

STRUCTURED UNCERTAINTY GUIDED CLARIFICATION FOR LLM AGENTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 LLM agents with tool-calling capabilities often fail when user instructions are
 012 ambiguous or incomplete, leading to incorrect invocations and task failures. Ex-
 013 isting approaches operate in unstructured language spaces, generating clarifying
 014 questions through prompting strategies that lack principled criteria for determining
 015 which questions to ask and when to stop. We introduce a principled formulation of
 016 *structured uncertainty* that operates directly over tool parameters and their domains,
 017 cleanly separating specification uncertainty (what the user wants) from model un-
 018 certainty (what the LLM predicts). Our formulation uses Expected Value of Perfect
 019 Information (EVPI) to quantify the disambiguation value of each potential question,
 020 balanced against aspect-based cost modeling that prevents redundant questioning.
 021 We demonstrate the versatility of this formulation through two applications. First,
 022 SAGE-Agent uses structured uncertainty for inference-time question selection,
 023 achieving 7–39% higher coverage on ambiguous tasks while reducing clarifica-
 024 tion questions by 1.5–2.7 \times compared to strong prompting and uncertainty-based
 025 baselines. Second, we show that structured uncertainty provides effective training
 026 signals: uncertainty-guided reward modeling boosts When2Call accuracy from
 027 36.5% to 65.2% (3B model) and 36.7% to 62.9% (7B model) through uncertainty-
 028 weighted GRPO training, demonstrating more sample-efficient reinforcement learn-
 029 ing for tool-calling agents. To enable evaluation, we present *ClarifyBench*, the first
 030 multi-turn dynamic tool-calling disambiguation benchmark. Our results establish
 031 structured uncertainty as a principled framework that improves both inference-time
 032 interaction efficiency and training-time sample efficiency in tool-augmented agents.

1 INTRODUCTION

035 LLM Agents are AI systems that extend large
 036 language models (LLMs) with the ability to take
 037 real-world actions autonomously accumulate ob-
 038 servations (Huang et al., 2024b). These agents
 039 often invoke external APIs and tools based on
 040 structured function definitions, enabling inter-
 041 action with databases, web services, and software
 042 applications (Schick et al., 2023). These agents
 043 have been successfully deployed across diverse
 044 domains including travel planning, document
 045 processing, finance, vehicle control, and drug
 046 discovery (Xie et al., 2024; Mathur et al., 2024;
 047 Yu et al., 2024; Huang et al., 2024a; Liu et al.,
 048 2024). However, their effectiveness is funda-
 049 mentally limited by ambiguous or incomplete
 050 user instructions that lead to incorrect tool invoca-
 051 tions, failed transactions, and degraded user ex-
 052 perience—problems that become increasingly critical as these systems handle more complex, high-stakes
 053 tasks. Ambiguity in user requests poses unique challenges for LLM agents, where imprecise interpre-
 054 tation can cascade into costly execution errors (Wang et al., 2024; Vijayvargyi et al., 2025). User
 055 ambiguity manifests through vague task specifications (“*find me a good restaurant*”), incomplete
 056 parameters (“*book a meeting for tomorrow*”), or implicit assumptions about system capabilities (Wang

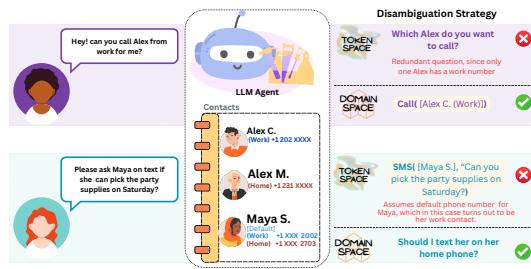


Figure 1: Linguistic-only disambiguation fails to use tool schemas, triggering unnecessary clarifications and inappropriate defaults. Grounding disambiguation in structured parameter domains avoids these problems. User ambiguity manifests through vague task specifications (“*find me a good restaurant*”), incomplete parameters (“*book a meeting for tomorrow*”), or implicit assumptions about system capabilities (Wang et al., 2024; Vijayvargyi et al., 2025). Our results establish structured uncertainty as a principled framework that improves both inference-time interaction efficiency and training-time sample efficiency in tool-augmented agents.

054 et al., 2025). The structured nature of API schemas—with their specific parameter types, constraints,
 055 and interdependencies—amplifies this challenge, as a single ambiguous user query often maps to
 056 multiple valid API configurations with vastly different outcomes (Bandlamudi et al., 2025). For
 057 example, “cancel my subscription” could apply to multiple services, cancellation types (pause vs.
 058 permanent), or effective dates, each requiring different API calls with distinct consequences.

059 Existing disambiguation approaches suffer from fundamental limitations in the agentic tool-calling
 060 context. Due to their next-token prediction training, LLMs often hallucinate missing arguments
 061 when faced with incomplete information, leading to incorrect tool invocations (Wang et al., 2024).
 062 Current methods operate primarily in unstructured language spaces—generating clarifying questions
 063 as arbitrary text sequences through prompting strategies—rather than leveraging the structured
 064 constraints and dependencies that define tool schemas (Kobalczyk et al., 2025; Zhang et al., 2024).
 065 While prompting improvements can enhance question phrasing, they cannot fundamentally address
 066 the core limitation: without explicit modeling of parameter relationships, importance hierarchies,
 067 and feasibility constraints, agents lack principled criteria for determining which questions to ask and
 068 when to stop asking them. This results in over-clarification of low-impact details, under-clarification
 069 of critical missing information, and inability to distinguish feasible from infeasible requests, as
 070 demonstrated in Fig. 1. We address these limitations through a *structured uncertainty formulation*
 071 that operates directly in the space of tool parameters and their domains, rather than unstructured
 072 language space. By maintaining explicit probabilistic beliefs over structured tool-call candidates, our
 073 approach cleanly separates specification uncertainty (ambiguity in what the user wants) from model
 074 uncertainty (limitations in LLM capabilities). The key challenge is determining which clarifying
 075 question provides the most value—too many questions frustrate users, while too few lead to incorrect
 076 executions. We resolve this through Expected Value of Perfect Information (EVPI), a principle from
 077 Bayesian decision theory that quantifies how much each potential question would reduce uncertainty
 about the correct tool call in expectation.

078 **Contributions:** ➤ We introduce a principled formulation of *structured uncertainty* over tool-call
 079 parameters, using Expected Value of Perfect Information (EVPI) to optimally balance information
 080 gain against question cost through aspect-based redundancy modeling. This formulation cleanly
 081 separates specification uncertainty from model uncertainty by operating directly in the structured
 082 space of tool parameters and their domains. ➤ We demonstrate two applications of this formulation:
 083 (i) **SAGE-Agent**, which uses structured uncertainty for inference-time question selection, substan-
 084 tially improving task success rates while reducing clarification overhead compared to prompting and
 085 uncertainty-based baselines; and (ii) **uncertainty-guided reward modeling**, where structured uncer-
 086 tainty serves as an effective training signal to train tool-calling models. ➤ We present *ClarifyBench*,
 087 the first benchmark for multi-turn tool-calling disambiguation, equipped with an LLM-based user
 088 simulator supporting realistic conversational progression across diverse domains including document
 089 editing, vehicle control, stock trading, travel booking, and file system manipulation.

091 2 RELATED WORK

092 The challenge of resolving ambiguity in user interaction with LLMs through clarifying questions has
 093 gained increasing attention, particularly in tool-calling contexts. Early approaches to clarification
 094 focused on general dialogue systems, developing ranking-based methods for question selection (Rao
 095 & Daumé III, 2018; Xu et al., 2019) and Seq2Seq generation (Deng et al., 2022). Recent work has
 096 specifically addressed ambiguity in tool-calling scenarios: Ask-before-Plan introduces proactive
 097 planning agents that predict clarification needs and collect information before execution (Zhang
 098 et al., 2024), while Active Task Disambiguation frames the problem through Bayesian Experimental
 099 Design to maximize information gain from clarifying questions (Kobalczyk et al., 2025). Zhang
 100 and Choi propose intent-similarity based uncertainty estimation to determine when clarification is
 101 beneficial across various NLP tasks (Zhang & Choi, 2023). Complementary approaches explore
 102 training methods for clarification behavior: CollabLLM develops frameworks for transforming LLMs
 103 from passive responders into active collaborators (Wu et al., 2025), Zhang et al. teach LLMs to
 104 ask clarifying questions by modeling future conversation turns (Zhang et al., 2025), and Chen et
 105 al. propose action-based contrastive self-training for multi-turn clarification dialogues (Chen et al.,
 106 2025). Related efforts explore implicit intention understanding in language agents (Qian et al., 2024)
 107 and proactive dialogue systems that can handle ambiguous queries through goal planning (Deng et al.,

108 2023). However, these approaches primarily operate in the general language space without leveraging
 109 the structured nature of tool schemas.
 110

111 **3 THEORY**
 112

114 Modern LLM agents extend beyond text generation to become *agentic systems* that can interact with
 115 external tools and APIs to accomplish complex tasks. These agents typically follow a perception-
 116 reasoning-action cycle: they receive user queries, reason about appropriate actions, select and
 117 parameterize tool calls, and execute them to achieve desired outcomes. However, this paradigm
 118 faces a fundamental challenge when user queries are ambiguous or underspecified—the agent must
 119 somehow resolve uncertainty about both *which* tool to use and *how* to parameterize it.
 120

121 **3.1 STRUCTURED TOOL-CALLING AND BELIEF STATE**
 122

123 We model an LLM agent as a system \mathcal{M} with access to a toolkit $\mathcal{T} = \{T_1, T_2, \dots, T_K\}$. Each tool
 124 T_i is characterized by a structured interface that defines its capabilities and parameter requirements.
 125

126 **Definition 1 (Tool Schema).** A tool T_i is defined by the tuple $(name_i, \Theta_i, \mathcal{D}_i, \mathcal{R}_i)$ where $name_i \in \mathbb{S}$
 127 is the tool identifier, $\Theta_i = \{\theta_{i,1}, \dots, \theta_{i,m_i}\}$ is the parameter set, $\mathcal{D}_i = \{\mathcal{D}_{i,1}, \dots, \mathcal{D}_{i,m_i}\}$ with $\mathcal{D}_{i,j}$ the
 128 domain of $\theta_{i,j}$ i.e the set of allowed values, and $\mathcal{R}_i \subseteq \Theta_i$ specifies required parameters.
 129

130 **Definition 2 (Tool Call Candidate).** A tool call candidate c_i for tool T_i is a partial function
 131 $c_i : \Theta_i \rightarrow \mathcal{D}_i \cup \{\perp\}$ where $c_i(\theta_{i,j}) = \perp$ indicates an unspecified parameter.
 132

133 The agent’s task is to map from an ambiguous natural language query u to a fully specified tool call
 134 $c^* = (T^*, \boldsymbol{\theta}^*)$ where all required parameters are specified. The *candidate space* $\mathcal{C} = \{(T_i, c_i) : T_i \in \mathcal{T}, c_i$
 135 is valid for $T_i\}$ represents all possible completions consistent with current information.
 136

137 **Q Uncertainty Quantification:** Methods that model uncertainty or disambiguation needs based
 138 on LLM response distributions must compute $p(\text{ambiguous}|u) = \sum_{\mathbf{w}} f(\mathbf{w}) p_{LLM}(\mathbf{w}|u)$
 139 where f determines if LLM response \mathbf{w} indicates ambiguity. This conflates model uncertainty
 140 with specification uncertainty since the determination function f itself depends on model
 141 capabilities. Our structured approach directly parameterizes $p(T_i, \boldsymbol{\theta}_i|u)$, cleanly separating
 142 these uncertainty sources.
 143

144 **Definition 3 (Structured Belief State).** At time t , given the initial user query u and accumulated
 145 responses $\{r_1, \dots, r_t\}$, we maintain a belief distribution over the candidate space:
 146

$$147 \mathcal{B}(t) = \{(c_i, \pi_i(t)) : c_i \in \mathcal{C}\}$$

148 where $\pi_i(t) \in [0, 1]$ represents the probability that candidate c_i matches the user’s true intent.
 149

150 We decompose the joint probability as
 151

$$152 p(T_i, \boldsymbol{\theta}_i | u, \{r_1, \dots, r_t\}) = p(\boldsymbol{\theta}_i | T_i, u, \{r_1, \dots, r_t\}) p(T_i | u)$$

153 and assume a uniform prior over tools $p(T_i | u) = 1/K$.¹
 154

155 Under a conditional independence assumption across parameters (for tractability), candidate probability
 156 becomes:
 157

$$158 \pi_i(t) \propto \prod_{j=1}^{m_i} p(\theta_{i,j} | T_i, u, \{r_1, \dots, r_t\})$$

159 where parameter certainty is $p(\theta_{i,j}) = 1$ if specified, $|\mathcal{D}_{i,j}(t)|^{-1}$ if unspecified with finite domain,
 160 and $\epsilon (0 < \epsilon \ll 1)$ for infinite/continuous domains. Here, $\mathcal{D}_{i,j}(t)$ is the feasible parameter domain
 161 after incorporating constraints from responses.
 162

¹This assumption reflects that, in practice, tools are proposed without strong prior bias. Future work could incorporate learned tool usage patterns or contextual priors.

162 **Belief Updates.** After asking question q_t and receiving response r_t , beliefs update through domain
 163 constraint propagation:

$$165 \quad \mathcal{D}_{i,j}(t+1) = \mathcal{D}_{i,j}(t) \cap \text{ExtractConstraints}(r_t, \theta_{i,j}, T_i) \quad (1)$$

$$166 \quad \pi_i(t+1) \propto \pi_i(t) \cdot P(r_t|c_i, q_t) \cdot \prod_j p(\theta_{i,j}|T_i, u, \{r_1, \dots, r_t\}) \quad (2)$$

169 3.2 INFORMATION-THEORETIC QUESTION SELECTION

171 The disambiguation process involves sequential decision-making: at each turn, the agent must decide
 172 whether to ask a clarifying question or execute the current best candidate. We formalize this decision
 173 through an information-theoretic criterion that balances information gain against question cost.

174 **Expected Value of Perfect Information.** Drawing from Bayesian decision theory and value of
 175 information frameworks (Rainforth et al., 2024), we quantify the expected benefit of asking question
 176 q using the Expected Value of Perfect Information (EVPI).

177 **Definition 4 (Expected Value of Perfect Information).**

$$179 \quad \text{EVPI}(q, \mathcal{B}(t)) = \mathbb{E}_{r \sim P(r|q, \mathcal{B}(t))} \left[\max_{c_i \in \mathcal{C}} \pi_i(t|q, r) \right] - \max_{c_i \in \mathcal{C}} \pi_i(t) \quad (3)$$

182 where the response distribution is $P(r|q, \mathcal{B}(t)) = \sum_i \pi_i(t) P(r|c_i, q)$. EVPI naturally handles both
 183 tool disambiguation and parameter clarification in a unified framework—questions helping resolve
 184 tool choice and parameter values are evaluated using the same information-theoretic criterion.

185 **Aspects and Question Coverage.** We introduce **aspects** as the atomic unit of disambiguation. An
 186 aspect $a_{i,j}$ refers to parameter $\theta_{i,j}$ of tool T_i . The full set of aspects is

$$187 \quad \mathcal{A} \triangleq \{a_{i,j} \mid i \in [1..K], j \in [1..m_i]\}.$$

189 A clarifying question targets a subset of aspects: for question q we write $\mathcal{A}(q) \subseteq \mathcal{A}$. For bookkeeping
 190 we count how often an aspect has been targeted up to time t as

$$191 \quad n_a(t) \triangleq |\{\tau \leq t : a \in \mathcal{A}(q_\tau)\}|.$$

193 **Definition 5 (Redundancy Cost).** Pure information maximization can lead to excessive questioning.
 194 We introduce a cost model that penalizes redundant questions about previously addressed aspects.
 195 For question q targeting aspects $\mathcal{A}(q)$, with aspect history $n_a(t)$:

$$197 \quad \text{Cost}(q, t) = \lambda \sum_{a \in \mathcal{A}(q)} n_a(t) \quad (4)$$

200 where λ controls the penalty strength for redundant questions.

202 **Q Structured Response Handling:** Past methods sample from $p(\text{solution}|q)$, requiring expen-
 203 sive enumeration. We treat responses as constraints $r \rightsquigarrow \mathcal{D}_{i,j}(t+1) = \mathcal{D}_{i,j}(t) \cap C(r)$ where
 204 $C(r)$ extracts constraints, enabling exact EVPI computation over finite patterns.

205 **Question Selection and Stopping Criteria.** At each timestep, we select the question that maximizes
 206 net information gain:

$$208 \quad q^*(t) = \arg \max_{q \in \mathcal{Q}} [\text{EVPI}(q, \mathcal{B}(t)) - \text{Cost}(q, t)] \quad (5)$$

$$210 \quad \text{Stop when: } \max_q [\text{EVPI}(q, \mathcal{B}(t)) - \text{Cost}(q, t)] < \alpha \cdot \max_i \pi_i(t) \quad (6)$$

212 This policy requires only one-step belief propagation for each candidate question, making it computa-
 213 tionally tractable while maintaining principled information-theoretic grounding.

214 4 CLARIFYBENCH

The evaluation of clarification strategies in tool-calling agents requires benchmarks that capture the complexity of real-world user interactions, particularly when dealing with ambiguous or infeasible requests. As shown in Table 1, existing benchmarks exhibit critical limitations: many lack support for ambiguous and infeasible queries, while those that include such scenarios are limited in scope or domain coverage. Most critically, they rely on static evaluation without dynamic user simulation capabilities.

We introduce **ClarifyBench** to address these limitations. The task involves multi-turn interactions between a tool-equipped LLM agent and a user simulator that maintains the true user intention and responds to clarifying questions. The agent must identify when clarification is needed, pose appropriate questions, and execute correct tool calls based on the information gathered, while the simulator provides contextually relevant responses that guide the agent toward the intended action. As illustrated in Figure 2, **ClarifyBench** provides: (1) dynamic user simulation enabling natural conversational progression where users pose follow-up requests after clarification exchanges; (2) comprehensive coverage across three query types (normal, ambiguous, and infeasible); and (3) multi-domain evaluation spanning five distinct domains. Evaluation compares ground truth tool calls with agent-generated actions, providing robust assessment of clarification effectiveness across realistic scenarios.

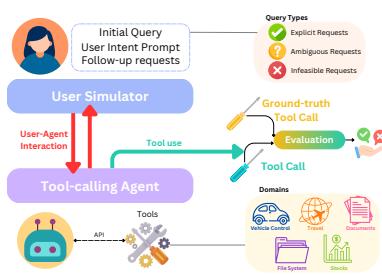


Figure 2: ClarifyBench evaluates agent clarification strategies through multi-turn interactions between a user simulator and tool-equipped LLM agents across normal, ambiguous, and infeasible queries in 5 domains.

Benchmark	Dynamic User Simulation	Ambiguous Queries	Infeasible Queries	Multi-turn Requests	Tool Domains	Number of Tools
AgentBoard (Ma et al., 2024)	✗	✗	✗	✗	Information Retrieval, Manipulation	50
τ -bench (Yao et al., 2024)	✓	✗	✗	✓	Retail, Airlines	24
MMAU (Yin et al., 2024)	✗	✗	✗	✗	RapidAPI Tools	364
ToolSandbox (Lu et al., 2024)	✓	✗	✗	✓	Personal Assistant	34
Ask-Before-Plan (Zhang et al., 2024)	✓	✓	✓	✗	Travel	6
BFCL-v3 (Patil et al., 2025)	✗	✓	✗	✓	Vehicle Control, Stocks, Travel, File System	129
ClarifyBench	✓	✓	✓	✓	Documents, Vehicle Control, Stocks, Travel, File System	92

Table 1: Comparison of ClarifyBench with existing tool-calling benchmarks.

4.1 BENCHMARK DESIGN

ClarifyBench encompasses five diverse domains that reflect real-world tool-calling scenarios: document processing, vehicle management, stock trading, travel planning, and file system management. These domains were selected to represent varying levels of complexity, different types of argument structures, and distinct sources of ambiguity that agents encounter in practice. Table 2 gives a statistical summary of the benchmark. Each sample in ClarifyBench is represented as a tuple: *(user query, user intent, follow-up queries, ground truth tool call, domain)*.

The benchmark includes three distinct query types that systematically evaluate different aspects of clarification: **1. Explicit Queries**: Well-specified requests that provide sufficient information for direct tool execution, serving as baseline performance indicators. **2. Ambiguous Queries**: Requests with missing or unclear parameters that require clarification to determine the appropriate tool calls and arguments. **3. Infeasible Queries**: Requests which if executed at face value would generate errors due to invalid parameters, conflicting constraints, or impossible conditions.

4.2 BENCHMARK CONSTRUCTION

Data Sources. ClarifyBench draws from two primary sources to ensure diversity and realism. First, we extract successfully executed tool calls from DocPilot (Mathur et al., 2024), which provides real user interactions in document processing scenarios. Second, we leverage the Berkeley Function Calling Leaderboard (BFCL-v3) (Patil et al., 2025), which offers data across multiple domains: vehicle control, stock trading, travel planning, and file system management.

Data Augmentation. To create the comprehensive set of query types required for clarification evaluation, we employ systematic data augmentation techniques. We process *DocPilot* dataset by anonymizing user metadata, replacing specific file names and domain terms in tool calls with

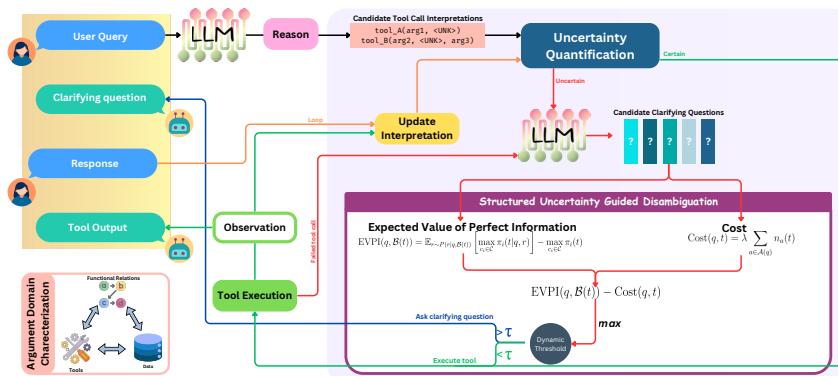
270 LLM-generated substitutes to ensure generalizability, followed by PII removal. For ambiguous
 271 queries, we randomly select upto 3 arguments from successful tool calls and obfuscate them, then
 272 prompt GPT-4o to generate five alternative user queries that omit the obfuscated information. For
 273 infeasible queries, we design handwritten rules based on common API errors to create tool calls
 274 that would generate failures, followed by a similar LLM-based query augmentation process. We
 275 process *BFCL-v3* using existing explicit and ambiguous parameter queries from the benchmark,
 276 ensuring sample independence by removing cases with secondary API dependencies. We apply
 277 rule-based validation and LLM judgment (via in-context learning) to identify and exclude such cases.
 278 For retained samples, we strip secondary API utterances and tool calls from ground truth annotations.
 279 User intent prompts are generated through LLM based detailed summarization of the ground truth
 280 tool calls and user utterances.

Metric	Doc	Vehicle	Stocks	Travel	Files	All
Total Samples	181	139	143	119	134	716
Number of Tools	18	22	19	15	18	92
Avg # of Tool Calls	3.9	4.5	3.9	3.7	3.1	3.8
Explicit Queries	49	50	49	50	43	241
Ambiguous Queries	49	39	46	40	39	213
Infeasible Queries	48	49	38	18	45	198
Avg # of Follow-up	2.9	2.1	2.7	2.3	1.8	2.4

281
 282 Table 2: Statistical description of ClarifyBench.
 283
 284
 285
 286
 287

288
 289 **Human Validation.** To ensure quality and naturalness, a
 290 human annotator evaluates all LLM-generated queries us-
 291 ing three criteria: (A) naturalness of language, (B) faithfulness
 292 to the expected tool calls with all required details and
 293 no obfuscated parameters, and (C) for infeasible queries,
 294 the presence of explicit error-inducing requirements. Two
 295 annotators assign a 5-point Likert score to every candi-
 296 date query, and the final selected query for a sample is
 297 the one that receives the highest score. Inter-annotator
 298 agreement for the highest-scoring selections is given by
 299 Cohen’s $\kappa = 0.76$.

5 STRUCTURED ARGUMENT UNCERTAINTY GUIDED ELICITATION AGENT



300
 301 Figure 3: **SAGE-Agent:** ① Given a user query, an LLM reasons and generates potential tool calls with
 302 possibly uncertain parameters. These tool calls undergo ② structured uncertainty quantification to determine if
 303 clarification is needed. When uncertainty exists, the agent uses an LLM to produce ③ candidate clarifying
 304 questions, and scores them using ④ a cost-penalized Expected Value of Perfect Information (EVPI) metric.
 305 Tool-parameter domain interpretation is updated based on user-response to the clarifying question (⑤), and given
 306 no further uncertainty, the best tool call is executed ⑥.
 307

314 SAGE (Structured Argument Uncertainty guided Elicitation) augments the standard Reason–Act–
 315 Observe loop by inserting structured, domain-aware clarification into the *Reason* stage (as seen in
 316 Fig. 3). Let the user input be u ; the toolkit \mathcal{T} and tool schemas follow Definition 1.
 317

5.1 AGENT FLOW

320 At step t , the agent maintains belief $\pi(t) = \{\pi_c(t)\}_{c \in C}$ and observations \mathcal{O}_t . The full loop can be
 321 written as a combination of Reason (\mathcal{R}) and Act ($\mathcal{A}ct$):
 322

$$(C_t, Q_t) \xleftarrow{\mathcal{R}} (u, \mathcal{O}_t, \mathcal{T}) \xrightarrow{\mathcal{A}ct} a_t = \begin{cases} \text{execute : } & c^*(t) = \arg \max_c \pi_c(t) \\ q^* : & \pi(t+1) = \mathcal{O}b(\pi(t), o_{t+1}) \end{cases}$$

324 where \mathcal{R} produces candidate tool calls \mathcal{C}_t and aspect-targeted questions Q_t , $\mathcal{A}ct$ selects either
 325 execution or query, and $\mathcal{O}b$ performs domain-constrained belief refinement (Fig. 3).
 326
 327

328 5.2 CANDIDATE GENERATION, QUESTIONING, AND BELIEF UPDATE

329 At step t , SAGE proceeds as follows:

330 **1. Candidate Generation.** The **Reason** stage prompts an LLM with $(u, \mathcal{O}_t, \mathcal{T})$ to produce candidate
 331 tool calls $\mathcal{C}_t = \{c_1, \dots, c_N\}$, each assigning parameters $\Theta_{i(c)}$ concrete values or `<UNK>`. Candidate
 332 certainty is defined as $\pi_c(t) = \prod_{\theta_{i,j} \in \Theta_{i(c)}} p(\theta_{i,j} \mid T_{i(c)}, \text{obs}_t)$. If $\max_c \pi_c(t) \geq \tau_{\text{exec}}$, execute
 333 $c^*(t) = \arg \max_c \pi_c(t)$; otherwise continue.
 334
 335

336 **2. Question Generation.** An LLM is prompted with (i) q , (ii) \mathcal{C} and masks, (iii) tool schemas, and (iv)
 337 recent observations to output $Q = \{(q_k, c_{i_k}, A_k)\}_{k=1}^L$, where q_k is the question text, c_{i_k} the candidate
 338 being disambiguated, and $A_k \subseteq \mathcal{A}$ the targeted aspects (parameters). Output is machine-parsable
 339 with `<UNK>` for ambiguous parameters.

340 **3. Scoring and Selection.** Let $\mathcal{P}_q = \{C_1, \dots, C_M\}$ be the partition of \mathcal{C}_t induced by
 341 A. The EVPI is $\text{EVPI}(q) = \sum_{m=1}^M \max_{c \in C_m} \pi_c(t) - \max_{c \in \mathcal{C}_t} \pi_c(t)$. Score each ques-
 342 tion as $\text{Score}(q, t) = \text{EVPI}(q) - \lambda \sum_{a \in A} n_a(t)$, select $q^*(t) = \arg \max_q \text{Score}(q, t)$. If
 343 $\max_q \text{Score}(q, t) < \alpha \max_c \pi_c(t)$ or budget n_s is exhausted, execute $c^*(t)$.
 344
 345

346 **4. Belief Update.** After observing answer r , update domains as $\mathcal{D}_{i,j}(t+1) \leftarrow \mathcal{D}_{i,j}(t) \cap f_{\text{update}}(\theta_{i,j}, r)$
 347 and recompute $\pi_c(t+1)$.
 348
 349

350 **5. Termination & Error Recovery.** Stop if (i) $\max_c \pi_c(t) \geq \tau_{\text{exec}}$, (ii) $\max_q \text{Score}(q, t) <$
 351 $\alpha \max_c \pi_c(t)$, or (iii) $t \geq n_s$. On execution failure, prompt for a fix or generate an error-specific
 352 q_{error} and re-enter step 3.
 353
 354

355 6 REWARD MODELING WITH STRUCTURED UNCERTAINTY

356 Our objective is to teach the agent not only *what* action to take but *when* to act with confidence versus
 357 request clarification. We fine-tune the policy using **Group Relative Policy Optimization (GRPO)**
 358 (Shao et al., 2024), which samples multiple candidate actions per prompt, computes relative rewards,
 359 and updates the policy towards those exceeding the group mean—yielding a critic-free, memory-
 360 efficient variant of PPO that stabilizes optimization through implicit baselining and KL regularization.
 361 Our training data comes from the 9K examples in the When2Call (Ross et al., 2025) dataset. For
 362 each user prompt and its tool set, the agent may take exactly one of four actions: `AskQuestion`,
 363 `CallTool(parameters)`, `Decline`, or `DirectAnswer`. We prompt a base model to emit structured
 364 tags `<reason>...</reason><answer>...</answer>`, and from that we compute scalar rewards.
 365
 366

367 6.1 BASELINE REWARD

368 The baseline reward is $r_{\text{base}} = r_{\text{fmt}} + r_{\text{tool}} + r_{\text{cls}}$, where $r_{\text{fmt}} = 1.5$ (correct schema), r_{tool} equals
 369 1.0 for correct tool+parameters, 0.75 if tool is correct but parameters are wrong, and 0.5 for correctly
 370 identifying a tool call or for non-tool actions, and r_{cls} equals up to 2.0 for correct action type. This
 371 encourages correctness and well-formedness but treats all instantiations equally regardless of model
 372 confidence or question informativeness.
 373
 374

375 6.2 CERTAINTY-WEIGHTED REWARD (OURS)

376 Let $\pi_c(t)$ be the belief over candidate tool calls $c \in \mathcal{C}_t$. We define $\text{Cert}(a_t) = \max_c \pi_c(t)$ if a_t
 377 is a tool call, $1 - \max_c \pi_c(t)$ if a_t is a question, and 1 otherwise. The category reward becomes
 $R_{\text{category}}(a_t) = \text{Cert}(a_t) \cdot r_{\text{base}}(a_t)$ which up-weights confident correct tool calls, penalizes low-
 378 certainty calls, and rewards clarification only when uncertainty is high—thus aligning reward with
 379 the agent’s own epistemic state.
 380
 381

378
379
380
381
382
383
384
385

386 **Key Insight:** Our reward is *self-calibrating*: it needs no critic to judge question quality, yet
 387 drives informative clarifications and confident tool calls. Unlike the baseline, which rewards
 388 all correct calls equally, our certainty-weighted reward **scales** with belief: confident calls get
 389 full payoff, low-confidence calls are penalized, and clarifications are rewarded only when
 390 uncertainty is high.

7 EXPERIMENTS

387 **(A) Agent Inference Experiment.** 1. *ClarifyBench*. All baselines are implemented on a common
 388 ReAct agent scaffold for fair comparison. We evaluate **SAGE-Agent** against four baselines: (i)
 389 **ReAct + ask_question()**, a standard ReAct agent with an `ask_question()` tool serving as our
 390 control baseline; (ii) **ProCOT** (Deng et al., 2023), which performs ProActive Chain-of-Thought
 391 reasoning to anticipate ambiguities before tool use; (iii) **Active Task Disambiguation** (Kobalczyk
 392 et al., 2025), which generates candidate interpretations and clarification queries based on response
 393 entropy by parametrizing the solution space; and (iv) **Domain-aware ReAct**, which augments
 394 prompting and question generation with explicit schema information provided as context. All
 395 methods use GPT-4o and Qwen2.5-14B-Instruct with temperature 0.5. For SAGE-Agent, we pick
 396 $\lambda = 0.5, \alpha = 0.1, \epsilon = 10^{-4}$. We evaluate using four metrics: (1) **Coverage Rate**: proportion of tool
 397 calls with correct parameters matching the ground truth; (2) **Tool Match Rate (TMR)**: tool match rate
 398 against ground truth; (3) **Parameter Match Rate (PMR)**: parameter match rate against ground-truth;
 399 and (4) **Average Number of Questions (#Q)**: mean number of clarification questions asked per task
 400 (lower is better). 2. *BFCLv2 (When2Call)* We use the open-ended evaluation split of When2Call,
 401 built on top of BFCLv2 to perform single-turn validation of our method. We compared our method
 402 against a ReAct baseline and Active-task-Disambiguation, since this is single-turn validation and
 403 these baselines are representative of different disambiguation strategies. We used 2xRTXA600 for
 404 inference. **(B) Reward Modeling Experiment.** We trained GRPO with Qwen2.5-Instruct (3B
 405 and 7B) for one epoch using Unslloth (Daniel Han & team, 2023). Three independent runs were
 406 performed, and results from the best-performing model are reported. Evaluation follows the original
 407 paper: log-probability comparison across options, option-prompted selection, and direct prompting
 408 without options. We trained on 4xL40S GPUs, and inferred on 1xL40S GPU. We train each setting
 409 for 3 runs, and report the setting with the best results.

8 RESULTS

8.1 AGENT INFERENCE EXPERIMENTS

Method	ClarifyBench - Ambiguous				ClarifyBench - Explicit				ClarifyBench - Infeasible			
	Coverage [†]	TMR [†]	PMR [†]	Avg #Q [†]	Coverage [†]	TMR [†]	PMR [†]	Avg #Q [†]	Coverage [†]	TMR [†]	PMR [†]	Avg #Q [†]
<i>Base LLM: GPT-4o</i>												
ReAct + ask_question()	42.88 _{±25.1}	70.41 _{±27.3}	62.55 _{±23.9}	2.68 _{±2.4}	61.17 _{±22.7}	87.95 _{±25.8}	71.99 _{±28.4}	2.15 _{±2.7}	58.85 _{±24.3}	85.05 _{±26.1}	75.09 _{±21.8}	2.21 _{±2.6}
ProCOT	54.27 _{±27.4}	75.62 _{±29.1}	66.82 _{±24.6}	2.07 _{±2.2}	66.98 _{±22.8}	89.57 _{±28.7}	72.80 _{±25.4}	2.14 _{±2.5}	61.48 _{±24.2}	89.32 _{±27.5}	74.41 _{±21.5}	2.43 _{±2.8}
Active Task Disambiguation	45.60 _{±26.7}	77.10 _{±28.2}	60.78 _{±22.4}	3.42 _{±2.6}	66.97 _{±21.9}	90.47 _{±29.3}	72.45 _{±24.9}	2.94 _{±2.5}	65.27 _{±23.6}	89.18 _{±28.8}	75.09 _{±22.0}	2.63 _{±2.3}
Domain-aware ReAct	55.70 _{±24.5}	79.83 _{±25.7}	68.04 _{±23.3}	2.56 _{±2.1}	68.11 _{±22.5}	91.17 _{±26.1}	74.04 _{±25.2}	2.10 _{±2.6}	61.48 _{±24.0}	90.32 _{±25.4}	76.46 _{±26.7}	2.03 _{±2.7}
SAGE-Agent (Ours) Heuristic-based	56.42 _{±24.3}	82.31 _{±26.8}	69.81 _{±24.7}	1.82 _{±2.3}	70.41 _{±22.1}	91.65 _{±27.4}	74.89 _{±25.8}	1.07 _{±2.4}	66.23 _{±23.9}	90.52 _{±26.5}	76.64 _{±25.3}	1.48 _{±2.5}
SAGE-Agent (Ours)	59.73_{±22.1}	86.02_{±27.5}	71.79_{±25.5}	1.39_{±2.0}	71.67_{±21.8}	93.65_{±29.7}	75.94_{±26.1}	1.08_{±2.2}	67.33_{±23.4}	92.89_{±28.3}	77.41_{±27.9}	1.26_{±2.1}
<i>Base LLM: Qwen2.5-14B-Instruct</i>												
ReAct + ask_question()	40.34 _{±33.9}	68.92 _{±32.0}	63.35 _{±31.5}	1.78 _{±1.94}	51.85 _{±33.8}	89.20 _{±22.8}	73.63 _{±28.9}	1.69 _{±1.67}	42.39 _{±32.4}	70.82 _{±31.1}	63.31 _{±34.0}	1.82 _{±1.43}
ProCOT	52.45 _{±33.5}	71.78 _{±33.7}	70.08 _{±33.2}	1.89 _{±2.03}	61.76 _{±31.5}	84.08 _{±23.8}	74.60 _{±28.4}	1.69 _{±1.68}	52.08 _{±31.4}	71.92 _{±29.3}	68.72 _{±35.0}	1.78 _{±1.51}
Active Task Disambiguation	43.04 _{±29.2}	69.06 _{±33.0}	57.49 _{±34.1}	2.45 _{±1.72}	59.83 _{±33.1}	81.01 _{±26.6}	68.69 _{±31.5}	2.31 _{±2.29}	52.20 _{±30.6}	76.59 _{±32.5}	69.45 _{±35.0}	2.22 _{±2.12}
Domain-aware ReAct	51.10 _{±31.9}	75.31 _{±30.7}	67.50 _{±31.5}	2.07 _{±3.35}	60.91 _{±34.2}	86.91 _{±24.8}	71.70 _{±28.7}	1.61 _{±1.36}	55.76 _{±31.7}	81.06 _{±27.2}	72.23 _{±32.0}	1.66 _{±1.30}
SAGE-Agent (Ours) Heuristic-based	51.62 _{±32.5}	78.23_{±30.9}	74.03 _{±31.8}	1.67 _{±1.85}	62.45 _{±33.4}	89.89 _{±23.2}	73.89 _{±29.1}	1.23 _{±1.74}	59.88 _{±31.2}	84.12 _{±28.6}	75.51 _{±32.8}	1.75 _{±1.62}
SAGE-Agent (Ours)	54.56_{±33.0}	78.14 _{±30.5}	74.21_{±32.2}	1.41_{±2.19}	64.62_{±33.6}	92.05_{±20.8}	75.50_{±28.2}	0.93_{±1.93}	61.84_{±30.8}	85.26_{±24.5}	76.52_{±29.5}	1.49_{±0.95}

424 Table 3: Performance comparison of agent strategies on ClarifyBench across two base LLMs (GPT-4o
 425 and Qwen2.5-14B-Instruct). Best results within each LLM group are highlighted in bold.

426 **Performance Gains Across Task Categories.** On Ambiguous tasks with GPT-4o, SAGE-Agent
 427 achieves 59.73% Coverage Rate, substantially outperforming Domain-aware ReAct (55.70%), Pro-
 428 COT (54.12%), and basic ReAct (52.34%). This 4.03pp improvement over the strongest baseline
 429 extends to downstream metrics: Tool Match Rate reaches 86.02% versus 79.83% (Domain-aware
 430 ReAct) and 76.45% (basic ReAct), while Parameter Match Rate attains 71.79% versus 68.04% and
 431 65.21% respectively. The pattern persists across Explicit scenarios, where SAGE-Agent achieves

71.67% Coverage (+3.56pp over Domain-aware ReAct, +5.23pp over basic ReAct), 93.65% TMR (+2.48pp, +4.12pp), and 75.94% PMR (+1.90pp, +3.67pp). Even on Infeasible tasks—where systems must recognize unsatisfiable queries, SAGE-Agent excels with 67.33% Coverage and 92.89% TMR, significantly outperforming Domain-aware ReAct (63.21%, 88.45%) and all other baselines. These results demonstrate that structured schema-based reasoning enables more accurate task interpretation than unstructured clarification approaches.

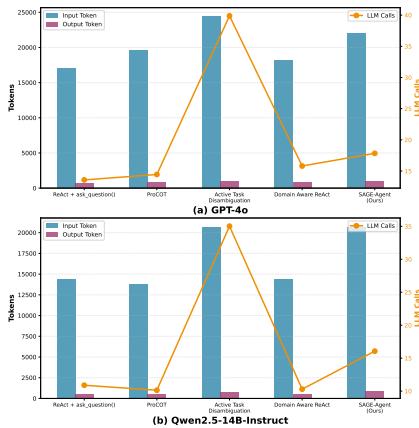


Figure 4: Resource consumption across methods for GPT-4o and Qwen2.5-14B. SAGE-Agent instead parametrizes uncertainty directly over schema spaces, avoiding solution sampling entirely. This yields 22K tokens with 54% fewer API calls, reducing latency and cost while maintaining superior performance.

Dramatic Reduction in User Burden. SAGE-Agent achieves superior performance while asking dramatically fewer questions. On Ambiguous tasks with GPT-4o, it averages just 1.39 questions per task; a 45.7% reduction versus Domain-aware ReAct (2.56 questions), 48.1% reduction versus basic ReAct (2.68 questions), and 59.4% reduction versus Active Task Disambiguation (3.42 questions). On Explicit scenarios where all information is present initially, SAGE-Agent asks only 1.08 questions, where all baselines should ideally approach 0.

Computational Efficiency Despite Structured Reasoning. Figure 4 reveals expected trade-offs: simpler baselines (ReAct, ProCOT, Domain-aware ReAct) use 14-18K tokens and 14-16 calls but sacrifice performance (Table 3). Among uncertainty-modeling methods, Active Task Disambiguation computes entropy over a $l_{\text{questions}} \times l_{\text{solutions}}$ matrix, requiring 24K tokens and 40 calls. SAGE-Agent instead parametrizes uncertainty directly over schema spaces, avoiding solution sampling entirely. This yields 22K tokens with 54% fewer API calls, reducing latency and cost while maintaining superior performance.

Robustness Across Language Models. SAGE-Agent’s advantages generalize across both proprietary and open-source LLMs. With Qwen2.5-14B-Instruct, SAGE-Agent achieves 54.56% Coverage on Ambiguous tasks, outperforming ProCOT (52.45%) and Domain-aware ReAct (51.10%), while reducing questions from 2.07 to 1.41. While absolute metrics are lower with smaller models, relative improvements over baselines remain consistent, demonstrating systematic advantages independent of model choice.

Ablation. SAGE-Agent Heuristic Based is an ablation where questions are triggered by the presence of `<UNK>` tokens in tool calls, without using EVPI for question selection. This variant shows small but consistent performance degradation, ranging from 1-3 points across most metrics while asking 0.2-0.4 more questions on average. The heuristic approach triggers questions but lacks effective discrimination between them, and unlike the full system, it cannot resort to default execution when questions have low information value. These issues compound across the multi-turn ClarifyBench evaluation, leading to cumulative metric reductions.

Impact of λ . The redundancy penalty weight λ (Definition 5) controls the trade-off between information gathering and user burden by penalizing questions targeting previously queried aspects. Figure 5 shows the effect of $\lambda \in \{0, 0.5, 1.0\}$ across 70 samples from each ClarifyBench split using GPT-4o, with independently scaled radar axes. Increasing λ from 0 to 0.5 yields substantial question reductions—18.1% on Ambiguous, 26.6% on Explicit, and 24.2% on Infeasible splits—while preserving task execution quality. Coverage Rate, TMR, and PMR remain stable with deviations under 3% across all settings, indicating that the penalized questions were indeed redundant rather than essential for task completion. The radar plots visualize this trade-off: the $\#Q$ dimension contracts inward while other metrics maintain consistent polygon shapes, demonstrating that question economy can be achieved without sacrificing accuracy.

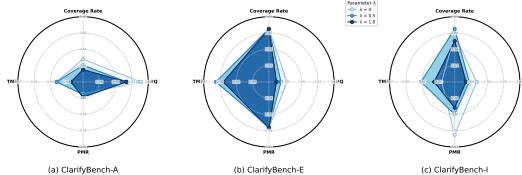
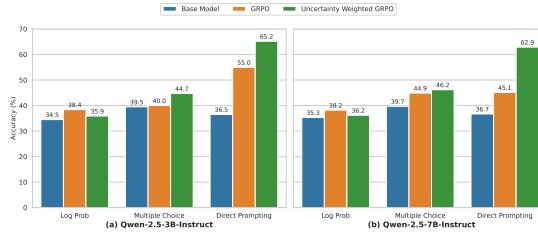


Figure 5: Effect of λ on performance metrics across ClarifyBench splits. Increasing λ from 0 to 0.5 reduces $\#Q$ by 18-27% while maintaining stable Coverage, TMR, and PMR (< 3% deviation).

486 **Single-Turn Disambiguation Performance** Table 4
 487 presents performance comparison on BFCLv2 When2Call.
 488 ReAct demonstrates high ToolCall recall (0.79) but ex-
 489 hibits poor Decline behavior (0.58 recall), indicating a
 490 bias toward tool invocation even for inappropriate requests.
 491 Active Task Disambiguation achieves high AskQuestion
 492 recall (0.74-0.78) but suffers from low precision (0.45-
 493 0.35), reflecting excessive questioning behavior. In con-
 494 trast, SAGE-Agent achieves the best balance with highest
 495 ToolCall precision (0.80) while maintaining strong Decline
 496 performance (0.78 F1). Notably, these behavioral patterns
 497 persist across model scales from GPT-4o to Qwen2.5-14B-
 498 Instruct, though with degraded absolute performance, suggesting that SAGE-Agent’s structured
 499 approach provides more robust guidance for disambiguation decisions.

500 8.2 REWARD MODELING EXPERIMENTS

501 Figure 6 validates our hypothesis that uncertainty-aware training signals improve LLM clarification
 502 behavior. The When2Call benchmark tests models’ ability to recognize when clarification is needed
 503 versus when to proceed with available information.



504 Figure 6: Performance of Qwen-2.5 models on
 505 When2Call across three evaluation methods: Log Prob-
 506 ability, Multiple Choice, and Direct Prompting.
 507 Comparing Qwen-2.5-3B and 7B models reveals that training signal quality matters more than model scale.
 508 The 3B model with uncertainty-weighted training (65.2% accuracy) substantially outperforms the
 509 7B model with standard training (45.1% accuracy). This suggests that incorporating structured
 510 uncertainty into training objectives may be more valuable than simply scaling model parameters.

511 **Evaluation Mode Analysis.** The largest improvements occur in Direct Prompting mode, where
 512 models must make clarification decisions based solely on query analysis without multiple-choice
 513 scaffolding. This indicates that uncertainty-weighted training helps models develop robust internal
 514 representations of when clarification is needed, rather than merely improving selection among
 515 provided options.

516 9 CONCLUSION

517 Ambiguous user instructions fundamentally challenge tool-augmented LLM agents, leading to
 518 incorrect invocations and task failures. We presented **SAGE-Agent**, which models joint tool-argument
 519 clarification as a POMDP with Bayesian Value of Information objectives for optimal question
 520 selection. Extensive experiments validate our structured uncertainty approach: SAGE-Agent improves
 521 coverage on ambiguous tasks by 7–39% while reducing questions by 1.5–2.7× on *ClarifyBench*, and
 522 uncertainty-weighted GRPO training boosts *When2Call* accuracy from 36.5% to 65.2% (3B) and
 523 36.7% to 62.9% (7B). These results demonstrate that structured uncertainty provides a principled
 524 foundation for both inference and learning in tool-augmented scenarios. Our work establishes
 525 structured uncertainty quantification as essential for reliable, efficient LLM agents in real-world
 526 applications.

Method	ToolCall			AskQuestion			Decline		
	P	R	F1	P	R	F1	P	R	F1
<i>Base LLM: GPT-4o</i>									
ReAct	0.71	0.79	0.75	0.59	0.69	0.64	0.87	0.58	0.69
Act. Task Dis.	0.61	0.24	0.34	0.45	0.74	0.56	0.74	0.73	0.73
SAGE-Agent	0.80	0.55	0.65	0.61	0.70	0.65	0.72	0.84	0.78
<i>Base LLM: Qwen2.5-14B-Instruct</i>									
ReAct	0.62	0.85	0.72	0.50	0.65	0.57	0.88	0.39	0.54
Act. Task Dis.	0.36	0.12	0.18	0.35	0.78	0.48	0.62	0.28	0.39
SAGE-Agent	0.76	0.48	0.59	0.53	0.75	0.62	0.79	0.76	0.77

Table 4: Performance comparison of agent strategies on BFCLv2 (When2Call).

530 **Training Signal Impact.** Base models without clarification training achieve
 531 poor performance (34.5–39.7% accuracy), demonstrating that recognizing clarifica-
 532 tion needs is non-trivial. Standard GRPO provides modest improvements, while
 533 uncertainty-weighted GRPO yields substantial gains (up to +28.7 percentage
 534 points). This validates that structured uncertainty measures provide more effective
 535 training signals than binary success/failure rewards.

536 **Model Scale vs. Signal Quality.** Comparing
 537 Qwen-2.5-3B and 7B models reveals that training signal quality matters more than model scale.
 538 The 3B model with uncertainty-weighted training (65.2% accuracy) substantially outperforms the
 539 7B model with standard training (45.1% accuracy). This suggests that incorporating structured
 540 uncertainty into training objectives may be more valuable than simply scaling model parameters.

540 10 ETHICS STATEMENT
541

542 Our research does not use any personally identifiable information (PII) and all datasets employed in
543 this work are used in accordance with their respective licenses (Apache 2.0). Our paper is designed
544 primarily for deployment in collaborative AI assistance contexts where resolving ambiguity enhances
545 productivity and user experience while minimizing unnecessary interaction. The system's core
546 approach of reducing clarification questions through principled uncertainty estimation promotes
547 more equitable access to AI assistance by respecting users' time and cognitive resources. While
548 SAGE-Agent significantly reduces interaction burden, we recommend appropriate transparency about
549 system limitations and human oversight when deploying in sensitive contexts. Furthermore, we
550 encourage ongoing evaluation to ensure that question selection patterns do not reflect or amplify
551 biases present in underlying models or training data. We acknowledge the ICLR code of ethics.
552

553 REFERENCES
554

555 Jayachandu Bandlamudi, Ritwik Chaudhuri, Neelamadhav Gantayat, Kushal Mukherjee, Prerna
556 Agarwal, Renuka Sindhgatta, and Sameep Mehta. A framework for testing and adapting rest apis
557 as llm tools. 2025. URL <https://arxiv.org/abs/2504.15546>.

558 Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan Ö. Arik. Learning to clarify: Multi-turn
559 conversations with action-based contrastive self-training, 2025. URL <https://arxiv.org/abs/2406.00222>.

560 Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL <http://github.com/unslothai/unsloth>.

561 Yang Deng, Wenqiang Lei, Wenxuan Zhang, Wai Lam, and Tat-Seng Chua. Pacific: towards
562 proactive conversational question answering over tabular and textual data in finance. *arXiv preprint*
563 *arXiv:2210.08817*, 2022.

564 Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, and Tat-Seng Chua. Prompting
565 and evaluating large language models for proactive dialogues: Clarification, target-guided, and
566 non-collaboration, 2023. URL <https://arxiv.org/abs/2305.13626>.

567 Kung-Hsiang Huang, Akshara Prabhakar, Sidharth Dhawan, Yixin Mao, Huan Wang, Silvio Savarese,
568 Caiming Xiong, Philippe Laban, and Chien-Sheng Wu. Crmarena: Understanding the capac-
569 ity of llm agents to perform professional crm tasks in realistic environments. *arXiv preprint*
570 *arXiv:2411.02305*, 2024a.

571 Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
572 Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. *arXiv*
573 *preprint arXiv:2402.02716*, 2024b.

574 Katarzyna Kobalczyk, Nicolas Astorga, Tennison Liu, and Mihaela van der Schaar. Active task
575 disambiguation with llms. *arXiv preprint arXiv:2502.04485*, 2025.

576 Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu Zhao, Yingzhou Lu, and Yue Zhao. Drugagent:
577 Automating ai-aided drug discovery programming through llm multi-agent collaboration. *arXiv*
578 *preprint arXiv:2411.15692*, 2024.

579 Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
580 Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
581 benchmark for llm tool use capabilities. *arXiv preprint arXiv:2408.04682*, 2024.

582 Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
583 Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
584 agents. *arXiv preprint arXiv:2401.13178*, 2024.

585 Puneet Mathur, Alexa Siu, Varun Manjunatha, and Tong Sun. Docpilot: Copilot for automating pdf
586 edit workflows in documents. In *Proceedings of the 62nd Annual Meeting of the Association for*
587 *Computational Linguistics (Volume 3: System Demonstrations)*, pp. 232–246, 2024.

594 Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
 595 Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
 596 evaluation of large language models. In *Forty-second International Conference on Machine
 597 Learning*, 2025.

598 Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
 599 Yankai Lin, Zhiyuan Liu, et al. Tell me more! towards implicit user intention understanding of
 600 language model driven agents. *arXiv preprint arXiv:2402.09205*, 2024.

602 Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian
 603 experimental design. *Statistical Science*, 39(1):100–114, 2024.

604 Sudha Rao and Hal Daumé III. Learning to ask good questions: Ranking clarification questions using
 605 neural expected value of perfect information. *arXiv preprint arXiv:1805.04655*, 2018.

606 Hayley Ross, Ameya Sunil Mahabaleshwar, and Yoshi Suhara. When2Call: When (not) to call
 607 tools. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
 608 Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 609 Papers)*, pp. 3391–3409, Albuquerque, New Mexico, April 2025. Association for Computational
 610 Linguistics. ISBN 979-8-89176-189-6. URL <https://aclanthology.org/2025.nacl-long.174/>.

612 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
 613 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
 614 themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551,
 615 2023.

617 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 618 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 619 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

620 Sanidhya Vijayvargiya, Xuhui Zhou, Akhila Yerukola, Maarten Sap, and Graham Neubig. Interactive
 621 agents to overcome ambiguity in software engineering. 2025. URL <https://arxiv.org/abs/2502.13069>.

624 Chenyu Wang, Weixin Luo, Sixun Dong, Xiaohua Xuan, Zhengxin Li, Lin Ma, and Shenghua
 625 Gao. Mllm-tool: A multimodal large language model for tool agent learning, 2025. URL
 626 <https://arxiv.org/abs/2401.10727>.

627 Wenzuan Wang, Juluan Shi, Chaozheng Wang, Cheryl Lee, Youliang Yuan, Jen-tse Huang,
 628 and Michael R Lyu. Learning to ask: When llms meet unclear instruction. *arXiv preprint
 629 arXiv:2409.00557*, 2024.

631 Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
 632 Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators,
 633 2025. URL <https://arxiv.org/abs/2502.00640>.

634 Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
 635 Yu Su. Travelplanner: A benchmark for real-world planning with language agents. *arXiv preprint
 636 arXiv:2402.01622*, 2024.

638 Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan, Pengcheng Yang, Qi Zeng, Ming Zhou, and
 639 Xu Sun. Asking clarification questions in knowledge-based question answering. In *Proceedings
 640 of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
 641 International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 1618–
 642 1629, 2019.

643 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
 644 tool-agent-user interaction in real-world domains. *arXiv preprint arXiv:2406.12045*, 2024.

645 Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu,
 646 Xiang Kong, Aonan Zhang, et al. Mmau: A holistic benchmark of agent capabilities across diverse
 647 domains. *arXiv preprint arXiv:2407.18961*, 2024.

648 Yangyang Yu, Haohang Li, Zhi Chen, Yuechen Jiang, Yang Li, Denghui Zhang, Rong Liu, Jordan W
 649 Suchow, and Khaldoun Khashanah. Finmem: A performance-enhanced llm trading agent with
 650 layered memory and character design. In *Proceedings of the AAAI Symposium Series*, volume 3,
 651 pp. 595–597, 2024.

652
 653 Michael J. Q. Zhang, W. Bradley Knox, and Eunsol Choi. Modeling future conversation turns to
 654 teach llms to ask clarifying questions, 2025. URL <https://arxiv.org/abs/2410.13788>.

655
 656 Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through interaction
 657 with lms. *arXiv preprint arXiv:2311.09469*, 2023.

658
 659 Xuan Zhang, Yang Deng, Zifeng Ren, See Kiong Ng, and Tat-Seng Chua. Ask-before-plan: Proactive
 660 language agents for real-world planning. In *Findings of the Association for Computational*
 661 *Linguistics: EMNLP 2024*, pp. 10836–10863, 2024.

665 Appendices

A SAGE-Agent	14
A.1 Theoretical Proofs	14
A.2 Complete Algorithm Specification	14
A.3 Prompts	16
A.4 Sensitivity to ϵ	17
B Reward Modeling with Uncertainty	17
B.1 Dataset Processing	17
B.2 Tool Domain Analysis	18
B.3 Uncertainty-Aware System Prompts	19
B.4 Training Configuration	20
B.5 Reward Specification	20
C Benchmark Details	21
C.1 Task Formalization	21
C.1.1 Problem Definition	21
C.1.2 Agent and User Simulator	22
C.1.3 Multi-Turn Interaction Process	22
C.2 Prompts	22
C.2.1 Dataset Augmentation Prompts	22
C.2.2 User Simulator Prompts	24
C.3 Benchmark Domain Areas	25
C.4 Human Annotation	26
C.5 Tool Call Corruption Heuristics	26

702 **A SAGE-AGENT**
703704 **A.1 THEORETICAL PROOFS**
705706 **Proposition 1 (Viability Score Properties).** *The viability scoring function satisfies: (1) Monotonicity:*
707 $\pi_i(t+1) \geq \pi_i(t)$ *when information is gained, (2) Boundedness:* $0 \leq \pi_i(t) \leq 1$ *, (3) Completeness:*
708 $\pi_i(t) = 1$ *iff all parameters are fully specified.*709 *Proof.* (1) **Monotonicity:** Information gain can only constrain parameter domains: $\mathcal{D}_{i,j}(t+1) \subseteq$
710 $\mathcal{D}_{i,j}(t)$. Therefore $|\mathcal{D}_{i,j}(t+1)| \leq |\mathcal{D}_{i,j}(t)|$, which implies $|\mathcal{D}_{i,j}(t+1)|^{-1} \geq |\mathcal{D}_{i,j}(t)|^{-1}$. Since
711 $\pi_i(t) = \prod_j p(\theta_{i,j})$ and each factor is non-decreasing, $\pi_i(t+1) \geq \pi_i(t)$.
712713 (2) **Boundedness:** Each parameter certainty $p(\theta_{i,j}) \leq 1$ by definition. Since $\pi_i(t) = \prod_j p(\theta_{i,j})$, we
714 have $0 \leq \pi_i(t) \leq 1$.
715716 (3) **Completeness:** $\pi_i(t) = 1 \Leftrightarrow \prod_j p(\theta_{i,j}) = 1 \Leftrightarrow \forall j : p(\theta_{i,j}) = 1 \Leftrightarrow$ all parameters specified. \square 717 **Proposition 2 (EVPI Properties).** *The EVPI function satisfies: (1) Non-negativity:* $EVPI(q, \mathcal{B}(t)) \geq$
718 0 *, (2) Submodularity: diminishing returns for question sequences, (3) Convergence:* $EVPI$ *approaches*
719 *zero as uncertainty resolves.*720 *Proof.* (1) **Non-negativity:** By Jensen's inequality applied to the concave maximum function:

721
$$\mathbb{E}_r \left[\max_{c_i} \pi_i(t|q, r) \right] \geq \max_{c_i} \mathbb{E}_r [\pi_i(t|q, r)] = \max_{c_i} \pi_i(t)$$

722

723 Therefore $EVPI(q, \mathcal{B}(t)) \geq 0$.
724725 (2) **Submodularity:** For question sets $S \subseteq S'$, the marginal information gain satisfies:

726
$$EVPI(q|S) - EVPI(q|S') = H[\mathcal{B}|S] - H[\mathcal{B}|S \cup \{q\}] - (H[\mathcal{B}|S'] - H[\mathcal{B}|S' \cup \{q\}]) \geq 0$$

727

728 This follows from submodularity of entropy: $H[X|Y] - H[X|Y, Z] \geq H[X|Y, W] - H[X|Y, W, Z]$
729 when $W \supseteq \emptyset$.
730731 (3) **Convergence:** As uncertainty resolves, $\max_i \pi_i(t) \rightarrow 1$ and candidate distributions become
732 concentrated. For any question q , $\mathbb{E}_r[\max_i \pi_i(t|q, r)] \rightarrow \max_i \pi_i(t)$, so $EVPI(q) \rightarrow 0$. \square 733 **Theorem 1 (Finite Termination).** *Under regularity conditions on the response model, the algorithm*
734 *terminates in finite expected time with probability 1.*735 *Proof.* The termination condition is $\max_q [EVPI(q) - Cost(q)] < \alpha \cdot \max_i \pi_i(t)$.
736737 **Case 1:** If $\max_i \pi_i(t)$ increases over time (candidates improve), the right-hand side grows while
738 $EVPI$ values are bounded above. Eventually the inequality is satisfied.
739740 **Case 2:** If $\max_i \pi_i(t)$ remains bounded, then either: - $EVPI$ values decrease due to information gain
741 (Proposition 2.3) while costs increase linearly - Or no informative questions remain, making $EVPI \approx 0$
742743 In both cases, the net value becomes negative in finite time.
744745 **Formal bound:** Let $\rho = \mathbb{E}[\text{improvement in } \max_i \pi_i \text{ per question}]$ and $\gamma = \mathbb{E}[\text{EVPI decline per question}]$. - If $\rho > 0$: termination when $\alpha\rho T \geq EVPI_{\text{initial}} - \gamma T$, giving
746 $T \leq \frac{EVPI_{\text{initial}}}{\alpha\rho + \gamma}$ - If $\rho \leq 0$: termination when costs exceed $EVPI$, giving $T \leq \frac{\max EVPI}{\lambda \cdot \min |\mathcal{A}(q)|}$
747748 Therefore $\mathbb{E}[T] < \infty$. \square 749 **A.2 COMPLETE ALGORITHM SPECIFICATION**
750751 **Algorithm.** Algorithm 1 presents the complete SAGE-Agent procedure. The algorithm maintains
752 beliefs $\pi(t)$ over candidate tool calls and aspect history $n_a(t)$ to track redundant questioning. At
753 each timestep, the agent generates candidates via the reasoning stage \mathcal{R} (line 6), computes viability
754 scores (line 9), and checks if uncertainty exceeds threshold τ (line 12).
755When uncertainty is high, the agent generates clarifying questions with their targeted aspects simultaneously (line 14), computes $EVPI$ and redundancy costs (lines 17-21), and applies the stopping

556 **Algorithm 1** SAGE-Agent

557

558 **Require:** User query u , toolkit \mathcal{T} , max steps T_{\max} , redundancy penalty λ , stopping threshold α ,
559 uncertainty threshold τ

560 1: Initialize beliefs $\pi(0) = \{\pi_c(0)\}_{c \in \mathcal{C}}$, observations $\mathcal{O}_0 = \emptyset$

561 2: Initialize aspect history $n_a(0) = 0$ for all $a \in \mathcal{A}$

562 3: **for** $t = 0, 1, \dots, T_{\max}$ **do**

563 // Reason Stage \mathcal{R}

564 $\mathcal{C}_t \leftarrow \mathcal{R}(u, \mathcal{O}_t, \mathcal{T})$

565 // Structured Uncertainty Quantification

566 Compute beliefs $\pi_i(t)$ for each $c_i \in \mathcal{C}_t$

567 Compute uncertainty $U(t) = \max_{c_i \in \mathcal{C}_t} U(c_i)$

568

569 **if** $U(t) > \tau$ **then** ▷ Uncertainty exceeds threshold

570 // Generate Questions with Targeted Aspects

571 $\{(q, \mathcal{A}(q))\} \leftarrow \text{GenerateQuestions}(\mathcal{C}_t, u, \mathcal{O}_t, \mathcal{T})$

572 simultaneously ▷ LLM generates Q_t and aspects

573

574 // Compute EVPI & Cost for Each Question

575 **for** each $q \in Q_t$ **do**

576 $\text{EVPI}(q, \mathcal{B}(t)) = \mathbb{E}_{r \sim P(r|q, \mathcal{B}(t))} [\max_{c_i \in \mathcal{C}_t} \pi_i(t|q, r)] - \max_{c_i \in \mathcal{C}_t} \pi_i(t)$

577 $\text{Cost}(q, t) = \lambda \sum_{a \in \mathcal{A}(q)} n_a(t)$ ▷ Redundancy penalty

578 $\text{Score}(q) = \text{EVPI}(q, \mathcal{B}(t)) - \text{Cost}(q, t)$

579 **end for**

580

581 // Check Stopping Criterion

582 **if** $\max_{q \in Q_t} \text{Score}(q) < \alpha \cdot \max_{c_i \in \mathcal{C}_t} \pi_i(t)$ **then**

583 // Act: Execute Best Tool Call

584 $c^*(t) \leftarrow \arg \max_{c_i \in \mathcal{C}_t} \pi_i(t)$

585 Execute $c^*(t)$ and **return** result

586 **else**

587 // Act: Query User

588 $q^* \leftarrow \arg \max_{q \in Q_t} \text{Score}(q)$

589 Query user with q^* and receive response o_{t+1}

590 $\pi(t+1) \leftarrow \mathcal{O}b(\pi(t), o_{t+1})$ ▷ Update beliefs via domain constraints

591 $\mathcal{O}_{t+1} \leftarrow \mathcal{O}_t \cup \{o_{t+1}\}$

592 **for** each $a \in \mathcal{A}(q^*)$ **do**

593 $n_a(t+1) \leftarrow n_a(t) + 1$ ▷ Update aspect history

594 **end for**

595 **end if**

596 **else**

597 // Act: Execute Best Tool Call (Low Uncertainty)

598 $c^*(t) \leftarrow \arg \max_{c_i \in \mathcal{C}_t} \pi_i(t)$

599 Execute $c^*(t)$ and **return** result

600 **end if**

601 **end for**

criterion (line 24). If the maximum net information gain is insufficient, it executes the best candidate; otherwise, it poses the highest-scoring question, updates beliefs via domain constraint propagation (line 32), and increments aspect history (lines 34-36). When uncertainty is low, the agent executes the best candidate immediately (lines 41-43).

Domain Constraint Propagation. The belief update function $\mathcal{O}b$ (line 32) implements the constraint extraction function that maps natural language responses to parameter domain refinements: $\mathcal{D}_{i,j}(t+1) = \mathcal{D}_{i,j}(t) \cap C(r)$. This function handles:

- **Explicit constraints:** Direct specifications like "departure date is March 15th"

810 • **Schema dependencies:** Cross-parameter constraints where one parameter's value restricts
 811 available options for another parameter
 812 • **Negative constraints:** Exclusions like "not business class" → class ∈ {economy, premium}

814 **Error Recovery Mechanism.** When the highest-confidence candidate fails at runtime, the system
 815 generates diagnostic questions using function $f_{\text{error}}(\cdot)$. This adaptive questioning strategy enables
 816 recovery from API failures, timeouts, and invalid parameter combinations that pass initial validation.
 817

818 A.3 PROMPTS
 819

820 **Reasoning Prompt** This prompt is used in the main reasoning phase of the ReAct agent to decide
 821 which tool to use next based on the current state of the conversation.

```
822 You are an AI assistant helping with a user request.  

823 SYSTEM CONTEXT:  

824 You have access to the following tool domain:  

825 {plugin_descriptions}  

826 Request: {request}  

827 Previous observations:  

828 {obs_text}  

829 Available tools:  

830 {tool_registry.get_tool_descriptions()}  

831 Think step by step about what tool to use next. Consider the plugin  

832 context above to understand the capabilities available to you. If you  

833 have enough information to provide a final answer, use the  

834 final_answer tool.  

835 Respond in JSON format:  

836 {  

837   "reasoning": "Your step-by-step thinking",  

838   "tool_call": {  

839     "tool_name": "name_of_tool",  

840     "arguments": {  

841       "arg1": "value1",  

842       "arg2": "value2"  

843     }  

844   }  

845 }
```

846 **Error Recovery Prompt** Used when a tool execution fails to determine if the error can be resolved
 847 automatically.

```
848 You are helping fix a failed tool call.  

849 Original Request: {request}  

850 Tool Information:  

851 {tool_info or f"Tool: {tool_name}"}  

852 Error Details:  

853 {error_result.message}  

854 Based on the error and tool information, can you suggest how to fix this?  

855 Respond in JSON format:  

856 {  

857   "can_fix": true/false,  

858   "reasoning": "explanation of what went wrong and how to fix it",  

859   "suggested_action": "retry_with_changes" or "different_tool" or "  

860     need_clarification",  

861   "observation": "observation to add to context for next reasoning step"  

862 }  

863 If you cannot determine a fix from the available information, set can_fix  

864 to false.
```

865 **Question Generation Prompt** Used to generate clarification questions when there is uncertainty
 866 about tool arguments.

```
864
865 You are an AI assistant that helps users by understanding their queries
866     and executing tool calls.
867 {conversation_history}Original user query:
868 "{user_query}"
869 Based on the query, I've determined that the following tool calls are
870     needed, but some arguments are uncertain:
871 Tool Calls:
872 {tool_calls}
873 Detailed Tool Documentation:
874 {tool_documentation}
875 Uncertain Arguments:
876 {uncertain_args}
877 Your task is to generate clarification questions that would help resolve
878     the uncertainty about specific arguments.
879 Instructions:
880
881 Generate questions that are clear, specific, and directly address the
882     uncertain arguments
883 Each question should target one or more specific arguments
884 Questions should be conversational and easy for a user to understand
885 For each question, specify which tool and argument(s) it aims to clarify.
886 Generate 5 diverse questions.
887 Keep in mind the the arguments you wish to clarify, their domains etc.
888
889 Return your response as a JSON object with the following structure:
890 {
891     "questions": [
892         {
893             "question": "A clear question to ask the user",
894             "target_args": [["tool_name", "arg_name"], ["tool_name", "other_arg_name"]
895                         ""]]
896         }
897     // ... 5 total questions
898     ]
899 }
900
901 Ensure that each question targets at least one uncertain argument.
```

A.4 SENSITIVITY TO ϵ

The parameter ϵ is used to quantify uncertainty for large domains, where the tool argument domain $|\mathcal{D}|$ is continuous or infinite. As long as the order of $\epsilon \ll 1/|\mathcal{D}_{\text{finite}}|$, the decisions are robust to the exact value of ϵ , since scoring would switch unambiguously in favor of appropriate domains. However, very small values of ϵ may cause numerical instability, since it is exponentiated during computation.

We empirically validated the sensitivity to ϵ by retroactively checking for changes in question selection in our experiments from Section 8 on ClarifyBench (Ambiguous subset), using GPT-4o and Qwen2.5-14B-Instruct. We tested ϵ values: $\{10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$. As shown in Figure 7, when $\epsilon \geq 0.1$, the decisions diverge significantly, since domains are not effectively expressed as “infinite” when ϵ values are comparable to finite domain probabilities. However, for $\epsilon \leq 10^{-2}$, over 96–97% of decisions remain unchanged across all tested values, demonstrating robustness in the practical range.

B REWARD MODELING WITH UNCERTAINTY

B.1 DATASET PROCESSING

Source Dataset: Our enhanced dataset was constructed from the nvidia/When2Call dataset, from the "train_pref" data. This dataset contains preference-ranked examples for tool-calling tasks with human-annotated preferred responses for training reinforcement learning models.

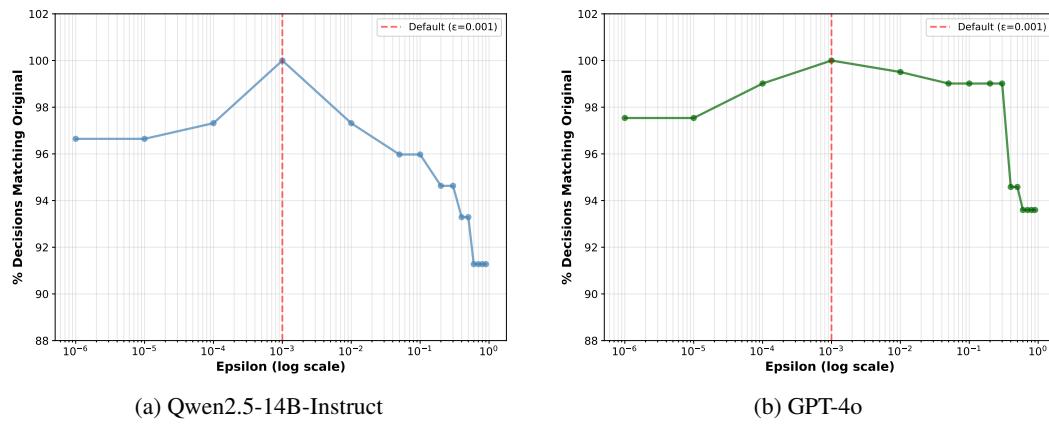


Figure 7: Sensitivity analysis of ϵ on question selection decisions for the Ambiguous subset of ClarifyBench. The plots show the percentage of decisions that remain unchanged as ϵ varies across tested values, demonstrating robustness for $\epsilon \leq 10^{-2}$.

Original Data Structure: Each example in the source dataset contained:

- **Messages:** Conversation history with user and assistant exchanges in chat format
- **Tools:** Available tool definitions with JSON schema parameters and descriptions
- **Chosen responses:** Human-preferred responses for the given context
- **Preference annotations:** Quality ratings for different response options

Response Classification: Each example was processed to classify responses into four categories: <TOOLCALL>, <ASK>, <REFUSE>, and <DIRECTLY>. Classification used keyword-based heuristics:

- <TOOLCALL>: Presence of “<TOOLCALL>” tags or “toolcall” keywords
- <ASK>: Presence of question marks (“?”) in content
- <REFUSE>: Presence of refusal keywords (“sorry”, “unable”, “impossible”, etc.)
- <DIRECTLY>: Default classification for other responses. (None existed in the preferred set)

Data Transformations: Several preprocessing steps were applied to optimize the dataset for uncertainty-aware training:

1. **Domain Schema Injection:** Each example was augmented with parsed domain information for all available tools, stored as JSON strings in a `tool_domain_schemas` field for HuggingFace compatibility
2. **Message Format Preservation:** The chat format was maintained with modified system messages while preserving user/assistant alternation

B.2 TOOL DOMAIN ANALYSIS

To enable uncertainty quantification, we performed comprehensive domain analysis of all available tools using Qwen-2.5-7B-Instruct as the primary analysis model. Each tool’s arguments were analyzed to determine:

- **Domain type:** finite, estimated_finite, numeric_range, string, boolean, list, or custom
- **Domain size:** exact count for finite domains, estimates for larger domains, or infinite for unbounded domains
- **Domain values:** complete enumeration for small domains, representative examples for larger domains, or range bounds for numeric domains
- **Data dependency:** whether argument values depend on external data sources or user context

972 The analysis prompt instructed the model to classify arguments according to strict validation rules:
 973

- 974 • Finite domains (≤ 20 values): complete value enumeration with `domain_size = len(domain_values)`
- 975
- 976 • Estimated finite domains: 5-10 representative examples with `domain_size >> len(examples)`
- 977
- 978 • Numeric ranges: [min, max] bounds with appropriate size calculation
- 979
- 980 • Boolean domains: `domain_size = 2` with null values
- 981 • String/custom domains: infinite size with null values

981 **B.3 UNCERTAINTY-AWARE SYSTEM PROMPTS**

983 Each training example was enhanced with a comprehensive system prompt that provided explicit
 984 instructions for uncertainty handling. The complete system prompt template was:
 985

```

986 \texttt{You are a helpful agent. You will have access to tools to answer
987   the query.\\"}
988 \\
989 UNCERTAINTY GUIDELINES:\\
990 - Use <UNK> for arguments you cannot determine from context, or cannot
991   reasonably estimate. Don't overuse, you can assume defaults where
992   needed.\\"}
993 - When asking questions, use the structured format with candidate tool
994   calls\\
995 \\
996 You can perform following action types:\\
997 a) <TOOLCALL> Invoke a tool call as follows:\\
998   <TOOLCALL>\\
999   [\{"name": "tool\_name", "arguments": \{"argument\_name": "value", "
1000     uncertain\_argument": "<UNK>", ...\}\}]\\
1001   </TOOLCALL>\\
1002 \\
1003 b) <ASK> Ask a question from the user if you need more information to
1004   execute a tool call </ASK>\\
1005 \\
1006 STRUCTURED QUESTION FORMAT (when asking for clarification):\\
1007 <ASK>\\
1008 <TOOLCALL>\\
1009 // Think about what tool you would call given the request, and the
1010   current information. Because some information is missing, you want to
1011   ask a question.\\
1012 [
1013   \[\{"name": "tool\_name", "arguments": \{"known\_arg": "value", "
1014     uncertain\_arg": "<UNK>"\}\}]\\
1015   </TOOLCALL>\\
1016   <question>\\
1017   What is the specific value for uncertain\_arg?\\
1018   </question>\\
1019   </ASK>\\
1020 \\
1021 c) <REFUSE> Refuse, if your knowledge or available tools can't be used
1022   here </REFUSE>\\
1023 d) <DIRECTLY> directly answer </DIRECTLY>\\
1024 \\
1025 Your response should be formatted like:\\
1026 <reasoning>\\
1027 Step-by-step thinking about certainty/uncertainty of each argument\\
1028 </reasoning>\\
1029 <answer>\\
1030 <ACTION\_TYPE>\\
1031 ..content.. (Question/ToolCall/Refuse/DirectAnswer)\\
1032 </ACTION\_TYPE>\\
1033 </answer>}
```

1026 B.4 TRAINING CONFIGURATION
10271028 Training began from `unsloth/Qwen2.5-3B-Instruct` and `unsloth/Qwen2.5-7B-Instruct` check-
1029 points. LoRA (Low-Rank Adaptation) fine-tuning was applied with rank 64 adaptations targeting
1030 attention and MLP projection layers.1031 Model training was performed using Group Relative Policy Optimization, using `Unsloth` (Daniel Han
1032 & team, 2023) with parameter details in Table 5.
1033

Hyperparameter	Value
Learning Rate	5e-6
Per Device Batch Size	1 (3B), 8 (logs)
Gradient Accumulation Steps	1
Max Sequence Length	1024
Training Epochs	1
Warmup Ratio	0.1
Weight Decay	0.1
Optimizer	AdamW 8-bit
Adam Beta1	0.9
Adam Beta2	0.99
LoRA Rank	64
LoRA Alpha	64

1044 Table 5: Training hyperparameters for uncertainty-aware tool calling model.
1045
10461047 B.5 REWARD SPECIFICATION
10481049 Our baseline GRPO reward function consists of multiple components that guide the model toward
1050 generating well-formed, accurate responses. The total reward for a generated completion is computed
1051 as the sum of three independent reward components:
1052

1053
$$r_{\text{total}} = r_{\text{fmt}} + r_{\text{tool}} + r_{\text{cls}} \quad (7)$$

1054

1055 where r_{fmt} represents format compliance rewards, r_{tool} represents tool call accuracy, and r_{cls}
1056 represents action classification rewards.
10571058 **Format Compliance Rewards** (r_{fmt}). These components encourage proper XML formatting and
1059 total up to 1.5 points:
10601061

- **XML Count Reward**: Awards up to 0.5 points for proper newline structure, penalizing
1062 excessive trailing content.
- **Soft Format Reward**: Awards 0.5 points if the response contains `<reasoning>` and
1063 `<answer>` tags in the correct order (with flexible whitespace).
- **Strict Format Reward**: Awards 0.5 points only if the response exactly matches the format
1064 `<reasoning>\n... \n</reasoning>\n<answer>\n... \n</answer>\n`.

1065 **Tool Call Accuracy Reward** (r_{tool}). Compares the predicted tool call against a ground truth
1066 reference:
1067

1068
$$r_{\text{tool}} = \begin{cases} 1.0 & \text{if tool name and arguments match exactly} \\ 0.75 & \text{if tool name matches but arguments differ} \\ 0.5 & \text{if both have no tool call OR wrong tool name} \\ 0.0 & \text{if one has a tool call and the other does not} \end{cases} \quad (8)$$

1069 **Action Classification Reward** (r_{cls}). This reward is the primary component that differentiates
1070 between GRPO and Certainty weighted GRPO. This reward is computed based on the agent’s chosen
1071 action a_t at timestep t , which can be: TOOLCALL (execute a tool), ASK (request clarification), REFUSE
1072 (decline the request), or DIRECTLY (answer without tools).
1073

1080 The base classification reward is computed as:
 1081

$$1082 r_{\text{cls}}(a_t) = \begin{cases} 2.0 & \text{if response starts with correct tag and contains } \geq 30 \text{ chars} \\ 1083 1.5 & \text{if response starts with correct tag but insufficient content} \\ 1084 0.0 & \text{otherwise} \end{cases} \quad (9)$$

1085

1086 **Certainty Weighting** For the baseline **GRPO**, the final classification reward is simply:
 1087

$$1088 r_{\text{cls}}^{\text{GRPO}}(a_t) = r_{\text{cls}}(a_t) \quad (10)$$

1089

1090 For **Certainty weighted GRPO**, we introduce epistemic-state-aware weighting. Let $\pi_c(t)$ be the
 1091 model's belief over candidate tool calls $c \in \mathcal{C}_t$. We define the certainty function:
 1092

$$1093 \text{Cert}(a_t) = \begin{cases} \max_c \pi_c(t) & \text{if } a_t \text{ is a tool call} \\ 1094 1 - \max_c \pi_c(t) & \text{if } a_t \text{ is a clarification question} \\ 1 & \text{otherwise} \end{cases} \quad (11)$$

1095

1096 The final classification reward is then:
 1097

$$1098 r_{\text{cls}}^{\text{Certainty}}(a_t) = \text{Cert}(a_t) \cdot r_{\text{cls}}(a_t) \quad (12)$$

1099

1100 This formulation up-weights confident correct tool calls, penalizes low-certainty calls, and rewards
 1101 clarification only when uncertainty is high—thus aligning the reward with the agent's own epistemic
 1102 state.

1103

1104 In our implementation, we approximate $\pi_c(t)$ through explicit certainty computation over tool call
 1105 arguments. For a tool call c with arguments, the certainty is:
 1106

$$1107 \pi_c(t) = \prod_{\text{arg} \in c.\text{arguments}} \pi_{\text{arg}} \quad (13)$$

1108

1109 where for each argument:
 1110

$$1111 \pi_{\text{arg}} = \begin{cases} 1.0 & \text{if arg has a specified value} \\ 1112 \frac{1}{|\mathcal{D}_{\text{arg}}|} & \text{if arg is empty and domain size is finite} \\ 1113 \epsilon \approx 0.0001 & \text{if arg is empty and domain size is infinite} \end{cases} \quad (14)$$

1114

1115 Here, \mathcal{D}_{arg} represents the domain size for that argument as specified in the tool schema. This approach
 1116 ensures that tool calls with all arguments specified receive maximum certainty ($\pi_c(t) = 1.0$), while
 1117 tool calls with missing arguments receive certainty inversely proportional to the domain sizes of
 1118 unspecified parameters. For ASK actions, we compute certainty over the candidate tool call mentioned
 1119 in the question, and use $1 - \pi_c(t)$ to reward asking when uncertainty is high.
 1120

1121

C BENCHMARK DETAILS

1122

C.1 TASK FORMALIZATION

1123

1124 We formally define the clarification task as a multi-turn interaction problem between a tool-equipped
 1125 agent and a user simulator within a structured environment.
 1126

1127

C.1.1 PROBLEM DEFINITION

1128

1129 Let \mathcal{E} denote the environment containing a set of tools $\mathcal{F} = \{f_1, f_2, \dots, f_m\}$, where each tool f_j
 1130 has a signature defining its parameters and return type. An agent \mathcal{A} is equipped with access to \mathcal{F} and
 1131 must satisfy user requests through appropriate tool invocations.

1132

1133 A simulation scenario \mathcal{S} is defined as a tuple:
 1134

$$1135 \mathcal{S} = \langle \mathcal{R}, \mathcal{I}, \mathcal{G}, \mathcal{K} \rangle \quad (15)$$

1136

1137 where:
 1138

1134 • $\mathcal{R} = \{r_0, r_1, \dots, r_n\}$ is a sequence of user requests
 1135 • \mathcal{I} represents the true user intention for each request
 1136 • $\mathcal{G} = \{g_0, g_1, \dots, g_n\}$ is the ground truth tool call sequence
 1137 • \mathcal{K} is the knowledge being accumulated and used (conversational context, tool descriptions)
 1138

1140 Each request $r_i \in \mathcal{R}$ belongs to one of three categories:

1141 • **Normal:** Requests with sufficient information for direct execution
 1142 • **Ambiguous:** Requests requiring clarification to resolve uncertainty
 1143 • **Infeasible:** Requests that cannot be fulfilled with available tools
 1144

1146 C.1.2 AGENT AND USER SIMULATOR

1148 The agent \mathcal{A} takes as input the current query q and conversation history \mathcal{C} , and produces one of three
 1149 response types:

$$1150 \quad \mathcal{A}(q, \mathcal{C}) \rightarrow \begin{cases} \Phi_{success} & \text{tool call(s) executed} \\ \Phi_{clarification} & \text{clarifying question posed} \\ \Phi_{failure} & \text{task declined or failed} \end{cases} \quad (16)$$

1154 The user simulator \mathcal{U} maintains access to the true intention \mathcal{I} and background knowledge \mathcal{K} . Given a
 1155 clarifying question from the agent, the simulator responds:

$$1156 \quad \mathcal{U}(\text{question}, \mathcal{S}) \rightarrow \{\text{clarification} \quad \text{if answerable from } \mathcal{K}, \mathcal{I} \quad (17)$$

1158 C.1.3 MULTI-TURN INTERACTION PROCESS

1160 The interaction proceeds as a sequence of turns \mathcal{T}_i for each request r_i , as formalized in Algorithm 2.
 1161 At each turn t , the agent either executes tool calls, poses a clarifying question, or declines the request.
 1162 The query state is enriched with each clarification response:

$$1164 \quad q_{\text{current}}^{(t+1)} = \text{Enrich}(r_i, \text{clarification}^{(t)}) \quad (18)$$

1166 To prevent infinite loops, we impose a maximum clarification threshold τ_{\max} per request. The
 1167 simulation maintains a conversation history \mathcal{C} that accumulates all interaction turns across multiple
 1168 requests, enabling the agent to leverage context from previous requests when handling subsequent
 1169 ones.

1170 C.2 PROMPTS

1172 C.2.1 DATASET AUGMENTATION PROMPTS

1174 The following prompt was used to augment user queries i.e. convert tool calls to corresponding user
 1175 requests.

```
1176
1177   Original query: "{original_query}"
1178
1179   Tool call that should result from this query:
1180   Tool: {tool_call["tool_name"]}
1181   Parameters: {tool_call["parameters"]}
1182
1183   Update the query to naturally lead to these exact parameters.
1184   The updated query should:
1185   1. Be realistic and maintain the user's intent
1186   2. Naturally incorporate the corrupted parameter value
1187   3. Sound like something a real user would ask
1188
1189   Only return the updated query text, nothing else.
```

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200

Algorithm 2 ClarifyBench Interaction Protocol

```

1: procedure EXECUTESIMULATION( $\mathcal{S}$ ) ▷  $\mathcal{S}$  represents the simulation scenario
2:   Initialize agent  $\mathcal{A}$ , environment  $\mathcal{E}$ , user model  $\mathcal{U}$ 
3:    $\mathcal{R} \leftarrow \{r_0, r_1, \dots, r_n\}$  ▷ Request sequence
4:    $\mathcal{C} \leftarrow \emptyset$  ▷ Conversation history
5:   for each request  $r_i \in \mathcal{R}$  do
6:      $\mathcal{T}_i \leftarrow \emptyset$  ▷ Turn sequence for request  $i$ 
7:      $q_{current} \leftarrow r_i$  ▷ Current query state
8:      $clarification\_count \leftarrow 0$ 
9:     while  $clarification\_count < \tau_{max}$  and not terminated do
10:       $response \leftarrow \mathcal{A}(q_{current}, \mathcal{C})$ 
11:      if  $response \in \Phi_{success}$  then ▷ Successful completion
12:        Record completion in  $\mathcal{T}_i$ 
13:        break
14:      else if  $response \in \Phi_{clarification}$  then ▷ Needs clarification
15:         $clarification \leftarrow \mathcal{U}(response.question, \mathcal{S})$ 
16:        if  $clarification = \perp$  then ▷ User cannot provide clarification
17:          Record incomplete in  $\mathcal{T}_i$ 
18:          break
19:        end if
20:         $q_{current} \leftarrow Enrich(r_i, clarification)$ 
21:         $clarification\_count \leftarrow clarification\_count + 1$ 
22:      else
23:        Record failure in  $\mathcal{T}_i$ 
24:        break
25:      end if
26:    end while
27:     $\mathcal{C} \leftarrow \mathcal{C} \cup \mathcal{T}_i$ 
28:  end for
29:  return  $\mathcal{C}$ 
30: end procedure

```

1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 C.2.2 USER SIMULATOR PROMPTS

1243
1244 The simulator takes a language model provider, ground truth data, and user intent as inputs. It
1245 maintains the conversation state and ensures responses are consistent with the user's information. The
1246 core of the simulation lies in two prompt templates that instruct a language model to act as a user:

```
1247 You are simulating a user who is interacting with an AI assistant.
1248 Original query: "{self.original_query}"
1249 User's intent for the CURRENT request: {self.user_intent}
1250 Information needed for the CURRENT request (do not reveal future
1251 intentions):
1252 {current_turn_ground_truth}
1253 Additional context:
1254 {self.context}
1255 The AI assistant has asked the following specific question:
1256 "{question}"
1257 Generate a realistic user response to this SPECIFIC question. The
1258 response should:
1259 Be natural and conversational
1260 ONLY provide information that directly answers the specific question
1261 asked
1262 NOT mention any future requests or intentions the user might have
1263 ONLY focus on the current task, not on future tasks
1264 Be concise and to the point
1265
1266 IMPORTANT: Never reveal future intentions. Respond ONLY to the specific
1267 question asked.
1268 NEVER BREAK CHARACTER. DO NOT THINK OUT LOUD. Respond directly as the
1269 user would:
```

1269 This template ensures the simulator provides natural, conversational responses that only address the
1270 specific question without revealing future intentions. For generating follow-up requests, the simulator
1271 uses this template:

```
1272 You are simulating a user who is interacting with an AI assistant.  
1273 Original query: "{self.original_query}"  
1274 User's intent: {self.user_intent}  
1275 Previous conversation:  
1276 {formatted_history}  
1277 Based on the conversation so far and the user's intent, decide if the  
1278 user would have a follow-up request.  
1279 Consider:  
1280 Has everything the user wanted been accomplished?  
1281 Is there a logical next step the user might want to take?  
1282 Has the agent clearly indicated that they've completed all necessary  
1283 tasks?  
1284 If you believe the user would have a follow-up request, provide it in a  
1285 natural, conversational way.  
1286 If you believe the conversation is complete, respond with "  
1287 CONVERSATION_COMPLETE".  
1288 NEVER BREAK CHARACTER, DO NOT THINK!  
1289 Decision:
```

1290 This template helps the simulator determine whether to generate a follow-up request based on the
1291 conversation context and predefined potential follow-ups. The User Simulator isolates ground truth
1292 information for each conversation turn, ensuring only relevant information is revealed at appropriate
1293 times. It tracks the original query, user intent, ground truth for tool calls, completed tool calls,
1294 potential follow-up queries, and the current conversation turn. By providing consistent, realistic user
1295 responses, the simulator allows for reproducible evaluation of clarification strategies across multiple
scenarios.

1296 C.3 BENCHMARK DOMAIN AREAS
12971298 This appendix describes the key characteristics of each API domain used in our experiments, detailing
1299 their initialization parameters, state management, and tool specifications.
13001301 **Gorilla File System Plugin (GFS).** The Gorilla File System API simulates a UNIX-like file system
1302 with a hierarchical directory structure. It maintains state through:
13031304 • Directory structure with nested files and subdirectories
1305 • Current working directory pointer
1306 • Each file contains content as strings
13071309 The plugin provides 18 tools implementing common file system operations such as navigation, file
1310 creation, modification, and content manipulation. Each tool supports parameters relevant to file
1311 system operations, such as file names, directory paths, and content strings. Table 10 provides detailed
1312 information about these tools and their parameter domains.1313 The GFS plugin’s domains depend heavily on the current state of the file system. Domain updates
1314 revolve primarily around available files and directories in the current working directory, as outlined
1315 in Table 11.
13161317 **Document Processing.** The Document API simulates operations for PDF document manipulation.
1318 Its state consists of:
13191320 • Number of pages in the current document
1321 • PDF filename metadata
1322 • Operation-specific context for page-based operations
13231325 The plugin provides 18 document manipulation tools including conversion, annotation, redaction,
1326 and page manipulation functions. Parameters include page numbers, text content, formatting options,
1327 and file paths. Table 7 details the tools and their parameter domains.1328 Domain updates in the Document Plugin focus on page numbers and ranges, adapting dynamically to
1329 changes in document length when pages are added or deleted, as shown in Table 11.
13301331 **Vehicle Control.** The Vehicle Control API simulates an automotive control system with:
13321333 • Engine state (running or stopped)
1334 • Door lock status for each door
1335 • Fuel level (ranging from 0 to 50 gallons)
1336 • Battery voltage
1337 • Climate control settings
1338 • Brake systems (pedal position and parking brake)
1339 • Lighting systems
1340 • Navigation state
13411345 This plugin implements 24 vehicle control tools that manipulate different aspects of the vehicle,
1346 including engine operations, door management, climate control, lighting, braking systems, and
1347 navigation. Table 9 details the specific tools and their parameter domains.
13481349 Vehicle Control domain updates primarily concern contextual constraints such as brake pedal position
for engine start, door states, and fuel level requirements, as referenced in Table 11.

1350

Travel. The Travel API simulates a travel booking and management system with:

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

- Credit card registry and balances
- Flight booking records
- User information (first name, last name)
- Budget limits
- Available routes with pricing data

The plugin provides 15 tools for travel-related operations, including flight bookings, credit card management, budget settings, and travel information queries. Table ?? details these tools and their parameter domains.

Domain updates in the Travel Plugin focus on available credit cards, booking IDs, and airport codes for valid routes, as detailed in Table 11.

Trading Bot. The Trading Bot simulates a stock trading platform with:

- Account information and balance
- Order records (pending, completed, cancelled)
- Stock data with prices and metrics
- Watchlist of stocks
- Transaction history
- Market status (open/closed)

This plugin provides 19 trading tools for account management, order placement, stock information retrieval, and market analysis. Table 8 lists the specific tools and their parameter domains.

Trading Plugin domain updates primarily involve available stocks, watchlist items, and order IDs, adapting to user actions like placing orders or modifying watchlists, as referenced in Table 11.

All plugins follow a consistent pattern for state initialization through configuration objects, domain updates based on state changes, and parameter validation. The dynamic nature of these domains presents particular challenges for language model interactions, as valid parameter values continuously evolve during conversations based on system state changes.

C.4 HUMAN ANNOTATION

We employed two graduate student annotators, aged 22-25. The annotators were proficient in English, and have proficiency in Python (relevant to test tool calls). The annotators were fairly compensated at the standard Graduate Assistant hourly rate, following their respective graduate school policies. Fig 8 shows a summary of the annotator guidelines. Two annotators assign a 5-point Likert score to every candidate query, and the final selected query for a sample is the one that receives the highest score. Inter-annotator agreement for the highest-scoring selections is given by Cohen’s $\kappa = 0.76$.

C.5 TOOL CALL CORRUPTION HEURISTICS

We handcrafted rules to corrupt validated tool calls in the ground truth data, to construct ClarifyBench-Infeasible.

GorillaFileSystem For the file system API, we implemented four primary corruption strategies:

- *Invalid File Name Corruption* targeting functions like `mkdir`, `touch`, and `cat` by inserting forbidden characters (e.g., `|`, `/`, `\`, `?`);
- *Path Traversal Corruption* for `cd`, `mv`, `cp`, and `find` operations by inserting relative paths `(..)` or absolute paths `(/root/)`;

1404	Tool Name	Argument	Description	Domain Type	Domain Values	Data Dep.	Required
1405	get_budget_fiscal_year	lastModifiedAfter includeRemoved	Date filter for fiscal years Include removed fiscal years	string string	Any date string Any string	N N	N N
1406							
1407	register_credit_card	card_number expiration_date cardholder_name card_verification_number	Credit card number Card expiration (MM/YYYY) Name on card CVV code	string string string numeric_range	Any card number MM/YYYY format Any name string [100, 999]	N N N N	Y Y Y Y
1408							
1409	get_flight_cost	travel_from travel_to travel_date travel_class	Departure airport code Arrival airport code Travel date Seat class	string* string* string finite	3-letter codes 3-letter codes YYYY-MM-DD [economy, business, first]	Y Y N N	Y Y Y Y
1410							
1411	get_credit_card_balance	card_id	Credit card identifier	string*	Card ID list	Y	Y
1412							
1413	book_flight	card_id travel_date travel_from travel_to travel_class travel_cost	Payment card ID Travel date Departure airport Arrival airport Seat class Flight cost	string* string string* string* finite numeric_range	Card ID list YYYY-MM-DD Airport codes Airport codes [economy, business, first] [0, 10000]	Y N Y Y N N	Y Y Y Y Y Y
1414							
1415	retrieve_invoice	booking_id insurance_id	Booking identifier Insurance identifier	string* string*	Booking ID list Insurance ID list	Y Y	N N
1416							
1417	list_all_airports				No arguments		
1418	cancel_booking	booking_id	Booking to cancel	string*	Booking ID list	Y	Y
1419							
1420	compute_exchange_rate	base_currency target_currency value	Source currency Target currency Amount to convert	finite finite numeric_range	[USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] [0, 1000000]	N N N	Y Y Y
1421							
1422	verify_traveller_information	first_name last_name date_of_birth passport_number	Traveler's first name Traveler's last name Birth date Passport number	string string string string	Any name Any name YYYY-MM-DD Any passport ID	N N N N	Y Y Y Y
1423							
1424	set_budget_limit	budget_limit	Budget limit in USD	numeric_range	[0, 10000]	N	Y
1425	get_nearest_airport_by_city	location	City name	finite	[Rivermist, Stonebrook, ...]	N	Y
1426							
1427	purchase_insurance	insurance_type booking_id insurance_cost card_id	Type of insurance Booking identifier Insurance cost Payment card ID	finite string* numeric_range string*	[basic, premium, deluxe] Booking ID list [0, 1000] Card ID list	N Y N Y	Y Y Y Y
1428							
1429	contact_customer_support	booking_id message	Booking reference Support message	string* string	Booking ID list Any message text	Y N	Y Y
1430	get_all_credit_cards				No arguments		

Table 6: Travel Plugin API: Complete Tool and Argument Specification with Domain Dependencies (without Importance column)

- *Non-existent Files Corruption* for file operation functions by generating random names or modifying existing names;
- *Duplicate Creation Corruption* for `mkdir` and `touch` operations by using existing file/directory names.

DocumentPlugin For the document manipulation API, we implemented three corruption strategies:

- *Invalid Page Range Corruption* for functions like `add_comment` and `delete_page` by setting zero/negative values or exceeding total pages;
- *Invalid Formats Corruption* for `convert` operations by using unsupported formats or partial strings;
- *Out of Range Values Corruption* for parameters like `font_size` and `transparency` by exceeding min/max bounds or using negative values.

VehicleControlAPI For the vehicle control API, we focused on two corruption categories:

- *Invalid Ranges Corruption* for functions like `fillFuelTank` and `adjustClimateControl` by exceeding capacity or using negative values;
- *Invalid Enums Corruption* for operations like `startEngine` and `setHeadlights` by supplying wrong enum values or case mismatches.

TravelAPI For the travel booking API, we implemented three corruption strategies:

- *Financial Constraints Corruption* for functions like `book_flight` by exceeding available balance or using negative values;
- *Invalid Routes Corruption* for route parameters by using non-existent airport codes or identical from/to locations;

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Tool Name	Argument	Description	Domain Type	Domain Values	Data Dep.	Required
duplicate	output_filename	Name of duplicate file	string	Any filename	N	Y
rename	output_filename	New filename	string	Any filename	N	Y
search	object_name	Search term/object	string	Any search term	N	Y
count_pages	No arguments					
compress_file	output_filename	Compressed output name	string	Any filename	N	N
convert	format output_filename zip	Target format Output filename Zip output files	finite string boolean	[pptx, doc, png, jpeg, tiff] Any filename [true, false]	N N N	Y Y N
add_comment	page_num coordinates font_size	Page number Comment position [x,y] Font size (points)	numeric_range* list numeric_range	[1, num_pages] [x, y] coordinates [8, 72]	Y N N	Y Y Y
redact_page_range	start end	Start page (inclusive) End page (inclusive)	numeric_range* numeric_range*	[1, num_pages] [1, num_pages]	Y Y	Y Y
redact_text	start end object_name overwrite output.pathname	Start page End page Text to redact (list) Overwrite original Output filename	numeric_range* numeric_range* list boolean string	[1, num_pages] [1, num_pages] List of text strings [true, false] Any filename	Y Y N N N	Y Y Y Y N
highlight_text	start end object_name overwrite output.pathname	Start page End page Text to highlight (list) Overwrite original Output filename	numeric_range* numeric_range* list boolean string	[1, num_pages] [1, num_pages] List of text strings [true, false] Any filename	Y Y N N N	Y Y Y Y N
underline_text	start end object_name overwrite output.pathname	Start page End page Text to underline (list) Overwrite original Output filename	numeric_range* numeric_range* list boolean string	[1, num_pages] [1, num_pages] List of text strings [true, false] Any filename	Y Y N N N	Y Y Y Y N
extract_pages	start end overwrite output.pathname	Start page End page Overwrite original Output filename	numeric_range* numeric_range* boolean string	[1, num_pages] [1, num_pages] [true, false] Any filename	Y Y N N	Y Y Y N
delete_page	page_num overwrite output.pathname	Page to delete Overwrite original Output filename	numeric_range* boolean string	[1, num_pages] [true, false] Any filename	Y N N	Y Y N
delete_page_range	start end overwrite output.pathname	Start page End page Overwrite original Output filename	numeric_range* numeric_range* boolean string	[1, num_pages] [1, num_pages] [true, false] Any filename	Y Y N N	Y Y Y N
add_signature	page_num position overwrite output.pathname	Page for signature Signature position Overwrite original Output filename	numeric_range* finite boolean string	[1, num_pages] [top-left, top-middle, ...] [true, false] Any filename	Y N N N	Y Y Y N
add_page_with_text	text_content font_size page_num	Page text content Text font size Insert position	string numeric_range numeric_range*	Any text content [8, 72] [1, num_pages+1]	N N Y	Y Y Y
add_watermark	watermark_text transparency	Watermark text Transparency level	string numeric_range	Any text [0.0, 1.0]	N N	Y Y
add_password	password	PDF password	string	Any password string	N	Y

Table 7: Document Plugin API: Complete Tool and Argument Specification with Domain Dependencies

1512

1513

Tool Name	Argument	Description	Domain Type	Domain Values	Data Dep.	Required
<i>No arguments</i>						
get_current_time					N	Y
update_market_status	current_time_str	Time in HH:MM AM/PM	string	HH:MM AM/PM format	N	Y
get_symbol_by_name	name	Company name	string	Any company name	N	Y
get_stock_info	symbol	Stock symbol	string*	Available stock symbols	Y	Y
get_order_details	order_id	Order identifier	numeric_range*	Existing order IDs	Y	Y
cancel_order	order_id	Order to cancel	numeric_range*	Existing order IDs	Y	Y
place_order	order_type	Buy or Sell	finite	[Buy, Sell]	N	Y
	symbol	Stock symbol	string*	Available stocks	Y	Y
	price	Price per share	numeric_range	[0.01, 10000.0]	N	Y
	amount	Number of shares	numeric_range	[1, 10000]	N	Y
make_transaction	xact_type	Transaction type	finite	[deposit, withdrawal]	N	Y
	amount	Transaction amount	numeric_range	[0.01, 1000000.0]	N	Y
<i>No arguments</i>						
fund_account	amount	Funding amount	numeric_range	[0.01, 1000000.0]	N	Y
remove_stock_from_watchlist	symbol	Stock to remove	string*	Watchlist stocks	Y	Y
get_watchlist					<i>No arguments</i>	
get_order_history					<i>No arguments</i>	
get_transaction_history	start_date	Start date filter	string	YYYY-MM-DD format	N	N
	end_date	End date filter	string	YYYY-MM-DD format	N	N
update_stock_price	symbol	Stock symbol	string*	Available stocks	Y	Y
	new_price	New stock price	numeric_range	[0.01, 10000.0]	N	Y
get_available_stocks	sector	Market sector	finite	[Technology, Automobile, Healthcare, Finance, Energy]	N	Y
filter_stocks_by_price	stocks	Stock list to filter	list	List of stock symbols	N	Y
	min_price	Minimum price	numeric_range	[0.01, 10000.0]	N	Y
	max_price	Maximum price	numeric_range	[0.01, 10000.0]	N	Y
add_to_watchlist	stock	Stock to add	string*	Available stocks	Y	Y
notify_price_change	stocks	Stocks to monitor	list	List of stock symbols	N	Y
	threshold	Change threshold (%)	numeric_range	[0.01, 100.0]	N	Y

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Table 8: Trading Plugin API: Complete Tool and Argument Specification with Domain Dependencies

Tool Name	Argument	Description	Domain Type	Domain Values	Data Dep.	Required
startEngine	ignitionMode	Engine ignition mode	finite	{START, STOP}	N	Y
fillFuelTank	fuelAmount	Fuel to add (gallons)	numeric_range	[0, 50-current_fuel]	Y	Y
lockDoors	unlock	Lock or unlock	boolean	[true, false]	N	Y
adjustClimateControl	door	Doors to operate	list*	[driver, passenger, rear_left, rear_right]	Y	Y
	temperature	Target temperature	numeric_range	[-10, 50]	N	Y
	unit	Temperature unit	finite	[celsius, fahrenheit]	N	N
	fanSpeed	Fan speed (0-100)	numeric_range	[0, 100]	N	N
	mode	Climate mode	finite	[auto, cool, heat, defrost]	N	N
get_outside_temperature_from_google					<i>No arguments</i>	
get_outside_temperature_from_weather_com					<i>No arguments</i>	
setHeadlights	mode	Headlight mode	finite	[on, off, auto]	N	Y
displayCarStatus	option	Status display option	finite	[fuel, battery, doors, climate, headlights, parkingBrake, brakePedal, engine]	N	Y
activateParkingBrake	mode	Brake mode	finite	[engage, release]	N	Y
pressBrakePedal	pedalPosition	Pedal position (0-1)	numeric_range	[0, 1]	N	Y
releaseBrakePedal					<i>No arguments</i>	
setCruiseControl	speed	Cruise speed (mph)	finite*	[0, 5, 10, ..., 120]	Y	Y
	activate	Activate cruise	boolean*	[true, false]	Y	Y
	distanceToNextVehicle	Following distance (m)	numeric_range	[0, 1000]	N	Y
get_current_speed					<i>No arguments</i>	
display_log	messages	Log messages	list	List of strings	N	Y
estimate_drive_feasibility_by_mileage	distance	Distance in miles	numeric_range	[0, 10000]	N	Y
liter_to_gallon	liter	Liters to convert	numeric_range	[0, 1000]	N	Y
gallon_to_liter	gallon	Gallons to convert	numeric_range	[0, 1000]	N	Y
estimate_distance	cityA	First city zipcode	finite	[83214, 74532, 56108, ...]	N	Y
	cityB	Second city zipcode	finite	[83214, 74532, 56108, ...]	N	Y
get_zipcode_based_on_city	city	City name	finite	[Riverton, Stonebrook, ...]	N	Y
set_navigation	destination	Destination address	string	Street, city, state format	N	Y
check_tire_pressure					<i>No arguments</i>	
find_nearest_tire_shop					<i>No arguments</i>	

1562
1563
1564
1565

Table 9: Vehicle Control Plugin API: Complete Tool and Argument Specification with Domain Dependencies

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

Tool Name	Argument	Description		Domain Type	Domain Values	Data Dep.	Required
<i>No arguments</i>							
pwd						N	N
ls	a	Show hidden files	boolean	[true, false]		Y	Y
cd	folder	Directory to change to	string*	Available directories + [... /]		Y	Y
mkdir	dir_name	New directory name	string	Any valid directory name		N	Y
touch	file_name	New file name	string	Any valid filename		N	Y
echo	content file_name	Text content Output file (optional)	string string	Any text string Any filename		N	N
cat	file_name	File to display	string*	Available files		Y	Y
find	path name	Search starting point Search pattern	string string	Any path Any search pattern		N	N
wc	file_name mode	File to count Count mode	string* finite	Available files [l, w, c]		Y	Y
sort	file_name	File to sort	string*	Available files		Y	Y
grep	file_name pattern	File to search Search pattern	string* string	Available files Any text pattern		N	Y
du	human_readable	Human readable format	boolean	[true, false]		N	N
tail	file_name lines	File to display Number of lines	string* numeric_range	Available files [1, 100]		Y	Y
diff	file_name1 file_name2	First file Second file	string* string*	Available files Available files		Y	Y
mv	source destination	Source file/directory Destination name	string* string*	Available items Available items + new names		Y	Y
rm	file_name	File/directory to remove	string*	Available items		Y	Y
rmdir	dir_name	Directory to remove	string*	Available directories		Y	Y
cp	source destination	Source file/directory Destination name	string* string*	Available items Available items + new names		Y	Y

Table 10: File System Plugin API: Complete Tool and Argument Specification with Domain Dependencies

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Plugin	Update Trigger	Dynamic Domain Updates	Affected Operations
Travel			
	Credit card registration	Card IDs → available payment methods	book_flight, get_credit_card_balance, purchase_insurance
	Flight booking	Booking IDs → cancellable/retrievable bookings	cancel_booking, retrieve_invoice, contact_customer_support
	Budget setting Route updates	Budget limits → financial constraints Airport codes → valid travel routes	All cost-related operations get_flight_cost, book_flight
Document			
	Page operations Document loading	Page count → valid page numbers Total pages → range constraints	All page-specific operations add_comment, delete_page, etc.
	Cache invalidation	State changes → domain refresh	Page-changing operations
Trading			
	Order placement	Order IDs → manageable orders	get_order_details, cancel_order
	Stock updates Watchlist changes	Available stocks → tradeable symbols Watchlist → removable stocks	place_order, get_stock_info remove_stock_from_watchlist
Vehicle			
	Fuel level changes Door state changes Engine state	Current fuel → addable amount Door status → operable doors Running/stopped → cruise control availability	fillFuelTank lockDoors setCruiseControl
File System			
	Directory navigation File operations Directory changes State synchronization	Current contents → available items File list → operable files Directory list → navigable paths FS changes → domain cache invalidation	cd, cat, mv, cp, rm File-specific operations cd, rmdir All state-changing operations

Table 11: Dynamic Domain Update Rules and Triggers Across Plugin System

1620

1621

1622

1623

1624

Human Annotation Guidelines

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

Required Checks

- **PII Removal:** Ensure no personal identifiers (names, emails, phone numbers, IDs) are present. Flag these queries for further processing.
- **Tool Call Validation:** If feasible, simulate or run tool calls to confirm validity and argument correctness.
- **Error Identification:** Mark and annotate any queries with logical inconsistencies, invalid parameters, or unsupported constraints.

Figure 8: Summary of instructions given to human annotators.

1656

1657

1658

- *Non-existent Booking Corruption* for functions like `cancel_booking` by generating random non-existent IDs.

1660

1661

TradingBot For the stock trading API, we implemented three corruption strategies:

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673