
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURED UNCERTAINTY GUIDED CLARIFICATION
FOR LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM agents with tool-calling capabilities often fail when user instructions are
ambiguous or incomplete, leading to incorrect invocations and task failures. Ex-
isting approaches operate in unstructured language spaces, generating clarifying
questions through prompting strategies that lack principled criteria for determining
which questions to ask and when to stop. We introduce a principled formulation of
structured uncertainty that operates directly over tool parameters and their domains,
cleanly separating specification uncertainty (what the user wants) from model un-
certainty (what the LLM predicts). Our formulation uses Expected Value of Perfect
Information (EVPI) to quantify the disambiguation value of each potential question,
balanced against aspect-based cost modeling that prevents redundant questioning.
We demonstrate the versatility of this formulation through two applications. First,
SAGE-Agent uses structured uncertainty for inference-time question selection,
achieving 7–39% higher coverage on ambiguous tasks while reducing clarifica-
tion questions by 1.5–2.7× compared to strong prompting and uncertainty-based
baselines. Second, we show that structured uncertainty provides effective training
signals: uncertainty-guided reward modeling boosts When2Call accuracy from
36.5% to 65.2% (3B model) and 36.7% to 62.9% (7B model) through uncertainty-
weighted GRPO training, demonstrating more sample-efficient reinforcement learn-
ing for tool-calling agents. To enable evaluation, we present ClarifyBench, the first
multi-turn dynamic tool-calling disambiguation benchmark. Our results establish
structured uncertainty as a principled framework that improves both inference-time
interaction efficiency and training-time sample efficiency in tool-augmented agents.

1 INTRODUCTION

Hey! can you call Alex from
work for me?

Please ask Maya on text if
she can pick the party
supplies on Saturday?

Alex C.
(Work) +1 202 XXXX

Alex M.
(Home) +1 231 XXXX

Maya S.

(Home) +1 XXX 2703

[Default]
(Work) +1 XXX 2002

Contacts

LLM Agent

Token
Space

Domain
Space

Token
Space

Domain
Space

Which Alex do you want
to call?

Call([Alex C. (Work)])

SMS([Maya S.], “Can you
pick the party supplies on

Saturday?)

Should I text her on her
home phone?

Redundant question, since only
one Alex has a work number

Assumes default phone number for
Maya, which in this case turns out to be

her work contact.

Disambiguation Strategy

Figure 1: Linguistic-only disambiguation fails to use
tool schemas, triggering unnecessary clarifications and
inappropriate defaults. Grounding disambiguation in
structured parameter domains avoids these problems.

LLM Agents are AI systems that extend large
language models (LLMs) with the ability to take
real-world actions autonomously accumulate ob-
servations (Huang et al., 2024b). These agents
often invoke external APIs and tools based on
structured function definitions, enabling interac-
tion with databases, web services, and software
applications (Schick et al., 2023). These agents
have been successfully deployed across diverse
domains including travel planning, document
processing, finance, vehicle control, and drug
discovery (Xie et al., 2024; Mathur et al., 2024;
Yu et al., 2024; Huang et al., 2024a; Liu et al.,
2024). However, their effectiveness is funda-
mentally limited by ambiguous or incomplete
user instructions that lead to incorrect tool invocations, failed transactions, and degraded user experi-
ence—problems that become increasingly critical as these systems handle more complex, high-stakes
tasks. Ambiguity in user requests poses unique challenges for LLM agents, where imprecise interpre-
tation can cascade into costly execution errors (Wang et al., 2024; Vijayvargiya et al., 2025). User
ambiguity manifests through vague task specifications ("find me a good restaurant"), incomplete
parameters ("book a meeting for tomorrow"), or implicit assumptions about system capabilities (Wang

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al., 2025). The structured nature of API schemas—with their specific parameter types, constraints,
and interdependencies—amplifies this challenge, as a single ambiguous user query often maps to
multiple valid API configurations with vastly different outcomes (Bandlamudi et al., 2025). For
example, "cancel my subscription" could apply to multiple services, cancellation types (pause vs.
permanent), or effective dates, each requiring different API calls with distinct consequences.

Existing disambiguation approaches suffer from fundamental limitations in the agentic tool-calling
context. Due to their next-token prediction training, LLMs often hallucinate missing arguments
when faced with incomplete information, leading to incorrect tool invocations (Wang et al., 2024).
Current methods operate primarily in unstructured language spaces—generating clarifying questions
as arbitrary text sequences through prompting strategies—rather than leveraging the structured
constraints and dependencies that define tool schemas (Kobalczyk et al., 2025; Zhang et al., 2024).
While prompting improvements can enhance question phrasing, they cannot fundamentally address
the core limitation: without explicit modeling of parameter relationships, importance hierarchies,
and feasibility constraints, agents lack principled criteria for determining which questions to ask and
when to stop asking them. This results in over-clarification of low-impact details, under-clarification
of critical missing information, and inability to distinguish feasible from infeasible requests, as
demonstrated in Fig. 1. We address these limitations through a structured uncertainty formulation
that operates directly in the space of tool parameters and their domains, rather than unstructured
language space. By maintaining explicit probabilistic beliefs over structured tool-call candidates, our
approach cleanly separates specification uncertainty (ambiguity in what the user wants) from model
uncertainty (limitations in LLM capabilities). The key challenge is determining which clarifying
question provides the most value—too many questions frustrate users, while too few lead to incorrect
executions. We resolve this through Expected Value of Perfect Information (EVPI), a principle from
Bayesian decision theory that quantifies how much each potential question would reduce uncertainty
about the correct tool call in expectation.

Contributions: ➢ We introduce a principled formulation of structured uncertainty over tool-call
parameters, using Expected Value of Perfect Information (EVPI) to optimally balance information
gain against question cost through aspect-based redundancy modeling. This formulation cleanly
separates specification uncertainty from model uncertainty by operating directly in the structured
space of tool parameters and their domains. ➢ We demonstrate two applications of this formulation:
(i) SAGE-Agent, which uses structured uncertainty for inference-time question selection, substan-
tially improving task success rates while reducing clarification overhead compared to prompting and
uncertainty-based baselines; and (ii) uncertainty-guided reward modeling, where structured uncer-
tainty serves as an effective training signal to train tool-calling models. ➢ We present ClarifyBench,
the first benchmark for multi-turn tool-calling disambiguation, equipped with an LLM-based user
simulator supporting realistic conversational progression across diverse domains including document
editing, vehicle control, stock trading, travel booking, and file system manipulation.

2 RELATED WORK

The challenge of resolving ambiguity in user interaction with LLMs through clarifying questions has
gained increasing attention, particularly in tool-calling contexts. Early approaches to clarification
focused on general dialogue systems, developing ranking-based methods for question selection (Rao
& Daumé III, 2018; Xu et al., 2019) and Seq2Seq generation (Deng et al., 2022). Recent work has
specifically addressed ambiguity in tool-calling scenarios: Ask-before-Plan introduces proactive
planning agents that predict clarification needs and collect information before execution (Zhang
et al., 2024), while Active Task Disambiguation frames the problem through Bayesian Experimental
Design to maximize information gain from clarifying questions (Kobalczyk et al., 2025). Zhang
and Choi propose intent-similarity based uncertainty estimation to determine when clarification is
beneficial across various NLP tasks (Zhang & Choi, 2023). Complementary approaches explore
training methods for clarification behavior: CollabLLM develops frameworks for transforming LLMs
from passive responders into active collaborators (Wu et al., 2025), Zhang et al. teach LLMs to
ask clarifying questions by modeling future conversation turns (Zhang et al., 2025), and Chen et
al. propose action-based contrastive self-training for multi-turn clarification dialogues (Chen et al.,
2025). Related efforts explore implicit intention understanding in language agents (Qian et al., 2024)
and proactive dialogue systems that can handle ambiguous queries through goal planning (Deng et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2023). However, these approaches primarily operate in the general language space without leveraging
the structured nature of tool schemas.

3 THEORY

Modern LLM agents extend beyond text generation to become agentic systems that can interact with
external tools and APIs to accomplish complex tasks. These agents typically follow a perception-
reasoning-action cycle: they receive user queries, reason about appropriate actions, select and
parameterize tool calls, and execute them to achieve desired outcomes. However, this paradigm
faces a fundamental challenge when user queries are ambiguous or underspecified—the agent must
somehow resolve uncertainty about both which tool to use and how to parameterize it.

3.1 STRUCTURED TOOL-CALLING AND BELIEF STATE

We model an LLM agent as a systemM with access to a toolkit T = {T1, T2, . . . , TK}. Each tool
Ti is characterized by a structured interface that defines its capabilities and parameter requirements.

Definition 1 (Tool Schema). A tool Ti is defined by the tuple (namei,Θi,Di,Ri) where namei ∈ S
is the tool identifier, Θi = {θi,1, . . . , θi,mi

} is the parameter set, Di = {Di,1, . . . ,Di,mi
} with Di,j

the domain of θi,j i.e the set of allowed values, andRi ⊆ Θi specifies required parameters.

Definition 2 (Tool Call Candidate). A tool call candidate ci for tool Ti is a partial function
ci : Θi → Di ∪ {⊥} where ci(θi,j) = ⊥ indicates an unspecified parameter.

The agent’s task is to map from an ambiguous natural language query u to a fully specified tool call
c∗ = (T ∗,θ∗) where all required parameters are specified. The candidate space C = {(Ti, ci) : Ti ∈
T , ci is valid for Ti} represents all possible completions consistent with current information.

�
Uncertainty Quantification: Methods that model uncertainty or disambiguation needs based
on LLM response distributions must compute p(ambiguous|u) =

∑
w f(w)pLLM (w|u)

where f determines if LLM response w indicates ambiguity. This conflates model uncertainty
with specification uncertainty since the determination function f itself depends on model
capabilities. Our structured approach directly parameterizes p(Ti,θi|u), cleanly separating
these uncertainty sources.

Definition 3 (Structured Belief State). At time t, given the initial user query u and accumulated
responses {r1, . . . , rt}, we maintain a belief distribution over the candidate space:

B(t) = {(ci, πi(t)) : ci ∈ C}

where πi(t) ∈ [0, 1] represents the probability that candidate ci matches the user’s true intent.

We decompose the joint probability as

p(Ti,θi | u, {r1, . . . , rt}) = p(θi | Ti, u, {r1, . . . , rt}) p(Ti | u)

and assume a uniform prior over tools p(Ti | u) = 1/K.1

Under a conditional independence assumption across parameters (for tractability), candidate proba-
bility becomes:

πi(t) ∝
mi∏
j=1

p(θi,j | Ti, u, {r1, . . . , rt})

where parameter certainty is p(θi,j) = 1 if specified, |Di,j(t)|−1 if unspecified with finite domain,
and ϵ (0 < ϵ≪ 1) for infinite/continuous domains. Here, Di,j(t) is the feasible parameter domain
after incorporating constraints from responses.

1This assumption reflects that, in practice, tools are proposed without strong prior bias. Future work could
incorporate learned tool usage patterns or contextual priors.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Belief Updates. After asking question qt and receiving response rt, beliefs update through domain
constraint propagation:

Di,j(t+ 1) = Di,j(t) ∩ ExtractConstraints(rt, θi,j , Ti) (1)

πi(t+ 1) ∝ πi(t) · P (rt|ci, qt) ·
∏
j

p(θi,j |Ti, u, {r1, . . . , rt}) (2)

3.2 INFORMATION-THEORETIC QUESTION SELECTION

The disambiguation process involves sequential decision-making: at each turn, the agent must decide
whether to ask a clarifying question or execute the current best candidate. We formalize this decision
through an information-theoretic criterion that balances information gain against question cost.

Expected Value of Perfect Information. Drawing from Bayesian decision theory and value of
information frameworks (Rainforth et al., 2024), we quantify the expected benefit of asking question
q using the Expected Value of Perfect Information (EVPI).

Definition 4 (Expected Value of Perfect Information).

EVPI(q,B(t)) = Er∼P (r|q,B(t))

[
max
ci∈C

πi(t|q, r)
]
−max

ci∈C
πi(t) (3)

where the response distribution is P (r|q,B(t)) =
∑

i πi(t)P (r|ci, q). EVPI naturally handles both
tool disambiguation and parameter clarification in a unified framework—questions helping resolve
tool choice and parameter values are evaluated using the same information-theoretic criterion.

Aspects and Question Coverage. We introduce aspects as the atomic unit of disambiguation. An
aspect ai,j refers to parameter θi,j of tool Ti. The full set of aspects is

A ≜ {ai,j | i ∈ [1..K], j ∈ [1..mi]}.

A clarifying question targets a subset of aspects: for question q we writeA(q) ⊆ A. For bookkeeping
we count how often an aspect has been targeted up to time t as

na(t) ≜ |{τ ≤ t : a ∈ A(qτ)}|.

Definition 5 (Redundancy Cost). Pure information maximization can lead to excessive questioning.
We introduce a cost model that penalizes redundant questions about previously addressed aspects.
For question q targeting aspects A(q), with aspect history na(t):

Cost(q, t) = λ
∑

a∈A(q)

na(t) (4)

where λ controls the penalty strength for redundant questions.

� Structured Response Handling: Past methods sample from p(solution|q), requiring expen-
sive enumeration. We treat responses as constraints r ⇝ Di,j(t+ 1) = Di,j(t) ∩C(r) where
C(r) extracts constraints, enabling exact EVPI computation over finite patterns.

Question Selection and Stopping Criteria. At each timestep, we select the question that maximizes
net information gain:

q∗(t) = argmax
q∈Q

[EVPI(q,B(t))− Cost(q, t)] (5)

Stop when: max
q

[EVPI(q,B(t))− Cost(q, t)] < α ·max
i

πi(t) (6)

This policy requires only one-step belief propagation for each candidate question, making it computa-
tionally tractable while maintaining principled information-theoretic grounding.

4 CLARIFYBENCH

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

User Simulator

Tool-calling Agent

Ground-truth
Tool Call

Evaluation

Vehicle Control Travel Documents

File System Stocks

Initial Query
User Intent Prompt
Follow-up requests

Explicit Requests

Ambiguous Requests

Infeasible Requests

Query Types

User-Agent
Interaction

Tool Call

Tool use

Tools

Domains

API

Figure 2: ClarifyBench evaluates agent clar-
ification strategies through multi-turn inter-
actions between a user simulator and tool-
equipped LLM agents across normal, am-
biguous, and infeasible queries in 5 domains.

The evaluation of clarification strategies in tool-calling
agents requires benchmarks that capture the complexity
of real-world user interactions, particularly when deal-
ing with ambiguous or infeasible requests. As shown in
Table 1, existing benchmarks exhibit critical limitations:
many lack support for ambiguous and infeasible queries,
while those that include such scenarios are limited in scope
or domain coverage. Most critically, they rely on static
evaluation without dynamic user simulation capabilities.

We introduce ClarifyBench to address these limitations.
The task involves multi-turn interactions between a tool-
equipped LLM agent and a user simulator that maintains
the true user intention and responds to clarifying questions.
The agent must identify when clarification is needed, pose
appropriate questions, and execute correct tool calls based
on the information gathered, while the simulator provides contextually relevant responses that guide
the agent toward the intended action. As illustrated in Figure 2, ClarifyBench provides: (1) dynamic
user simulation enabling natural conversational progression where users pose follow-up requests after
clarification exchanges; (2) comprehensive coverage across three query types (normal, ambiguous,
and infeasible); and (3) multi-domain evaluation spanning five distinct domains. Evaluation compares
ground truth tool calls with agent-generated actions, providing robust assessment of clarification
effectiveness across realistic scenarios.

Benchmark
Dynamic User

Simulation
Ambiguous

Queries
Infeasible
Queries

Multi-turn
Requests

Tool Domains Number of Tools

AgentBoard (Ma et al., 2024) ✗ ✗ ✗ ✗ Information Retrieval, Manipulation 50
τ -bench (Yao et al., 2024) ✓ ✗ ✗ ✓ Retail, Airlines 24
MMAU (Yin et al., 2024) ✗ ✗ ✗ ✗ RapidAPI Tools 364
ToolSandbox (Lu et al., 2024) ✓ ✗ ✗ ✓ Personal Assistant 34
Ask-Before-Plan (Zhang et al., 2024) ✓ ✓ ✓ ✗ Travel 6
BFCL-v3 (Patil et al., 2025) ✗ ✓ ✗ ✓ Vehicle Control, Stocks, Travel, File System 129
ClarifyBench ✓ ✓ ✓ ✓ Documents, Vehicle Control, Stocks, Travel, File System 92

Table 1: Comparison of ClarifyBench with existing tool-calling benchmarks.

4.1 BENCHMARK DESIGN

ClarifyBench encompasses five diverse domains that reflect real-world tool-calling scenarios: docu-
ment processing, vehicle management, stock trading, travel planning, and file system management.
These domains were selected to represent varying levels of complexity, different types of argument
structures, and distinct sources of ambiguity that agents encounter in practice. Table 2 gives a
statistical summary of the benchmark. Each sample in ClarifyBench is represented as a tuple: (user
query, user intent, follow-up queries, ground truth tool call, domain).

The benchmark includes three distinct query types that systematically evaluate different aspects of
clarification: 1. Explicit Queries: Well-specified requests that provide sufficient information for
direct tool execution, serving as baseline performance indicators. 2. Ambiguous Queries: Requests
with missing or unclear parameters that require clarification to determine the appropriate tool calls
and arguments. 3. Infeasible Queries: Requests which if executed at face value would generate
errors due to invalid parameters, conflicting constraints, or impossible conditions.

4.2 BENCHMARK CONSTRUCTION

Data Sources. ClarifyBench draws from two primary sources to ensure diversity and realism. First,
we extract successfully executed tool calls from DocPilot (Mathur et al., 2024), which provides
real user interactions in document processing scenarios. Second, we leverage the Berkeley Function
Calling Leaderboard (BFCL-v3) (Patil et al., 2025), which offers data across multiple domains:
vehicle control, stock trading, travel planning, and file system management.

Data Augmentation. To create the comprehensive set of query types required for clarification
evaluation, we employ systematic data augmentation techniques. We process DocPilot dataset
by anonymizing user metadata, replacing specific file names and domain terms in tool calls with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

LLM-generated substitutes to ensure generalizability, followed by PII removal. For ambiguous
queries, we randomly select upto 3 arguments from successful tool calls and obfuscate them, then
prompt GPT-4o to generate five alternative user queries that omit the obfuscated information.For
infeasible queries, we design handwritten rules based on common API errors to create tool calls
that would generate failures, followed by a similar LLM-based query augmentation process. We
process BFCL-v3 using existing explicit and ambiguous parameter queries from the benchmark,
ensuring sample independence by removing cases with secondary API dependencies. We apply
rule-based validation and LLM judgment (via in-context learning) to identify and exclude such cases.
For retained samples, we strip secondary API utterances and tool calls from ground truth annotations.
User intent prompts are generated through LLM based detailed summarization of the ground truth
tool calls and user utterances.

Metric Doc Vehicle Stocks Travel Files All

Total Samples 181 139 143 119 134 716
Number of Tools 18 22 19 15 18 92
Avg # of Tool Calls 3.9 4.5 3.9 3.7 3.1 3.8
Explicit Queries 49 50 49 50 43 241
Ambiguous Queries 49 39 46 40 39 213
Infeasible Queries 48 49 38 18 45 198
Avg # of Follow-up 2.9 2.1 2.7 2.3 1.8 2.4

Table 2: Statistical description of Clari-
fyBench.

Human Validation. To ensure quality and naturalness, a
human annotator evaluates all LLM-generated queries us-
ing three criteria: (A) naturalness of language, (B) faithful-
ness to the expected tool calls with all required details and
no obfuscated parameters, and (C) for infeasible queries,
the presence of explicit error-inducing requirements. Two
annotators assign a 5-point Likert score to every candi-
date query, and the final selected query for a sample is
the one that receives the highest score. Inter-annotator
agreement for the highest-scoring selections is given by
Cohen’s κ = 0.76.

5 STRUCTURED ARGUMENT UNCERTAINTY GUIDED ELICITATION AGENT

Uncertainty
Quantification

Update
Interpretation

Tool Execution

Dynamic
Threshold

? ? ? ? ?

Candidate Clarifying Questions

Tools
Data

Functional Relations

A
rg

u
m

en
t

D
o

m
ai

n
C

h
ar

ec
te

ri
za

ti
o

n

>

<

tool_A(arg1, <UNK>)
tool_B(arg2, <UNK>, arg3)

Observation

LLM

LLM

Reason

CostExpected Value of Perfect Information

Certain

Uncertain

max
Ask clarifying question

Execute tool

Candidate Tool Call Interpretations

User Query

Clarifying question

Response

Tool Output

Structured Uncertainty Guided Disambiguation

Fa
ile

d
 t

o
o

l c
al

l

Loop

Figure 3: SAGE-Agent: ➊) Given a user query, an LLM reasons and generates potential tool calls with
possibly uncertain parameters. These tool calls undergo (➋) structured uncertainty quantification to determine if
clarification is needed. When uncertainty exists, the agent uses an LLM to produce (➌) candidate clarifying
questions, and scores them using (➍) a cost-penalized Eexpected Value of Perfect Information (EVPI) metric.
Tool-parameter domain interpretation is updated based on user-response to the clarifying question (➎), and given
no further uncertainty, the best tool call is executed ➏.

SAGE (Structured Argument Uncertainty guided Elicitation) augments the standard Reason–Act–
Observe loop by inserting structured, domain-aware clarification into the Reason stage (as seen in
Fig. 3). Let the user input be u; the toolkit T and tool schemas follow Definition 1.

5.1 AGENT FLOW

At step t, the agent maintains belief π(t) = {πc(t)}c∈C and observations Ot. The full loop can be
written as a combination of Reason (R) and Act (Act):

(
Ct, Qt

) R←− (u,Ot, T)
Act−−→ at =

{
execute : c∗(t) = argmaxc πc(t)

q∗ : π(t+ 1) = Ob
(
π(t), ot+1

)
6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where R produces candidate tool calls Ct and aspect-targeted questions Qt, Act selects either
execution or query, and Ob performs domain-constrained belief refinement (Fig. 3).

5.2 CANDIDATE GENERATION, QUESTIONING, AND BELIEF UPDATE

At step t, SAGE proceeds as follows:

1. Candidate Generation. The Reason stage prompts an LLM with (u,Ot, T) to produce candidate
tool calls Ct = {c1, . . . , cN}, each assigning parameters Θi(c) concrete values or <UNK>. Candidate
certainty is defined as πc(t) =

∏
θi,j∈Θi(c)

p(θi,j | Ti(c), obst). If maxc πc(t) ≥ τexec, execute
c∗(t) = argmaxc πc(t); otherwise continue.

2. Question Generation. An LLM is prompted with (i) q, (ii) C and masks, (iii) tool schemas, and (iv)
recent observations to output Q = {(qk, cik , Ak)}Lk=1, where qk is the question text, cik the candidate
being disambiguated, and Ak ⊆ A the targeted aspects (parameters). Output is machine-parsable
with <UNK> for ambiguous parameters.

3. Scoring and Selection. Let Pq = {C1, . . . , CM} be the partition of Ct induced by
A. The EVPI is EVPI(q) =

∑M
m=1 maxc∈Cm

πc(t) − maxc∈Ct
πc(t). Score each ques-

tion as Score(q, t) = EVPI(q) − λ
∑

a∈A na(t), select q∗(t) = argmaxq Score(q, t). If
maxq Score(q, t) < αmaxc πc(t) or budget ns is exhausted, execute c∗(t).

4. Belief Update. After observing answer r, update domains asDi,j(t+1)←Di,j(t)∩fupdate(θi,j , r)
and recompute πc(t+ 1).

5. Termination & Error Recovery. Stop if (i) maxc πc(t) ≥ τexec, (ii) maxq Score(q, t) <
αmaxc πc(t), or (iii) t ≥ ns. On execution failure, prompt for a fix or generate an error-specific
qerror and re-enter step 3.

6 REWARD MODELING WITH STRUCTURED UNCERTAINTY

Our objective is to teach the agent not only what action to take but when to act with confidence versus
request clarification. We fine-tune the policy using Group Relative Policy Optimization (GRPO)
(Shao et al., 2024), which samples multiple candidate actions per prompt, computes relative rewards,
and updates the policy towards those exceeding the group mean—yielding a critic-free, memory-
efficient variant of PPO that stabilizes optimization through implicit baselining and KL regularization.
Our training data comes from the 9K examples in the When2Call (Ross et al., 2025) dataset. For
each user prompt and its tool set, the agent may take exactly one of four actions: AskQuestion,
CallTool(parameters), Decline, or DirectAnswer. We prompt a base model to emit structured
tags <reason>. . . </reason> <answer>...</answer>, and from that we compute scalar rewards.

6.1 BASELINE REWARD

The baseline reward is rbase = rfmt + rtool + rcls, where rfmt = 1.5 (correct schema), rtool equals
1.0 for correct tool+parameters, 0.75 if tool is correct but parameters are wrong, and 0.5 for correctly
identifying a tool call or for non-tool actions, and rcls equals up to 2.0 for correct action type. This
encourages correctness and well-formedness but treats all instantiations equally regardless of model
confidence or question informativeness.

6.2 CERTAINTY-WEIGHTED REWARD (OURS)

Let πc(t) be the belief over candidate tool calls c ∈ Ct. We define Cert(at) = maxc πc(t) if at
is a tool call, 1 − maxc πc(t) if at is a question, and 1 otherwise. The category reward becomes
Rcategory(at) = Cert(at) · rbase(at) which up-weights confident correct tool calls, penalizes low-
certainty calls, and rewards clarification only when uncertainty is high—thus aligning reward with
the agent’s own epistemic state.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

�
Key Insight: Our reward is self-calibrating: it needs no critic to judge question quality, yet
drives informative clarifications and confident tool calls. Unlike the baseline, which rewards
all correct calls equally, our certainty-weighted reward scales with belief: confident calls get
full payoff, low-confidence calls are penalized, and clarifications are rewarded only when
uncertainty is high.

7 EXPERIMENTS

(A) Agent Inference Experiment. 1. ClarifyBench. All baselines are implemented on a common
ReAct agent scaffold for fair comparison. We evaluate SAGE-Agent against four baselines: (i)
ReAct + ask_question(), a standard ReAct agent with an ask_question() tool serving as our
control baseline; (ii) ProCOT (Deng et al., 2023), which performs ProActive Chain-of-Thought
reasoning to anticipate ambiguities before tool use; (iii) Active Task Disambiguation (Kobalczyk
et al., 2025), which generates candidate interpretations and clarification queries based on response
entropy by parametrizing the solution space; and (iv) Domain-aware ReAct, which augments
prompting and question generation with explicit schema information provided as context. All
methods use GPT-4o and Qwen2.5-14B-Instruct with temperature 0.5. For SAGE-Agent, we pick
λ = 0.5, α = 0.1, ϵ = 10−4. We evaluate using four metrics: (1) Coverage Rate: proportion of tool
calls with correct parameters matching the ground truth; (2) Tool Match Rate (TMR): tool match rate
against ground truth; (3) Parameter Match Rate (PMR): paramater match rate against ground-truth;
and (4) Average Number of Questions (#Q): mean number of clarification questions asked per task
(lower is better). 2. BFCLv2 (When2Call) We use the open-ended evaluation split of When2Call,
built on top of BFCLv2 to perform single-turn validation of our method. We compared our method
against a ReAct baseline and Active-task-Disambiguation, since this is single-turn validation and
these baselines are representative of different disambiguation strategies. We used 2xRTXA600 for
inference. (B) Reward Modeling Experiment. We trained GRPO with Qwen2.5-Instruct (3B
and 7B) for one epoch using Unsloth (Daniel Han & team, 2023). Three independent runs were
performed, and results from the best-performing model are reported. Evaluation follows the original
paper: log-probability comparison across options, option-prompted selection, and direct prompting
without options. We trained on 4xL40S GPUs, and inferred on 1xL40S GPU. We train each setting
for 3 runs, and report the setting with the best results.

8 RESULTS

8.1 AGENT INFERENCE EXPERIMENTS

ClarifyBench - Ambiguous ClarifyBench - Explicit ClarifyBench - Infeasible
Method

Coverage↑ TMR↑ PMR↑ Avg #Q↓ Coverage↑ TMR↑ PMR↑ Avg #Q↓ Coverage↑ TMR↑ PMR↑ Avg #Q↓

Base LLM: GPT-4o

ReAct + ask_question() 42.88±25.1 70.41±27.3 62.55±23.9 2.68±2.4 61.17±22.7 87.95±25.8 71.99±28.4 2.15±2.7 58.85±24.3 85.05±26.1 75.09±21.8 2.21±2.6

ProCOT 54.27±27.4 75.62±29.1 66.82±24.6 2.07±2.2 66.98±22.8 89.57±28.7 72.80±25.4 2.14±2.5 61.48±24.2 89.32±27.5 74.41±23.5 2.43±2.8

Active Task Disambiguation 45.60±26.7 77.10±28.2 60.78±22.4 3.42±2.6 66.97±21.9 90.47±29.3 72.45±24.9 2.94±2.5 65.27±23.6 89.18±28.8 75.09±23.0 2.63±2.3

Domain-aware ReAct 55.70±24.5 79.83±25.7 68.04±23.3 2.56±2.1 68.11±22.5 91.17±26.1 74.04±25.2 2.10±2.6 61.48±24.0 90.32±25.4 76.46±26.7 2.03±2.7

SAGE-Agent (Ours) Heuristic-based 56.42±24.3 82.31±26.8 69.81±24.7 1.82±2.3 70.41±22.1 91.65±27.4 74.89±25.8 1.07±2.4 66.23±23.9 90.52±26.5 76.64±25.3 1.48±2.5

SAGE-Agent (Ours) 59.73±22.1 86.02±27.5 71.79±25.3 1.39±2.0 71.67±21.8 93.65±29.7 75.94±26.1 1.08±2.2 67.33±23.4 92.89±28.3 77.41±27.9 1.26±2.1

Base LLM: Qwen2.5-14B-Instruct

ReAct + ask_question() 40.34±33.9 68.92±32.0 63.35±31.5 1.78±1.94 51.85±33.8 89.20±22.8 73.63±28.9 1.69±1.67 42.39±32.4 70.82±31.1 63.31±34.0 1.82±1.43

ProCOT 52.45±33.5 71.78±33.7 70.08±33.2 1.89±2.03 61.76±31.5 84.08±23.8 74.60±28.4 1.69±1.68 52.08±31.4 71.92±29.3 68.72±35.0 1.78±1.51

Active Task Disambiguation 43.04±29.2 69.06±33.0 57.49±34.1 2.45±1.72 59.83±33.1 81.01±26.6 68.69±31.5 2.31±2.29 52.20±30.6 76.59±32.5 69.45±35.0 2.22±2.12

Domain-aware ReAct 51.10±31.9 75.31±30.7 67.50±31.5 2.07±1.35 60.91±34.2 86.91±24.8 71.70±28.7 1.61±1.56 55.76±31.7 81.06±27.2 72.23±32.0 1.66±1.30

SAGE-Agent (Ours) Heuristic-based 51.62±32.5 78.23±30.9 74.03±31.8 1.67±1.85 62.45±33.4 89.89±23.2 73.89±29.1 1.23±1.74 59.88±31.2 84.12±28.6 75.51±32.8 1.75±1.62

SAGE-Agent (Ours) 54.56±33.0 78.14±30.5 74.21±32.2 1.41±2.19 64.62±33.6 92.05±20.8 75.50±28.2 0.93±1.93 61.84±30.8 85.26±24.5 76.52±29.5 1.49±0.95

Table 3: Performance comparison of agent strategies on ClarifyBench across two base LLMs (GPT-4o
and Qwen2.5-14B-Instruct). Best results within each LLM group are highlighted in bold.

Performance Gains Across Task Categories. On Ambiguous tasks with GPT-4o, SAGE-Agent
achieves 59.73% Coverage Rate, substantially outperforming Domain-aware ReAct (55.70%), Pro-
COT (54.12%), and basic ReAct (52.34%). This 4.03pp improvement over the strongest baseline
extends to downstream metrics: Tool Match Rate reaches 86.02% versus 79.83% (Domain-aware
ReAct) and 76.45% (basic ReAct), while Parameter Match Rate attains 71.79% versus 68.04% and
65.21% respectively. The pattern persists across Explicit scenarios, where SAGE-Agent achieves

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

71.67% Coverage (+3.56pp over Domain-aware ReAct, +5.23pp over basic ReAct), 93.65% TMR
(+2.48pp, +4.12pp), and 75.94% PMR (+1.90pp, +3.67pp). Even on Infeasible tasks—where systems
must recognize unsatisfiable queries, SAGE-Agent excels with 67.33% Coverage and 92.89% TMR,
significantly outperforming Domain-aware ReAct (63.21%, 88.45%) and all other baselines. These
results demonstrate that structured schema-based reasoning enables more accurate task interpretation
than unstructured clarification approaches.

ReAct + ask_question() ProCOT Active Task
Disambiguation

Domain Aware ReAct SAGE-Agent
(Ours)

0

5000

10000

15000

20000

25000

To
ke

ns

(a) GPT-4o

Input Token
Output Token

ReAct + ask_question() ProCOT Active Task
Disambiguation

Domain Aware ReAct SAGE-Agent
(Ours)

0

2500

5000

7500

10000

12500

15000

17500

20000

To
ke

ns

(b) Qwen2.5-14B-Instruct

Input Token
Output Token

15

20

25

30

35

40

LL
M

 C
al

ls

LLM Calls

10

15

20

25

30

35

LL
M

 C
al

ls

LLM Calls

Figure 4: Resource consumption across
methods for GPT-4o and Qwen2.5-14B.

Dramatic Reduction in User Burden. SAGE-Agent
achieves superior performance while asking dramatically
fewer questions. On Ambiguous tasks with GPT-4o, it
averages just 1.39 questions per task; a 45.7% reduction
versus Domain-aware ReAct (2.56 questions), 48.1% re-
duction versus basic ReAct (2.68 questions), and 59.4%
reduction versus Active Task Disambiguation (3.42 ques-
tions). On Explicit scenarios where all information is
present initially, SAGE-Agent asks only 1.08 questions,
where all baselines should ideally approach 0.

Computational Efficiency Despite Structured Rea-
soning. Figure 4 reveals expected trade-offs: simpler
baselines (ReAct, ProCOT, Domain-aware ReAct) use
14-18K tokens and 14-16 calls but sacrifice performance
(Table 3). Among uncertainty-modeling methods, Ac-
tive Task Disambiguation computes entropy over a |ques-
tions| × |solutions| matrix, requiring 24K tokens and 40

calls. SAGE-Agent instead parametrizes uncertainty directly over schema spaces, avoiding solution
sampling entirely. This yields 22K tokens with 54% fewer API calls, reducing latency and cost while
maintaining superior performance.

Robustness Across Language Models. SAGE-Agent’s advantages generalize across both proprietary
and open-source LLMs. With Qwen2.5-14B-Instruct, SAGE-Agent achieves 54.56% Coverage on
Ambiguous tasks, outperforming ProCOT (52.45%) and Domain-aware ReAct (51.10%), while
reducing questions from 2.07 to 1.41. While absolute metrics are lower with smaller models, relative
improvements over baselines remain consistent, demonstrating systematic advantages independent of
model choice.

Ablation. SAGE-Agent Heuristic Based is an ablation where questions are triggered
by the presence of <UNK> tokens in tool calls, without using EVPI for question
selection. This variant shows small but consistent performance degradation, ranging
from 1-3 points across most metrics while asking 0.2-0.4 more questions on average.

#Q

Coverage Rate

TMR

PMR

(a) ClarifyBench-A

1.09 1.56 2.02 2.48

0.61

0.64

0.66

0.69

0.890.920.950.97

0.74

0.76

0.78

0.81

#Q

Coverage Rate

TMR

PMR

(b) ClarifyBench-E

1.09 1.56 2.02 2.48

0.61

0.64

0.66

0.69

0.890.920.950.97

0.74

0.76

0.78

0.81

Parameter
 = 0
 = 0.5
 = 1.0

#Q

Coverage Rate

TMR

PMR

(c) ClarifyBench-I

1.09 1.56 2.02 2.48

0.61

0.64

0.66

0.69

0.890.920.950.97

0.74

0.76

0.78

0.81

Figure 5: Effect of λ on performance metrics across
ClarifyBench splits. Increasing λ from 0 to 0.5 reduces
#Q by 18-27% while maintaining stable Coverage, TMR,
and PMR (< 3% deviation).

The heuristic approach triggers questions but
lacks effective discrimination between them,
and unlike the full system, it cannot resort to
default execution when questions have low in-
formation value. These issues compound across
the multi-turn ClarifyBench evaluation, leading
to cumulative metric reductions.

Impact of λ. The redundancy penalty weight
λ (Definition 5) controls the trade-off between
information gathering and user burden by pe-
nalizing questions targeting previously queried
aspects. Figure 5 shows the effect of λ ∈
{0, 0.5, 1.0} across 70 samples from each ClarifyBench split using GPT-4o, with independently
scaled radar axes. Increasing λ from 0 to 0.5 yields substantial question reductions—18.1% on Am-
biguous, 26.6% on Explicit, and 24.2% on Infeasible splits—while preserving task execution quality.
Coverage Rate, TMR, and PMR remain stable with deviations under 3% across all settings, indicating
that the penalized questions were indeed redundant rather than essential for task completion. The
radar plots visualize this trade-off: the #Q dimension contracts inward while other metrics maintain
consistent polygon shapes, demonstrating that question economy can be achieved without sacrificing
accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ToolCall AskQuestion Decline
Method

P R F1 P R F1 P R F1

Base LLM: GPT-4o

ReAct 0.71 0.79 0.75 0.59 0.69 0.64 0.87 0.58 0.69
Act. Task Dis. 0.61 0.24 0.34 0.45 0.74 0.56 0.74 0.73 0.73
SAGE-Agent 0.80 0.55 0.65 0.61 0.70 0.65 0.72 0.84 0.78

Base LLM: Qwen2.5-14B-Instruct

ReAct 0.62 0.85 0.72 0.50 0.65 0.57 0.88 0.39 0.54
Act. Task Dis. 0.36 0.12 0.18 0.35 0.78 0.48 0.62 0.28 0.39
SAGE-Agent 0.76 0.48 0.59 0.53 0.75 0.62 0.79 0.76 0.77

Table 4: Performance comparison of agent
strategies on BFCLv2 (When2Call).

Single-Turn Disambiguation Performance Table 4
presents performance comparison on BFCLv2 When2Call.
ReAct demonstrates high ToolCall recall (0.79) but ex-
hibits poor Decline behavior (0.58 recall), indicating a
bias toward tool invocation even for inappropriate requests.
Active Task Disambiguation achieves high AskQuestion
recall (0.74-0.78) but suffers from low precision (0.45-
0.35), reflecting excessive questioning behavior. In con-
trast, SAGE-Agent achieves the best balance with highest
ToolCall precision (0.80) while maintaining strong Decline
performance (0.78 F1). Notably, these behavioral patterns
persist across model scales from GPT-4o to Qwen2.5-14B-
Instruct, though with degraded absolute performance, suggesting that SAGE-Agent’s structured
approach provides more robust guidance for disambiguation decisions.

8.2 REWARD MODELING EXPERIMENTS

Figure 6 validates our hypothesis that uncertainty-aware training signals improve LLM clarification
behavior. The When2Call benchmark tests models’ ability to recognize when clarification is needed
versus when to proceed with available information.

Log Prob Multiple Choice Direct Prompting
(a) Qwen-2.5-3B-Instruct

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

34.5
39.5

36.538.4 40.0

55.0

35.9

44.7

65.2

Log Prob Multiple Choice Direct Prompting
 (b) Qwen-2.5-7B-Instruct

35.3
39.7

36.738.2

44.9 45.1

36.2

46.2

62.9

Base Model GRPO Uncertainty Weighted GRPO

Figure 6: Performance of Qwen-2.5 models on
When2Call across three evaluation methods: Log Prob-
ability, Multiple Choice, and Direct Prompting.

Training Signal Impact. Base mod-
els without clarification training achieve
poor performance (34.5–39.7% accuracy),
demonstrating that recognizing clarifica-
tion needs is non-trivial. Standard GRPO
provides modest improvements, while
uncertainty-weighted GRPO yields sub-
stantial gains (up to +28.7 percentage
points). This validates that structured un-
certainty measures provide more effective
training signals than binary success/failure
rewards.

Model Scale vs. Signal Quality. Compar-
ing Qwen-2.5-3B and 7B models reveals that training signal quality matters more than model scale.
The 3B model with uncertainty-weighted training (65.2% accuracy) substantially outperforms the
7B model with standard training (45.1% accuracy). This suggests that incorporating structured
uncertainty into training objectives may be more valuable than simply scaling model parameters.

Evaluation Mode Analysis. The largest improvements occur in Direct Prompting mode, where
models must make clarification decisions based solely on query analysis without multiple-choice
scaffolding. This indicates that uncertainty-weighted training helps models develop robust internal
representations of when clarification is needed, rather than merely improving selection among
provided options.

9 CONCLUSION

Ambiguous user instructions fundamentally challenge tool-augmented LLM agents, leading to
incorrect invocations and task failures. We presented SAGE-Agent, which models joint tool-argument
clarification as a POMDP with Bayesian Value of Information objectives for optimal question
selection. Extensive experiments validate our structured uncertainty approach: SAGE-Agent improves
coverage on ambiguous tasks by 7–39% while reducing questions by 1.5–2.7× on ClarifyBench, and
uncertainty-weighted GRPO training boosts When2Call accuracy from 36.5% to 65.2% (3B) and
36.7% to 62.9% (7B). These results demonstrate that structured uncertainty provides a principled
foundation for both inference and learning in tool-augmented scenarios. Our work establishes
structured uncertainty quantification as essential for reliable, efficient LLM agents in real-world
applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

10 ETHICS STATEMENT

Our research does not use any personally identifiable information (PII) and all datasets employed in
this work are used in accordance with their respective licenses (Apache 2.0). Our paper is designed
primarily for deployment in collaborative AI assistance contexts where resolving ambiguity enhances
productivity and user experience while minimizing unnecessary interaction. The system’s core
approach of reducing clarification questions through principled uncertainty estimation promotes
more equitable access to AI assistance by respecting users’ time and cognitive resources. While
SAGE-Agent significantly reduces interaction burden, we recommend appropriate transparency about
system limitations and human oversight when deploying in sensitive contexts. Furthermore, we
encourage ongoing evaluation to ensure that question selection patterns do not reflect or amplify
biases present in underlying models or training data. We acknowledge the ICLR code of ethics.

REFERENCES

Jayachandu Bandlamudi, Ritwik Chaudhuri, Neelamadhav Gantayat, Kushal Mukherjee, Prerna
Agarwal, Renuka Sindhgatta, and Sameep Mehta. A framework for testing and adapting rest apis
as llm tools. 2025. URL https://arxiv.org/abs/2504.15546.

Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan Ö. Arık. Learning to clarify: Multi-turn
conversations with action-based contrastive self-training, 2025. URL https://arxiv.org/abs/
2406.00222.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/unslothai/
unsloth.

Yang Deng, Wenqiang Lei, Wenxuan Zhang, Wai Lam, and Tat-Seng Chua. Pacific: towards
proactive conversational question answering over tabular and textual data in finance. arXiv preprint
arXiv:2210.08817, 2022.

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, and Tat-Seng Chua. Prompting
and evaluating large language models for proactive dialogues: Clarification, target-guided, and
non-collaboration, 2023. URL https://arxiv.org/abs/2305.13626.

Kung-Hsiang Huang, Akshara Prabhakar, Sidharth Dhawan, Yixin Mao, Huan Wang, Silvio Savarese,
Caiming Xiong, Philippe Laban, and Chien-Sheng Wu. Crmarena: Understanding the capac-
ity of llm agents to perform professional crm tasks in realistic environments. arXiv preprint
arXiv:2411.02305, 2024a.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024b.

Katarzyna Kobalczyk, Nicolas Astorga, Tennison Liu, and Mihaela van der Schaar. Active task
disambiguation with llms. arXiv preprint arXiv:2502.04485, 2025.

Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu Zhao, Yingzhou Lu, and Yue Zhao. Drugagent:
Automating ai-aided drug discovery programming through llm multi-agent collaboration. arXiv
preprint arXiv:2411.15692, 2024.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
benchmark for llm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. arXiv preprint arXiv:2401.13178, 2024.

Puneet Mathur, Alexa Siu, Varun Manjunatha, and Tong Sun. Docpilot: Copilot for automating pdf
edit workflows in documents. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 3: System Demonstrations), pp. 232–246, 2024.

11

https://arxiv.org/abs/2504.15546
https://arxiv.org/abs/2406.00222
https://arxiv.org/abs/2406.00222
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://arxiv.org/abs/2305.13626

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
Yankai Lin, Zhiyuan Liu, et al. Tell me more! towards implicit user intention understanding of
language model driven agents. arXiv preprint arXiv:2402.09205, 2024.

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian
experimental design. Statistical Science, 39(1):100–114, 2024.

Sudha Rao and Hal Daumé III. Learning to ask good questions: Ranking clarification questions using
neural expected value of perfect information. arXiv preprint arXiv:1805.04655, 2018.

Hayley Ross, Ameya Sunil Mahabaleshwarkar, and Yoshi Suhara. When2Call: When (not) to call
tools. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 3391–3409, Albuquerque, New Mexico, April 2025. Association for Computational
Linguistics. ISBN 979-8-89176-189-6. URL https://aclanthology.org/2025.naacl-long.
174/.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Sanidhya Vijayvargiya, Xuhui Zhou, Akhila Yerukola, Maarten Sap, and Graham Neubig. Interactive
agents to overcome ambiguity in software engineering. 2025. URL https://arxiv.org/abs/
2502.13069.

Chenyu Wang, Weixin Luo, Sixun Dong, Xiaohua Xuan, Zhengxin Li, Lin Ma, and Shenghua
Gao. Mllm-tool: A multimodal large language model for tool agent learning, 2025. URL
https://arxiv.org/abs/2401.10727.

Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl Lee, Youliang Yuan, Jen-tse Huang,
and Michael R Lyu. Learning to ask: When llms meet unclear instruction. arXiv preprint
arXiv:2409.00557, 2024.

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators,
2025. URL https://arxiv.org/abs/2502.00640.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan, Pengcheng Yang, Qi Zeng, Ming Zhou, and
Xu Sun. Asking clarification questions in knowledge-based question answering. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1618–
1629, 2019.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu,
Xiang Kong, Aonan Zhang, et al. Mmau: A holistic benchmark of agent capabilities across diverse
domains. arXiv preprint arXiv:2407.18961, 2024.

12

https://aclanthology.org/2025.naacl-long.174/
https://aclanthology.org/2025.naacl-long.174/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2401.10727
https://arxiv.org/abs/2502.00640

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yangyang Yu, Haohang Li, Zhi Chen, Yuechen Jiang, Yang Li, Denghui Zhang, Rong Liu, Jordan W
Suchow, and Khaldoun Khashanah. Finmem: A performance-enhanced llm trading agent with
layered memory and character design. In Proceedings of the AAAI Symposium Series, volume 3,
pp. 595–597, 2024.

Michael J. Q. Zhang, W. Bradley Knox, and Eunsol Choi. Modeling future conversation turns to
teach llms to ask clarifying questions, 2025. URL https://arxiv.org/abs/2410.13788.

Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through interaction
with lms. arXiv preprint arXiv:2311.09469, 2023.

Xuan Zhang, Yang Deng, Zifeng Ren, See Kiong Ng, and Tat-Seng Chua. Ask-before-plan: Proactive
language agents for real-world planning. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 10836–10863, 2024.

Appendices

A SAGE-Agent 14

A.1 Theoretical Proofs . 14

A.2 Complete Algorithm Specification . 14

A.3 Prompts . 16

A.4 Sensitivity to ϵ . 17

B Reward Modeling with Uncertainty 17

B.1 Dataset Processing . 17

B.2 Tool Domain Analysis . 18

B.3 Uncertainty-Aware System Prompts . 19

B.4 Training Configuration . 20

B.5 Reward Specification . 20

C Benchmark Details 21

C.1 Task Formalization . 21

C.1.1 Problem Definition . 21

C.1.2 Agent and User Simulator . 22

C.1.3 Multi-Turn Interaction Process . 22

C.2 Prompts . 22

C.2.1 Dataset Augmentation Prompts . 22

C.2.2 User Simulator Prompts . 24

C.3 Benchmark Domain Areas . 25

C.4 Human Annotation . 26

C.5 Tool Call Corruption Heuristics . 26

13

https://arxiv.org/abs/2410.13788

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A SAGE-AGENT

A.1 THEORETICAL PROOFS

Proposition 1 (Viability Score Properties). The viability scoring function satisfies: (1) Monotonicity:
πi(t+ 1) ≥ πi(t) when information is gained, (2) Boundedness: 0 ≤ πi(t) ≤ 1, (3) Completeness:
πi(t) = 1 iff all parameters are fully specified.

Proof. (1) Monotonicity: Information gain can only constrain parameter domains: Di,j(t+ 1) ⊆
Di,j(t). Therefore |Di,j(t + 1)| ≤ |Di,j(t)|, which implies |Di,j(t + 1)|−1 ≥ |Di,j(t)|−1. Since
πi(t) =

∏
j p(θi,j) and each factor is non-decreasing, πi(t+ 1) ≥ πi(t).

(2) Boundedness: Each parameter certainty p(θi,j) ≤ 1 by definition. Since πi(t) =
∏

j p(θi,j), we
have 0 ≤ πi(t) ≤ 1.

(3) Completeness: πi(t) = 1⇔
∏

j p(θi,j) = 1⇔ ∀j : p(θi,j) = 1⇔ all parameters specified. □

Proposition 2 (EVPI Properties). The EVPI function satisfies: (1) Non-negativity: EVPI(q,B(t)) ≥
0, (2) Submodularity: diminishing returns for question sequences, (3) Convergence: EVPI approaches
zero as uncertainty resolves.

Proof. (1) Non-negativity: By Jensen’s inequality applied to the concave maximum function:

Er

[
max
ci

πi(t|q, r)
]
≥ max

ci
Er[πi(t|q, r)] = max

ci
πi(t)

Therefore EVPI(q,B(t)) ≥ 0.

(2) Submodularity: For question sets S ⊆ S′, the marginal information gain satisfies:

EVPI(q|S)− EVPI(q|S′) = H[B|S]−H[B|S ∪ {q}]− (H[B|S′]−H[B|S′ ∪ {q}]) ≥ 0

This follows from submodularity of entropy: H[X|Y]−H[X|Y, Z] ≥ H[X|Y,W]−H[X|Y,W,Z]
when W ⊇ ∅.
(3) Convergence: As uncertainty resolves, maxi πi(t) → 1 and candidate distributions become
concentrated. For any question q, Er[maxi πi(t|q, r)]→ maxi πi(t), so EVPI(q)→ 0. □

Theorem 1 (Finite Termination). Under regularity conditions on the response model, the algorithm
terminates in finite expected time with probability 1.

Proof. The termination condition is maxq[EVPI(q)− Cost(q)] < α ·maxi πi(t).

Case 1: If maxi πi(t) increases over time (candidates improve), the right-hand side grows while
EVPI values are bounded above. Eventually the inequality is satisfied.

Case 2: If maxi πi(t) remains bounded, then either: - EVPI values decrease due to information gain
(Proposition 2.3) while costs increase linearly - Or no informative questions remain, making EVPI
≈ 0

In both cases, the net value becomes negative in finite time.

Formal bound: Let ρ = E[improvement in maxi πi per question] and γ =
E[EVPI decline per question]. - If ρ > 0: termination when αρT ≥ EVPIinitial − γT , giv-
ing T ≤ EVPIinitial

αρ+γ - If ρ ≤ 0: termination when costs exceed EVPI, giving T ≤ max EVPI
λ·min |A(q)|

Therefore E[T] <∞. □

A.2 COMPLETE ALGORITHM SPECIFICATION

Algorithm. Algorithm 1 presents the complete SAGE-Agent procedure. The algorithm maintains
beliefs π(t) over candidate tool calls and aspect history na(t) to track redundant questioning. At
each timestep, the agent generates candidates via the reasoning stageR (line 6), computes viability
scores (line 9), and checks if uncertainty exceeds threshold τ (line 12).

When uncertainty is high, the agent generates clarifying questions with their targeted aspects simul-
taneously (line 14), computes EVPI and redundancy costs (lines 17-21), and applies the stopping

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 SAGE-Agent

Require: User query u, toolkit T , max steps Tmax, redundancy penalty λ, stopping threshold α,
uncertainty threshold τ

1: Initialize beliefs π(0) = {πc(0)}c∈C , observations O0 = ∅
2: Initialize aspect history na(0) = 0 for all a ∈ A
3: for t = 0, 1, . . . , Tmax do
4: // Reason StageR
5: Ct ← R(u,Ot, T) ▷ Generate candidate tool calls
6:
7: // Structured Uncertainty Quantification
8: Compute beliefs πi(t) for each ci ∈ Ct
9: Compute uncertainty U(t) = maxci∈Ct

U(ci)
10:
11: if U(t) > τ then ▷ Uncertainty exceeds threshold
12: // Generate Questions with Targeted Aspects
13: {(q,A(q))} ← GenerateQuestions(Ct, u,Ot, T) ▷ LLM generates Qt and aspects

simultaneously
14:
15: // Compute EVPI & Cost for Each Question
16: for each q ∈ Qt do
17: EVPI(q,B(t)) = Er∼P (r|q,B(t)) [maxci∈Ct

πi(t|q, r)]−maxci∈Ct
πi(t)

18: Cost(q, t) = λ
∑

a∈A(q) na(t) ▷ Redundancy penalty
19: Score(q) = EVPI(q,B(t))− Cost(q, t)
20: end for
21:
22: // Check Stopping Criterion
23: if maxq∈Qt Score(q) < α ·maxci∈Ct πi(t) then
24: // Act: Execute Best Tool Call
25: c∗(t)← argmaxci∈Ct πi(t)
26: Execute c∗(t) and return result
27: else
28: // Act: Query User
29: q∗ ← argmaxq∈Qt

Score(q)
30: Query user with q∗ and receive response ot+1

31: π(t+ 1)← Ob(π(t), ot+1) ▷ Update beliefs via domain constraints
32: Ot+1 ← Ot ∪ {ot+1}
33: for each a ∈ A(q∗) do
34: na(t+ 1)← na(t) + 1 ▷ Update aspect history
35: end for
36: end if
37: else
38: // Act: Execute Best Tool Call (Low Uncertainty)
39: c∗(t)← argmaxci∈Ct

πi(t)
40: Execute c∗(t) and return result
41: end if
42: end for

criterion (line 24). If the maximum net information gain is insufficient, it executes the best candidate;
otherwise, it poses the highest-scoring question, updates beliefs via domain constraint propagation
(line 32), and increments aspect history (lines 34-36). When uncertainty is low, the agent executes
the best candidate immediately (lines 41-43).

Domain Constraint Propagation. The belief update functionOb (line 32) implements the constraint
extraction function that maps natural language responses to parameter domain refinements: Di,j(t+
1) = Di,j(t) ∩ C(r). This function handles:

• Explicit constraints: Direct specifications like "departure date is March 15th"

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Schema dependencies: Cross-parameter constraints where one parameter’s value restricts
available options for another parameter

• Negative constraints: Exclusions like "not business class"→ class ∈ {economy, premium}

Error Recovery Mechanism. When the highest-confidence candidate fails at runtime, the system
generates diagnostic questions using function ferror(·). This adaptive questioning strategy enables
recovery from API failures, timeouts, and invalid parameter combinations that pass initial validation.

A.3 PROMPTS

Reasoning Prompt This prompt is used in the main reasoning phase of the ReAct agent to decide
which tool to use next based on the current state of the conversation.

You are an AI assistant helping with a user request.
SYSTEM CONTEXT:
You have access to the following tool domain:
{plugin_descriptions}
Request: {request}
Previous observations:
{obs_text}
Available tools:
{tool_registry.get_tool_descriptions ()}
Think step by step about what tool to use next. Consider the plugin

context above to understand the capabilities available to you. If you
have enough information to provide a final answer , use the

final_answer tool.
Respond in JSON format:
{
"reasoning ": "Your step -by-step thinking",
"tool_call ": {
"tool_name ": "name_of_tool",
"arguments ": {
"arg1": "value1",
"arg2": "value2"
}
}
}

Error Recovery Prompt Used when a tool execution fails to determine if the error can be resolved
automatically.

You are helping fix a failed tool call.
Original Request: {request}
Tool Information:
{tool_info or f"Tool: {tool_name }"}
Error Details:
{error_result.message}
Based on the error and tool information , can you suggest how to fix this?
Respond in JSON format:
{
"can_fix ": true/false ,
"reasoning ": "explanation of what went wrong and how to fix it",
"suggested_action ": "retry_with_changes" or "different_tool" or "

need_clarification",
"observation ": "observation to add to context for next reasoning step"
}
If you cannot determine a fix from the available information , set can_fix

to false.

Question Generation Prompt Used to generate clarification questions when there is uncertainty
about tool arguments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You are an AI assistant that helps users by understanding their queries
and executing tool calls.

{conversation_history}Original user query:
"{ user_query }"
Based on the query , I've determined that the following tool calls are

needed , but some arguments are uncertain:
Tool Calls:
{tool_calls}
Detailed Tool Documentation:
{tool_documentation}
Uncertain Arguments:
{uncertain_args}
Your task is to generate clarification questions that would help resolve

the uncertainty about specific arguments.
Instructions:

Generate questions that are clear , specific , and directly address the
uncertain arguments

Each question should target one or more specific arguments
Questions should be conversational and easy for a user to understand
For each question , specify which tool and argument(s) it aims to clarify.
Generate 5 diverse questions.
Keep in mind the the arguments you wish to clarify , their domains etc.

Return your response as a JSON object with the following structure:
{
"questions ": [
{
"question ": "A clear question to ask the user",
"target_args ": [[" tool_name", "arg_name"], [" tool_name", "other_arg_name

"]]
}
// ... 5 total questions
]
}
Ensure that each question targets at least one uncertain argument.

A.4 SENSITIVITY TO ϵ

The parameter ϵ is used to quantify uncertainty for large domains, where the tool argument domain
|D| is continuous or infinite. As long as the order of ϵ ≪ 1/|Dfinite|, the decisions are robust to
the exact value of ϵ, since scoring would switch unambiguously in favor of appropriate domains.
However, very small values of ϵ may cause numerical instability, since it is exponentiated during
computation.

We empirically validated the sensitivity to ϵ by retroactively checking for changes
in question selection in our experiments from Section 8 on ClarifyBench (Am-
biguous subset), using GPT-4o and Qwen2.5-14B-Instruct. We tested ϵ values:
{10−6, 10−5, 10−4, 10−3, 10−2, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. As shown in
Figure 7, when ϵ ≥ 0.1, the decisions diverge significantly, since domains are not effectively
expressed as “infinite” when ϵ values are comparable to finite domain probabilities. However, for
ϵ ≤ 10−2, over 96–97% of decisions remain unchanged across all tested values, demonstrating
robustness in the practical range.

B REWARD MODELING WITH UNCERTAINTY

B.1 DATASET PROCESSING

Source Dataset: Our enhanced dataset was constructed from the nvidia/When2Call dataset, from
the "train_pref" data. This dataset contains preference-ranked examples for tool-calling tasks with
human-annotated preferred responses for training reinforcement learning models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

10 6 10 5 10 4 10 3 10 2 10 1 100

Epsilon (log scale)

88

90

92

94

96

98

100

102

%
 D

ec
is

io
ns

 M
at

ch
in

g
O

ri
gi

na
l

Default (=0.001)

(a) Qwen2.5-14B-Instruct

10 6 10 5 10 4 10 3 10 2 10 1 100

Epsilon (log scale)

88

90

92

94

96

98

100

102

%
 D

ec
is

io
ns

 M
at

ch
in

g
O

ri
gi

na
l

Default (=0.001)

(b) GPT-4o

Figure 7: Sensitivity analysis of ϵ on question selection decisions for the Ambiguous subset of
ClarifyBench. The plots show the percentage of decisions that remain unchanged as ϵ varies across
tested values, demonstrating robustness for ϵ ≤ 10−2.

Original Data Structure: Each example in the source dataset contained:

• Messages:Conversation history with user and assistant exchanges in chat format
• Tools: Available tool definitions with JSON schema parameters and descriptions
• Chosen responses: Human-preferred responses for the given context
• Preference annotations: Quality ratings for different response options

Response Classification: Each example was processed to classify responses into four categories:
<TOOLCALL>, <ASK>, <REFUSE>, and <DIRECTLY>. Classification used keyword-based heuristics:

• <TOOLCALL>: Presence of “<TOOLCALL>” tags or “toolcall” keywords
• <ASK>: Presence of question marks (“?”) in content
• <REFUSE>: Presence of refusal keywords (“sorry”, “unable”, “impossible”, etc.)
• <DIRECTLY>: Default classification for other responses. (None existed in the preferred set)

Data Transformations: Several preprocessing steps were applied to optimize the dataset for
uncertainty-aware training:

1. Domain Schema Injection: Each example was augmented with parsed domain informa-
tion for all available tools, stored as JSON strings in a tool_domain_schemas field for
HuggingFace compatibility

2. Message Format Preservation: The chat format was maintained with modified system
messages while preserving user/assistant alternation

B.2 TOOL DOMAIN ANALYSIS

To enable uncertainty quantification, we performed comprehensive domain analysis of all available
tools using Qwen-2.5-7B-Instruct as the primary analysis model. Each tool’s arguments were analyzed
to determine:

• Domain type: finite, estimated_finite, numeric_range, string, boolean, list, or custom
• Domain size: exact count for finite domains, estimates for larger domains, or infinite for

unbounded domains
• Domain values: complete enumeration for small domains, representative examples for

larger domains, or range bounds for numeric domains
• Data dependency: whether argument values depend on external data sources or user context

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The analysis prompt instructed the model to classify arguments according to strict validation rules:

• Finite domains (≤20 values): complete value enumeration with domain_size =
len(domain_values)

• Estimated finite domains: 5-10 representative examples with domain_size >> len(examples)
• Numeric ranges: [min, max] bounds with appropriate size calculation
• Boolean domains: domain_size = 2 with null values
• String/custom domains: infinite size with null values

B.3 UNCERTAINTY-AWARE SYSTEM PROMPTS

Each training example was enhanced with a comprehensive system prompt that provided explicit
instructions for uncertainty handling. The complete system prompt template was:

\texttt{You are a helpful agent. You will have access to tools to answer
the query .\\

\\
UNCERTAINTY GUIDELINES :\\
- Use <UNK > for arguments you cannot determine from context , or cannot

reasonably estimate. Don 't overuse , you can assume defaults where
needed .\\

- When asking questions , use the structured format with candidate tool
calls\\

\\
You can perform following action types :\\
a) <TOOLCALL > Invoke a tool call as follows :\\
<TOOLCALL >\\
[\{" name": "tool_name", "arguments ": \{" argument_name": "value", "

uncertain_argument ": "<UNK >", ...\}\}]\\
</TOOLCALL >\\
\\
b) <ASK > Ask a question from the user if you need more information to

execute a tool call </ASK >\\
\\
STRUCTURED QUESTION FORMAT (when asking for clarification):\\
<ASK >\\
<TOOLCALL >\\
// Think about what tool you would call given the request , and the

current information. Because some information is missing , you want to
ask a question .\\

[
\{\{ "name": "tool_name", "arguments ": \{" known_arg": "value", "

uncertain_arg": "<UNK >"\}\}]\\
</TOOLCALL >\\
<question >\\
What is the specific value for uncertain_arg ?\\
</question >\\
</ASK >\\
\\
c) <REFUSE > Refuse , if your knowledge or available tools can 't be used

here </REFUSE >\\
d) <DIRECTLY > directly answer </DIRECTLY >\\
\\
Your response should be formatted like :\\
<reasoning >\\
Step -by-step thinking about certainty/uncertainty of each argument \\
</reasoning >\\
<answer >\\
<ACTION_TYPE >\\
.. content .. (Question/ToolCall/Refuse/DirectAnswer)\\
</ACTION_TYPE >\\
</answer >}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.4 TRAINING CONFIGURATION

Training began from unsloth/Qwen2.5-3B-Instruct and unsloth/Qwen2.5-7B-Instruct check-
points. LoRA (Low-Rank Adaptation) fine-tuning was applied with rank 64 adaptations targeting
attention and MLP projection layers.

Model training was performed using Group Relative Policy Optimization, using Unsloth (Daniel Han
& team, 2023) with parameter details in Table 5.

Hyperparameter Value
Learning Rate 5e-6
Per Device Batch Size 1 (3B), 8 (logs)
Gradient Accumulation Steps 1
Max Sequence Length 1024
Training Epochs 1
Warmup Ratio 0.1
Weight Decay 0.1
Optimizer AdamW 8-bit
Adam Beta1 0.9
Adam Beta2 0.99
LoRA Rank 64
LoRA Alpha 64

Table 5: Training hyperparameters for uncertainty-aware tool calling model.

B.5 REWARD SPECIFICATION

Our baseline GRPO reward function consists of multiple components that guide the model toward
generating well-formed, accurate responses. The total reward for a generated completion is computed
as the sum of three independent reward components:

rtotal = rfmt + rtool + rcls (7)

where rfmt represents format compliance rewards, rtool represents tool call accuracy, and rcls
represents action classification rewards.

Format Compliance Rewards (rfmt). These components encourage proper XML formatting and
total up to 1.5 points:

• XML Count Reward: Awards up to 0.5 points for proper newline structure, penalizing
excessive trailing content.

• Soft Format Reward: Awards 0.5 points if the response contains <reasoning> and
<answer> tags in the correct order (with flexible whitespace).

• Strict Format Reward: Awards 0.5 points only if the response exactly matches the format
<reasoning>\n...\n</reasoning>\n<answer>\n...\n</answer>\n.

Tool Call Accuracy Reward (rtool). Compares the predicted tool call against a ground truth
reference:

rtool =


1.0 if tool name and arguments match exactly
0.75 if tool name matches but arguments differ
0.5 if both have no tool call OR wrong tool name
0.0 if one has a tool call and the other does not

(8)

Action Classification Reward (rcls). This reward is the primary component that differentiates
between GRPO and Certainty weighted GRPO. This reward is computed based on the agent’s chosen
action at at timestep t, which can be: TOOLCALL (execute a tool), ASK (request clarification), REFUSE
(decline the request), or DIRECTLY (answer without tools).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The base classification reward is computed as:

rcls(at) =


2.0 if response starts with correct tag and contains ≥ 30 chars
1.5 if response starts with correct tag but insufficient content
0.0 otherwise

(9)

Certainty Weighting For the baseline GRPO, the final classification reward is simply:

rGRPO
cls (at) = rcls(at) (10)

For Certainty weighted GRPO, we introduce epistemic-state-aware weighting. Let πc(t) be the
model’s belief over candidate tool calls c ∈ Ct. We define the certainty function:

Cert(at) =


maxc πc(t) if at is a tool call
1−maxc πc(t) if at is a clarification question
1 otherwise

(11)

The final classification reward is then:

rCertainty
cls (at) = Cert(at) · rcls(at) (12)

This formulation up-weights confident correct tool calls, penalizes low-certainty calls, and rewards
clarification only when uncertainty is high—thus aligning the reward with the agent’s own epistemic
state.

In our implementation, we approximate πc(t) through explicit certainty computation over tool call
arguments. For a tool call c with arguments, the certainty is:

πc(t) =
∏

arg∈c.arguments

πarg (13)

where for each argument:

πarg =


1.0 if arg has a specified value

1
|Darg| if arg is empty and domain size is finite
ϵ ≈ 0.0001 if arg is empty and domain size is infinite

(14)

Here,Darg represents the domain size for that argument as specified in the tool schema. This approach
ensures that tool calls with all arguments specified receive maximum certainty (πc(t) = 1.0), while
tool calls with missing arguments receive certainty inversely proportional to the domain sizes of
unspecified parameters. For ASK actions, we compute certainty over the candidate tool call mentioned
in the question, and use 1− πc(t) to reward asking when uncertainty is high.

C BENCHMARK DETAILS

C.1 TASK FORMALIZATION

We formally define the clarification task as a multi-turn interaction problem between a tool-equipped
agent and a user simulator within a structured environment.

C.1.1 PROBLEM DEFINITION

Let E denote the environment containing a set of tools F = {f1, f2, . . . , fm}, where each tool fj
has a signature defining its parameters and return type. An agent A is equipped with access to F and
must satisfy user requests through appropriate tool invocations.

A simulation scenario S is defined as a tuple:

S = ⟨R, I,G,K⟩ (15)

where:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• R = {r0, r1, . . . , rn} is a sequence of user requests

• I represents the true user intention for each request

• G = {g0, g1, . . . , gn} is the ground truth tool call sequence

• K is the knowledge being accumulated and used (conversational context, tool descriptions)

Each request ri ∈ R belongs to one of three categories:

• Normal: Requests with sufficient information for direct execution

• Ambiguous: Requests requiring clarification to resolve uncertainty

• Infeasible: Requests that cannot be fulfilled with available tools

C.1.2 AGENT AND USER SIMULATOR

The agent A takes as input the current query q and conversation history C, and produces one of three
response types:

A(q, C)→


Φsuccess tool call(s) executed
Φclarification clarifying question posed
Φfailure task declined or failed

(16)

The user simulator U maintains access to the true intention I and background knowledge K. Given a
clarifying question from the agent, the simulator responds:

U(question,S)→
{
clarification if answerable from K, I (17)

C.1.3 MULTI-TURN INTERACTION PROCESS

The interaction proceeds as a sequence of turns Ti for each request ri, as formalized in Algorithm 2.
At each turn t, the agent either executes tool calls, poses a clarifying question, or declines the request.
The query state is enriched with each clarification response:

q
(t+1)
current = Enrich(ri, clarification(t)) (18)

To prevent infinite loops, we impose a maximum clarification threshold τmax per request. The
simulation maintains a conversation history C that accumulates all interaction turns across multiple
requests, enabling the agent to leverage context from previous requests when handling subsequent
ones.

C.2 PROMPTS

C.2.1 DATASET AUGMENTATION PROMPTS

The following prompt was used to augment user queries i.e. convert tool calls to corresponding user
requests.

Original query: "{ original_query }"

Tool call that should result from this query:
Tool: {tool_call [" tool_name "]}
Parameters: {tool_call [" parameters "]}

Update the query to naturally lead to these exact parameters.
The updated query should:
1. Be realistic and maintain the user 's intent
2. Naturally incorporate the corrupted parameter value
3. Sound like something a real user would ask

Only return the updated query text , nothing else.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 2 ClarifyBench Interaction Protocol

1: procedure EXECUTESIMULATION(S) ▷ S represents the simulation scenario
2: Initialize agent A, environment E , user model U
3: R ← {r0, r1, . . . , rn} ▷ Request sequence
4: C ← ∅ ▷ Conversation history
5: for each request ri ∈ R do
6: Ti ← ∅ ▷ Turn sequence for request i
7: qcurrent ← ri ▷ Current query state
8: clarification_count← 0
9: while clarification_count < τmax and not terminated do

10: response← A(qcurrent, C)
11: if response ∈ Φsuccess then ▷ Successful completion
12: Record completion in Ti
13: break
14: else if response ∈ Φclarification then ▷ Needs clarification
15: clarification← U(response.question,S)
16: if clarification = ⊥ then ▷ User cannot provide clarification
17: Record incomplete in Ti
18: break
19: end if
20: qcurrent ← Enrich(ri, clarification)
21: clarification_count← clarification_count+ 1
22: else
23: Record failure in Ti
24: break
25: end if
26: end while
27: C ← C ∪ Ti
28: end for
29: return C
30: end procedure

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.2.2 USER SIMULATOR PROMPTS

The simulator takes a language model provider, ground truth data, and user intent as inputs. It
maintains the conversation state and ensures responses are consistent with the user’s information. The
core of the simulation lies in two prompt templates that instruct a language model to act as a user:

You are simulating a user who is interacting with an AI assistant.
Original query: "{self.original_query }"
User 's intent for the CURRENT request: {self.user_intent}
Information needed for the CURRENT request (do not reveal future

intentions):
{current_turn_ground_truth}
Additional context:
{self.context}
The AI assistant has asked the following specific question:
"{ question }"
Generate a realistic user response to this SPECIFIC question. The

response should:

Be natural and conversational
ONLY provide information that directly answers the specific question

asked
NOT mention any future requests or intentions the user might have
ONLY focus on the current task , not on future tasks
Be concise and to the point

IMPORTANT: Never reveal future intentions. Respond ONLY to the specific
question asked.

NEVER BREAK CHARACTER. DO NOT THINK OUT LOUD. Respond directly as the
user would:

This template ensures the simulator provides natural, conversational responses that only address the
specific question without revealing future intentions. For generating follow-up requests, the simulator
uses this template:

You are simulating a user who is interacting with an AI assistant.
Original query: "{self.original_query }"
User 's intent: {self.user_intent}
Previous conversation:
{formatted_history}
Based on the conversation so far and the user 's intent , decide if the

user would have a follow -up request.
Consider:

Has everything the user wanted been accomplished?
Is there a logical next step the user might want to take?
Has the agent clearly indicated that they 've completed all necessary

tasks?

If you believe the user would have a follow -up request , provide it in a
natural , conversational way.

If you believe the conversation is complete , respond with "
CONVERSATION_COMPLETE ".

NEVER BREAK CHARACTER , DO NOT THINK!
Decision:

This template helps the simulator determine whether to generate a follow-up request based on the
conversation context and predefined potential follow-ups. The User Simulator isolates ground truth
information for each conversation turn, ensuring only relevant information is revealed at appropriate
times. It tracks the original query, user intent, ground truth for tool calls, completed tool calls,
potential follow-up queries, and the current conversation turn. By providing consistent, realistic user
responses, the simulator allows for reproducible evaluation of clarification strategies across multiple
scenarios.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.3 BENCHMARK DOMAIN AREAS

This appendix describes the key characteristics of each API domain used in our experiments, detailing
their initialization parameters, state management, and tool specifications.

Gorilla File System Plugin (GFS). The Gorilla File System API simulates a UNIX-like file system
with a hierarchical directory structure. It maintains state through:

• Directory structure with nested files and subdirectories

• Current working directory pointer

• Each file contains content as strings

The plugin provides 18 tools implementing common file system operations such as navigation, file
creation, modification, and content manipulation. Each tool supports parameters relevant to file
system operations, such as file names, directory paths, and content strings. Table 10 provides detailed
information about these tools and their parameter domains.

The GFS plugin’s domains depend heavily on the current state of the file system. Domain updates
revolve primarily around available files and directories in the current working directory, as outlined
in Table 11.

Document Processing. The Document API simulates operations for PDF document manipulation.
Its state consists of:

• Number of pages in the current document

• PDF filename metadata

• Operation-specific context for page-based operations

The plugin provides 18 document manipulation tools including conversion, annotation, redaction,
and page manipulation functions. Parameters include page numbers, text content, formatting options,
and file paths. Table 7 details the tools and their parameter domains.

Domain updates in the Document Plugin focus on page numbers and ranges, adapting dynamically to
changes in document length when pages are added or deleted, as shown in Table 11.

Vehicle Control. The Vehicle Control API simulates an automotive control system with:

• Engine state (running or stopped)

• Door lock status for each door

• Fuel level (ranging from 0 to 50 gallons)

• Battery voltage

• Climate control settings

• Brake systems (pedal position and parking brake)

• Lighting systems

• Navigation state

This plugin implements 24 vehicle control tools that manipulate different aspects of the vehicle,
including engine operations, door management, climate control, lighting, braking systems, and
navigation. Table 9 details the specific tools and their parameter domains.

Vehicle Control domain updates primarily concern contextual constraints such as brake pedal position
for engine start, door states, and fuel level requirements, as referenced in Table 11.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Travel. The Travel API simulates a travel booking and management system with:

• Credit card registry and balances

• Flight booking records

• User information (first name, last name)

• Budget limits

• Available routes with pricing data

The plugin provides 15 tools for travel-related operations, including flight bookings, credit card
management, budget settings, and travel information queries. Table ?? details these tools and their
parameter domains.

Domain updates in the Travel Plugin focus on available credit cards, booking IDs, and airport codes
for valid routes, as detailed in Table 11.

Trading Bot. The Trading Bot simulates a stock trading platform with:

• Account information and balance

• Order records (pending, completed, cancelled)

• Stock data with prices and metrics

• Watchlist of stocks

• Transaction history

• Market status (open/closed)

This plugin provides 19 trading tools for account management, order placement, stock information
retrieval, and market analysis. Table 8 lists the specific tools and their parameter domains.

Trading Plugin domain updates primarily involve available stocks, watchlist items, and order IDs,
adapting to user actions like placing orders or modifying watchlists, as referenced in Table 11.

All plugins follow a consistent pattern for state initialization through configuration objects, domain
updates based on state changes, and parameter validation. The dynamic nature of these domains
presents particular challenges for language model interactions, as valid parameter values continuously
evolve during conversations based on system state changes.

C.4 HUMAN ANNOTATION

We employed two graduate student annotators, aged 22-25. The annotators were proficient in English,
and have proficiency in Python (relevant to test tool calls). The annotators were fairly compensated at
the standard Graduate Assistant hourly rate, following their respective graduate school policies. Fig 8
shows a summary of the annotator guidelines. Two annotators assign a 5-point Likert score to every
candidate query, and the final selected query for a sample is the one that receives the highest score.
Inter-annotator agreement for the highest-scoring selections is given by Cohen’s κ = 0.76.

C.5 TOOL CALL CORRUPTION HEURISTICS

We handcrafted rues to corrupt validated tool calls in the ground truth data, to construct ClarifyBench-
Infeasible.

GorillaFileSystem For the file system API, we implemented four primary corruption strategies:

• Invalid File Name Corruption targeting functions like mkdir, touch, and cat by inserting
forbidden characters (e.g., |, /, \, ?);

• Path Traversal Corruption for cd, mv, cp, and find operations by inserting relative paths
(../) or absolute paths (/root/);

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Tool Name Argument Description Domain Type Domain Values Data Dep. Required

get_budget_fiscal_year
lastModifiedAfter Date filter for fiscal years string Any date string N N
includeRemoved Include removed fiscal years string Any string N N

register_credit_card

card_number Credit card number string Any card number N Y
expiration_date Card expiration (MM/YYYY) string MM/YYYY format N Y
cardholder_name Name on card string Any name string N Y
card_verification_number CVV code numeric_range [100, 999] N Y

get_flight_cost

travel_from Departure airport code string* 3-letter codes Y Y
travel_to Arrival airport code string* 3-letter codes Y Y
travel_date Travel date string YYYY-MM-DD N Y
travel_class Seat class finite [economy, business, first] N Y

get_credit_card_balance card_id Credit card identifier string* Card ID list Y Y

book_flight

card_id Payment card ID string* Card ID list Y Y
travel_date Travel date string YYYY-MM-DD N Y
travel_from Departure airport string* Airport codes Y Y
travel_to Arrival airport string* Airport codes Y Y
travel_class Seat class finite [economy, business, first] N Y
travel_cost Flight cost numeric_range [0, 10000] N Y

retrieve_invoice
booking_id Booking identifier string* Booking ID list Y N
insurance_id Insurance identifier string* Insurance ID list Y N

list_all_airports No arguments

cancel_booking booking_id Booking to cancel string* Booking ID list Y Y

compute_exchange_rate

base_currency Source currency finite [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] N Y
target_currency Target currency finite [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] N Y
value Amount to convert numeric_range [0, 1000000] N Y

verify_traveler_information

first_name Traveler’s first name string Any name N Y
last_name Traveler’s last name string Any name N Y
date_of_birth Birth date string YYYY-MM-DD N Y
passport_number Passport number string Any passport ID N Y

set_budget_limit budget_limit Budget limit in USD numeric_range [0, 10000] N Y

get_nearest_airport_by_city location City name finite [Rivermist, Stonebrook, ...] N Y

purchase_insurance

insurance_type Type of insurance finite [basic, premium, deluxe] N Y
booking_id Booking identifier string* Booking ID list Y Y
insurance_cost Insurance cost numeric_range [0, 1000] N Y
card_id Payment card ID string* Card ID list Y Y

contact_customer_support
booking_id Booking reference string* Booking ID list Y Y
message Support message string Any message text N Y

get_all_credit_cards No arguments

Table 6: Travel Plugin API: Complete Tool and Argument Specification with Domain Dependencies
(without Importance column)

• Non-existent Files Corruption for file operation functions by generating random names or
modifying existing names;

• Duplicate Creation Corruption for mkdir and touch operations by using existing file/direc-
tory names.

DocumentPlugin For the document manipulation API, we implemented three corruption strategies:

• Invalid Page Range Corruption for functions like add_comment and delete_page by setting
zero/negative values or exceeding total pages;

• Invalid Formats Corruption for convert operations by using unsupported formats or partial
strings;

• Out of Range Values Corruption for parameters like font_size and transparency by
exceeding min/max bounds or using negative values.

VehicleControlAPI For the vehicle control API, we focused on two corruption categories:

• Invalid Ranges Corruption for functions like fillFuelTank and adjustClimateControl
by exceeding capacity or using negative values;

• Invalid Enums Corruption for operations like startEngine and setHeadlights by supply-
ing wrong enum values or case mismatches.

TravelAPI For the travel booking API, we implemented three corruption strategies:

• Financial Constraints Corruption for functions like book_flight by exceeding available
balance or using negative values;

• Invalid Routes Corruption for route parameters by using non-existent airport codes or
identical from/to locations;

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Tool Name Argument Description Domain Type Domain Values Data Dep. Required

duplicate output_filename Name of duplicate file string Any filename N Y

rename output_filename New filename string Any filename N Y

search object_name Search term/object string Any search term N Y

count_pages No arguments

compress_file output_filename Compressed output name string Any filename N N

convert

format Target format finite [pptx, doc, png, jpeg, tiff] N Y
output_filename Output filename string Any filename N Y
zip Zip output files boolean [true, false] N N

add_comment

page_num Page number numeric_range* [1, num_pages] Y Y
coordinates Comment position [x,y] list [x, y] coordinates N Y
font_size Font size (points) numeric_range [8, 72] N Y

redact_page_range
start Start page (inclusive) numeric_range* [1, num_pages] Y Y
end End page (inclusive) numeric_range* [1, num_pages] Y Y

redact_text

start Start page numeric_range* [1, num_pages] Y Y
end End page numeric_range* [1, num_pages] Y Y
object_name Text to redact (list) list List of text strings N Y
overwrite Overwrite original boolean [true, false] N Y
output_pathname Output filename string Any filename N N

highlight_text

start Start page numeric_range* [1, num_pages] Y Y
end End page numeric_range* [1, num_pages] Y Y
object_name Text to highlight (list) list List of text strings N Y
overwrite Overwrite original boolean [true, false] N Y
output_pathname Output filename string Any filename N N

underline_text

start Start page numeric_range* [1, num_pages] Y Y
end End page numeric_range* [1, num_pages] Y Y
object_name Text to underline (list) list List of text strings N Y
overwrite Overwrite original boolean [true, false] N Y
output_pathname Output filename string Any filename N N

extract_pages

start Start page numeric_range* [1, num_pages] Y Y
end End page numeric_range* [1, num_pages] Y Y
overwrite Overwrite original boolean [true, false] N Y
output_pathname Output filename string Any filename N N

delete_page

page_num Page to delete numeric_range* [1, num_pages] Y Y
overwrite Overwrite original boolean [true, false] N Y
output_pathname Output filename string Any filename N N

delete_page_range

start Start page numeric_range* [1, num_pages] Y Y
end End page numeric_range* [1, num_pages] Y Y
overwrite Overwrite original boolean [true, false] N Y
output_pathname Output filename string Any filename N N

add_signature

page_num Page for signature numeric_range* [1, num_pages] Y Y
position Signature position finite [top-left, top-middle, ...] N Y
overwrite Overwrite original boolean [true, false] N Y
output_pathname Output filename string Any filename N N

add_page_with_text

text_content Page text content string Any text content N Y
font_size Text font size numeric_range [8, 72] N Y
page_num Insert position numeric_range* [1, num_pages+1] Y Y

add_watermark
watermark_text Watermark text string Any text N Y
transparency Transparency level numeric_range [0.0, 1.0] N Y

add_password password PDF password string Any password string N Y

Table 7: Document Plugin API: Complete Tool and Argument Specification with Domain Dependen-
cies

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Tool Name Argument Description Domain Type Domain Values Data Dep. Required

get_current_time No arguments

update_market_status current_time_str Time in HH:MM AM/PM string HH:MM AM/PM format N Y

get_symbol_by_name name Company name string Any company name N Y

get_stock_info symbol Stock symbol string* Available stock symbols Y Y

get_order_details order_id Order identifier numeric_range* Existing order IDs Y Y

cancel_order order_id Order to cancel numeric_range* Existing order IDs Y Y

place_order

order_type Buy or Sell finite [Buy, Sell] N Y
symbol Stock symbol string* Available stocks Y Y
price Price per share numeric_range [0.01, 10000.0] N Y
amount Number of shares numeric_range [1, 10000] N Y

make_transaction
xact_type Transaction type finite [deposit, withdrawal] N Y
amount Transaction amount numeric_range [0.01, 1000000.0] N Y

get_account_info No arguments

fund_account amount Funding amount numeric_range [0.01, 1000000.0] N Y

remove_stock_from_watchlist symbol Stock to remove string* Watchlist stocks Y Y

get_watchlist No arguments

get_order_history No arguments

get_transaction_history
start_date Start date filter string YYYY-MM-DD format N N
end_date End date filter string YYYY-MM-DD format N N

update_stock_price
symbol Stock symbol string* Available stocks Y Y
new_price New stock price numeric_range [0.01, 10000.0] N Y

get_available_stocks sector Market sector finite [Technology, Automobile, Healthcare, Finance, Energy] N Y

filter_stocks_by_price

stocks Stock list to filter list List of stock symbols N Y
min_price Minimum price numeric_range [0.01, 10000.0] N Y
max_price Maximum price numeric_range [0.01, 10000.0] N Y

add_to_watchlist stock Stock to add string* Available stocks Y Y

notify_price_change
stocks Stocks to monitor list List of stock symbols N Y
threshold Change threshold (%) numeric_range [0.01, 100.0] N Y

Table 8: Trading Plugin API: Complete Tool and Argument Specification with Domain Dependencies

Tool Name Argument Description Domain Type Domain Values Data Dep. Required

startEngine ignitionMode Engine ignition mode finite [START, STOP] N Y

fillFuelTank fuelAmount Fuel to add (gallons) numeric_range* [0, 50-current_fuel] Y Y

lockDoors
unlock Lock or unlock boolean [true, false] N Y
door Doors to operate list* [driver, passenger, rear_left, rear_right] Y Y

adjustClimateControl

temperature Target temperature numeric_range [-10, 50] N Y
unit Temperature unit finite [celsius, fahrenheit] N N
fanSpeed Fan speed (0-100) numeric_range [0, 100] N N
mode Climate mode finite [auto, cool, heat, defrost] N N

get_outside_temperature_from_google No arguments

get_outside_temperature_from_weather_com No arguments

setHeadlights mode Headlight mode finite [on, off, auto] N Y

displayCarStatus option Status display option finite [fuel, battery, doors, climate, headlights, parkingBrake, brakePedal, engine] N Y

activateParkingBrake mode Brake mode finite [engage, release] N Y

pressBrakePedal pedalPosition Pedal position (0-1) numeric_range [0, 1] N Y

releaseBrakePedal No arguments

setCruiseControl

speed Cruise speed (mph) finite* [0, 5, 10, ..., 120] Y Y
activate Activate cruise boolean* [true, false] Y Y
distanceToNextVehicle Following distance (m) numeric_range [0, 1000] N Y

get_current_speed No arguments

display_log messages Log messages list List of strings N Y

estimate_drive_feasibility_by_mileage distance Distance in miles numeric_range [0, 10000] N Y

liter_to_gallon liter Liters to convert numeric_range [0, 1000] N Y

gallon_to_liter gallon Gallons to convert numeric_range [0, 1000] N Y

estimate_distance
cityA First city zipcode finite [83214, 74532, 56108, ...] N Y
cityB Second city zipcode finite [83214, 74532, 56108, ...] N Y

get_zipcode_based_on_city city City name finite [Rivermist, Stonebrook, ...] N Y

set_navigation destination Destination address string Street, city, state format N Y

check_tire_pressure No arguments

find_nearest_tire_shop No arguments

Table 9: Vehicle Control Plugin API: Complete Tool and Argument Specification with Domain
Dependencies

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Tool Name Argument Description Domain Type Domain Values Data Dep. Required

pwd No arguments

ls a Show hidden files boolean [true, false] N N

cd folder Directory to change to string* Available directories + [.., /] Y Y

mkdir dir_name New directory name string Any valid directory name N Y

touch file_name New file name string Any valid filename N Y

echo
content Text content string Any text string N Y
file_name Output file (optional) string Any filename N N

cat file_name File to display string* Available files Y Y

find
path Search starting point string Any path N N
name Search pattern string Any search pattern N N

wc
file_name File to count string* Available files Y Y
mode Count mode finite [l, w, c] N N

sort file_name File to sort string* Available files Y Y

grep
file_name File to search string* Available files Y Y
pattern Search pattern string Any text pattern N Y

du human_readable Human readable format boolean [true, false] N N

tail
file_name File to display string* Available files Y Y
lines Number of lines numeric_range [1, 100] N N

diff
file_name1 First file string* Available files Y Y
file_name2 Second file string* Available files Y Y

mv
source Source file/directory string* Available items Y Y
destination Destination name string* Available items + new names Y Y

rm file_name File/directory to remove string* Available items Y Y

rmdir dir_name Directory to remove string* Available directories Y Y

cp
source Source file/directory string* Available items Y Y
destination Destination name string* Available items + new names Y Y

Table 10: File System Plugin API: Complete Tool and Argument Specification with Domain Depen-
dencies

Plugin Update Trigger Dynamic Domain Updates Affected Operations

Travel
Credit card registration Card IDs → available payment methods book_flight,

get_credit_card_balance,
purchase_insurance

Flight booking Booking IDs → cancellable/retrievable
bookings

cancel_booking, re-
trieve_invoice, con-
tact_customer_support

Budget setting Budget limits → financial constraints All cost-related operations
Route updates Airport codes → valid travel routes get_flight_cost, book_flight

Document
Page operations Page count → valid page numbers All page-specific operations
Document loading Total pages → range constraints add_comment, delete_page,

etc.
Cache invalidation State changes → domain refresh Page-changing operations

Trading
Order placement Order IDs → manageable orders get_order_details, can-

cel_order
Stock updates Available stocks → tradeable symbols place_order, get_stock_info
Watchlist changes Watchlist → removable stocks remove_stock_from_watchlist

Vehicle
Fuel level changes Current fuel → addable amount fillFuelTank
Door state changes Door status → operable doors lockDoors
Engine state Running/stopped → cruise control availabil-

ity
setCruiseControl

File System
Directory navigation Current contents → available items cd, cat, mv, cp, rm
File operations File list → operable files File-specific operations
Directory changes Directory list → navigable paths cd, rmdir
State synchronization FS changes → domain cache invalidation All state-changing opera-

tions

Table 11: Dynamic Domain Update Rules and Triggers Across Plugin System

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Human Annotation Guidelines
Objective:​
 Annotators must evaluate five LLM-generated queries per sample. Each query is scored on three
dimensions: (A) Naturalness of language, (B) Faithfulness to the expected tool call, and (C)
Executability/Validity. Additionally, annotators must check for removal of Personally Identifiable
Information (PII), assess tool call feasibility, and select one optimal query per sample.

Evaluation Rubric

Criterion Score 5 Score 4 Score 3 Score 2 Score 1

A.
Naturalness

Fully fluent,
natural,
human-like

Minor
awkwardness
or stiffness

Understandable
but robotic

Clearly
awkward or
difficult to
read

Unintelligible or
nonsensical

B.
Faithfulness

Perfect match
to expected
tool call; all
required
arguments
present

Mostly aligned;
minor phrasing
or parameter
issues

Some omissions
or hallucinations;
core logic intact

Major
deviations
from
expected
tool
behavior

Entirely
incorrect or
misleading tool
structure

C.
Executability

Fully
executable;
properly
structured
and valid

Executes with
minor issues or
missing
defaults

Partially
executable with
moderate
corrections
needed

Major issues
preventing
execution

Unexecutable
or contradicts
tool logic/API

Required Checks

●​ PII Removal: Ensure no personal identifiers (names, emails, phone numbers, IDs) are present
Flag these queries for further processing.​

●​ Tool Call Validation: If feasible, simulate or run tool calls to confirm validity and argument
correctness.​

●​ Error Identification: Mark and annotate any queries with logical inconsistencies, invalid
parameters, or unsupported constraints.​

Figure 8: Summary of instructions given to human annotators.

• Non-existent Booking Corruption for functions like cancel_booking by generating random
non-existent IDs.

TradingBot For the stock trading API, we implemented three corruption strategies:

• Invalid Symbols Corruption for functions like get_stock_info by using non-existent
symbols or malformed formats;

• Financial Validation Corruption for place_order and related functions by using negative
values or amounts exceeding account balance;

• Order State Conflicts Corruption for cancel_order operations by referencing completed
orders or using malformed order IDs.

31

	Introduction
	Related Work
	Theory
	Structured Tool-Calling and Belief State
	Information-Theoretic Question Selection

	ClarifyBench
	Benchmark Design
	Benchmark Construction

	Structured Argument Uncertainty guided Elicitation Agent
	Agent Flow
	Candidate Generation, Questioning, and Belief Update

	Reward Modeling with Structured Uncertainty
	Baseline Reward
	Certainty-Weighted Reward (Ours)

	Experiments
	Results
	Agent Inference Experiments
	Reward Modeling Experiments

	Conclusion
	Ethics Statement
	SAGE-Agent
	Theoretical Proofs
	Complete Algorithm Specification
	Prompts
	Sensitivity to

	Reward Modeling with Uncertainty
	Dataset Processing
	Tool Domain Analysis
	Uncertainty-Aware System Prompts
	Training Configuration
	Reward Specification

	Benchmark Details
	Task Formalization
	Problem Definition
	Agent and User Simulator
	Multi-Turn Interaction Process

	Prompts
	Dataset Augmentation Prompts
	User Simulator Prompts

	Benchmark Domain Areas
	Human Annotation
	Tool Call Corruption Heuristics

