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ABSTRACT

LLM agents with tool-calling capabilities often fail when user instructions are
ambiguous or incomplete, leading to incorrect invocations and task failures. Ex-
isting approaches operate in unstructured language spaces, generating clarifying
questions through prompting strategies that lack principled criteria for determining
which questions to ask and when to stop. We introduce a principled formulation of
structured uncertainty that operates directly over tool parameters and their domains,
cleanly separating specification uncertainty (what the user wants) from model un-
certainty (what the LLM predicts). Our formulation uses Expected Value of Perfect
Information (EVPI) to quantify the disambiguation value of each potential question,
balanced against aspect-based cost modeling that prevents redundant questioning.
We demonstrate the versatility of this formulation through two applications. First,
SAGE-Agent uses structured uncertainty for inference-time question selection,
achieving 7-39% higher coverage on ambiguous tasks while reducing clarifica-
tion questions by 1.5-2.7x compared to strong prompting and uncertainty-based
baselines. Second, we show that structured uncertainty provides effective training
signals: uncertainty-guided reward modeling boosts When2Call accuracy from
36.5% to 65.2% (3B model) and 36.7% to 62.9% (7B model) through uncertainty-
weighted GRPO training, demonstrating more sample-efficient reinforcement learn-
ing for tool-calling agents. To enable evaluation, we present ClarifyBench, the first
multi-turn dynamic tool-calling disambiguation benchmark. Our results establish
structured uncertainty as a principled framework that improves both inference-time
interaction efficiency and training-time sample efficiency in tool-augmented agents.

1 INTRODUCTION

LLM Agents are Al systems that extend large
language models (LLMs) with the ability to take
real-world actions autonomously accumulate ob-
servations (Huang et al.|[2024b)). These agents
often invoke external APIs and tools based on
structured function definitions, enabling interac-
tion with databases, web services, and software
applications (Schick et al[2023). These agents
have been successfully deployed across diverse
domains including travel planning, document
processing, finance, vehicle control, and drug
discovery (Xie et al., 2024; Mathur et al.,2024;
Yu et al., 2024; [Huang et al., 2024a; |Liu et al.|
2024). However, their effectiveness is funda-
mentally limited by ambiguous or incomplete
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Figure 1: Linguistic-only disambiguation fails to use
tool schemas, triggering unnecessary clarifications and
inappropriate defaults. Grounding disambiguation in
structured parameter domains avoids these problems.

user instructions that lead to incorrect tool invocations, failed transactions, and degraded user experi-
ence—problems that become increasingly critical as these systems handle more complex, high-stakes
tasks. Ambiguity in user requests poses unique challenges for LLM agents, where imprecise interpre-
tation can cascade into costly execution errors (Wang et al., [2024} [Vijayvargiya et al.,|2025)). User
ambiguity manifests through vague task specifications ("find me a good restaurant”), incomplete
parameters ("book a meeting for tomorrow"), or implicit assumptions about system capabilities (Wang
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et al., [2025)). The structured nature of API schemas—with their specific parameter types, constraints,
and interdependencies—amplifies this challenge, as a single ambiguous user query often maps to
multiple valid API configurations with vastly different outcomes (Bandlamudi et al., 2025). For
example, "cancel my subscription” could apply to multiple services, cancellation types (pause vs.
permanent), or effective dates, each requiring different API calls with distinct consequences.

Existing disambiguation approaches suffer from fundamental limitations in the agentic tool-calling
context. Due to their next-token prediction training, LLMs often hallucinate missing arguments
when faced with incomplete information, leading to incorrect tool invocations (Wang et al., [2024).
Current methods operate primarily in unstructured language spaces—generating clarifying questions
as arbitrary text sequences through prompting strategies—rather than leveraging the structured
constraints and dependencies that define tool schemas (Kobalczyk et al.,[2025; |Zhang et al.,|[2024)).
While prompting improvements can enhance question phrasing, they cannot fundamentally address
the core limitation: without explicit modeling of parameter relationships, importance hierarchies,
and feasibility constraints, agents lack principled criteria for determining which questions to ask and
when to stop asking them. This results in over-clarification of low-impact details, under-clarification
of critical missing information, and inability to distinguish feasible from infeasible requests, as
demonstrated in Fig. |1} We address these limitations through a structured uncertainty formulation
that operates directly in the space of tool parameters and their domains, rather than unstructured
language space. By maintaining explicit probabilistic beliefs over structured tool-call candidates, our
approach cleanly separates specification uncertainty (ambiguity in what the user wants) from model
uncertainty (limitations in LLM capabilities). The key challenge is determining which clarifying
question provides the most value—too many questions frustrate users, while too few lead to incorrect
executions. We resolve this through Expected Value of Perfect Information (EVPI), a principle from
Bayesian decision theory that quantifies how much each potential question would reduce uncertainty
about the correct tool call in expectation.

Contributions: > We introduce a principled formulation of structured uncertainty over tool-call
parameters, using Expected Value of Perfect Information (EVPI) to optimally balance information
gain against question cost through aspect-based redundancy modeling. This formulation cleanly
separates specification uncertainty from model uncertainty by operating directly in the structured
space of tool parameters and their domains. > We demonstrate two applications of this formulation:
(i) SAGE-Agent, which uses structured uncertainty for inference-time question selection, substan-
tially improving task success rates while reducing clarification overhead compared to prompting and
uncertainty-based baselines; and (ii) uncertainty-guided reward modeling, where structured uncer-
tainty serves as an effective training signal to train tool-calling models. > We present ClarifyBench,
the first benchmark for multi-turn tool-calling disambiguation, equipped with an LLM-based user
simulator supporting realistic conversational progression across diverse domains including document
editing, vehicle control, stock trading, travel booking, and file system manipulation.

2 RELATED WORK

The challenge of resolving ambiguity in user interaction with LLMs through clarifying questions has
gained increasing attention, particularly in tool-calling contexts. Early approaches to clarification
focused on general dialogue systems, developing ranking-based methods for question selection (Rao
& Daumé 111, 2018 Xu et al.,|2019) and Seq2Seq generation (Deng et al.,|[2022). Recent work has
specifically addressed ambiguity in tool-calling scenarios: Ask-before-Plan introduces proactive
planning agents that predict clarification needs and collect information before execution (Zhang
et al.| [2024), while Active Task Disambiguation frames the problem through Bayesian Experimental
Design to maximize information gain from clarifying questions (Kobalczyk et al.,[2025). Zhang
and Choi propose intent-similarity based uncertainty estimation to determine when clarification is
beneficial across various NLP tasks (Zhang & Choi, 2023). Complementary approaches explore
training methods for clarification behavior: CollabLLM develops frameworks for transforming LLMs
from passive responders into active collaborators (Wu et al.| |2025), Zhang et al. teach LLMs to
ask clarifying questions by modeling future conversation turns (Zhang et al., 2025), and Chen et
al. propose action-based contrastive self-training for multi-turn clarification dialogues (Chen et al.,
2025). Related efforts explore implicit intention understanding in language agents (Qian et al} 2024)
and proactive dialogue systems that can handle ambiguous queries through goal planning (Deng et al.|
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2023)). However, these approaches primarily operate in the general language space without leveraging
the structured nature of tool schemas.

3 THEORY

Modern LLM agents extend beyond text generation to become agentic systems that can interact with
external tools and APIs to accomplish complex tasks. These agents typically follow a perception-
reasoning-action cycle: they receive user queries, reason about appropriate actions, select and
parameterize tool calls, and execute them to achieve desired outcomes. However, this paradigm
faces a fundamental challenge when user queries are ambiguous or underspecified—the agent must
somehow resolve uncertainty about both which tool to use and how to parameterize it.

3.1 STRUCTURED TOOL-CALLING AND BELIEF STATE

We model an LLM agent as a system M with access to a toolkit 7 = {7}, T, ..., Tk }. Each tool
T; is characterized by a structured interface that defines its capabilities and parameter requirements.

Definition 1 (Tool Schema). A tool T; is defined by the tuple (name;, ©;, D;, R;) where name; € S
is the tool identifier, ©; = {6; 1, ...,6; m, } is the parameter set, D; = {D; 1,...,D; m, } With D; ;
the domain of 0; ; i.e the set of allowed values, and R; C ©; specifies required parameters.

Definition 2 (Tool Call Candidate). A tool call candidate c; for tool T; is a partial function
¢ : ©; = D; U{L} where ¢;(6, ;) = L indicates an unspecified parameter.

The agent’s task is to map from an ambiguous natural language query u to a fully specified tool call
¢* = (T*, 0*) where all required parameters are specified. The candidate space C = {(T;,¢;) : T; €
T, ¢; is valid for T;} represents all possible completions consistent with current information.

o Uncertainty Quantification: Methods that model uncertainty or disambiguation needs based

 on LLM response distributions must compute p(ambiguous|u) = Y . f(w)prom(wlu)
where f determines if LLM response w indicates ambiguity. This conflates model uncertainty
with specification uncertainty since the determination function f itself depends on model
capabilities. Our structured approach directly parameterizes p(T;, 6;|u), cleanly separating
these uncertainty sources.

Definition 3 (Structured Belief State). At time ¢, given the initial user query » and accumulated
responses {r1, ..., r:}, we maintain a belief distribution over the candidate space:

B(t) = {(ci, mi(t)) : ci € C}
where 7;(t) € [0, 1] represents the probability that candidate ¢; matches the user’s true intent.
We decompose the joint probability as
p(Tiaei | u, {Tla cee ,’I“t}) = p(e’b | Ti7u7 {rla ey Tt})p(TZL | u)

and assume a uniform prior over tools p(T; | u) = 1/ K

Under a conditional independence assumption across parameters (for tractability), candidate proba-
bility becomes:

mi(t) o Hp(Hw- | Ty, {r1,...,7e})
j=1

where parameter certainty is p(6; ;) = 1 if specified, | D; ;(¢)| ™! if unspecified with finite domain,
and € (0 < € < 1) for infinite/continuous domains. Here, D; ;(t) is the feasible parameter domain
after incorporating constraints from responses.

IThis assumption reflects that, in practice, tools are proposed without strong prior bias. Future work could
incorporate learned tool usage patterns or contextual priors.
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Belief Updates. After asking question ¢; and receiving response 7, beliefs update through domain
constraint propagation:

D, ;(t+1) = D; ;(t) N ExtractConstraints(ry, 0; ;, T;) (1)
mi(t+ 1) o< mi(t) - P(rilei,qr) - [ (01 T5,w, {r1, . me}) @)

J

3.2 INFORMATION-THEORETIC QUESTION SELECTION

The disambiguation process involves sequential decision-making: at each turn, the agent must decide
whether to ask a clarifying question or execute the current best candidate. We formalize this decision
through an information-theoretic criterion that balances information gain against question cost.

Expected Value of Perfect Information. Drawing from Bayesian decision theory and value of
information frameworks (Rainforth et al., 2024), we quantify the expected benefit of asking question
q using the Expected Value of Perfect Information (EVPI).

Definition 4 (Expected Value of Perfect Information).
EVPI(Q» B(t)) = Eer(r\q,B(t}) [Engé( Wi(t|qv 7"):| - Icngé( T (t) 3)

where the response distribution is P(r|q, B(t)) = >, mi(t)P(r|ci, ¢). EVPI naturally handles both
tool disambiguation and parameter clarification in a unified framework—questions helping resolve
tool choice and parameter values are evaluated using the same information-theoretic criterion.

Aspects and Question Coverage. We introduce aspects as the atomic unit of disambiguation. An
aspect a; ; refers to parameter ¢; ; of tool T;. The full set of aspects is

A= {a;;|i€[l.K], je[l.m]}.

A clarifying question targets a subset of aspects: for question ¢ we write A(q) C A. For bookkeeping
we count how often an aspect has been targeted up to time ¢ as

na(t) = |{r <t:a€ Algr)}l.

Definition 5 (Redundancy Cost). Pure information maximization can lead to excessive questioning.
We introduce a cost model that penalizes redundant questions about previously addressed aspects.
For question q targeting aspects .A(q), with aspect history n(¢):

Cost(q,t) =X > na(t) )
ac€A(q)
where A controls the penalty strength for redundant questions.
© Structured Response Handling: Past methods sample from p(solution|q), requiring expen-

* sive enumeration. We treat responses as constraints 7 ~> D; ;(t + 1) = D; ;(t) N C(r) where
C(r) extracts constraints, enabling exact EVPI computation over finite patterns.

Question Selection and Stopping Criteria. At each timestep, we select the question that maximizes
net information gain:

¢"(t) = arg max[EVPI(g, B(t)) — Cost(g, ?)] )
a
Stop when: max[EVPI(q, B(t)) — Cost(q,t)] < « - maxm;(t) (6)
q )

This policy requires only one-step belief propagation for each candidate question, making it computa-
tionally tractable while maintaining principled information-theoretic grounding.

4 CLARIFYBENCH



Under review as a conference paper at ICLR 2026

The evaluation of clarification strategies in tool-calling L
agents requires benchmarks that capture the complexity g Userntent prompt
of real-world user interactions, particularly when deal-

ing with ambiguous or infeasible requests. As shown in

Table[I] existing benchmarks exhibit critical limitations: flT

many lack support for ambiguous and infeasible queries,

while those that include such scenarios are limited in scope
or domain coverage. Most critically, they rely on static . g =2
evaluation without dynamic user simulation capabilities. é

We introduce ClarifyBench to address these limitations. Fi . .

. . . . igure 2: ClarifyBench evaluates agent clar-
The. task involves multi-turn interactions between'a tqol- ification strategies through multi-turn inter-
equipped LLM agent and a user simulator that maintains  ,.tions between a user simulator and tool-
the true user intention and responds to clarifying questions. equipped LLM agents across normal, am-
The agent must identify when clarification is needed, pose  biguous, and infeasible queries in 5 domains.
appropriate questions, and execute correct tool calls based
on the information gathered, while the simulator provides contextually relevant responses that guide
the agent toward the intended action. As illustrated in Figure 2] ClarifyBench provides: (1) dynamic
user simulation enabling natural conversational progression where users pose follow-up requests after
clarification exchanges; (2) comprehensive coverage across three query types (normal, ambiguous,
and infeasible); and (3) multi-domain evaluation spanning five distinct domains. Evaluation compares
ground truth tool calls with agent-generated actions, providing robust assessment of clarification
effectiveness across realistic scenarios.

Dynamic User Ambiguous Infeasible Multi-turn

Tool Domains Number of Tools
Simulation  Queries  Queries  Requests

Benchmark

AgentBoard (Ma et al. 12024/ X X X X Information Retrieval, Manipulation 50
7-bench (Yao et al. 12024’ Retail, Airlines 24
MMAU (Yin et al. 12024 RapidAPI Tools 364
ToolSandbox (Lu et al. 12024 Personal Assistant 34
Ask-Before-Plan (Zhang et al. 2024 Travel 6

BFCL-v3 (Patil et al. 12025] Vehicle Control, Stocks, Travel, File System 129
ClarifyBench Documents, Vehicle Control, Stocks, Travel, File System 92

WX NN xS
NSNS X X% %
N} N X X X
ARSI

Table 1: Comparison of ClarifyBench with existing tool-calling benchmarks.

4.1 BENCHMARK DESIGN

ClarifyBench encompasses five diverse domains that reflect real-world tool-calling scenarios: docu-
ment processing, vehicle management, stock trading, travel planning, and file system management.
These domains were selected to represent varying levels of complexity, different types of argument
structures, and distinct sources of ambiguity that agents encounter in practice. Table [2] gives a
statistical summary of the benchmark. Each sample in ClarifyBench is represented as a tuple: (user
query, user intent, follow-up queries, ground truth tool call, domain).

The benchmark includes three distinct query types that systematically evaluate different aspects of
clarification: 1. Explicit Queries: Well-specified requests that provide sufficient information for
direct tool execution, serving as baseline performance indicators. 2. Ambiguous Queries: Requests
with missing or unclear parameters that require clarification to determine the appropriate tool calls
and arguments. 3. Infeasible Queries: Requests which if executed at face value would generate
errors due to invalid parameters, conflicting constraints, or impossible conditions.

4.2 BENCHMARK CONSTRUCTION

Data Sources. ClarifyBench draws from two primary sources to ensure diversity and realism. First,
we extract successfully executed tool calls from DocPilot (Mathur et al., [2024), which provides
real user interactions in document processing scenarios. Second, we leverage the Berkeley Function
Calling Leaderboard (BFCL-v3) (Patil et al., |2025)), which offers data across multiple domains:
vehicle control, stock trading, travel planning, and file system management.

Data Augmentation. To create the comprehensive set of query types required for clarification
evaluation, we employ systematic data augmentation techniques. We process DocPilot dataset
by anonymizing user metadata, replacing specific file names and domain terms in tool calls with
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LLM-generated substitutes to ensure generalizability, followed by PII removal. For ambiguous
queries, we randomly select upto 3 arguments from successful tool calls and obfuscate them, then
prompt GPT-40 to generate five alternative user queries that omit the obfuscated information.For
infeasible queries, we design handwritten rules based on common API errors to create tool calls
that would generate failures, followed by a similar LLM-based query augmentation process. We
process BFCL-v3 using existing explicit and ambiguous parameter queries from the benchmark,
ensuring sample independence by removing cases with secondary API dependencies. We apply
rule-based validation and LLM judgment (via in-context learning) to identify and exclude such cases.
For retained samples, we strip secondary API utterances and tool calls from ground truth annotations.
User intent prompts are generated through LLM based detailed summarization of the ground truth
tool calls and user utterances.

Human Validation. To ensure quality and naturalness, a
Metric Doc Vehicle Stocks Travel Files Al human annotator evaluates all LLM-generated queries us-
Total Samples 81 13 13 119 14 716 ing three criteria: (A) naturalnes§ of language, B) f{uthful-
Numberof Tools 18 2219 15 18 92  ness to the expected tool calls with all required details and
Avg#ofTool Calls 3945 3937 31 38 h4 ghfuscated parameters, and (C) for infeasible queries,
Explicit Queries 49 50 49 50 43 241 .. . . .
Ambiguous Queries 49 39 46 40 39 213 the presence of explicit error-inducing requirements. Two
Infeasible Queries 48 49 38 18 45 198  anpotators assign a 5-point Likert score to every candi-

- A . A 3 R X .

Avefoffollowwp 29 21 27 23 18 24 date query, and the final selected query for a sample is
the one that receives the highest score. Inter-annotator
agreement for the highest-scoring selections is given by
Cohen’s k = 0.76.

Table 2: Statistical description of Clari-
fyBench.

5 STRUCTURED ARGUMENT UNCERTAINTY GUIDED ELICITATION AGENT

Candidate Tool Call Interpretations

tool_A(argl, <UNK>) .
m — Reason —— .\ "a(arez, <onk>, args) Uncertainty
a Quantification ok

Update
Interpretation I
o

Structured Uncertainty Guided Disambiguation

Value of Perfect Information Cost
EVPI(q, B(t)) = B gy [max (. r‘] ma (1) Costlg,t) =X 3 ma(t)
2 r ac )

:%. T EeE EVPI(q, B(t)) — Cost(q.1)

'& 1 Aoclrying qeston

Argument Domain
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Figure 3: SAGE-Agent: @) Given a user query, an LLM reasons and generates potential tool calls with
possibly uncertain parameters. These tool calls undergo (@) structured uncertainty quantification to determine if
clarification is needed. When uncertainty exists, the agent uses an LLM to produce (@) candidate clarifying
questions, and scores them using (@) a cost-penalized Eexpected Value of Perfect Information (EVPI) metric.
Tool-parameter domain interpretation is updated based on user-response to the clarifying question (@), and given
no further uncertainty, the best tool call is executed ®.

SAGE (Structured Argument Uncertainty guided Elicitation) augments the standard Reason—Act—
Observe loop by inserting structured, domain-aware clarification into the Reason stage (as seen in
Fig.3). Let the user input be u; the toolkit 7" and tool schemas follow Definition 1.

5.1 AGENT FLOW

At step t, the agent maintains belief 7 (t) = {m.(¢)}.cc and observations O;. The full loop can be
written as a combination of Reason (R) and Act (Act):

execute : ¢*(t) = argmax, 7.(t)
q*: w(t+1) = OWw(t), 0041)

(Cth) i (u, 0, T) Aet, ar = {
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where R produces candidate tool calls C; and aspect-targeted questions @), Act selects either
execution or query, and Ob performs domain-constrained belief refinement (Fig. [3).

5.2 CANDIDATE GENERATION, QUESTIONING, AND BELIEF UPDATE

At step t, SAGE proceeds as follows:

1. Candidate Generation. The Reason stage prompts an LLM with (u, O, T') to produce candidate
tool calls C; = {c1,...,cn}, each assigning parameters O,(c) concrete values or <UNK>. Candidate

certainty is defined as m.(t) = [, €040 P05 | Ticey,0bsy). If max, me(t) > Texec, €Xecute
c*(t) = arg max, 7.(t); otherwise continue.

2. Question Generation. An LLM is prompted with (i) ¢, (ii) C and masks, (iii) tool schemas, and (iv)
recent observations to output Q = {(q, ci, , Ax) }-_,, where g, is the question text, ¢;, the candidate
being disambiguated, and A, C A the targeted aspects (parameters). Output is machine-parsable
with <UNK> for ambiguous parameters.

3. Scoring and Selection. Let P, = {Ci,...,Cy} be the partition of C; induced by

A. The EVPI is EVPI(q) = Z%Zlmaxcecm 7e(t) — max.ec, m.(t). Score each ques-
tion as Score(q,t) = EVPI(q) — A} .4 na(t), select ¢*(t) = argmax,Score(q,t). If
max, Score(g, t) < amax, . (t) or budget ny is exhausted, execute ¢*(t).

4. Belief Update. After observing answer r, update domains as D; ;(t+1) <= D; ; ()N fupdate(Pi,j,T)
and recompute 7. (¢ + 1).

5. Termination & Error Recovery. Stop if (i) max. m.(f) > Texec, (i) maxy Score(q,t) <
amax, m(t), or (iii) ¢ > n,. On execution failure, prompt for a fix or generate an error-specific
Gerror and re-enter step 3.

6 REWARD MODELING WITH STRUCTURED UNCERTAINTY

Our objective is to teach the agent not only what action to take but when to act with confidence versus
request clarification. We fine-tune the policy using Group Relative Policy Optimization (GRPO)
(Shao et al.l 2024), which samples multiple candidate actions per prompt, computes relative rewards,
and updates the policy towards those exceeding the group mean—yielding a critic-free, memory-
efficient variant of PPO that stabilizes optimization through implicit baselining and KL regularization.
Our training data comes from the 9K examples in the When2Call (Ross et al.| [2025) dataset. For
each user prompt and its tool set, the agent may take exactly one of four actions: AskQuestion,
CallTool(parameters), Decline, or DirectAnswer. We prompt a base model to emit structured
tags <reason>. . . </reason> <answer>...</answer>, and from that we compute scalar rewards.

6.1 BASELINE REWARD

The baseline reward i Thase = Tfmt + Ttool + Tcls, Where remy = 1.5 (correct schema), 7,1 equals
1.0 for correct tool+parameters, 0.75 if tool is correct but parameters are wrong, and 0.5 for correctly
identifying a tool call or for non-tool actions, and 7.5 equals up to 2.0 for correct action type. This
encourages correctness and well-formedness but treats all instantiations equally regardless of model
confidence or question informativeness.

6.2 CERTAINTY-WEIGHTED REWARD (OURS)

Let 7.(t) be the belief over candidate tool calls ¢ € C;. We define Cert(a;) = max, m.(t) if a;
is a tool call, 1 — max, 7.(t) if a; is a question, and 1 otherwise. The category reward becomes
Reaegory(ar) = Cert(ay) - rpase(a:) Which up-weights confident correct tool calls, penalizes low-
certainty calls, and rewards clarification only when uncertainty is high—thus aligning reward with
the agent’s own epistemic state.
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@ Key Insight: Our reward is self-calibrating: it needs no critic to judge question quality, yet

® drives informative clarifications and confident tool calls. Unlike the baseline, which rewards
all correct calls equally, our certainty-weighted reward scales with belief: confident calls get
full payoff, low-confidence calls are penalized, and clarifications are rewarded only when
uncertainty is high.

7 EXPERIMENTS

(A) Agent Inference Experiment. /. ClarifyBench. All baselines are implemented on a common
ReAct agent scaffold for fair comparison. We evaluate SAGE-Agent against four baselines: (i)
ReAct + ask_question(), a standard ReAct agent with an ask_question() tool serving as our
control baseline; (ii) ProCOT (Deng et al., 2023), which performs ProActive Chain-of-Thought
reasoning to anticipate ambiguities before tool use; (iii) Active Task Disambiguation (Kobalczyk
et al.,|2025)), which generates candidate interpretations and clarification queries based on response
entropy by parametrizing the solution space; and (iv) Domain-aware ReAct, which augments
prompting and question generation with explicit schema information provided as context. All
methods use GPT-40 and Qwen2.5-14B-Instruct with temperature 0.5. For SAGE-Agent, we pick
A =0.5,a=0.1,¢ = 10~*. We evaluate using four metrics: (1) Coverage Rate: proportion of tool
calls with correct parameters matching the ground truth; (2) Tool Match Rate (TMR): tool match rate
against ground truth; (3) Parameter Match Rate (PMR): paramater match rate against ground-truth;
and (4) Average Number of Questions (#Q): mean number of clarification questions asked per task
(lower is better). 2. BFCLv2 (When2Call) We use the open-ended evaluation split of When2Call,
built on top of BFCLV2 to perform single-turn validation of our method. We compared our method
against a ReAct baseline and Active-task-Disambiguation, since this is single-turn validation and
these baselines are representative of different disambiguation strategies. We used 2xRTXA600 for
inference. (B) Reward Modeling Experiment. We trained GRPO with Qwen2.5-Instruct (3B
and 7B) for one epoch using Unsloth (Daniel Han & team) [2023)). Three independent runs were
performed, and results from the best-performing model are reported. Evaluation follows the original
paper: log-probability comparison across options, option-prompted selection, and direct prompting
without options. We trained on 4xL.40S GPUs, and inferred on 1xL40S GPU. We train each setting
for 3 runs, and report the setting with the best results.

8 RESULTS

8.1 AGENT INFERENCE EXPERIMENTS

ClarifyBench - Ambiguous ‘ ClarifyBench - Explicit ‘ ClarifyBench - Infeasible
Coverage’  TMR'  PMR! Avg#Q'|Coverage’ ~TMR'  PMR' Avg#Q'|Coverage'! TMR'  PMR' Avg#Q'

Method

Base LLM: GPT-40

4243 85.05:261 75.09:218 221426
275 7441235 243428

5251 70414273 62.55:239  2.68424 | 61.17:227 87.95:258 71.994284 215427
75.62+201 66.82+246 2.07+22| 66.98+228 89.57+287 72.80+254 2.14425
77.10:282 60.78:224  3.42:26 90.47:293 72451249 294425 75.09:230  2.63:23
79.83+257 68.04+233  2.56421 9117261 74.04x252  2.10426 76.46+267  2.03+27
3 8231:268 69.814247 1.82423 . 91.65+274 74.89+258  1.07+24 .23 5 5 76.641253  1.48425
21 86.02:275 71.79+253 139120 | 71.67:218 93.65:207 75.94+261 1.08+22| 67.33:234 92.89:283 77.41:279  1.26421

ReAct + ask_question()
ProCOT
Active Task Disambiguation

Domain-aware ReAct
SAGE-Agent (Ours) Heuristic-based | 56.
SAGE-Agent (Ours)

Base LLM: Qwen2.5-14B-Instruct

63314340 1.82+143
93 68.724350 1.78+151
69.454350 2224212

68.92+320 6335315 1.78+194| 51.85:338 89.20:228 73.63+289 1.69+167 | 42.39+324
7 7008332 1.894203 | 61.76:315 84.08:238 74.604284 1694168 | 52.082314
57494341 2454172 59.83+331 81.01+266 68.69+315 2.314229 | 52.
Domain-aware ReAct 7 67.504315 2074135 | 60.91:342 86.91:248 71704287 1.61:4156 | 55.7643 72.231320 1.66:+130
SAGE-Agent (Ours) Heuristic-based .. 74.031318  1.67+185 | 62.45+334 89.89+232 73.89+201 1.23+174 | 59.88+312 84. 7551328 1.75+162
SAGE-Agent (Ours) 54.56:330 78.14:305 74.21:322 1414219 | 64.62:336 92.05:208 75.50:282 0.93:+195 | 61.84:308 85.26:245 76.521205 1.49:095

ReAct + ask_question()
ProCOT
Active Task Disambiguation

Table 3: Performance comparison of agent strategies on ClarifyBench across two base LLMs (GPT-40
and Qwen2.5-14B-Instruct). Best results within each LLM group are highlighted in bold.

Performance Gains Across Task Categories. On Ambiguous tasks with GPT-40, SAGE-Agent
achieves 59.73% Coverage Rate, substantially outperforming Domain-aware ReAct (55.70%), Pro-
COT (54.12%), and basic ReAct (52.34%). This 4.03pp improvement over the strongest baseline
extends to downstream metrics: Tool Match Rate reaches 86.02% versus 79.83% (Domain-aware
ReAct) and 76.45% (basic ReAct), while Parameter Match Rate attains 71.79% versus 68.04% and
65.21% respectively. The pattern persists across Explicit scenarios, where SAGE-Agent achieves
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71.67% Coverage (+3.56pp over Domain-aware ReAct, +5.23pp over basic ReAct), 93.65% TMR
(+2.48pp, +4.12pp), and 75.94% PMR (+1.90pp, +3.67pp). Even on Infeasible tasks—where systems
must recognize unsatisfiable queries, SAGE-Agent excels with 67.33% Coverage and 92.89% TMR,
significantly outperforming Domain-aware ReAct (63.21%, 88.45%) and all other baselines. These
results demonstrate that structured schema-based reasoning enables more accurate task interpretation
than unstructured clarification approaches.

zzzzz

Dramatic Reduction in User Burden. SAGE-Agent
achieves superior performance while asking dramatically
fewer questions. On Ambiguous tasks with GPT-4o, it
averages just 1.39 questions per task; a 45.7% reduction
versus Domain-aware ReAct (2.56 questions), 48.1% re-
duction versus basic ReAct (2.68 questions), and 59.4%
reduction versus Active Task Disambiguation (3.42 ques-

= tions). On Explicit scenarios where all information is
) ’ present initially, SAGE-Agent asks only 1.08 questions,
‘ where all baselines should ideally approach 0.

nnnnn

Tokens

Computational Efficiency Despite Structured Rea-
soning. Figure 4| reveals expected trade-offs: simpler
baselines (ReAct, ProCOT, Domain-aware ReAct) use
14-18K tokens and 14-16 calls but sacrifice performance

(Table3). Among uncertainty-modeling methods, Ac-
Figure 4: Resource consumption across tive Task Disambiguation computes entropy over a lques-
methods for GPT-40 and Qwen2.5-14B. tionsl x Isolutions| matrix, requiring 24K tokens and 40
calls. SAGE-Agent instead parametrizes uncertainty directly over schema spaces, avoiding solution
sampling entirely. This yields 22K tokens with 54% fewer API calls, reducing latency and cost while
maintaining superior performance.

erocor
(b) Qwen2,

Robustness Across Language Models. SAGE-Agent’s advantages generalize across both proprietary
and open-source LLMs. With Qwen2.5-14B-Instruct, SAGE-Agent achieves 54.56% Coverage on
Ambiguous tasks, outperforming ProCOT (52.45%) and Domain-aware ReAct (51.10%), while
reducing questions from 2.07 to 1.41. While absolute metrics are lower with smaller models, relative
improvements over baselines remain consistent, demonstrating systematic advantages independent of
model choice.

Ablation.  SAGE-Agent Heuristic Based is an ablation where questions are triggered
by the presence of <UNK> tokens in tool calls, without using EVPI for question
selection. This variant shows small but consistent performance degradation, ranging
from 1-3 points across most metrics while asking 0.2-0.4 more questions on average.
The heuristic approach triggers questions but

lacks effective discrimination between them, 7 ik 7
and unlike the full system, it cannot resort to f \ / \ /‘\\
default execution when questions have low in- .| <@ | ‘ o - @ .
formation value. These issues compound across \\ K j Q j

the multi-turn ClarifyBench evaluation, leading
to cumulative metric reductions.

(a) ClarifyBench-A (b) ClarifyBench-E (©) ClarifyBench-t

Impact of \. The redundancy penalty weight Figure 5: Effect of A on performance metrics across
A (Definition 5) controls the trade-off between ClarifyBench splits. Increasing A from 0 to 0.5 reduces
information gathering and user burden by pe- #Q by 18-27% while maintaining stable Coverage, TMR,
nalizing questions targeting previously queried and PMR (< 3% deviation).

aspects. Figure [3] shows the effect of A €

{0,0.5,1.0} across 70 samples from each ClarifyBench split using GPT-40, with independently
scaled radar axes. Increasing A from O to 0.5 yields substantial question reductions—18.1% on Am-
biguous, 26.6% on Explicit, and 24.2% on Infeasible splits—while preserving task execution quality.
Coverage Rate, TMR, and PMR remain stable with deviations under 3% across all settings, indicating
that the penalized questions were indeed redundant rather than essential for task completion. The
radar plots visualize this trade-off: the #Q dimension contracts inward while other metrics maintain
consistent polygon shapes, demonstrating that question economy can be achieved without sacrificing
accuracy.
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Single-Turn Disambiguation Performance Table [4] | ToolCall | AskQuestion | Decline
presents performance comparison on BFCLv2 When2Call. ™™ |™% & m| » r F| P R W
ReAct demonstrates high ToolCall recall (0.79) but ex-  Base LLy: GPTdo

hibits poor Decline behavior (0.58 recall), indicating a  Reac 071 079 075|059 0.69 0.64|087 058 0.69
bias toward tool invocation even for inappropriate requests. gui"\ o | 0% 03 0ss 061 070 048|002 081 078
Active Task Disambiguation achieves high AskQuestion ==~ =
recall (0.74-0.78) but suffers from low precision (0.45- . 0.62 085 0.72]0.50 0.65 0.57]088 039 0.54
0.35), reflecting excessive questioning behavior. In con- Act TaskDis. | 036 0.12 0.18]035 078 048|0.62 028 0.39
trast, SAGE-Agent aChieVeS the best balance Wlth hlghest SAGE-Agent |0.76 048 0.59]0.53 0.75 0.62|0.79 0.76 0.77
ToolCall precision (0.80) while maintaining strong Decline
performance (0.78 F1). Notably, these behavioral patterns
persist across model scales from GPT-40 to Qwen2.5-14B-
Instruct, though with degraded absolute performance, suggesting that SAGE-Agent’s structured
approach provides more robust guidance for disambiguation decisions.

Table 4: Performance comparison of agent
strategies on BFCLv2 (When2Call).

8.2 REWARD MODELING EXPERIMENTS

Figure [§ validates our hypothesis that uncertainty-aware training signals improve LLM clarification
behavior. The When2Call benchmark tests models’ ability to recognize when clarification is needed
versus when to proceed with available information.

Training Signal Impact. Base mod-
els without clarification training achieve
poor performance (34.5-39.7% accuracy),
demonstrating that recognizing clarifica-
tion needs is non-trivial. Standard GRPO

provides modest improvements, while
uncertainty-weighted GRPO yields sub-
. stantial gains (up to +28.7 percentage

points). This validates that structured un-
certainty measures provide more effective
Figure 6: Performance of Qwen-2.5 models on training signals than binary success/failure
When2Call across three evaluation methods: Log Prob- Tewards.

ability, Multiple Choice, and Direct Prompting.

Muliple Choice Dire > Multiple Choice Direc
(a) Qwen-2.5-38-Instruct (b) Qwen-2.5-7B-Instruct

Model Scale vs. Signal Quality. Compar-
ing Qwen-2.5-3B and 7B models reveals that training signal quality matters more than model scale.
The 3B model with uncertainty-weighted training (65.2% accuracy) substantially outperforms the
7B model with standard training (45.1% accuracy). This suggests that incorporating structured
uncertainty into training objectives may be more valuable than simply scaling model parameters.

Evaluation Mode Analysis. The largest improvements occur in Direct Prompting mode, where
models must make clarification decisions based solely on query analysis without multiple-choice
scaffolding. This indicates that uncertainty-weighted training helps models develop robust internal
representations of when clarification is needed, rather than merely improving selection among
provided options.

9 CONCLUSION

Ambiguous user instructions fundamentally challenge tool-augmented LLM agents, leading to
incorrect invocations and task failures. We presented SAGE-Agent, which models joint tool-argument
clarification as a POMDP with Bayesian Value of Information objectives for optimal question
selection. Extensive experiments validate our structured uncertainty approach: SAGE-Agent improves
coverage on ambiguous tasks by 7-39% while reducing questions by 1.5-2.7x on ClarifyBench, and
uncertainty-weighted GRPO training boosts When2Call accuracy from 36.5% to 65.2% (3B) and
36.7% to 62.9% (7B). These results demonstrate that structured uncertainty provides a principled
foundation for both inference and learning in tool-augmented scenarios. Our work establishes
structured uncertainty quantification as essential for reliable, efficient LLM agents in real-world
applications.

10
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10 ETHICS STATEMENT

Our research does not use any personally identifiable information (PII) and all datasets employed in
this work are used in accordance with their respective licenses (Apache 2.0). Our paper is designed
primarily for deployment in collaborative Al assistance contexts where resolving ambiguity enhances
productivity and user experience while minimizing unnecessary interaction. The system’s core
approach of reducing clarification questions through principled uncertainty estimation promotes
more equitable access to Al assistance by respecting users’ time and cognitive resources. While
SAGE-Agent significantly reduces interaction burden, we recommend appropriate transparency about
system limitations and human oversight when deploying in sensitive contexts. Furthermore, we
encourage ongoing evaluation to ensure that question selection patterns do not reflect or amplify
biases present in underlying models or training data. We acknowledge the ICLR code of ethics.
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A SAGE-AGENT

A.1 THEORETICAL PROOFS

Proposition 1 (Viability Score Properties). The viability scoring function satisfies: (1) Monotonicity:
7;(t + 1) > m;(t) when information is gained, (2) Boundedness: 0 < m;(t) < 1, (3) Completeness:
m;(t) = 1 iff all parameters are fully specified.

Proof. (1) Monotonicity: Information gain can only constrain parameter domains: D; ;(t + 1) C
D; j(t). Therefore |D; ;(t + 1)| < |D; ;(t)|, which implies |D; ;(t 4+ 1)]1 > |D; ;(¢)|~'. Since
m;i(t) = [I; p(0;,;) and each factor is non-decreasing, m;(t + 1) > m;(t).

(2) Boundedness: Each parameter certainty p(6;,;) < 1 by definition. Since 7;(t) = [[; p(6;,;), we
have 0 < m;(¢) < 1.

(3) Completeness: 7;(t) = 1 < [[; p(0; ;) = 1 Vj: p(0;,;) = 1 < all parameters specified. [J
Proposition 2 (EVPI Properties). The EVPI function satisfies: (1) Non-negativity: EVPI(q, B(t)) >

0, (2) Submodularity: diminishing returns for question sequences, (3) Convergence: EVPI approaches
zero as uncertainty resolves.

Proof. (1) Non-negativity: By Jensen’s inequality applied to the concave maximum function:
E,. {max ;i (t|q, T)] > max E,[m;(t[g, )] = maxm;(t)

Therefore EVPI(q, B(t)) > 0.
(2) Submodularity: For question sets S C S’, the marginal information gain satisfies:
EVPI(q|S) — EVPI(¢|S") = H[B|S] — H[B|S U {q}| — (H[B|S'] — H[B|S" U{q}]) >0

This follows from submodularity of entropy: H[X|Y]— H[X|Y, Z] > H[X|Y,W] - H[X|Y, W, Z]
when W D 0.

(3) Convergence: As uncertainty resolves, max; 7;(f) — 1 and candidate distributions become
concentrated. For any question ¢, E, [max; m;(t|g, )] — max; m;(t), so EVPI(q) — 0. O

Theorem 1 (Finite Termination). Under regularity conditions on the response model, the algorithm
terminates in finite expected time with probability 1.

Proof. The termination condition is max,[EVPI(q) — Cost(¢)] < o - max; m;(t).

Case 1: If max; 7;(t) increases over time (candidates improve), the right-hand side grows while
EVPI values are bounded above. Eventually the inequality is satisfied.

Case 2: If max; 7;(t) remains bounded, then either: - EVPI values decrease due to information gain
(Proposition 2.3) while costs increase linearly - Or no informative questions remain, making EVPI
~0

In both cases, the net value becomes negative in finite time.

Formal bound: Let p = E[improvement in max; 7; per question] and -y =
E[EVPI decline per question]. - If p > 0: termination when apT > EVPLyjju — v7T, giv-

ingT < % - If p < 0: termination when costs exceed EVPI, giving T' < #%

Therefore E[T] < co. O

A.2 COMPLETE ALGORITHM SPECIFICATION

Algorithm. Algorithm|[I] presents the complete SAGE-Agent procedure. The algorithm maintains
beliefs 7 (t) over candidate tool calls and aspect history n,(t) to track redundant questioning. At
each timestep, the agent generates candidates via the reasoning stage R (line 6), computes viability
scores (line 9), and checks if uncertainty exceeds threshold 7 (line 12).

When uncertainty is high, the agent generates clarifying questions with their targeted aspects simul-
taneously (line 14), computes EVPI and redundancy costs (lines 17-21), and applies the stopping

14
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Algorithm 1 SAGE-Agent

Require: User query u, toolkit 7, max steps Tiax, redundancy penalty A, stopping threshold «,
uncertainty threshold 7

1: Initialize beliefs 7w (0) = {m.(0)}.cc, observations Oy = )
2: Initialize aspect history n,(0) = 0 foralla € A
3: fort =0,1,...,Tax do
4: // Reason Stage R
5: C + R(u, 04, T) > Generate candidate tool calls
6:
7: // Structured Uncertainty Quantification
8: Compute beliefs 7;(¢) for each ¢; € C;
9: Compute uncertainty U () = max,,ec, U(c;)
10:
11: if U(t) > 7 then > Uncertainty exceeds threshold
12: // Generate Questions with Targeted Aspects
13: {(¢,A(q))} + GenerateQuestions(C, u, O, T) > LLM generates @; and aspects
simultaneously
14:
15: // Compute EVPI & Cost for Each Question
16: for each q € Q; do
17: EVPI(Qa B(t)) = ETNP(r|q,B(t)) [maXCiECt T (t|q7 T)] — MaXe¢;ec, T (t)
18: Cost(q, 1) = A, a(g) Nalt) > Redundancy penalty
19: Score(q) = EVPI(q, B(t)) — Cost(q, t)
20: end for
21:
22: /I Check Stopping Criterion
23: if max,ecq, Score(q) < a - maxg,ec, m;(t) then
24: /I Act: Execute Best Tool Call
25: c*(t) «+ argmax,ec, 7i(t)
26: Execute c*(t) and return result
27: else
28: /I Act: Query User
29: q* < argmaxgeq, Score(q)
30: Query user with ¢* and receive response 01
31: w(t+ 1) < Ob(w(t),0t41) > Update beliefs via domain constraints
32: Ot+1 — Ot @] {Ot+1}
33: for each a € A(g*) do
34: ng(t+1) < ng(t) +1 > Update aspect history
35: end for
36: end if
37: else
38: /1 Act: Execute Best Tool Call (Low Uncertainty)
39: c*(t) < arg max,,ec, mi(t)
40: Execute ¢*(t) and return result
41: end if
42: end for

criterion (line 24). If the maximum net information gain is insufficient, it executes the best candidate;
otherwise, it poses the highest-scoring question, updates beliefs via domain constraint propagation
(line 32), and increments aspect history (lines 34-36). When uncertainty is low, the agent executes
the best candidate immediately (lines 41-43).

Domain Constraint Propagation. The belief update function Ob (line 32) implements the constraint
extraction function that maps natural language responses to parameter domain refinements: D; ;(t +
1) = D; ;(t) N C(r). This function handles:

» Explicit constraints: Direct specifications like "departure date is March 15th"
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* Schema dependencies: Cross-parameter constraints where one parameter’s value restricts
available options for another parameter

* Negative constraints: Exclusions like "not business class" — class € {economy, premium}
Error Recovery Mechanism. When the highest-confidence candidate fails at runtime, the system

generates diagnostic questions using function feq (). This adaptive questioning strategy enables
recovery from API failures, timeouts, and invalid parameter combinations that pass initial validation.

A.3 PROMPTS

Reasoning Prompt This prompt is used in the main reasoning phase of the ReAct agent to decide
which tool to use next based on the current state of the conversation.

You are an AI assistant helping with a user request.

SYSTEM CONTEXT:

You have access to the following tool domain:

{plugin_descriptions}

Request: {request}

Previous observations:

{obs_text}

Available tools:

{tool_registry.get_tool_descriptions()}

Think step by step about what tool to use next. Consider the plugin
context above to understand the capabilities available to you. If you

have enough information to provide a final answer, use the

final_answer tool.

Respond in JSON format:

{

"reasoning”: "Your step-by-step thinking”,
"tool_call”: {

"tool_name”: "name_of_tool",

"arguments”:

"argl": "valuel”,

"arg2": "value2”

3

}

3

Error Recovery Prompt Used when a tool execution fails to determine if the error can be resolved
automatically.

You are helping fix a failed tool call.

Original Request: {request}

Tool Information:

{tool_info or f"Tool: {tool_namel}"}

Error Details:

{error_result.message}

Based on the error and tool information, can you suggest how to fix this?
Respond in JSON format:

{

"can_fix": true/false,

"reasoning”: "explanation of what went wrong and how to fix it",

"suggested_action”: "retry_with_changes"” or "different_tool"” or "
need_clarification”,

"observation”: "observation to add to context for next reasoning step”

}

If you cannot determine a fix from the available information, set can_fix
to false.

Question Generation Prompt Used to generate clarification questions when there is uncertainty
about tool arguments.
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You are an AI assistant that helps users by understanding their queries
and executing tool calls.

{conversation_history}Original user query:

"{user_query}"”

Based on the query, I've determined that the following tool calls are
needed, but some arguments are uncertain:

Tool Calls:

{tool_calls}

Detailed Tool Documentation:

{tool_documentation}

Uncertain Arguments:

{uncertain_args?}

Your task is to generate clarification questions that would help resolve
the uncertainty about specific arguments.

Instructions:

Generate questions that are clear, specific, and directly address the
uncertain arguments

Each question should target one or more specific arguments

Questions should be conversational and easy for a user to understand

For each question, specify which tool and argument(s) it aims to clarify.

Generate 5 diverse questions.

Keep in mind the the arguments you wish to clarify, their domains etc.

Return your response as a JSON object with the following structure:

{

"questions”: [

{

"question”: "A clear question to ask the user”,

"target_args": [["tool_name"”, "arg_name”"], ["tool_name”, "other_arg_name
"11

}

// ... 5 total questions

]

}

Ensure that each question targets at least one uncertain argument.

A.4 SENSITIVITY TO €

The parameter e is used to quantify uncertainty for large domains, where the tool argument domain
|D| is continuous or infinite. As long as the order of € < 1/|Dgpiee|, the decisions are robust to
the exact value of ¢, since scoring would switch unambiguously in favor of appropriate domains.
However, very small values of ¢ may cause numerical instability, since it is exponentiated during
computation.

We empirically validated the sensitivity to e by retroactively checking for changes
in question selection in our experiments from Section [§] on ClarifyBench (Am-
biguous subset), using GPT-40 and Qwen2.5-14B-Instruct. We tested € values:
{107%,1075,10*,1072,1072,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. As shown in
Figure [/ when € > 0.1, the decisions diverge significantly, since domains are not effectively
expressed as “infinite” when € values are comparable to finite domain probabilities. However, for
e < 1072, over 96-97% of decisions remain unchanged across all tested values, demonstrating
robustness in the practical range.

B REWARD MODELING WITH UNCERTAINTY

B.1 DATASET PROCESSING
Source Dataset: Our enhanced dataset was constructed from the nvidia/When2Call dataset, from

the "train_pref" data. This dataset contains preference-ranked examples for tool-calling tasks with
human-annotated preferred responses for training reinforcement learning models.
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Figure 7: Sensitivity analysis of € on question selection decisions for the Ambiguous subset of
ClarifyBench. The plots show the percentage of decisions that remain unchanged as e varies across
tested values, demonstrating robustness for € < 102,

Original Data Structure: Each example in the source dataset contained:

* Messages:Conversation history with user and assistant exchanges in chat format
* Tools: Available tool definitions with JSON schema parameters and descriptions
* Chosen responses: Human-preferred responses for the given context

* Preference annotations: Quality ratings for different response options

Response Classification: Each example was processed to classify responses into four categories:
<TOOLCALL>, <ASK>, <REFUSE>, and <DIRECTLY>. Classification used keyword-based heuristics:

<TOOLCALL>: Presence of “<TOOLCALL>" tags or “toolcall” keywords
* <ASK>: Presence of question marks (“?”’) in content

i

<REFUSE>: Presence of refusal keywords (“sorry”, “unable”, “impossible”, etc.)

<DIRECTLY>: Default classification for other responses. (None existed in the preferred set)

Data Transformations: Several preprocessing steps were applied to optimize the dataset for
uncertainty-aware training:

1. Domain Schema Injection: Each example was augmented with parsed domain informa-
tion for all available tools, stored as JSON strings in a tool_domain_schemas field for
HuggingFace compatibility

2. Message Format Preservation: The chat format was maintained with modified system
messages while preserving user/assistant alternation

B.2 TooL DOMAIN ANALYSIS

To enable uncertainty quantification, we performed comprehensive domain analysis of all available
tools using Qwen-2.5-7B-Instruct as the primary analysis model. Each tool’s arguments were analyzed
to determine:

* Domain type: finite, estimated_finite, numeric_range, string, boolean, list, or custom

* Domain size: exact count for finite domains, estimates for larger domains, or infinite for
unbounded domains

* Domain values: complete enumeration for small domains, representative examples for
larger domains, or range bounds for numeric domains

* Data dependency: whether argument values depend on external data sources or user context
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The analysis prompt instructed the model to classify arguments according to strict validation rules:

* Finite domains (<20 values): complete value enumeration with domain_size =
len(domain_values)

* Estimated finite domains: 5-10 representative examples with domain_size >> len(examples)
* Numeric ranges: [min, max] bounds with appropriate size calculation

¢ Boolean domains: domain_size = 2 with null values

* String/custom domains: infinite size with null values

B.3 UNCERTAINTY-AWARE SYSTEM PROMPTS

Each training example was enhanced with a comprehensive system prompt that provided explicit
instructions for uncertainty handling. The complete system prompt template was:

\texttt{You are a helpful agent. You will have access to tools to answer
the query.\\

A\

UNCERTAINTY GUIDELINES:\\

- Use <UNK> for arguments you cannot determine from context, or cannot
reasonably estimate. Don't overuse, you can assume defaults where
needed . \\

- When asking questions, use the structured format with candidate tool
calls\\

AN\

You can perform following action types:\\

a) <TOOLCALL> Invoke a tool call as follows:\\

<TOOLCALL >\\

[\{"name": "tool\_name"”, "arguments”: \{"argument\_name”: "value”, "
uncertain\_argument”: "<UNK>", ...\}\}I\\

</TOOLCALL >\\

\\

b) <ASK> Ask a question from the user if you need more information to
execute a tool call </ASK>\\

AR

STRUCTURED QUESTION FORMAT (when asking for clarification):\\

<ASK>\\

<TOOLCALL >\\

// Think about what tool you would call given the request, and the
current information. Because some information is missing, you want to
ask a question.\\

L

\{\{ "name”: "tool\_name”, "arguments”: \{"known\_arg": "value”, "
uncertain\_arg"”: "<UNK>"\J}\}]\\

</TOOLCALL >\\

<question>\\

What is the specific value for uncertain\_arg?\\

</question>\\

</ASK>\\

A\

c) <REFUSE> Refuse, if your knowledge or available tools can't be used
here </REFUSE>\\

d) <DIRECTLY> directly answer </DIRECTLY>\\

A\

Your response should be formatted like:\\

<reasoning>\\

Step-by-step thinking about certainty/uncertainty of each argument\\

</reasoning>\\

<answer >\\

<ACTIONN_TYPE >\\

..content.. (Question/ToolCall/Refuse/DirectAnswer)\\

</ACTION\_TYPE >\\

</answer >}
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B.4 TRAINING CONFIGURATION

Training began from unsloth/Qwen2.5-3B-Instruct and unsloth/Qwen2.5-7B-Instruct check-
points. LoRA (Low-Rank Adaptation) fine-tuning was applied with rank 64 adaptations targeting
attention and MLP projection layers.

Model training was performed using Group Relative Policy Optimization, using Unsloth (Daniel Han
& team, [2023)) with parameter details in Table E}

Hyperparameter Value
Learning Rate Se-6

Per Device Batch Size 1 (3B), 8 (logs)
Gradient Accumulation Steps 1

Max Sequence Length 1024
Training Epochs 1
‘Warmup Ratio 0.1
Weight Decay 0.1
Optimizer AdamW 8-bit
Adam Betal 0.9
Adam Beta2 0.99
LoRA Rank 64
LoRA Alpha 64

Table 5: Training hyperparameters for uncertainty-aware tool calling model.

B.5 REWARD SPECIFICATION

Our baseline GRPO reward function consists of multiple components that guide the model toward
generating well-formed, accurate responses. The total reward for a generated completion is computed
as the sum of three independent reward components:

Ttotal = Tfmt T T'tool T Tcls @)

where rg,t represents format compliance rewards, 1,0 represents tool call accuracy, and rjs
represents action classification rewards.

Format Compliance Rewards (rs,,;). These components encourage proper XML formatting and
total up to 1.5 points:

* XML Count Reward: Awards up to 0.5 points for proper newline structure, penalizing
excessive trailing content.

* Soft Format Reward: Awards 0.5 points if the response contains <reasoning> and
<answer> tags in the correct order (with flexible whitespace).

* Strict Format Reward: Awards 0.5 points only if the response exactly matches the format
<reasoning>\n...\n</reasoning>\n<answer>\n...\n</answer>\n.

Tool Call Accuracy Reward (r,,1). Compares the predicted tool call against a ground truth
reference:

1.0  if tool name and arguments match exactly
0.75  if tool name matches but arguments differ
0.5  if both have no tool call OR wrong tool name
0.0  if one has a tool call and the other does not

®

Ttool =

Action Classification Reward (r.s). This reward is the primary component that differentiates
between GRPO and Certainty weighted GRPO. This reward is computed based on the agent’s chosen
action a; at timestep ¢, which can be: TOOLCALL (execute a tool), ASK (request clarification), REFUSE
(decline the request), or DIRECTLY (answer without tools).
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The base classification reward is computed as:

2.0 if response starts with correct tag and contains > 30 chars
ras(ai) = < 1.5 if response starts with correct tag but insufficient content )
0.0 otherwise

Certainty Weighting For the baseline GRPO, the final classification reward is simply:

ToRPO(a4) = 1ais(ay) (10)

For Certainty weighted GRPO, we introduce epistemic-state-aware weighting. Let 7.(¢) be the
model’s belief over candidate tool calls ¢ € C;. We define the certainty function:

max, 7. (t) if a; is a tool call
Cert(a;) = ¢ 1 — max. m.(t) if a; is a clarification question (11)
1 otherwise

The final classification reward is then:
rcertaimy(at) = Cert(ay) - ras(ay) (12)

cls

This formulation up-weights confident correct tool calls, penalizes low-certainty calls, and rewards
clarification only when uncertainty is high—thus aligning the reward with the agent’s own epistemic
state.

In our implementation, we approximate 7. (¢) through explicit certainty computation over tool call
arguments. For a tool call ¢ with arguments, the certainty is:

me) = J[ = e (13)

arge c.arguments

where for each argument:

1.0 if arg has a specified value

Targ = ﬁ if arg is empty and domain size is finite (14)

€ ~ 0.0001 if arg is empty and domain size is infinite

Here, D, represents the domain size for that argument as specified in the tool schema. This approach
ensures that tool calls with all arguments specified receive maximum certainty (7.(¢) = 1.0), while
tool calls with missing arguments receive certainty inversely proportional to the domain sizes of
unspecified parameters. For ASK actions, we compute certainty over the candidate tool call mentioned
in the question, and use 1 — 7.(¢) to reward asking when uncertainty is high.

C BENCHMARK DETAILS

C.1 TASK FORMALIZATION

We formally define the clarification task as a multi-turn interaction problem between a tool-equipped
agent and a user simulator within a structured environment.

C.1.1 PROBLEM DEFINITION

Let € denote the environment containing a set of tools 7 = { f1, f2,. .., fm}, where each tool f;
has a signature defining its parameters and return type. An agent A is equipped with access to F and
must satisfy user requests through appropriate tool invocations.

A simulation scenario S is defined as a tuple:
S=(R,Z,G,K) (15)

where:
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* R ={ro,r1,...,7n} is a sequence of user requests
* 7 represents the true user intention for each request
* G={90,91,---,9n} is the ground truth tool call sequence

» ICis the knowledge being accumulated and used (conversational context, tool descriptions)
Each request r; € R belongs to one of three categories:

* Normal: Requests with sufficient information for direct execution
* Ambiguous: Requests requiring clarification to resolve uncertainty

¢ Infeasible: Requests that cannot be fulfilled with available tools

C.1.2 AGENT AND USER SIMULATOR

The agent A takes as input the current query ¢ and conversation history C, and produces one of three
response types:

Doccess tool call(s) executed
A(q,C) = § Peiarification clarifying question posed (16)
D roiture task declined or failed

The user simulator ¢/ maintains access to the true intention Z and background knowledge K. Given a
clarifying question from the agent, the simulator responds:

U(question,S) — {clarification if answerable from K, 7 (17)

C.1.3 MULTI-TURN INTERACTION PROCESS

The interaction proceeds as a sequence of turns 7; for each request r;, as formalized in Algorithm
At each turn ¢, the agent either executes tool calls, poses a clarifying question, or declines the request.
The query state is enriched with each clarification response:

qéitiim = Enrich(r;, clari fication™®) (18)
To prevent infinite loops, we impose a maximum clarification threshold 7,4, per request. The
simulation maintains a conversation history C that accumulates all interaction turns across multiple

requests, enabling the agent to leverage context from previous requests when handling subsequent
ones.

C.2 PROMPTS

C.2.1 DATASET AUGMENTATION PROMPTS

The following prompt was used to augment user queries i.e. convert tool calls to corresponding user
requests.

Original query: "{original_query}"

Tool call that should result from this query:
Tool: {tool_call["tool_name"]1}
Parameters: {tool_call["parameters"]}

Update the query to naturally lead to these exact parameters.
The updated query should:

1. Be realistic and maintain the user's intent

2. Naturally incorporate the corrupted parameter value

3. Sound like something a real user would ask

Only return the updated query text, nothing else.
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Algorithm 2 ClarifyBench Interaction Protocol

1: procedure EXECUTESIMULATION(S) > S represents the simulation scenario
2 Initialize agent A4, environment &£, user model U
3 R« {ro,r1,..-,"n} > Request sequence
4 C+ 0 > Conversation history
5: for each request ; € R do
6: T+ 0 > Turn sequence for request ¢
7 Qeurrent < Ti > Current query state
8: clarification_count < 0
9: while clari fication_count < T4, and not terminated do

10: response < A(qeurrent,C)

11: if response € Py ccess then > Successful completion

12: Record completion in 7;

13: break

14: else if response € @cjarification then > Needs clarification

15: clarification < U(response.question, S)

16: if clari fication = 1 then > User cannot provide clarification

17: Record incomplete in 7;

18: break

19: end if

20: Qeurrent < Enrich(r;, clari fication)

21: clarification_count < clarification_count 4+ 1

22: else

23: Record failure in 7;

24: break

25: end if

26: end while

27: C+CUT;

28: end for

29: return C
30: end procedure
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C.2.2 USER SIMULATOR PROMPTS

The simulator takes a language model provider, ground truth data, and user intent as inputs. It
maintains the conversation state and ensures responses are consistent with the user’s information. The
core of the simulation lies in two prompt templates that instruct a language model to act as a user:

You are simulating a user who is interacting with an AI assistant.

Original query: "{self.original_query}"

User's intent for the CURRENT request: {self.user_intent}

Information needed for the CURRENT request (do not reveal future
intentions):

{current_turn_ground_truth}

Additional context:

{self.context}

The AI assistant has asked the following specific question:

"{question}”

Generate a realistic user response to this SPECIFIC question. The
response should:

Be natural and conversational

ONLY provide information that directly answers the specific question
asked

NOT mention any future requests or intentions the user might have

ONLY focus on the current task, not on future tasks

Be concise and to the point

IMPORTANT: Never reveal future intentions. Respond ONLY to the specific
question asked.

NEVER BREAK CHARACTER. DO NOT THINK OUT LOUD. Respond directly as the
user would:

This template ensures the simulator provides natural, conversational responses that only address the
specific question without revealing future intentions. For generating follow-up requests, the simulator
uses this template:

You are simulating a user who is interacting with an AI assistant.

Original query: "{self.original_query}"”

User's intent: {self.user_intent}

Previous conversation:

{formatted_history}

Based on the conversation so far and the user's intent, decide if the
user would have a follow-up request.

Consider:

Has everything the user wanted been accomplished?

Is there a logical next step the user might want to take?

Has the agent clearly indicated that they've completed all necessary
tasks?

If you believe the user would have a follow-up request, provide it in a
natural, conversational way.

If you believe the conversation is complete, respond with
CONVERSATION_COMPLETE".

NEVER BREAK CHARACTER, DO NOT THINK!

Decision:

n

This template helps the simulator determine whether to generate a follow-up request based on the
conversation context and predefined potential follow-ups. The User Simulator isolates ground truth
information for each conversation turn, ensuring only relevant information is revealed at appropriate
times. It tracks the original query, user intent, ground truth for tool calls, completed tool calls,
potential follow-up queries, and the current conversation turn. By providing consistent, realistic user
responses, the simulator allows for reproducible evaluation of clarification strategies across multiple
scenarios.
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C.3 BENCHMARK DOMAIN AREAS

This appendix describes the key characteristics of each API domain used in our experiments, detailing
their initialization parameters, state management, and tool specifications.

Gorilla File System Plugin (GFS). The Gorilla File System API simulates a UNIX-like file system
with a hierarchical directory structure. It maintains state through:

* Directory structure with nested files and subdirectories

 Current working directory pointer

* Each file contains content as strings
The plugin provides 18 tools implementing common file system operations such as navigation, file
creation, modification, and content manipulation. Each tool supports parameters relevant to file

system operations, such as file names, directory paths, and content strings. Table[I0] provides detailed
information about these tools and their parameter domains.

The GFS plugin’s domains depend heavily on the current state of the file system. Domain updates
revolve primarily around available files and directories in the current working directory, as outlined
in Table [Tl

Document Processing. The Document API simulates operations for PDF document manipulation.
Its state consists of:

* Number of pages in the current document

* PDF filename metadata

* Operation-specific context for page-based operations
The plugin provides 18 document manipulation tools including conversion, annotation, redaction,

and page manipulation functions. Parameters include page numbers, text content, formatting options,
and file paths. Table[7]details the tools and their parameter domains.

Domain updates in the Document Plugin focus on page numbers and ranges, adapting dynamically to
changes in document length when pages are added or deleted, as shown in Table

Vehicle Control. The Vehicle Control API simulates an automotive control system with:

* Engine state (running or stopped)
* Door lock status for each door
* Fuel level (ranging from 0O to 50 gallons)
* Battery voltage
* Climate control settings
* Brake systems (pedal position and parking brake)
* Lighting systems
* Navigation state
This plugin implements 24 vehicle control tools that manipulate different aspects of the vehicle,

including engine operations, door management, climate control, lighting, braking systems, and
navigation. Table [9]details the specific tools and their parameter domains.

Vehicle Control domain updates primarily concern contextual constraints such as brake pedal position
for engine start, door states, and fuel level requirements, as referenced in Table
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Travel. The Travel API simulates a travel booking and management system with:

* Credit card registry and balances

* Flight booking records

¢ User information (first name, last name)
* Budget limits

* Available routes with pricing data

The plugin provides 15 tools for travel-related operations, including flight bookings, credit card
management, budget settings, and travel information queries. Table ?? details these tools and their
parameter domains.

Domain updates in the Travel Plugin focus on available credit cards, booking IDs, and airport codes
for valid routes, as detailed in Table [T1}

Trading Bot. The Trading Bot simulates a stock trading platform with:

* Account information and balance

* Order records (pending, completed, cancelled)
* Stock data with prices and metrics

» Watchlist of stocks

* Transaction history

* Market status (open/closed)

This plugin provides 19 trading tools for account management, order placement, stock information
retrieval, and market analysis. Table |8|lists the specific tools and their parameter domains.

Trading Plugin domain updates primarily involve available stocks, watchlist items, and order IDs,
adapting to user actions like placing orders or modifying watchlists, as referenced in Table[TT]

All plugins follow a consistent pattern for state initialization through configuration objects, domain
updates based on state changes, and parameter validation. The dynamic nature of these domains
presents particular challenges for language model interactions, as valid parameter values continuously
evolve during conversations based on system state changes.

C.4 HUMAN ANNOTATION

We employed two graduate student annotators, aged 22-25. The annotators were proficient in English,
and have proficiency in Python (relevant to test tool calls). The annotators were fairly compensated at
the standard Graduate Assistant hourly rate, following their respective graduate school policies. Fig[§]
shows a summary of the annotator guidelines. Two annotators assign a 5-point Likert score to every
candidate query, and the final selected query for a sample is the one that receives the highest score.
Inter-annotator agreement for the highest-scoring selections is given by Cohen’s xk = 0.76.

C.5 TooL CALL CORRUPTION HEURISTICS

‘We handcrafted rues to corrupt validated tool calls in the ground truth data, to construct ClarifyBench-
Infeasible.

GorillaFileSystem For the file system API, we implemented four primary corruption strategies:

* Invalid File Name Corruption targeting functions like mkdir, touch, and cat by inserting
forbidden characters (e.g., |, /, \, ?7);

* Path Traversal Corruption for cd, mv, cp, and find operations by inserting relative paths
(../) or absolute paths (/root/);
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Tool Name Argument Description Domain Type | Domain Values Data Dep. | Required
g p P p- | Req
get_budget_fiscal_year lastModifiedAfter Date filter for fiscal years string Any date string N N
- - - includeRemoved Include removed fiscal years  string Any string N N
card_number Credit card number string Any card number N
register_credit_card expiration_date Card expiration (MM/YYYY) string MM/YYYY format N
€ - - cardholder_name Name on card string Any name string N
card_verification_number | CVV code numeric_range | [100, 999] N
travel_from Departure airport code string*® 3-letter codes
ot flight cost travel_to Arrival airport code string* 3-letter codes
BerT-THEnt travel_date Travel date string YYYY-MM-DD N
travel_class Seat class finite [economy, business, first] N
get_credit_card_balance card_id Credit card identifier string* | Card ID list
card_id Payment card ID string* Card ID list
travel_date Travel date string YYYY-MM-DD N
book_flight travel_from Departure airport string*® Airport codes
-1 travel_to Arrival airport string* Airport codes
travel_class Seat class finite [economy, business, first] N
travel_cost Flight cost numeric_range | [0, 10000] N
retrieve. invoice booking_id Booking identifier string* Booking ID list N
N insurance_id Insurance identifier string* Insurance ID list N
list_all_airports | No arguments
cancel_booking | booking_id | Booking to cancel string* | Booking ID list | |
base_currency Source currency finite [USD, RMB, EUR, JPY. GBP, CAD, AUD, INR, RUB, BRL, MXN] N
compute_exchange_rate target_currency Target currency finite [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] N
value Amount to convert numeric_range | [0, 1000000] N
first_name Traveler’s first name string Any name N
verify. traveler.information | 12St-name Traveler’s last name string Any name N
v- - date_of _birth Birth date string YYYY-MM-DD N
passport_number Passport number string Any passport ID N
set_budget_limit | budget_limit | Budget limit in USD numeric_range | [0, 10000] | N
get_nearest_airport_by_city | location | City name finite | [Rivermist, Stonebrook, ..] | N
insurance_type Type of insurance finite [basic, premium, deluxe] N
purchase_insurance booking_id Booking identifier string* Booking ID list
- insurance_cost Insurance cost numeric_range | [0, 1000] N
card_id Payment card ID string* Card ID list
contact_custoner_support | POOKiNE-id Booking reference string* Booking ID list
. —Supp message Support message string Any message text N
get_all_credit_cards | No arguments

Table 6: Travel Plugin API: Complete Tool and Argument Specification with Domain Dependencies
(without Importance column)

* Non-existent Files Corruption for file operation functions by generating random names or
modifying existing names;

* Duplicate Creation Corruption for mkdir and touch operations by using existing file/direc-
tory names.

DocumentPlugin For the document manipulation API, we implemented three corruption strategies:

* Invalid Page Range Corruption for functions like add_comment and delete_page by setting
zero/negative values or exceeding total pages;

* Invalid Formats Corruption for convert operations by using unsupported formats or partial
strings;

* Out of Range Values Corruption for parameters like font_size and transparency by
exceeding min/max bounds or using negative values.

VehicleControlAPI For the vehicle control API, we focused on two corruption categories:

* Invalid Ranges Corruption for functions like fillFuelTank and adjustClimateControl
by exceeding capacity or using negative values;

* Invalid Enums Corruption for operations like startEngine and setHeadlights by supply-
ing wrong enum values or case mismatches.

TravelAPI For the travel booking API, we implemented three corruption strategies:

* Financial Constraints Corruption for functions like book_flight by exceeding available
balance or using negative values;

* Invalid Routes Corruption for route parameters by using non-existent airport codes or
identical from/to locations;
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Tool Name ‘ Argument ‘ Description ‘ Domain Type ‘ Domain Values ‘ Data Dep. Required
duplicate ‘ output_filename ‘ Name of duplicate file ‘ string ‘ Any filename ‘ N ‘
rename ‘ output_filename ‘ New filename ‘ string ‘ Any filename ‘ N ‘
search ‘ object_name ‘ Search term/object ‘ string ‘ Any search term ‘ N ‘
count_pages ‘ No arguments
compress_file ‘ output_filename ‘ Compressed output name ‘ string ‘ Any filename ‘ N ‘
format Target format finite [pptx, doc, png, jpeg, tiff] N
convert output_filename | Output filename string Any filename N
zip Zip output files boolean [true, false] N
page_num Page number numeric_range* | [1, num_pages]
add_comment coordinates Comment position [x,y] | list [x, y] coordinates N
font_size Font size (points) numeric_range | [8, 72] N
redact_page_range start Start page {inclus;ive) numer%c_range* [1, num_pages]
end End page (inclusive) numeric_range* | [1, num_pages]
start Start page numeric_range* | [1, num_pages]
end End page numeric_range* | [1, num_pages]
redact_text object_name Text to redact (list) list List of text strings N
overwrite Overwrite original boolean [true, false] N
output_pathname | Output filename string Any filename N
start Start page numeric_range* | [1, num_pages]
end End page numeric_range* | [1, num_pages]
highlight_text object_name Text to highlight (list) list List of text strings N
overwrite Overwrite original boolean [true, false] N
output_pathname | Output filename string Any filename N
start Start page numeric_range* | [1, num_pages]
end End page numeric_range* | [1, num_pages]
underline_text object_name Text to underline (list) list List of text strings N
overwrite Overwrite original boolean [true, false] N
output_pathname | Output filename string Any filename N
start Start page numeric_range* | [1, num_pages]
end End page numeric_range* | [1, num_pages
extract_pages ) ndpage umeric_range* | [1, num_pages]
overwrite Overwrite original boolean [true, false] N
output_pathname | Output filename string Any filename N
page_num Page to delete numeric_range* | [1, num_pages]
delete_page overwrite Overwrite original boolean [true, false] N
output_pathname | Output filename string Any filename N
start Start page numeric_range* | [1, num_pages]
end End page numeric_range* | [1, num_pages
delete_page_range ) ndp s umeric_range* | [1, num_pages]
overwrite Overwrite original boolean [true, false] N
output_pathname | Output filename string Any filename N
page_num Page for signature numeric_range* | [1, num_pages]
add_signature positi?n Signatu_re p0§it_ion finite [top—lefl, top-middle, ...] N
overwrite Overwrite original boolean [true, false] N
output_pathname | Output filename string Any filename N
text_content Page text content string Any text content N
add_page_with_text | font_size Text font size numeric_range | [8, 72] N
page_num Insert position numeric_range* | [1, num_pages+1]
watermark_text | Watermark text string Any text N
add_watermark i
transparency Transparency level numeric_range | [0.0, 1.0] N
add_password ‘ password ‘ PDF password ‘ string ‘ Any password string ‘ N ‘

Table 7: Document Plugin API: Complete Tool and Argument Specification with Domain Dependen-

cies
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Tool Name ‘ Argument Description Domain Type  Domain Values Data Dep. Required
get_current_time ‘ No arguments
update_market_status ‘ current_time_str ‘ Time in HH:MM AM/PM  string ‘ HH:MM AM/PM format ‘ N ‘
get_symbol_by_name ‘ name ‘ Company name string ‘ Any company name ‘ N ‘
get_stock_info ‘ symbol ‘ Stock symbol string* ‘ Available stock symbols ‘ ‘
get_order_details ‘ order_id ‘ Order identifier numeric_range* ‘ Existing order IDs ‘ ‘
cancel_order ‘ order_id ‘ Order to cancel numeric_range* ‘ Existing order IDs ‘ ‘
order_type Buy or Sell finite [Buy, Sell] N
symbol Stock symbol string® Available stocks
place_order N N .
price Price per share numeric_range | [0.01, 10000.0] N
amount Number of shares numeric_range | [1, 10000] N
make_transaction xact_type Trunsaclfun type finite ) [deposit, withdrawal] N
amount Transaction amount numeric_range | [0.01, 1000000.0] N
get_account_info ‘ No arguments
fund_account ‘ amount ‘ Funding amount numeric_range ‘ [0.01, 1000000.0] ‘ N ‘
remove_stock_from_watchlist ‘ symbol ‘ Stock to remove string* ‘ ‘Watchlist stocks ‘ ‘
get_watchlist ‘ No arguments
get_order_history ‘ No arguments
: : start_date Start date filter string YYYY-MM-DD format N N
get_transaction_history N .
end_date End date filter string YYYY-MM-DD format N N
update_stock_price symboll Stock Symhnlv slring*. Available stocks
new_price New stock price numeric_range | [0.01, 10000.0] N
get_available_stocks ‘ sector ‘ Market sector finite ‘ [Technology, Automobile, Healthcare, Finance, Energy] ‘ N ‘
stocks Stock list to filter list List of stock symbols N
filter_stocks_by_price min_price Minimum price numeric_range | [0.01, 10000.0] N
max_price Maximum price numeric_range | [0.01, 10000.0] N
add_to_watchlist ‘ stock ‘ Stock to add string* ‘ Available stocks ‘ ‘
: . stocks Stocks to monitor list List of stock symbols N
notify_price_change .
threshold Change threshold (%) numeric_range | [0.01, 100.0] N

Table 8: Trading Plugin API: Complete Tool and Argument Specification with Domain Dependencies

Tool Name Argument Description | Domain Type  Domain Values Data Dep. Required
startEngine ignitionMode Engine ignition mode | finite | [START, STOP] N
fillFuelTank fuelAmount Fuel to add (gallons) | numeric_range* | [0, 50-current_fuel]

unlock Lock or unlock boolean [true, false] N
TockDoors - . . )

door Doors to operate list* [driver, passenger, rear_left, rear_right]

temperature Target temperature | numeric_range | [-10, 50] N
adjustClinateControl unit Temperature unit finite [celsius, fahrenheit] N

fanspeed Fan speed (0-100) numeric_range | [0, 100] N N

mode Climate mode finite [auto, cool, heat, defrost] N N
get_outside_temperature_from_google No arguments
get_outside_temperature_from_weather_con | No arguments
setHeadlights | mode | Headlight mode | finite | [on, off, auto] | N ]
displayCarStatus | option Status display option | finite | Ifuel, battery, doors, climate, headlights, parkingBrake, brakePedal, engine] |~ N |
activateParkingBrake | mode | Brake mode | finite [engage, release] | N ]
pressBrakePedal | pedalPosition | Pedal position (0-1) | numeric_range | [0, 1] | N
releaseBrakePedal | No arguments

speed Cruise speed (mph) | finite* 0.5. 10, ..., 120]
setCruiseControl activate Activate cruise boolean* [true, false]

distanceToNextVehicle | Following distance (m) | numeric_range | [0, 1000] N
get_current_speed | No arguments
display_log | messages | Log messages [ st | List of strings | N
estimate_drive_feasibility_by_mileage |distance | Distance in miles | numeric_range | [0, 10000] | N
liter_to_gallon | Liter | Liters to convert | numeric_range | [0, 1000] | N
gallon_to_liter gallon Gallons to convert numeric_range | [0, 1000] N

. citya First city zipcode finite [83214, 74532, 56108, ...] N

estimate_distance 2 5

cityB Second city zipcode | finite [83214, 74532, 56108, ...] N
get_zipcode_based_on_city | city | City name | finite | [Rivermist, Stonebrook, ...] | N
set_navigation | destination | Destination address | string | Street, city, state format | N ]
check_tire_pressure | No arguments
find_nearest_tire_shop | No arguments

Table 9: Vehicle Control Plugin API: Complete Tool and Argument Specification with Domain
Dependencies

29



Under review as a conference paper at ICLR 2026

Table 10: File System Plugin API: Complete Tool and Argument Specification with Domain Depen-

dencies

Tool Name ‘ Argument ‘ Description ‘ Domain Type ‘ Domain Values ‘ Data Dep. | Required
pwd ‘ No arguments
1s ‘ a ‘ Show hidden files ‘ boolean ‘ [true, false] ‘ N ‘ N
cd ‘ folder ‘ Directory to change to ‘ string* ‘ Available directories + [.., /] ‘ ‘
mkdir ‘ dir_name ‘ New directory name ‘ string ‘ Any valid directory name ‘ N ‘
touch ‘ file_name ‘ New file name ‘ string ‘ Any valid filename ‘ N ‘
echo content Text content string Any text string N

file_name Output file (optional) string Any filename N N
cat ‘ file_name ‘ File to display ‘ string* ‘ Available files ‘ ‘
find path Search starting point string Any path N N

name Search pattern string Any search pattern N N
we file_name File to count string* Available files

mode Count mode finite [, w, c] N N
sort | file_name | File to sort | string* | Available files | |
grep file_name File to search string* Available files

pattern Search pattern string Any text pattern N
du ‘ human_readable ‘ Human readable format ‘ boolean ‘ [true, false] ‘ N ‘ N
tail file_name File to display string* Available files

lines Number of lines numeric_range | [1, 100] N N
diff file_namel First file string* Available files

file_name2 Second file string™* Available files
v source Source file/directory string* Available items

destination Destination name string* Available items + new names
rm ‘ file_name ‘ File/directory to remove ‘ string* ‘ Available items ‘ ‘
rmdir ‘ dir_name ‘ Directory to remove ‘ string* ‘ Available directories ‘ ‘
. source Source file/directory string* Available items

destination Destination name string™® Available items + new names

Plugin | Update Trigger

Dynamic Domain Updates

Affected Operations

Travel
Credit card registration

Flight booking

Budget setting
Route updates

Card IDs — available payment methods

Booking IDs — cancellable/retrievable
bookings

Budget limits — financial constraints
Airport codes — valid travel routes

book_flight,
get_credit_card_balance,
purchase_insurance
cancel_booking,
trieve_invoice,
tact_customer_support
All cost-related operations
get_flight_cost, book_flight

re-
con-

Document
Page operations
Document loading

Cache invalidation

Page count — valid page numbers
Total pages — range constraints

State changes — domain refresh

All page-specific operations
add_comment, delete_page,
etc.

Page-changing operations

Tradin;
Order placement

Stock updates
Watchlist changes

Order IDs — manageable orders

Available stocks — tradeable symbols
Watchlist — removable stocks

get_order_details,
cel_order

can-

place_order, get_stock_info
remove_stock_from_watchlist

Vehicle
Fuel level changes
Door state changes
Engine state

Current fuel — addable amount

Door status — operable doors
Running/stopped — cruise control availabil-
ity

fillFuelTank
lockDoors
setCruiseControl

File System

Directory navigation
File operations
Directory changes
State synchronization

Current contents — available items

File list — operable files

Directory list — navigable paths

FS changes — domain cache invalidation

cd, cat, mv, cp, rm
File-specific operations
cd, rmdir

All
tions

state-changing opera-

Table 11: Dynamic Domain Update Rules and Triggers Across Plugin System
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Human Annotation Guidelines

Objective:

Annotators must evaluate five LLM-generated queries per sample. Each query is scored on three
dimensions: (A) Naturalness of language, (B) Faithfulness to the expected tool call, and (C)
Executability/Validity. Additionally, annotators must check for removal of Personally Identifiable
Information (PI1), assess tool call feasibility, and select one optimal query per sample.

Evaluation Rubric

Criterion Score 5 Score 4 Score 3 Score 2 Score 1
A. Fully fluent, Minor Understandable Clearly Unintelligible or
Naturalness natural, awkwardness but robotic awkward or  nonsensical
human-like or stiffness difficult to
read
B. Perfect match  Mostly aligned; ~Some omissions  Major Entirely
Faithfulness  to expected minor phrasing  or hallucinations;  deviations incorrect or
tool call; all or parameter core logic intact from misleading tool
required issues expected structure
arguments tool
present behavior
C. Fully Executes with Partially Major issues Unexecutable
Executability executable; minor issues or  executable with preventing or contradicts
properly missing moderate execution tool logic/API
structured defaults corrections
and valid needed

Required Checks

e Pll Removal: Ensure no personal identifiers (names, emails, phone numbers, IDs) are present
Flag these queries for further processing.

e Tool Call Validation: If feasible, simulate or run tool calls to confirm validity and argument
correctness.

e Error Identification: Mark and annotate any queries with logical inconsistencies, invalid
parameters, or unsupported constraints.

Figure 8: Summary of instructions given to human annotators.

* Non-existent Booking Corruption for functions like cancel_booking by generating random
non-existent IDs.

TradingBot For the stock trading API, we implemented three corruption strategies:
* Invalid Symbols Corruption for functions like get_stock_info by using non-existent
symbols or malformed formats;

e Financial Validation Corruption for place_order and related functions by using negative
values or amounts exceeding account balance;

* Order State Conflicts Corruption for cancel_order operations by referencing completed
orders or using malformed order IDs.
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