
The Impossibility of Inverse Permutation Learning in
Transformer Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study the problem of inverse permutation learning in decoder-only transformers.1

Given a permutation and a string to which that permutation has been applied, the2

model is tasked with producing the original (“canonical”) string. We argue that3

this task models a natural robustness property across a variety of reasoning tasks,4

including long-context retrieval, multiple choice QA and in-context learning.5

Our primary contribution is an impossibility result: under weak assumptions, we6

show that an arbitrary depth, decoder-only transformer cannot learn this task. This7

result concerns the expressive capacity of decoder-only transformer models and is8

agnostic to training dynamics or sample complexity.9

We give a pair of alternative constructions under which inverse permutation learning10

is feasible. The first of these highlights the fundamental role of the causal attention11

mask, and suggests a gap between the expressivity of encoder-decoder transformers12

and the more popular decoder-only architecture. The latter result is more surprising:13

we show that simply duplicating the input yields a construction under which inverse14

permutation learning is possible. We conjecture that this result may suggest an15

alternative mechanism by which chain-of-thought prompting or, more generally,16

intermediate “thinking” tokens can enable reasoning in large language models.17

1 Introduction18

One of the most striking features of modern large language models (LLMs) is the emergence of19

general-purpose reasoning abilities at scale. Even relatively early LLMs were capable of in-context20

learning [4], multiple choice question answering [14], long-context reasoning [20], and deductive21

logical reasoning tasks [13]. It was not obvious, a priori, that a single model could be trained to22

handle such a diverse range of tasks, since each might appear to demand distinct—and potentially23

incompatible—architectures, training recipes or inductive biases.24

In this work, we focus on a particular inductive bias: permutation invariance. Modern LLMs typically25

encode positional information through positional encodings [31]. This is, of course, a desirable26

property for a language model, as the order of words is inextricably linked to their meaning. However,27

this sensitivity to ordering can present challenges in other contexts. For example, consider in-context28

learning: given k labeled examples, a model is asked to predict the label for a final unlabeled input.29

It is typically desirable that these predictions are invariant to ordering of the examples. In multiple30

choice question answering (QA), we’d similarly like invariance to the order of answer options; in31

long-context reasoning, we might want invariance to the order of in-context facts; in deductive32

reasoning tasks a model should be invariant to the ordering of logical predicates; in generative33

verification tasks, the verifier should be invariant to the ordering of candidate solutions.34

Unfortunately, at least as an empirical matter, modern LLMs fail to satisfy any of these desiderata [25,35

5, 21, 27, 22, 19]. This sensitivity to ordering manifests as seemingly arbitrary failures, undermining36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

reliability and, ultimately, trust in these models. This problem is well-studied, with proposed solutions37

including altering the training loss to encourage permutation invariance [6], optimizing input ordering38

[12, 3, 2], and modifications to the architecture [8, 33, 10] (we discuss additional related work in39

Appendix A). However, none of these solutions address the fundamental question: can a standard40

decoder-transformer learn to guarantee permutation invariance?41

Inverse permutation learning. We observe that inverse permutation learning is a sufficient and42

natural manner in which to guarantee order invariance. For example, given a sequence of (key, value)43

pairs as in-context examples, it might first map these examples to a lexicographic ordering over keys,44

guaranteeing invariance to the order in which they are presented. We model this task as inverse45

permutation learning: given a permuted sequence and a description of the permutation which was46

applied, the model should learn to output a “canonical” version of the sequence.47

Permutation Permuted Sequence Canonical Ordering

[2 0 1] [♣ ♡ ♠] [♡ ♠ ♣]
apply inverse

[2 1 0] [♣ ♠ ♡] [♡ ♠ ♣]
apply inverse

Figure 1: Visualizing inverse permutation learning. The model is given a permutation and a permuted
sequence as input, and is tasked with inverting the permutation to recover the canonical ordering.

Note that this task is perhaps easier than our motivating examples, as the model is given both a48

description of the permutation to be “undone” as well as the permuted sequence. Nonetheless, we49

show that, under relatively weak assumptions, a transformer cannot learn to complete this task.50

1.1 Contributions51

In this work, we derive an impossibility result for inverse permutation learning with a decoder-only,52

attention-only transformer architecture. The key intuition underpinning this result is straightforward:53

all permutations (except the trivial identity permutation) require shifting at least one element from a54

later position in the sequence to an earlier position in the sequence. However, the structure of the55

causal attention mask prevents the necessary information transfer from later tokens to earlier ones.56

We complement this impossibility result with a pair of existence proofs. The first shows, perhaps57

unsurprisingly, removing the causal structure to allow for general two-way attention mechanisms58

yields a construction which solves the inverse permutation learning problem. We show that this is59

borne out empirically in a simplified transformer model, which improves from the level of random60

guessing to nearly perfect accuracy if the causal attention mask is removed.1 We also conduct a61

mechanistic analysis demonstrating that the learned weights correspond to those predicted by our62

constructive proof. This result suggests that alternative architectures, particularly encoder-decoder63

architectures, may not have the same limitations as the decoder-only architecture which underpins64

the most popular modern LLMs.65

Second, and more surprisingly, we show that copying the input — that is, providing (permutation,66

permuted sequence, permutation, permuted sequence) as input — also yields a construction for inverse67

permutation learning. Our construction illustrates that this transformation of the input provides the68

model with additional “scratch space” for computation during the forward pass. We conjecture that69

this mechanism may partially explain the success of “chain-of-thought” prompting [32], scratchpad70

prompting [24] or the use of intermediate reasoning tokens [7], which perform a similar function by71

allowing the model to perform additional computation in a single forward pass whether or not the72

intermediate tokens encode meaningful information (e.g., intermediate reasoning steps).73

2 Technical Results74

We begin with the definition of the inverse permutation function.75

1Our code is available here: https://anonymous.4open.science/r/icl-D209.

2

https://anonymous.4open.science/r/icl-D209

Definition 1 (Inverse permutation function). For fixed n, an inverse permutation function takes any76

permutation matrix P ∈ {0, 1}n×n where the ith row represents the elementary unit vector eπ(i) for77

some permutation π(·) and any n-row matrix YP and to produce Y , where Y = P−1YP .78

We remark that one function satisfying Definition 1 is the trivial linear transformation (P, YP) 7→79

P⊤YP , since P−1 = P⊤. As mentioned in Section 1, this task is arguably simpler than the more80

realistic tasks which motivate it: the description of the permutation P is given explicitly, rather than81

being determined by some function of the permuted input YP (e.g., its lexicographic index). Thus, we82

have eliminated the difficulty of determining the order in which inputs are arranged or the choice of83

canonical ordering during internal model computations. Similarly, by presenting YP as a matrix, we84

have also reduced the difficulty of the problem by providing a fixed delimiting of the set of examples85

(rather than the model having to delimit free text into the set of choices).86

The decoder-only transformer architecture underpins the most popular frontier LLMs, including87

the GPT series.2 We focus on a simplified decoder-only, “disentangled” transformer architecture88

proposed by Nichani et al. [23]. We describe this architecture below.89

A simplified transformer model. The input will consist of a matrix X ∈ RT×d where T is the90

length of the sequence and d is the input dimension. The input sequence is first passed through an91

embedding function, which consists of the concatenation of token and position embeddings. For92

simplicity, we will assume the token embeddings are just X itself and position embeddings are93

one-hot encodings of each of X’s row positions, so that the encoding of an input is94

h(0) def.
= [X, I] ∈ RT×(d+T)

where I is the T × T identity matrix. Subsequent layers of the transformer will consist of attention95

layers, which are each parameterized by a matrix A. Each attention layer consists of a softmax96

operation S(·) composed with a causal attention mask operation MASK(·):97

attn(h;A)
def.
= S(MASK(hAh⊤))h

The softmax operation is applied row-wise to a matrix. For a given vector v, we let S(v)i =98

exp(vi)/
∑

j exp(vj). For a matrix V , the causal attention mask just takes the lower-triangular99

entries of V so that MASK(V)ij = Vij if i ≥ j and −∞ above the diagonal. We will denote the100

weight matrix at the ith layer as A(i).101

Typically, the outputs of a layer are added to its inputs; i.e., the residual stream out of layer i+ 1 is102

h(i) + attn(h(i);A(i+1)). We will instead analyze a disentangled transformer, proposed by Nichani103

et al. [23], which concatenates the outputs of a layer with its inputs to form the inputs to the next104

layer:105

h(i+1) def.
= [h(i), attn(h(i);A(i+1))].

The disentangled transformer is exactly as expressive as a vanilla (layer-sum) transformer (see,106

Nichani et al. [23], Theorem 3). It is analytically useful because it clarifies the structure of the107

residual stream [9], which describes how transformers may use orthogonal subspaces of layer outputs108

as communication channels. In particular, while standard transformers store information in orthogonal109

subspaces of the residual stream, disentangled transformers store the outputs of each layer in separate110

matrix blocks. We will refer to h(i) as the residual stream at layer i. Throughout this paper, we will111

analyze disentangled transformers. For simplicity, we will consider transformers with a single head.112

All of our results hold for multi-head transformers.113

For expressibility of inverse permutation functions (Definition 1), the input to the transformer is the114

concatenation of the task inputs, represented as X = [P ;YP]. We note that YP is represented with d115

rows since this is the dimension of the permutation matrix. Thus, T = 2d.116

2.1 The impossibility of inverse permutation learning.117

Our main theoretical result states that, for any nontrivial permutation P , no decoder-only transformer118

of any depth can output Y to a block of the residual stream. We state this result below.119

2The most popular open source models (e.g., the Llama series, Qwen series and Mixtral series) are built
on decoder-only architectures, as was OpenAI’s GPT-3 model. While the architecture for newer closed-source
models like GPT-5 or the Gemini, Claude or Grok series has not been publicly disclosed, it is folklore in the AI
research community that these models are also underpinned by variants of a decoder-only architecture.

3

Theorem 1. For all k and parameter matrices {A(i)}i∈[k], and all permutation matrices P other120

than the identity permutation, there exists a target matrix Y such that a decoder-only, attention-only121

transformer parameterized by {A(i)}i∈[k] given [P ;YP] as input does not output Y to any block of122

the residual stream.123

As described in Section 1, the intuition for this result is straightforward: for any nontrivial permutation,124

at least one element which must be moved from a later position to an earlier position. However, the125

causal attention mask precludes this: any row in the residual stream corresponding to position i must126

be invariant to changes in rows corresponding to positions j > i. This interpretation is supported127

by Theorem 3, which we state in in Appendix B. The proof of Theorem 3 gives a construction for128

inverse permutation learning if the causal attention mask is removed.129

We provide complementary empirical results in Appendix C, which demonstrate that performance130

improves from the level of random guessing to near perfect accuracy if we remove the causal attention131

mask. We also conduct a mechanistic analysis of the trained model which demonstrates that the132

learned weights can constitute a constructive proof of Theorem 3. Proofs of both Theorem 1 and133

Theorem 3 are provided in Appendix D.134

2.2 The possibility of inverse permutation learning under input copying.135

We now turn to a more surprising result — simply copying the input is also sufficient to demonstrate136

a construction that solves the inverse permutation learning task. We state this theorem below.137

Theorem 2. There exist parameter matrices A(1) and A(2) such that, for any permutation matrix P138

and target matrix Y , a two-layer decoder-only attention-only transformer parameterized by A(1), A(2)139

given [P ;YP ;P ;YP] as input outputs Y to a block of the residual stream.140

We provide a proof in Appendix D. The proof suggests that the specific content of the “padding”141

tokens (here, the second copy of P and YP) are unimportant. Instead, as discussed in Section 1,142

these padding tokens provide the model with additional “scratch space” with which to perform the143

necessary matrix operations. Unlike Theorem 3, this result provides a recipe for performing inverse144

permutation learning without modifying the decoder-only architecture which underpins most modern145

LLMs. We provide a conjecture regarding the broader implications of this finding below.146

3 Discussion and Future Work147

Our results identify a sharp limitation on the expressivity of decoder-only transformers: under mild148

assumptions, they cannot learn the inverse permutation function for any nontrivial permutation, even149

with unbounded depth. We give two alternative constructions under which feasibility is restored:150

removing the causal attention mask or, more surprisingly, simply duplicating the input.151

A mechanism for multi-step reasoning. As discussed in Section 2.2, this latter construction works by152

providing the model with “scratch space” in the residual stream that can be used to perform additional153

computation. We conjecture that this may have implications well beyond permutation invariance.154

If there is indeed a broader class of reasoning problems which can only be solved by duplicating155

or otherwise padding inputs, this suggests a concrete and, to our knowledge, thus far unexplored156

mechanism by which popular reasoning strategies — including chain of thought prompting [32],157

scratchpad prompting [24] and the generation of thinking tokens [7] — might enable problem solving158

in transformer models. In particular, these intermediate output tokens may enable reasoning even if159

they encode no useful semantic information about the problem.160

This interpretation avoids anthropomorphizing models as articulating “thoughts” or intermediate161

computation via output tokens; as Hubinger et al. [16] and Baker et al. [1] argue, this can also be162

dangerous, as models may misrepresent their own behavior or objectives. Instead, our work suggests163

a different path toward a mechanistic understanding of reasoning in LLMs.164

Limitations. We study the stylized transformer first proposed by Nichani et al. [23]. Our model165

preserves the most important features of the architecture, but omits MLP blocks, multi-head attention,166

and nontrivial positional embeddings, among other complexities. Our results also assume a natural167

but particular input representation. Furthermore, our constructive results concern the expressive168

capacity of transformers, but do not examine training dynamics or sample complexity required to169

achieve these configurations. We look forward to addressing these complexities in future work.170

4

References171

[1] Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y. Guan, Aleksander Madry,172

Wojciech Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for173

misbehavior and the risks of promoting obfuscation, 2025.174

[2] Rahul Atul Bhope, Praveen Venkateswaran, K. R. Jayaram, Vatche Isahagian, Vinod Muthusamy,175

and Nalini Venkatasubramanian. Optiseq: Ordering examples on-the-fly for in-context learning,176

2025.177

[3] Rahul Atul Bhope, Praveen Venkateswaran, K. R. Jayaram, Vatche Isahagian, Vinod Muthusamy,178

Nalini Venkatasubramanian, Taylor Shin, Yasaman Razeghi, Robert L Logan, Eric Wallace,179

Sameer Singh. 2020, Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D.180

Manning, Andrew Y Ng, Christopher Potts, Recursive, Taylor Sorensen, Joshua Robinson,181

Christopher Rytting, Alexander Glenn Shaw, Kyle Jeffrey Rogers, Alexia Pauline Delorey,182

Mahmoud Khalil, Nancy Fulda, David Wingate 2022, An, Hugo Touvron, Thibaut Lavril,183

Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière,184

Naman Goyal, and Eric Hambro. Optiseq: Ordering examples on-the-fly for in-context learning.185

2025. URL https://api.semanticscholar.org/CorpusID:275921280.186

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,187

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel188

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.189

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz190

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec191

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.192

[5] Xinyun Chen, Ryan A Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reasoning193

with large language models. February 2024.194

[6] Edo Cohen-Karlik, Avichai Ben David, and Amir Globerson. Regularizing towards permutation195

invariance in recurrent models, 2020.196

[7] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin197

Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,198

Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan199

Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,200

Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli201

Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng202

Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,203

Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian204

Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean205

Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan206

Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,207

Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong208

Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan209

Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting210

Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,211

T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,212

Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao213

Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,214

Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang215

Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.216

Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao217

Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang218

Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,219

Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong220

Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,221

Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan222

Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,223

Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,224

and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement225

learning, 2025.226

5

https://api.semanticscholar.org/CorpusID:275921280

[8] Beni Egressy and Jan Stühmer. Set-LLM: A Permutation-Invariant LLM. May 2025.227

[9] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,228

Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for229

transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.230

[10] Josh Gardner, Juan C. Perdomo, and Ludwig Schmidt. Large scale transfer learning for tabular231

data via language modeling, 2024.232

[11] George Giapitzakis, Artur Back de Luca, and Kimon Fountoulakis. Learning to add, mul-233

tiply, and execute algorithmic instructions exactly with neural networks. arXiv preprint234

arXiv:2502.16763, 2025.235

[12] Qi Guo, Leiyu Wang, Yidong Wang, Wei Ye, and Shikun Zhang. What makes a good order of236

examples in in-context learning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,237

Findings of the Association for Computational Linguistics: ACL 2024, pages 14892–14904,238

Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/239

v1/2024.findings-acl.884. URL https://aclanthology.org/2024.findings-acl.884/.240

[13] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James241

Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah Szabo,242

Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,243

Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R Fabbri, Wojciech244

Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong,245

Rex Ying, Arman Cohan, and Dragomir Radev. FOLIO: Natural language reasoning with246

first-order logic. September 2022.247

[14] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and248

Jacob Steinhardt. Measuring massive multitask language understanding. September 2020.249

[15] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A250

transformer that solves small tabular classification problems in a second, 2022.251

[16] Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid,252

Tamera Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, Adam Jermyn, Amanda253

Askell, Ansh Radhakrishnan, Cem Anil, David Duvenaud, Deep Ganguli, Fazl Barez, Jack254

Clark, Kamal Ndousse, Kshitij Sachan, Michael Sellitto, Mrinank Sharma, Nova DasSarma,255

Roger Grosse, Shauna Kravec, Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner,256

Holden Karnofsky, Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, Sören257

Mindermann, Ryan Greenblatt, Buck Shlegeris, Nicholas Schiefer, and Ethan Perez. Sleeper258

agents: Training deceptive llms that persist through safety training, 2024.259

[17] Belinda Z Li, Zifan Carl Guo, and Jacob Andreas. (how) do language models track state? arXiv260

preprint arXiv:2503.02854, 2025.261

[18] Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin262

Wattenberg. Emergent world representations: Exploring a sequence model trained on a synthetic263

task. arxiv. arXiv preprint arXiv:2210.13382, 2022.264

[19] Xiaonan Li and Xipeng Qiu. Finding supporting examples for in-context learning. February265

2023.266

[20] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,267

and Percy Liang. Lost in the middle: How language models use long contexts. July 2023.268

[21] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,269

and Percy Liang. Lost in the middle: How language models use long contexts. July 2023.270

[22] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically271

ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. April272

2021.273

[23] Eshaan Nichani, Alex Damian, and Jason D. Lee. How Transformers Learn Causal Struc-274

ture with Gradient Descent, August 2024. URL http://arxiv.org/abs/2402.14735.275

arXiv:2402.14735 [cs].276

[24] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,277

David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton,278

and Augustus Odena. Show your work: Scratchpads for intermediate computation with language279

models, 2021.280

6

https://aclanthology.org/2024.findings-acl.884/
http://arxiv.org/abs/2402.14735

[25] Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of281

options in multiple-choice questions. August 2023.282

[26] Jonathan Richens, David Abel, Alexis Bellot, and Tom Everitt. General agents need world283

models. arXiv preprint arXiv:2506.01622, 2025.284

[27] Lin Shi, Chiyu Ma, Wenhua Liang, Xingjian Diao, Weicheng Ma, and Soroush Vosoughi.285

Judging the judges: A systematic study of position bias in LLM-as-a-Judge. June 2024.286

[28] Shubham Toshniwal, Sam Wiseman, Karen Livescu, and Kevin Gimpel. Chess as a testbed for287

language model state tracking. In Proceedings of the AAAI Conference on Artificial Intelligence,288

volume 36, pages 11385–11393, 2022.289

[29] Keyon Vafa, Justin Y. Chen, Jon Kleinberg, Sendhil Mullainathan, and Ashesh Rambachan.290

Evaluating the World Model Implicit in a Generative Model, June 2024. URL http://arxiv.291

org/abs/2406.03689. arXiv:2406.03689 [cs].292

[30] Keyon Vafa, Peter G Chang, Ashesh Rambachan, and Sendhil Mullainathan. What has a293

foundation model found? using inductive bias to probe for world models. arXiv preprint294

arXiv:2507.06952, 2025.295

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,296

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information297

processing systems, 30, 2017.298

[32] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,299

Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language300

models, 2022.301

[33] Renjun Xu, Kaifan Yang, Ke Liu, and Fengxiang He. E(2)-Equivariant vision transformer.302

June 2023.303

A Additional related work304

Our work builds on a rich and rapidly growing literature on reasoning, world modeling and state305

tracking modern large language models. It is perhaps most closely related to Li et al. [17], which306

examines whether and how LLMs track state in a permutation composition task. Unlike our work,307

they explicitly train models to output intermediate states. Another related line of work interrogates the308

coherence of internal “world models” [29, 30, 18, 28]; these internal models are desirable precisely309

because they guarantee, for example, that the behavior of the LLM is invariant to perturbations of310

inputs which correspond to the same logical state. Recent work argues that such a world model is311

necessary for general purpose agents [26]. Our work is also closely related to Giapitzakis et al. [11],312

which studies the task of learning permutations (given an input, apply a given, fixed permutation to it)313

in two-layer feedforward neural networks. In contrast, the task we study involves the “in context”314

inversion of arbitrary permutations given as inputs. Our technical results build on the “disentangled”315

transformer model, first proposed by Nichani et al. [23] to study the emergence of causal reasoning316

in transformer models.317

More generally, we build on work studying transformers [31] and their capabilities. In particular,318

the problem of reconstructing “canonical” permutations can be viewed as a building block towards319

robust in-context learning [4] and tabular foundation models models [15, 10], wherein performance320

should be invariant to permutations of in-context examples or columns.321

B Inverse permutation learning with an unrestricted attention mask.322

Our next result serves to reinforce the key intuition from Section 2.1; namely, that the causal attention323

mask precludes the transfer of information which is necessary to perform inverse permutation learning.324

First, we define the causal mask-free attention operation.325

Definition 2. We will say an attention layer is causal mask-free (CMF) if it computes326

attnCMF(h;A)
def.
= S(hAh⊤)h.

We say a decoder-only, attention-only transformer is CFM if all of its attention layers are CFM.327

7

http://arxiv.org/abs/2406.03689
http://arxiv.org/abs/2406.03689
http://arxiv.org/abs/2406.03689

That is, attnCMF is defined identically to attn except that the MASK operation is removed. In328

that sense, the causal mask-free attention operation is no longer “causal”, and instead allows for329

unrestricted information flow between tokens.330

Our next result shows that this change is sufficient to recover a construction which solves the inverse331

permutation learning task.332

Theorem 3. There exists parameter matrices A(1) and A(2) such that, for any permutation matrix333

P and target matrix Y , a two-layer, decoder-only, attention-only, causal mask-free, transformer334

parameterized by A(1), A(2) given [P ;YP] as input outputs Y to a block of the residual stream.335

We provide a constructive proof of this result in Appendix D. As discussed in Section 1, this result is336

perhaps unsurprising: the intuition underpinning Theorem 1 was that causal attention restricts the337

necessary flow of information; this result reinforces that interpretation by showing that removing the338

causal attention mask suffices to circumvent this impossibility result.339

We validate this result by training a disentangled transformer using stochastic gradient descent.340

We find the performance of the model after training is near perfect, and inspection of the weights341

shows that the model has indeed learned to invert permutations (although the construction it learns342

is different than the one we use in our proof). Full details of our setup, data generating process and343

approach are provided in Appendix C below.344

C Empirical validation345

Here we provide details on our empirical validation of our theoretical results. All of346

our code was forked from the code provided in Nichani et al. [23] (the model training,347

plotting and logging are all nearly identical to their code; the data generating process348

and model itself are modified to fit our question and setting). Our code is available at349

https://anonymous.4open.science/r/icl-D209/README.md.350

C.1 Setup.351

We train a disentangled transformer using the architecture described in Section 2. The only difference352

is that, in the paper, our results are about the (possibility or impossibility) of copying Y to the residual353

stream and in our empirical validation we produce an output. This is to enable taking gradients and354

applying the usual model training pipeline. To generate outputs, we define output weights W and355

multiply the residual stream output in the last layer with W : h(2)W⊤.356

We train disentangled transformers with a causal mask and without a causal mask, as defined in357

Section 2.1 and Appendix B, respectively. For each of the experiments, the training parameters, loss358

function and all other details of the implementation and training are exactly the same (including the359

random seed).360

We use squared loss to optimize the model, 216 training steps and batches of size 1024. Model361

training takes less than 5 minutes on one Nvidia A100 GPU. We set the dimension d = 10.362

To generate the inputs, we generated P by sampling uniformly at random from the set of permutations363

on d elements. To generate Y , we sampled each entry of a d× d matrix uniformly at random from364

{0, 1}.365

C.2 Results.366

Transformers with causal masks. After training the model with causal mask, mean squared error367

of the model is approximately 2.5, which is the MSE corresponding to random guessing.368

Transformers without causal masks. After training the model without the causal mask, the MSE369

of the model is about 0.00015. We reproduce the weights corresponding to the trained model in370

Figure 2. Panel (a) shows the weights for the first attention layer A(1), panel (b) is for the second371

attention layer A(2) and (c) is for the output layer W . The construction recovered by the model372

training process is different than the construction provided in our proof of Theorem 3; both are valid.373

We visualize weights with a heatmap: each small square in each figure represents a single weight374

8

https://anonymous.4open.science/r/icl-D209/README.md

parameter. Thus, A(1) is a matrix of size 3d× 3d = 30× 30. In (a), we label weights corresponding375

to token and position embeddings above and to the side of the matrix. Weights that are larger are376

closer to yellow and weights that are close to zero are dark blue. Thus, the weights matrix A(1) is377

approximately equal to378

A(1) = β

[
0 0 0
0 0 I
0 0 0

]

for some β ≫ 0, where each entry corresponds to a d× d block.379

In (b), we label weights corresponding to the different blocks of the residual stream: the top/left380

blocks correspond to the input sequence and the bottom/right blocks correspond to the layer-1 outputs.381

Thus, the weights matrix A(2) is approximately equal to382

Ã(2) = β


0 0 0 0 0 0
I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


for some β ≫ 0.383

In (c), the output weights W can be seen to be approximately equal to the all-zeros matrix except for384

the 10th block, which is the identity matrix.385

(a) Weights for first attention layer A(1) (b) Weights for second attention layer A(2)

(c) Weights for output layer W

Figure 2: Weights for decoder-only disentangled transformer trained to inverse permutations.

D Proofs386

We begin by stating a lemma we will use in the proof of our main theorem. It formalizes the notion387

that the causal mask induces an invariance of each row to any subsequent row in the residual stream.388

Lemma 1. Let h and h′ be any two inputs to the ℓth layer such that their first i rows are the same:389

h1:i = h′
1:i. Then for any weights A, attn(h;A)i = attn(h′;A)i.390

9

Proof. By inspecting the activation function, we observe the ith row of the output of a given layer391

with weights A are:392

(S(MASK(hAh⊤))h)i =
1∑

j≤i exp(hiAh⊤
j)

∑
j≤i

exp(hiAh⊤
j)hj

Since this function does not depend on any row hj for j > i, attn(h;A)ℓ = attn(h′;A)ℓ.393

D.1 Proof of theorem 1394

For ease of reference, we restate each result before its proof.395

Theorem 1. For all k and parameter matrices {A(i)}i∈[k], and all permutation matrices P other396

than the identity permutation, there exists a target matrix Y such that a decoder-only, attention-only397

transformer parameterized by {A(i)}i∈[k] given [P ;YP] as input does not output Y to any block of398

the residual stream.399

Proof. Consider some P that is not the identity matrix. Recall that rows and columns of P must400

sum to one. Let Pi denote the ith-row of P . We first prove that P must have at least one nonzero401

below-diagonal entry. That is, we claim that there exists i such that Pi = ej for j < i. To see this, let402

i be the index of the last row which is not equal to its corresponding elementary basis vector ei. (By403

the fact that P is not the identity, there must some such row index.) Since for all j > i, the jth row is404

equal to ej , the last d− i entries of Pi must be zero. Also, since Pi ̸= ei, the diagonal entry must405

be zero. Therefore, the non-zero entry of Pi must be at some entry j for j < i. This is a non-zero406

below-diagonal entry of Pi.407

Now, let i, j be any indices such that Pi = ej for j < i. In order to store Y in some block of the408

residual stream, the jth row of Y cannot be in any row of the residual stream more than d− j rows409

from the bottom. Formally, the jth row of Y must be output somewhere in the ℓ-th row of the residual410

stream for ℓ ≤ d+ j + 1. However, since YP = PY and j < i, Yj is located in the ith row of YP ,411

which is in row d+ i+ 1 of the input. Since d+ i+ 1 > d+ j + 1 ≥ ℓ, by Lemma 1, row ℓ of the412

residual stream must be invariant to row d+ i+ 1. Thus, for any fixed weight matrices {A(m)}m∈[k],413

there exists some Y such that it is not output to the residual stream.414

Theorem 3. There exists parameter matrices A(1) and A(2) such that, for any permutation matrix415

P and target matrix Y , a two-layer, decoder-only, attention-only, causal mask-free, transformer416

parameterized by A(1), A(2) given [P ;YP] as input outputs Y to a block of the residual stream.417

Proof of Theorem 3. We proceed by construction. The first attention layer computes the row-reversed418

column embedding matrix P . For constant β1, we will have attention weights represented by the419

following block matrix420

Ã(1) = β1

[
0 0 0
0 Jd 0
0 0 0

]
where each 0 is the d× d all-zeros matrix and Jd ∈ Rd×d is the antidiagonal matrix with (A1)i,j = 1421

if i+ j = d+ 1 and 0 otherwise. This implies pre-activations422

XÃ(1)X⊤ = X

[
0 0
Jd 0
0 0

]

= β1

[
Jd 0
0 0

]
∈ RT×T

As β1 → ∞, this implies activations423

S(XÃ(1)X⊤) =

[
Jd 0
0 0

]
Finally, we have layer-1 outputs424

S(XÃ(1)X⊤)X =

[
P ′ Jd 0
0 0 0

]

10

where P ′ is the matrix such that P ′
i,j is P(d+1−i),j (i.e., the row-reversed matrix).425

The second attention layer computes the column-reversed transformation of P ′, which is P⊤. Recall426

that the input to the second attention is427

h(1) =
[
X S(XÃ(1)X⊤)X

]
=

[
P Id 0 P ′ Jd 0
YP 0 Id 0 0 0

]
Define a constant β2. We will have attention weights428

Ã(2) = β2


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 Jd 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


This implies pre-activations429

h(1)Ã(2)h(1)⊤ = β2h
(1)


0 0
0 0
0 0
0 Jd
0 0
0 0


= β2

[
0 P⊤

0 0

]
and, as β2 → ∞, activations430

S(h(1)Ã(2)h(1)⊤) =

[
0 P⊤

0 0

]
This yields layer-2 outputs431

S(h(1)Ã(2)h(1)⊤)h(1) =

[
P⊤YP 0 P⊤ 0 0 0

0 0 0 0 0 0

]
Finally, notice P⊤YP = Y so the top-left block recovers the desired canonical order.432

Theorem 2. There exist parameter matrices A(1) and A(2) such that, for any permutation matrix P433

and target matrix Y , a two-layer decoder-only attention-only transformer parameterized by A(1), A(2)434

given [P ;YP ;P ;YP] as input outputs Y to a block of the residual stream.435

Proof of Theorem 2. Our construction will just consist of the first three blocks [P ;YP ;P]. By436

Lemma 1, the residual stream is invariant to adding rows to the input, so a construction for [P ;YP ;P]437

is sufficient. (Including the final YP block is not necessary for the construction, and omitting it438

simplifies the construction.)439

X = embed(s1:T)

=

[
P
YP

P
IT

]

=

[
P Id 0d 0d
YP 0d Id 0d
P 0d 0d Id

]
∈ RT×(d+T)

The first layer produces the row-reversed matrix P ′. For constant β1, we will have attention weights440

represented by the following block matrix441

Ã(1) = β1

0 0 0 0
0 0 0 0
0 0 0 0
0 Jd 0 0



11

where each 0 is the d× d all-zeros matrix and Jd ∈ Rd×d is the antidiagonal matrix with (A1)i,j = 1442

if i+ j = d+ 1 and 0 otherwise. This implies pre-activations443

XÃ(1)X⊤ = β1X

 0 0 0
0 0 0
0 0 0
Jd 0 0


= β1

[
0 0 0
0 0 0
Jd 0 0

]
∈ RT×T

And as β1 → ∞,444

S(MASK(XÃ(1)X⊤)) =

[
0 0 0
0 0 0
Jd 0 0

]
This yields layer 1 outputs:445

S(MASK(XÃ(1)X⊤))X =

[
0 0 0 0
0 0 0 0
P ′ Jd 0 0

]
∈ RT×(d+T)

The second layer will produce P⊤ in the activations so that Y is written to the residual stream. Recall:446

h(1) =

[
P Id 0d 0d 0d 0d 0d 0d
YP 0d Id 0d 0d 0d 0d 0d
P 0d 0d Id P ′ Jd 0d 0d

]
For constant β2, we will have attention weights represented by the following block matrix447

Ã(2) = β2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Jd 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


This implies pre-activations448

h(1)A(2)h(1)⊤ = β2h
(1)



0 0 0
0 0 0
0 0 0
0 0 0
0 Jd 0
0 0 0
0 0 0
0 0 0


= β2

0 0 0
0 0 0
0 P⊤ 0


and activations449

S(MASK(h(1)A(2)h(1)⊤)) =

0 0 0
0 0 0
0 P⊤ 0

 .

This implies layer-2 outputs:450

S(MASK(h(1)A(2)h(1)⊤))h(1) =

 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Y 0 P⊤ 0 0 0 0 0


which recovers Y as desired.451

12

	Introduction
	Contributions

	Technical Results
	The impossibility of inverse permutation learning.
	The possibility of inverse permutation learning under input copying.

	Discussion and Future Work
	Additional related work
	Inverse permutation learning with an unrestricted attention mask.
	Empirical validation
	Setup.
	Results.

	Proofs
	Proof of theorem 1

