 0.643 0.571 0.565 0.518

0.577 0.536 0.548 0.571 0.631 0.583 0.560

Hard

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
Accuracy Range

0.45 0.50 0.55 0.60 0.65 0.70
Accuracy Range

0.40 0.45 0.50 0.55 0.60 0.65
Accuracy Range

Performance Analysis: Llama-3.1 (8B) on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.567 0.484 0.540 0.540 0.544 0.524 0.571

0.520 0.528 0.540 0.532 0.595 0.579 0.655

0.548 0.512 0.528 0.560 0.567 0.548 0.587

0.563 0.500 0.528 0.512 0.548 0.520 0.583

0.536 0.575 0.496 0.556 0.615 0.500 0.532

0.556 0.603 0.516 0.540 0.575 0.552 0.563

0.532 0.603 0.532 0.524 0.540 0.571 0.647

0.552 0.563 0.540 0.556 0.560 0.552 0.528

0.571 0.512 0.552 0.544 0.575 0.651 0.687

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.552 0.524 0.552 0.504 0.532 0.528 0.560

0.508 0.460 0.508 0.512 0.556 0.611 0.560

0.508 0.460 0.480 0.492 0.520 0.552 0.552

0.567 0.516 0.544 0.520 0.548 0.532 0.560

0.540 0.563 0.504 0.571 0.552 0.536 0.524

0.524 0.556 0.532 0.536 0.563 0.552 0.540

0.544 0.560 0.512 0.512 0.524 0.595 0.575

0.524 0.548 0.516 0.524 0.544 0.548 0.528

0.540 0.532 0.536 0.524 0.603 0.560 0.587

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.548 0.506 0.560 0.506 0.524 0.524 0.512

0.482 0.565 0.452 0.500 0.530 0.607 0.571

0.369 0.488 0.435 0.429 0.393 0.536 0.446

0.542 0.506 0.542 0.494 0.536 0.512 0.518

0.560 0.506 0.524 0.560 0.518 0.542 0.494

0.524 0.506 0.530 0.536 0.542 0.542 0.536

0.542 0.494 0.518 0.488 0.542 0.506 0.530

0.542 0.494 0.524 0.524 0.530 0.518 0.524

0.518 0.506 0.506 0.476 0.583 0.536 0.589

Hard

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675
Accuracy Range

0.48 0.50 0.52 0.54 0.56 0.58 0.60
Accuracy Range

0.40 0.45 0.50 0.55 0.60
Accuracy Range

Performance Analysis: Mistral (7B) on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.619 0.556 0.603 0.563 0.627 0.472 0.563

0.000 0.020 0.063 0.012 0.202 0.060 0.345

0.548 0.575 0.575 0.710 0.770 0.778 0.758

0.012 0.036 0.008 0.083 0.099 0.000 0.032

0.623 0.563 0.528 0.556 0.627 0.099 0.258

0.671 0.591 0.683 0.611 0.639 0.587 0.575

0.560 0.520 0.540 0.548 0.575 0.587 0.587

0.611 0.563 0.587 0.563 0.615 0.532 0.540

0.262 0.254 0.437 0.524 0.758 0.460 0.583

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.607 0.448 0.504 0.552 0.544 0.278 0.357

0.032 0.218 0.246 0.063 0.333 0.194 0.321

0.508 0.440 0.496 0.631 0.726 0.778 0.706

0.000 0.020 0.032 0.032 0.067 0.000 0.012

0.623 0.548 0.437 0.516 0.675 0.087 0.194

0.647 0.556 0.631 0.623 0.667 0.556 0.556

0.524 0.524 0.560 0.540 0.552 0.540 0.595

0.639 0.552 0.571 0.587 0.635 0.536 0.536

0.310 0.317 0.460 0.504 0.706 0.567 0.667

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.375 0.440 0.351 0.512 0.357 0.196 0.238

0.054 0.220 0.381 0.185 0.357 0.357 0.280

0.274 0.357 0.250 0.500 0.500 0.750 0.577

0.012 0.036 0.024 0.006 0.036 0.000 0.024

0.583 0.464 0.339 0.571 0.613 0.107 0.202

0.601 0.524 0.583 0.595 0.583 0.536 0.524

0.512 0.494 0.536 0.530 0.565 0.571 0.583

0.631 0.518 0.548 0.560 0.625 0.536 0.512

0.357 0.238 0.464 0.470 0.696 0.530 0.649

Hard

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

Performance Analysis: Phi-4 (14B) on Cycle Best Performance
Second Best

Figure 15: Performance heatmaps for prompt strategies and serialization formats on the Cycle task
(Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.603 0.611 0.635 0.667 0.738 0.873 0.837

0.524 0.587 0.528 0.706 0.758 0.865 0.865

0.560 0.655 0.552 0.714 0.766 0.893 0.881

0.536 0.603 0.528 0.710 0.774 0.897 0.889

0.587 0.698 0.571 0.762 0.837 0.929 0.861

0.663 0.694 0.683 0.877 0.897 0.960 0.877

0.575 0.679 0.607 0.849 0.857 0.917 0.901

0.690 0.726 0.706 0.857 0.877 0.956 0.913

0.528 0.583 0.540 0.687 0.774 0.881 0.877

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.560 0.599 0.563 0.631 0.726 0.778 0.841

0.548 0.567 0.528 0.663 0.694 0.802 0.861

0.548 0.599 0.536 0.627 0.726 0.813 0.873

0.536 0.587 0.544 0.659 0.722 0.853 0.889

0.599 0.659 0.611 0.806 0.806 0.921 0.913

0.675 0.651 0.647 0.869 0.829 0.948 0.917

0.587 0.627 0.591 0.845 0.813 0.881 0.881

0.667 0.659 0.687 0.889 0.873 0.968 0.948

0.544 0.575 0.540 0.651 0.722 0.821 0.861

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.554 0.583 0.554 0.667 0.661 0.685 0.780

0.548 0.577 0.518 0.696 0.685 0.768 0.786

0.548 0.601 0.542 0.655 0.690 0.708 0.780

0.536 0.619 0.548 0.685 0.696 0.810 0.786

0.560 0.631 0.554 0.786 0.738 0.857 0.857

0.577 0.589 0.625 0.851 0.762 0.875 0.917

0.583 0.613 0.560 0.762 0.756 0.756 0.815

0.613 0.631 0.613 0.810 0.798 0.845 0.887

0.542 0.583 0.536 0.726 0.679 0.750 0.792

Hard

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

Performance Analysis: Qwen2.5 (72B) on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.575 0.536 0.599 0.675 0.718 0.794 0.762

0.560 0.563 0.563 0.667 0.714 0.687 0.730

0.556 0.560 0.575 0.690 0.746 0.762 0.718

0.560 0.488 0.579 0.631 0.611 0.683 0.738

0.548 0.667 0.575 0.647 0.710 0.595 0.571

0.603 0.591 0.607 0.571 0.659 0.536 0.516

0.603 0.540 0.544 0.563 0.603 0.544 0.536

0.659 0.595 0.615 0.627 0.651 0.611 0.575

0.540 0.520 0.563 0.683 0.714 0.702 0.754

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.639 0.548 0.607 0.619 0.687 0.734 0.754

0.556 0.548 0.579 0.706 0.683 0.694 0.698

0.429 0.476 0.520 0.643 0.663 0.690 0.706

0.587 0.563 0.556 0.611 0.667 0.710 0.694

0.643 0.587 0.655 0.679 0.718 0.639 0.647

0.651 0.544 0.623 0.552 0.655 0.540 0.548

0.635 0.532 0.615 0.544 0.643 0.560 0.512

0.702 0.587 0.671 0.663 0.655 0.599 0.567

0.528 0.500 0.544 0.651 0.706 0.734 0.710

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.661 0.506 0.637 0.637 0.708 0.708 0.696

0.548 0.488 0.488 0.607 0.673 0.661 0.744

0.274 0.411 0.304 0.512 0.512 0.631 0.571

0.613 0.536 0.554 0.607 0.643 0.679 0.714

0.583 0.589 0.631 0.655 0.685 0.577 0.595

0.613 0.524 0.583 0.560 0.619 0.548 0.577

0.595 0.548 0.554 0.506 0.571 0.536 0.607

0.595 0.565 0.583 0.613 0.637 0.560 0.613

0.530 0.512 0.560 0.661 0.714 0.673 0.702

Hard

0.50 0.55 0.60 0.65 0.70 0.75
Accuracy Range

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Accuracy Range

0.3 0.4 0.5 0.6 0.7
Accuracy Range

Performance Analysis: Qwen2.5 (7B) on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.925 0.905 0.964 0.913 0.948 0.988 0.992

0.758 0.782 0.817 0.810 0.817 0.766 0.702

0.833 0.825 0.841 0.877 0.909 0.909 0.817

0.893 0.817 0.913 0.925 0.937 0.960 0.778

0.992 0.976 0.976 0.976 0.992 0.988 0.996

0.996 0.992 1.000 0.980 0.996 0.988 0.710

0.960 1.000 1.000 0.980 1.000 0.996 0.675

0.952 0.988 0.984 0.972 0.984 0.996 0.675

0.813 0.778 0.821 0.841 0.901 0.881 0.810

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.893 0.841 0.956 0.913 0.917 0.988 0.976

0.790 0.730 0.857 0.821 0.786 0.813 0.726

0.825 0.810 0.881 0.865 0.869 0.940 0.861

0.857 0.762 0.893 0.897 0.869 0.948 0.861

0.976 0.929 0.976 0.976 0.992 0.992 0.996

0.972 0.933 0.984 0.980 0.996 0.992 0.762

0.952 0.964 0.980 0.976 1.000 0.996 0.746

0.940 0.933 0.964 0.960 0.976 0.996 0.734

0.782 0.754 0.798 0.821 0.861 0.877 0.869

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.893 0.762 0.851 0.899 0.869 0.994 0.958

0.738 0.685 0.768 0.839 0.851 0.774 0.810

0.786 0.685 0.851 0.851 0.839 0.893 0.857

0.750 0.679 0.839 0.827 0.804 0.923 0.905

0.940 0.804 0.935 0.976 0.958 0.988 0.988

0.929 0.833 0.982 0.982 0.982 1.000 0.839

0.935 0.810 0.958 0.964 0.994 1.000 0.857

0.893 0.756 0.946 0.964 0.970 0.976 0.815

0.810 0.637 0.798 0.815 0.804 0.821 0.851

Hard

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Range

Performance Analysis: Qwen3 (8B) on Cycle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.996 1.000 0.992 1.000 0.996 1.000

0.956 0.996 0.952 0.929 0.933 1.000 0.972

0.944 1.000 0.960 0.948 0.952 1.000 0.976

0.944 1.000 0.956 0.921 0.948 1.000 0.988

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 0.925

1.000 1.000 1.000 0.984 0.976 1.000 0.877

0.996 1.000 1.000 0.992 1.000 0.996 0.956

0.960 1.000 0.952 0.917 0.940 1.000 0.988

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.988 1.000 0.988 1.000 0.996 0.996

0.944 0.992 0.968 0.956 0.917 1.000 0.968

0.956 0.988 0.944 0.933 0.917 1.000 0.956

0.956 0.996 0.968 0.956 0.937 1.000 0.968

1.000 0.996 1.000 1.000 1.000 0.996 1.000

1.000 0.992 1.000 1.000 0.992 1.000 0.925

1.000 0.988 1.000 0.996 0.972 0.992 0.845

1.000 0.984 1.000 0.992 0.988 1.000 0.984

0.956 1.000 0.980 0.940 0.905 0.996 0.972

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

1.000 0.893 0.994 0.988 0.994 1.000 1.000

0.952 0.851 0.976 0.976 0.851 1.000 0.958

0.940 0.881 0.964 0.970 0.917 0.988 0.946

0.964 0.863 0.970 0.982 0.881 1.000 0.935

0.994 0.875 0.994 0.994 1.000 0.994 0.982

1.000 0.851 0.982 1.000 0.958 0.982 0.905

1.000 0.839 0.994 0.988 0.964 0.994 0.905

1.000 0.821 0.988 0.988 0.970 1.000 0.970

0.958 0.911 0.982 0.976 0.887 0.988 0.958

Hard

0.88 0.90 0.92 0.94 0.96 0.98 1.00
Accuracy Range

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Accuracy Range

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Accuracy Range

Performance Analysis: o4-mini on Cycle Best Performance
Second Best

Figure 16: Performance heatmaps for prompt strategies and serialization formats on the Cycle task
(Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

E.2.4 HEATMAPS FOR Diameter calculation TASK

As shown in Figure 17 (featuring Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0), Figure 18 (fea-
turing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 19 (featuring Qwen-2.5
(7B), o4-mini), the heatmaps compare different prompt strategies and graph serialization formats
under easy, medium, and hard difficulties for the Diameter calculation task. The color intensity
encodes accuracy (darker = higher), and solid/dashed boxes highlight best/second-best combinations
respectively.

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.832 0.828 0.852 0.781 0.750 0.820 0.828

0.879 0.871 0.895 0.871 0.867 0.887 0.879

0.863 0.859 0.910 0.883 0.906 0.871 0.848

0.855 0.789 0.895 0.855 0.871 0.832 0.855

0.820 0.805 0.879 0.770 0.668 0.691 0.723

0.832 0.836 0.875 0.852 0.766 0.816 0.809

0.809 0.863 0.867 0.801 0.754 0.805 0.801

0.848 0.809 0.910 0.875 0.828 0.785 0.824

0.852 0.824 0.926 0.871 0.867 0.855 0.887

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.773 0.719 0.785 0.766 0.676 0.770 0.766

0.770 0.664 0.785 0.723 0.707 0.785 0.773

0.762 0.691 0.797 0.688 0.711 0.766 0.738

0.754 0.680 0.777 0.680 0.652 0.723 0.746

0.637 0.660 0.676 0.652 0.531 0.648 0.617

0.727 0.688 0.754 0.695 0.652 0.727 0.734

0.738 0.699 0.742 0.688 0.617 0.719 0.719

0.742 0.660 0.738 0.688 0.648 0.691 0.711

0.770 0.625 0.766 0.695 0.691 0.746 0.750

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.661 0.429 0.637 0.506 0.369 0.661 0.637

0.637 0.506 0.655 0.411 0.536 0.625 0.637

0.643 0.554 0.625 0.429 0.458 0.685 0.631

0.637 0.554 0.625 0.417 0.452 0.625 0.589

0.595 0.601 0.595 0.554 0.482 0.643 0.601

0.643 0.571 0.589 0.536 0.524 0.637 0.625

0.631 0.530 0.601 0.512 0.440 0.649 0.601

0.571 0.613 0.512 0.452 0.470 0.548 0.601

0.696 0.542 0.631 0.387 0.458 0.643 0.607

Hard

0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.55 0.60 0.65 0.70 0.75
Accuracy Range

0.40 0.45 0.50 0.55 0.60 0.65
Accuracy Range

Performance Analysis: Claude-3.5 on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.680 0.641 0.723 0.488 0.520 0.621 0.609

0.734 0.629 0.789 0.488 0.582 0.676 0.664

0.648 0.648 0.707 0.535 0.555 0.641 0.629

0.715 0.641 0.758 0.520 0.531 0.625 0.598

0.785 0.777 0.773 0.762 0.793 0.801 0.766

0.711 0.617 0.680 0.496 0.531 0.629 0.633

0.699 0.633 0.688 0.559 0.551 0.648 0.594

0.691 0.590 0.664 0.543 0.414 0.609 0.625

0.684 0.621 0.754 0.512 0.551 0.684 0.656

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.547 0.512 0.566 0.281 0.234 0.512 0.613

0.535 0.520 0.570 0.348 0.352 0.621 0.543

0.523 0.531 0.613 0.293 0.309 0.547 0.562

0.594 0.500 0.641 0.297 0.309 0.590 0.562

0.688 0.660 0.695 0.598 0.594 0.715 0.645

0.648 0.535 0.680 0.383 0.402 0.664 0.590

0.652 0.582 0.652 0.418 0.445 0.652 0.570

0.625 0.566 0.621 0.402 0.270 0.531 0.551

0.562 0.539 0.602 0.359 0.320 0.574 0.547

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.470 0.440 0.506 0.226 0.167 0.601 0.482

0.405 0.452 0.500 0.333 0.256 0.571 0.494

0.464 0.435 0.464 0.232 0.232 0.619 0.506

0.488 0.423 0.518 0.256 0.208 0.560 0.470

0.637 0.518 0.560 0.464 0.345 0.637 0.518

0.595 0.411 0.607 0.387 0.232 0.536 0.560

0.565 0.470 0.613 0.440 0.262 0.589 0.577

0.571 0.500 0.542 0.345 0.196 0.613 0.470

0.530 0.476 0.542 0.292 0.202 0.625 0.518

Hard

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy Range

0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.2 0.3 0.4 0.5 0.6
Accuracy Range

Performance Analysis: GPT-4o on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.371 0.324 0.398 0.359 0.273 0.477 0.367

0.375 0.293 0.441 0.309 0.281 0.371 0.363

0.328 0.305 0.445 0.262 0.277 0.418 0.414

0.281 0.258 0.379 0.234 0.199 0.355 0.270

0.598 0.609 0.652 0.340 0.605 0.691 0.371

0.359 0.289 0.457 0.340 0.242 0.414 0.375

0.383 0.285 0.457 0.305 0.254 0.375 0.426

0.332 0.332 0.508 0.434 0.375 0.418 0.598

0.336 0.266 0.406 0.297 0.234 0.383 0.359

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.168 0.070 0.215 0.094 0.059 0.172 0.129

0.176 0.145 0.227 0.133 0.117 0.203 0.168

0.141 0.121 0.191 0.168 0.098 0.160 0.199

0.133 0.133 0.203 0.164 0.113 0.188 0.172

0.484 0.531 0.441 0.457 0.496 0.465 0.461

0.219 0.207 0.301 0.254 0.145 0.270 0.207

0.254 0.227 0.270 0.250 0.176 0.234 0.230

0.262 0.277 0.410 0.352 0.230 0.320 0.578

0.152 0.148 0.199 0.109 0.121 0.172 0.227

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.048 0.060 0.125 0.048 0.036 0.071 0.006

0.060 0.095 0.131 0.083 0.077 0.101 0.083

0.060 0.095 0.113 0.089 0.036 0.113 0.149

0.089 0.089 0.107 0.071 0.065 0.065 0.131

0.417 0.298 0.339 0.351 0.321 0.423 0.298

0.190 0.137 0.161 0.173 0.089 0.214 0.143

0.167 0.083 0.238 0.214 0.125 0.161 0.173

0.179 0.185 0.321 0.250 0.155 0.238 0.464

0.095 0.060 0.137 0.101 0.065 0.089 0.089

Hard

0.2 0.3 0.4 0.5 0.6
Accuracy Range

0.1 0.2 0.3 0.4 0.5
Accuracy Range

0.1 0.2 0.3 0.4
Accuracy Range

Performance Analysis: GPT-4o-mini on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.883 0.859 0.855 0.793 0.871 0.859 0.824

0.840 0.863 0.863 0.855 0.863 0.840 0.844

0.848 0.844 0.871 0.828 0.859 0.891 0.812

0.832 0.832 0.859 0.801 0.867 0.863 0.812

0.688 0.785 0.672 0.637 0.738 0.758 0.688

0.742 0.777 0.742 0.586 0.809 0.762 0.719

0.727 0.824 0.727 0.711 0.684 0.711 0.707

0.605 0.695 0.844 0.715 0.773 0.762 0.605

0.879 0.840 0.836 0.809 0.879 0.891 0.797

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.461 0.453 0.555 0.438 0.297 0.641 0.500

0.543 0.383 0.633 0.461 0.391 0.621 0.531

0.539 0.328 0.574 0.445 0.359 0.578 0.484

0.504 0.410 0.555 0.438 0.379 0.656 0.512

0.500 0.547 0.516 0.395 0.520 0.570 0.430

0.570 0.574 0.590 0.375 0.492 0.512 0.504

0.535 0.605 0.578 0.402 0.398 0.512 0.473

0.477 0.504 0.625 0.363 0.516 0.402 0.496

0.523 0.363 0.609 0.504 0.414 0.676 0.461

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.119 0.095 0.161 0.089 0.042 0.238 0.250

0.161 0.071 0.232 0.149 0.071 0.250 0.351

0.143 0.030 0.208 0.131 0.071 0.214 0.250

0.220 0.077 0.226 0.167 0.101 0.280 0.274

0.452 0.405 0.399 0.179 0.280 0.393 0.268

0.375 0.208 0.440 0.149 0.190 0.417 0.446

0.393 0.321 0.429 0.202 0.113 0.399 0.333

0.351 0.286 0.369 0.173 0.161 0.351 0.446

0.149 0.036 0.202 0.149 0.125 0.244 0.268

Hard

0.60 0.65 0.70 0.75 0.80 0.85
Accuracy Range

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
Accuracy Range

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Accuracy Range

Performance Analysis: Gemini-2.0 on Diameter Best Performance
Second Best

Figure 17: Performance heatmaps for prompt strategies and serialization formats on the Diameter
task (Part 1). Models: Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.094 0.125 0.090 0.059 0.055 0.184 0.094

0.094 0.113 0.152 0.129 0.086 0.133 0.145

0.047 0.051 0.062 0.035 0.074 0.074 0.082

0.070 0.160 0.133 0.055 0.066 0.262 0.137

0.457 0.371 0.434 0.422 0.430 0.480 0.441

0.355 0.430 0.484 0.383 0.422 0.398 0.367

0.367 0.441 0.469 0.336 0.422 0.367 0.375

0.371 0.422 0.480 0.387 0.500 0.371 0.496

0.027 0.035 0.066 0.039 0.059 0.090 0.125

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.035 0.066 0.055 0.035 0.016 0.059 0.020

0.066 0.070 0.090 0.051 0.070 0.094 0.070

0.047 0.031 0.023 0.047 0.008 0.047 0.035

0.070 0.113 0.090 0.055 0.027 0.145 0.102

0.328 0.289 0.305 0.203 0.223 0.223 0.227

0.250 0.211 0.301 0.258 0.230 0.215 0.227

0.242 0.234 0.289 0.262 0.270 0.172 0.219

0.328 0.262 0.328 0.285 0.293 0.227 0.266

0.020 0.035 0.027 0.027 0.027 0.020 0.047

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.006 0.071 0.030 0.024 0.000 0.018 0.030

0.036 0.036 0.048 0.030 0.036 0.030 0.018

0.018 0.012 0.036 0.000 0.024 0.024 0.024

0.042 0.083 0.089 0.054 0.006 0.071 0.065

0.143 0.179 0.202 0.113 0.143 0.185 0.125

0.107 0.143 0.131 0.149 0.155 0.101 0.119

0.119 0.131 0.119 0.131 0.155 0.125 0.119

0.274 0.190 0.155 0.232 0.268 0.101 0.179

0.012 0.012 0.000 0.012 0.012 0.012 0.030

Hard

0.1 0.2 0.3 0.4 0.5
Accuracy Range

0.05 0.10 0.15 0.20 0.25 0.30
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25
Accuracy Range

Performance Analysis: Llama-3 (8B) on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.234 0.227 0.277 0.230 0.219 0.367 0.289

0.164 0.203 0.250 0.234 0.184 0.348 0.195

0.129 0.180 0.172 0.125 0.168 0.250 0.176

0.348 0.355 0.387 0.348 0.348 0.316 0.348

0.727 0.699 0.746 0.727 0.699 0.660 0.656

0.684 0.684 0.734 0.684 0.715 0.570 0.453

0.695 0.648 0.746 0.695 0.688 0.508 0.551

0.555 0.512 0.668 0.527 0.566 0.469 0.438

0.109 0.113 0.203 0.164 0.180 0.348 0.109

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.172 0.184 0.168 0.184 0.172 0.203 0.160

0.062 0.105 0.102 0.109 0.070 0.188 0.121

0.059 0.113 0.070 0.125 0.066 0.156 0.078

0.203 0.246 0.234 0.266 0.180 0.297 0.203

0.406 0.504 0.508 0.512 0.539 0.473 0.297

0.492 0.422 0.586 0.512 0.555 0.402 0.312

0.516 0.457 0.555 0.539 0.590 0.371 0.355

0.336 0.293 0.398 0.375 0.395 0.312 0.281

0.078 0.020 0.090 0.102 0.070 0.160 0.086

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.113 0.161 0.077 0.125 0.060 0.125 0.089

0.054 0.054 0.030 0.060 0.065 0.089 0.083

0.060 0.065 0.054 0.071 0.060 0.060 0.036

0.179 0.238 0.167 0.185 0.107 0.161 0.179

0.226 0.446 0.274 0.274 0.327 0.363 0.155

0.274 0.381 0.411 0.304 0.440 0.280 0.179

0.423 0.292 0.387 0.452 0.482 0.280 0.202

0.232 0.256 0.310 0.250 0.327 0.262 0.155

0.036 0.036 0.012 0.048 0.042 0.095 0.024

Hard

0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.1 0.2 0.3 0.4 0.5
Accuracy Range

0.1 0.2 0.3 0.4
Accuracy Range

Performance Analysis: Llama-3.1 (8B) on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.199 0.289 0.266 0.094 0.133 0.262 0.164

0.164 0.152 0.207 0.133 0.152 0.176 0.172

0.020 0.055 0.031 0.008 0.016 0.020 0.004

0.215 0.281 0.309 0.125 0.145 0.273 0.172

0.586 0.555 0.582 0.578 0.516 0.625 0.590

0.340 0.336 0.344 0.332 0.344 0.465 0.398

0.512 0.387 0.473 0.457 0.398 0.445 0.375

0.414 0.426 0.457 0.355 0.391 0.484 0.496

0.145 0.125 0.199 0.141 0.098 0.195 0.188

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.062 0.156 0.090 0.086 0.039 0.191 0.168

0.090 0.059 0.098 0.039 0.055 0.117 0.109

0.008 0.043 0.016 0.000 0.008 0.016 0.004

0.117 0.152 0.148 0.098 0.070 0.117 0.141

0.371 0.281 0.395 0.398 0.352 0.324 0.395

0.145 0.141 0.133 0.152 0.141 0.254 0.188

0.203 0.160 0.246 0.199 0.168 0.164 0.199

0.203 0.230 0.242 0.180 0.227 0.340 0.258

0.062 0.043 0.086 0.047 0.078 0.141 0.113

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.030 0.137 0.036 0.048 0.036 0.107 0.119

0.042 0.065 0.071 0.077 0.048 0.060 0.054

0.000 0.018 0.006 0.000 0.012 0.006 0.006

0.030 0.048 0.089 0.042 0.012 0.101 0.071

0.161 0.149 0.173 0.143 0.167 0.238 0.143

0.018 0.060 0.030 0.060 0.036 0.065 0.065

0.042 0.060 0.054 0.119 0.083 0.101 0.077

0.107 0.077 0.095 0.065 0.119 0.131 0.155

0.012 0.054 0.024 0.018 0.024 0.042 0.060

Hard

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Accuracy Range

0.00 0.05 0.10 0.15 0.20
Accuracy Range

Performance Analysis: Mistral (7B) on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.375 0.523 0.453 0.293 0.242 0.297 0.277

0.047 0.180 0.102 0.066 0.062 0.453 0.258

0.402 0.582 0.316 0.332 0.309 0.707 0.355

0.281 0.277 0.504 0.406 0.336 0.000 0.000

0.605 0.738 0.578 0.730 0.605 0.664 0.668

0.172 0.488 0.090 0.359 0.129 0.582 0.344

0.609 0.625 0.512 0.535 0.508 0.641 0.613

0.711 0.742 0.508 0.664 0.555 0.602 0.602

0.477 0.633 0.395 0.398 0.340 0.715 0.398

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.203 0.418 0.230 0.145 0.086 0.082 0.098

0.102 0.250 0.219 0.082 0.020 0.289 0.184

0.160 0.211 0.137 0.168 0.098 0.348 0.117

0.191 0.180 0.293 0.262 0.156 0.000 0.031

0.371 0.500 0.402 0.484 0.492 0.422 0.441

0.062 0.512 0.039 0.234 0.086 0.438 0.336

0.367 0.621 0.332 0.340 0.410 0.461 0.508

0.461 0.617 0.359 0.602 0.523 0.449 0.496

0.230 0.340 0.266 0.254 0.094 0.340 0.301

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.101 0.185 0.089 0.119 0.060 0.012 0.060

0.101 0.196 0.107 0.125 0.042 0.256 0.089

0.030 0.101 0.030 0.054 0.036 0.143 0.036

0.113 0.208 0.238 0.185 0.101 0.030 0.071

0.113 0.107 0.095 0.137 0.155 0.292 0.149

0.048 0.405 0.024 0.232 0.071 0.310 0.250

0.238 0.381 0.244 0.351 0.369 0.375 0.387

0.179 0.369 0.190 0.458 0.506 0.363 0.286

0.089 0.274 0.161 0.161 0.113 0.232 0.125

Hard

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

0.1 0.2 0.3 0.4 0.5
Accuracy Range

Performance Analysis: Phi-4 (14B) on Diameter Best Performance
Second Best

Figure 18: Performance heatmaps for prompt strategies and serialization formats on the Diameter
task (Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.836 0.793 0.824 0.773 0.781 0.844 0.879

0.875 0.746 0.855 0.738 0.802 0.867 0.820

0.797 0.734 0.852 0.770 0.805 0.801 0.828

0.824 0.738 0.820 0.750 0.780 0.859 0.824

0.836 0.750 0.826 0.738 0.742 0.789 0.754

0.805 0.721 0.801 0.734 0.730 0.748 0.793

0.785 0.746 0.766 0.750 0.707 0.766 0.804

0.777 0.703 0.852 0.715 0.723 0.793 0.816

0.762 0.715 0.836 0.695 0.742 0.816 0.801

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.410 0.371 0.559 0.410 0.383 0.496 0.512

0.539 0.422 0.574 0.441 0.412 0.555 0.589

0.500 0.430 0.559 0.457 0.438 0.523 0.504

0.547 0.461 0.598 0.504 0.479 0.516 0.547

0.559 0.473 0.594 0.559 0.594 0.641 0.625

0.625 0.492 0.656 0.508 0.469 0.613 0.695

0.559 0.484 0.667 0.500 0.434 0.645 0.686

0.551 0.539 0.637 0.496 0.460 0.586 0.648

0.465 0.391 0.516 0.414 0.441 0.531 0.480

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.155 0.167 0.167 0.149 0.077 0.300 0.190

0.173 0.220 0.241 0.232 0.262 0.298 0.339

0.208 0.220 0.304 0.202 0.185 0.435 0.357

0.208 0.190 0.268 0.262 0.226 0.369 0.321

0.350 0.345 0.363 0.407 0.345 0.351 0.399

0.393 0.357 0.411 0.351 0.202 0.420 0.560

0.345 0.274 0.375 0.393 0.274 0.452 0.482

0.327 0.339 0.345 0.369 0.280 0.458 0.446

0.113 0.174 0.208 0.244 0.185 0.286 0.292

Hard

0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875
Accuracy Range

0.40 0.45 0.50 0.55 0.60 0.65
Accuracy Range

0.1 0.2 0.3 0.4 0.5
Accuracy Range

Performance Analysis: Qwen2.5 (72B) on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.141 0.215 0.156 0.141 0.117 0.297 0.188

0.379 0.434 0.395 0.332 0.270 0.492 0.371

0.352 0.461 0.391 0.262 0.254 0.480 0.414

0.312 0.410 0.355 0.211 0.234 0.418 0.465

0.719 0.762 0.734 0.680 0.656 0.730 0.688

0.590 0.660 0.539 0.473 0.520 0.590 0.609

0.672 0.684 0.582 0.543 0.570 0.543 0.605

0.555 0.496 0.539 0.504 0.480 0.613 0.621

0.281 0.402 0.410 0.340 0.289 0.441 0.332

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.098 0.125 0.098 0.047 0.090 0.184 0.102

0.195 0.250 0.250 0.160 0.137 0.203 0.203

0.160 0.148 0.145 0.141 0.141 0.242 0.164

0.160 0.281 0.207 0.125 0.191 0.234 0.312

0.457 0.398 0.426 0.355 0.391 0.414 0.418

0.430 0.480 0.457 0.352 0.312 0.355 0.477

0.516 0.508 0.484 0.383 0.406 0.383 0.453

0.297 0.328 0.305 0.355 0.215 0.324 0.398

0.117 0.242 0.250 0.160 0.141 0.223 0.199

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.000 0.024 0.030 0.030 0.024 0.071 0.042

0.143 0.196 0.125 0.119 0.107 0.137 0.137

0.012 0.119 0.065 0.095 0.048 0.155 0.137

0.018 0.167 0.077 0.065 0.048 0.107 0.113

0.131 0.214 0.202 0.179 0.125 0.280 0.196

0.286 0.446 0.280 0.238 0.298 0.226 0.262

0.244 0.435 0.232 0.286 0.310 0.214 0.214

0.113 0.327 0.155 0.173 0.149 0.226 0.167

0.048 0.173 0.101 0.036 0.060 0.077 0.107

Hard

0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.1 0.2 0.3 0.4 0.5
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Accuracy Range

Performance Analysis: Qwen2.5 (7B) on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.613 0.578 0.590 0.582 0.562 0.824 0.699

0.648 0.633 0.699 0.664 0.625 0.930 0.859

0.684 0.703 0.715 0.734 0.664 0.922 0.906

0.691 0.695 0.715 0.633 0.680 0.949 0.906

0.766 0.789 0.848 0.754 0.727 0.852 0.793

0.906 0.906 0.934 0.910 0.840 0.938 0.914

0.824 0.750 0.867 0.820 0.727 0.863 0.820

0.852 0.809 0.879 0.887 0.758 0.934 0.895

0.684 0.676 0.703 0.668 0.668 0.918 0.883

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.535 0.434 0.605 0.492 0.434 0.594 0.555

0.672 0.543 0.660 0.590 0.539 0.734 0.727

0.648 0.453 0.625 0.562 0.496 0.719 0.664

0.672 0.516 0.605 0.543 0.508 0.719 0.637

0.652 0.551 0.660 0.559 0.504 0.676 0.609

0.766 0.629 0.766 0.719 0.641 0.770 0.703

0.730 0.570 0.703 0.582 0.551 0.699 0.645

0.715 0.543 0.766 0.648 0.484 0.734 0.715

0.641 0.469 0.621 0.508 0.488 0.734 0.648

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.357 0.256 0.417 0.310 0.238 0.345 0.315

0.476 0.244 0.530 0.387 0.292 0.381 0.435

0.476 0.232 0.530 0.399 0.226 0.458 0.411

0.488 0.244 0.571 0.405 0.262 0.440 0.375

0.524 0.292 0.488 0.399 0.232 0.482 0.423

0.530 0.298 0.536 0.423 0.262 0.446 0.429

0.494 0.256 0.554 0.435 0.256 0.464 0.423

0.583 0.280 0.560 0.476 0.268 0.554 0.452

0.423 0.244 0.542 0.411 0.220 0.458 0.482

Hard

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy Range

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Accuracy Range

0.25 0.30 0.35 0.40 0.45 0.50 0.55
Accuracy Range

Performance Analysis: Qwen3 (8B) on Diameter Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.992 0.992 1.000 0.996 0.988 0.992 0.988

0.992 0.988 0.992 0.988 0.977 0.996 1.000

0.988 0.988 0.992 0.984 0.992 0.988 0.996

0.980 0.996 0.996 0.996 0.996 0.992 0.996

0.980 0.977 0.988 0.980 0.977 0.988 0.996

0.980 0.984 0.984 0.980 0.988 0.992 0.996

0.980 0.980 0.980 0.988 0.980 0.980 0.988

0.984 0.988 0.988 0.984 0.988 0.992 1.000

0.988 0.988 0.996 0.988 0.984 0.992 0.996

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.762 0.656 0.785 0.652 0.672 0.719 0.773

0.781 0.625 0.773 0.645 0.703 0.707 0.750

0.770 0.633 0.816 0.672 0.637 0.695 0.750

0.742 0.660 0.762 0.652 0.672 0.684 0.746

0.832 0.605 0.809 0.605 0.664 0.703 0.754

0.867 0.633 0.840 0.727 0.781 0.738 0.754

0.852 0.547 0.844 0.742 0.762 0.746 0.750

0.883 0.652 0.844 0.738 0.766 0.785 0.777

0.812 0.668 0.785 0.633 0.672 0.668 0.754

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.512 0.185 0.440 0.310 0.351 0.357 0.339

0.464 0.250 0.363 0.250 0.363 0.286 0.327

0.411 0.179 0.452 0.310 0.357 0.232 0.381

0.452 0.185 0.452 0.280 0.286 0.280 0.345

0.417 0.101 0.506 0.304 0.321 0.292 0.375

0.583 0.131 0.560 0.381 0.351 0.298 0.286

0.548 0.208 0.577 0.351 0.375 0.363 0.369

0.583 0.107 0.536 0.357 0.327 0.274 0.333

0.393 0.125 0.464 0.256 0.333 0.304 0.315

Hard

0.980 0.985 0.990 0.995 1.000
Accuracy Range

0.55 0.60 0.65 0.70 0.75 0.80 0.85
Accuracy Range

0.2 0.3 0.4 0.5
Accuracy Range

Performance Analysis: o4-mini on Diameter Best Performance
Second Best

Figure 19: Performance heatmaps for prompt strategies and serialization formats on the Diameter
task (Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

E.2.5 HEATMAPS FOR Shortest path TASK

As shown in Figure 20 (featuring Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0), Figure 21 (featur-
ing Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 22 (featuring Qwen-2.5 (7B),
o4-mini), the heatmaps compare different prompt strategies and graph serialization formats under
easy, medium, and hard difficulties for the Shortest path task. The color intensity encodes accuracy
(darker = higher), and solid/dashed boxes highlight best/second-best combinations, respectively.

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.996 0.561 0.992 0.988 0.996 0.992 0.886

0.996 0.545 0.996 0.984 0.972 0.992 0.915

0.996 0.561 0.996 0.984 0.988 0.992 0.898

0.996 0.553 0.996 0.976 0.988 0.984 0.915

0.996 0.976 0.996 0.992 0.996 0.996 0.907

0.996 0.963 0.992 0.988 0.992 0.988 0.902

0.996 0.967 0.992 0.988 0.996 0.988 0.902

0.996 0.980 0.992 0.992 0.996 0.992 0.939

0.996 0.553 0.992 0.976 0.988 0.992 0.923

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.975 0.602 0.980 0.971 0.975 0.971 0.873

0.980 0.516 0.967 0.943 0.963 0.963 0.881

0.980 0.561 0.980 0.955 0.959 0.955 0.869

0.971 0.537 0.975 0.959 0.943 0.959 0.861

0.984 0.889 0.980 0.971 0.959 0.959 0.824

0.980 0.902 0.967 0.959 0.951 0.959 0.824

0.975 0.881 0.971 0.967 0.951 0.963 0.820

0.984 0.914 0.971 0.955 0.947 0.959 0.828

0.975 0.557 0.975 0.967 0.963 0.967 0.877

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.970 0.497 0.970 0.970 0.915 0.964 0.842

0.982 0.473 0.976 0.939 0.958 0.958 0.855

0.982 0.455 0.964 0.933 0.939 0.952 0.855

0.982 0.424 0.964 0.933 0.945 0.915 0.830

0.970 0.788 0.970 0.945 0.891 0.897 0.800

0.958 0.721 0.952 0.909 0.909 0.927 0.812

0.958 0.776 0.952 0.933 0.897 0.933 0.812

0.945 0.770 0.945 0.915 0.921 0.939 0.794

0.976 0.503 0.970 0.939 0.915 0.939 0.842

Hard

0.6 0.7 0.8 0.9
Accuracy Range

0.6 0.7 0.8 0.9
Accuracy Range

0.5 0.6 0.7 0.8 0.9
Accuracy Range

Performance Analysis: Claude-3.5 on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.992 0.752 0.984 0.972 0.967 0.976 0.919

0.988 0.715 0.992 0.955 0.902 0.967 0.874

0.996 0.797 0.996 0.919 0.919 0.980 0.886

0.988 0.626 0.980 0.943 0.902 0.972 0.890

0.992 0.882 0.972 0.947 0.955 0.939 0.846

0.996 0.837 0.976 0.963 0.915 0.943 0.841

0.980 0.821 0.980 0.935 0.927 0.911 0.821

0.992 0.858 0.988 0.955 0.935 0.902 0.862

0.996 0.728 0.988 0.935 0.923 0.976 0.907

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.955 0.598 0.951 0.881 0.881 0.930 0.861

0.963 0.500 0.975 0.898 0.832 0.926 0.828

0.967 0.631 0.975 0.906 0.816 0.918 0.811

0.971 0.459 0.967 0.873 0.807 0.889 0.852

0.947 0.799 0.959 0.918 0.832 0.844 0.807

0.918 0.693 0.922 0.902 0.791 0.873 0.803

0.939 0.652 0.939 0.865 0.799 0.852 0.775

0.955 0.664 0.951 0.877 0.807 0.795 0.783

0.959 0.533 0.975 0.914 0.811 0.939 0.832

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.909 0.412 0.915 0.800 0.727 0.794 0.788

0.952 0.370 0.945 0.836 0.794 0.885 0.752

0.927 0.461 0.970 0.800 0.806 0.885 0.752

0.903 0.333 0.921 0.794 0.715 0.867 0.739

0.933 0.588 0.885 0.855 0.733 0.739 0.661

0.885 0.497 0.836 0.758 0.630 0.685 0.636

0.867 0.461 0.897 0.752 0.655 0.709 0.600

0.855 0.370 0.824 0.745 0.679 0.697 0.558

0.976 0.285 0.945 0.855 0.739 0.897 0.800

Hard

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

Performance Analysis: GPT-4o on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.919 0.748 0.919 0.882 0.841 0.768 0.833

0.980 0.837 0.959 0.923 0.846 0.772 0.728

0.947 0.923 0.980 0.907 0.837 0.707 0.785

0.967 0.829 0.972 0.894 0.813 0.740 0.748

0.890 0.663 0.902 0.776 0.707 0.707 0.740

0.837 0.593 0.825 0.793 0.748 0.028 0.776

0.833 0.541 0.837 0.797 0.720 0.724 0.809

0.744 0.683 0.732 0.699 0.715 0.004 0.736

0.963 0.866 0.955 0.927 0.837 0.687 0.776

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.787 0.475 0.730 0.762 0.631 0.750 0.648

0.910 0.500 0.779 0.811 0.697 0.799 0.590

0.889 0.516 0.746 0.816 0.693 0.762 0.561

0.889 0.484 0.648 0.783 0.648 0.738 0.598

0.803 0.320 0.721 0.684 0.541 0.598 0.668

0.725 0.369 0.693 0.664 0.623 0.750 0.541

0.717 0.328 0.697 0.660 0.574 0.721 0.561

0.758 0.373 0.570 0.656 0.484 0.672 0.623

0.881 0.508 0.783 0.807 0.684 0.820 0.557

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.606 0.224 0.727 0.576 0.442 0.642 0.515

0.776 0.255 0.824 0.697 0.582 0.733 0.624

0.745 0.248 0.830 0.630 0.521 0.745 0.570

0.794 0.242 0.794 0.588 0.455 0.667 0.612

0.679 0.158 0.697 0.491 0.382 0.406 0.491

0.655 0.139 0.588 0.430 0.418 0.545 0.558

0.667 0.139 0.618 0.473 0.412 0.594 0.527

0.685 0.164 0.673 0.467 0.430 0.509 0.455

0.752 0.242 0.842 0.636 0.527 0.752 0.612

Hard

0.2 0.4 0.6 0.8
Accuracy Range

0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

Performance Analysis: GPT-4o-mini on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.630 0.419 0.541 0.565 0.557 0.622 0.772

0.972 0.638 0.939 0.772 0.715 0.931 0.817

0.959 0.748 0.947 0.724 0.683 0.870 0.728

0.894 0.667 0.931 0.720 0.610 0.793 0.874

0.980 0.939 0.992 0.963 0.992 0.951 0.931

0.988 0.850 0.984 0.907 0.923 0.191 0.902

0.992 0.846 0.980 0.915 0.915 0.959 0.923

0.984 0.817 0.984 0.947 0.931 0.041 0.907

0.988 0.732 0.976 0.797 0.720 0.919 0.703

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.930 0.553 0.529 0.918 0.459 0.963 0.520

0.980 0.410 0.869 0.857 0.660 0.922 0.803

0.971 0.430 0.852 0.852 0.582 0.939 0.512

0.967 0.398 0.787 0.816 0.631 0.939 0.730

0.959 0.787 0.980 0.914 0.947 0.869 0.840

0.939 0.709 0.939 0.902 0.873 0.910 0.844

0.943 0.725 0.939 0.910 0.857 0.918 0.877

0.955 0.631 0.930 0.857 0.844 0.893 0.816

0.971 0.377 0.852 0.857 0.754 0.947 0.779

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.830 0.394 0.855 0.848 0.812 0.879 0.867

0.945 0.303 0.945 0.776 0.703 0.800 0.818

0.952 0.321 0.933 0.721 0.703 0.824 0.806

0.933 0.218 0.909 0.776 0.679 0.812 0.836

0.964 0.606 0.945 0.921 0.958 0.873 0.867

0.915 0.521 0.903 0.818 0.848 0.818 0.879

0.909 0.527 0.915 0.885 0.824 0.788 0.848

0.873 0.345 0.879 0.727 0.776 0.824 0.782

0.945 0.212 0.939 0.770 0.745 0.861 0.830

Hard

0.2 0.4 0.6 0.8
Accuracy Range

0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

Performance Analysis: Gemini-2.0 on Shortest Best Performance
Second Best

Figure 20: Performance heatmaps for prompt strategies and serialization formats on the Shortest task
(Part 1). Models: Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.488 0.061 0.545 0.419 0.313 0.459 0.411

0.203 0.057 0.199 0.134 0.126 0.236 0.154

0.045 0.041 0.061 0.012 0.008 0.089 0.020

0.569 0.081 0.565 0.431 0.423 0.496 0.476

0.622 0.138 0.610 0.675 0.557 0.000 0.390

0.707 0.228 0.748 0.740 0.740 0.049 0.602

0.659 0.228 0.711 0.732 0.732 0.016 0.573

0.659 0.236 0.638 0.598 0.577 0.012 0.524

0.065 0.012 0.073 0.024 0.061 0.142 0.179

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.426 0.078 0.414 0.332 0.258 0.316 0.225

0.119 0.041 0.197 0.115 0.070 0.176 0.127

0.045 0.020 0.045 0.029 0.008 0.078 0.041

0.439 0.090 0.439 0.361 0.254 0.369 0.324

0.516 0.082 0.533 0.492 0.377 0.004 0.365

0.598 0.148 0.619 0.574 0.504 0.012 0.447

0.578 0.107 0.553 0.574 0.475 0.008 0.434

0.520 0.135 0.504 0.439 0.426 0.000 0.373

0.049 0.041 0.074 0.057 0.049 0.148 0.176

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.339 0.042 0.358 0.230 0.194 0.248 0.218

0.152 0.055 0.188 0.085 0.048 0.158 0.109

0.036 0.030 0.024 0.012 0.012 0.067 0.055

0.345 0.042 0.321 0.279 0.206 0.303 0.236

0.424 0.048 0.461 0.273 0.297 0.000 0.212

0.485 0.042 0.533 0.352 0.406 0.012 0.303

0.473 0.036 0.509 0.358 0.394 0.006 0.285

0.467 0.067 0.418 0.327 0.345 0.000 0.236

0.079 0.018 0.055 0.073 0.030 0.091 0.091

Hard

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5
Accuracy Range

Performance Analysis: Llama-3 (8B) on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.703 0.289 0.650 0.447 0.435 0.439 0.516

0.203 0.154 0.276 0.260 0.093 0.211 0.354

0.110 0.102 0.167 0.126 0.049 0.163 0.232

0.504 0.321 0.589 0.431 0.333 0.411 0.528

0.618 0.224 0.614 0.614 0.569 0.008 0.394

0.744 0.276 0.768 0.801 0.707 0.016 0.557

0.687 0.260 0.720 0.748 0.675 0.004 0.565

0.650 0.268 0.715 0.642 0.573 0.016 0.553

0.150 0.085 0.236 0.191 0.183 0.195 0.289

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.529 0.180 0.492 0.328 0.344 0.348 0.377

0.148 0.061 0.254 0.164 0.082 0.176 0.291

0.111 0.029 0.115 0.107 0.041 0.115 0.197

0.488 0.119 0.500 0.258 0.254 0.316 0.426

0.492 0.127 0.492 0.402 0.365 0.000 0.406

0.545 0.123 0.582 0.516 0.492 0.008 0.516

0.545 0.094 0.553 0.525 0.492 0.000 0.455

0.504 0.123 0.537 0.430 0.439 0.012 0.463

0.168 0.057 0.238 0.143 0.090 0.176 0.213

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.467 0.097 0.479 0.291 0.267 0.261 0.309

0.121 0.036 0.267 0.158 0.091 0.164 0.212

0.115 0.048 0.115 0.061 0.030 0.097 0.103

0.406 0.097 0.424 0.170 0.188 0.261 0.309

0.388 0.042 0.412 0.279 0.291 0.006 0.303

0.521 0.036 0.485 0.382 0.442 0.006 0.315

0.455 0.055 0.485 0.370 0.442 0.000 0.297

0.418 0.091 0.461 0.352 0.358 0.006 0.279

0.164 0.048 0.200 0.085 0.097 0.145 0.152

Hard

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5
Accuracy Range

Performance Analysis: Llama-3.1 (8B) on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.321 0.073 0.333 0.386 0.248 0.289 0.350

0.402 0.102 0.398 0.313 0.325 0.366 0.313

0.114 0.037 0.126 0.028 0.053 0.102 0.098

0.382 0.118 0.362 0.301 0.272 0.280 0.313

0.508 0.211 0.508 0.427 0.346 0.000 0.411

0.622 0.203 0.602 0.533 0.520 0.004 0.557

0.557 0.211 0.589 0.508 0.451 0.000 0.553

0.520 0.199 0.541 0.500 0.415 0.008 0.593

0.354 0.102 0.407 0.236 0.248 0.179 0.220

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.221 0.041 0.270 0.221 0.168 0.189 0.221

0.283 0.041 0.320 0.156 0.111 0.234 0.205

0.057 0.029 0.074 0.053 0.025 0.061 0.094

0.197 0.074 0.270 0.152 0.180 0.184 0.180

0.328 0.082 0.377 0.254 0.180 0.000 0.299

0.402 0.090 0.430 0.398 0.258 0.000 0.418

0.340 0.098 0.389 0.324 0.246 0.000 0.373

0.332 0.049 0.369 0.311 0.258 0.016 0.307

0.270 0.090 0.348 0.156 0.139 0.131 0.156

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.145 0.018 0.164 0.097 0.139 0.061 0.103

0.188 0.036 0.236 0.103 0.109 0.170 0.121

0.061 0.061 0.073 0.006 0.030 0.061 0.018

0.152 0.036 0.212 0.073 0.079 0.067 0.103

0.267 0.048 0.236 0.139 0.133 0.006 0.133

0.261 0.024 0.255 0.170 0.164 0.000 0.242

0.261 0.030 0.255 0.145 0.152 0.000 0.224

0.230 0.012 0.248 0.133 0.170 0.012 0.152

0.182 0.073 0.170 0.097 0.121 0.127 0.097

Hard

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25
Accuracy Range

Performance Analysis: Mistral (7B) on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.407 0.207 0.561 0.585 0.476 0.362 0.049

0.000 0.000 0.000 0.004 0.004 0.264 0.061

0.720 0.122 0.663 0.337 0.354 0.276 0.220

0.028 0.037 0.033 0.280 0.028 0.053 0.175

0.923 0.691 0.939 0.878 0.760 0.081 0.764

0.919 0.691 0.858 0.858 0.805 0.004 0.780

0.902 0.667 0.915 0.829 0.817 0.000 0.768

0.919 0.728 0.911 0.841 0.825 0.000 0.821

0.008 0.008 0.008 0.081 0.008 0.419 0.110

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.184 0.090 0.352 0.455 0.242 0.164 0.025

0.000 0.000 0.000 0.004 0.000 0.307 0.008

0.635 0.156 0.664 0.250 0.275 0.148 0.078

0.016 0.012 0.020 0.168 0.020 0.066 0.160

0.787 0.426 0.824 0.734 0.582 0.045 0.623

0.807 0.475 0.725 0.730 0.631 0.000 0.701

0.803 0.480 0.824 0.721 0.652 0.000 0.684

0.787 0.471 0.824 0.680 0.623 0.000 0.766

0.025 0.057 0.020 0.037 0.008 0.295 0.020

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.103 0.042 0.152 0.358 0.067 0.127 0.024

0.006 0.012 0.000 0.012 0.000 0.461 0.024

0.576 0.079 0.558 0.255 0.182 0.042 0.024

0.042 0.030 0.000 0.103 0.000 0.158 0.303

0.745 0.188 0.715 0.582 0.473 0.024 0.376

0.624 0.248 0.594 0.570 0.509 0.000 0.558

0.648 0.230 0.655 0.545 0.594 0.000 0.545

0.679 0.188 0.691 0.473 0.503 0.000 0.527

0.073 0.061 0.073 0.018 0.042 0.255 0.012

Hard

0.0 0.2 0.4 0.6 0.8
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

Performance Analysis: Phi-4 (14B) on Shortest Best Performance
Second Best

Figure 21: Performance heatmaps for prompt strategies and serialization formats on the Shortest task
(Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.988 0.817 0.967 0.951 0.972 0.967 0.939

0.988 0.768 0.988 0.955 0.943 0.955 0.874

0.988 0.821 0.988 0.980 0.951 0.951 0.907

0.980 0.756 0.972 0.959 0.935 0.939 0.898

0.967 0.841 0.955 0.935 0.939 0.715 0.886

0.939 0.825 0.923 0.846 0.841 0.715 0.854

0.939 0.854 0.939 0.841 0.850 0.732 0.862

0.919 0.813 0.955 0.919 0.902 0.463 0.902

0.996 0.809 0.988 0.972 0.943 0.967 0.874

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.934 0.619 0.951 0.885 0.914 0.906 0.844

0.959 0.578 0.967 0.848 0.803 0.865 0.770

0.967 0.656 0.939 0.881 0.816 0.877 0.803

0.955 0.598 0.959 0.865 0.816 0.844 0.803

0.922 0.627 0.943 0.865 0.848 0.549 0.791

0.906 0.631 0.906 0.824 0.746 0.578 0.807

0.918 0.643 0.918 0.861 0.807 0.713 0.791

0.816 0.561 0.824 0.811 0.730 0.549 0.807

0.943 0.549 0.959 0.889 0.824 0.857 0.803

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.909 0.515 0.855 0.776 0.830 0.861 0.776

0.952 0.418 0.945 0.812 0.667 0.800 0.733

0.897 0.370 0.879 0.782 0.679 0.806 0.782

0.952 0.436 0.976 0.776 0.691 0.776 0.721

0.927 0.448 0.921 0.794 0.691 0.315 0.709

0.909 0.400 0.903 0.758 0.776 0.545 0.721

0.939 0.430 0.861 0.782 0.715 0.618 0.745

0.764 0.327 0.721 0.642 0.685 0.503 0.624

0.897 0.358 0.891 0.800 0.745 0.782 0.679

Hard

0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy Range

0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

Performance Analysis: Qwen2.5 (72B) on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.793 0.427 0.846 0.691 0.667 0.724 0.728

0.000 0.000 0.000 0.000 0.000 0.016 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.841 0.561 0.862 0.785 0.793 0.768 0.768

0.858 0.602 0.890 0.780 0.695 0.037 0.679

0.878 0.581 0.862 0.797 0.715 0.020 0.809

0.837 0.606 0.809 0.821 0.724 0.028 0.768

0.821 0.455 0.829 0.829 0.736 0.073 0.789

0.211 0.049 0.220 0.154 0.236 0.220 0.211

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.611 0.242 0.635 0.496 0.439 0.611 0.500

0.000 0.004 0.000 0.000 0.000 0.004 0.000

0.000 0.012 0.000 0.000 0.000 0.000 0.000

0.643 0.340 0.709 0.586 0.508 0.607 0.619

0.721 0.316 0.746 0.635 0.467 0.041 0.484

0.742 0.332 0.795 0.631 0.480 0.020 0.623

0.709 0.320 0.738 0.672 0.471 0.029 0.623

0.553 0.246 0.566 0.582 0.480 0.090 0.586

0.164 0.053 0.193 0.127 0.123 0.246 0.213

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.473 0.121 0.552 0.424 0.388 0.473 0.442

0.036 0.018 0.012 0.000 0.006 0.012 0.000

0.000 0.024 0.000 0.000 0.000 0.000 0.000

0.503 0.194 0.552 0.406 0.321 0.497 0.503

0.588 0.176 0.606 0.448 0.382 0.073 0.436

0.673 0.224 0.661 0.479 0.370 0.018 0.461

0.642 0.224 0.655 0.442 0.400 0.018 0.503

0.430 0.091 0.448 0.376 0.412 0.024 0.485

0.170 0.024 0.224 0.182 0.091 0.188 0.255

Hard

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Accuracy Range

Performance Analysis: Qwen2.5 (7B) on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.732 0.618 0.752 0.679 0.679 0.821 0.768

0.793 0.614 0.813 0.695 0.630 0.809 0.768

0.748 0.541 0.776 0.724 0.695 0.610 0.720

0.841 0.638 0.882 0.744 0.752 0.589 0.752

0.955 0.947 0.972 0.935 0.919 0.443 0.963

0.988 0.972 0.992 0.984 0.988 0.098 0.939

0.992 0.959 0.984 0.992 0.955 0.146 0.915

0.996 0.980 0.996 0.992 0.988 0.110 0.939

0.687 0.541 0.833 0.626 0.626 0.659 0.752

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.697 0.512 0.639 0.619 0.516 0.701 0.742

0.664 0.439 0.676 0.590 0.475 0.754 0.738

0.705 0.529 0.730 0.533 0.508 0.623 0.684

0.762 0.447 0.811 0.680 0.611 0.590 0.705

0.914 0.787 0.955 0.881 0.824 0.230 0.914

0.971 0.828 0.980 0.959 0.934 0.070 0.840

0.943 0.832 0.963 0.930 0.836 0.061 0.832

0.980 0.869 0.984 0.947 0.922 0.074 0.861

0.652 0.455 0.689 0.549 0.463 0.631 0.611

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.661 0.376 0.648 0.588 0.358 0.739 0.606

0.752 0.424 0.715 0.576 0.430 0.709 0.648

0.715 0.333 0.800 0.509 0.467 0.624 0.509

0.752 0.394 0.703 0.594 0.527 0.624 0.594

0.958 0.642 0.927 0.830 0.636 0.103 0.812

0.964 0.739 0.970 0.891 0.806 0.048 0.758

0.939 0.685 0.958 0.782 0.727 0.085 0.745

0.976 0.709 0.988 0.903 0.818 0.042 0.782

0.636 0.339 0.721 0.576 0.412 0.612 0.600

Hard

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.2 0.4 0.6 0.8
Accuracy Range

0.2 0.4 0.6 0.8
Accuracy Range

Performance Analysis: Qwen3 (8B) on Shortest Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.996 0.520 0.996 0.996 0.996 0.996 0.935

0.996 0.557 0.996 0.992 0.996 0.996 0.951

0.996 0.508 0.996 0.992 0.992 0.996 0.947

0.996 0.528 0.992 0.984 0.996 0.996 0.947

0.980 0.980 0.996 0.988 0.996 0.996 0.967

0.996 0.980 0.996 0.996 0.996 0.996 0.972

0.992 0.980 0.992 0.996 0.996 0.992 0.951

0.996 0.984 0.992 0.996 0.996 0.988 0.967

0.996 0.565 0.996 0.988 0.996 0.996 0.927

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.980 0.447 0.984 0.971 0.980 0.980 0.922

0.980 0.459 0.984 0.967 0.975 0.980 0.926

0.980 0.459 0.975 0.967 0.984 0.984 0.914

0.984 0.451 0.984 0.967 0.980 0.984 0.934

0.971 0.922 0.975 0.971 0.967 0.971 0.939

0.984 0.930 0.984 0.984 0.984 0.980 0.934

0.984 0.930 0.984 0.975 0.980 0.984 0.910

0.984 0.934 0.984 0.975 0.984 0.971 0.926

0.980 0.459 0.980 0.959 0.980 0.984 0.918

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.994 0.406 0.988 0.939 0.964 0.988 0.897

0.988 0.418 0.988 0.958 0.982 0.988 0.891

0.982 0.339 0.994 0.958 0.988 0.988 0.897

0.988 0.339 0.988 0.964 0.964 0.988 0.885

0.970 0.564 0.964 0.933 0.891 0.970 0.885

0.994 0.612 0.994 0.927 0.952 0.958 0.903

0.994 0.606 0.988 0.933 0.945 0.952 0.873

0.982 0.606 0.982 0.945 0.933 0.939 0.861

0.988 0.352 0.982 0.945 0.970 0.994 0.903

Hard

0.6 0.7 0.8 0.9
Accuracy Range

0.5 0.6 0.7 0.8 0.9
Accuracy Range

0.4 0.5 0.6 0.7 0.8 0.9
Accuracy Range

Performance Analysis: o4-mini on Shortest Best Performance
Second Best

Figure 22: Performance heatmaps for prompt strategies and serialization formats on the Shortest task
(Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

E.2.6 HEATMAPS FOR Triangle counting TASK

As shown in Figure 23 (featuring Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0) , Figure 24
(featuring Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B)), Figure 25 (featuring Qwen-2.5
(7B), o4-mini), the heatmaps compare different prompt strategies and graph serialization formats
under easy, medium, and hard difficulties for the Triangle counting task. The color intensity
encodes accuracy (darker = higher), and solid/dashed boxes highlight best/second–best combinations
respectively.

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.488 0.375 0.531 0.445 0.332 0.473 0.461

0.488 0.324 0.500 0.402 0.316 0.445 0.445

0.488 0.367 0.477 0.414 0.277 0.477 0.402

0.469 0.344 0.512 0.406 0.273 0.457 0.465

0.543 0.406 0.535 0.477 0.430 0.480 0.441

0.461 0.422 0.504 0.449 0.344 0.469 0.438

0.516 0.402 0.492 0.453 0.340 0.453 0.465

0.492 0.332 0.508 0.418 0.352 0.449 0.457

0.480 0.375 0.535 0.391 0.293 0.445 0.445

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.293 0.215 0.277 0.250 0.211 0.250 0.215

0.266 0.215 0.234 0.195 0.203 0.223 0.234

0.277 0.219 0.258 0.277 0.160 0.223 0.227

0.262 0.215 0.289 0.246 0.176 0.266 0.258

0.246 0.219 0.277 0.270 0.242 0.270 0.266

0.246 0.238 0.273 0.230 0.176 0.266 0.250

0.258 0.254 0.234 0.281 0.180 0.254 0.258

0.258 0.203 0.227 0.242 0.176 0.246 0.281

0.250 0.254 0.262 0.246 0.172 0.230 0.254

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.181 0.163 0.144 0.144 0.125 0.163 0.156

0.175 0.194 0.169 0.188 0.125 0.156 0.188

0.175 0.156 0.175 0.144 0.138 0.181 0.200

0.206 0.163 0.138 0.175 0.094 0.163 0.194

0.206 0.144 0.181 0.181 0.150 0.175 0.200

0.156 0.131 0.169 0.144 0.106 0.181 0.144

0.163 0.144 0.150 0.156 0.100 0.138 0.163

0.150 0.150 0.175 0.169 0.062 0.163 0.125

0.194 0.163 0.219 0.175 0.094 0.175 0.169

Hard

0.30 0.35 0.40 0.45 0.50
Accuracy Range

0.18 0.20 0.22 0.24 0.26 0.28
Accuracy Range

0.08 0.10 0.12 0.14 0.16 0.18 0.20
Accuracy Range

Performance Analysis: Claude-3.5 on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.438 0.336 0.438 0.391 0.367 0.391 0.445

0.430 0.336 0.434 0.418 0.391 0.434 0.398

0.391 0.340 0.414 0.395 0.363 0.352 0.340

0.363 0.309 0.445 0.422 0.375 0.434 0.469

0.402 0.332 0.375 0.305 0.324 0.340 0.363

0.414 0.270 0.391 0.227 0.281 0.254 0.234

0.344 0.285 0.387 0.277 0.281 0.301 0.297

0.418 0.320 0.363 0.301 0.297 0.250 0.273

0.414 0.344 0.453 0.434 0.395 0.449 0.434

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.211 0.180 0.234 0.223 0.168 0.246 0.211

0.215 0.172 0.223 0.207 0.219 0.215 0.188

0.250 0.168 0.227 0.219 0.160 0.203 0.191

0.223 0.160 0.238 0.227 0.219 0.207 0.188

0.246 0.172 0.219 0.191 0.199 0.164 0.168

0.195 0.133 0.172 0.227 0.184 0.160 0.148

0.223 0.152 0.184 0.258 0.180 0.191 0.176

0.230 0.164 0.227 0.211 0.207 0.176 0.188

0.207 0.172 0.234 0.223 0.188 0.254 0.191

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.131 0.119 0.138 0.144 0.131 0.219 0.125

0.181 0.150 0.188 0.144 0.156 0.169 0.138

0.144 0.125 0.156 0.175 0.138 0.169 0.150

0.138 0.075 0.163 0.125 0.163 0.169 0.188

0.094 0.075 0.106 0.131 0.069 0.131 0.087

0.075 0.056 0.113 0.144 0.062 0.075 0.069

0.113 0.075 0.081 0.125 0.100 0.113 0.106

0.113 0.131 0.150 0.138 0.113 0.119 0.106

0.119 0.100 0.200 0.131 0.131 0.163 0.150

Hard

0.25 0.30 0.35 0.40 0.45
Accuracy Range

0.14 0.16 0.18 0.20 0.22 0.24
Accuracy Range

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Accuracy Range

Performance Analysis: GPT-4o on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.180 0.176 0.207 0.207 0.230 0.230 0.086

0.188 0.172 0.227 0.289 0.211 0.227 0.250

0.199 0.164 0.234 0.223 0.168 0.242 0.227

0.227 0.180 0.195 0.203 0.242 0.133 0.047

0.145 0.141 0.176 0.215 0.195 0.215 0.113

0.105 0.184 0.098 0.184 0.254 0.242 0.262

0.227 0.145 0.090 0.160 0.074 0.234 0.207

0.145 0.180 0.148 0.164 0.148 0.043 0.059

0.203 0.152 0.242 0.211 0.262 0.238 0.242

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.117 0.051 0.121 0.160 0.117 0.145 0.090

0.094 0.078 0.152 0.137 0.137 0.133 0.141

0.113 0.074 0.125 0.117 0.102 0.137 0.113

0.102 0.102 0.113 0.141 0.109 0.059 0.043

0.133 0.098 0.152 0.168 0.125 0.098 0.055

0.129 0.082 0.062 0.141 0.039 0.055 0.137

0.070 0.094 0.113 0.145 0.094 0.059 0.062

0.113 0.105 0.137 0.062 0.082 0.082 0.051

0.125 0.066 0.121 0.160 0.109 0.129 0.113

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.050 0.031 0.062 0.094 0.075 0.050 0.031

0.081 0.094 0.056 0.106 0.069 0.094 0.075

0.056 0.044 0.075 0.075 0.050 0.100 0.044

0.062 0.050 0.069 0.075 0.056 0.037 0.006

0.050 0.031 0.144 0.044 0.069 0.037 0.031

0.081 0.013 0.131 0.069 0.056 0.019 0.037

0.044 0.013 0.100 0.062 0.013 0.025 0.031

0.025 0.037 0.069 0.037 0.050 0.025 0.019

0.037 0.031 0.087 0.087 0.056 0.081 0.050

Hard

0.05 0.10 0.15 0.20 0.25
Accuracy Range

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Accuracy Range

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Accuracy Range

Performance Analysis: GPT-4o-mini on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.551 0.539 0.523 0.527 0.500 0.539 0.605

0.562 0.215 0.578 0.609 0.535 0.570 0.613

0.559 0.297 0.574 0.543 0.539 0.555 0.570

0.613 0.188 0.547 0.586 0.535 0.508 0.539

0.586 0.527 0.598 0.488 0.496 0.535 0.465

0.484 0.527 0.473 0.492 0.426 0.488 0.445

0.441 0.539 0.539 0.488 0.422 0.465 0.414

0.500 0.219 0.480 0.480 0.422 0.512 0.523

0.512 0.266 0.543 0.613 0.555 0.547 0.574

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.328 0.238 0.305 0.340 0.297 0.324 0.324

0.324 0.109 0.289 0.375 0.289 0.324 0.359

0.305 0.113 0.332 0.355 0.281 0.281 0.305

0.352 0.082 0.359 0.371 0.246 0.273 0.270

0.293 0.266 0.293 0.258 0.297 0.359 0.309

0.270 0.219 0.277 0.293 0.258 0.320 0.242

0.281 0.254 0.277 0.285 0.250 0.262 0.262

0.289 0.062 0.305 0.305 0.230 0.285 0.289

0.309 0.090 0.297 0.387 0.297 0.301 0.293

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.113 0.119 0.125 0.181 0.181 0.219 0.194

0.138 0.044 0.175 0.237 0.181 0.244 0.163

0.150 0.031 0.163 0.212 0.169 0.188 0.181

0.169 0.006 0.206 0.231 0.156 0.188 0.219

0.175 0.100 0.188 0.188 0.156 0.144 0.206

0.156 0.094 0.200 0.163 0.106 0.150 0.212

0.175 0.094 0.150 0.188 0.113 0.125 0.138

0.119 0.006 0.181 0.156 0.138 0.131 0.194

0.144 0.044 0.175 0.181 0.131 0.212 0.181

Hard

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Accuracy Range

0.10 0.15 0.20 0.25 0.30 0.35
Accuracy Range

0.05 0.10 0.15 0.20
Accuracy Range

Performance Analysis: Gemini-2.0 on Triangle Best Performance
Second Best

Figure 23: Performance heatmaps for prompt strategies and serialization formats on the Triangle task
(Part 1). Models: Claude-3.5, GPT-4o, GPT-4o-mini, Gemini-2.0.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.090 0.078 0.105 0.090 0.141 0.148 0.121

0.043 0.031 0.043 0.133 0.062 0.086 0.109

0.023 0.031 0.027 0.035 0.023 0.031 0.031

0.090 0.082 0.098 0.094 0.121 0.152 0.133

0.074 0.094 0.152 0.105 0.102 0.094 0.070

0.121 0.094 0.121 0.137 0.137 0.109 0.129

0.145 0.129 0.156 0.156 0.145 0.137 0.133

0.117 0.129 0.078 0.129 0.133 0.105 0.145

0.031 0.039 0.027 0.055 0.043 0.070 0.082

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.027 0.023 0.031 0.035 0.047 0.059 0.035

0.023 0.047 0.035 0.051 0.035 0.055 0.051

0.023 0.016 0.020 0.008 0.023 0.035 0.023

0.023 0.023 0.027 0.051 0.051 0.059 0.043

0.008 0.000 0.023 0.020 0.016 0.012 0.004

0.031 0.027 0.027 0.043 0.039 0.016 0.027

0.020 0.027 0.020 0.051 0.062 0.020 0.016

0.020 0.051 0.047 0.055 0.062 0.035 0.035

0.004 0.023 0.020 0.020 0.016 0.016 0.039

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.013 0.031 0.019 0.037 0.031 0.069 0.025

0.019 0.019 0.044 0.037 0.013 0.031 0.025

0.019 0.006 0.006 0.019 0.006 0.013 0.019

0.025 0.031 0.006 0.044 0.037 0.000 0.013

0.000 0.000 0.000 0.019 0.000 0.000 0.006

0.025 0.031 0.000 0.000 0.019 0.000 0.006

0.044 0.006 0.019 0.019 0.019 0.006 0.006

0.019 0.019 0.031 0.031 0.044 0.013 0.006

0.013 0.025 0.000 0.037 0.013 0.000 0.013

Hard

0.04 0.06 0.08 0.10 0.12 0.14
Accuracy Range

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Accuracy Range

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Accuracy Range

Performance Analysis: Llama-3 (8B) on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.105 0.121 0.148 0.113 0.125 0.105 0.074

0.113 0.125 0.168 0.141 0.125 0.188 0.078

0.066 0.043 0.062 0.074 0.059 0.090 0.051

0.152 0.145 0.184 0.148 0.180 0.168 0.074

0.168 0.191 0.152 0.227 0.199 0.207 0.160

0.188 0.199 0.203 0.152 0.176 0.172 0.160

0.238 0.188 0.285 0.254 0.270 0.223 0.211

0.113 0.168 0.203 0.273 0.258 0.180 0.195

0.078 0.055 0.051 0.086 0.105 0.145 0.070

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.082 0.082 0.051 0.090 0.098 0.051 0.039

0.121 0.117 0.074 0.121 0.074 0.141 0.059

0.035 0.039 0.035 0.039 0.031 0.070 0.023

0.078 0.082 0.062 0.070 0.086 0.066 0.082

0.055 0.086 0.086 0.102 0.090 0.059 0.102

0.094 0.102 0.094 0.090 0.102 0.078 0.102

0.148 0.121 0.129 0.133 0.215 0.117 0.102

0.090 0.129 0.125 0.156 0.141 0.113 0.117

0.059 0.031 0.035 0.051 0.035 0.059 0.051

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.037 0.056 0.050 0.069 0.062 0.056 0.037

0.094 0.031 0.062 0.094 0.113 0.100 0.044

0.019 0.006 0.019 0.025 0.031 0.044 0.025

0.037 0.056 0.031 0.044 0.050 0.044 0.044

0.037 0.019 0.044 0.069 0.044 0.013 0.044

0.044 0.056 0.094 0.037 0.044 0.025 0.019

0.100 0.037 0.119 0.106 0.131 0.031 0.056

0.044 0.075 0.075 0.056 0.037 0.037 0.013

0.025 0.025 0.031 0.037 0.056 0.044 0.013

Hard

0.05 0.10 0.15 0.20 0.25
Accuracy Range

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Accuracy Range

0.02 0.04 0.06 0.08 0.10 0.12
Accuracy Range

Performance Analysis: Llama-3.1 (8B) on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.125 0.066 0.098 0.098 0.102 0.117 0.125

0.105 0.066 0.102 0.090 0.105 0.109 0.113

0.004 0.035 0.012 0.008 0.016 0.012 0.004

0.137 0.098 0.109 0.109 0.129 0.148 0.133

0.117 0.117 0.133 0.129 0.141 0.109 0.152

0.180 0.129 0.164 0.133 0.160 0.176 0.207

0.176 0.148 0.160 0.230 0.191 0.176 0.172

0.195 0.180 0.199 0.164 0.188 0.129 0.172

0.117 0.059 0.078 0.082 0.066 0.086 0.090

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.070 0.043 0.055 0.047 0.035 0.078 0.094

0.047 0.074 0.055 0.066 0.055 0.059 0.066

0.008 0.012 0.012 0.004 0.016 0.016 0.000

0.062 0.078 0.070 0.082 0.090 0.082 0.078

0.031 0.051 0.059 0.047 0.051 0.039 0.012

0.078 0.031 0.109 0.074 0.074 0.051 0.039

0.086 0.055 0.117 0.102 0.113 0.090 0.066

0.105 0.043 0.113 0.062 0.113 0.027 0.016

0.086 0.051 0.039 0.043 0.039 0.059 0.066

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.031 0.031 0.050 0.037 0.031 0.031 0.081

0.031 0.037 0.044 0.031 0.044 0.031 0.006

0.000 0.019 0.006 0.000 0.006 0.000 0.000

0.025 0.044 0.056 0.037 0.013 0.069 0.056

0.013 0.013 0.025 0.019 0.006 0.013 0.000

0.031 0.025 0.019 0.006 0.019 0.019 0.006

0.037 0.019 0.050 0.044 0.019 0.013 0.019

0.031 0.013 0.025 0.025 0.037 0.000 0.000

0.019 0.031 0.037 0.044 0.037 0.031 0.013

Hard

0.05 0.10 0.15 0.20
Accuracy Range

0.00 0.02 0.04 0.06 0.08 0.10
Accuracy Range

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Accuracy Range

Performance Analysis: Mistral (7B) on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.035 0.039 0.043 0.078 0.102 0.000 0.086

0.000 0.000 0.008 0.004 0.043 0.004 0.020

0.172 0.137 0.199 0.176 0.227 0.242 0.164

0.082 0.020 0.176 0.203 0.152 0.008 0.027

0.070 0.152 0.051 0.156 0.086 0.129 0.184

0.102 0.254 0.043 0.227 0.059 0.129 0.184

0.172 0.277 0.117 0.160 0.133 0.176 0.188

0.184 0.320 0.172 0.258 0.254 0.125 0.227

0.066 0.090 0.148 0.141 0.238 0.238 0.164

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.008 0.008 0.000 0.031 0.055 0.000 0.043

0.000 0.004 0.004 0.004 0.023 0.004 0.004

0.090 0.066 0.066 0.109 0.074 0.113 0.090

0.047 0.012 0.094 0.051 0.086 0.004 0.016

0.016 0.105 0.039 0.094 0.062 0.105 0.121

0.039 0.109 0.016 0.137 0.043 0.105 0.125

0.152 0.191 0.094 0.105 0.078 0.148 0.125

0.098 0.195 0.094 0.223 0.148 0.102 0.133

0.051 0.082 0.098 0.105 0.105 0.137 0.062

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.000 0.000 0.006 0.000 0.025 0.000 0.006

0.006 0.000 0.000 0.006 0.000 0.006 0.006

0.006 0.031 0.013 0.069 0.019 0.069 0.019

0.013 0.006 0.050 0.056 0.025 0.006 0.006

0.019 0.062 0.013 0.050 0.006 0.025 0.044

0.013 0.044 0.006 0.094 0.031 0.069 0.081

0.094 0.056 0.044 0.044 0.119 0.087 0.056

0.069 0.163 0.075 0.175 0.138 0.069 0.113

0.075 0.031 0.087 0.056 0.069 0.106 0.031

Hard

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Accuracy Range

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Accuracy Range

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Accuracy Range

Performance Analysis: Phi-4 (14B) on Triangle Best Performance
Second Best

Figure 24: Performance heatmaps for prompt strategies and serialization formats on the Triangle task
(Part 2). Models: Llama-3 (8B), Llama-3.1 (8B), Mistral (7B), Phi-4 (14B).

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.448 0.226 0.071 0.379 0.167 0.231 0.276

0.562 0.167 0.500 0.182 0.500 0.545 0.222

0.200 0.250 0.083 0.333 0.312 0.409 0.375

0.759 0.333 0.478 0.632 0.556 0.571 0.200

0.312 0.105 0.192 0.286 0.333 0.750 0.125

0.316 0.462 0.125 0.250 0.222 0.423 0.750

0.400 0.250 0.222 0.071 0.600 0.405 0.583

0.429 0.219 0.250 0.263 0.500 0.647 0.551

0.205 0.583 0.471 0.538 0.444 0.500 0.286

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.174 0.105 0.167 0.071 0.000 0.088 0.105

0.235 0.050 0.261 0.241 0.176 0.231 0.286

0.200 0.077 0.130 0.222 0.077 0.300 0.167

0.000 0.176 0.125 0.400 0.154 0.393 0.000

0.053 0.000 0.000 0.125 0.100 0.071 0.100

0.067 0.091 0.056 0.067 0.111 0.259 0.062

0.091 0.083 0.130 0.062 0.000 0.276 0.222

0.176 0.000 0.087 0.095 0.000 0.353 0.250

0.167 0.000 0.167 0.273 0.294 0.312 0.333

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.000 0.059 0.000 0.000 0.000 0.111 0.000

0.000 0.000 0.333 0.000 0.028 0.167 0.000

0.000 0.000 0.077 0.000 0.077 0.077 0.174

0.000 0.065 0.032 0.000 0.037 0.091 0.115

0.000 0.000 0.043 0.000 0.056 0.071 0.000

0.000 0.083 0.095 0.000 0.105 0.062 0.100

0.000 0.150 0.000 0.000 0.000 0.167 0.000

0.000 0.100 0.000 0.000 0.059 0.100 0.000

0.000 0.000 0.042 0.143 0.034 0.000 0.125

Hard

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Accuracy Range

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Accuracy Range

Performance Analysis: Qwen2.5 (72B) on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.148 0.109 0.156 0.090 0.117 0.172 0.121

0.207 0.133 0.246 0.199 0.172 0.223 0.199

0.160 0.160 0.141 0.102 0.125 0.156 0.172

0.125 0.109 0.141 0.145 0.082 0.207 0.145

0.219 0.254 0.238 0.230 0.219 0.184 0.211

0.242 0.234 0.293 0.219 0.203 0.191 0.270

0.258 0.270 0.223 0.270 0.246 0.172 0.219

0.203 0.219 0.191 0.238 0.199 0.219 0.199

0.168 0.121 0.168 0.148 0.176 0.199 0.121

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.066 0.047 0.059 0.031 0.078 0.113 0.055

0.090 0.074 0.082 0.082 0.082 0.113 0.133

0.066 0.078 0.066 0.051 0.090 0.066 0.059

0.082 0.094 0.047 0.070 0.031 0.074 0.066

0.086 0.121 0.105 0.094 0.094 0.078 0.098

0.125 0.082 0.117 0.105 0.160 0.098 0.074

0.105 0.074 0.133 0.121 0.137 0.082 0.086

0.160 0.105 0.125 0.168 0.137 0.121 0.105

0.086 0.055 0.094 0.109 0.094 0.094 0.109

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.037 0.031 0.037 0.031 0.013 0.044 0.025

0.050 0.025 0.062 0.025 0.075 0.125 0.094

0.019 0.013 0.025 0.019 0.062 0.031 0.025

0.019 0.037 0.019 0.081 0.050 0.050 0.044

0.025 0.037 0.031 0.037 0.031 0.050 0.019

0.081 0.037 0.056 0.019 0.044 0.062 0.031

0.069 0.044 0.044 0.044 0.056 0.025 0.019

0.062 0.025 0.056 0.094 0.075 0.106 0.044

0.056 0.050 0.037 0.069 0.031 0.044 0.025

Hard

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
Accuracy Range

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Accuracy Range

0.02 0.04 0.06 0.08 0.10 0.12
Accuracy Range

Performance Analysis: Qwen2.5 (7B) on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.203 0.211 0.262 0.223 0.305 0.379 0.250

0.199 0.172 0.215 0.301 0.258 0.445 0.426

0.215 0.203 0.188 0.270 0.250 0.414 0.395

0.207 0.172 0.215 0.266 0.227 0.445 0.375

0.438 0.438 0.520 0.406 0.418 0.617 0.555

0.707 0.621 0.738 0.664 0.641 0.789 0.785

0.629 0.535 0.629 0.641 0.535 0.754 0.730

0.430 0.332 0.551 0.469 0.465 0.625 0.723

0.234 0.242 0.172 0.266 0.246 0.402 0.426

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.277 0.234 0.203 0.137 0.219 0.191 0.172

0.152 0.152 0.188 0.199 0.219 0.270 0.234

0.195 0.219 0.191 0.188 0.199 0.191 0.172

0.195 0.238 0.188 0.176 0.219 0.223 0.223

0.352 0.230 0.332 0.234 0.289 0.301 0.336

0.445 0.297 0.496 0.344 0.414 0.484 0.484

0.379 0.188 0.426 0.371 0.391 0.441 0.422

0.320 0.219 0.352 0.254 0.297 0.383 0.461

0.172 0.219 0.160 0.176 0.207 0.254 0.184

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.206 0.119 0.194 0.163 0.175 0.225 0.125

0.150 0.188 0.212 0.125 0.169 0.131 0.144

0.119 0.169 0.188 0.163 0.169 0.175 0.113

0.163 0.212 0.231 0.175 0.250 0.163 0.163

0.181 0.144 0.206 0.194 0.200 0.206 0.175

0.338 0.169 0.312 0.244 0.256 0.350 0.294

0.256 0.169 0.250 0.231 0.263 0.263 0.244

0.263 0.188 0.263 0.144 0.169 0.231 0.263

0.163 0.163 0.156 0.106 0.181 0.156 0.150

Hard

0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Range

0.15 0.20 0.25 0.30 0.35 0.40 0.45
Accuracy Range

0.15 0.20 0.25 0.30 0.35
Accuracy Range

Performance Analysis: Qwen3 (8B) on Triangle Best Performance
Second Best

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.848 0.828 0.848 0.840 0.859 0.852 0.891

0.840 0.816 0.848 0.828 0.832 0.824 0.875

0.840 0.855 0.848 0.848 0.859 0.824 0.887

0.855 0.836 0.887 0.855 0.863 0.852 0.855

0.797 0.820 0.840 0.809 0.828 0.824 0.871

0.863 0.859 0.852 0.883 0.820 0.871 0.883

0.832 0.840 0.828 0.832 0.848 0.863 0.855

0.832 0.855 0.828 0.859 0.805 0.836 0.867

0.801 0.820 0.867 0.852 0.816 0.820 0.891

Easy

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.477 0.336 0.473 0.543 0.500 0.535 0.535

0.457 0.355 0.500 0.500 0.488 0.496 0.570

0.461 0.363 0.516 0.543 0.504 0.520 0.516

0.551 0.410 0.531 0.535 0.461 0.539 0.602

0.457 0.383 0.422 0.469 0.473 0.484 0.527

0.453 0.398 0.477 0.523 0.477 0.512 0.574

0.449 0.363 0.422 0.500 0.445 0.469 0.520

0.469 0.383 0.477 0.523 0.445 0.457 0.555

0.488 0.348 0.523 0.551 0.445 0.516 0.531

Medium

AL AM AS EL ES GMaL GMoL

Serialization Formats

0-Algorithm

0-CoT

0-Instruct

0-Shot

Algorithm

CoT

Instruct

K-Shot

LTM

Pr
om

pt
 S

ch
em

es

0.188 0.075 0.212 0.188 0.169 0.244 0.231

0.194 0.081 0.188 0.244 0.175 0.219 0.263

0.175 0.081 0.194 0.188 0.169 0.194 0.219

0.188 0.050 0.200 0.237 0.200 0.188 0.250

0.163 0.056 0.181 0.131 0.138 0.169 0.256

0.156 0.062 0.219 0.206 0.169 0.231 0.206

0.144 0.025 0.163 0.144 0.119 0.169 0.212

0.200 0.044 0.200 0.206 0.175 0.219 0.250

0.156 0.037 0.194 0.212 0.194 0.194 0.244

Hard

0.80 0.82 0.84 0.86 0.88
Accuracy Range

0.35 0.40 0.45 0.50 0.55 0.60
Accuracy Range

0.05 0.10 0.15 0.20 0.25
Accuracy Range

Performance Analysis: o4-mini on Triangle Best Performance
Second Best

Figure 25: Performance heatmaps for prompt strategies and serialization formats on the Triangle task
(Part 3). Models: Qwen-2.5 (72B), Qwen-2.5 (7B), Qwen-3 (8B), o4-mini.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

E.3 GRAPH TYPE SENSITIVITY ANALYSIS

While our main heatmaps analyze interactions between serialization formats and prompt schemes,
the role of graph types in cross-factor analysis requires a different approach. Creating individual
heatmaps for each graph type × task × difficulty combination would yield over 100+ visualizations,
which would be comprehensive but impractical for interpretation. Instead, we introduce a sensitivity-
based framework that quantifies how graph types respond to factor variations while maintaining both
interpretability and extensibility.

Methodology. For each graph type in a given task-difficulty setting, we compute two metrics by
averaging across all models:

• Prompt Sensitivity (Sp): For each serialization format, we calculate the standard deviation of
accuracy across different prompt schemes, then average over all formats. This measures how much
performance fluctuates when changing prompts.

• Format Sensitivity (Sf): Symmetrically, for each prompt scheme, we calculate the standard
deviation across serialization formats, then average over all prompts.

We visualize each task-difficulty combination as a scatter plot in (Sp, Sf) space, where each bubble
represents a graph type, and color encodes mean performance. Using median splits, we partition the
space into four interpretable quadrants: Robust (low Sp, low Sf), Prompt-Critical (high Sp, low Sf),
Format-Critical (low Sp, high Sf), and Both Critical (high Sp, high Sf).

Key Findings: Figures 26–31 present plots covering all task-difficulty combinations. Based on the
analysis of these data, we arrive at the following insights.

1. Open-source models are much more prompt-sensitive than closed-source ones. Across
different tasks, the prompt sensitivity range of open-source models is consistently larger
than that of closed-source models. For example, in the BFS order – Medium setting, the
prompt sensitivity typically falls between 0.12 and 0.16, whereas that of open-source models
ranges only from 0.02 to 0.05. This indicates that closed-source models rely more heavily
on using an appropriate serialization format to achieve strong performance.

2. Closed-source models are more sensitive to serialization format than open-source
models. Across tasks, the format sensitivity range of closed-source models is generally
higher. For instance, in the Diameter calculation – Easy setting, format sensitivity
falls between 0.03 and 0.06, whereas open-source models range from 0.15 to 0.19. This
suggests that open-source models depend more on advanced prompt-engineering strategies
to improve performance, while closed-source models gain more from suitable serialization
formatting.

Notably, the difference in sensitivity between open-source and closed-source models can be explained
by how LLMs typically process graph reasoning tasks, which can be viewed as involving two stages:
(i) understanding the task itself, and (ii) interpreting the graph-structured input. Closed-source models,
due to their stronger reasoning capabilities, encounter fewer difficulties in task understanding; as a
result, they are more sensitive to the information contained in the graph data—i.e., the serialization
format. In contrast, task understanding plays a more significant role for open-source models, and
prompts exert a more direct influence on this stage than serialization formatting, leading to their
higher prompt sensitivity. This interpretation is also consistent with our earlier finding—Finding
3: Open-source models benefit from multi-shot exemplars, whereas closed-source models do not.
Closed-source models do not require additional exemplars to grasp the task, whereas open-source
models rely more on examples to enhance task comprehension.

Extensibility. This framework directly supports GraphOmni’s extensible design. When adding new
graph families (e.g., real-world networks), researchers can apply the same analytical pipeline to
assess sensitivity profiles before conducting full evaluations. Complete implementation details and
visualization scripts are available in our code repository.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

0.04 0.05 0.06 0.07 0.08
Prompt Sensitivity

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

BFS order - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP

SF

0.76

0.78

0.80

0.82

M
ea

n
Pe

rf
or

m
an

ce
(a) Easy - Closed-Source Models

0.10 0.12 0.14 0.16
Prompt Sensitivity

0.05

0.06

0.07

0.08

0.09

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

BFS order - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP

SF

0.16

0.18

0.20

0.22

0.24

0.26

0.28

M
ea

n
Pe

rf
or

m
an

ce

(b) Easy - Open-Source Models

0.055 0.060 0.065 0.070 0.075 0.080 0.085
Prompt Sensitivity

0.12

0.13

0.14

0.15

0.16

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

BFS order - Medium Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP

SF

0.45

0.50

0.55

0.60

0.65

0.70

M
ea

n
Pe

rf
or

m
an

ce

(c) Medium - Closed-Source Models

0.03 0.04 0.05 0.06 0.07
Prompt Sensitivity

0.02

0.03

0.04

0.05
Fo

rm
at

 S
en

si
ti

vi
ty

Format-Critical Both Critical

Robust Prompt-Critical

BFS order - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP SF

0.05

0.06

0.07

0.08

0.09

0.10

0.11

M
ea

n
Pe

rf
or

m
an

ce

(d) Medium - Open-Source Models

0.03 0.04 0.05 0.06 0.07 0.08 0.09
Prompt Sensitivity

0.08

0.10

0.12

0.14

0.16

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

BFS order - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP
SF

0.1

0.2

0.3

0.4

0.5

M
ea

n
Pe

rf
or

m
an

ce

(e) Hard - Closed-Source Models

0.00 0.01 0.02 0.03 0.04
Prompt Sensitivity

0.00

0.01

0.02

0.03

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

BFS order - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP

SF

0.005

0.010

0.015

0.020

0.025

0.030

0.035
M

ea
n

Pe
rf

or
m

an
ce

(f) Hard - Open-Source Models

Figure 26: Graph type sensitivity analysis for BFS order task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model
categories.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
Prompt Sensitivity

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Connectivity - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BERM

BERP

ERM
ERP

0.920

0.925

0.930

0.935

0.940

0.945

0.950

0.955

M
ea

n
Pe

rf
or

m
an

ce
(a) Easy - Closed-Source Models

0.075 0.080 0.085 0.090 0.095 0.100 0.105
Prompt Sensitivity

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Connectivity - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BERM

BERP

ERM

ERP

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

M
ea

n
Pe

rf
or

m
an

ce

(b) Easy - Open-Source Models

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045
Prompt Sensitivity

0.02

0.03

0.04

0.05

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Connectivity - Medium Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BERM

BERP

ERM

ERP

0.925

0.930

0.935

0.940

0.945

0.950

0.955

0.960

M
ea

n
Pe

rf
or

m
an

ce

(c) Medium - Closed-Source Models

0.08 0.09 0.10 0.11 0.12
Prompt Sensitivity

0.045

0.050

0.055

0.060

0.065

0.070

0.075

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Connectivity - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BERM

BERP

ERM

ERP

0.70

0.72

0.74

0.76

0.78

M
ea

n
Pe

rf
or

m
an

ce

(d) Medium - Open-Source Models

0.020 0.025 0.030 0.035 0.040 0.045 0.050
Prompt Sensitivity

0.02

0.04

0.06

0.08

0.10

0.12

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Connectivity - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BERM

BERP

ERM

ERP

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ea

n
Pe

rf
or

m
an

ce

(e) Hard - Closed-Source Models

0.06 0.08 0.10 0.12 0.14
Prompt Sensitivity

0.05

0.06

0.07

0.08

0.09

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Connectivity - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BERM

BERP

ERM

ERP

0.55

0.60

0.65

0.70

0.75
M

ea
n

Pe
rf

or
m

an
ce

(f) Hard - Open-Source Models

Figure 27: Graph type sensitivity analysis for Connectivity task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model
categories.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075
Prompt Sensitivity

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Cycle - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

BERM
BERP

ERM

ERP

SF

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

M
ea

n
Pe

rf
or

m
an

ce
(a) Easy - Closed-Source Models

0.09 0.10 0.11 0.12 0.13 0.14 0.15
Prompt Sensitivity

0.04

0.05

0.06

0.07

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Cycle - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

BERM
BERP

ERM

ERP

SF

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

M
ea

n
Pe

rf
or

m
an

ce

(b) Easy - Open-Source Models

0.04 0.05 0.06 0.07 0.08
Prompt Sensitivity

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Cycle - Medium Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

BERM

BERP

ERM

ERP

SF

0.70

0.72

0.74

0.76

0.78

M
ea

n
Pe

rf
or

m
an

ce

(c) Medium - Closed-Source Models

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Prompt Sensitivity

0.030

0.035

0.040

0.045

0.050

0.055

0.060
Fo

rm
at

 S
en

si
ti

vi
ty

Format-Critical Both Critical

Robust Prompt-Critical

Cycle - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG BERM

BERP

ERM

ERP

SF

0.52

0.53

0.54

0.55

0.56

0.57

0.58

M
ea

n
Pe

rf
or

m
an

ce

(d) Medium - Open-Source Models

0.03 0.04 0.05 0.06 0.07
Prompt Sensitivity

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Cycle - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

BERM

BERP

ERM

ERP SF

0.66

0.68

0.70

0.72

0.74

0.76

0.78

M
ea

n
Pe

rf
or

m
an

ce

(e) Hard - Closed-Source Models

0.06 0.08 0.10 0.12
Prompt Sensitivity

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Cycle - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

BERM

BERP

ERM

ERP

SF

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55
M

ea
n

Pe
rf

or
m

an
ce

(f) Hard - Open-Source Models

Figure 28: Graph type sensitivity analysis for Cycle task, comparing open-source and closed-source
models. This comparison reveals whether sensitivity patterns are consistent across model categories.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

0.030 0.035 0.040 0.045 0.050 0.055 0.060
Prompt Sensitivity

0.04

0.05

0.06

0.07

0.08

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Diameter - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM

ERP

SF

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

M
ea

n
Pe

rf
or

m
an

ce
(a) Easy - Closed-Source Models

0.15 0.16 0.17 0.18 0.19
Prompt Sensitivity

0.03

0.04

0.05

0.06

0.07

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Diameter - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM

ERPSF

0.34

0.36

0.38

0.40

0.42

M
ea

n
Pe

rf
or

m
an

ce

(b) Easy - Open-Source Models

0.03 0.04 0.05 0.06 0.07
Prompt Sensitivity

0.06

0.07

0.08

0.09

0.10

0.11

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Diameter - Medium Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM

ERP

SF

0.46

0.48

0.50

0.52

0.54

M
ea

n
Pe

rf
or

m
an

ce

(c) Medium - Closed-Source Models

0.10 0.11 0.12 0.13 0.14
Prompt Sensitivity

0.030

0.035

0.040

0.045

0.050
Fo

rm
at

 S
en

si
ti

vi
ty

Format-Critical Both Critical

Robust Prompt-Critical

Diameter - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM

ERP SF

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

M
ea

n
Pe

rf
or

m
an

ce

(d) Medium - Open-Source Models

0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080
Prompt Sensitivity

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Diameter - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM

ERP

SF

0.30

0.32

0.34

0.36

0.38

0.40

0.42

M
ea

n
Pe

rf
or

m
an

ce

(e) Hard - Closed-Source Models

0.065 0.070 0.075 0.080 0.085 0.090 0.095
Prompt Sensitivity

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Diameter - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM

ERP
SF

0.11

0.12

0.13

0.14

0.15

0.16
M

ea
n

Pe
rf

or
m

an
ce

(f) Hard - Open-Source Models

Figure 29: Graph type sensitivity analysis for Diameter task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model
categories.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

0.05 0.06 0.07 0.08 0.09
Prompt Sensitivity

0.08

0.09

0.10

0.11

0.12

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Shortest path - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP

SF

0.84

0.85

0.86

0.87

0.88

0.89

M
ea

n
Pe

rf
or

m
an

ce
(a) Easy - Closed-Source Models

0.18 0.20 0.22 0.24 0.26 0.28 0.30
Prompt Sensitivity

0.12

0.14

0.16

0.18

0.20

0.22

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Shortest path - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM
BERP

ERM

ERP

SF

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

M
ea

n
Pe

rf
or

m
an

ce

(b) Easy - Open-Source Models

0.035 0.040 0.045 0.050 0.055 0.060 0.065
Prompt Sensitivity

0.10

0.12

0.14

0.16

0.18

0.20

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Shortest path - Medium Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP

ERM

ERP

SF

0.76

0.78

0.80

0.82

0.84

M
ea

n
Pe

rf
or

m
an

ce

(c) Medium - Closed-Source Models

0.12 0.14 0.16 0.18 0.20 0.22 0.24
Prompt Sensitivity

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Shortest path - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM
BERP

ERM

ERP

SF

0.24

0.26

0.28

0.30

0.32

0.34

0.36

M
ea

n
Pe

rf
or

m
an

ce

(d) Medium - Open-Source Models

0.02 0.03 0.04 0.05 0.06 0.07
Prompt Sensitivity

0.10

0.15

0.20

0.25

0.30

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Shortest path - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG
BERM

BERP

ERM

ERP

SF

0.68

0.70

0.72

0.74

0.76

0.78

0.80

M
ea

n
Pe

rf
or

m
an

ce

(e) Hard - Closed-Source Models

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Prompt Sensitivity

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Shortest path - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAF

BAG

BERM

BERP
ERM

ERP

SF

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350
M

ea
n

Pe
rf

or
m

an
ce

(f) Hard - Open-Source Models

Figure 30: Graph type sensitivity analysis for Shortest path task, comparing open-source and closed-
source models. This comparison reveals whether sensitivity patterns are consistent across model
categories.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

0.02 0.03 0.04 0.05 0.06 0.07
Prompt Sensitivity

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Triangle - Easy Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM ERP

SF

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
Pe

rf
or

m
an

ce
(a) Easy - Closed-Source Models

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Prompt Sensitivity

0.01

0.02

0.03

0.04

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Triangle - Easy Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM

ERP

SF

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

M
ea

n
Pe

rf
or

m
an

ce

(b) Easy - Open-Source Models

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Prompt Sensitivity

0.02

0.03

0.04

0.05

0.06

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Triangle - Medium Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM ERP

SF

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

M
ea

n
Pe

rf
or

m
an

ce

(c) Medium - Closed-Source Models

0.010 0.015 0.020 0.025 0.030 0.035 0.040
Prompt Sensitivity

0.005

0.010

0.015

0.020

0.025

0.030

Fo
rm

at
 S

en
si

ti
vi

ty
Format-Critical Both Critical

Robust Prompt-Critical

Triangle - Medium Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

ERMERP

SF

0.05

0.06

0.07

0.08

0.09

0.10

M
ea

n
Pe

rf
or

m
an

ce

(d) Medium - Open-Source Models

0.015 0.020 0.025 0.030 0.035
Prompt Sensitivity

0.01

0.02

0.03

0.04

0.05

0.06

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Triangle - Hard Mode (Closed-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM
ERP

SF

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

M
ea

n
Pe

rf
or

m
an

ce

(e) Hard - Closed-Source Models

0.00750.01000.01250.01500.01750.02000.02250.02500.0275
Prompt Sensitivity

0.005

0.010

0.015

0.020

0.025

Fo
rm

at
 S

en
si

ti
vi

ty

Format-Critical Both Critical

Robust Prompt-Critical

Triangle - Hard Mode (Open-Source Models)
Graph Type Sensitivity Analysis

BAG

ERM
ERP

SF

0.030

0.032

0.034

0.036

0.038

0.040

0.042

0.044
M

ea
n

Pe
rf

or
m

an
ce

(f) Hard - Open-Source Models

Figure 31: Graph type sensitivity analysis for Triangle task, comparing open-source and closed-source
models. This comparison reveals whether sensitivity patterns are consistent across model categories.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

E.4 ERROR ANALYSIS

This subsection presents an in-depth analysis of common error patterns observed in model responses.
We categorize representative error cases and provide concrete examples to illustrate the specific
challenges LLMs face in graph reasoning tasks. This detailed error analysis extends the brief
discussion of error categories presented in Result ❸ in Section 4.1.

E.4.1 Diameter calculation CASE 1

Diameter
• QUERY: Given a graph, your task is to determine the diameter of this graph. Graph: Adjacency Matrix

is
[[0 1 1 1 1 1 1 1 1]
[1 0 1 0 1 1 1 1 1]
[1 1 0 1 1 1 1 1 1]
[1 0 1 0 1 1 1 1 1]
[1 1 1 1 0 1 1 1 1]
[1 1 1 1 1 0 1 1 1]
[1 1 1 1 1 1 0 1 1]
[1 1 1 1 1 1 1 0 1]
[1 1 1 1 1 1 1 1 0]]
Q: What is the diameter of this graph?
A:

• TASK INFO: diameter,easy , 0-shot, Adjacency Matrix
• GROUND TRUTH: 2.0
• MODEL: Mistral
• WRONG ANSWER: the diameter of the given graph is 7.

explanation: to find the diameter of a graph, we first find the shortest path between every pair of vertices
using a shortest path algorithm like dijkstra’s or floyd-warshall. however, since the graph is unweighted,
we can find the diameter by simply considering the longest path between any two vertices.
in this case, the longest path we can find is: - vertex 0 -> vertex 1 -> vertex 2 -> vertex 3 -> vertex 4 ->
vertex 5 -> vertex 6 -> vertex 7 -> vertex 8
the number of edges in this path is 8 - 1 = 7, so the diameter of the graph is 7.

• ERROR CAUSE ANALYSIS: This answer does not accurately define the concept of diameter. In the
reasoning process, it mentions "first find the shortest path between every pair of vertices," which is
correct. However, the final description refers to "the longest path," which can be misleading. In fact,
the diameter is defined as the longest of all shortest paths rather than the longest path between any two
vertices. Therefore, this explanation does not fully align with the formal definition of diameter.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

E.4.2 Diameter calculation CASE 2

Diameter
• QUERY: Given a graph, your task is to determine the diameter of this graph. Graph: Adjacency List is

{0: [1, 2, 3, 4, 5, 8, 10, 11, 13, 15], 1: [0, 2, 3, 4, 5, 6, 13, 15], 2: [0, 1, 3, 4, 5, 6, 7, 9, 12, 14], 3: [0, 1, 2,
4, 5, 7, 11, 13, 14], 4: [0, 1, 2, 3, 5, 6, 7, 8, 17], 5: [0, 1, 2, 3, 4, 8, 9], 6: [2, 1, 4, 9], 7: [2, 4, 3, 10, 14,
15, 16], 8: [5, 4, 0, 12, 16, 17], 9: [6, 2, 5, 10, 11, 12], 10: [0, 9, 7], 11: [3, 9, 0], 12: [2, 9, 8], 13: [3, 0,
1], 14: [2, 3, 7], 15: [7, 1, 0, 16], 16: [15, 7, 8, 17], 17: [16, 8, 4]}
Q: What is the diameter of this graph?
A: Let’s break down this problem:

• TASK INFO: diameter, medium, LTM, Adjacency List
• GROUND TRUTH: 3.0
• MODEL: Qwen-3
• WRONG ANSWER:

To determine the **diameter** of a graph, we must identify the **longest shortest path** between any
two nodes in the graph. This involves computing the **shortest path** between all pairs of nodes and
then finding the **maximum** of these values.
—
Step 1: Understanding the Graph The graph is represented as an **adjacency list** with 18 nodes
(0 through 17). The graph appears to be **connected**, which is essential for the diameter to be
well-defined. We will use **Breadth-First Search (BFS)** from each node to compute the shortest
paths to all other nodes.
—
Step 2: Strategy - For each node, perform BFS to find the shortest distances to all other nodes. -
Keep track of the **maximum shortest distance** found across all node pairs. - The **maximum** of
these distances is the **diameter**.
—
Step 3: Key Observations and Calculations Through careful inspection and BFS traversal, the
longest shortest path was found to be between the following pairs of nodes:
- **Node 12 to Node 15**: Path: 12 → 9 → 5 → 0 → 15 (4 steps) Alternatively: 12 → 8 → 4 → 1 →
15 (4 steps)
- **Node 9 to Node 16**: Path: 9 → 2 → 4 → 8 → 16 (4 steps)
- **Node 12 to Node 15** and **Node 9 to Node 16** are two such pairs where the **shortest path is
exactly 4 steps**.
Other pairs were found to have shorter distances (e.g., 2 or 3 steps). No pair was found to have a shortest
path longer than 4 steps.
—
Final Result Since the **longest shortest path** in the graph is **4 steps**, the **diameter** of
the graph is:
$$ {4} $$

• ERROR CAUSE ANALYSIS: This result fails to find a shorter path because it ignores the two critical
edges 7-15 and 7-16 in the graph.12 To 15 there is actually a 3-step shorter path: e.g., 12 → 2 → 7 →
15. For 9 to 16 there is a 3-step path: 9 → 10 → 7 → 16. Once these two edges are taken into account,
it can be seen that no two points in the graph have a shortest path of more than 3 steps. these two edges
into account, it follows that no two points in the graph have shorter paths than 3 steps. Therefore, the
diameter of the graph is indeed 3, not 4.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

E.4.3 Connectivity CASE 1

Connectivity

• QUERY: Determine if there is a path between two nodes in the graph. Graph: Edge List is
3 1
4 2
5 4
6 5
7 5
Q: Is there a path between node 1 and node 5?
A:
Let’s break down this problem:

• TASK INFO: connectivity, easy, LTM, Edge List
• MODEL: Mistral
• GROUND TRUTH: False
• WRONG ANSWER:

1. we have a graph with 7 nodes (1 to 7) and 6 edges.
2. to find a path between two nodes, we can use depth-first search (dfs) or breadth-first search (bfs).
both algorithms will help us traverse the graph and find a path if one exists.
3. in this case, we will use dfs because it is more efficient for sparse graphs like this one.
4. we start at node 1. since there is an edge from node 1 to node 4, we visit node 4.
5. from node 4, we find an edge to node 5, so we have found a path from node 1 to node 5.
6. therefore, there is a path between nodes 1 and 5 in the graph.
so the answer is: yes, there is a path between node 1 and node 5.

• ERROR CAUSE ANALYSIS: This answer misunderstands the EL serialization format. Although it
correctly states the number of nodes and edges, it incorrectly assumes that there is an edge between
nodes 1 and 4. This mistake leads to incorrect conclusions in the subsequent reasoning.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

E.4.4 Cycle detection CASE 1

Cycle

• QUERY: Given a graph representation, your task is determining whether the graph has a cycle Graph:
Adjacency List is
{0: [1, 2, 3, 4, 6], 1: [0, 9], 2: [0, 7, 8], 3: [0, 5], 4: [0], 5: [3], 6: [0], 7: [2], 8: [2], 9: [1]}
Q: Is there a cycle in this graph?
A:
Let’s think step by step:

• TASK INFO: cycle, medium, 0-CoT, Adjacency List
• MODEL: claude-3-5-sonnet-20241022
• GROUND TRUTH: False
• WRONG ANSWER:

Let’s analyze this graph to find if it contains any cycles:
1) First, let’s understand the connections:
- Node 0 connects to 1,2,3,4,6
- Node 1 connects to 0,9
- Node 2 connects to 0,7,8
- Node 3 connects to 0,5
- Node 4 connects to 0
- Node 5 connects to 3
- Node 6 connects to 0
- Node 7 connects to 2
- Node 8 connects to 2
- Node 9 connects to 1
2) Looking at some paths:
- 0 → 1 → 0 (This is a cycle!)
- 0 → 2 → 0 (This is another cycle!)
- 0 → 3 → 0 (This is another cycle!)
3) The graph has multiple cycles. The simplest ones are between node 0 and its neighbors that have
return paths.
Yes, there are multiple cycles in this graph.

• ERROR CAUSE ANALYSIS: This answer misunderstands cycle detection in an graph. Although it
correctly lists the connections between nodes, it incorrectly assumes that a direct backtracking step
(e.g., 0 → 1 → 0) forms a cycle. In an graph, a valid cycle must involve at least three distinct nodes.
This mistake leads to incorrect conclusions about the presence of multiple cycles.

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

E.4.5 Triangle counting CASE 1

Triangle

• QUERY: Given a graph, your task is to determine how many triangles in this
graph. Graph: GraphML is <?xml version=’1.0’ encoding=’utf-8’?> <graphml
xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgedefault="undirected"><node
id="0"/>
<node id="1"/>
<node id="2"/>
...
<edge source="19" target="21"/>
<edge source="19" target="25"/>
</graph></graphml>
Q: How many triangles are in this graph?
A:

• TASK INFO: triangle, hard, 0-shot, GraphML
• MODEL: Mistral
• GROUND TRUTH: 47
• WRONG ANSWER:

to find the number of triangles in a graph, we can use the formula for the number of triangles in a simple
graph, which is given by n / 3, where n is the number of triples of distinct vertices that form a triangle.
in this graph, we have 26 nodes, so we would calculate 26 / 3 = 8.666666666666667, but since we
cannot have a fraction of a triangle, we round down to 8. therefore, there are 8 triangles in this graph.

• ERROR CAUSE ANALYSIS: This analysis misunderstands triangle counting in a graph. While it
correctly identifies sets of three nodes, it incorrectly assumes that the number of triangles can be
calculated as n/3. In a graph, a valid triangle requires all three nodes to be mutually connected. This
mistake reflects a lack of proper understanding of the graph’s topological structure

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

E.4.6 Triangle counting CASE 2

Triangle

• QUERY: Given a graph, your task is to determine how many triangles in this graph. Graph: Adjacency
List is {1: [0], 0: [1, 2, 3, 6], 2: [0, 7], 3: [0, 4, 5, 6], 4: [3, 6], 5: [3], 6: [0, 3, 4, 8], 7: [2], 8: [6]}
Q: How many triangles are in this graph?
A:

• TASK INFO: triangle, easy, 0-shot, Adjacency List
• MODEL: Qwen-2.5
• GROUND TRUTH: 2
• WRONG ANSWER:

to determine the number of triangles in the graph, we need to find sets of three vertices where each pair
of vertices is connected by an edge. given the adjacency list, we can go through each vertex and check
all possible combinations of its neighbors to see if they form a triangle.
here’s the adjacency list for reference: “‘ 1: [0], 0: [1, 2, 3, 6], 2: [0, 7], 3: [0, 4, 5, 6], 4: [3, 6], 5: [3],
6: [0, 3, 4, 8], 7: [2], 8: [6] “‘
let’s go through the vertices and their neighbors to find triangles:
1. **vertex 0:** - neighbors: [1, 2, 3, 6] - check combinations: - (1, 2): not connected - (1, 3): not
connected - (1, 6): not connected - (2, 3): not connected - (2, 6): not connected - (3, 6): yes, connected
(forms triangle (0, 3, 6))
2. **vertex 1:** - neighbors: [0] - only one neighbor, so no triangles.
3. **vertex 2:** - neighbors: [0, 7] - check combinations: - (0, 7): yes, connected (forms triangle (0, 2,
7))
4. **vertex 3:** - neighbors: [0, 4, 5, 6] - check combinations: - (0, 4): yes, connected (forms triangle
(0, 3, 4)) - (0, 5): not connected - (0, 6): yes, connected (forms triangle (0, 3, 6)) - (4, 5): not connected
- (4, 6): yes, connected (forms triangle (3, 4, 6)) - (5, 6): not connected
5. **vertex 4:** - neighbors: [3, 6] - check combinations: - (3, 6): yes, connected (forms triangle (3, 4,
6))
6. **vertex 5:** - neighbors: [3] - only one neighbor, so no triangles.
7. **vertex 6:** - neighbors: [0, 3, 4, 8] - check combinations: - (0, 3): yes, connected (forms triangle
(0, 3, 6)) - (0, 4): yes, connected (forms triangle (3, 4, 6)) - (0, 8): not connected - (3, 4): yes, connected
(forms triangle (3, 4, 6)) - (3, 8): not connected - (4, 8): not connected
8. **vertex 7:** - neighbors: [2] - only one neighbor, so no triangles.
9. **vertex 8:** - neighbors: [6] - only one neighbor, so no triangles.
summarizing the triangles found: - (0, 3, 6) - (0, 2, 7) - (0, 3, 4) - (3, 4, 6)
thus, the number of triangles in the graph is **4**.

• ERROR CAUSE ANALYSIS: The understanding of the serialization format is incorrect in this answer.
Even though it successfully prints out the AL serialization format, in its reasoning process, it incorrectly
assumes that node 7 and node 0 are connected, and that node 4 and node 0 are connected, which
ultimately leads to an incorrect result.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2026

E.4.7 BFS order CASE 1

BFS order
• QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting at node 2.

And the graph representation of: Adjacency Matrix is
[[0 1 1 1 1 0 1]
[1 0 1 1 1 1 1]
[1 1 0 0 0 0 0]
[1 1 0 0 0 1 0]
[1 1 0 0 0 0 0]
[0 1 0 1 0 0 0]
[1 1 0 0 0 0 0]]
Q: Give the bfs traversal order starting from node 2.
A:

• TASK INFO: bfsorder, easy, 0-shot, Adjacency Matrix
• MODEL: Qwen-2.5
• STARTING NODE: 2
• WRONG ANSWER:

to determine the bfs traversal order starting from node 2, we follow these steps:
1. **initialize**: start with node 2. add it to the queue and mark it as visited.
2. **process the queue**: remove the first node from the queue and visit it. then, add its unvisited
neighbors to the queue.
3. **repeat**: continue the process until the queue is empty.
given the adjacency matrix:

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

let’s perform the bfs:
1. **start at node 2**: - queue: [2] - visited: [2]
2. **dequeue node 2**: - visit node 2 - add its unvisited neighbors (nodes 1, 3, 4, 6) to the queue. -
queue: [1, 3, 4, 6] - visited: [2, 1, 3, 4, 6]
3. **dequeue node 1**: - visit node 1 - add its unvisited neighbors (nodes 2, 3, 4, 5, 6) to the queue.
nodes 2 and 6 are already visited. - queue: [3, 4, 5, 6] - visited: [2, 1, 3, 4, 5, 6]
4. **dequeue node 3**: - visit node 3 - add its unvisited neighbors (nodes 2, 1) to the queue. nodes 2
and 1 are already visited. - queue: [4, 5, 6] - visited: [2, 1, 3, 4, 5, 6]
5. **dequeue node 4**: - visit node 4 - add its unvisited neighbors (nodes 2, 3, 6) to the queue. nodes
2, 3, and 6 are already visited. - queue: [5, 6] - visited: [2, 1, 3, 4, 5, 6]
6. **dequeue node 5**: - visit node 5 - add its unvisited neighbors (nodes 1, 4) to the queue. nodes 1
and 4 are already visited. - queue: [6] - visited: [2, 1, 3, 4, 5, 6]
7. **dequeue node 6**: - visit node 6 - add its unvisited neighbors (nodes 2, 4) to the queue. nodes 2
and 4 are already visited. - queue: [] - visited: [2, 1, 3, 4, 5, 6]
the bfs traversal order starting from node 2 is: **2, 1, 3, 4, 5, 6**. note that the order of visiting

• ERROR CAUSE ANALYSIS: The understanding of the serialization format is incorrect in this answer.
Even though it successfully prints out the AM serialization format, in its reasoning process, it incorrectly
assumes that node 2 and node 0 do not have connectivity, which ultimately leads to an incorrect result.

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2026

E.4.8 Triangle counting CASE 3

Triangle

• QUERY: Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(0, 1), (1, 2), (0, 4), (0, 3), (1, 8), (0, 6), (0, 2), (2, 5), (4, 7)}
Q: How many triangles are in this graph?
A: The graph contains 3 nodes that form a triangle (0, 1, and 2), resulting in 1 triangle. So the number
of triangles is 1.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(0, 1), (0, 7), (0, 4), (1, 5), (0, 3), (2, 3), (0, 2), (2, 6), (0, 5)}
Q: How many triangles are in this graph?
A: This graph includes edges that connect nodes to form two distinct triangles, namely (0, 1, 5) and (0,
2, 3). The graph contains two triangles: (0, 1, 5) and (0, 2, 3). So the number of triangles is 2.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(0, 1), (3, 4), (2, 7), (1, 4), (0, 2), (5, 6), (3, 6), (2, 5), (1, 3)}
Q: How many triangles are in this graph?
A: A graph with edges forming a single triangle: (4, 1, 3). The graph contains one triangle, formed by
nodes (4, 1, 3). So the number of triangles is 1.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(4, 3), (1, 5), (4, 6), (4, 2), (3, 0), (0, 6), (4, 5), (0, 2), (3, 6), (1, 0)}
Q: How many triangles are in this graph?
A: The edges in this graph create two triangles: (0, 3, 6) and (3, 6, 4). The graph contains two triangles:
(0, 3, 6) and (3, 6, 4). So the number of triangles is 2.
Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge Set is :
{(3, 4), (5, 1), (5, 7), (0, 2), (8, 3), (0, 5), (0, 8), (2, 5), (1, 3), (7, 4), (6, 8), (5, 6), (5, 3), (0, 7), (2, 4), (2,
1), (2, 7), (6, 1), (6, 7), (5, 8), (8, 1), (1, 4), (0, 6), (2, 3), (6, 3)}
Q: How many triangles are in this graph?
A: A dense graph with many edges, resulting in 26 distinct triangles formed by various combinations of
nodes. The graph contains 26 triangles formed by various combinations of nodes. So the number of
triangles is 26.
Given a graph, your task is to determine how many triangles in this graph.
Graph: Edge Set is
{(4, 3), (5, 1), (5, 7), (8, 3), (8, 6), (2, 5), (7, 4), (6, 5), (5, 0), (8, 2), (0, 1), (2, 4), (2, 7), (6, 1), (7, 3), (6,
7), (8, 1), (8, 7), (0, 3), (2, 0), (1, 4), (2, 6), (6, 3)}
Q: How many triangles are in this graph?
A:

• TASK INFO:
triangle, easy, CoT, Edge Set

• GROUND TRUTH: 16
• MODEL: o4-mini
• WRONG ANSWER:

To count triangles, list each triple i,j,k with i<j<k and check all three edges. Doing so yields these 17
distinct triangles:
(0,1,5), (0,2,3), (0,2,5), (1,5,6), (1,6,8), (2,4,7), (2,5,6), (2,5,7), (2,6,7), (2,6,8), (2,7,8), (3,4,7), (3,6,7),
(3,6,8), (3,7,8), (5,6,7), (6,7,8).
So the number of triangles is 17.

• ERROR CAUSE ANALYSIS: This answer misinterprets the connectivity of node 2 and node 3 and ends
up thinking that 0, 2, 3 forms a triangle, leading to a final error.

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2026

E.5 INPUT/OUTPUT EXAMPLES

We show more model input and output examples here. Query is the input to the model and Answer
is the model output. Due to space reasons, in the middle of the excessively long part we will use “...”.
Each of the following examples is randomly selected from the query.

Connectivity

• QUERY:Determine if there is a path between two nodes in the graph.
Graph: Edge Set is {(6, 18), (7, 26), (3, 22), (5, 19), (9, 17), (9, 26), (0, 23), (1, 15), (6, 11),
(7, 10), (6, 20), (7, 19), (5, 12), (8, 11), (9, 10), (3, 24), (9, 19), (1, 17), (6, 13), (7, 12), (7,
21), (3, 17), (9, 12), (3, 26), (5, 23), (9, 21), (8, 25), (3, 19), (5, 16), (4, 18), (9, 14), (5, 25),
(1, 21), (4, 11), (5, 18), (9, 16), (8, 20), (1, 14), (2, 13), (1, 23), (2, 22), (3, 14), (5, 11), (4,
13), (3, 23), (4, 22), (8, 13), (8, 22), (1, 16), (0, 18), (2, 15), (0, 27), (6, 24), (3, 16), (5, 13),
(4, 24), (8, 15), (0, 11), (8, 24), (1, 18), (0, 20), (2, 17), (2, 26), (7, 25), (3, 18), (4, 17), (4,
26), (8, 17), (1, 11), (5, 27), (8, 26), (9, 25), (0, 22), (2, 19), (6, 10), (6, 19), (7, 18), (3, 11),
(4, 10), (7, 27), (4, 19), (8, 10), (5, 20), (1, 13), (0, 15), (9, 18), (9, 27), (6, 12), (7, 20), (4,
12), (4, 21), (9, 11), (0, 17), (2, 14), (0, 26), (2, 23), (6, 14), (6, 23), (7, 22), (8, 14), (9, 13),
(3, 27), (5, 24), (8, 23), (9, 22), (0, 19), (2, 16), (7, 15), (6, 25), (7, 24), (3, 20), (5, 17), (9,
15), (0, 12), (5, 26), (9, 24), (0, 21)}
Q: Is there a path between node 27 and node 25?
A:
Let’s construct a graph with the nodes and edges first:

• TASK INFO: connectivity, hard, 0-Instruct, Edge Set
• MODEL: claude-3-5-sonnet-20241022
• ACCURACY: 1
• GROUND TRUTH: True
• ANSWER: Let me help you find if there’s a path between node 27 and node 25.

Looking at the edge set, I can see that: - Node 27 is connected to nodes 3, 5, 7, and 9 - Node
25 is connected to nodes 6, 7, 8, and 9
We can find a path from node 27 to node 25: 27 → 7 → 25 (direct connection through node
7)
Since we can find at least one path between node 27 and node 25 (through node 7), there is
definitely a path between these two nodes.
The answer is yes.

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2026

Connectivity

• QUERY: To determine if there is a path between two nodes in an undirected graph, we can
use a Breadth-First Search (BFS) algorithm. BFS is an algorithm that starts at one node and
explores all of its neighbors before moving on to the next level of neighbors. By exploring
each node in the graph, the algorithm can determine if there is a path between two nodes.
Determine if there is a path between two nodes in the graph.
Graph: Edge Set is {(0, 7), (3, 8), (5, 8), (3, 7), (6, 8), (1, 8), (5, 7), (6, 7), (1, 7), (4, 8), (4, 7),
(2, 8)}
Q: Is there a path between node 5 and node 7?
A:

• TASK INFO: connectivity, easy, 0-Algorithm, Edge Set
• MODEL: Mistral
• ACCURACY:

1
• GROUND TRUTH:True
• ANSWER: yes, there is a path between node 5 and node 7. one possible path is: 5 -> 8 -> 7

here’s the code for the bfs algorithm in python:
“‘ from collections import deque
def bfs(graph, start, end):
visited = set()
queue = deque([start])
while queue:
current = queue.popleft()
if current == end:
return true
if current not in visited:
visited.add(current)
for neighbor in graph[current]:
queue.append(neighbor)
return false
example usage
graph =
0: [4, 3],
1: [7, 4],
2: [8],
3: [],
4: [0, 1, 7],
5: [8],
6: [7, 8],
7: [0, 1, 6, 3, 5],
8: [2, 6, 5, 3]
print(bfs(graph, 5, 7)) # output: true “‘
in this code, ‘graph‘ is a dictionary where the keys are the nodes and the values are lists of
their neighbors. the ‘bfs‘ function takes in the graph, the start node, and the end node, and
returns ‘true‘ if there is a path between the two nodes, and ‘false‘ otherwise. the function
uses a queue to keep track of the nodes to be visited, and a set to keep track of the visited
nodes to avoid visiting the same node multiple times. the function loops through the queue
until it finds the end node or the queue is empty, and returns the result.

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

Connectivity

• QUERY: Determine if there is a path between two nodes in the graph. Graph: GraphML is
...
<node id="1"/>
<node id="2"/>
...
<edge source="4" target="5"/>
<edge source="4" target="6"/>
<edge source="4" target="7"/>
</graph></graphml>
Q: Is there a path between node 1 and node 0?
A:
Let’s think step by step:

• TASK INFO: connectivity, easy, 0-CoT, GraphML
• MODEL: Llama3.1
• ACCURACY: 0
• GROUND TRUTH: True
• ANSWER: the first step is to convert the given graphml into a format that can be used in the

java code. we can use the graphml to xml function from the graphml library to do this. the
second step is to create a graph from the xml string. we can use the graphmlreader class to do
this. the third step is to find the nodes with id 1 and 0. we can use the getnodes method of the
graph to do this. the fourth step is to check if there is a path between the two nodes. we can
use the haspath method of the graph to do this. the fifth step is to return the result. we can use
the print function to do this.
“‘java import org.graphstream.graph.graph;
import org.graphstream.graph.implementations.singlegraph;
import org.graphstream.graph.implementations.graphmlreader;
import org.graphstream.graph.implementations.defaultgraph;
public class main
public static void main(string[] args)
string graphml = "<?xml version=’1.0’ encoding=’utf-8’?><graphml
xmlns=ḧttp://graphml.graphdrawing.org/xmlnsẍmlns:xsi=ḧttp://www.w3.org/2001/xmlschema-
instanceẍsi:schemalocation=ḧttp://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd>̈<graph edgede-
fault=ündirected>̈<node id=0̈/̈><node id=5̈/̈><node id=6̈/̈><node id=7̈/̈><node
id=1̈/̈><node id=2̈/̈><node id=3̈/̈><node id=4̈/̈><edge source=0̈ẗarget=5̈/̈><edge
source=0̈ẗarget=6̈/̈><edge source=0̈ẗarget=7̈/̈><edge source=5̈ẗarget=1̈/̈><edge
source=5̈ẗarget=3̈/̈><edge source=5̈ẗarget=4̈/̈><edge source=6̈ẗarget=1̈/̈><edge
source=6̈ẗarget=2̈/̈><edge source=6̈ẗarget=3̈/̈><edge source=6̈ẗarget=4̈/̈><edge
source=7̈ẗarget=1̈/̈><edge source=7̈ẗarget=2̈/̈><edge source=7̈ẗarget=3̈/̈><edge
source=7̈ẗarget=4̈/̈></graph></graphml>";
graph graph = new singlegraph("graph");
graph.read(graphml);
string node1 = "1";
string node0 = "0";
boolean ispath = graph.haspath(node1, node0);
system.out.println(ispath);
“‘
this will print: false. there is no path between node 1 and node 0.
please note that this is a very simple implementation and does not handle any exceptions that
might occur. in a real-world application, you would want to add error handling code.

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2026

Diameter
• QUERY: Given a graph, your task is to determine the diameter of this graph. Graph:

Adjacency List is {0: [1], 1: [0, 2, 4, 5, 6, 7, 8, 11, 12], 2: [1, 3, 9], 3: [2], 4: [1], 5:
[1], 6: [1], 7: [1, 10], 8: [1], 9: [2], 10: [7], 11: [1], 12: [1]}
Q: What is the diameter of this graph?
A:

• TASK INFO: diameter, medium, 0-shot, Adjacency List
• MODEL: Phi-4
• ACCURACY: 0
• GROUND TRUTH:4.0
• ANSWER:

3

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2026

Diameter
• QUERY: Given a graph, your task is to determine the diameter of this graph. Graph:

Adjacency List is {0: [1], 1: [0, 2, 4, 5, 6, 7, 8, 11, 12], 2: [1, 3, 9], 3: [2], 4: [1], 5:
[1], 6: [1], 7: [1, 10], 8: [1], 9: [2], 10: [7], 11: [1], 12: [1]}
Q: What is the diameter of this graph?
A:

• TASK INFO: diameter, medium, 0-shot, Adjacency List
• MODEL: gemini-2.0-flash-001
• ACCURACY: 1
• GROUND TRUTH: 4.0
• ANSWER:

To find the diameter of the graph, we need to compute the shortest path between all pairs
of nodes and then find the maximum of these shortest path lengths. The given graph has 13
nodes (0 to 12).
Here’s how we can determine the shortest paths:
* **Node 0:** Only connected to Node 1, distance 1. * **Node 1:** The central node,
connected to 0, 2, 4, 5, 6, 7, 8, 11, 12. * **Node 2:** Connected to 1 and 3, 9. * **Node
3:** Connected to 2. * **Node 4, 5, 6, 8, 11, 12:** Only connected to 1. * **Node 7:**
Connected to 1 and 10. * **Node 9:** Connected to 2. * **Node 10:** Connected to 7.
Let’s analyze some key distances:
* Distance(0, x): 2 for x in 2, 4, 5, 6, 7, 8, 9, 11, 12, otherwise infinity
* Distance(0, 3): 3
* Distance(0, 10): 3
* Distance(1, x): 1 for x in 0, 2, 4, 5, 6, 7, 8, 11, 12
* Distance(1, 3): 2
* Distance(1, 9): 2
* Distance(1, 10): 2
* Distance(2, x):
* 1 for x in 1, 3, 9
* 2 for x in 0, 4, 5, 6, 7, 8, 11, 12
* 3 for x in 10
* Distance(3, x):
* 1 for x in 2
* 2 for x in 1, 9
* 3 for x in 0, 4, 5, 6, 7, 8, 11, 12
* 4 for x in 10
* Distance(9, x):
* 1 for x in 2
* 2 for x in 1, 3
* 3 for x in 0, 4, 5, 6, 7, 8, 11, 12
* 4 for x in 10
* Distance(10, x):
* 1 for x in 7
* 2 for x in 1
* 3 for x in 0, 2, 4, 5, 6, 8, 9, 11, 12
* 4 for x in 3
Now, let’s find the maximum shortest path:
* Distance(3, 10) = 4
* Distance(9, 10) = 4
It appears 4 is the maximum distance.
The diameter is 4.

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2026

Diameter
• QUERY: To calculate the diameter of the graph, you can use BFS based on the following tips

1. identify all nodes in the graph.
2. For each node in the graph , perform BFS to compute the shortest path from that node to
all other nodes.
3. calculate the shortest path from node u to all other nodes.
4. Find the longest shortest path.
5. Repeat the process and update the diameter of the graph.
6. Return the diameter of the graph.
Given a graph, your task is to determine the diameter of this graph.
And the graph representation of Edge Set is :
{(0, 1), (1, 2), (0, 4), (0, 3), (1, 8), (0, 6), (0, 2), (2, 5), (4, 7)}
Q: What is the diameter of this graph?
A: Identify all nodes: The graph has nodes 0 to 8. Perform BFS from node 0. The longest
shortest path is 2 edges (to node 5, 7 or 8). Perform BFS from node 1. The longest shortest
path is 3 edges (to node 7). Perform BFS from node 2. The longest shortest path is 3 edges
(to node 7). Perform BFS from node 3. The longest shortest path is 3 edges (to node 5, 7 or
8). Perform BFS from node 4. The longest shortest path is 3 edges (to node 5 or 8). Perform
BFS from node 5. The longest shortest path is 4 edges (to node 7). Perform BFS from node
6. The longest shortest path is 3 edges (to node 5, 7, or 8). Perform BFS from node 7. The
longest shortest path is 4 edges (to node 8). Perform BFS from node 8. The longest shortest
path is 4 edges (to node 7). Based on all the results above, the maximum shortest path is 4
edges. So the diameter is 4.0.
...
Given a graph, your task is to determine the diameter of this graph. Graph: Edge Set is
{(7, 17), (4, 12), (3, 16), (5, 10), (9, 14), (0, 14), (1, 12), (7, 10), (6, 8), (7, 13), (6, 17), (3, 9),
(3, 6), (0, 1), (5, 15), (11, 16), (1, 8), (6, 7), (4, 7), (12, 14), (3, 11), (3, 17), (9, 12), (1, 4), (10,
13), (11, 15), (2, 15)}
Q: What is the diameter of this graph?
A:

• TASK INFO: diameter, medium, Algorithm, Edge Set
• MODEL: Mistral
• ACCURACY: 0
• GROUND TRUTH: 6.0
• ANSWER: identify all nodes: the graph has nodes 0 to 17. perform bfs from node 0. the

longest shortest path is 3 edges (to node 14). perform bfs from node 1. the longest shortest
path is 3 edges (to node 12). perform bfs from node 2. the longest shortest path is 3 edges (to
node 15). perform bfs from node 3. the longest shortest path is 3 edges (to node 16, 9, 17 or
6). perform bfs from node 4. the longest shortest path is 2 edges (to node 12). perform bfs
from node 5. the longest shortest path is 3 edges (to node 15). perform bfs from node 6. the
longest shortest path is 2 edges (to node 7, 17 or 3). perform bfs from node 7. the longest
shortest path is 3 edges (to node 17, 13, 10, 5 or 4). perform bfs from node 8. the longest
shortest path is 2 edges (to node 1, 6 or 17). perform bfs from node 9. the longest shortest
path is 3 edges (to node 14). perform bfs from node 10. the longest shortest path is 3 edges
(to node 7, 13). perform bfs from node 11. the longest shortest path is 3 edges (to node 16,
17 or 3). perform bfs from node 12. the longest shortest path is 2 edges (to node 4, 14 or 1).
perform bfs from node 13. the longest shortest path is 3 edges (to node 7, 10). perform bfs
from node 14. the longest shortest path is 2 edges (to node 0, 4, 12 or 9). perform bfs from
node 15. the longest shortest path is 3 edges (to node 2, 5 or 11). perform bfs from node 16.
the longest shortest path is 3 edges (to node 3, 11, 17 or 11). perform bfs from node 17. the
longest shortest path is 3 edges (to node 3, 6, 7 or 13). based on all the results above, the
longest shortest path is 3 edges. so the diameter is 3.0.

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2026

Diameter
• QUERY: To calculate the diameter of the graph, you can use BFS based on the following tips

1. identify all nodes in the graph. 2. For each node in the graph , perform BFS to compute
the shortest path from that node to all other nodes. 3. calculate the shortest path from node u
to all other nodes. 4. Find the longest shortest path. 5. Repeat the process and update the
diameter of the graph. 6. Return the diameter of the graph.
Given a graph, your task is to determine the diameter of this graph. And the graph representa-
tion of Edge List is :
...
Q: What is the diameter of this graph?
...
Given a graph, your task is to determine the diameter of this graph. Graph: Edge List is
0 3
1 2
1 3
1 5
1 6
2 4
2 6
3 6
4 5
4 6
Q: What is the diameter of this graph?
A:

• TASK INFO: diameter, easy, Algorithm, Edge List
• MODEL: gpt-4o-mini
• ACCURACY: 1
• GROUND TRUTH:3.0
• ANSWER:

To determine the diameter of the graph represented by the given edge list, we will follow the
outlined steps:
1. **Identify all nodes**: The nodes present in the edge list are 0, 1, 2, 3, 4, 5, and 6. Thus,
the set of nodes is {0, 1, 2, 3, 4, 5, 6}.
2. **Perform BFS from each node**: We will conduct a BFS for each node to compute the
shortest paths to all other nodes.
- **From node 0**: Shortest paths are {0: 0, 3: 1} → max distance = 1
- **From node 1**: Shortest paths are {1: 0, 2: 1, 3: 1, 5: 1, 6: 1, 4: 2} → max distance = 2
- **From node 2**: Shortest paths are {2: 0, 1: 1, 4: 1, 5: 2, 6: 1, 3: 2} → max distance = 2
- **From node 3**: Shortest paths are {3: 0, 1: 1, 6: 1, 2: 2, 4: 2, 5: 2} → max distance = 2
- **From node 4**: Shortest paths are {4: 0, 2: 1, 5: 1, 6: 1, 1: 2, 3: 2} → max distance = 2
- **From node 5**: Shortest paths are {5: 0, 1: 1, 4: 1, 2: 2, 6: 2, 3: 3} → max distance = 3
- **From node 6**: Shortest paths are {6: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 2} → max distance = 2
3. **Find longest shortest path**: The longest shortest path discovered in the BFS runs is
from node 5 to node 3, which has a length of 3.
4. **Update diameter**: The diameter is updated to 3 as the maximum of the discovered
maximum paths is 3.
5. **Return the diameter**: The diameter of the graph is thus recorded.
Final Answer: The diameter of this graph is **3**.

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2026

Triangle

• QUERY: Given a graph, your task is to determine how many triangles in this graph. Graph:
Graph Modelling Language is
graph [
node [
id 0
label "0"
]
...
edge [
source 1
target 4
]
edge [
source 1
target 5
]
edge [
source 1
target 6
]
edge [
source 2
target 6
]
]
Q: How many triangles are in this graph?
A:
Let’s break down this problem:

• TASK INFO: triangle, easy, LTM, Graph Modelling Language
• MODEL: Qwen-2.5
• ACCURACY: 0
• GROUND TRUTH: 1
• ANSWER:

a triangle in a graph is a set of three nodes where each node is connected to the other two. in
other words, if nodes a, b, and c form a triangle, then there must be an edge between a and b,
b and c, and c and a.
looking at the given graph, we can see that all nodes are connected to node 1. however, there
is no direct connection between any of the other nodes. therefore, no three nodes form a
triangle.
so, the answer is 0 triangles. you are an ai assistant. you will be given a task. you must
generate a detailed0 answer.

83

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2026

Triangle

• QUERY: Given a graph, your task is to determine how many triangles in this graph. Graph:
Adjacency Matrix is
[[0 1 1 1 0 1 1 0 1 0]
[1 0 1 1 1 0 0 0 1 0]
[1 1 0 0 0 0 1 0 0 1]
[1 1 0 0 1 0 0 0 0 0]
[0 1 0 1 0 1 0 1 0 0]
[1 0 0 0 1 0 0 1 0 0]
[1 0 1 0 0 0 0 0 0 1]
[0 0 0 0 1 1 0 0 0 0]
[1 1 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 1 0 0 0]]
Q: How many triangles are in this graph?
A:
Let’s construct a graph with the nodes and edges first:

• TASK INFO: triangle, medium, 0-Instruct, Adjacency Matrix
• MODEL: llama3
• ACCURACY: 0
• GROUND TRUTH:7
• ANSWER:

a: node 0: 1
a: node 1: 1
a: node 2: 2
a: node 3: 1
a: node 4: 2
a: node 5: 1
a: node 6: 0
a: node 7: 1
a: node 8: 2
a: node 9: 1
a: node 10: 1
a: node 11: 2
a: node 12: 1
a: node 13: 1
a: node 14: 1
a: node 15: 0
a: node 16: 1
a: node 17: 0
a: node 18: 0
a: now, we have to find all the triangles in this graph. we will use the following algorithm to
do this.

84

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589

Under review as a conference paper at ICLR 2026

Triangle

• QUERY: Given a graph, your task is to determine how many triangles this graph.
And the graph representation of Edge List is :
0 1
...
8 1
Let’s construct a graph with the nodes and edges first.
Q: How many triangles are in this graph?
A: The graph contains 3 nodes that form a triangle (0, 1, and 2), resulting in 1 triangle. So the
number of triangles is 1.
Given a graph, your task is to determine how many triangles in this graph. Graph: Edge List
is
1 0
2 0
2 1
3 1
4 1
2 4
1 5
5 2
6 1
1 7
8 1
8 4
7 9
1 10
10 4
Let’s construct a graph with the nodes and edges first.
Q: How many triangles are in this graph?
A:

• TASK INFO: triangle, medium, Instruct, Edge List
• MODEL: claude-3-5-sonnet-20241022 SF
• ACCURACY: 1
• GROUND TRUTH:5
• ANSWER:

Let me help identify the triangles in this graph.
Looking at the edge list, I’ll find sets of three nodes where all three nodes are connected to
each other.
Let’s check the triangles:
1. Triangle (0, 1, 2): - Edge 1-0 exists - Edge 2-0 exists - Edge 2-1 exists
2. Triangle (1, 2, 4): - Edge 1-2 exists - Edge 2-4 exists - Edge 1-4 exists
3. Triangle (1, 2, 5): - Edge 1-2 exists - Edge 2-5 exists - Edge 1-5 exists
4. Triangle (1, 4, 8): - Edge 1-4 exists - Edge 4-8 exists - Edge 1-8 exists
5. Triangle (1, 4, 10): - Edge 1-4 exists - Edge 4-10 exists - Edge 1-10 exists
After checking all possible combinations, I found 5 triangles in the graph.
The number of triangles is 5.

85

4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

Under review as a conference paper at ICLR 2026

Triangle

• QUERY: Given a graph, your task is to determine how many triangles in this graph.
Graph: Adjacency Set is {0: {8, 1, 3, 6}, 1: {0, 3, 5}, 2: {3, 4, 5, 7}, 3: {0, 1, 2, 4, 7}, 4: {2,
3, 6, 7, 8}, 5: {1, 2}, 6: {0, 8, 4, 7}, 7: {2, 3, 4, 6}, 8: {0, 4, 6}}
Q: How many triangles are in this graph?
A:
Let’s think step by step:

• TASK INFO: triangle, easy, 0-CoT Adjacency Set
• MODEL: Mistral
• ACCURACY: 1
• GROUND TRUTH:8
• ANSWER:

1. we know that a triangle has 3 vertices.
2. to find the number of triangles, we will count the number of edges that are part of a triangle
twice (since each edge is shared by two triangles).
3. to count the edges, we can use the formula for the degree sum of a graph: sum of degrees
= 2 * number of edges. the sum of the degrees of all vertices in the graph is 36.
4. since there are 8 vertices in the graph, the average degree of each vertex is 36 / 8 = 4.5.
however, since vertices cannot have a fractional degree, we round down to 4.
5. this means that each vertex has 4 edges, and since each edge connects two vertices, we
have 4 * 8 / 2 = 16 edges.
6. since each edge is part of 2 triangles, the number of triangles is 16 / 2 = 8.
so, there are 8 triangles in the given graph.

86

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697

Under review as a conference paper at ICLR 2026

BFS order
• QUERY: Given a graph, your task is to determine the BFS traversal order of this graph starting

at node 7.
[[0 1 1 1 1 0 1 0 0]
...
[0 1 0 0 0 0 0 0 0]]
...
Given a graph, your task is to determine the bfs traversal order of this graph starting at node
1.
And the graph representation of: Adjacency Matrix is
[[0 1 1 0 0 0 0 0 0 0 0 0 0]
[1 0 1 1 1 1 1 0 0 0 0 0 0]
[1 1 0 1 0 1 0 0 0 1 0 0 0]
[0 1 1 0 1 0 1 1 1 0 1 0 1]
[0 1 0 1 0 0 0 1 0 0 1 0 0]
[0 1 1 0 0 0 0 0 0 0 0 0 0]
[0 1 0 1 0 0 0 0 1 0 0 0 1]
[0 0 0 1 1 0 0 0 0 1 0 0 0]
[0 0 0 1 0 0 1 0 0 0 0 1 0]
[0 0 1 0 0 0 0 1 0 0 0 1 0]
[0 0 0 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 1 0 0 0]
[0 0 0 1 0 0 1 0 0 0 0 0 0]]
Let’s construct a graph with the nodes and edges first.
Q: Give the bfs traversal order starting from node 1.
A:

• TASK INFO: bfsorder, medium, Instruct, Adjacency Matrix
• MODEL: gpt-4o
• ACCURACY: 1
• STARTING NODE: 1
• ANSWER: We begin the BFS traversal from node 1. Here is the breakdown of the traversal:

1. Start at node 1. The first node in the BFS traversal is 1. 2. Visit the neighbors of node 1.
The neighbors of node 1 are nodes 0, 2, 3, 4, 5, and 6. We enqueue all these nodes. 3. Visit
the next node in the queue, which is node 0. Node 0 only has node 1 as a neighbor, which has
already been visited, so we move to the next in queue. 4. Visit node 2. The neighbors of node
2 are nodes 0, 1, 3, 5, and 9. Nodes 0, 1, and 5 are already visited or enqueued, so we enqueue
node 3 and 9. 5. Visit node 3. The neighbors of node 3 are nodes 1, 2, 4, 6, 7, 8, 10, and 12.
We enqueue nodes 4, 6, 7, 8, 10, and 12. 6. Visit node 4. Node 4’s neighbors are nodes 1, 3,
7, and 10. All these nodes are either visited or enqueued. 7. Visit node 5. Node 5’s neighbors
are nodes 1 and 2, which are already visited. 8. Visit node 6. Node 6’s neighbors are nodes 1,
3, 8, and 12. Node 8 is already enqueued, while 12 is already enqueued, and nodes 1 and 3
are visited. 9. Visit node 9. Node 9’s neighbors are nodes 2, 7, and 11. Nodes 2 is visited,
while we enqueue nodes 7 and 11. 10. Visit node 7. Node 7’s neighbors are nodes 3, 4, and
9. These nodes have been visited or enqueued. 11. Visit node 10. Node 10’s neighbors are
nodes 3, 4. These are already visited. 12. Visit node 8. Node 8’s neighbors are nodes 3 and 6.
These are already visited. 13. Visit node 12. Neighbors are nodes 3 and 6. These are already
visited. 14. Visit the last node in the queue, which is node 11. Node 11’s neighbors are nodes
8 and 9. These nodes have already been visited.
Thus, the BFS traversal order starting from node 1 is 1, 0, 2, 3, 4, 5, 6, 9, 7, 10, 8, 12, 11.

87

4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751

Under review as a conference paper at ICLR 2026

BFS order
• QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting

at node 7.
And the graph representation of: Edge List is 3 2
4 1
5 2
6 5
7 0
8 2
9 7
10 3
Q: Give the bfs traversal order starting from node 7.
A:
Let’s break down this problem:

• TASK INFO: bfsorder, medium, LTM, Edge List
• MODEL: gpt-4o-mini BAF
• ACCURACY: 1
• STARTING NODE: 7
• ANSWER:

To perform a breadth-first search (BFS) starting from node 7, we first need to construct the
graph from the provided edge list. The edge list indicates connections between nodes as
follows:
- 3 is connected to 2 - 4 is connected to 1 - 5 is connected to 2 - 6 is connected to 5 - 7 is
connected to 0 - 8 is connected to 2 - 9 is connected to 7 - 10 is connected to 3 From this edge
list, we can represent the graph as an adjacency list:
“‘ 0: [7] 1: [4] 2: [3, 5, 8] 3: [2, 10] 4: [1] 5: [2, 6] 6: [5] 7: [0, 9] 8: [2] 9: [7] 10: [3] “‘
Now, we will perform the BFS traversal starting from node 7:
1. Initialize a queue and a visited set.
2. Enqueue the starting node (7).
3. Dequeue a node, process it, and enqueue its unvisited neighbors.
The BFS traversal process:
- Start with node 7, enqueue it. (Queue: [7])
- Dequeue 7, visit it. (Visited: [7])
- Enqueue its neighbor 0 (Queue: [0])
- Enqueue its other neighbor 9 (Queue: [0, 9])
- Dequeue 0, visit it. (Visited: [7, 0])
- No unvisited neighbors.
- Dequeue 9, visit it. (Visited: [7, 0, 9])
- Enqueue its neighbor 7, but it is already visited.
At this point, the queue is empty, and the BFS is complete.
Thus, the BFS traversal order starting from node 7 is:
A: 7, 0, 9

88

4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805

Under review as a conference paper at ICLR 2026

BFS order
• QUERY: To determine the BFS (Breadth-First Search) traversal order, you need to follow these steps: 1.

Initialize: Start by choosing a starting node and enqueue it into a queue. 2. Mark visited: Mark the
starting node as visited to avoid reprocessing. 3. Traverse: While the queue is not empty: Dequeue
a node and add it to the traversal order. For each unvisited neighboring node of the dequeued node,
enqueue it and mark it as visited. 4.Continue the process until all reachable nodes are visited.
Given a graph, your task is to determine the bfs traversal order of this graph starting at node 4. And the
graph representation of: Edge Set is {(11, 36), (5, 25), (32, 3), (4, 33), (14, 31), (0, 14), (5, 22), (4, 30),
(11, 17), (0, 26), (18, 1), (11, 35), (12, 0), (1, 27), (10, 2), (11, 7), (0, 16), (0, 13), (0, 19), (10, 20), (1,
23), (21, 5), (0, 34), (16, 24), (1, 29), (28, 4), (9, 6), (0, 15)}
Q: Give the bfs traversal order starting from node 4.
A:

• TASK INFO:
bfsorder, hard, 0-Algorithm, Edge Set

• MODEL: Qwen-3
• ACCURACY: 0
• STARTING NODE: 4
• ANSWER:

To determine the **Breadth-First Search (BFS)** traversal order starting from **node 4**, we must
carefully analyze the given **edge set** and build the **adjacency list** of the graph. BFS is a
traversal algorithm that explores all nodes at the current depth level before moving on to nodes at the
next depth level. It uses a **queue** to manage the nodes to be processed and a **visited set** to
avoid revisiting nodes.
—
Step 1: Analyze the Edge Set
The edge set is:
“‘ {(11, 36), (5, 25), (32, 3), (4, 33), (14, 31), (0, 14), (5, 22), (4, 30), (11, 17), (0, 26), (18, 1), (11, 35),
(12, 0), (1, 27), (10, 2), (11, 7), (0, 16), (0, 13), (0, 19), (10, 20), (1, 23), (21, 5), (0, 34), (16, 24), (1,
29), (28, 4), (9, 6), (0, 15)} “‘
We can construct the **adjacency list** by iterating through each edge and adding both directions
(since the graph is undirected).
—
Step 2: Build the Adjacency List
From the edge set, we find the neighbors of **node 4**: - (4, 33) → node 4 is connected to node 33 -
(4, 30) → node 4 is connected to node 30 - (28, 4) → node 4 is connected to node 28
So, **node 4’s neighbors are 33, 30, and 28**.
Similarly, we can find the neighbors for other nodes, but for the BFS starting at node 4, we only need to
consider the nodes reachable from it.
—
Step 3: Perform BFS
We initialize: - **Queue**: [4] - **Visited Set**: 4 - **Traversal Order**: []
Now, we follow the BFS algorithm step-by-step:
1. **Dequeue 4** → Add to traversal order → **[4]** - Neighbors: 33, 30, 28 → all unvisited -
Enqueue: [33, 30, 28] - Mark visited: 4, 33, 30, 28
2. **Dequeue 33** → Add to traversal order → **[4, 33]** - Neighbors: only 4 (already visited) -
Queue: [30, 28]
3. **Dequeue 30** → Add to traversal order → **[4, 33, 30]** - Neighbors: only 4 (already visited) -
Queue: [28]
4. **Dequeue 28** → Add to traversal order → **[4, 33, 30, 28]** - Neighbors: only 4 (already
visited) - Queue: empty
Final Result
All reachable nodes from node 4 have been visited in the order: “‘ 4 → 33 → 30 → 28 “‘
Final Answer
$$ {4, 33, 30, 28} $$

89

4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

Under review as a conference paper at ICLR 2026

BFS order
• QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting

at node 7.
And the graph representation of: GraphML is <?xml version=’1.0’
encoding=’utf-8’?> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgede-
fault="undirected"><node id="0"/> <node id="1"/> <node id="2"/>
...
<edge source="5" target="18"/> <edge source="8" target="18"/> <edge source="9"
target="13"/> <edge source="9" target="16"/> <edge source="16" target="19"/>
</graph></graphml>
Q: Give the bfs traversal order starting from node 7.
A:
Let’s construct a graph with the nodes and edges first:

• TASK INFO: bfsorder, hard, 0-Instruct, GraphML
• MODEL: claude-3-5-sonnet-20241022 SF
• ACCURACY: 1
• STARTING NODE: 7
• ANSWER:

Let me help you find the BFS traversal order starting from node 7.
1) Starting at node 7, we first visit its adjacent nodes: - Node 7 is connected to nodes 0 and 5
2) Next level (visiting neighbors of 0 and 5): From node 0: - Connected to 1, 2, 3, 4, 6, 19
From node 5: - Connected to 12, 15, 16, 18
3) Next level (visiting unvisited neighbors of previous level): From the previous nodes’
connections: - Node 1 connects to 14 - Node 2 connects to 9 - Node 4 connects to 8, 10, 11,
17, 20 - Node 9 connects to 13
Following BFS rules, visiting level by level: - First: 7 - Second: 0, 5 - Third: 1, 2, 3, 4, 6, 19,
12, 15, 16, 18 - Fourth: 14, 9, 8, 10, 11, 17, 20, 13
The BFS traversal order starting from node 7 is
7,0,5,1,2,3,4,6,19,12,15,16,18,14,9,8,10,11,17,20,13

90

4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2026

BFS order
• QUERY: Given a graph, your task is to determine the bfs traversal order of this graph starting

at node 2.
And the graph representation of: Adjacency Set is
{0: {8, 2, 4, 6}, 1: {8, 3, 4, 5}, 2: {0, 7}, 3: {1, 4, 6, 7}, 4: {0, 1, 3, 5, 6, 8}, 5: {1, 4, 6}, 6:
{0, 3, 4, 5, 8}, 7: {2, 3}, 8: {0, 1, 4, 6}}
Q: Give the bfs traversal order starting from node 2.
A:
Let’s break down this problem:

• TASK INFO: bfsorder, easy, LTM, Adjacency Set
• MODEL: Qwen-2.5
• ACCURACY: 0
• STARTING NODE: 2
• ANSWER:

1. **identify the starting node and the adjacency set:** - we start at node 2. - the adjacency
set is given as: {0: {8, 2, 4, 6}, 2: {0, 7}, 4: {0, 1, 3, 5, 6, 8}, 6: {0, 3, 4, 5, 8}, 8: {0, 1, 4, 6},
1: {8, 3, 4, 5}, 3: {1, 4, 6, 7}, 5: {1, 4, 6}, 7: {2, 3}} 2. **perform bfs traversal:** - **step
1:** start at node 2. - **step 2:** add all adjacent nodes of 2 to the queue and mark them
as visited. - node 2 is adjacent to node 0 and node 7. - add 0 and 7 to the queue. - **step
3:** dequeue the first node in the queue (node 0) and add all its adjacent nodes (8, 2, 4, 6)
to the queue (excluding nodes already visited). - add 8, 4, and 6 to the queue. - **step 4:**
dequeue the next node in the queue (node 7) and add its adjacent nodes (2, 3) to the queue
(excluding nodes already visited). - add 3 to the queue. - **step 5:** dequeue the next node
in the queue (node 8) and add its adjacent nodes (0, 1, 4, 6) to the queue (excluding nodes
already visited). - add 1 to the queue. - **step 6:** dequeue the next node in the queue (node
4) and add its adjacent nodes (0, 1, 3, 5, 6, 8) to the queue (excluding nodes already visited). -
add 5 to the queue. - **step 7:** dequeue the next node in the queue (node 6) and add its
adjacent nodes (0, 3, 4, 5, 8) to the queue (excluding nodes already visited). - no new nodes
are added as all are already visited. - **step 8:** dequeue the next node in the queue (node 3)
and add its adjacent nodes (1, 4, 6, 7) to the queue (excluding nodes already visited). - no
new nodes are added as all are already visited. - **step 9:** dequeue the next node in the
queue (node 1) and add its adjacent nodes (8, 3, 4, 5) to the queue (excluding nodes already
visited). - no new nodes are added as all are already visited. - **step 10:** dequeue the next
node in the queue (node 5) and add its adjacent nodes (1, 4, 6) to the queue (excluding nodes
already visited). - no new nodes are added as all are already visited.
3. **list the order of nodes visited:** - the order of nodes visited in bfs starting from node 2
is: 2, 0, 7, 8, 4, 6, 3, 1, 5
therefore, the bfs traversal order starting from node 2 is: 2, 0, 7, 8, 4, 6, 3, 1, 5.

91

4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967

Under review as a conference paper at ICLR 2026

Cycle

• QUERY: Given a graph representation, your task is to determine whether the graph has a
cycle
And the graph representation of Graph Modelling Language is :
...
Given a graph representation, your task is determining whether the graph has a cycle Graph:
Graph Modelling Language is graph [
node [
id 0
label "0"
]
node [
id 1
label "1"
]
node [
id 2
label "2"
]
node [
id 3
label "3"
]
...
edge [
source 0
target 8
]
edge [
source 1
target 2
]
edge [
source 1
target 4
]
edge [
source 3
target 7
]
]
Q: Is there a cycle in this graph?
A:

• TASK INFO: cycle, easy, k-shot, Graph Modelling Language
• MODEL: Mistral
• ACCURACY: 1
• GROUND TRUTH: True
• ANSWER:

yes, there is a cycle in this graph.

92

4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021

Under review as a conference paper at ICLR 2026

Cycle

• QUERY: To determine whether or not there is a cycle in an undirected graph, you can use a
depth-first search algorithm to traverse the graph. If the algorithm ever returns to a node it
has already visited, then it has detected a cycle in the graph.
Given a graph representation, your task is determining whether the graph has a cycle
Graph: GraphML is <?xml version=’1.0’ encoding=’utf-
8’?> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgede-
fault="undirected"><node id="0"/>
<node id="1"/>
<node id="2"/>
<node id="3"/>
<node id="4"/>
<node id="5"/>
<node id="6"/>
<node id="7"/>
<node id="8"/>
<node id="9"/>
<edge source="0" target="1"/>
<edge source="0" target="2"/>
<edge source="0" target="3"/>
<edge source="0" target="5"/>
<edge source="0" target="6"/>
<edge source="0" target="8"/>
<edge source="0" target="9"/>
<edge source="1" target="4"/>
<edge source="2" target="7"/>
</graph></graphml>
Q: Is there a cycle in this graph?
A:

• TASK INFO: cycle, medium, 0-Algorithm, GraphML
• MODEL: claude-3-5-sonnet-20241022
• ACCURACY: 1
• GROUND TRUTH: False
• ANSWER:

Let me analyze this graph:
1. The graph has 10 nodes (0-9) 2. Looking at the edges: - Node 0 connects to nodes 1, 2,
3, 5, 6, 8, and 9 - Node 1 connects to nodes 0 and 4 - Node 2 connects to nodes 0 and 7 -
Nodes 3, 5, 6, 8, and 9 only connect to node 0 - Node 4 only connects to node 1 - Node 7
only connects to node 2
In this graph, there is no cycle. The graph forms a star-like structure with node 0 as the
center, and some nodes (1 and 2) having additional connections to nodes 4 and 7 respectively.
However, there is no way to start at any node and follow edges to return to the starting point
without using the same edge twice. The structure is essentially tree-like.
No, there is no cycle in this graph.

93

5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075

Under review as a conference paper at ICLR 2026

Cycle

• QUERY: Given a graph representation, your task is to determine whether the graph has a cycle
And the graph representation of GraphML is :
...
Q: Is there a cycle in this graph? A: No, there is no cycle in this graph.
...
Given a graph representation, your task is determining whether the graph has a cycle
Graph: GraphML is
...
<edge source="4" target="6"/>
<edge source="5" target="6"/>
</graph></graphml>
Q: Is there a cycle in this graph?
A:

• TASK INFO: cycle, easy, CoT, GraphML
• MODEL: Qwen-2.5
• ACCURACY: 0
• GROUND TRUTH: False
• ANSWER:

the edges (6,5), (5,6) form a cycle, so yes, there is a cycle in this graph. given the graph representation
in graphml format:
“‘xml <?xml version=’1.0’ encoding=’utf-8’?> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/
xmlschema-instance" xsi:schemalocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> <graph edgedefault="undirected">
<node id="0"/>
<node id="6"/>
<node id="5"/>
<node id="1"/>
<node id="4"/>
<node id="3"/>
<node id="2"/>
<edge source="0" target="6"/>
<edge source="6" target="5"/>
<edge source="6" target="1"/>
<edge source="6" target="4"/>
<edge source="6" target="3"/>
<edge source="6" target="2"/>
</graph>
</graphml>
“‘
we need to determine if there is a cycle in the graph.
analysis: - node 6 is connected to nodes 0, 5, 1, 4, 3, and 2. - the connections from node 6 to nodes
5, 1, 4, 3, and 2 do not form a cycle by themselves. - however, the connection from node 6 to node 5
and back to node 6 forms a cycle.
conclusion: the edges (6, 5) and (5, 6) form a cycle.
answer:
q: is there a cycle in this graph?
a: yes, there is a cycle in this graph. the cycle is formed by the edges (6, 5) and (5, 6).

94

5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129

Under review as a conference paper at ICLR 2026

Cycle

• QUERY: Given a graph representation, your task is determining whether the graph has a cycle
Graph: Edge Set is {(4, 6), (3, 10), (0, 2), (9, 14), (0, 8), (1, 3), (0, 17), (13, 14), (2, 17), (3, 9), (3, 6), (3,
15), (0, 1), (0, 7), (0, 4), (0, 16), (0, 13), (3, 5), (3, 11), (3, 17), (0, 3), (0, 12), (2, 3), (0, 15), (7, 8)}
Q: Is there a cycle in this graph?
A:
Let’s think step by step:

• TASK INFO: cycle, medium, 0-CoT, Edge Set
• MODEL: gpt-4o-mini
• ACCURACY: 1
• GROUND TRUTH: True
• ANSWER:

To determine whether the graph represented by the given edge set has a cycle, we can employ Depth
First Search (DFS) or a Union-Find algorithm.
1. **Initialization**: Start from any vertex and initiate a search (DFS or Union-Find).
2. **Tracking Visits**: Keep a record of visited nodes. For DFS, maintain a parent reference to detect
back edges.
3. **Finding Cycles**: - During traversal, if you find a visited vertex that is not the parent of the
current vertex, a cycle exists. - If using Union-Find, detect cycles when trying to union two vertices that
are already in the same set.
For the provided edge set, we systematically traverse each edge.
Edges:
- (4, 6)
- (3, 10)
- (0, 2)
- (9, 14)
- (0, 8)
- (1, 3)
- (0, 17)
- (13, 14)
- (2, 17)
- (3, 9)
- (3, 6)
- (3, 15)
- (0, 1)
- (0, 7)
- (0, 4)
- (0, 16)
- (0, 13)
- (3, 5)
- (3, 11)
- (3, 17)
- (0, 3)
- (0, 12)
- (2, 3)
- (0, 15)
- (7, 8)
Analysis: From the edges: - The edge (3, 6) and (3, 5) suggests multiple connections around vertex
3. - The edge (3, 17) connects back to vertex 3, which confirms presence of a cycle.
Conclusion: Yes, the graph has a cycle.

95

5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183

Under review as a conference paper at ICLR 2026

Cycle

• QUERY: To determine whether or not there is a cycle in an undirected graph, you can use a depth-first
search algorithm to traverse the graph. If the algorithm ever returns to a node it has already visited, then
it has detected a cycle in the graph.
Given a graph representation, your task is to determine whether the graph has a cycle
And the graph representation of Adjacency Set is : {3: {4, 5}, 4: {3}, 5: {2, 3}, 1: {0}, 0: {1, 2}, 2: {0,
5}}
Q: Is there a cycle in this graph?
A: DFS traversal visits nodes {0, 1, 2, 5, 3, 4}. At no point does the traversal return to an already visited
node that is not the parent. Hence, no cycle is detected.
Given a graph representation, your task is to determine whether the graph has a cycle
And the graph representation of Adjacency Set is : {3: {0, 2, 4, 5}, 5: {3}, 1: {0, 4}, 0: {1, 3}, 4: {1,
3}, 2: {3}}
Q: Is there a cycle in this graph?
A: During DFS, the traversal path includes nodes {0, 1, 4, 3, 5, 2}. A back edge is detected from node 3
to node 4, where the latter is already in recursive stack. So, there is a cycle in this graph.
Given a graph representation, your task is to determine whether the graph has a cycle
And the graph representation of Adjacency Set is : {7: {1, 3, 5}, 1: {7}, 5: {6, 7}, 0: {2}, 2: {0, 4, 6},
3: {7}, 4: {2}, 6: {2, 5}}
Q: Is there a cycle in this graph?
A: DFS visits nodes {0, 2, 4, 6, 5, 7, 1, 3}. The traversal completes without encountering any back
edges, there is no cycle in this graph.
Given a graph representation, your task is to determine whether the graph has a cycle
And the graph representation of Adjacency Set is : {0: {1, 2}, 1: {0, 4}, 2: {0, 6}, 6: {2, 4}, 5: {3}, 3:
{5, 7}, 4: {1, 6, 7}, 7: {3, 4}}
Q: Is there a cycle in this graph?
A: While traversing nodes {0, 1, 4, 7, 3, 5, 6, 2}, a back edge from node 2 to node 0 is identified, the
latter is already in recursion stack of DFS, so yes, there is a cycle in this graph.
Given a graph representation, your task is to determine whether the graph has a cycle
And the graph representation of Adjacency Set is : {1: {0, 2, 3, 4, 5, 6}, 3: {0, 1, 2, 4, 5, 6}, 2: {0, 1, 3,
4, 5, 6}, 4: {0, 1, 2, 3, 5, 6}, 6: {0, 1, 2, 3, 4, 5}, 0: {1, 2, 3, 4, 5, 6}, 5: {0, 1, 2, 3, 4, 6}}
Q: Is there a cycle in this graph?
A: This graph contains multiple cycles. During DFS, cycles are detected through paths like {3-4-6-3},
{1-2-3-1}, and {4-5-6-4}. Multiple back edges indicate the presence of several cycles.
Given a graph representation, your task is determining whether the graph has a cycle
Graph: Adjacency Set is {0: {1, 2, 3, 4, 5, 6, 18, 20, 30}, 1: {0, 2, 3, 4, 5, 6, 21}, 2: {0, 1, 3, 4, 5, 6, 7,
24, 25}, 3: {0, 1, 2, 32, 4, 5, 6, 28}, 4: {0, 1, 2, 3, 5, 6, 14, 23}, 5: {0, 1, 2, 3, 4, 6, 10, 11, 31}, 6: {0, 1,
2, 3, 4, 5, 8, 9, 12, 13, 17, 19, 22, 26, 27}, 7: {2}, 8: {6}, 9: {6}, 10: {5}, 11: {5}, 12: {6, 15}, 13: {16,
6}, 14: {4}, 15: {12}, 16: {13}, 17: {6}, 18: {0}, 19: {6}, 20: {0}, 21: {1}, 22: {29, 6}, 23: {4}, 24:
{2}, 25: {2}, 26: {6}, 27: {6}, 28: {3}, 29: {22}, 30: {0}, 31: {5}, 32: {3}}
Q: Is there a cycle in this graph?
A:

• TASK INFO: cycle, hard, Algorithm, Adjacency Set
• MODEL: o4-mini-2025-04-16
• ACCURACY: 1
• GROUND TRUTH: True
• ANSWER:

The subgraph induced by nodes 0 through 6 is a complete graph (each of those nodes connects to every
other), which immediately contains many 3-node cycles (for example, 0–1–2–0). Therefore, this graph
definitely has a cycle. Yes, there is a cycle in this graph

96

5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237

Under review as a conference paper at ICLR 2026

Shortest path

• QUERY: We can use a Depth-First Search (DFS) algorithm to find the shortest path between
two given nodes in an undirected graph. The basic idea is to start at one of the nodes and use
DFS to explore all of its adjacent nodes. At each node, you can keep track of the distance
it takes to reach that node from the starting node. Once you have explored all the adjacent
nodes, you can backtrack and pick the node which has the shortest distance to reach the
destination node.
Given a graph representation, your task is to compute shortest path between the specified two
nodes
And the graph representation of Edge List is :
0 8
...
0 6
Q: Give the shortest path from node 5 to node 8.
A: We use Depth-First Search (DFS) starting from node 5. First, we explore the neighbors
of node 5, which is connected to node 0. From node 0, we explore its neighbors, node
2,3,5,1,6,8,4. And we find that node 0 is connected to node 8. Therefore, the shortest path
from node 5 to node 8 is 5,0,8.
...
Given a graph representation, your task is to compute shortest path between the specified two
nodes.
And the graph representation of: Edge List is 0 1
0 2
1 2
3 2
3 1
3 0
4 3
4 1
4 0
5 1
5 4
5 3
6 4
6 3
6 1
7 3
7 0
7 6
8 4
8 3
8 1
Q: Give the shortest path from node 0 to node 1.
A:

• TASK INFO: shortest path, easy, Algorithm, Edge List
• MODEL: llama3
• ACCURACY: 1
• STARTING AND ENDING NODE: 0, 1
• ANSWER:

we use depth-first search (dfs) starting from node 0. first, we explore its neighbor node 1.
therefore, the shortest path from node 0 to node 1 is 0,1.

97

5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291

Under review as a conference paper at ICLR 2026

Shortest path

• QUERY: Given a graph representation, your task is to compute shortest path between the
specified two nodes
And the graph representation of Adjacency List is : {0: [8, 4, 3, 2, 5, 1, 6], 8: [0], 4: [0], 3:
[0], 2: [0], 5: [0], 1: [0], 6: [0]}
Q: Give the shortest path from node 5 to node 8.
A: The shortest path from node 5 to node 8 is 5,0,8.
Given a graph representation, your task is to compute shortest path between the specified two
nodes
And the graph representation of Adjacency List is : {0: [1], 1: [0, 2, 3, 4, 5, 6, 8], 2: [1, 7], 3:
[1], 4: [1], 5: [1], 6: [1], 7: [2], 8: [1]}
Q: Give the shortest path from node 3 to node 7.
A: The shortest path from node 3 to node 7 is 3,1,2,7.
Given a graph representation, your task is to compute shortest path between the specified two
nodes
And the graph representation of Adjacency List is : {3: [1, 7, 4, 6], 1: [3, 2, 7, 6, 5], 8: [0, 4,
2, 6, 5, 7], 0: [8, 6, 2, 7], 6: [0, 5, 4, 8, 7, 1, 3], 7: [3, 5, 0, 6, 1, 8], 5: [7, 6, 2, 8, 1], 4: [6, 8,
3], 2: [1, 8, 5, 0]}
Q: Give the shortest path from node 4 to node 2.
A: The shortest path from node 4 to node 2 is 4,8,2.
Given a graph representation, your task is to compute shortest path between the specified two
nodes
And the graph representation of Adjacency List is : {0: [6, 7], 6: [0], 7: [0, 1, 3], 1: [5, 7], 5:
[1], 2: [4], 4: [2, 3], 3: [4, 7]}
Q: Give the shortest path from node 6 to node 5.
A: The shortest path from node 6 to node 5 is 6,0,7,1,5.
Given a graph representation, your task is to compute shortest path between the specified two
nodes
And the graph representation of Adjacency List is : {0: [1, 2, 4, 5], 1: [0, 2, 3, 6], 2: [0, 1, 3,
5], 3: [1, 2, 4], 4: [3, 0], 5: [0, 2, 6], 6: [1, 5]} Q: Give the shortest path from node 6 to node
0.
A: The shortest path from node 6 to node 0 is 6,1,0.
Given a graph representation, your task is to compute shortest path between the specified two
nodes.
And the graph representation of: Adjacency List is {0: [1, 2], 1: [0, 2, 3, 5, 6, 7], 2: [1, 0, 3,
4, 5], 3: [2, 1, 4, 7], 4: [2, 3, 6], 5: [1, 2], 6: [4, 1], 7: [1, 3]}
Q: Give the shortest path from node 3 to node 2.
A:

• TASK INFO: shortest path, easy, k-shot, Adjacency List
• MODEL: Qwen-2.5
• ACCURACY: 0
• STARTING AND ENDING NODE: 3, 2
• ANSWER:

the shortest path from node 3 to node 2 is 3,1,2.

98

5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345

Under review as a conference paper at ICLR 2026

Shortest path

• QUERY: Given a graph representation, your task is to compute shortest path between the
specified two nodes.
And the graph representation of: GraphML is <?xml version=’1.0’
encoding=’utf-8’?> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph edgede-
fault="undirected"><node id="0"/>
<node id="1"/>
<node id="2"/>
<node id="3"/>
<node id="4"/>
<node id="5"/>
<node id="6"/>
<edge source="0" target="1"/>
<edge source="0" target="2"/>
<edge source="0" target="3"/>
<edge source="0" target="6"/>
<edge source="3" target="4"/>
<edge source="3" target="5"/>
</graph></graphml>
Q: Give the shortest path from node 2 to node 1.
A:
Let’s construct a graph with the nodes and edges first:

• TASK INFO:
shortest path, easy, 0-Instruct, GraphML

• MODEL: Qwen-2.5
• ACCURACY: 0
• STARTING AND ENDING NODE: 2, 1
• ANSWER:

- nodes: 0, 1, 2, 3, 4, 5, 6 - edges: (0, 1), (0, 2), (0, 3), (0, 6), (3, 4), (3, 5)
now, we want to find the shortest path from node 2 to node 1.
we can use the breadth-first search (bfs) algorithm to find the shortest path in an unweighted
graph.
bfs traversal of the graph starting from node 2:
1. start at node 2 2. visit node 0 (since it’s directly connected to node 2) 3. visit nodes 1, 3,
and 6 (all directly connected to node 0)
since node 1 is one of the visited nodes, the shortest path from node 2 to node 1 is:
2 -> 0 -> 1
you are an ai assistant. user will provide you with a task. your goal is to complete the task as
faithfully as you can. you will ask for clarification in cases where the task is not clear. you
will not make any assumptions and you will not introduce any information not provided in
the input.

99

5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399

Under review as a conference paper at ICLR 2026

Shortest path

• QUERY: Given a graph representation, your task is to compute shortest path between the
specified two nodes
And the graph representation of Adjacency Set is : {0: {1, 2, 3, 4, 5, 6, 8}, 8: {0}, 4: {0}, 3:
{0}, 2: {0}, 5: {0}, 1: {0}, 6: {0}}
Let’s construct a graph with the nodes and edges first.
Q: Give the shortest path from node 5 to node 8.
A: To find the shortest path from node 5 to node 8, let’s explore the graph: Node 5 is directly
connected to node 0 (via the edge 0 5). Node 0 is directly connected to node 8 (via the edge 0
8). Thus, the shortest path from node 5 to node 8 is 5,0,8.
...
Given a graph representation, your task is to compute shortest path between the specified two
nodes.
And the graph representation of: Adjacency Set is
{3: {8, 9, 6}, 8: {1, 2, 3, 4}, 4: {8, 9, 6, 7}, 6: {1, 2, 3, 4}, 1: {8, 9, 10, 6}, 2: {8, 9, 10, 6},
10: {0, 1, 2}, 9: {0, 1, 2, 3, 4}, 7: {4}, 0: {9, 10, 5}, 5: {0}}
Let’s construct a graph with the nodes and edges first.
Q: Give the shortest path from node 6 to node 5.
A:

• TASK INFO: shortest path, medium, Instruct, Adjacency Set
• MODEL: claude-3-5-sonnet-20241022
• ACCURACY: 1
• STARTING AND ENDING NODE: 6, 5
• ANSWER:

Let me help find the shortest path from node 6 to node 5 in this graph.
Let’s analyze the possible paths: 1. Node 6 is connected to nodes 1, 2, 3, and 4 2. To reach
node 5, we need to go through node 0 (as node 5 is only connected to node 0) 3. To reach
node 0, we can go through either node 9 or node 10 4. From node 6: - We can reach node 1
or node 2, which both connect to nodes 9 and 10 - Through node 9 or 10, we can reach node
0 - From node 0, we can reach node 5
The shortest path would be:
6 → 1 → 9 → 0 → 5
or
6 → 2 → 9 → 0 → 5
(both paths have the same length)
The shortest path is 6,1,9,0,5

100

5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453

Under review as a conference paper at ICLR 2026

Shortest path

• QUERY:
Given a graph representation, your task is to compute shortest path between the specified two
nodes. And the graph representation of: Edge List is
0 1
2 0
3 0
0 4
2 5
6 1
7 0
8 2
4 8
9 0
9 4
10 0
11 4
Q: Give the shortest path from node 1 to node 2. A: Let’s think step by step:

• TASK INFO: shortest path,medium,0-CoT,Edge List
• MODEL: o4-mini-2025-04-16
• ACCURACY: 1
• STARTING AND ENDING NODE: 1, 2
• ANSWER: We can use a breadth-first search starting from node 1:

1. Start at node 1. Neighbors are 0, 6. 2. Visit node 0 (distance 1). Its neighbors are 1, 2, 3, 4,
7, 9, 10. We discover node 2 here. 3. We stop as soon as we reach node 2.
Reconstructing the path gives 1 → 0 → 2.
The shortest path from node 1 to node 2 is 1,0,2.

E.6 MORE FINDINGS FROM EVALUATION RESULTS

Finding ❹: Serialization exhibits task-dependent effects, with both open-source and closed-
source models excelling at concise and structured representations. From Tables 18 and 21, the
formats most suitable for open-source and closed-source models vary across tasks such as Diameter
calculation, Triangle counting, Shortest path and Cycle detection. In open-source models,
nearly every task exhibits a preference for a distinct format. In contrast, closed-source models tend to
perform well with formats such as Adjacency List (AL) and Adjacency Set (AS), yet Graph Markup
Language (GMaL) also achieves superior performance in certain tasks. Taking the Cycle detection
benchmark as an example, the Edge Set (ES) format outperforms other alternatives, whereas in closed-
source models, formats like Graph Markup Language (GMaL) demonstrate marked advantages. Such
task-specific preferences for serialization formats further highlight the importance and significance of
GRAPHOMNI.

Finding ❺: Complex multi-step prompts can negatively impact the performance of closed-
source models. In the Triangle counting task, open-source models performed very well with
more examples in Instruct and k-shot scenario, while closed-source models excelled using minimal
prompting strategies such as 0-Algorithm, which avoid elaborate reasoning steps or intermediate
explicit guidance (Tables 17, 20 in Appendix E.1). This pattern suggests that complex or abstract
multi-step prompts can confound closed-source models in certain challenging tasks.

101

5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507

Under review as a conference paper at ICLR 2026

E.7 ANALYSIS ON EFFICIENCY VIA NUMBER OF OUTPUT TOKENS

To assess inference efficiency, we measure the total number of output tokens each model pro-
duces—tokenized consistently with the OpenAI GPT-3.5-turbo tokenizer1—and analyze how token
counts vary across four key dimensions: difficulty levels (Table 23), task categories (Table 24),
serialization formats (Table 25), and prompt schemes (Table 26). The average token counts under
each condition are reported in these tables, together with the main results of accuracy, providing a
comprehensive view of the trade-offs between output verbosity and model performance across our
benchmark.

E.7.1 OVERALL ANALYSIS

Lla
ma3

Mist
ra

l
Ph

i-4

Lla
ma3

.1

Qwen
2.5

GPT
-4o

-m
ini

Gem
ini

-2.
0

GPT
-4o

Cla
ud

e-3
.5

O4-m
ini

Model

200

400

600

800

1000

1200

1400

Av
g.

 R
es

po
ns

e
To

ke
n

Co
un

t

0.3

0.4

0.5

0.6

0.7

0.8

Av
g.

 A
cc

ur
ac

y

Model Response Length vs Accuracy

Figure 32: Average output tokens versus overall accuracy across all graph-theoretic tasks.
Models are ordered by the average performance. Models in Green are open-source models while
others in Red are closed-source ones.

Figure 32 highlights two distinct patterns. Closed-source models—GPT-4o, Claude-3.5, and Gemini-
2.0—achieve the highest accuracy while keeping total output below roughly 300 tokens, showing
tight control over generation length. o4-mini, a reasoning-focused model stands out: its final answers
remain short (about 100 tokens), but it adds a lengthy chain-of-thought (up to 1.6 K tokens), yielding
strong accuracy with markedly larger overall output. Open-source models display a different trend.
Llama-3.1 and Qwen-2.5 match the best accuracies only when they generate much longer responses,
whereas Llama-3 and Mistral remain shorter and less accurate. These contrasts persist across difficulty
levels, task categories, serialization formats, and prompt schemes, as detailed in Tables 23–26.

E.7.2 ANALYSIS CONCERNING DIFFICULTY OF TASK

Table 23: Average output tokens per model at each difficulty level (Easy, Medium, Hard).
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number of

output tokens.

Difficulty Llama-3 (8B) Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (7B) Claude-3.5 GPT-4o GPT-4o-mini Gemini-2.0 o4-mini Average
Answer Reasoning

easy 210.51 1050.08 375.91 517.31 881.82 198.82 257.17 248.50 440.26 143.87 841.68 469.63
hard 292.46 994.80 419.36 644.85 873.01 182.71 263.71 217.44 411.54 70.25 1660.83 548.27
medium 267.18 1018.81 408.88 632.09 903.56 197.35 278.82 246.52 481.29 120.70 1367.97 538.47

Average 256.72 1021.23 401.38 598.08 886.13 192.96 266.57 237.49 444.37 111.61 1290.16 -

Table 23 presents the token output across different models under varying levels of task difficulty.
Overall, most models exhibit small variation in output length as task difficulty increases. However, a

1Note that the number of the reasoning of o4-mini is obtained from the metadata of each API call.

102

5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561

Under review as a conference paper at ICLR 2026

notable exception is the reasoning model, which demonstrates a distinct pattern: as task difficulty
rises, the number of tokens in the final answer tends to decrease, while the length of the reasoning
process correspondingly increases.

E.7.3 ANALYSIS CONCERNING TASK TYPE

Table 24: Average output tokens per model for each graph-theoretic task.
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number of

output tokens.

Task type Llama-3 (8B) Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (7B) Claude-3.5 GPT-4o GPT-4o-mini Gemini-2.0 o4-mini Average
Answer Reasoning

BFS order 288.58 897.44 394.37 582.88 859.08 243.48 511.06 435.15 638.90 269.69 1666.66 617.03
Connectivity 176.60 919.75 375.53 565.78 630.62 133.71 154.63 130.19 137.39 96.13 547.11 351.59
Cycle detection 266.47 828.07 362.82 477.68 735.21 176.49 132.92 125.41 118.81 100.38 564.12 353.49
Diameter calculation 269.48 878.37 391.86 502.67 792.25 236.41 259.02 285.96 513.27 81.00 1839.11 549.95
Shortest path 286.65 1839.88 525.77 946.46 1491.21 127.57 149.54 187.84 351.89 91.59 735.50 612.17
Triangle counting 231.02 768.90 347.19 489.85 802.21 246.97 424.23 295.00 925.66 80.55 2156.73 615.30

Average 253.13 1022.07 399.59 594.22 885.10 194.11 271.90 243.26 447.66 119.89 1251.54 -

Further insights can be drawn from Table 24, which reveals a clear correlation between output
tokens and task type. Specifically, tasks such as Connectivity and Cycle detection consistently
yield significantly shorter outputs compared to other tasks, as they are relatively easier compared
to others. Among open-source models, the Shortest path task results in the longest outputs,
whereas for closed-source models, the BFS order and Triangle counting task generate the highest
average token counts . In the case of the reasoning model, the token output associated with the
reasoning process increases markedly with the complexity and difficulty of the task—particularly
when considering task accuracy. For instance, in the Triangle counting task, the reasoning
component alone produces an average of over 2000 tokens, highlighting the model’s tendency to
elaborate more extensively as task complexity increases.

E.7.4 ANALYSIS CONCERNING SERIALIZATION FORMATS

Table 25: Average output tokens per model under different serialization formats.
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number

of output tokens.

Serialization format Llama-3 (8B) Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (7B) Claude-3.5 GPT-4o GPT-4o-mini Gemini-2.0 o4-mini Average
Answer Reasoning

Adjacency List 260.58 958.19 393.76 505.19 792.85 199.83 280.26 234.54 455.60 123.91 1118.90 483.96
Adjacency Matrix 288.42 897.05 400.13 555.10 862.35 198.44 291.62 243.48 536.80 105.28 1535.59 537.66
Adjacency Set 256.95 962.41 390.89 509.12 787.49 199.17 284.96 237.48 497.91 119.09 1144.19 489.97
Edge List 239.61 930.70 383.71 526.96 805.14 195.93 267.44 261.68 445.74 117.61 1260.25 494.07
Edge Set 246.07 914.69 405.22 511.70 823.50 203.51 285.23 269.78 497.43 114.47 1282.32 504.90
Graph Modelling Language 267.75 853.42 335.60 544.70 787.79 181.31 221.91 180.38 339.59 114.18 1238.94 460.51
GraphML 212.87 1650.01 487.76 1000.29 1351.85 179.31 235.97 248.29 358.25 114.39 1195.50 639.50

Average 253.18 1023.78 399.58 593.29 887.28 193.93 266.77 239.38 447.33 115.56 1253.67 -

Table 25 presents the influence of different graph serialization formats on the number of output
tokens generated by various models. Overall, more complex formats—such as GMaL and Adjacency
Matrix—tend to induce longer outputs, whereas simpler formats—such as Adjacency List and Edge
List—are associated with significantly shorter outputs. Among the evaluated models, open-source
models such as Llama-3.1 and Qwen-2.5 consistently produce a higher number of tokens across most
formats. This effect is particularly pronounced for Llama-3.1 under the GMaL format, where its
output length reaches a peak. In contrast, closed-source models generally yield more concise outputs,
with Claude-3.5 being especially compact. An exception is observed in o4-mini, whose output length
is substantially higher due to the inclusion of intermediate reasoning steps.

E.7.5 ANALYSIS CONCERNING PROMPT SCHEMES

Table 26 further examines the impact of different prompting strategies on model output. Prompts
that involve reasoning or instruction (e.g., CoT, Instruct, and 0-Instruct) significantly increase output
length, a trend that is particularly salient in open-source models. For instance, under the 0-Instruct
prompt, both Llama-3.1 and o4-mini produce extended outputs. In contrast, prompts with no

103

5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615

Under review as a conference paper at ICLR 2026

Table 26: Average output tokens per model for each prompt scheme.
Orange / Blue / Light purple highlights indicate the largest/second-largest/third-largest number of

output tokens.

Prompt Scheme Llama-3 (8B) Llama-3.1 (8B) Mistral (7B) Phi-4 (14B) Qwen-2.5 (7B) Claude-3.5 GPT-4o GPT-4o-mini Gemini-2.0 o4-mini Average
Answer Reasoning

0-Algorithm 283.43 1071.04 484.71 434.10 953.42 206.22 305.95 237.04 684.95 123.07 1223.52 546.13
0-CoT 308.61 1114.37 346.42 145.13 763.46 221.08 385.55 386.72 558.95 156.72 1223.45 510.04
0-Instruct 308.80 1151.98 391.51 643.39 690.56 204.07 334.83 370.93 544.26 137.55 1229.01 546.08
Algorithm 202.15 964.36 456.40 815.85 946.63 215.10 245.75 225.96 349.02 120.56 1313.74 532.32
CoT 192.88 916.17 378.05 851.34 1042.81 164.95 154.63 203.33 253.13 92.06 1271.55 501.90
Instruct 212.82 987.20 355.99 917.42 1043.12 176.66 169.42 210.20 255.77 119.57 1302.98 522.83
LTM 303.64 1116.18 405.24 361.22 694.98 205.71 347.82 339.98 579.05 142.44 1239.87 521.47
K-Shot 160.98 760.10 440.39 1024.57 1009.45 170.52 196.37 39.37 270.99 67.35 1277.14 492.47
0-shot 305.27 1133.08 337.44 146.16 841.05 181.03 260.59 140.92 529.71 80.78 1201.01 468.82

Average 253.18 1023.83 399.57 593.24 887.27 193.93 266.77 239.38 447.32 115.56 1253.59 -

instruction (0-shot) or few-shot examples (K-Shot) tend to yield shorter outputs. Closed-source
models exhibit relatively stable output lengths across prompt types, suggesting stronger control over
generation behavior.

E.7.6 COST-ACCURACY TRADEOFF ANALYSIS

Table 27: Per-Query Inference Cost Analysis. Costs are calculated based on cur-
rent API pricing (as of November 2025) with average input tokens of 933 per query.
Bold orange / Underlined blue / Light purple highlights indicate lowest/second-lowest/third-

lowest cost in each category.

Model Input Cost ($) Output Cost ($) Total Cost ($)
Open-Source Models

Llama-3.1 (8B) 0.000019 0.000031 0.000049
Mistral (7B) 0.000187 0.000080 0.000267
Phi-4 (14B) 0.000056 0.000084 0.000140
Qwen-2.5 (7B) 0.000037 0.000089 0.000126

Closed-Source Models
Claude-3.5 0.002799 0.002894 0.005694
GPT-4o 0.002333 0.002666 0.004998
GPT-4o-mini 0.000140 0.000142 0.000282
Gemini-2.0 0.000093 0.000178 0.000271
o4-mini 0.001026 0.006168 0.007194

Table 27 presents per-query inference costs based on current API pricing. Cost varies by three orders
of magnitude across models, ranging from $0.000049 (Llama-3/Llama-3.1) to $0.007194 (o4-mini)
per query. Open-source models uniformly cost less than $0.0003 per query, while closed-source
models span from $0.000271 (Gemini-2.0) to $0.007194 (o4-mini).

Figure 33 visualizes the cost-(mean) accuracy tradeoff on all tasks. o4-mini achieves the highest
accuracy (80.96%) but incurs the highest cost. Notably, no model dominates across all metrics.
The optimal choice depends on application requirements: open-source models for cost-sensitive
deployments with relaxed accuracy constraints, Gemini-2.0 or GPT-4o-mini for balanced cost-
performance, Claude-3.5 or GPT-4o for high-accuracy applications, and o4-mini when maximizing
accuracy justifies premium costs. For full benchmark evaluation (241,726 queries), total costs range
from $11.85 (Llama-3) to $1,739 (o4-mini), a 147× difference that has significant implications for
large-scale graph reasoning deployments.

F DETAILED RELATED WORKS

Integrating LLMs with graph-structured data merges linguistic reasoning capabilities with structural
representation insights. While comprehensive discussions on LLM-graph integration can be found in

104

5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669

Under review as a conference paper at ICLR 2026

30 40 50 60 70 80
Mean Accuracy (%)

10 4

10 3

10 2

Co
st

 p
er

 Q
ue

ry
 (

U
SD

, l
og

 s
ca

le
)

Llama-3
Llama-3.1

Mistral

Phi-4
Qwen-2.5

Claude-3.5
GPT-4o

GPT-4o-mini
Gemini-2.0

o4-mini

Cost-Accuracy Tradeoff Across Evaluated Models
Open-Source
Closed-Source

Figure 33: Cost-accuracy tradeoff across evaluated models on average. Each point represents a
model’s mean accuracy versus per-query inference cost (log scale).

Appendix F.1, recent benchmarks specifically targeting LLM applications for graph reasoning, such as
LLM4DyG (Zhang et al., 2024b), GraphTMI (Das et al., 2024), GraphInstruct (Luo et al., 2024b), and
MAGMA (Taylor et al., 2024), have highlighted substantial progress and persistent limitations. These
benchmarks reveal issues including narrow graph diversity, scalability constraints, and pronounced
sensitivity to input formatting. Studies on graph pattern comprehension and multi-hop reasoning
(Dai et al., 2024; Wang et al., 2023; Jin et al., 2024b) further emphasize brittleness under complex
or noisy data conditions. Empirical analyses conducted by GPT4Graph (Guo et al., 2024a) and
GraphWiz (Chen et al., 2024a) underscore performance gaps relative to specialized graph models
and highlight computational inefficiencies. Additionally, recent contributions through transformer
scaling studies (Sanford et al., 2024), comprehensive benchmarks like GraphFM (Xu et al., 2024)
and GLBench (Li et al., 2024d), and specialized datasets (Yan et al., 2023; Fatemi et al., 2024)
have provided valuable yet often limited insights. ProGraph (Li et al., 2024b) offers innovation but
introduces extra computational overhead due to external dependencies. A detailed summary of these
benchmark-related works is available as follows.

F.1 LLM APPLICATIONS ON GRAPH DATA

The intersection of LLMs and graph-structured data has emerged as an active research domain,
combining the nuanced contextual reasoning abilities of LLMs with the structural representational
power of traditional Graph Neural Networks (GNNs). Initial studies addressed fundamental challenges
such as reducing sensitivity to prompt formulation (Sclar et al., 2024) and enabling zero-shot cross-
dataset transferability (Li et al., 2024c). These foundational efforts have supported the development
of generative models that jointly leverage textual and structural graph information, creating unified
semantic embeddings for enhanced performance (Wang et al., 2024b; Fang et al., 2025b; Li et al.,
2024a; Kong et al., 2024).

Subsequent research built upon these foundations by focusing on enhancing the robustness of LLMs
when applied to graph tasks (Guo et al., 2024b) and advancing techniques for effectively translating
complex graph structures into natural language, notably through methods like graph-syntax trees
(Zhao et al., 2023). Recent advancements have directly embedded graph reasoning capabilities within
LLM architectures, significantly extending their application beyond purely textual domains (Hu
et al., 2023). In this context, specific methodologies have been developed, embedding graph learning
modules and leveraging instruction tuning for improved alignment between structural data and LLM
input modalities (Chai et al., 2023; Tang et al., 2024).

Parallel efforts have provided extensive overviews of the evolving field through comprehensive sur-
veys (Li et al., 2023; Jin et al., 2024a), highlighting foundational concepts such as Graph Foundation

105

5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723

Under review as a conference paper at ICLR 2026

Models that employ dedicated graph vocabularies for effective cross-domain learning (Mao et al.,
2024). Concurrently, advances in parameter-efficient encoding techniques, exemplified by GraphTo-
ken (Perozzi et al., 2024), and retrieval-augmented frameworks such as G-Retriever (He et al., 2024),
have further refined the processing and utilization of graph structures. Moreover, assistant-based
frameworks employing instruction-tuning strategies, including LLaGA (Chen et al., 2024b) and
InstructGraph (Wang et al., 2024a), demonstrated significant potential for enabling LLMs to produce
high-quality graph-structured outputs through preference-aligned interactions.

Complementing these directions, significant innovations have emerged within graph representation
learning, exemplified by models like OpenGraph (Xia et al., 2024) and MuseGraph (Tan et al.,
2024), which integrate scalable transformers, data augmentation, and graph-specific instruction
tuning for robust zero-shot performance and general graph mining applications. Additional methods
employing compact node identifiers (Luo et al., 2024a) and attributed random walks for fine-tuning
(Tan et al., 2023) have notably improved inference efficiency, collectively illustrating a coherent
evolution towards integrated frameworks that effectively harness the combined strengths of LLMs
and graph-centric approaches.

F.2 BENCHMARKS ON LLM APPLICATION TO GRAPH DATA

Recent benchmarks assessing LLM capabilities on graph reasoning tasks have significantly advanced
understanding yet still present important limitations. Benchmarks such as LLM4DyG (Zhang et al.,
2024b), which emphasizes spatial-temporal dynamics, typically neglect the complexity inherent to
static graph structures. Similarly, GraphTMI (Das et al., 2024), exploring various graph input modali-
ties (text, motif, image), has exposed inherent trade-offs between token efficiency and representational
expressiveness, potentially impacting scalability.

Other benchmarks, including GraphInstruct (Luo et al., 2024b) and MAGMA (Taylor et al., 2024),
incorporate traditional graph reasoning tasks with explanatory strategies but remain limited by
small-scale graph sizes and lack comprehensive coverage across diverse graph structures. Studies
specifically targeting graph pattern recognition and natural-language-based graph problem-solving
(Dai et al., 2024; Wang et al., 2023) have further revealed pronounced sensitivity to input formats,
resulting in brittleness under complex or noisy conditions. Additionally, frameworks designed to
mitigate multi-hop reasoning inaccuracies through graph-centric reasoning chains (Jin et al., 2024b)
and examinations of generalization beyond memorized patterns (Zhang et al., 2024a) continue to
illustrate significant unresolved challenges.

Empirical assessments conducted by initiatives such as GPT4Graph (Guo et al., 2024a) and instruction-
tuned benchmarks like GraphWiz (Chen et al., 2024a) highlight persistent performance gaps com-
pared to specialized graph neural architectures, accompanied by elevated computational demands.
More recent contributions, including scaling analyses of transformer models (Sanford et al., 2024),
comprehensive benchmarks like GraphFM (Xu et al., 2024) and GLBench (Li et al., 2024d), and
specialized datasets such as CS-TAG (Yan et al., 2023) and encoding studies (Fatemi et al., 2024),
have substantially enriched the literature but remain constrained by challenges related to homogeneity,
training inefficiencies, and limited scalability. While innovative, solutions such as ProGraph (Li et al.,
2024b), employing programming-based integration and external API retrieval, introduce additional
computational overhead and dependencies.

G LIMITATIONS AND FUTURE DIRECTIONS OF GRAPHOMNI

While GRAPHOMNI significantly advances the evaluation of large language models (LLMs) on
graph-theoretic tasks, several considerations highlight opportunities for future enhancement:

• Diversity of Tasks: The benchmark presently includes key canonical tasks, which may not
fully represent the diversity of graph-related problems encountered in practice. Expand-
ing the task set to include dynamic, temporal, or heterogeneous graph challenges could
offer deeper insights into model performance. Future work should focus on defining and
integrating tasks that capture evolving network structures and multi-relational data.

• Generalizability of Findings: GRAPHOMNI evaluates LLMs under controlled experimental
conditions, which might not entirely reflect performance in less structured, real-world

106

5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777

Under review as a conference paper at ICLR 2026

environments. Future work could include testing the generalizability of models across
various practical conditions, such as noisy data, incomplete graphs, or domain-specific
variations, to better understand the robustness and applicability of LLMs.

Addressing these aspects will further enhance the robustness, applicability, and inclusivity of
GRAPHOMNI, fostering wider adoption and deeper insights into LLM performance.

H ADDITIONAL ABLATION STUDIES

H.1 PERFORMANCE VS. TIME COMPLEXITY OF TASKS

H.1.1 TIME COMPLEXITY ANALYSIS

The time complexities are determined based on well-established algorithms in graph theory (we are
aware more efficient algorithms are available, especially for Diameter calculation and Triangle
counting, but we use the most naive implementations since they typically reflect how LLMs approach
these tasks):

• Connectivity: O(V +E) — Determined via a single breadth-first search (BFS) or depth-
first search (DFS) traversal starting from one node to check reachability to another node.

• Cycle detection: O(V +E) — Implemented using DFS with back-edge detection; each
node and edge is visited at most once.

• BFS order: O(V + E) — Standard breadth-first traversal visits each node once and
examines each edge once.

• Shortest path: O(V + E) for unweighted graphs using BFS, or O(E + V log V) for
weighted graphs using Dijkstra’s algorithm. Since our benchmark uses unweighted graphs,
we report O(V + E).

• Diameter calculation: O(V (V + E)) — Requires computing all-pairs shortest paths,
typically achieved by running BFS from each node, resulting in O(V) BFS operations each
costing O(V + E).

• Triangle counting: O(V 3) naively by checking all triplets of nodes, or O(V · d2avg) with
neighbor-based enumeration where davg is the average degree. For dense graphs or without
optimizations, this remains the most computationally intensive task.

H.1.2 ALIGNMENT ANALYSIS

Tables 28, 29, and 30 demonstrate partial alignment between computational complexity and LLM
difficulty. At the extremes, correspondence is clear: Triangle counting (O(V 3)) achieves only
15.45% accuracy (closed-source, Hard) and 6.77% (open-source, Hard), while Connectivity (O(V +
E)) reaches 91.90% and 75.97% respectively. Similarly, Diameter calculation (O(V (V + E)))
yields 40.09% (closed-source) and 21.33% (open-source), ranking as the second-hardest task both
algorithmically and empirically.

However, among tasks with identical O(V + E) complexity, performance diverges substantially.
Connectivity maintains 91.90% accuracy on hard instances, while BFS order collapses to 27.15%,
a 64.75 percentage point gap despite equivalent asymptotic complexity. This divergence indicates
that computational complexity alone does not determine LLM difficulty.

H.1.3 FACTORS BEYOND COMPUTATIONAL COMPLEXITY

Three task characteristics account for this divergence. First, output structure critically impacts
performance: binary decisions (Connectivity, Cycle detection) achieve 91.90% and 79.24%,
while sequence generation (BFS order) and numerical enumeration (Triangle counting, Diameter
calculation) fall to 27.15%, 15.45%, and 40.09% respectively. Second, error propagation varies
by task type—sequence tasks suffer cascading failures where single errors invalidate entire outputs, as
evidenced by BFS order’s severe 62.52% performance drop. Third, reasoning scope distinguishes
task difficulty: local reasoning tasks (Connectivity, Cycle detection) degrade minimally (4.31%,

107

5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831

Under review as a conference paper at ICLR 2026

2.74%), while global reasoning tasks requiring complete graph traversal (Diameter calculation,
BFS order) drop sharply (41.34%, 62.52%).

Table 30 quantifies these effects: open-source models degrade 16.93% on average from Easy to Hard,
while closed-source models drop 26.26%. Crucially, this degradation correlates more strongly with
reasoning scope and output structure than with algorithmic complexity—BFS order (O(V + E))
degrades more severely than Diameter calculation (O(V (V +E))), demonstrating that maintain-
ing sequential dependencies in textual representations poses greater challenges than computational
intensity per se.

H.1.4 CONCLUSION

Our analysis reveals that computational complexity establishes a baseline for LLM difficulty, as
evidenced by Triangle counting and Diameter calculation ranking as both algorithmically
expensive and empirically challenging. However, output structure and reasoning scope play equally
critical roles. The 64.75 percentage point gap between Connectivity and BFS order—both
O(V + E) tasks—demonstrates that LLMs struggle disproportionately with maintaining long-range
sequential dependencies, performing combinatorial enumeration, and generating outputs under strict
ordering constraints. These limitations manifest independently of algorithmic complexity and persist
across all evaluated models (Tables 28–30), indicating fundamental constraints in how current
LLM architectures encode and manipulate graph-structured information through natural language
representations.

Table 28: Open-Source LLM Performance Across Tasks Ranked by Computational Complexity
(Mean Accuracy %). Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

Task Time Complexity Easy (5–10 nodes) Hard (20–30 nodes)
Llama-3.1 Mistral Phi-4 Qwen-2.5-72B Qwen-2.5-7B Qwen-3 Llama-3.1 Mistral Phi-4 Qwen-2.5-72B Qwen-2.5-7B Qwen-3

Triangle O(V3) 14.97 11.87 12.88 36.57 18.56 41.36 4.95 2.55 4.38 4.73 4.45 19.54
Diameter O(V(V+E)) 41.27 28.55 42.81 78.50 45.08 77.56 18.63 6.97 17.71 29.59 15.27 39.83
BFS order O(V+E) 18.69 13.75 33.03 71.41 21.46 65.87 0.63 0.34 2.65 22.03 1.38 29.53
Shortest path O(V+E) 38.75 31.18 42.61 90.03 47.46 77.69 23.03 12.21 26.60 72.53 28.31 64.28
Cycle O(V+E) 55.49 55.44 45.25 74.02 62.19 90.30 52.40 51.64 40.64 68.40 58.88 86.81
Connectivity O(V+E) 79.53 79.90 56.29 90.24 88.10 97.17 74.58 74.77 48.39 84.09 81.19 92.89

Table 29: Closed-Source LLM Performance Across Tasks Ranked by Computational Complexity
(Mean Accuracy %). Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

Task Time Complexity Easy (5–10 nodes) Hard (20–30 nodes)
Claude-3.5 GPT-4o Gemini-2.0 o4-mini Claude-3.5 GPT-4o Gemini-2.0 o4-mini

Triangle O(V3) 43.41 36.32 50.33 84.54 15.92 12.81 15.55 17.53
Diameter O(V(V+E)) 83.71 63.99 79.14 98.88 56.70 45.60 23.45 34.61
BFS order O(V+E) 91.42 81.48 90.31 95.46 26.80 21.58 27.77 32.45
Shortest path O(V+E) 94.35 92.17 81.75 95.08 87.88 74.98 78.16 88.63
Cycle O(V+E) 82.56 85.08 62.30 97.97 80.10 82.96 58.30 95.61
Connectivity O(V+E) 98.38 95.63 92.61 98.23 96.99 90.59 87.99 92.02

Table 30: Aggregate Performance Comparison by Model Category and Task Complexity with
Performance Degradation. Accuracy (%) with color intensity indicating performance level. ∆ shows
Easy→Hard performance drop.

Task Time Complexity Open-Source Closed-Source
Easy Hard ∆ Easy Hard ∆

Triangle O(V3) 22.70 6.77 −15.93 53.65 15.45 −38.20
Diameter O(V(V+E)) 52.30 21.33 −30.97 81.43 40.09 −41.34
BFS order O(V+E) 37.37 9.43 −27.94 89.67 27.15 −62.52
Shortest path O(V+E) 54.62 37.83 −16.79 90.84 82.41 −8.43
Cycle O(V+E) 63.78 59.76 −4.02 81.98 79.24 −2.74
Connectivity O(V+E) 81.87 75.97 −5.90 96.21 91.90 −4.31
Mean 52.11 35.18 −16.93 82.30 56.04 −26.26

108

5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885

Under review as a conference paper at ICLR 2026

H.2 SCALING BEYOND 50 NODES

To address scale concerns, we extend evaluation to 50–100 node graphs on representative models
(Qwen-2.5-72B and o4-mini). Table 31 compares performance against the 20–30 node Hard split.

Performance degrades uniformly as graph size increases, but the fundamental patterns remain un-
changed. Task difficulty ranking stays identical: Triangle counting and BFS order remain
hardest, while Connectivity and Cycle detection remain most stable. Relative model perfor-
mance gaps persist at similar magnitudes across scales. Critically, no new failure modes emerge, i.e.,
the same challenges identified in smaller graphs (combinatorial enumeration, sequential dependencies,
serialization sensitivity) simply intensify.

These results confirm that our 5–30 node design captures the essential reasoning challenges. Larger
graphs amplify these challenges quantitatively but reveal no new qualitative phenomena, validating
our focus on controlled-scale evaluation where reasoning capability, rather than resource constraints,
determines performance.

Table 31: Results on 50–100 node graphs (EEH = Extremely Extra Hard). Results on the 20–30 node
Hard split are shown in parentheses for comparison. Bold orange / Underlined blue highlights
indicate best/second-best performance.

Task Difficulty Open-source Model Closed-source Model
Qwen-2.5 (72B) o4-mini

BFS order EEH 8.19±2.03 (22.03) 10.23±2.07 (32.45)
Connectivity EEH 62.00±4.90 (84.09) 81.86±8.24 (92.02)

Cycle EEH 37.78±4.11 (68.40) 74.81±4.90 (95.61)
Diameter EEH 8.89±2.39 (29.59) 40.44±3.76 (34.61)

Shortest path EEH 33.28±6.09 (72.53) 68.51±11.04 (88.63)
Triangle EEH 2.36±0.67 (4.73) 2.85±0.71 (17.53)

H.3 ROBUSTNESS CHECK UNDER PROMPT NOISE (PERTURBATION)

To address concerns about robustness to natural language variation, we conduct a supplementary
evaluation examining model sensitivity to paraphrased prompts. In our main evaluation, we deliber-
ately use deterministic phrasing within each prompt scheme to isolate the effects of our three core
dimensions, i.e., graph types, serialization formats, and prompt schemes, without confounding factors
from linguistic variation. This controlled design allows us to systematically attribute performance
differences to structural representation choices (serialization formats) and reasoning guidance strate-
gies (prompt schemes) rather than to incidental phrasing variations. However, real-world applications
inevitably encounter diverse linguistic expressions of the same semantic content, and robustness to
such variation is a practical concern. We therefore design a controlled perturbation framework to
assess whether our conclusions remain stable under realistic linguistic variation.

H.3.1 DESIGN OF THE STUDY

Task and Sample Selection. We choose to conduct this robustness analysis on BFS order. This
choice is motivated by three considerations: (1) it is among the most challenging tasks in our
benchmark, exhibiting substantial performance gaps across models and difficulty levels; (2) it
requires complex structured output (a full node ordering), making it potentially more sensitive to
prompt variations that might affect the model’s understanding of output format requirements; and (3)
given limited time and budget constraints, concentrating on a single representative hard task allows
for deeper analysis. From the full BFS order dataset, we subsample 4,000 instances to balance
coverage across graph types, serialization formats, prompt schemes, and difficulty levels.

Perturbation Design. Our perturbation framework defines noisy prompts as semantically equivalent
(so it is still a problem with the same answer) but syntactically diverse variants of the original prompts.

109

5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939

Under review as a conference paper at ICLR 2026

Figure 34: Example of algorithm explanation perturbation. The original formal, numbered description
(left) is transformed into conversational phrasing (right) while preserving algorithmic correctness.
Highlighted changes show systematic replacement of technical terms with colloquial alternatives.
Word-level changes: 47.9%.

And they are generated through systematic paraphrasing of natural-language components while
maintaining the absolute structural preservation of graph data. The design adheres to three core
principles:

1. Semantic Equivalence: All perturbations preserve the semantic content and task requirements
through lexical substitution, syntactic restructuring, and stylistic variation. So it is designed
to test linguistic invariance.

2. Structural Preservation: Graph representations remain character-for-character identical
across all perturbations. This ensures that performance variation reflects model sensitivity
to linguistic expression rather than changes in the underlying graph structure. In this way,
the nature of the problem does not change much, and the ground truth results will still be
the same.

3. Comprehensive Coverage: Perturbations span all nine prompt types in our framework
(Algorithm, CoT, k-shot, Instruct, LTM, and their variants) and all seven serialization
formats (Adjacency Matrix, Adjacency List, Adjacency Set, Edge List, Edge Set, GMoL,
GMaL).

Perturbation Methodology. We construct task-specific variation pools for each perturbable com-
ponent. For prompts containing algorithmic explanations, we develop multiple human-authored
paraphrases that express the same procedural steps using different vocabulary, sentence structures,
and explanatory styles. Figure 34 illustrates a representative example: the original formal description
uses a numbered list structure with technical terminology (“Initialize”,“enqueue”,“dequeue”,“Mark
visited”), while the perturbed version adopts a conversational flow with colloquial alternatives (“First”,
“pick your”, “put it in, “take out”, “Mark it as visited so we don’t check it again”). The transfor-
mation achieve 47.9% word-level change while maintaining algorithmic correctness and semantic
equivalence.

For few-shot answer components, we generate variations that maintain identical logical reasoning
and final answers while modifying transitional phrases and technical terminology. Figure 35 demon-
strates this approach: the original example uses formal procedural terms (“Dequeue”, “neighbors”,
“enqueue”, “visited”) that are systematically replaced with more natural alternatives (“Extract from
queue”, “neighboring nodes”, “insert into queue”, “seen”). This achieves 17.5% word-level change
through 29 replacements with 82.5% similarity, preserving the reasoning structure while varying
linguistic expression. For instructional components, we create alternatives for opening statements,
reasoning indicators, and procedural connectives. For task descriptions in minimal prompts, we
paraphrase the task specification itself.

The perturbation process employs delimiter-based component extraction to precisely identify natural
language elements while avoiding graph data. Specifically, we identify boundaries between natural
language answers and graph representations (e.g., “And the graph representation of [format] is”)

110

5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993

Under review as a conference paper at ICLR 2026

Figure 35: Example of few-shot answer perturbation. The original formal reasoning (left) is para-
phrased with natural language variation (right) while maintaining identical logical structure and
final answer. Color-coded highlights show systematic terminology replacement (e.g., “Dequeue”→
“Extract from queue”,“visited”→ “seen”). Word-level changes: 17.5%.

to ensure that variations are applied exclusively to linguistic content. For each prompt, we ran-
domly sample variations from component-specific pools matched to the prompt’s (prompt scheme,
serialization format) combination, apply targeted string replacement using bounded pattern
matching, and verify post-perturbation that all graph representations remain unchanged through
format-specific validation procedures.

Quality Assurance. To guarantee structural preservation, we implement multi-level verification:
format-specific validation for each of the seven serialization types (e.g., character-level comparison
of matrix blocks, structural validation for GML/GraphML, exact content matching for list and set
formats), automated testing on representative samples spanning all prompt-serialization combinations,
and per-instance validation confirming preservation before evaluation. Our implementation achieves
100% graph structure preservation across all perturbations while successfully modifying 87.9% of
prompts of the samples (with the remaining 12.1% representing cases where random sampling selects
the original phrasing).

Summary. This framework enables systematic evaluation of whether model performance and
our main conclusions remain stable under realistic linguistic variation, providing evidence for the
robustness of our findings beyond the specific phrasings used in the primary benchmark.

H.3.2 EXPERIMENTAL RESULTS AND ANALYSIS

Experimental Setting. We evaluate two representative models from our main benchmark: o4-mini
(top-performing closed-source reasoning model) and Qwen-2.5-72B (strongest open-source model).
These models provide coverage of both closed-source and open-source categories and exhibited the
highest performance in our main evaluation. We report results aggregated across prompt schemes
and serialization formats separately, as well as fine-grained breakdowns per model, to assess whether
our main conclusions about representation sensitivity remain stable under linguistic perturbation.

Overall Results. Tables 32 and 33 present results averaged across both models. Several key patterns
emerge:

Preservation of relative performance patterns. The relative rankings of prompt schemes and serializa-
tion formats remain largely stable between original and perturbed conditions. For prompt schemes
(Table 32), Algorithm, CoT, and Instruct consistently rank among the top three performers in Easy
mode under both conditions, while 0-Shot maintains strong performance in Medium and Hard modes.
For serialization formats (Table 33), AL and AS consistently dominate across all difficulty levels

111

5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047

Under review as a conference paper at ICLR 2026

in both original and perturbed settings, with AL achieving 92.26% to 93.41% (Easy), 83.44% to
83.56% (Medium), and 48.27% to 50.33% (Hard). The persistence of these rankings confirms that
our main finding holds under linguistic variation, as no single configuration works universally, but
certain formats consistently outperform others.

Evidence of real perturbation effects. While relative patterns are preserved, absolute performance
values shift measurably between conditions. For example, CoT improves from 85.26% to 90.98%
in Easy mode, while K-Shot shows variation from 80.48% to 78.36%. These changes confirm that
our perturbations introduce meaningful variation rather than being trivial paraphrases. We note that
performance differences may be partially attributable to the subsampling from the full dataset to
4,000 instances, though the consistency of relative patterns suggests this effect is limited.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM

Original
E 84.71±8.99 78.36±10.06 82.32±9.07 83.22±9.08 85.82±7.12 85.26±7.45 86.86±6.13 80.48±8.52 83.88±8.58
M 65.82±12.78 64.46±12.61 64.97±11.99 66.90±13.59 66.29±10.15 61.97±11.01 62.31±9.35 54.18±14.67 65.48±11.94
H 32.22±10.81 31.87±9.64 29.42±9.90 31.69±10.66 26.93±8.37 22.67±6.51 20.90±6.63 20.26±8.55 29.18±10.15

Perturbed
E 84.98±14.09 75.50±14.08 85.54±9.64 79.13±15.83 85.82±9.49 90.98±7.83 78.21±16.30 78.36±10.79 87.59±10.59
M 70.78±16.77 70.58±11.78 60.24±18.49 76.93±13.23 66.22±14.67 58.44±10.42 70.90±11.63 54.65±16.17 68.73±14.16
H 34.26±19.27 28.38±12.29 27.46±14.77 41.06±15.69 26.93±12.75 22.38±9.41 18.75±7.55 21.27±12.25 32.37±12.90

Table 32: Performance of Prompt Schemes with perturbed prompt (Mean±95% CI Margin of All
Models). Averaged over o4mini and Qwen-2.5-72B. Bold orange / Underlined blue / Light purple
highlights indicate best/second-best/third-best performance in each difficulty level.

Task Difficulty AL AM AS EL ES GMaL GMoL

Original
E 92.26±3.71 75.24±10.67 91.88±3.76 82.28±7.11 82.17±6.40 85.68±4.64 74.51±8.09
M 83.44±5.82 46.03±13.79 79.44±6.32 59.84±7.94 53.39±7.86 67.04±6.66 56.01±10.77
H 48.27±6.14 7.46±2.72 48.23±6.57 20.74±3.70 15.56±2.76 26.95±3.29 23.46±5.37

Perturbed
E 93.41±5.30 74.08±15.27 87.40±7.19 80.64±15.75 81.91±8.49 85.60±8.14 77.67±12.33
M 83.56±11.24 52.54±14.98 83.93±7.28 61.40±11.35 57.99±11.80 62.85±10.07 60.51±14.09
H 50.33±10.84 6.97±6.66 50.02±13.24 22.52±8.83 24.93±11.77 19.24±6.17 22.38±8.42

Table 33: Performance of Serialization Formats with perturbed prompt (Mean±95%
CI Margin of All Models). Averaged over o4-mini and Qwen-2.5-72B.
Bold orange / Underlined blue / Light purple highlights indicate best/second-best/third-best

performance in each difficulty level.

Fine-Grained Results. Tables 34–37 break down results per model, revealing differential robustness
characteristics:

o4-mini exhibits high robustness. The closed-source reasoning model shows remarkable stability
across perturbations (Tables 34 and 35). For serialization formats, AL maintains 98.54% to 97.89%
(Easy), 91.75% to 92.20% (Medium), and 54.24% to 56.08% (Hard), with minimal changes in
ranking. For prompt schemes, the relative ordering remains nearly identical between conditions,
with only minor absolute shifts (e.g., 0-Algorithm improves from 95.84% to 97.64% in Easy mode).
This stability suggests that o4-mini’s reasoning capabilities are relatively invariant to surface-level
linguistic variation, consistent with its design for robust multi-step reasoning.

Qwen-2.5-72B shows greater sensitivity. The open-source model exhibits larger absolute performance
shifts and wider confidence intervals under perturbation (Tables 36 and 37). For example, in
serialization formats, performance on AS varies from 86.68% to 77.64% (Easy) and 47.74% to
52.59% (Hard), with substantially increased variance (e.g., Hard mode: 10.30 to 27.65). Similarly,
prompt scheme performance shows notable fluctuation (e.g., CoT: 75.10% to 85.22% in Easy, 47.82%
to 46.85% in Medium). However, crucially, the relative rankings remain consistent: AL and AS
continue to outperform other serializations, and Algorithm/CoT/Instruct remain competitive prompt
schemes. This indicates that while open-source models may be more sensitive to phrasing variations,
our comparative conclusions about which representations work better are robust.

Summary. Our robustness analysis demonstrates that the main conclusions of GRAPHOMNI remain
stable under realistic linguistic perturbation. While absolute performance values shift measurably,

112

6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101

Under review as a conference paper at ICLR 2026

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM

Original
E 95.84±2.29 94.66±3.43 96.53±1.96 94.66±2.76 97.02±2.05 95.42±1.58 96.32±2.16 93.90±2.26 94.80±2.51
M 83.06±6.30 80.88±5.51 80.34±7.04 84.08±5.94 77.28±5.58 76.12±6.47 73.74±6.33 79.73±6.15 79.12±6.32
H 37.88±12.33 38.07±11.51 35.77±13.43 39.31±14.47 26.98±10.81 26.26±7.98 21.48±7.40 31.85±11.55 34.45±12.51

Perturbed
E 97.64±1.76 95.54±2.69 97.39±1.95 96.36±3.85 95.20±4.17 95.92±2.65 94.71±3.32 93.37±2.53 95.48±2.82
M 89.42±4.41 81.41±4.49 75.27±8.19 86.36±7.86 74.24±8.63 68.37±11.29 71.33±9.88 78.26±6.93 78.76±9.51
H 41.10±19.67 33.05±16.53 33.75±16.26 50.55±15.98 27.23±13.65 24.28±10.70 27.30±6.95 35.71±12.20 34.86±17.31

Table 34: Performance of Prompt Schemes with perturbed prompt (Mean±95% CI Margin of All
Models) on o4-mini. Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

Task Difficulty AL AM AS EL ES GMaL GMoL

Original
E 98.54±0.63 96.06±1.47 97.09±1.40 95.74±1.14 95.25±1.00 94.71±1.51 90.83±2.72
M 91.75±1.49 74.71±1.86 87.20±4.62 74.92±2.89 69.10±2.66 79.63±3.63 78.31±1.97
H 54.24±5.95 12.83±1.73 48.72±8.78 27.49±2.78 19.01±3.80 31.11±4.72 33.74±4.02

Perturbed
E 97.89±1.76 96.99±2.15 97.17±2.64 95.29±2.12 95.20±2.90 94.20±2.81 93.39±2.76
M 92.20±2.48 73.15±5.68 87.22±7.43 76.96±6.46 67.16±7.90 72.84±6.68 77.57±5.61
H 56.08±10.23 13.51±12.75 47.74±7.90 31.36±12.84 28.68±9.58 24.25±7.84 33.20±11.99

Table 35: Performance of Serialization Formats with perturbed prompt (Mean±95% CI Margin of All
Models) on o4-mini. Bold orange / Underlined blue / Light purple highlights indicate best/second-
best/third-best performance in each difficulty level.

Task Difficulty 0-Algorithm 0-CoT 0-Instruct 0-Shot Algorithm CoT Instruct K-Shot LTM

Original
E 73.58±13.66 62.07±9.30 68.10±9.70 71.78±13.48 74.62±7.41 75.10±10.29 77.39±6.59 67.06±8.88 72.95±12.65
M 48.57±16.95 48.03±17.71 49.59±16.46 49.73±19.69 55.31±16.14 47.82±15.08 50.88±13.11 28.64±7.72 51.84±18.43
H 26.56±17.71 25.67±14.87 23.07±13.88 24.07±14.43 26.88±13.67 19.08±10.17 20.32±11.63 8.68±3.39 23.92±15.94

Perturbed
E 72.33±25.53 52.11±15.51 71.71±14.31 61.91±26.30 72.70±16.55 85.22±16.18 55.11±29.20 60.84±12.59 78.39±21.24
M 52.14±27.47 57.94±21.58 42.71±35.28 65.93±25.51 58.20±27.85 46.85±13.95 70.40±23.79 27.10±14.46 58.70±25.48
H 28.39±32.49 23.71±18.80 20.12±26.21 31.56±26.38 26.62±22.75 20.16±17.12 11.43±10.14 1.05±2.06 29.87±20.35

Table 36: Performance of Prompt Schemes with perturbed prompt (Mean±95% CI Margin of
All Models) on Qwen-2.5-72B. Bold orange / Underlined blue / Light purple highlights indicate
best/second-best/third-best performance in each difficulty level.

Task Difficulty AL AM AS EL ES GMaL GMoL

Original
E 85.98±4.51 54.42±8.08 86.68±5.68 68.82±6.28 69.09±2.97 76.65±3.28 58.20±3.92
M 75.13±8.68 17.35±3.83 71.69±9.52 44.76±6.41 37.67±4.27 54.44±4.82 33.70±3.43
H 42.30±9.52 2.08±0.76 47.74±10.30 13.99±2.60 12.10±2.53 22.80±2.67 13.17±2.23

Perturbed
E 87.65±10.82 51.17±21.97 77.64±11.01 47.66±34.42 68.62±11.31 75.94±14.67 59.99±20.12
M 74.92±21.42 29.36±22.16 80.64±12.64 45.83±16.54 47.68±22.05 50.00±17.76 38.57±23.07
H 43.85±19.81 1.25±2.45 52.59±27.65 13.67±9.54 21.18±21.98 13.59±8.54 11.57±6.71

Table 37: Performance of Serialization Formats with perturbed prompt (Mean±95% CI Margin of
All Models) on Qwen-2.5-72B. Bold orange / Underlined blue / Light purple highlights indicate
best/second-best/third-best performance in each difficulty level.

113

6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155

Under review as a conference paper at ICLR 2026

confirming that perturbations introduce real variation rather than trivial paraphrases, the relative
performance patterns across prompt schemes and serialization formats are preserved. Specifically,
the finding that no single configuration works universally, but that certain serialization-prompt
combinations consistently outperform others, holds across both original and perturbed conditions.
The differential sensitivity between models (o4-mini showing higher robustness than Qwen-2.5-72B)
provides an additional dimension for understanding model capabilities. These results validate the
reliability of our benchmark findings while highlighting that prompt perturbation represents a valid
and interesting dimension for future investigation. Importantly, our extensible framework design
readily accommodates such extensions: future work could systematically incorporate perturbation
as an additional evaluation axis alongside graph types, serialization formats, and prompt schemes,
enabling deeper exploration of linguistic robustness in graph reasoning tasks.

THE USE OF LARGE LANGUAGE MODELS

We declare that we only use LLM to aid or polish writing in this paper. Of course, we use LLMs to
do inference in our experiment since we need to evaluate them on GRAPHOMNI.

114

