

000 WORLD2MINECRAFT: OCCUPANCY-DRIVEN SIMU- 001 002 LATED SCENES CONSTRUCTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Embodied intelligence requires high-fidelity simulation environments to support
012 perception and decision-making, yet existing platforms often suffer from data con-
013 tamination and limited flexibility. To mitigate this, we propose *World2Minecraft*
014 to convert real-world scenes into structured Minecraft environments based on 3D
015 semantic occupancy prediction. In the reconstructed scenes, we can effortlessly
016 perform downstream tasks such as Vision-Language Navigation(VLN). However,
017 we observe that reconstruction quality heavily depends on accurate occupancy
018 prediction, which remains limited by data scarcity and poor generalization in ex-
019 isting models. We introduce a low-cost, automated, and scalable *data acquisition*
020 *pipeline* for creating customized occupancy datasets, and demonstrate its effec-
021 *MinecraftOcc*, a large-scale dataset featuring 100,165 images
022 from 156 richly detailed indoor scenes. Extensive experiments show that our
023 dataset provides a critical complement to existing datasets and poses a signif-
024 icant challenge to current SOTA methods. These findings contribute to improving
025 occupancy prediction and highlight the value of *World2Minecraft* in providing a
026 customizable and editable platform for personalized embodied AI research. We
027 will publicly release the dataset and the complete generation framework to ensure
028 reproducibility and encourage future work.

029 1 INTRODUCTION 030

031 Embodied intelligence aims to develop intelligent agents that can perceive, understand, and interact
032 within complex environments. Progress in this field depends critically on the availability of high-
033 fidelity, diverse simulation environments supported by robust datasets. Platforms like Habitat (Savva
034 et al., 2019) is limited by their reliance on real-world scans, which not only yield scenes with visual
035 and geometric artifacts but uneditable, *limiting their utility for agents that need to modify their*
036 *environment*. Minecraft is widely used for reinforcement learning (Cai et al., 2023; Li et al., 2025;
037 Cai et al., 2024b; Zheng et al., 2025a; Cai et al., 2025b) for its customizable environments. However,
038 its blocky graphics create a stark reality gap. These limitations highlight the need for new simulation
039 platforms that are both highly flexible and editable, and also capable of maintaining visual realism.

040 Real-to-sim transfer presents an effective approach for this goal. However, current techniques like
041 NeRF (Mildenhall et al., 2021) and 3D Gaussian Splatting (Kerbl et al., 2023) often *yield photoreal-*
042 *istic novel views but uneditable representations that lack physical properties*. Similarly, CAD-based
043 methods (Avetisyan et al., 2019; Gümeli et al., 2022; Tyszkiewicz et al., 2022; Murali et al., 2017)
044 yield clean, lightweight scenes *but require precise instance segmentation and can not be directly*
045 *used for downstream tasks*. To reconcile realism with interactability, we utilize 3D semantic occu-
046 *pancy* (Cao & De Charette, 2022). Unlike implicit fields, its discrete voxel structure naturally aligns
047 with Minecraft blocks. This compatibility enables the direct translation of real-world scenes into
048 *editable, physically grounded environments, bypassing complex mesh-to-block conversions*.

049 Inspired by this, we propose *World2Minecraft*, a framework that reconstructs real-world scenes as
050 high-quality Minecraft environments by leveraging 3D semantic occupancy prediction as shown
051 in Figure 1. In contrast to existing methods, our approach is cost-effective, yields readily ed-
052 itable scenes, and is directly applicable to downstream tasks such as Vision-Language Navigation
053 (VLN) (Anderson et al., 2018). The framework operates by first predicting single-frame 3D seman-
tic occupancy, then integrating multi-frame observations via camera parameters (Wu et al., 2024)

054 to build a unified semantic occupancy field of the complete scene. The resulting representation can
 055 be refined via a developed visual tool(as shown in Appendix J) before generating construction in-
 056 structions for Minecraft. Executing these instructions faithfully reproduces the high-fidelity scene
 057 in Minecraft.

058 After reconstructing real-world scenes in Minecraft, we conducted extensive experiments on down-
 059 stream VLN tasks. To this end, we constructed *MinecraftVLN*, a dataset composed of 1,059 samples
 060 from our reconstructed scenes, augmented with 2,483 additional samples from community-created
 061 large-scale scenes to increase scale and diversity. We defined two subtasks—**Next-View** and **Next-
 062 Action**—and fine-tuned Qwen2.5-VL-3B (Bai et al., 2025) and Qwen2.5-VL-7B (Wang et al., 2024)
 063 on each, achieving notable performance gains. Real-time navigation was successfully demonstrated
 064 by employing Gemini-2.5-Pro (Comanici et al., 2025) as the controller for an agent in the recon-
 065 structed Minecraft environments. However, the reconstruction quality remained sub-optimal for
 066 practical use. We identified that accurate semantic occupancy prediction is critical to recon-
 067 struction fidelity and scalability, yet it faces two major limitations: (1) heavy reliance on large-scale,
 068 expensively annotated data (Sze et al., 2025), and (2) dataset constraints such as limited diversity,
 069 poor coverage, and sensor noise (Liu et al., 2023), which hinder model generalization in complex
 070 real-world scenarios.

071 To advance the generalization of scene occupancy prediction, we introduce a novel, low-cost, and
 072 automated pipeline for generating customized semantic occupancy datasets, which significantly
 073 reduces the traditional reliance on expensive manual annotation or limited real-world scans. We
 074 demonstrate its effectiveness through *MinecraftOcc*, a large-scale dataset produced by this pipeline,
 075 featuring 100,165 high-resolution images captured from continuous roomtour across 156 richly de-
 076 tailed indoor scenes constructed in Minecraft. By leveraging mods for physically-based rendering
 077 and precise layout control, we automatically generate visually realistic environments with complex
 078 structures, diverse objects, and dynamic lighting, effectively narrowing the sim-to-real gap. Ex-
 079 periments show that current occupancy models perform poorly on *MinecraftOcc*, revealing clear
 080 generalization limits. Moreover, when used as auxiliary training data, it enhances performance on
 081 real-world benchmarks like NYUv2(Silberman et al., 2012), confirming its dual role as a challeng-
 082 ing benchmark and an effective data augmentation resource for improving model robustness. In
 083 summary, the main contributions of this paper are as follows:

- 084 • We introduce *World2Minecraft*, a pipeline for real-world scene reconstruction in Minecraft
 085 via semantic occupancy prediction.
- 086 • We conduct VLN task within the reconstructed scenes, during which we construct the
 087 *MinecraftVLN* dataset to validate the practical utility of our approach.
- 088 • We propose an automated pipeline for semantic occupancy data generation, and present the
 089 large-scale *MinecraftOcc* benchmark, which exposes the generalization limits of existing
 090 methods and serves as effective training data for enhancing robustness.

092 2 RELATED WORK

094 2.1 DATA-DRIVEN 3D SCENE GENERATION

096 In embodied intelligence research, real-to-sim transfer—converting real-world scenes into simu-
 097 lated environments—remains a critical yet challenging task. Generative approaches, such as 3D-
 098 GPT (Sun et al., 2025a) and SceneCraft (Yang et al., 2024), excel in creating novel content from ab-
 099 stract inputs but not designed to faithfully reconstruct specific, existing real-world locations. While
 100 WonderWorld (Yu et al., 2025) generates 3D worlds from a single image but lack the semantic de-
 101 composable and editability. Similarly, CAD-based methods (Avetisyan et al., 2019; Gümeli et al.,
 102 2022; Tyszkiewicz et al., 2022; Murali et al., 2017) yield clean and lightweight scene representa-
 103 tions. However, they rely heavily on precise instance segmentation and accurate scale alignment be-
 104 tween the retrieved CAD models and the real-world scene, which hinders their direct application in
 105 downstream tasks. Recent methods like LiteReality (Huang et al., 2025) simplify real-to-virtual con-
 106 version, yet remain limited in object and scene diversity, and cannot be directly used for downstream
 107 tasks. We propose a low-cost and easily editable method for real-to-sim conversion by leveraging
 108 occupancy prediction, enabling the direct application of reconstructed environments to downstream
 109 tasks like VLN in Minecraft.

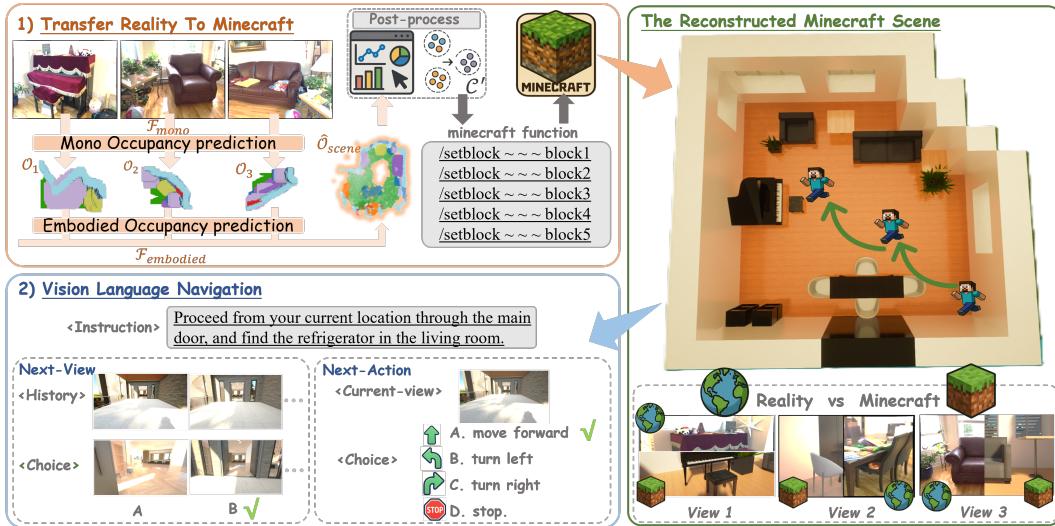


Figure 1: **Framework of our World2Minecraft**, which illustrates the process of reconstructing real-world scenes into Minecraft environments and subsequently conducting navigation within these scenes. 1) For the transfer reality to Minecraft, RGB images are input into the occupancy prediction model to predict semantic occupancy, which is then preprocessed to generate instructions for reconstruction in Minecraft. 2) VLN tasks involving Next-View and Next-Action are performed within the reconstructed scenes.

2.2 INDOOR 3D OCCUPANCY PREDICTION DATASET

3D occupancy prediction is essential for comprehensive indoor scene understanding. However, the development of accurate models is hampered by the scarcity of large-scale, high-quality annotated data. Existing datasets, such as NYUv2 (Silberman et al., 2012), OccScanNet (Yu et al., 2024), and EmbodiedOcc-ScanNet (Wu et al., 2024), are typically derived from real-world scans. They consequently suffer from limitations including sensor noise, sparse annotations, and constrained object diversity, while being costly and time-consuming to produce. These challenges underscore the need for a more efficient data creation paradigm. In response, we propose an automated and labor-efficient pipeline for synthesizing high-fidelity voxel occupancy with rich semantics at a fraction of the cost, enabling scalable and diverse data generation for robust model training.

2.3 EMBODIED INTELLIGENCE RESEARCH IN MINECRAFT

Minecraft has been widely used for embodied intelligence and reinforcement learning research (Cai et al., 2025a; Zheng et al., 2025a; Cai et al., 2024b; Wang et al., 2023), with many works built upon MineStudio (Cai et al., 2024a), a streamlined open-source framework that unifies simulation and data management. To this end, ROCKET-1 (Cai et al., 2025b) leverages visual-temporal context prompting to master open-world interactions, JARVIS-VLA (Li et al., 2025) post-trains large-scale vision-language models to perform diverse in-game tasks with keyboards and mouse, and GROOT (Cai et al., 2023) learns to follow instructions by watching gameplay videos. Despite these advances, all these approaches operate in Minecraft’s native blocky visuals, which exhibit a substantial reality gap compared to real-world scenes. To address this limitation, we integrate high-fidelity community mods, significantly narrowing the visual and structural gap and providing a more effective simulation environment for embodied intelligence.

3 METHOD

3.1 PRELIMINARIES

Minecraft serves as a valuable platform for embodied AI research due to its voxel-based, spatially discretized world and consistent physical mechanics. However, the vanilla game presents limitations for perception-related tasks, including a significant visual domain gap from reality, limited semantic diversity of blocks, and simplistic indoor structures. To address these issues, we developed a customized environment using different mods, including *WorldEdit*, *Screen with Coordinates* and *TMEO*. A detailed introduction to the standard environment and our modifications is provided in Appendix B.

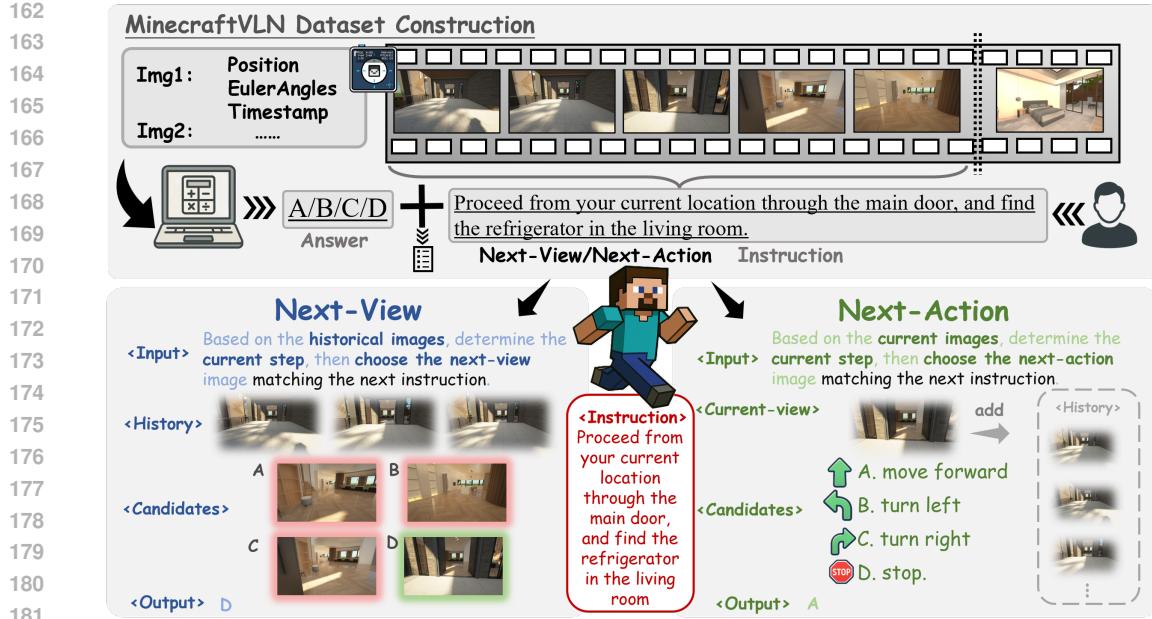


Figure 2: **Dataset Construction Pipeline for MinecraftVLN.** We segment roomtour sequences into valid trajectories, then generate instruction-following Question-Answer pairs using the collected coordinates and orientations to construct Next-View and Next-Action dataset.

3.2 WORLD2MINECRAFT: TRANSFER REALITY TO MINECRAFT

We propose *World2Minecraft*, a framework that converts real-world scenes into Minecraft via 3D semantic occupancy prediction (Fig. 1(1)). As detailed in Algorithm 1 (Appendix C), our method establishes an end-to-end pipeline from multi-view perception to executable Minecraft commands. The core of our method addresses 3D semantic occupancy prediction from a sequence of first-person images $\mathcal{I} = \{I_1, I_2, \dots, I_N\}$ along with their corresponding camera intrinsic parameters \mathcal{K} . First, we employ a monocular predictor $\mathcal{F}_{\text{mono}}$ that generates per-view semantic occupancy grids $\mathcal{O}_{\text{mono}}^i$ from individual RGB images, where each voxel is assigned a semantic label from C total classes:

$$\mathcal{O}_{\text{mono}}^i = \mathcal{F}_{\text{mono}}(I_i, \mathcal{K}) \in \{0, 1, \dots, C - 1\}^{X \times Y \times Z}. \quad (1)$$

When the per-image occupancy predictions are obtained, we leverage camera extrinsic parameters \mathcal{E} to merge them into a unified 3D semantic representation $\hat{\mathcal{O}}_{\text{scene}}$:

$$\hat{\mathcal{O}}_{\text{scene}} = \mathcal{F}_{\text{embodied}}(\{\mathcal{O}_{\text{mono}}^i\}_{i=1}^N, \mathcal{K}, \mathcal{E}) \in \{0, 1, \dots, C - 1\}^{X \times Y \times Z} \quad (2)$$

To identify potential object centers, we first convert the multi-class semantic grid $\hat{\mathcal{O}}_{\text{scene}}$ into a binary occupancy grid $\hat{\mathcal{O}}_{\text{binary}}$, where voxels corresponding to any object class are marked as 1 and empty voxels as 0. We then compute a local occupancy density map \mathcal{D} on this binary grid by applying a 3D convolution with a uniform kernel $\mathbf{K} \in \mathbb{R}^{k \times k \times k}$. Potential centers \mathcal{C} are identified by applying a density threshold τ :

$$\mathcal{C} = \left\{ \mathbf{v} \mid \mathcal{D}(\mathbf{v}) \geq \tau, \mathcal{D} = \mathbf{K} * \hat{\mathcal{O}}_{\text{binary}}, \mathbf{v} \in \hat{\mathcal{O}}_{\text{scene}} \right\} \quad (3)$$

where $*$ denotes the 3D convolution, and $\mathbf{v} = (x, y, z)$ represents voxel coordinates. These initial center points $\mathcal{C} = \{\mathbf{c}_j\}_{j=1}^M$ are often redundant. To obtain an accurate and representative set of object locations, we cluster these points using the DBSCAN (Ester et al., 1996) algorithm. Clustering is performed independently for the center points within each semantic class. This ensures that points with different semantic labels are not grouped together, preserving the categorical integrity of objects. It groups points based on a distance threshold η , using the L2 norm as the metric. Each resulting cluster is then represented by its centroid, forming a refined set of centers \mathcal{C}' :

$$\mathcal{C}' = \left\{ \frac{1}{|\mathcal{G}_\mu|} \sum \mathbf{v} \in \mathcal{G}_\mu \mid \mathcal{G}(\mu) = \{\mathbf{v} \in \mathcal{C} \mid \|\mathbf{v} - \mu\|_2 \leq \eta\}, \mu \in \mathcal{C} \right\} \quad (4)$$

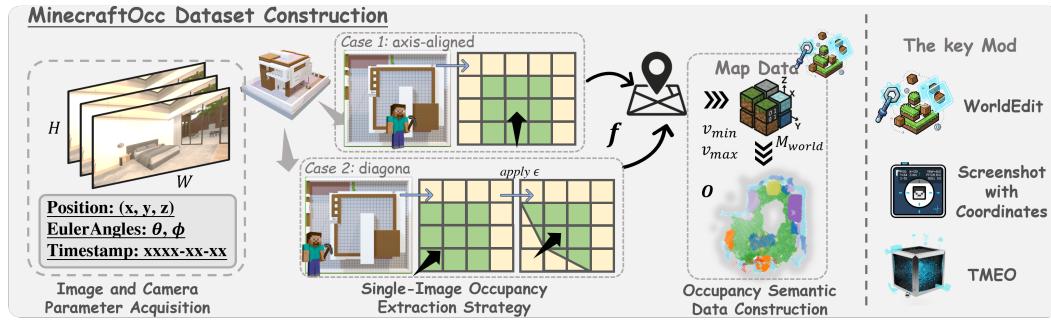


Figure 3: **Dataset Construction Pipeline for MinecraftOcc.** We record coordinate data during roomtour, divide the viewpoint into two yaw-based cases to define view regions(the yellow indicates invisible areas; green indicates visible areas), and extract semantic occupancy from map data.

This process yields a refined set of centers $\mathcal{C}' = \{\mathbf{c}'_k\}_{k=1}^K$ ($K \leq M$), where each centroid identifies a distinct object instance. Before final rendering, to ensure geometric fidelity, we employ a retrieval-based matching mechanism. Specifically, we align each instance’s extracted occupancy grid \mathcal{O}_k with a candidate furniture library $\mathcal{L} = \{\mathbf{T}_j\}_{j=1}^M$. We address orientation ambiguity by iterating through a discrete set of rotation angles θ , selecting the optimal template and rotation that maximize spatial overlap:

$$(j^*, \theta^*) = \operatorname{argmax}_{j, \theta} \frac{|\mathcal{O}_k \cap \operatorname{Rot}(\mathbf{T}_j, \theta)|}{|\mathcal{O}_k \cup \operatorname{Rot}(\mathbf{T}_j, \theta)|} \quad (5)$$

Once the optimal geometric representations are retrieved, they are translated into Minecraft building commands to render the complete virtual scene.

3.3 ENABLING VLN IN MINECRAFT

Preparations. To conduct VLN in the reconstructed scene within Minecraft, we reconstructed all real-world indoor scenes from the validation set of EmbodiedOcc-ScanNet dataset (Wu et al., 2024) in Minecraft. Due to the limited accuracy of current prediction models, we selected 15 scenes for manual refinement to ensure high fidelity. However, we observed that the limited scale of the reconstructed scenes resulted in a navigation dataset with relatively short and simple instructions. To address this, we incorporated 5 additional community-created Minecraft scenes, thereby increasing the complexity and diversity of the instruction set (as shown in Figure 6 and Table 8). An agent was subsequently directed to perform room tours within these 20 selected scenes, generating a series of image sequences annotated with positions and orientations.

MinecraftVLN Dataset Construction. As shown in Figure 2, the dataset was constructed by processing trajectories from the roomtour image sequence to extract meaningful navigation segments. Human annotators provided detailed textual descriptions for each segment. Using a question-answering template, we generated 3,801 items in total(as shown in Table 9): 1,059 samples (**Base**) from the real-world reconstructed scenes and 2,483 samples (**Extend**) from the community-created scenes. The combined dataset (**Combined**) merges the aforementioned **Base** and **Extend** sets.

The **MinecraftVLN** dataset includes two distinct tasks: 1)**Next-View Prediction**: The agent receives a natural language instruction and a sequence of three historical images. It must first localize its current navigation step based on the instruction and visual context, and then predict the next most probable view. 2)**Next-Action Prediction**: Given the instruction and the current view, the agent identifies its current progress within the instruction and predicts the next action (e.g., move forward, turn left) to comply with the instruction.

Conduct VLN in Minecraft. We conducted experiments in two key directions. First, we fine-tuned Qwen2.5-VL (Wang et al., 2024; Bai et al., 2025) on the **MinecraftVLN**. Second, we deployed Gemini-2.5-Pro (Comanici et al., 2025) for direct embodied navigation control in Minecraft. Detailed experimental setups and results are presented in Sec. 4.3.

270 Table 1: Comparison between MinecraftOcc, NYUv2, and OccScanNet across key statistics.
271

272 Dataset	273 Num. of Images	274 Num. of Scenes	275 Num. of Classes	276 Total Semantic Voxels	277 Avg. Voxels per Scene	278 Image Resolution
NYUv2	1,449	464	13	10,786,528	~23.2K	640 × 480
OccScanNet	65,119	674	13	201,215,233	~298.5K	640 × 480
MinecraftOcc	100,165	156 (~1,000 rooms)	1,452	733,280,256	~4.7M	1920 × 1129

279 3.4 MINECRAFTOCC DATASET CONSTRUCTION
280281 In this section, we will detail our automated semantic occupancy generation pipeline and the
282 MinecraftOcc dataset built upon it.
283284 **Problem Definition.** The 3D occupancy prediction task (as detailed in Sec. 3.2) infers the geometric
285 and semantic structure of a scene from a set of first-person images \mathcal{I} , along with their camera
286 intrinsic parameters \mathcal{K} and extrinsic parameters \mathcal{E} .
287288 **Image and Camera Parameter Acquisition.** To acquire our dataset, we used an automated mod
289 tool, *Screen with Coordinates*, which simultaneously captures first-person screenshots and records
290 the corresponding camera pose (3D position and orientation). With this paired data of images and
291 poses, we compute the corresponding intrinsic and extrinsic camera matrices for each image. The
292 detailed methodology for deriving these matrices from the virtual camera’s Field of View (FOV),
293 position, and orientation is elaborated in Appendix D.
294295 **Single-Image Occupancy Extraction Strategy.** To generate semantic occupancy labels for each
296 image, we define a fixed-size 3D spatial volume \mathcal{V} , with a minimum corner \mathbf{v}_{\min} and a maximum
297 corner \mathbf{v}_{\max} . To accurately define the 3D spatial region based on the player’s viewpoint, we cat-
298 egorize the player’s yaw angle θ into two fundamental cases (in fact, all possible viewpoints can
299 be ultimately categorized into these two cases) based on its orientation relative to the world grid:
300 axis-aligned(as shown *Case 1* in Figure 3), where the viewpoint is parallel to a coordinate axis, and
301 diagonal(as shown *Case 2* in Figure 3), where the viewpoint is directed along a 45-degree angle to
302 the axes. For the axis-aligned case, we set the player’s position $P_{\text{player}} = (x_p, y_p, z_p)$ as the center
303 of the \mathcal{V} ’s back face. For the diagonal case, we set the P_{player} as the volume’s minimum corner \mathbf{v}_{\min} .
304 This logic is formalized by the calculation function f :
305

306
$$(\mathbf{v}_{\min}, \mathbf{v}_{\max}) = f(P_{\text{player}}, \theta, w, h, d) \quad (6)$$

307 where (w, h, d) are the dimensions of the volume, and each point $v \in \mathcal{V}$ satisfies the boundary
308 constraints $v_{\min} \leq v \leq v_{\max}$.
309310 Due to the discrete nature of Minecraft’s space, diagonal views often suffer from significant voxel
311 loss at the periphery. To mitigate this, we designed a viewpoint-aware fallback strategy. This strat-
312 egy supplements structural information from slightly adjusted neighboring viewpoints based on the
313 original view, significantly enhancing the completeness of the data labels and improving stability
314 and robustness during training. Specifically, we apply a correctional offset, ϵ , to the bounding box
315 corners \mathbf{v}_{\min} and \mathbf{v}_{\max} :
316

317
$$\begin{aligned} \mathbf{v}'_{\min} &= \mathbf{v}_{\min} + \epsilon \\ \mathbf{v}'_{\max} &= \mathbf{v}_{\max} + \epsilon \end{aligned} \quad (7)$$

318 This adjustment expands the player’s visible range, resulting in a field of view that more accu-
319 rately reflects their actual perspective, while sacrificing only a minimal portion of the depth-of-field
320 area—a negligible loss in terms of overall visual coverage.
321322 **Occupancy Semantic Data Construction.** To obtain semantic labels, we utilized the *WorldEdit*
323 mod to extract the block types at these coordinates from the map data. This can be viewed as
324 querying a world-map function, M_{world} , which maps any coordinate \mathbf{v} to a semantic label s from
325 a set of all possible block types $\mathcal{S} = \{\text{air, stone, wood, ...}\}$, which allowed us to construct the final
326 voxel-level semantic occupancy representation, a grid O :
327

328
$$s_{\mathbf{v}} = M_{\text{world}}(\mathbf{v}), \quad \forall \mathbf{v} \in \mathcal{V} \quad (8)$$

329
$$O = \{s_{\mathbf{v}} \mid \mathbf{v} \in \mathcal{V}\} \quad (9)$$



Figure 4: The reconstruction results from reality to Minecraft are presented above. As we can observe that from View 1 to View 3, the Reality row and the Minecraft row demonstrate a high degree of consistency. The Prediction column displays the predicted occupancy views from different perspectives of the same scene, while the corresponding reconstructed scenes in the Construction column align well with them.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our experimental setup employs multiple datasets to evaluate different aspects of the proposed method and dataset. We employ the EmbodiedOcc-ScanNet dataset (Wu et al., 2024) to train occupancy prediction model, which is the core of the *World2Minecraft*. For evaluating downstream task performance, we introduce the *MinecraftVLN* dataset including Next-View and Next-Action. We also introduce *MinecraftOcc* to evaluate the existing methods and employ the NYUv2 dataset for comparative analysis and mixed-training experiments.

Evaluation Metrics. We employ standard metrics for each aspect of our evaluation: Accuracy for the VLN task, mean Intersection over Union (mIoU) and Intersection over Union (IoU) for occupancy prediction, and no-reference image quality metrics including Natural Image Quality Evaluator (NIQE), Perception-based Image Quality Evaluator (PIQE), and Laplacian Variance (LV) to assess dataset realism (see Appendix H for details).

4.2 THE RESULTS OF WORLD2MINECRAFT

Implementation Details. We employed the pre-trained EmbodiedOcc (Wu et al., 2024) model to reconstruct real-world scenes from the full validation set of EmbodiedOcc-ScanNet (Wu et al., 2024) in Minecraft. From these reconstructions, we selected 30 scenes for meticulous manual refinement to enhance their structural completeness and visual quality. Among these, 15 high-quality scenes were chosen to construct the *MinecraftVLN* dataset, which also serves as the platform for developing and evaluating embodied navigation agents controlled by large language models. As the initial automated reconstructions were suboptimal due to inherent model limitations, manual refinement effectively restored geometrically consistent layouts, particularly in the accurate placement of modern indoor furniture, as demonstrated in the resulting scenes.

Analysis. The reconstruction results from reality to Minecraft are presented in Figure 4. As we can observe that from View 1 to View 3, the Reality row and the Minecraft row demonstrate a high degree of consistency. The Prediction column displays the predicted occupancy views from different perspectives of the same scene, while the corresponding reconstructed scenes in the Con-

378 Table 2: Across three distinct MinecraftVLN settings, the performance (Accuracy) of Qwen2.5-
 379 VL models (3B and 7B) on Next-View and Next-Action tasks under No Training, SFT, and RFT
 380 conditions is evaluated.

Dataset Composition	Task	Qwen2.5-VL-3B			Qwen2.5-VL-7B		
		No Train	SFT	RFT	No Train	SFT	RFT
Base	Next-View	0.2195	0.5610	0.2927	0.3905	0.5854	0.4390
	Next-Action	0.1943	0.7200	0.6343	0.3829	0.8000	0.6343
Extend	Next-View	0.2261	0.7087	0.3043	0.2913	0.6826	0.6043
	Next-Action	0.3657	0.5437	0.6667	0.3786	0.6019	0.6343
Combined	Next-View	0.2288	0.5609	0.3137	0.2878	0.6642	0.6753
	Next-Action	0.3037	0.4835	0.6570	0.3760	0.6281	0.6219

401 Figure 5: The result of a Gemini-2.5-Pro controlled agent performing VLN in our reconstructed
 402 scene. Following the natural language instruction “Go to the piano”, the agent successfully navigates
 403 to the target step by step.

404
 405
 406 struction column align well with them, which collectively demonstrates the effectiveness of our
 407 **World2Minecraft** pipeline.

408 4.3 THE RESULT OF VLN IN MINECRAFT

409 **Implementation Details.** We conducted VLN in the reconstructed Minecraft environment. We first
 410 collected a navigation dataset within the 15 scenes mentioned in Sec. 4.2. However, we observed
 411 that the limited scale of the reconstructed scenes resulted in a navigation dataset with relatively short
 412 and simple instruction sequences (denoted as **Base**). To mitigate this, we extended data collection
 413 to community-built Minecraft scenes (denoted as **Extend**), thereby increasing the complexity and
 414 diversity of the instruction set (as shown in Figure 6 and Table 8). The combined dataset (denoted
 415 as **Combined**) was then used for evaluation. We evaluated two subtasks, Next-View and Next-
 416 Action, across all three dataset settings. For each setting, experiments were conducted under three
 417 conditions: No training, Supervised Fine-Tuning (SFT) based on LLama-Factory (Zheng et al.,
 418 2024), and Reinforcement Fine-Tuning (RFT) based on EasyR1 (Zheng et al., 2025b), adopting
 419 Qwen2.5-VL(3B and 7B) models as the base model. The results are summarized in Table 2.

420 **Analysis.** The experimental results confirm that, as a baseline, the 7B model outperforms the 3B
 421 model in zero-shot settings, and both SFT and RFT lead to significant performance gains. However,
 422 the optimal fine-tuning strategy is not uniform. On the more challenging multi-image **Next-View**
 423 task, SFT proves more effective for the smaller 3B model, while the performance gap between SFT
 424 and RFT narrows considerably for the larger 7B model. Conversely, on the **Next-Action** task, the
 425 best method depends on the dataset: SFT excels on the **Base** set, whereas RFT shows superior
 426 performance on the more diverse **Extend** and **Combined** sets. These results collectively validate the
 427 effectiveness of our dataset and demonstrate the feasibility of conducting complex navigation tasks
 428 within the reconstructed Minecraft environments.

429 **Application in Minecraft.** We deploy Gemini-2.5-Pro to control an agent performing VLN in a
 430 World2Minecraft reconstructed scene. The agent successfully locates a target piano by following
 431 natural language instructions “Go to the piano” as shown in Figure 5, demonstrating the practical
 432 utility of our environment for embodied AI.

432 4.4 EXPERIMENTAL RESULTS ABOUT MINECRAFTOCC
433

434 **Implementation Details.** We first compared MinecraftOcc with the NYUv2 and OccScanNet
435 datasets in terms of scene count, image count, resolution, and image quality as shown in Figure 1. To ensure an objective evaluation, we randomly selected 100 images from each dataset
436 to assess image quality using the NIQE, PIQE, and LV metrics. For the occupancy prediction
437 experiments, and to ensure a fair comparison with NYUv2 and OccScanNet, we mapped
438 the 1,452 classes in MinecraftOcc to their 13 corresponding categories (see Appendix G for the
439 detailed mapping). We initially evaluated several methods on our dataset at three scales (8k,
440 50k, and 100k), including MonoScene (Cao & De Charette, 2022), NDCScene(Yao et al., 2023),
441 ISO(Yu et al., 2024), and Symphonies (Jiang et al., 2024). Additionally, we conducted joint
442 training experiments combining Symphonies with NYUv2 and the 8k-scale MinecraftOcc dataset.
443

444 **Analysis.** Experimental results demonstrate
445 that our MinecraftOcc dataset significantly out-
446 performs NYUv2 and OccScanNet in terms of
447 image quantity and metrics including NIQE,
448 PIQE, and LV as shown in Table 3. As the re-
449 sults in Table 4, existing mainstream methods
450 generally achieve relatively low performance,
451 indicating the unique challenges presented by
452 our dataset. Notably, MonoScene, which delivers average performance on NYUv2, demonstrates re-
453 markable stability on MinecraftOcc. We hypothesize that this is because other methods are overfitted
454 to the NYUv2 dataset, leading to performance degradation when evaluated on a different dataset.
455 Furthermore, after joint training with the NYUv2 dataset on Symphonies(Jiang et al., 2024), im-
456 provements in both IoU(+0.43) and mIoU(+0.21) were observed, suggesting that the MinecraftOcc
457 dataset can effectively complement existing datasets, which is in Table 5.

458 Table 4: Minecraftocc Dataset results under different training settings.
459

Setting	Method					empty	ceiling	floor	wall	window	chair	bed	sofa	table	tvs	furniture	objects
		IoU	mIoU	Precision	Recall												
8k	Monoscene	40.66	20.93	48.54	71.46	89.10	54.28	78.68	32.14	0.00	11.20	12.56	13.15	8.67	1.94	10.86	6.74
	NDC-Scene	37.06	17.82	46.51	65.57	88.42	46.01	79.10	28.03	0.00	9.37	3.26	5.81	11.86	0.81	8.18	3.61
	ISO	33.82	14.83	37.16	79.00	83.14	48.42	78.33	27.08	0.00	1.30	0.13	2.49	1.44	0.40	3.48	0.07
	Symphonies	39.11	21.56	49.30	65.42	89.05	49.39	77.16	31.06	2.80	12.24	13.27	13.26	13.77	4.95	11.11	8.13
50k	Monoscene	39.51	19.61	54.00	59.55	91.37	52.93	83.99	27.68	2.57	9.70	5.82	8.78	5.53	3.25	9.56	5.90
	NDC-Scene	37.97	19.45	48.81	63.10	90.52	49.87	83.49	26.98	5.77	10.38	6.29	10.21	4.96	3.37	6.88	5.72
	ISO	35.07	15.69	42.06	67.82	88.22	44.46	80.81	25.40	0.56	2.98	3.07	4.05	3.50	1.17	5.02	1.55
	Symphonies	37.28	19.61	51.17	57.88	90.95	50.93	84.43	25.58	5.12	8.08	7.00	8.66	6.48	5.14	9.01	5.32
100k	Monoscene	29.23	14.56	50.39	41.03	90.89	24.39	52.85	24.42	2.40	9.73	10.45	8.62	7.48	7.86	6.46	5.53
	NDC-Scene	28.08	12.96	41.09	47.02	88.91	26.12	52.81	22.83	1.11	6.93	8.26	6.86	6.41	2.76	4.61	3.85
	ISO	23.20	8.15	42.35	33.90	89.66	20.79	49.18	18.80	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.00
	Symphonies	27.60	13.08	34.78	57.23	86.14	26.05	61.02	21.27	2.97	6.06	5.90	5.74	4.79	2.50	4.53	3.05

469 Table 5: Performance comparison on NYU V2 Dataset. * Represents the model trained on a mixture
470 of the MinecraftOcc 8k and NYUv2 training sets, and evaluated on the NYUv2 test set.

Method			ceiling	floor	wall	window	chair	bed	sofa	table	tvs	furniture	objects
	IoU	mIoU											
LMSCNet	33.93	15.88	4.49	88.41	4.63	0.25	3.94	32.03	15.44	6.57	0.02	14.51	4.39
AICNet	30.03	18.15	7.58	82.97	9.15	0.05	6.93	35.87	22.92	11.11	0.71	15.90	4.56
3DSketch	38.64	22.91	8.53	90.45	9.94	5.67	10.64	42.29	29.21	13.88	9.38	23.83	8.19
Monoscene	42.51	26.94	8.89	93.50	12.06	12.57	13.72	48.19	36.11	15.13	15.22	27.96	12.94
NDC-Scene	44.17	29.03	12.02	93.51	13.11	13.77	15.83	49.57	39.87	17.17	24.57	31.00	14.96
Symphonies	49.91	29.70	14.54	86.59	25.95	15.96	16.78	46.60	38.06	15.37	15.32	32.16	19.58
Symphonies*	50.34	29.91	13.96	88.55	26.18	17.26	17.22	45.83	38.94	17.38	12.29	32.58	18.88

481 4.5 COMPARISON WITH LAYOUT-BASED RECONSTRUCTION METHODS

482 **Implementation Details.** To validate the advantages of our occupancy-based reconstruction over
483 layout-based methods, we compare World2Minecraft with the recent indoor scene generation meth-
484 ods: LayoutGPT (Feng et al., 2023), I-Design (Çelen et al., 2024), and LayoutVLM (Sun et al.,
485 2025b). These methods generate scenes from textual descriptions but lack the geometric precision
486 required for embodied AI tasks. We adapt them to our real-to-sim setting by converting input im-

486
487
Table 6: Comparison with layout-based scene generation methods.
488

Method	OOB ↓	Collision ↓	Semantic ↑	Visual ↑	Complete ↑	Aesthetic ↑
LayoutGPT	0.279	4.5	0.689	5.000	3.856	4.582
I-Design	0.423	0	0.884	6.001	4.734	5.352
LayoutVLM	0	0.9	0.348	3.625	2.270	2.708
World2Minecraft	0.024	0.2	0.913	6.145	5.186	6.022

493
494
Table 7: Detailed efficiency breakdown comparing our pipeline with building from scratch.
495

Metric Details	World2Minecraft	Build from Scratch	Improvement
Total Time (seconds)	70.38	482.00	—
World2Minecraft (Automated)	5.88	—	—
Refinement (Manual)	64.50	482.00	7.5×
Total Operations	24.50	340.00	13.9×
Addition Actions	9.70	319.30	32.9×
Deletion Actions	7.60	—	—
Orientation Adjustments	7.20	20.70	2.9×

503 ages into textual descriptions using GPT-4o, which are then used to generate scene layouts. For a fair
 504 comparison, we use the same set of scenes from the MinecraftVLN dataset that were manually re-
 505 fined in our World2Minecraft evaluation. Our evaluation employs six metrics spanning functionality
 506 and aesthetics: **OOB Rate** (percentage of objects placed outside room boundaries), **Collision Count**
 507 (number of intersecting objects), **Semantic Integrity** (the ratio of generated semantic categories to
 508 the total categories present in the ground truth scene), and **Visual Realism**, **Scene Completeness**,
 509 and **Aesthetic Atmosphere** (perceptual scores rated by GPT-4o on a scale of 1-10 assessing realism,
 510 completeness, and aesthetic appeal, respectively).

511 **Analysis.** As shown in Table 6, World2Minecraft outperforms baselines across most metrics, notably
 512 achieving 0.913 in *Semantic Integrity* and 6.145 in *Visual Realism*. The minimal OOB Rate
 513 (0.024) and Collision Count (0.2) reflect superior spatial awareness, whereas layout-based meth-
 514 ods (e.g., LayoutGPT, LayoutVLM) struggle with geometric conflicts and plausibility. This suc-
 515 cess stems from the combination of **semantic occupancy prediction** and **shape-aware template**
 516 **matching**, which captures fine-grained geometry to ensure the precise alignment vital for avoiding
 517 obstacles in downstream VLN tasks.

518 4.6 EFFICIENCY ANALYSIS OF MANUAL REFINEMENT

519 **Implementation Details.** We conducted a controlled efficiency experiment comparing
 520 World2Minecraft with refinement against building scenes entirely from scratch. For 15 scenes from
 521 the MinecraftVLN-Base dataset, we measured the total time and operation counts. Experienced
 522 builders created equivalent scenes from scratch as a baseline. The manual refinement involves three
 523 simple, lightweight operations: **Deletion** of floating artifacts, **Completion** of minor surface holes,
 524 and **Adjustment** of object orientations.

525 **Results.** As shown in Table 7, World2Minecraft with refinement requires only **70.38s per scene**—a
 526 **7× reduction** compared to building from scratch (482.00s). The refinement process itself involves
 527 an average of **24.5 operations** (e.g., 9.7 hole fillings, 7.6 noise deletions, 7.2 orientation adjust-
 528 ments), compared to 340 operations for complete scene construction. This efficiency stems from our
 529 pipeline providing a high-quality initial reconstruction, requiring only minimal corrections. These
 530 corrections address imperfections inherent to any reconstruction algorithm, ensuring navigability for
 531 VLN tasks.

532 5 CONCLUSION

533 In this work, we introduce **World2Minecraft**, a framework that converts real-world scenes into struc-
 534 tured Minecraft environments via 3D semantic occupancy prediction. We also propose scalable
 535 **data construction pipeline** and we build **MinecraftOcc**, a large-scale dataset of diverse indoor
 536 scenes with voxel-wise semantic annotations. Our experiments demonstrate the utility of these
 537 reconstructed environments for downstream VLN tasks and establish **MinecraftOcc**’s dual value
 538 as both a challenging new benchmark that exposes limitations in state-of-the-art models, and as a
 539 powerful resource for augmenting existing real-world datasets. To foster reproducibility and future
 research, we will publicly release our complete framework and dataset.

540 ETHICS STATEMENT
541

542 Our work aims to advance embodied AI in an ethical way, focusing on safety, transparency, and re-
543 peatability. All data in this study are artificially created inside the Minecraft virtual world, which of-
544 fers a controlled and consistent experimental setup. The **MinecraftOcc** and **MinecraftVLN** datasets
545 are built entirely from simulated scenes and include no real human data, private details, or identifi-
546 able personal spaces. This approach avoids privacy issues that come with collecting real-world data.
547 By working mainly in simulation, we also lower the safety risks and resource use typically involved
548 in real robot experiments.

549
550 REPRODUCIBILITY STATEMENT
551

552 To reproduce the work presented in this paper, follow these steps in sequence:

553

- 554 1. Download the **World2Minecraft** code along with the **MinecraftOcc** and **MinecraftVLN**
555 datasets.
- 556 2. Train the **EmbodiedOcc** model using the provided configuration and training scripts.
- 557 3. Feed the predictions from the trained EmbodiedOcc model into the **World2Minecraft**
558 pipeline to generate corresponding Minecraft construction commands.
- 559 4. Prepare a Minecraft environment with the **TMEO Mod** installed and execute the generated
560 commands to reconstruct the scenes.
- 561 5. Conduct Vision-Language Navigation (VLN) tasks using the provided evaluation scripts
562 within the reconstructed Minecraft scenes.
- 563 6. Collect image sequences using the **Screenshot with Coordinates** tool for data acquisition
564 purposes.
- 565 7. Extract map data using the **WorldEdit** utility to obtain scene layout information.
- 566 8. Generate occupancy data using the provided processing scripts to create the final dataset
567 format.

568 REFERENCES
569

570 Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
571 Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
572 visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3674–3683, 2018.

573 Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X Chang, and Matthias
574 Nießner. Scan2cad: Learning cad model alignment in rgb-d scans. In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*, pp. 2614–2623, 2019.

575 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
576 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
577 2025.

578 Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Groot: Learning
579 to follow instructions by watching gameplay videos. *arXiv preprint arXiv:2310.08235*, 2023.

580 Shaofei Cai, Zhancun Mu, Kaichen He, Bowei Zhang, Xinyue Zheng, Anji Liu, and Yitao
581 Liang. Minestudio: A streamlined package for minecraft ai agent development. *arXiv preprint
582 arXiv:2412.18293*, 2024a.

583 Shaofei Cai, Bowei Zhang, Zihao Wang, Haowei Lin, Xiaojian Ma, Anji Liu, and Yitao
584 Liang. Groot-2: Weakly supervised multi-modal instruction following agents. *arXiv preprint
585 arXiv:2412.10410*, 2024b.

586 Shaofei Cai, Zhancun Mu, Haiwen Xia, Bowei Zhang, Anji Liu, and Yitao Liang. Scalable multi-
587 task reinforcement learning for generalizable spatial intelligence in visuomotor agents. *arXiv
588 preprint arXiv:2507.23698*, 2025a.

594 Shaofei Cai, Zihao Wang, Kewei Lian, Zhancun Mu, Xiaojian Ma, Anji Liu, and Yitao Liang.
 595 Rocket-1: Mastering open-world interaction with visual-temporal context prompting. In *Pro-
 596 ceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12122–12131, 2025b.
 597

598 Anh-Quan Cao and Raoul De Charette. Monoscene: Monocular 3d semantic scene completion.
 599 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 600 3991–4001, 2022.

601 Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro Armeni, Anton Obukhov, and Xi Wang.
 602 I-design: Personalized llm interior designer. In *European Conference on Computer Vision*, pp.
 603 217–234. Springer, 2024.

604 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 605 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 606 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 607 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

608

609 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
 610 discovering clusters in large spatial databases with noise. In *kdd*, volume 96, pp. 226–231, 1996.

611 Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani, Arjun Akula, Xuehai He,
 612 S Basu, Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional vi-
 613 sual planning and generation with large language models. In A. Oh, T. Naumann,
 614 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural In-
 615 formation Processing Systems*, volume 36, pp. 18225–18250. Curran Associates, Inc.,
 616 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/3a7f9e485845dac27423375c934cb4db-Paper-Conference.pdf.

617

618 Can Gümeli, Angela Dai, and Matthias Nießner. Roca: Robust cad model retrieval and alignment
 619 from a single image. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 620 recognition*, pp. 4022–4031, 2022.

621

622 Zhening Huang, Xiaoyang Wu, Fangcheng Zhong, Hengshuang Zhao, Matthias Nießner, and Joan
 623 Lasenby. Litereality: Graphics-ready 3d scene reconstruction from rgb-d scans. *arXiv preprint
 624 arXiv:2507.02861*, 2025.

625

626 Haoyi Jiang, Tianheng Cheng, Naiyu Gao, Haoyang Zhang, Tianwei Lin, Wenyu Liu, and Xing-
 627 gang Wang. Symphonize 3d semantic scene completion with contextual instance queries. In *Pro-
 628 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20258–
 629 20267, 2024.

630

631 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 632 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

633

634 Muyao Li, Zihao Wang, Kaichen He, Xiaojian Ma, and Yitao Liang. Jarvis-vla: Post-training large-
 635 scale vision language models to play visual games with keyboards and mouse. *arXiv preprint
 636 arXiv:2503.16365*, 2025.

637

638 Haisong Liu, Haiguang Wang, Yang Chen, Zetong Yang, Jia Zeng, Li Chen, and Limin Wang. Fully
 639 sparse 3d panoptic occupancy prediction. *CoRR*, 2023.

640

641 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 642 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications
 643 of the ACM*, 65(1):99–106, 2021.

644

645 Srivathsan Murali, Pablo Speciale, Martin R Oswald, and Marc Pollefeys. Indoor scan2bim: Build-
 646 ing information models of house interiors. In *2017 IEEE/RSJ International Conference on Intel-
 647 ligent Robots and Systems (IROS)*, pp. 6126–6133. IEEE, 2017.

648

649 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 650 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
 651 ai research. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 652 9339–9347, 2019.

648 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
 649 port inference from rgbd images. In *European conference on computer vision*, pp. 746–760.
 650 Springer, 2012.

651 Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang, Zishan Qin, and Stephen Gould. 3d-gpt:
 652 Procedural 3d modeling with large language models. In *2025 International Conference on 3D
 653 Vision (3DV)*, pp. 1253–1263. IEEE, 2025a.

654 Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat, Federico Tombari, Manling Li, Nick
 655 Haber, and Jiajun Wu. Layoutvlm: Differentiable optimization of 3d layout via vision-language
 656 models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 29469–
 657 29478, 2025b.

658 Samuel Sze, Daniele De Martini, and Lars Kunze. Minkocc: Towards real-time label-efficient
 659 semantic occupancy prediction. *arXiv preprint arXiv:2504.02270*, 2025.

660 Michał J Tyszkiewicz, Kevis-Kokitsi Maninis, Stefan Popov, and Vittorio Ferrari. Raytran: 3d pose
 661 estimation and shape reconstruction of multiple objects from videos with ray-traced transformers.
 662 In *European Conference on Computer Vision*, pp. 211–228. Springer, 2022.

663 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 664 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 665 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

666 Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
 667 explain, plan and select: Interactive planning with large language models enables open-world
 668 multi-task agents. *arXiv preprint arXiv:2302.01560*, 2023.

669 Yuqi Wu, Wenzhao Zheng, Sicheng Zuo, Yuanhui Huang, Jie Zhou, and Jiwen Lu. Embodiedocc:
 670 Embodied 3d occupancy prediction for vision-based online scene understanding. *arXiv preprint
 671 arXiv:2412.04380*, 2024.

672 Xiuyu Yang, Yunze Man, Junkun Chen, and Yu-Xiong Wang. Scenecraft: Layout-guided 3d scene
 673 generation. *Advances in Neural Information Processing Systems*, 37:82060–82084, 2024.

674 Jiawei Yao, Chuming Li, Keqiang Sun, Yingjie Cai, Hao Li, Wanli Ouyang, and Hongsheng Li.
 675 Ndc-scene: Boost monocular 3d semantic scene completion in normalized device coordinates
 676 space. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9421–9431.
 677 IEEE Computer Society, 2023.

678 Hong-Xing Yu, Haoyi Duan, Charles Herrmann, William T Freeman, and Jiajun Wu. Wonderworld:
 679 Interactive 3d scene generation from a single image. In *Proceedings of the Computer Vision and
 680 Pattern Recognition Conference*, pp. 5916–5926, 2025.

681 Hongxiao Yu, Yuqi Wang, Yuntao Chen, and Zhaoxiang Zhang. Monocular occupancy prediction
 682 for scalable indoor scenes. In *European Conference on Computer Vision*, pp. 38–54. Springer,
 683 2024.

684 Xinyue Zheng, Haowei Lin, Kaichen He, Zihao Wang, Qiang Fu, Haobo Fu, Zilong Zheng, and
 685 Yitao Liang. Mcu: An evaluation framework for open-ended game agents. In *Forty-second
 686 International Conference on Machine Learning*, 2025a.

687 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 688 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 689 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 690 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 691 tics. URL <http://arxiv.org/abs/2403.13372>.

692 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
 693 Easyr1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025b.

694

702 A THE USE OF LARGE LANGUAGE MODELS
703

704 In the preparation of this manuscript, large language models (LLMs) were utilized solely for writing
705 and presentation assistance, in accordance with their respective licenses and terms of use. Specif-
706 ically, LLMs were employed to assist in language polishing to improve the fluency and clarity of
707 selected sections, adjusting the layout and presentation of figures and tables, and generating aux-
708 illiary code snippets for data processing and visualization tasks. It is important to emphasize that
709 all scientific content, methodological development, experimental design, data analysis, and conclu-
710 sions remain the intellectual contribution of the authors, with LLM usage strictly limited to auxiliary
711 editorial and presentational tasks.

712
713 B PRELIMINARIES
714

715 Minecraft, as an open-world sandbox game, is renowned for its highly flexible building mechanics
716 and consistent physics, making it a significant foundation for constructing simulation environments
717 in embodied AI research. This section systematically introduces its standard environment features,
718 modding mechanism, and the high-fidelity extended environment we developed based on it.

721 B.1 NAIVE MINECRAFT ENVIRONMENT
722

723 The standard Minecraft environment provides a voxel-based and spatially discretized world—the
724 entire world is divided into $1 \times 1 \times 1$ unit voxel blocks, each corresponding to approximately $1m^3$ in
725 the real world. This environment not only exhibits geometric regularity but also supports realistic
726 physical interactions, demonstrating a high degree of authenticity and simulation fidelity, especially
727 in terms of lighting, gravity, and terrain dynamics, which closely mirror real-world physical laws.

728 However, the vanilla Minecraft environment has notable limitations in embodied AI research. Its
729 low-resolution, blocky visual style introduces a significant domain gap when compared to real-
730 world images, restricting its applicability in perception tasks. Furthermore, the default Minecraft
731 blocks lack diversity and granularity, consisting mainly of abstract classes (e.g., “wood”, “stone”)
732 rather than semantically meaningful entities such as furniture. The indoor structures in the default
733 environment are overly simplistic and lack layout complexity, failing to provide the spatial variety
734 necessary for perception-dependent decision-making in embodied tasks.

735
736 B.2 MOD ABOUT MINECRAFT
737

738 In order to address the limitations described above, we introduced a series of functional mods that
739 significantly enhance environment construction, data collection, and visual realism. The modding
740 system is a core extensibility mechanism of Minecraft, allowing modification or enhancement of
741 game functionality through custom code and resource packs. In this work, we mainly employed
742 three mods, as illustrated in Figure 3, namely:

743 **WorldEdit** It provides efficient large-scale procedural scene generation and editing capabilities. It
744 supports rapid creation, duplication, and modification of composite structures via scripting, greatly
745 improving both the efficiency and diversity of constructing complex indoor environments. Addition-
746 ally, it allows easy access to the map data of target regions, including block types and coordinates,
747 subsequent downstream processing and analysis.

748 **Screen with Coordinates** It simultaneously records the player’s current viewpoint frame along with
749 the player’s position coordinates and viewing orientation, represented in Euler angles, during ren-
750 dering.

751 **TMEO Texture and Mod Pack** It introduces over 1,400 fine-grained, semantically labeled object
752 models (e.g., furniture such as “Blingds lighting” and household items like “Crib infant beds”),
753 substantially enriching the semantic diversity and object hierarchy of scenes. Coupled with its high-
754 resolution physically-based material pack, it lays the foundation for subsequent Physically Based
755 Rendering(PBR).

756 B.3 EXTENDED MINECRAFT ENVIRONMENT
757758 Building upon the aforementioned mods, we constructed a high-fidelity, diversified extended
759 Minecraft environment tailored for embodied AI tasks. This environment significantly surpasses
760 the native platform in terms of semantic complexity, visual realism, and scalability.761 By integrating the fine-grained objects and diverse structures from the TMEO mod, we developed
762 an indoor environment system comprising 156 detailed scenes and approximately 1,600 rooms.
763 These encompass multi-story architectural structures, complex spatial layouts, and dense furnishings,
764 greatly enriching the semantic hierarchy and spatial diversity of the scenes.765 On the visual level, leveraging high-definition textures, PBR shaders, and dynamic lighting mods,
766 we achieved realistic shadows, reflections, and global illumination effects. This markedly reduces
767 the domain gap between synthetic images and real-world scenes.768 In terms of environment construction and data collection, tools like WorldEdit and Screen with Co-
769 ordinates enabled the establishment of a standardized pipeline. This supports the efficient generation
770 of new scenes and the automatic acquisition of multi-modal annotated data, ensuring high reusability
771 and extensibility.773
774 **Algorithm 1** World2Minecraft: Reality-to-Virtual Transfer

775 **Require:** **Input:** Image set $\mathcal{I} = \{I_1, \dots, I_N\}$

776 1: Camera intrinsic parameters \mathcal{K}

777 2: Camera extrinsic parameters \mathcal{E}

778 3: Pretrained models $\mathcal{F}_{\text{mono}}, \mathcal{F}_{\text{emb}}$

779 **Ensure:** **Output:** Reconstructed Minecraft scene

780 4: **procedure** RECONSTRUCTSCENE($\mathcal{I}, \mathcal{K}, \mathcal{E}, \mathcal{F}_{\text{mono}}, \mathcal{F}_{\text{emb}}$)

781 5: $\mathcal{O}_{\text{mono}} \leftarrow \emptyset$ ▷ Initialize monocular predictions set

782 6: **for** each image $I_i \in \mathcal{I}$ **do** ▷ Process each view

783 7: $\mathcal{O}_{\text{mono}}^i \leftarrow \mathcal{F}_{\text{mono}}(I_i, \mathcal{K})$ ▷ Generate per-view occupancy

784 8: $\mathcal{O}_{\text{mono}} \leftarrow \mathcal{O}_{\text{mono}} \cup \{\mathcal{O}_{\text{mono}}^i\}$

785 9: $\hat{\mathcal{O}}_{\text{scene}} \leftarrow \mathcal{F}_{\text{embodied}}(\mathcal{O}_{\text{mono}}, \mathcal{K}, \mathcal{E})$ ▷ Fuse multi-view predictions

786 10: $\mathcal{D} \leftarrow \mathbf{K} * \hat{\mathcal{O}}_{\text{scene}}$ ▷ Compute density map via 3D convolution

787 11: $\mathcal{C} \leftarrow \{\mathbf{v} \in \hat{\mathcal{O}}_{\text{scene}} \mid \mathcal{D}(\mathbf{v}) \geq \tau\}$ ▷ Extract centers above threshold τ

788 12: $\mathcal{C}' \leftarrow \text{Cluster}(\mathcal{C}, \eta)$ ▷ Merge centers within distance η

789 13: $\mathcal{M} \leftarrow \text{TranslateToMinecraft}(\mathcal{C}')$ ▷ Generate Minecraft building commands

790 14: $\text{ExecuteCommands}(\mathcal{M})$ ▷ Render scene in Minecraft

791 15: **return** MinecraftScene ▷ Return reconstructed virtual scene

792 C ALGORITHM OF WORLD2MINECRAFT
793794 Our proposed method, World2Minecraft, formulates the reality-to-virtual transfer as a scene recon-
795 struction problem. The core pipeline, outlined in Algorithm 1, takes a set of multi-view images
796 and camera parameters as input and produces executable commands to reconstruct the scene in
797 Minecraft. The process consists of three main stages: multi-view semantic occupancy prediction,
798 volumetric fusion and density-based filtering, and finally, virtual world generation.799 **Stage 1: Multi-view Semantic Occupancy Prediction.** The algorithm begins by processing each
800 input image I_i independently using a monocular prediction model $\mathcal{F}_{\text{mono}}$ (Line 4-7). This model
801 infers an initial 3D semantic occupancy volume $\mathcal{O}_{\text{mono}}^i$ for each view, capturing the geometry and
802 semantics visible from that particular viewpoint. These per-view predictions are aggregated into a
803 set $\mathcal{O}_{\text{mono}}$.804 **Stage 2: Volumetric Fusion and Filtering.** The individual occupancy volumes are then fused into
805 a consistent global scene representation $\hat{\mathcal{O}}_{\text{scene}}$ by an embodied model $\mathcal{F}_{\text{embodied}}$, which utilizes the
806 camera parameters to resolve inconsistencies and merge information (Line 8). To obtain a clean
807 and structured representation suitable for building, we compute a density map \mathcal{D} by applying a 3D
808 convolution kernel \mathbf{K} to the fused occupancy (Line 9). Voxel centers with a density value exceeding
809 a threshold τ are selected as candidate building locations \mathcal{C} (Line 10). A clustering step (Line 11)

further refines these candidates by merging those within a small distance η , reducing redundancy and ensuring structural coherence.

Stage 3: Virtual World Generation. The final stage translates the refined 3D centers \mathcal{C}' into a sequence of Minecraft building commands \mathcal{M} (Line 12). These commands, which specify the placement of specific block types at 3D coordinates, are executed to render the final scene within the Minecraft environment (Line 13), completing the transfer from reality to a semantically decomposed and editable virtual world.

D IMAGE AND CAMERA PARAMETER ACQUISITION

As shown in Figure 3, we use an automated mod tool, *Screen with Coordinates*, to acquire data. This tool simultaneously captures first-person screenshots while recording the virtual camera’s pose for each frame, including its 3D position and orientation (Euler angles). From this paired data, we compute the intrinsic and extrinsic matrices of the camera for each image.

D.1 INTRINSIC CAMERA MATRIX

The intrinsic matrix \mathcal{K} is determined by the virtual camera’s Field of View (FOV) and the image dimensions (W, H) .

$$\mathcal{K} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \quad (10)$$

Here, the focal lengths f_x, f_y and the principal point (c_x, c_y) are derived from the horizontal FOV, denoted as α :

$$f_x = f_y = \frac{W}{2 \tan(\alpha/2)}, \quad c_x = \frac{W}{2}, \quad c_y = \frac{H}{2} \quad (11)$$

D.2 EXTRINSIC CAMERA MATRIX

The extrinsic matrix \mathcal{E} defines the transformation from the camera coordinate system to the world frame. It is constructed from the camera’s position $\mathbf{p} = (x_p, y_p, z_p)^T$ and its orientation, which is defined by a rotation matrix \mathbf{R} .

$$\mathcal{E} = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0}^T & 1 \end{bmatrix} \quad (12)$$

The rotation matrix \mathbf{R} is derived from the yaw (θ) and pitch (ϕ) angles provided by the game mod. To align the mod’s Euler angle convention with a standard right-handed coordinate system (e.g., camera: +X right, +Y down, +Z forward), we apply an offset of π to the angles.

The final orientation is achieved by composing two sequential rotations: first, a yaw rotation around the world’s Y-axis, followed by a pitch rotation around the camera’s local X-axis. This corresponds to an extrinsic YX Euler angle convention.

First, the yaw rotation matrix \mathbf{R}_{yaw} is defined as a rotation around the Y-axis by an angle of $(\theta + \pi)$:

$$\mathbf{R}_{\text{yaw}} = \mathbf{R}_Y(\theta + \pi) = \begin{bmatrix} \cos(\theta + \pi) & 0 & \sin(\theta + \pi) \\ 0 & 1 & 0 \\ -\sin(\theta + \pi) & 0 & \cos(\theta + \pi) \end{bmatrix} = \begin{bmatrix} -\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & -\cos \theta \end{bmatrix} \quad (13)$$

Next, the pitch rotation matrix $\mathbf{R}_{\text{pitch}}$ is defined as a rotation around the X-axis by an angle of $(\phi + \pi)$:

$$\mathbf{R}_{\text{pitch}} = \mathbf{R}_X(\phi + \pi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi + \pi) & -\sin(\phi + \pi) \\ 0 & \sin(\phi + \pi) & \cos(\phi + \pi) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\cos \phi & \sin \phi \\ 0 & -\sin \phi & -\cos \phi \end{bmatrix} \quad (14)$$

The final rotation matrix \mathbf{R} is the product of these two matrices, with the yaw rotation applied first:

$$\mathbf{R} = \mathbf{R}_{\text{pitch}} \cdot \mathbf{R}_{\text{yaw}} = \begin{bmatrix} -\cos \theta & 0 & -\sin \theta \\ \sin \theta \sin \phi & -\cos \phi & -\cos \theta \sin \phi \\ -\sin \theta \cos \phi & -\sin \phi & \cos \theta \cos \phi \end{bmatrix} \quad (15)$$

864 **E VIEWPOINT PROJECTION AND REDUNDANCY REMOVAL**
865

866 To further improve label quality, we introduce a **view frustum culling** mechanism based on camera projection.
867 In early versions of the dataset, the occupancy regions associated with an image
868 occasionally included irrelevant space outside the camera’s field of view, which introduces noise.
869 Therefore, we use the camera’s intrinsic and extrinsic parameters to project the 3D voxel grid onto
870 the 2D image plane. Let $\pi : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the camera projection function, which utilizes the intrinsic
871 \mathcal{K} and extrinsic \mathcal{E} matrices to map a world coordinate point \mathbf{v} to image coordinates \mathbf{u} . We retain
872 only those voxels that project within the image boundaries. The final set of visible voxels, $\mathcal{V}_{\text{visible}}$, is
873 defined as:

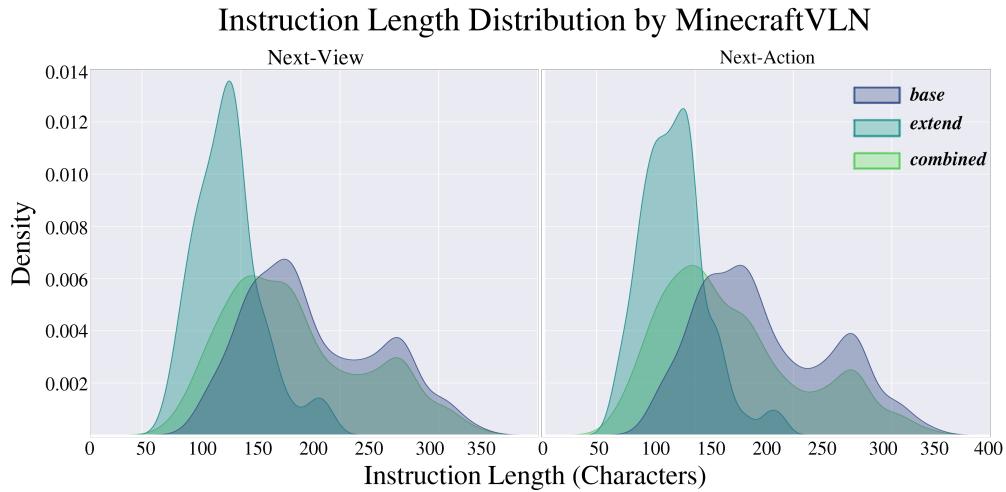
$$\mathcal{V}_{\text{visible}} = \{\mathbf{v} \in \mathcal{V} \mid \pi(\mathbf{v}, \mathcal{E}, \mathcal{K}) \in [0, W] \times [0, H]\} \quad (16)$$

874 By removing voxels that project outside the image, we ensure that the final 3D occupancy labels
875 are precisely aligned with the image’s field of view, thereby eliminating redundancy and preventing
876 label misalignment.

877 **F DATASET ANALYSIS**
878

881 Table 8: Statistical Summary of Instruction Lengths Across Different Tasks and Datasets. The table
882 shows the count, mean, standard deviation (Std. Dev.), and quartiles for the length of navigation
883 instructions.

885 Task	886 Dataset Type	887 Count	888 Mean	889 Std. Dev.	890 Min	891 25%	892 50%	893 75%	894 Max
895 Next-Action	896 Base	897 769	898 79.01	899 32.87	900 15	901 57.0	902 78.0	903 96.0	904 187
	905 Extend	906 1351	907 171.37	908 67.10	909 62	910 117.0	911 156.0	912 232.0	913 334
	914 Combined	915 2120	916 137.87	917 72.34	918 15	919 81.0	920 121.0	921 181.0	922 334
923 Next-View	924 Base	925 290	926 87.41	927 33.57	928 28	929 64.0	930 87.0	931 99.0	932 187
	933 Extend	934 1132	935 173.23	936 66.70	937 62	938 121.0	939 156.0	940 232.0	941 334
	942 Combined	943 1422	944 155.73	945 70.48	946 28	947 103.0	948 145.0	949 208.0	950 334



952 Figure 6: A comparison of instruction length distributions across three datasets for the Next-View
953 and Next-Action tasks. The extend dataset clearly contains shorter and more uniform instructions.

954 **G SEMANTIC CLASS MAPPING FOR CROSS-DATASET EXPERIMENTS**
955

956 To facilitate a fair and meaningful comparison between models trained on our `MinecraftOcc`
957 dataset and those evaluated on standard benchmarks like `NYUv2`, we established a many-to-one

918
 919 Table 9: Dataset statistics for Minecraftocc and MinecraftVLN. Minecraftocc is provided at three
 920 scales (8k, 50k, 100k), while MinecraftVLN includes three scales (Base, Extend, Combined) with
 921 two task settings: Next-View and Next-Action.

922 Dataset	923 Scale	924 Task	925 Train	926 Test	927 All
928 Minecraftocc	8k	929 –	930 6,100	931 2,024	932 8,124
	50k	933 –	934 39,914	935 10,245	936 50,159
	100k	937 –	938 79,799	939 20,366	940 100,165
941 MinecraftVLN	942 Base	943 Next-View	944 902	945 230	946 1132
	947	948 Next-Action	949 1042	950 309	951 1351
	952 Extend	953 Next-View	954 249	955 41	956 290
957	958	959 Next-Action	960 594	961 175	962 769
	963 Combined	964 Next-View	965 1151	966 271	967 1422
	968	969 Next-Action	970 1636	971 484	972 2120

933
 934
 935 mapping from our 1,000+ fine-grained, Minecraft-specific classes (including 200 distinct lighting
 936 fixtures) to a standardized set of 12 common indoor semantic categories. This process creates a
 937 shared semantic ground for consistent evaluation.

938 The mapping was designed to group Minecraft blocks and items based on their functional and struc-
 939 tural roles within an indoor scene. Table 10 summarizes this hierarchy, providing the rationale for
 940 each target superclass along with a few representative examples from the MinecraftOcc dataset.
 941 This standardized taxonomy is used for all cross-dataset experiments.

942 The complete, exhaustive mapping of all classes is provided as a .json file in our supplementary
 943 material to ensure full reproducibility.
 944

945 Table 10: Summary of the mapping from our fine-grained MinecraftOcc classes to 12 target
 946 superclasses. Representative examples are provided for clarity.
 947

948 Target Superclass	949 Mapping Rationale / Included Concepts	950 Example MinecraftOcc Classes
951 empty	952 A broad catch-all category for non-structural, transparent, or empty elements.	953 tmeo_ultra:chuanglian...
954 ceiling	955 Overhead structural surfaces and decorative ceiling elements.	956 tmeo_ultra:diaodeng...
957 floor	958 Horizontal walking surfaces, including stairs, slabs, and floor coverings.	959 tmeo_ultra:shigaoxian...
960 wall	961 Core vertical structural surfaces	962 minecraft:birch_planks
963 window	964 All types of blinds and shutters.	965 tmeo_ultra:yitishilouti...
966 chair	967 All single-person seating, including benches, stools, and dining chairs.	968 minecraft:stone_brick_slab
969 bed	970 All types of beds and associated bedding parts.	971 tmeo_ultra:diantimen
972 sofa	973 Couches and other seating furniture.	974 tmeo_ultra:shafa_1x_2
975 table	976 Surfaces for placing objects.	977 tmeo_ultra:canzhuoyuanxing
978 tvs	979 All television sets and monitor screens.	980 tmeo_ultra:diaoguadianshi
981 furn	982 General non-seating furniture, e.g., cabinets, shelves, sinks, and wardrobes.	983 tmeo_ultra:yigui...
984 objs	985 Miscellaneous functional and decorative items not part of the main structure.	986 tmeo_ultra:shujia...
987	988	989 tmeo_ultra:penzai
990	991	992 tmeo_ultra:yinxiang...

965 H IMAGE QUALITY METRICS

966
 967 This appendix briefly describes the three no-reference image quality assessment metrics used in our
 968 evaluation:

969
 970 • Natural Image Quality Evaluator(NIQE): Measures how closely an image’s statistical prop-
 971 erties match those of natural images. Lower values indicate better, more natural quality.

972
 973
 974
 975
 976
 977

- Perception-based Image Quality Evaluator(PIQE): Assesses local distortions and artifacts in images based on human visual perception. Lower values indicate fewer distortions and better perceptual quality.
- Laplacian Variance(LV): Quantifies image sharpness by measuring the variance of Laplacian-filtered responses. Higher values indicate sharper images with more detail.

978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

These complementary metrics provide a comprehensive assessment of visual quality from different perspectives: NIQE evaluates global naturalness, PIQE detects local artifacts, and LV measures sharpness.

I IMPLEMENTATION DETAILS

This section provides a comprehensive overview of the implementation details for the two main experiments conducted in this study: Reinforcement Fine-Tuning (RFT) and Supervised Fine-Tuning (SFT). All experiments used `Qwen2.5-VL` as the base model.

I.1 EXPERIMENT 1: REINFORCEMENT FINE-TUNING

The RFT experiment was conducted using the EasyR1 framework. For this experiment, the vision tower of the model was unfrozen and trained alongside the language components. We employed the Generalized Rejection Policy Optimization (GRPO) algorithm. To regularize the policy, we incorporated a Kullback-Leibler (KL) divergence penalty with a coefficient of 1.0×10^{-2} , calculated using a low-variance estimator.

Dataset and Data Processing. The training and validation data were sourced from Parquet files, using `content` for prompts and `answer` for responses. Prompts were formatted via a custom Jinja template (`mc.jinja`). The maximum prompt length was set to 4096 tokens, and the maximum response length was 1024 tokens.

Hardware and Training Configuration. The experiment was run on a single node with 8 GPUs, utilizing Fully Sharded Data Parallelism (FSDP) with full parameter sharding and CPU offloading for both model parameters and optimizer states to conserve memory. The rollout phase was accelerated with a tensor parallel size of 2. Key hyperparameters are summarized in Table 11.

I.2 EXPERIMENT 2: SUPERVISED FINE-TUNING (SFT)

The SFT experiment was conducted using the LLaMA Factory framework.

Model and Fine-tuning Strategy. In contrast to the RFT experiment, the vision tower and the multi-modal projector were kept frozen during SFT. Fine-tuning was performed only on the parameters of the language model component using a full-parameter approach (`finetuning_type: full`).

Dataset and Preprocessing. We utilized a custom dataset named `base_train_task1`, limiting the training to a maximum of 1000 samples. The data was formatted with the `qwen2_vl` conversation template, and the maximum sequence length was capped at 8192 tokens.

Training Configuration. The model was trained for 5 epochs using the DeepSpeed ZeRO Stage 3 strategy and `bfloat16` mixed precision. We employed a cosine learning rate scheduler with a 10% warmup period. No validation was performed during training. The detailed hyperparameters are presented in Table 11.

J INTERACTIVE VISUALIZATION TOOL : SCENEFORGE

To facilitate the analysis and refinement of occupancy clustering results, we developed an interactive web-based visualization tool names SceneForge that provides Open3D-like 3D exploration capabilities. This tool plays a crucial role in our *World2Minecraft* pipeline by enabling intuitive inspection and manual correction of semantic occupancy predictions.

1026 Table 11: Comparison of key hyperparameters for the SFT and RFT experiments.
1027

1028 Parameter	1029 RFT Setting	1029 SFT Setting
<i>General Strategy</i>		
1030 Fine-tuning Type	1031 –	1031 Full-parameter
1032 Training Precision	1032 –	1032 bfloat16
1033 Algorithm	1033 GRPO	1033 –
<i>Optimization</i>		
1034 Optimizer	1035 AdamW	1034 AdamW (implied)
1035 Learning Rate	1036 1.0×10^{-6}	1035 1.0×10^{-5}
1036 Weight Decay	1037 1.0×10^{-2}	1036 –
1037 LR Scheduler	1038 –	1037 Cosine
1038 Warmup Ratio	1039 –	1038 0.1
1039 Total Epochs	1040 30	1039 5
<i>Batching</i>		
1041 Global Batch Size	1042 128	1041 –
1042 Per-device Batch Size	1043 –	1042 1
1043 Gradient Accumulation Steps	1044 –	1043 2
1044 Effective Batch Size	1045 128 (Global)	1044 2
<i>RFT-Specific Details</i>		
1046 KL Coefficient (λ_{KL})	1047 1.0×10^{-2}	1046 –
1047 Rollout Samples (n)	1048 5	1047 –
1048 Training Temperature	1049 1.0	1048 –

1050
1051 **TOOL OVERVIEW**1052
1053 The visualization tool is implemented as a standalone web application using D3.js for 3D rendering
1054 and interaction. It supports the following key functionalities:

- 1055 • **Multi-format Data Loading:** The tool accepts both voxel-wise occupancy data
1056 (`occ.json`) and pre-computed center points (`centers.json`), with optional demo data
1057 for quick testing.
- 1058 • **Interactive 3D Exploration:** Users can rotate the view (mouse drag), zoom (scroll wheel),
1059 and pan (Shift + drag) to examine the scene from any angle, mimicking the interaction
1060 paradigm of Open3D.
- 1061 • **Category-aware Visualization:** Twelve semantic categories are color-coded and can be
1062 individually toggled on/off via an interactive legend, enabling focused analysis of specific
1063 object types.
- 1064 • **Real-time Parameter Adjustment:** Dynamic controls allow users to adjust voxel size,
1065 transparency, and center point size during visualization to optimize clarity.
- 1066 • **Center Point Editing:** An advanced editing mode supports manual refinement of object
1067 centers through:
 - 1068 – Drag-and-drop repositioning of center points
 - 1069 – Point deletion (right-click) and selective removal
 - 1070 – Point splitting for fine-grained object separation
 - 1071 – Bulk operations by category selection

1072 J.1 INTEGRATION WITH RESEARCH WORKFLOW

1073
1074 The tool served two primary purposes in our research:

- 1075 1. **Qualitative Analysis:** During method development, we used the tool to visually inspect
1076 clustering results, identify failure cases, and understand the limitations of automatic center
1077 prediction algorithms.

1080
1081 2. **Data Refinement:** For the *MinecraftVLN* dataset creation, the editing capabilities allowed
1082 us to manually correct inaccurately predicted object centers, ensuring higher quality navi-
1083 gation environments.
1084

1084 J.2 TECHNICAL IMPLEMENTATION 1085

1086 The tool architecture consists of four modular components:
1087

- 1088 • `config.js` - Configuration constants and color schemes
- 1089 • `data.js` - Data loading and processing utilities
- 1090 • `projection.js` - 3D projection and rendering engine
- 1091 • `ui.js` - User interface event handlers and state management

1093 This web-based implementation ensures cross-platform compatibility without requiring complex
1094 dependencies, making it accessible for researchers to reproduce and extend our work. The complete
1095 source code is available in our supplementary materials.
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133