
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WORLD2MINECRAFT: OCCUPANCY-DRIVEN SIMU-
LATED SCENES CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Embodied intelligence requires high-fidelity simulation environments to support
perception and decision-making, yet existing platforms often suffer from data con-
tamination and limited flexibility. To mitigate this, we propose World2Minecraft
to convert real-world scenes into structured Minecraft environments based on 3D
semantic occupancy prediction. In the reconstructed scenes, we can effortlessly
perform downstream tasks such as Vision-Language Navigation(VLN). However,
we observe that reconstruction quality heavily depends on accurate occupancy
prediction, which remains limited by data scarcity and poor generalization in ex-
isting models. We introduce a low-cost, automated, and scalable data acquisition
pipeline for creating customized occupancy datasets, and demonstrate its effec-
tiveness through MinecraftOcc, a large-scale dataset featuring 100,165 images
from 156 richly detailed indoor scenes. Extensive experiments show that our
dataset provides a critical complement to existing datasets and poses a signifi-
cant challenge to current SOTA methods. These findings contribute to improving
occupancy prediction and highlight the value of World2Minecraft in providing a
customizable and editable platform for personalized embodied AI research. We
will publicly release the dataset and the complete generation framework to ensure
reproducibility and encourage future work.

1 INTRODUCTION

Embodied intelligence aims to develop intelligent agents that can perceive, understand, and interact
within complex environments. Progress in this field depends critically on the availability of high-
fidelity, diverse simulation environments supported by robust datasets. Platforms like Habitat (Savva
et al., 2019) is limited by their reliance on real-world scans, which not only yield scenes with visual
and geometric artifacts but uneditable, limiting their utility for agents that need to modify their
environment. Minecraft is widely used for reinforcement learning (Cai et al., 2023; Li et al., 2025;
Cai et al., 2024b; Zheng et al., 2025a; Cai et al., 2025b) for its customizable environments. However,
its blocky graphics create a stark reality gap. These limitations highlight the need for new simulation
platforms that are both highly flexible and editable, and also capable of maintaining visual realism.

Real-to-sim transfer presents an effective approach for this goal. However, current techniques like
NeRF (Mildenhall et al., 2021) and 3D Gaussian Splatting (Kerbl et al., 2023) often yield photoreal-
istic novel views but uneditable representations that lack physical properties. Similarly, CAD-based
methods (Avetisyan et al., 2019; Gümeli et al., 2022; Tyszkiewicz et al., 2022; Murali et al., 2017)
yield clean, lightweight scenes but require precise instance segmentation and can not be directly
used for downstream tasks. To reconcile realism with interactability, we utilize 3D semantic occu-
pancy (Cao & De Charette, 2022). Unlike implicit fields, its discrete voxel structure naturally aligns
with Minecraft blocks. This compatibility enables the direct translation of real-world scenes into
editable, physically grounded environments, bypassing complex mesh-to-block conversions.

Inspired by this, we propose World2Minecraft, a framework that reconstructs real-world scenes as
high-quality Minecraft environments by leveraging 3D semantic occupancy prediction as shown
in Figure 1. In contrast to existing methods, our approach is cost-effective, yields readily ed-
itable scenes, and is directly applicable to downstream tasks such as Vision-Language Navigation
(VLN) (Anderson et al., 2018). The framework operates by first predicting single-frame 3D seman-
tic occupancy, then integrating multi-frame observations via camera parameters (Wu et al., 2024)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to build a unified semantic occupancy field of the complete scene. The resulting representation can
be refined via a developed visual tool(as shown in Appendix J) before generating construction in-
structions for Minecraft. Executing these instructions faithfully reproduces the high-fidelity scene
in Minecraft.

After reconstructing real-world scenes in Minecraft, we conducted extensive experiments on down-
stream VLN tasks. To this end, we constructed MinecraftVLN, a dataset composed of 1,059 samples
from our reconstructed scenes, augmented with 2,483 additional samples from community-created
large-scale scenes to increase scale and diversity. We defined two subtasks—Next-View and Next-
Action—and fine-tuned Qwen2.5-VL-3B (Bai et al., 2025) and Qwen2.5-VL-7B (Wang et al., 2024)
on each, achieving notable performance gains. Real-time navigation was successfully demonstrated
by employing Gemini-2.5-Pro (Comanici et al., 2025) as the controller for an agent in the recon-
structed Minecraft environments. However, the reconstruction quality remained sub-optimal for
practical use. We identified that accurate semantic occupancy prediction is critical to reconstruc-
tion fidelity and scalability, yet it faces two major limitations: (1) heavy reliance on large-scale,
expensively annotated data (Sze et al., 2025), and (2) dataset constraints such as limited diversity,
poor coverage, and sensor noise (Liu et al., 2023), which hinder model generalization in complex
real-world scenarios.

To advance the generalization of scene occupancy prediction, we introduce a novel, low-cost, and
automated pipeline for generating customized semantic occupancy datasets, which significantly
reduces the traditional reliance on expensive manual annotation or limited real-world scans. We
demonstrate its effectiveness through MinecraftOcc, a large-scale dataset produced by this pipeline,
featuring 100,165 high-resolution images captured from continuous roomtour across 156 richly de-
tailed indoor scenes constructed in Minecraft. By leveraging mods for physically-based rendering
and precise layout control, we automatically generate visually realistic environments with complex
structures, diverse objects, and dynamic lighting, effectively narrowing the sim-to-real gap. Ex-
periments show that current occupancy models perform poorly on MinecraftOcc, revealing clear
generalization limits. Moreover, when used as auxiliary training data, it enhances performance on
real-world benchmarks like NYUv2(Silberman et al., 2012), confirming its dual role as a challeng-
ing benchmark and an effective data augmentation resource for improving model robustness. In
summary, the main contributions of this paper are as follows:

• We introduce World2Minecraft, a pipeline for real-world scene reconstruction in Minecraft
via semantic occupancy prediction.

• We conduct VLN task within the reconstructed scenes, during which we construct the
MinecraftVLN dataset to validate the practical utility of our approach.

• We propose an automated pipeline for semantic occupancy data generation, and present the
large-scale MinecraftOcc benchmark, which exposes the generalization limits of existing
methods and serves as effective training data for enhancing robustness.

2 RELATED WORK

2.1 DATA-DRIVEN 3D SCENE GENERATION

In embodied intelligence research, real-to-sim transfer—converting real-world scenes into simu-
lated environments—remains a critical yet challenging task. Generative approaches, such as 3D-
GPT (Sun et al., 2025a) and SceneCraft (Yang et al., 2024), excel in creating novel content from ab-
stract inputs but not designed to faithfully reconstruct specific, existing real-world locations.While
WonderWorld (Yu et al., 2025) generates 3D worlds from a single image but lack the semantic de-
composability and editability. Similarly, CAD-based methods (Avetisyan et al., 2019; Gümeli et al.,
2022; Tyszkiewicz et al., 2022; Murali et al., 2017) yield clean and lightweight scene representa-
tions. However, they rely heavily on precise instance segmentation and accurate scale alignment be-
tween the retrieved CAD models and the real-world scene, which hinders their direct application in
downstream tasks. Recent methods like LiteReality (Huang et al., 2025) simplify real-to-virtual con-
version, yet remain limited in object and scene diversity, and cannot be directly used for downstream
tasks. We propose a low-cost and easily editable method for real-to-sim conversion by leveraging
occupancy prediction, enabling the direct application of reconstructed environments to downstream
tasks like VLN in Minecraft.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Framework of our World2Minecraft, which illustrates the process of reconstructing
real-world scenes into Minecraft environments and subsequently conducting navigation within these
scenes. 1) For the transfer reality to Minecraft, RGB images are input into the occupancy prediction
model to predict semantic occupancy, which is then preprocessed to generate instructions for recon-
struction in Minecraft. 2) VLN tasks involving Next-View and Next-Action are performed within
the reconstructed scenes.

2.2 INDOOR 3D OCCUPANCY PREDICTION DATASET

3D occupancy prediction is essential for comprehensive indoor scene understanding. However, the
development of accurate models is hampered by the scarcity of large-scale, high-quality annotated
data. Existing datasets, such as NYUv2 (Silberman et al., 2012), OccScanNet (Yu et al., 2024),
and EmbodiedOcc-ScanNet (Wu et al., 2024), are typically derived from real-world scans. They
consequently suffer from limitations including sensor noise, sparse annotations, and constrained
object diversity, while being costly and time-consuming to produce. These challenges underscore the
need for a more efficient data creation paradigm. In response, we propose an automated and labor-
efficient pipeline for synthesizes high-fidelity voxel occupancy with rich semantics at a fraction of
the cost, enabling scalable and diverse data generation for robust model training.

2.3 EMBODIED INTELLIGENCE RESEARCH IN MINECRAFT

Minecraft has been widely used for embodied intelligence and reinforcement learning research (Cai
et al., 2025a; Zheng et al., 2025a; Cai et al., 2024b; Wang et al., 2023), with many works built upon
MineStudio (Cai et al., 2024a), a streamlined open-source framework that unifies simulation and
data management. To this end, ROCKET-1 (Cai et al., 2025b) leverages visual-temporal context
prompting to master open-world interactions, JARVIS-VLA (Li et al., 2025) post-trains large-scale
vision-language models to perform diverse in-game tasks with keyboards and mouse, and GROOT
(Cai et al., 2023) learns to follow instructions by watching gameplay videos. Despite these advances,
all these approaches operate in Minecraft’s native blocky visuals, which exhibit a substantial reality
gap compared to real-world scenes. To address this limitation, we integrate high-fidelity community
mods, significantly narrowing the visual and structural gap and providing a more effective simulation
environment for embodied intelligence.

3 METHOD
3.1 PRELIMINARIES

Minecraft serves as a valuable platform for embodied AI research due to its voxel-based, spatially
discretized world and consistent physical mechanics. However, the vanilla game presents limitations
for perception-related tasks, including a significant visual domain gap from reality, limited seman-
tic diversity of blocks, and simplistic indoor structures. To address these issues, we developed a
customized environment using different mods, including WorldEdit, Screen with Coordinates and
TMEO. A detailed introduction to the standard environment and our modifications is provided in
Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Dataset Construction Pipeline for MinecraftVLN. We segment roomtour sequences
into valid trajectories, then generate instruction-following Question-Answer pairs using the collected
coordinates and orientations to construct Next-View and Next-Action dataset.

3.2 WORLD2MINECRAFT: TRANSFER REALITY TO MINECRAFT

We propose World2Minecraft, a framework that converts real-world scenes into Minecraft via 3D
semantic occupancy prediction (Fig. 1(1)). As detailed in Algorithm 1 (Appendix C), our method
establishes an end-to-end pipeline from multi-view perception to executable Minecraft commands.
The core of our method addresses 3D semantic occupancy prediction from a sequence of first-person
images I = {I1, I2, . . . , IN} along with their corresponding camera intrinsic parameters K. First,
we employ a monocular predictor Fmono that generates per-view semantic occupancy grids Oi

mono
from individual RGB images, where each voxel is assigned a semantic label from C total classes:

Oi
mono = Fmono(Ii,K) ∈ {0, 1, . . . , C − 1}X×Y×Z . (1)

When the per-image occupancy predictions are obtained, we leverage camera extrinsic parameters
E to merge them into a unified 3D semantic representation Ôscene:

Ôscene = Fembodied
(
{Oi

mono}Ni=1,K, E
)
∈ {0, 1, . . . , C − 1}X×Y×Z (2)

To identify potential object centers, we first convert the multi-class semantic grid Ôscene into a binary
occupancy grid Ôbinary, where voxels corresponding to any object class are marked as 1 and empty
voxels as 0. We then compute a local occupancy density map D on this binary grid by applying a
3D convolution with a uniform kernel K ∈ Rk×k×k. Potential centers C are identified by applying
a density threshold τ :

C =
{
v
∣∣∣ D(v) ≥ τ,D = K ∗ Ôbinary,v ∈ Ôscene

}
(3)

where ∗ denotes the 3D convolution, and v = (x, y, z) represents voxel coordinates.These initial
center points C = {cj}Mj=1 are often redundant. To obtain a accuarte and representative set of object
locations, we cluster these points using the DBSCAN (Ester et al., 1996) algorithm. Clustering
is performed independently for the center points within each semantic class. This ensures that
points with different semantic labels are not grouped together, preserving the categorical integrity
of objects. It groups points based on a distance threshold η, using the L2 norm as the metric. Each
resulting cluster is then represented by its centroid, forming a refined set of centers C′:

C′ =
{

1

|Gµ|
∑

v ∈ Gµ
∣∣∣∣ G(µ) = {v ∈ C | |v − µ|2 ≤ η} , µ ∈ C

}
(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Dataset Construction Pipeline for MinecraftOcc. We record coordinate data during
roomtour, divide the viewpoint into two yaw-based cases to define view regions(the yellow indicates
invisible areas; green indicates visible areas), and extract semantic occupancy from map data.

This process yields a refined set of centers C′ = {c′k}Kk=1 (K ≤ M), where each centroid identifies
a distinct object instance. Before final rendering, to ensure geometric fidelity, we employ a retrieval-
based matching mechanism. Specifically, we align each instance’s extracted occupancy gridOk with
a candidate furniture library L = {Tj}Mj=1. We address orientation ambiguity by iterating through
a discrete set of rotation angles θ, selecting the optimal template and rotation that maximize spatial
overlap:

(j∗, θ∗) = argmax
j,θ

|Ok ∩ Rot(Tj , θ)|
|Ok ∪ Rot(Tj , θ)|

(5)

Once the optimal geometric representations are retrieved, they are translated into Minecraft building
commands to render the complete virtual scene.

3.3 ENABLING VLN IN MINECRAFT

Preparations. To conduct VLN in the reconstructed scene within Minecraft, we reconstructed all
real-world indoor scenes from the validation set of EmbodiedOcc-ScanNet dataset (Wu et al., 2024)
in Minecraft. Due to the limited accuracy of current prediction models, we selected 15 scenes
for manual refinement to ensure high fidelity. However, we observed that the limited scale of the
reconstructed scenes resulted in a navigation dataset with relatively short and simple instructions. To
address this, we incorporated 5 additional community-created Minecraft scenes, thereby increasing
the complexity and diversity of the instruction set (as shown in Figure 6 and Table 8). An agent was
subsequently directed to perform room tours within these 20 selected scenes, generating a series of
image sequences annotated with positions and orientations.

MinecraftVLN Dataset Construction. As shown in Figure 2, the dataset was constructed by
processing trajectories from the roomtour image sequence to extract meaningful navigation seg-
ments. Human annotators provided detailed textual descriptions for each segment. Using a question-
answering template, we generated 3,801 items in total(as shown in Table 9): 1,059 samples (Base)
from the real-world reconstructed scenes and 2,483 samples (Extend) from the community-created
scenes. The combined dataset (Combined) merges the aforementioned Base and Extend sets.

The MinecraftVLN dataset includes two distinct tasks: 1)Next-View Prediction: The agent receives
a natural language instruction and a sequence of three historical images. It must first localize its
current navigation step based on the instruction and visual context, and then predict the next most
probable view. 2)Next-Action Prediction: Given the instruction and the current view, the agent
identifies its current progress within the instruction and predicts the next action (e.g., move forward,
turn left) to comply with the instruction.

Conduct VLN in Minecraft. We conducted experiments in two key directions. First, we fine-tuned
Qwen2.5-VL (Wang et al., 2024; Bai et al., 2025) on the MinecraftVLN. Second, we deployed
Gemini-2.5-Pro (Comanici et al., 2025) for direct embodied navigation control in Minecraft. De-
tailed experimental setups and results are presented in Sec. 4.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison between MinecraftOcc, NYUv2, and OccScanNet across key statistics.

Dataset Num. of Images Num. of Scenes Num. of Classes Total Semantic Voxels Avg. Voxels per Scene Image Resolution
NYUv2 1,449 464 13 10,786,528 ∼23.2K 640× 480
OccScanNet 65,119 674 13 201,215,233 ∼298.5K 640× 480
MinecraftOcc 100,165 156 (∼1,000 rooms) 1,452 733,280,256 ∼4.7M 1920× 1129

3.4 MINECRAFTOCC DATASET CONSTRUCTION

In this section, we will detail our automated semantic occupancy generation pipeline and the
MinecraftOcc dataset built upon it.

Problem Definition. The 3D occupancy prediction task (as detailed in Sec. 3.2) infers the geometric
and semantic structure of a scene from a set of first-person images I, along with their camera
intrinsic parameters K and extrinsic parameters E .

Image and Camera Parameter Acquisition. To acquire our dataset, we used an automated mod
tool, Screen with Coordinates, which simultaneously captures first-person screenshots and records
the corresponding camera pose (3D position and orientation). With this paired data of images and
poses, we compute the corresponding intrinsic and extrinsic camera matrices for each image. The
detailed methodology for deriving these matrices from the virtual camera’s Field of View (FOV),
position, and orientation is elaborated in Appendix D.

Single-Image Occupancy Extraction Strategy. To generate semantic occupancy labels for each
image, we define a fixed-size 3D spatial volume V , with a minimum corner vmin and a maximum
corner vmax. To accurately define the 3D spatial region based on the player’s viewpoint, we cat-
egorize the player’s yaw angle θ into two fundamental cases (in fact, all possible viewpoints can
be ultimately categorized into these two cases) based on its orientation relative to the world grid:
axis-aligned(as shown Case 1 in Figure 3), where the viewpoint is parallel to a coordinate axis, and
diagonal(as shown Case 2 in Figure 3), where the viewpoint is directed along a 45-degree angle to
the axes. For the axis-aligned case, we set the player’s position Pplayer = (xp, yp, zp) as the center
of the V’s back face. For the diagonal case, we set the Pplayer as the volume’s minimum corner vmin.
This logic is formalized by the calculation function f :

(vmin,vmax) = f(Pplayer, θ, w, h, d) (6)

where (w, h, d) are the dimensions of the volume, and each point v ∈ V satisfies the boundary
constraints vmin ≤ v ≤ vmax.

Due to the discrete nature of Minecraft’s space, diagonal views often suffer from significant voxel
loss at the periphery. To mitigate this, we designed a viewpoint-aware fallback strategy. This strat-
egy supplements structural information from slightly adjusted neighboring viewpoints based on the
original view, significantly enhancing the completeness of the data labels and improving stability
and robustness during training. Specifically, we apply a correctional offset, ϵ, to the bounding box
corners vmin and vmax:

v′
min = vmin + ϵ

v′
max = vmax + ϵ

(7)

This adjustment expands the player’s visible range, resulting in a field of view that more accu-
rately reflects their actual perspective, while sacrificing only a minimal portion of the depth-of-field
area—a negligible loss in terms of overall visual coverage.

Occupancy Semantic Data Construction. To obtain semantic labels, we utilized the WorldEdit
mod to extract the block types at these coordinates from the map data. This can be viewed as
querying a world-map function, Mworld, which maps any coordinate v to a semantic label s from
a set of all possible block types S = {air, stone, wood, ...}, which allowed us to construct the final
voxel-level semantic occupancy representation, a grid O:

sv = Mworld(v), ∀v ∈ V (8)

O = {sv | v ∈ V} (9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: The reconstruction results from reality to Minecraft are presented above. As we can
observe that from View 1 to View 3, the Reality row and the Minecraft row demonstrate a high
degree of consistency. The Prediction column displays the predicted occupancy views from different
perspectives of the same scene, while the corresponding reconstructed scenes in the Construction
column align well with them.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our experimental setup employs multiple datasets to evaluate different aspects of the
proposed method and dataset. We employ the EmbodiedOcc-ScanNet dataset (Wu et al., 2024)
to train occupancy prediction model, which is the core of the World2Minecraft. For evaluating
downstream task performance, we introduce the MinecraftVLN dataset including Next-View and
Next-Action. We also introduce MinecraftOcc to evaluate the existing methods and employ the
NYUv2 dataset for comparative analysis and mixed-training experiments.

Evaluation Metrics. We employ standard metrics for each aspect of our evaluation: Accuracy for
the VLN task, mean Intersection over Union (mIoU) and Intersection over Union (IoU) for occu-
pancy prediction, and no-reference image quality metrics including Natural Image Quality Evaluator
(NIQE), Perception-based Image Quality Evaluator (PIQE), and Laplacian Variance (LV) to assess
dataset realism (see Appendix H for details).

4.2 THE RESULTS OF WORLD2MINECRAFT

Implementation Details. We employed the pre-trained EmbodiedOcc (Wu et al., 2024) model to
reconstruct real-world scenes from the full validation set of EmbodiedOcc-ScanNet (Wu et al., 2024)
in Minecraft. From these reconstructions, we selected 30 scenes for meticulous manual refinement
to enhance their structural completeness and visual quality. Among these, 15 high-quality scenes
were chosen to construct the MinecraftVLN dataset, which also serves as the platform for develop-
ing and evaluating embodied navigation agents controlled by large language models. As the initial
automated reconstructions were suboptimal due to inherent model limitations, manual refinement ef-
fectively restored geometrically consistent layouts, particularly in the accurate placement of modern
indoor furniture, as demonstrated in the resulting scenes.

Analysis. The reconstruction results from reality to Minecraft are presented in Figure 4. As we
can observe that from View 1 to View 3, the Reality row and the Minecraft row demonstrate a
high degree of consistency. The Prediction column displays the predicted occupancy views from
different perspectives of the same scene, while the corresponding reconstructed scenes in the Con-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Across three distinct MinecraftVLN settings, the performance (Accuracy) of Qwen2.5-
VL models (3B and 7B) on Next-View and Next-Action tasks under No Training, SFT, and RFT
conditions is evaluated.

Dataset Task Qwen2.5-VL-3B Qwen2.5-VL-7B
Composition No Train SFT RFT No Train SFT RFT

Base Next-View 0.2195 0.5610 0.2927 0.3905 0.5854 0.4390
Next-Action 0.1943 0.7200 0.6343 0.3829 0.8000 0.6343

Extend Next-View 0.2261 0.7087 0.3043 0.2913 0.6826 0.6043
Next-Action 0.3657 0.5437 0.6667 0.3786 0.6019 0.6343

Combined Next-View 0.2288 0.5609 0.3137 0.2878 0.6642 0.6753
Next-Action 0.3037 0.4835 0.6570 0.3760 0.6281 0.6219

Figure 5: The result of a Gemini-2.5-Pro controlled agent performing VLN in our reconstructed
scene. Following the natural language instruction “Go to the piano”, the agent successfully navigates
to the target step by step.

struction column align well with them, which collectively demonstrates the effectiveness of our
World2Minecraft pipeline.

4.3 THE RESULT OF VLN IN MINECRAFT

Implementation Details. We conducted VLN in the reconstructed Minecraft environment. We first
collected a navigation dataset within the 15 scenes mentioned in Sec. 4.2. However, we observed
that the limited scale of the reconstructed scenes resulted in a navigation dataset with relatively short
and simple instruction sequences (denoted as Base). To mitigate this, we extended data collection
to community-built Minecraft scenes (denoted as Extend), thereby increasing the complexity and
diversity of the instruction set (as shown in Figure 6 and Table 8). The combined dataset (denoted
as Combined) was then used for evaluation. We evaluated two subtasks, Next-View and Next-
Action, across all three dataset settings. For each setting, experiments were conducted under three
conditions: No training, Supervised Fine-Tuning (SFT) based on LLama-Factory (Zheng et al.,
2024), and Reinforcement Fine-Tuning (RFT) based on EasyR1 (Zheng et al., 2025b), adopting
Qwen2.5-VL(3B and 7B) models as the base model. The results are summarized in Table 2.

Analysis. The experimental results confirm that, as a baseline, the 7B model outperforms the 3B
model in zero-shot settings, and both SFT and RFT lead to significant performance gains. However,
the optimal fine-tuning strategy is not uniform. On the more challenging multi-image Next-View
task, SFT proves more effective for the smaller 3B model, while the performance gap between SFT
and RFT narrows considerably for the larger 7B model. Conversely, on the Next-Action task, the
best method depends on the dataset: SFT excels on the Base set, whereas RFT shows superior
performance on the more diverse Extend and Combined sets. These results collectively validate the
effectiveness of our dataset and demonstrate the feasibility of conducting complex navigation tasks
within the reconstructed Minecraft environments.

Application in Minecraft. We deploy Gemini-2.5-Pro to control an agent performing VLN in a
World2Minecraft reconstructed scene. The agent successfully locates a target piano by following
natural language instructions “Go to the piano” as shown in Figure 5, demonstrating the practical
utility of our environment for embodied AI.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 EXPERIMENTAL RESULTS ABOUT MINECRAFTOCC

Implementation Details. We first compared MinecraftOcc with the NYUv2 and OccScanNet
datasets in terms of scene count, image count, resolution, and image quality as shown in Fig-
ure 1. To ensure an objective evaluation, we randomly selected 100 images from each dataset
to assess image quality using the NIQE, PIQE, and LV metrics. For the occupancy predic-
tion experiments, and to ensure a fair comparison with NYUv2 and OccScanNet, we mapped
the 1,452 classes in MinecraftOcc to their 13 corresponding categories (see Appendix G for the
detailed mapping). We initially evaluated several methods on our dataset at three scales (8k,
50k, and 100k), including MonoScene (Cao & De Charette, 2022), NDCScene(Yao et al., 2023),
ISO(Yu et al., 2024), and Symphonies (Jiang et al., 2024). Additionally, we conducted joint
training experiments combining Symphonies with NYUv2 and the 8k-scale MinecraftOcc dataset.

Table 3: Image quality comparison across datasets
using NIQE(↓), PIQE(↓), and LV(↑).

Dataset NIQE ↓ PIQE ↓ LV ↑
NYUv2 14.96 47.40 57,369
OccScanNet 17.63 58.78 10,352
MinecraftOcc 9.97 45.23 274,305

Analysis. Experimental results demonstrate
that our MinecraftOcc dataset significantly out-
performs NYUv2 and OccScanNet in terms of
image quantity and metrics including NIQE,
PIQE, and LV as shown in Table 3. As the re-
sults in Table 4, existing mainstream methods
generally achieve relatively low performance,
indicating the unique challenges presented by
our dataset. Notably, MonoScene, which delivers average performance on NYUv2, demonstrates re-
markable stability on MinecraftOcc. We hypothesize that this is because other methods are overfitted
to the NYUv2 dataset, leading to performance degradation when evaluated on a different dataset.
Furthermore, after joint training with the NYUv2 dataset on Symphonies(Jiang et al., 2024), im-
provements in both IoU(+0.43) and mIoU(+0.21) were observed, suggesting that the MinecraftOcc
dataset can effectively complement existing datasets, which is in Table 5.

Table 4: Minecraftocc Dataset results under different training settings.

Setting Method IoU mIoU Precision Recall em
pt

y

ce
ili

ng

flo
or

w
al

l

w
in

do
w

ch
ai

r

be
d

so
fa

ta
bl

e

tv
s

fu
rn

itu
re

ob
je

ct
s

8k

Monoscene 40.66 20.93 48.54 71.46 89.10 54.28 78.68 32.14 0.00 11.20 12.56 13.15 8.67 1.94 10.86 6.74
NDC-Scene 37.06 17.82 46.51 65.57 88.42 46.01 79.10 28.03 0.00 9.37 3.26 5.81 11.86 0.81 8.18 3.61
ISO 33.82 14.83 37.16 79.00 83.14 48.42 78.33 27.08 0.00 1.30 0.13 2.49 1.44 0.40 3.48 0.07
Symphonies 39.11 21.56 49.30 65.42 89.05 49.39 77.16 31.06 2.80 12.24 13.27 13.26 13.77 4.95 11.11 8.13

50k

Monoscene 39.51 19.61 54.00 59.55 91.37 52.93 83.99 27.68 2.57 9.70 5.82 8.78 5.53 3.25 9.56 5.90
NDC-Scene 37.97 19.45 48.81 63.10 90.52 49.87 83.49 26.98 5.77 10.38 6.29 10.21 4.96 3.37 6.88 5.72
ISO 35.07 15.69 42.06 67.82 88.22 44.46 80.81 25.40 0.56 2.98 3.07 4.05 3.50 1.17 5.02 1.55
Symphonies 37.28 19.61 51.17 57.88 90.95 50.93 84.43 25.58 5.12 8.08 7.00 8.66 6.48 5.14 9.01 5.32

100k

Monoscene 29.23 14.56 50.39 41.03 90.89 24.39 52.85 24.42 2.40 9.73 10.45 8.62 7.48 7.86 6.46 5.53
NDC-Scene 28.08 12.96 41.09 47.02 88.91 26.12 52.81 22.83 1.11 6.93 8.26 6.86 6.41 2.76 4.61 3.85
ISO 23.20 8.15 42.35 33.90 89.66 20.79 49.18 18.80 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00
Symphonies 27.60 13.08 34.78 57.23 86.14 26.05 61.02 21.27 2.97 6.06 5.90 5.74 4.79 2.50 4.53 3.05

Table 5: Performance comparison on NYU V2 Dataset. * Represents the model trained on a mixture
of the MinecraftOcc 8k and NYUv2 training sets, and evaluated on the NYUv2 test set.

Method IoU mIoU ce
ili

ng

flo
or

w
al

l

w
in

do
w

ch
ai

r

be
d

so
fa

ta
bl

e

tv
s

fu
rn

itu
re

ob
je

ct
s

LMSCNet 33.93 15.88 4.49 88.41 4.63 0.25 3.94 32.03 15.44 6.57 0.02 14.51 4.39
AICNet 30.03 18.15 7.58 82.97 9.15 0.05 6.93 35.87 22.92 11.11 0.71 15.90 4.56
3DSketch 38.64 22.91 8.53 90.45 9.94 5.67 10.64 42.29 29.21 13.88 9.38 23.83 8.19
Monoscene 42.51 26.94 8.89 93.50 12.06 12.57 13.72 48.19 36.11 15.13 15.22 27.96 12.94
NDC-Scene 44.17 29.03 12.02 93.51 13.11 13.77 15.83 49.57 39.87 17.17 24.57 31.00 14.96
Symphonies 49.91 29.70 14.54 86.59 25.95 15.96 16.78 46.60 38.06 15.37 15.32 32.16 19.58
Symphonies* 50.34 29.91 13.96 88.55 26.18 17.26 17.22 45.83 38.94 17.38 12.29 32.58 18.88

4.5 COMPARISON WITH LAYOUT-BASED RECONSTRUCTION METHODS

Implementation Details. To validate the advantages of our occupancy-based reconstruction over
layout-based methods, we compare World2Minecraft with the recent indoor scene generation meth-
ods: LayoutGPT (Feng et al., 2023), I-Design (Çelen et al., 2024), and LayoutVLM (Sun et al.,
2025b). These methods generate scenes from textual descriptions but lack the geometric precision
required for embodied AI tasks. We adapt them to our real-to-sim setting by converting input im-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Comparison with layout-based scene generation methods.

Method OOB ↓ Collision ↓ Semantic ↑ Visual ↑ Complete ↑ Aesthetic ↑
LayoutGPT 0.279 4.5 0.689 5.000 3.856 4.582
I-Design 0.423 0 0.884 6.001 4.734 5.352
LayoutVLM 0 0.9 0.348 3.625 2.270 2.708
World2Minecraft 0.024 0.2 0.913 6.145 5.186 6.022

Table 7: Detailed efficiency breakdown comparing our pipeline with building from scratch.

Metric Details World2Minecraft Build from Scratch Improvement
Total Time (seconds) 70.38 482.00 –

World2Minecraft (Automated) 5.88 – –
Refinement (Manual) 64.50 482.00 7.5×

Total Operations 24.50 340.00 13.9×
Addition Actions 9.70 319.30 32.9×
Deletion Actions 7.60 – –
Orientation Adjustments 7.20 20.70 2.9×

ages into textual descriptions using GPT-4o, which are then used to generate scene layouts. For a fair
comparison, we use the same set of scenes from the MinecraftVLN dataset that were manually re-
fined in our World2Minecraft evaluation. Our evaluation employs six metrics spanning functionality
and aesthetics: OOB Rate (percentage of objects placed outside room boundaries), Collision Count
(number of intersecting objects), Semantic Integrity (the ratio of generated semantic categories to
the total categories present in the ground truth scene), and Visual Realism, Scene Completeness,
and Aesthetic Atmosphere (perceptual scores rated by GPT-4o on a scale of 1-10 assessing realism,
completeness, and aesthetic appeal, respectively).

Analysis. As shown in Table 6, World2Minecraft outperforms baselines across most metrics, no-
tably achieving 0.913 in Semantic Integrity and 6.145 in Visual Realism. The minimal OOB Rate
(0.024) and Collision Count (0.2) reflect superior spatial awareness, whereas layout-based meth-
ods (e.g., LayoutGPT, LayoutVLM) struggle with geometric conflicts and plausibility. This suc-
cess stems from the combination of semantic occupancy prediction and shape-aware template
matching, which captures fine-grained geometry to ensure the precise alignment vital for avoiding
obstacles in downstream VLN tasks.

4.6 EFFICIENCY ANALYSIS OF MANUAL REFINEMENT
Implementation Details. We conducted a controlled efficiency experiment comparing
World2Minecraft with refinement against building scenes entirely from scratch. For 15 scenes from
the MinecraftVLN-Base dataset, we measured the total time and operation counts. Experienced
builders created equivalent scenes from scratch as a baseline. The manual refinement involves three
simple, lightweight operations: Deletion of floating artifacts, Completion of minor surface holes,
and Adjustment of object orientations.

Results. As shown in Table 7, World2Minecraft with refinement requires only 70.38s per scene—a
7× reduction compared to building from scratch (482.00s). The refinement process itself involves
an average of 24.5 operations (e.g., 9.7 hole fillings, 7.6 noise deletions, 7.2 orientation adjust-
ments), compared to 340 operations for complete scene construction. This efficiency stems from our
pipeline providing a high-quality initial reconstruction, requiring only minimal corrections. These
corrections address imperfections inherent to any reconstruction algorithm, ensuring navigability for
VLN tasks.

5 CONCLUSION
In this work, we introduce World2Minecraft, a framework that converts real-world scenes into struc-
tured Minecraft environments via 3D semantic occupancy prediction. We also propose scalable
data construction pipeline and we build MinecraftOcc, a large-scale dataset of diverse indoor
scenes with voxel-wise semantic annotations. Our experiments demonstrate the utility of these
reconstructed environments for downstream VLN tasks and establish MinecraftOcc’s dual value
as both a challenging new benchmark that exposes limitations in state-of-the-art models, and as a
powerful resource for augmenting existing real-world datasets. To foster reproducibility and future
research, we will publicly release our complete framework and dataset.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work aims to advance embodied AI in an ethical way, focusing on safety, transparency, and re-
peatability. All data in this study are artificially created inside the Minecraft virtual world, which of-
fers a controlled and consistent experimental setup. The MinecraftOcc and MinecraftVLN datasets
are built entirely from simulated scenes and include no real human data, private details, or identifi-
able personal spaces. This approach avoids privacy issues that come with collecting real-world data.
By working mainly in simulation, we also lower the safety risks and resource use typically involved
in real robot experiments.

REPRODUCIBILITY STATEMENT

To reproduce the work presented in this paper, follow these steps in sequence:

1. Download the World2Minecraft code along with the MinecraftOcc and MinecraftVLN
datasets.

2. Train the EmbodiedOcc model using the provided configuration and training scripts.
3. Feed the predictions from the trained EmbodiedOcc model into the World2Minecraft

pipeline to generate corresponding Minecraft construction commands.
4. Prepare a Minecraft environment with the TMEO Mod installed and execute the generated

commands to reconstruct the scenes.
5. Conduct Vision-Language Navigation (VLN) tasks using the provided evaluation scripts

within the reconstructed Minecraft scenes.
6. Collect image sequences using the Screenshot with Coordinates tool for data acquisition

purposes.
7. Extract map data using the WorldEdit utility to obtain scene layout information.
8. Generate occupancy data using the provided processing scripts to create the final dataset

format.

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3674–3683, 2018.

Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X Chang, and Matthias
Nießner. Scan2cad: Learning cad model alignment in rgb-d scans. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern recognition, pp. 2614–2623, 2019.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Groot: Learning
to follow instructions by watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023.

Shaofei Cai, Zhancun Mu, Kaichen He, Bowei Zhang, Xinyue Zheng, Anji Liu, and Yitao
Liang. Minestudio: A streamlined package for minecraft ai agent development. arXiv preprint
arXiv:2412.18293, 2024a.

Shaofei Cai, Bowei Zhang, Zihao Wang, Haowei Lin, Xiaojian Ma, Anji Liu, and Yitao
Liang. Groot-2: Weakly supervised multi-modal instruction following agents. arXiv preprint
arXiv:2412.10410, 2024b.

Shaofei Cai, Zhancun Mu, Haiwen Xia, Bowei Zhang, Anji Liu, and Yitao Liang. Scalable multi-
task reinforcement learning for generalizable spatial intelligence in visuomotor agents. arXiv
preprint arXiv:2507.23698, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shaofei Cai, Zihao Wang, Kewei Lian, Zhancun Mu, Xiaojian Ma, Anji Liu, and Yitao Liang.
Rocket-1: Mastering open-world interaction with visual-temporal context prompting. In Pro-
ceedings of the Computer Vision and Pattern Recognition Conference, pp. 12122–12131, 2025b.

Anh-Quan Cao and Raoul De Charette. Monoscene: Monocular 3d semantic scene completion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3991–4001, 2022.

Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro Armeni, Anton Obukhov, and Xi Wang.
I-design: Personalized llm interior designer. In European Conference on Computer Vision, pp.
217–234. Springer, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani, Arjun Akula, Xuehai He,
S Basu, Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional vi-
sual planning and generation with large language models. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 18225–18250. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/3a7f9e485845dac27423375c934cb4db-Paper-Conference.pdf.

Can Gümeli, Angela Dai, and Matthias Nießner. Roca: Robust cad model retrieval and alignment
from a single image. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4022–4031, 2022.

Zhening Huang, Xiaoyang Wu, Fangcheng Zhong, Hengshuang Zhao, Matthias Nießner, and Joan
Lasenby. Litereality: Graphics-ready 3d scene reconstruction from rgb-d scans. arXiv preprint
arXiv:2507.02861, 2025.

Haoyi Jiang, Tianheng Cheng, Naiyu Gao, Haoyang Zhang, Tianwei Lin, Wenyu Liu, and Xing-
gang Wang. Symphonize 3d semantic scene completion with contextual instance queries. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20258–
20267, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Muyao Li, Zihao Wang, Kaichen He, Xiaojian Ma, and Yitao Liang. Jarvis-vla: Post-training large-
scale vision language models to play visual games with keyboards and mouse. arXiv preprint
arXiv:2503.16365, 2025.

Haisong Liu, Haiguang Wang, Yang Chen, Zetong Yang, Jia Zeng, Li Chen, and Limin Wang. Fully
sparse 3d panoptic occupancy prediction. CoRR, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Srivathsan Murali, Pablo Speciale, Martin R Oswald, and Marc Pollefeys. Indoor scan2bim: Build-
ing information models of house interiors. In 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 6126–6133. IEEE, 2017.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9339–9347, 2019.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/3a7f9e485845dac27423375c934cb4db-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3a7f9e485845dac27423375c934cb4db-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In European conference on computer vision, pp. 746–760.
Springer, 2012.

Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang, Zishan Qin, and Stephen Gould. 3d-gpt:
Procedural 3d modeling with large language models. In 2025 International Conference on 3D
Vision (3DV), pp. 1253–1263. IEEE, 2025a.

Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat, Federico Tombari, Manling Li, Nick
Haber, and Jiajun Wu. Layoutvlm: Differentiable optimization of 3d layout via vision-language
models. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 29469–
29478, 2025b.

Samuel Sze, Daniele De Martini, and Lars Kunze. Minkocc: Towards real-time label-efficient
semantic occupancy prediction. arXiv preprint arXiv:2504.02270, 2025.

Michał J Tyszkiewicz, Kevis-Kokitsi Maninis, Stefan Popov, and Vittorio Ferrari. Raytran: 3d pose
estimation and shape reconstruction of multiple objects from videos with ray-traced transformers.
In European Conference on Computer Vision, pp. 211–228. Springer, 2022.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

Yuqi Wu, Wenzhao Zheng, Sicheng Zuo, Yuanhui Huang, Jie Zhou, and Jiwen Lu. Embodiedocc:
Embodied 3d occupancy prediction for vision-based online scene understanding. arXiv preprint
arXiv:2412.04380, 2024.

Xiuyu Yang, Yunze Man, Junkun Chen, and Yu-Xiong Wang. Scenecraft: Layout-guided 3d scene
generation. Advances in Neural Information Processing Systems, 37:82060–82084, 2024.

Jiawei Yao, Chuming Li, Keqiang Sun, Yingjie Cai, Hao Li, Wanli Ouyang, and Hongsheng Li.
Ndc-scene: Boost monocular 3d semantic scene completion in normalized device coordinates
space. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9421–9431.
IEEE Computer Society, 2023.

Hong-Xing Yu, Haoyi Duan, Charles Herrmann, William T Freeman, and Jiajun Wu. Wonderworld:
Interactive 3d scene generation from a single image. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 5916–5926, 2025.

Hongxiao Yu, Yuqi Wang, Yuntao Chen, and Zhaoxiang Zhang. Monocular occupancy prediction
for scalable indoor scenes. In European Conference on Computer Vision, pp. 38–54. Springer,
2024.

Xinyue Zheng, Haowei Lin, Kaichen He, Zihao Wang, Qiang Fu, Haobo Fu, Zilong Zheng, and
Yitao Liang. Mcu: An evaluation framework for open-ended game agents. In Forty-second
International Conference on Machine Learning, 2025a.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
Easyr1: An efficient, scalable, multi-modality rl training framework. https://github.com/
hiyouga/EasyR1, 2025b.

13

http://arxiv.org/abs/2403.13372
https://github.com/hiyouga/EasyR1
https://github.com/hiyouga/EasyR1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, large language models (LLMs) were utilized solely for writing
and presentation assistance, in accordance with their respective licenses and terms of use. Specif-
ically, LLMs were employed to assist in language polishing to improve the fluency and clarity of
selected sections, adjusting the layout and presentation of figures and tables, and generating aux-
iliary code snippets for data processing and visualization tasks. It is important to emphasize that
all scientific content, methodological development, experimental design, data analysis, and conclu-
sions remain the intellectual contribution of the authors, with LLM usage strictly limited to auxiliary
editorial and presentational tasks.

B PRELIMINARIES

Minecraft, as an open-world sandbox game, is renowned for its highly flexible building mechanics
and consistent physics, making it a significant foundation for constructing simulation environments
in embodied AI research. This section systematically introduces its standard environment features,
modding mechanism, and the high-fidelity extended environment we developed based on it.

B.1 NAIVE MINECRAFT ENVIRONMENT

The standard Minecraft environment provides a voxel-based and spatially discretized world—the
entire world is divided into 1×1×1 unit voxel blocks, each corresponding to approximately 1m3 in
the real world. This environment not only exhibits geometric regularity but also supports realistic
physical interactions, demonstrating a high degree of authenticity and simulation fidelity, especially
in terms of lighting, gravity, and terrain dynamics, which closely mirror real-world physical laws.

However, the vanilla Minecraft environment has notable limitations in embodied AI research. Its
low-resolution, blocky visual style introduces a significant domain gap when compared to real-
world images, restricting its applicability in perception tasks. Furthermore, the default Minecraft
blocks lack diversity and granularity, consisting mainly of abstract classes (e.g., “wood”, “stone”)
rather than semantically meaningful entities such as furniture. The indoor structures in the default
environment are overly simplistic and lack layout complexity, failing to provide the spatial variety
necessary for perception-dependent decision-making in embodied tasks.

B.2 MOD ABOUT MINECRAFT

In order to address the limitations described above, we introduced a series of functional mods that
significantly enhance environment construction, data collection, and visual realism. The modding
system is a core extensibility mechanism of Minecraft, allowing modification or enhancement of
game functionality through custom code and resource packs. In this work, we mainly employed
three mods, as illustrated in Figure 3, namely:

WorldEdit It provides efficient large-scale procedural scene generation and editing capabilities. It
supports rapid creation, duplication, and modification of composite structures via scripting, greatly
improving both the efficiency and diversity of constructing complex indoor environments. Addition-
ally, it allows easy access to the map data of target regions, including block types and coordinates,
subsequent downstream processing and analysis.

Screen with Coordinates It simultaneously records the player’s current viewpoint frame along with
the player’s position coordinates and viewing orientation, represented in Euler angles, during ren-
dering.

TMEO Texture and Mod Pack It introduces over 1,400 fine-grained, semantically labeled object
models (e.g., furniture such as “Blingds lighting” and household items like “Crib infant beds”),
substantially enriching the semantic diversity and object hierarchy of scenes. Coupled with its high-
resolution physically-based material pack, it lays the foundation for subsequent Physically Based
Rendering(PBR).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 EXTENDED MINECRAFT ENVIRONMENT

Building upon the aforementioned mods, we constructed a high-fidelity, diversified extended
Minecraft environment tailored for embodied AI tasks. This environment significantly surpasses
the native platform in terms of semantic complexity, visual realism, and scalability.

By integrating the fine-grained objects and diverse structures from the TMEO mod, we developed
an indoor environment system comprising 156 detailed scenes and approximately 1,600 rooms.
These encompass multi-story architectural structures, complex spatial layouts, and dense furnish-
ings, greatly enriching the semantic hierarchy and spatial diversity of the scenes.

On the visual level, leveraging high-definition textures, PBR shaders, and dynamic lighting mods,
we achieved realistic shadows, reflections, and global illumination effects. This markedly reduces
the domain gap between synthetic images and real-world scenes.

In terms of environment construction and data collection, tools like WorldEdit and Screen with Co-
ordinates enabled the establishment of a standardized pipeline. This supports the efficient generation
of new scenes and the automatic acquisition of multi-modal annotated data, ensuring high reusability
and extensibility.

Algorithm 1 World2Minecraft: Reality-to-Virtual Transfer

Require: Input: Image set I = {I1, . . . , IN}
1: Camera intrinsic parameters K
2: Camera extrinsic parameters E
3: Pretrained models Fmono, Femb

Ensure: Output: Reconstructed Minecraft scene
4: procedure RECONSTRUCTSCENE(I,K, E ,Fmono,Femb)
5: Omono ← ∅ ▷ Initialize monocular predictions set
6: for each image Ii ∈ I do ▷ Process each view
7: Oi

mono ← Fmono(Ii,K) ▷ Generate per-view occupancy
8: Omono ← Omono ∪ {Oi

mono}
9: Ôscene ← Fembodied(Omono,K, E) ▷ Fuse multi-view predictions

10: D ← K ∗ Ôscene ▷ Compute density map via 3D convolution
11: C ← {v ∈ Ôscene | D(v) ≥ τ} ▷ Extract centers above threshold τ
12: C′ ← Cluster(C, η) ▷ Merge centers within distance η
13: M← TranslateToMinecraft(C′) ▷ Generate Minecraft building commands
14: ExecuteCommands(M) ▷ Render scene in Minecraft
15: return MinecraftScene ▷ Return reconstructed virtual scene

C ALGORITHM OF WORLD2MINECRAFT

Our proposed method, World2Minecraft, formulates the reality-to-virtual transfer as a scene recon-
struction problem. The core pipeline, outlined in Algorithm 1, takes a set of multi-view images
and camera parameters as input and produces executable commands to reconstruct the scene in
Minecraft. The process consists of three main stages: multi-view semantic occupancy prediction,
volumetric fusion and density-based filtering, and finally, virtual world generation.

Stage 1: Multi-view Semantic Occupancy Prediction. The algorithm begins by processing each
input image Ii independently using a monocular prediction model Fmono (Line 4-7). This model
infers an initial 3D semantic occupancy volume Oi

mono for each view, capturing the geometry and
semantics visible from that particular viewpoint. These per-view predictions are aggregated into a
set Omono.

Stage 2: Volumetric Fusion and Filtering. The individual occupancy volumes are then fused into
a consistent global scene representation Ôscene by an embodied model Fembodied, which utilizes the
camera parameters to resolve inconsistencies and merge information (Line 8). To obtain a clean
and structured representation suitable for building, we compute a density map D by applying a 3D
convolution kernel K to the fused occupancy (Line 9). Voxel centers with a density value exceeding
a threshold τ are selected as candidate building locations C (Line 10). A clustering step (Line 11)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

further refines these candidates by merging those within a small distance η, reducing redundancy
and ensuring structural coherence.

Stage 3: Virtual World Generation. The final stage translates the refined 3D centers C′ into
a sequence of Minecraft building commands M (Line 12). These commands, which specify the
placement of specific block types at 3D coordinates, are executed to render the final scene within the
Minecraft environment (Line 13), completing the transfer from reality to a semantically decomposed
and editable virtual world.

D IMAGE AND CAMERA PARAMETER ACQUISITION

As shown in Figure 3, we use an automated mod tool, Screen with Coordinates, to acquire data.
This tool simultaneously captures first-person screenshots while recording the virtual camera’s pose
for each frame, including its 3D position and orientation (Euler angles). From this paired data, we
compute the intrinsic and extrinsic matrices of the camera for each image.

D.1 INTRINSIC CAMERA MATRIX

The intrinsic matrix K is determined by the virtual camera’s Field of View (FOV) and the image
dimensions (W,H).

K =

[
fx 0 cx
0 fy cy
0 0 1

]
(10)

Here, the focal lengths fx, fy and the principal point (cx, cy) are derived from the horizontal FOV,
denoted as α:

fx = fy =
W

2 tan(α/2)
, cx =

W

2
, cy =

H

2
(11)

D.2 EXTRINSIC CAMERA MATRIX

The extrinsic matrix E defines the transformation from the camera coordinate system to the world
frame. It is constructed from the camera’s position p = (xp, yp, zp)

T and its orientation, which is
defined by a rotation matrix R.

E =

[
R p
0T 1

]
(12)

The rotation matrix R is derived from the yaw (θ) and pitch (ϕ) angles provided by the game mod.
To align the mod’s Euler angle convention with a standard right-handed coordinate system (e.g.,
camera: +X right, +Y down, +Z forward), we apply an offset of π to the angles.

The final orientation is achieved by composing two sequential rotations: first, a yaw rotation around
the world’s Y-axis, followed by a pitch rotation around the camera’s local X-axis. This corresponds
to an extrinsic YX Euler angle convention.

First, the yaw rotation matrix Ryaw is defined as a rotation around the Y-axis by an angle of (θ+π):

Ryaw = RY (θ + π) =

[
cos(θ + π) 0 sin(θ + π)

0 1 0
− sin(θ + π) 0 cos(θ + π)

]
=

[− cos θ 0 − sin θ
0 1 0

sin θ 0 − cos θ

]
(13)

Next, the pitch rotation matrix Rpitch is defined as a rotation around the X-axis by an angle of (ϕ+π):

Rpitch = RX(ϕ+ π) =

[
1 0 0
0 cos(ϕ+ π) − sin(ϕ+ π)
0 sin(ϕ+ π) cos(ϕ+ π)

]
=

[
1 0 0
0 − cosϕ sinϕ
0 − sinϕ − cosϕ

]
(14)

The final rotation matrix R is the product of these two matrices, with the yaw rotation applied first:

R = Rpitch ·Ryaw =

[− cos θ 0 − sin θ
sin θ sinϕ − cosϕ − cos θ sinϕ
− sin θ cosϕ − sinϕ cos θ cosϕ

]
(15)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E VIEWPOINT PROJECTION AND REDUNDANCY REMOVAL

To further improve label quality, we introduce a view frustum culling mechanism based on cam-
era projection. In early versions of the dataset, the occupancy regions associated with an image
occasionally included irrelevant space outside the camera’s field of view, which introduces noise.
Therefore, we use the camera’s intrinsic and extrinsic parameters to project the 3D voxel grid onto
the 2D image plane. Let π : R3 → R2 be the camera projection function, which utilizes the intrinsic
K and extrinsic E matrices to map a world coordinate point v to image coordinates u. We retain
only those voxels that project within the image boundaries. The final set of visible voxels, Vvisible, is
defined as:

Vvisible = {v ∈ V | π(v, E ,K) ∈ [0,W]× [0, H]} (16)
By removing voxels that project outside the image, we ensure that the final 3D occupancy labels
are precisely aligned with the image’s field of view, thereby eliminating redundancy and preventing
label misalignment.

F DATASET ANALYSIS

Table 8: Statistical Summary of Instruction Lengths Across Different Tasks and Datasets. The table
shows the count, mean, standard deviation (Std. Dev.), and quartiles for the length of navigation
instructions.

Task Dataset Type Count Mean Std. Dev. Min 25% 50% 75% Max

Next-Action
Base 769 79.01 32.87 15 57.0 78.0 96.0 187
Extend 1351 171.37 67.10 62 117.0 156.0 232.0 334
Combined 2120 137.87 72.34 15 81.0 121.0 181.0 334

Next-View
Base 290 87.41 33.57 28 64.0 87.0 99.0 187
Extend 1132 173.23 66.70 62 121.0 156.0 232.0 334
Combined 1422 155.73 70.48 28 103.0 145.0 208.0 334

Figure 6: A comparison of instruction length distributions across three datasets for the Next-View
and Next-Action tasks. The extend dataset clearly contains shorter and more uniform instructions.

G SEMANTIC CLASS MAPPING FOR CROSS-DATASET EXPERIMENTS

To facilitate a fair and meaningful comparison between models trained on our MinecraftOcc
dataset and those evaluated on standard benchmarks like NYUv2, we established a many-to-one

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Dataset statistics for Minecraftocc and MinecraftVLN. Minecraftocc is provided at three
scales (8k, 50k, 100k), while MinecraftVLN includes three scales (Base, Extend, Combined) with
two task settings: Next-View and Next-Action.

Dataset Scale Task Train Test All

Minecraftocc
8k – 6,100 2,024 8,124

50k – 39,914 10,245 50,159
100k – 79,799 20,366 100,165

MinecraftVLN

Base Next-View 902 230 1132
Next-Action 1042 309 1351

Extend Next-View 249 41 290
Next-Action 594 175 769

Combined Next-View 1151 271 1422
Next-Action 1636 484 2120

mapping from our 1,000+ fine-grained, Minecraft-specific classes (including 200 distinct lighting
fixtures) to a standardized set of 12 common indoor semantic categories. This process creates a
shared semantic ground for consistent evaluation.

The mapping was designed to group Minecraft blocks and items based on their functional and struc-
tural roles within an indoor scene. Table 10 summarizes this hierarchy, providing the rationale for
each target superclass along with a few representative examples from the MinecraftOcc dataset.
This standardized taxonomy is used for all cross-dataset experiments.

The complete, exhaustive mapping of all classes is provided as a .json file in our supplementary
material to ensure full reproducibility.

Table 10: Summary of the mapping from our fine-grained MinecraftOcc classes to 12 target
superclasses. Representative examples are provided for clarity.

Target Superclass Mapping Rationale / Included Concepts Example MinecraftOcc Classes
empty A broad catch-all category for non-structural,

transparent, or empty elements.
tmeo ultra:chuanglian...
tmeo ultra:diaodeng...

ceiling Overhead structural surfaces and decorative
ceiling elements.

tmeo ultra:shigaoxian...
minecraft:birch planks

floor Horizontal walking surfaces, including stairs,
slabs, and floor coverings.

tmeo ultra:yitishilouti...
minecraft:stone brick slab

wall Core vertical structural surfaces tmeov:diantimen
window All types of blinds and shutters. tmeov:baiyechuang
chair All single-person seating, including benches,

stools, and dining chairs.
tmeo ultra:changdeng 1x 3
tmeo ultra:bataiyizi

bed All types of beds and associated bedding parts. tmeo ultra:dachuangban...
sofa Couches and other seating furniture. tmeo ultra:shafa 1x 2
table Surfaces for placing objects. tmeo ultra:canzhuoyuanxing
tvs All television sets and monitor screens. tmeo ultra:diaoguadianshi
furn General non-seating furniture, e.g., cabinets,

shelves, sinks, and wardrobes.
tmeo ultra:yigui...
tmeov:shujia...

objs Miscellaneous functional and decorative items
not part of the main structure.

tmeov:penzai
tmeo ultra:yinxiang...

H IMAGE QUALITY METRICS

This appendix briefly describes the three no-reference image quality assessment metrics used in our
evaluation:

• Natural Image Quality Evaluator(NIQE): Measures how closely an image’s statistical prop-
erties match those of natural images. Lower values indicate better, more natural quality.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Perception-based Image Quality Evaluator(PIQE): Assesses local distortions and artifacts
in images based on human visual perception. Lower values indicate fewer distortions and
better perceptual quality.

• Laplacian Variance(LV): Quantifies image sharpness by measuring the variance of
Laplacian-filtered responses. Higher values indicate sharper images with more detail.

These complementary metrics provide a comprehensive assessment of visual quality from different
perspectives: NIQE evaluates global naturalness, PIQE detects local artifacts, and LV measures
sharpness.

I IMPLEMENTATION DETAILS

This section provides a comprehensive overview of the implementation details for the two main ex-
periments conducted in this study: Reinforcement Fine-Tuning (RFT) and Supervised Fine-Tuning
(SFT). All experiments used Qwen2.5-VL as the base model.

I.1 EXPERIMENT 1: REINFORCEMENT FINE-TUNING

The RFT experiment was conducted using the EasyR1 framework. For this experiment, the vision
tower of the model was unfrozen and trained alongside the language components. We employed
the Generalized Rejection Policy Optimization (GRPO) algorithm. To regularize the policy, we
incorporated a Kullback-Leibler (KL) divergence penalty with a coefficient of 1.0×10−2, calculated
using a low-variance estimator.

Dataset and Data Processing. The training and validation data were sourced from Parquet files,
using content for prompts and answer for responses. Prompts were formatted via a custom Jinja
template (mc.jinja). The maximum prompt length was set to 4096 tokens, and the maximum
response length was 1024 tokens.

Hardware and Training Configuration. The experiment was run on a single node with 8 GPUs,
utilizing Fully Sharded Data Parallelism (FSDP) with full parameter sharding and CPU offloading
for both model parameters and optimizer states to conserve memory. The rollout phase was acceler-
ated with a tensor parallel size of 2. Key hyperparameters are summarized in Table 11.

I.2 EXPERIMENT 2: SUPERVISED FINE-TUNING (SFT)

The SFT experiment was conducted using the LLaMA Factory framework.

Model and Fine-tuning Strategy. In contrast to the RFT experiment, the vision tower and the multi-
modal projector were kept frozen during SFT. Fine-tuning was performed only on the parameters of
the language model component using a full-parameter approach (finetuning type: full).

Dataset and Preprocessing. We utilized a custom dataset named base train task1, limiting
the training to a maximum of 1000 samples. The data was formatted with the qwen2 vl conversa-
tion template, and the maximum sequence length was capped at 8192 tokens.

Training Configuration. The model was trained for 5 epochs using the DeepSpeed ZeRO Stage
3 strategy and bfloat16 mixed precision. We employed a cosine learning rate scheduler with a
10% warmup period. No validation was performed during training. The detailed hyperparameters
are presented in Table 11.

J INTERACTIVE VISUALIZATION TOOL : SCENEFORGE

To facilitate the analysis and refinement of occupancy clustering results, we developed an interactive
web-based visualization tool names SceneForge that provides Open3D-like 3D exploration capabil-
ities. This tool plays a crucial role in our World2Minecraft pipeline by enabling intuitive inspection
and manual correction of semantic occupancy predictions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Comparison of key hyperparameters for the SFT and RFT experiments.

Parameter RFT Setting SFT Setting
General Strategy

Fine-tuning Type – Full-parameter
Training Precision – bfloat16
Algorithm GRPO –

Optimization
Optimizer AdamW AdamW (implied)
Learning Rate 1.0× 10−6 1.0× 10−5

Weight Decay 1.0× 10−2 –
LR Scheduler – Cosine
Warmup Ratio – 0.1
Total Epochs 30 5

Batching
Global Batch Size 128 –
Per-device Batch Size – 1
Gradient Accumulation Steps – 2
Effective Batch Size 128 (Global) 2

RFT-Specific Details
KL Coefficient (λKL) 1.0× 10−2 –
Rollout Samples (n) 5 –
Training Temperature 1.0 –

TOOL OVERVIEW

The visualization tool is implemented as a standalone web application using D3.js for 3D rendering
and interaction. It supports the following key functionalities:

• Multi-format Data Loading: The tool accepts both voxel-wise occupancy data
(occ.json) and pre-computed center points (centers.json), with optional demo data
for quick testing.

• Interactive 3D Exploration: Users can rotate the view (mouse drag), zoom (scroll wheel),
and pan (Shift + drag) to examine the scene from any angle, mimicking the interaction
paradigm of Open3D.

• Category-aware Visualization: Twelve semantic categories are color-coded and can be
individually toggled on/off via an interactive legend, enabling focused analysis of specific
object types.

• Real-time Parameter Adjustment: Dynamic controls allow users to adjust voxel size,
transparency, and center point size during visualization to optimize clarity.

• Center Point Editing: An advanced editing mode supports manual refinement of object
centers through:

– Drag-and-drop repositioning of center points
– Point deletion (right-click) and selective removal
– Point splitting for fine-grained object separation
– Bulk operations by category selection

J.1 INTEGRATION WITH RESEARCH WORKFLOW

The tool served two primary purposes in our research:

1. Qualitative Analysis: During method development, we used the tool to visually inspect
clustering results, identify failure cases, and understand the limitations of automatic center
prediction algorithms.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2. Data Refinement: For the MinecraftVLN dataset creation, the editing capabilities allowed
us to manually correct inaccurately predicted object centers, ensuring higher quality navi-
gation environments.

J.2 TECHNICAL IMPLEMENTATION

The tool architecture consists of four modular components:

• config.js - Configuration constants and color schemes
• data.js - Data loading and processing utilities
• projection.js - 3D projection and rendering engine
• ui.js - User interface event handlers and state management

This web-based implementation ensures cross-platform compatibility without requiring complex
dependencies, making it accessible for researchers to reproduce and extend our work. The complete
source code is available in our supplementary materials.

21

	Introduction
	Related work
	Data-Driven 3D Scene Generation
	Indoor 3D Occupancy Prediction Dataset
	Embodied intelligence Research in Minecraft

	Method
	Preliminaries
	World2Minecraft: Transfer Reality to Minecraft
	Enabling VLN in Minecraft
	MinecraftOcc dataset construction

	Experiments
	Experimental Setup
	The Results of World2Minecraft
	The Result of VLN in Minecraft
	Experimental Results about MinecraftOcc
	Comparison with Layout-Based Reconstruction Methods
	Efficiency Analysis of Manual Refinement

	Conclusion
	The Use of Large Language Models
	Preliminaries
	Naive Minecraft Environment
	Mod About Minecraft
	Extended Minecraft Environment

	Algorithm of World2Minecraft
	Image and Camera Parameter Acquisition
	Intrinsic Camera Matrix
	Extrinsic Camera Matrix

	Viewpoint Projection and Redundancy Removal
	Dataset Analysis
	Semantic Class Mapping for Cross-Dataset Experiments
	Image Quality Metrics
	Implementation Details
	Experiment 1: Reinforcement Fine-Tuning
	Experiment 2: Supervised Fine-Tuning (SFT)

	Interactive Visualization Tool : SceneForge
	Integration with Research Workflow
	Technical Implementation

