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ABSTRACT

Data augmentation is one of the most prevalent tools in deep learning, underpin-
ning many recent advances, including those from classification, generative mod-
els, and representation learning. The standard approach to data augmentation
combines simple transformations like rotations and flips to generate new images
from existing ones. However, these new images lack diversity along key seman-
tic axes present in the data. Consider the task of recognizing different animals.
Current augmentations fail to produce diversity in task-relevant high-level seman-
tic attributes like the species of the animal. We address the lack of diversity in
data augmentation with image-to-image transformations parameterized by pre-
trained text-to-image diffusion models. Our method edits images to change their
semantics using an off-the-shelf diffusion model, and generalizes to novel visual
concepts from a few labelled examples. We evaluate our approach on image clas-
sification tasks in a few-shot setting, and on a real-world weed recognition task,
and observe an improvement in accuracy in tested domains.

1 INTRODUCTION

DA-Fusion:

Baseline Augmentation:

Real Train Image:

Figure 1: DA-Fusion improves generation quality. Given an image
of a train, we generate augmentations using Real Guidance He et al.
(2022) (top row), and compare these to our method (bottom row).

An omnipresent lesson in
deep learning is the impor-
tance of internet-scale data,
such as ImageNet Deng
et al. (2009), JFT Sun
et al. (2017), OpenImages
Kuznetsova et al. (2018),
and LAION-5B Schuh-
mann et al. (2022), which
are driving advances in
Foundation Models Bom-
masani et al. (2021) for
image generation. These
models use large deep
neural networks Rombach
et al. (2022) to synthesize
photo-realistic images for
a diverse landscape of prompts. Indeed, the recent success of large generative models prompts
a question: can we augment visual recognition datasets with synthetic images from generative
models? Answering this question promises to improve image recognition by generating large-scale
image datasets from a handful of real images without human labelling effort. Generative models
capture natural variations in appearance that standard data augmentation methods cannot.

Standard data augmentation aims to mitigate data scarcity by composing randomly parameterized
image transformations Antoniou et al. (2017); Perez & Wang (2017); Shorten & Khoshgoftaar
(2019); Zhao et al. (2020). Transformations including flips and rotations are chosen that respect
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Figure 2: System architecture for DA-Fusion. Given a dataset of images, we use multi-class Textual
Inversion Gal et al. (2022) to adapt the diffusion model to novel concepts.

basic invariances present in the data, such as horizontal reflection symmetry for a coffee mug. Ro-
bustness to this type of image transformation is captured well by existing methods, but models for
recognizing coffee mugs should also be robust to subtle details of visual appearance like the brand
of mug. Humans are exceptional at noticing these subtle details, able to distinguish varying brands
of mugs from a single example. We aim to reproduce this efficiency when training deep neural
networks by equipping data augmentation with large text-to-image diffusion models.

In this work, we propose a flexible data augmentation strategy that generates variations of real
images using text-to-image diffusion models (DA-Fusion). Our method adapts the diffusion model
to new domains by inserting and fine-tuning new tokens in the text encoder representing novel
visual concepts. DA-Fusion modifies the appearance of foreground objects and backgrounds in a
manner that respects object-level visual invariances, such as the design of the colors on the train
in Figure 1. We test our method on three few-shot image classification tasks, including a real-
world weed recognition task that lies outside the vocabulary of the diffusion model. Using the same
hyper-parameters in all domains, our method outperforms prior work. DA-Fusion improves data
augmentation by up to +10 percentage points, and ablations confirm that our method is robust to
hyper-parameter assignment. Code for DA-Fusion will be released on acceptance.

2 DATA AUGMENTATION WITH DIFFUSION

Standard data augmentations apply to all images regardless of class and content Perez & Wang
(2017). We aim to capture this flexibility with our diffusion-based augmentation. This is challenging
because real images may contain elements the diffusion model is not able to generate out-of-the-
box. How do we generate plausible augmentations for such images? We propose to address this
shortcoming by fine-tuning new tokens in the text encoder of the diffusion model for each concept.

Adapting The Generative Model When generating synthetic images, previous work uses a
prompt with the specified class name He et al. (2022). However, this is not possible for novel visual
concepts that lie outside the vocabulary of the generative model. This is especially true in applied
domains. We discuss this in Appendix B.1 with our contributed weed-recognition task, which our
pretrained diffusion model is unable to initially generate a plausible image even when the class name
is provided. We propose to address this shortcoming by inserting c new tokens into the vocabulary
of the model—one for each class. We then perform Textual Inversion Gal et al. (2022) for each new
token, initializing their embeddings w⃗i to a class-agnostic value (see Appendix H), and fine-tuning
only these embeddings using the standard diffusion loss from Ho et al. (2020).

Lsimple(w⃗0, w⃗1, . . . , w⃗c) =

E
[
∥ϵ− ϵθ(

√
α̃tx0 +

√
1− α̃tϵ, t)∥2

] (1)

Generating Synthetic Images Many of the existing approaches generate synthetic images from
scratch Antoniou et al. (2017); Tanaka & Aranha (2019); Besnier et al. (2020); Zhang et al.
(2021b;a). However, novel concepts can be particularly challenging to generate from scratch when
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Figure 3: Few-shot performance. We evaluate DA-Fusion on three classification datasets and uni-
laterally outperform standard data augmentation in terms of accuracy and area under the curve.

only a handful of labelled examples are observed Gal et al. (2022). Rather than generate synthetic
images from scratch, we use image-to-image transformations that splice real images into the reverse
diffusion process following prior work in SDEdit Meng et al. (2022a). Given a reverse diffusion
process with S steps, we insert a real image xref

0 with noise ϵ ∼ N (0, I) at timestep ⌊St0⌋, where
t0 ∈ [0, 1] is a hyperparameter controlling the insertion position of the image.

x⌊St0⌋ =
√
α̃⌊St0⌋x

ref
0 +

√
1− α̃⌊St0⌋ϵ (2)

We proceed with reverse diffusion starting from the spliced image at timestep ⌊St0⌋ and iterating
Equation 5 to step 0. We discuss the interpretation and selection of the new hyperparameter t0 in
Section C. Generation is guided with a prompt that includes the fine-tuned token corresponding to
the class of the spliced image (see Appendix H for details of the prompts used in this work).

3 BALANCING REAL & SYNTHETIC DATA

Training models on images from generative models often presents a trade-off between the diversity
and size of the synthetic dataset, and the risk of over-emphasizing spurious qualities present in the
synthetic data Antoniou et al. (2017). This is especially important considering that several recent
papers have observed the benefit of curating orders of magnitude more synthetic data compared to
the real data Tanaka & Aranha (2019); Besnier et al. (2020); Zhang et al. (2021b;a); He et al. (2022).
The common solution assigns different probabilities to real and synthetic images He et al. (2022).
We adopt a similar method for balancing real and synthetic data in Equation 3, where α denotes the
probability that a synthetic image is present at the l-th location in the minibatch of images B.

Bl+1 ← Bl ∪
{
Xi w.p. (1− α) else X̃ij

}
(3)

Here X ∈ RN×H×W×3 denotes a dataset of N real images, and i ∈ Z specifies the index of a
particular image Xi. For each image, we generate M augmentations, resulting in a synthetic dataset
X̃ ∈ RN×M×H×W×3 with N × M image augmentations, where X̃ij ∈ RH×W×3 enumerates
the jth augmentation for the ith image in the dataset. Indices i and j are sampled uniformly from
the available N real images and their M augmented versions respectively. Given indices ij, with
probability (1 − α) a real image image Xi is added to the batch B, otherwise its augmented image
X̃ij is added. Hyper-parameter details are presented in Appendix H, and we find α = 0.5 to work
effectively in all domains tested, which equally balances real and synthetic images.

4 EVALUATING FEW-SHOT LEARNING

While leafy spurge is confirmed to lie outside the vocabulary of the pretrained diffusion model, this
is not true for Pascal Everingham et al. (2009) and COCO Lin et al. (2014), which have common
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objects like boats and airplanes. To properly evaluate few-shot classification performance with these
datasets, we emphasize the need to delete knowledge of these objects from the weights of the gen-
erative model. This remains an active area of research Meng et al. (2022b), so we hold concept
deletion out-of-scope for this paper. Instead, we require that all generative models use a class ag-
nostic prompt that does not contain the class name. This is important because generative models
pre-trained at scale may have seen thousands of examples of common objects, and using a class
name with an embedding trained on this large pool will not result in a proper few-shot setting. This
evaluation protocol treats all classes as novel visual concepts that lie outside the vocabulary of the
generative model, and we follow Section 2 for adapting the model to each class.

Experimental Details In this experiment, we test few-shot classification with three data augmen-
tation strategies. The first, referred to as ”Baseline”, employs no synthetic images. This baseline
implements a standard data augmentation strategy that uses random horizontal flips for COCO and
Pascal, with additional random vertical flips for Spurge, with flip probabilities 0.5. The Real Guid-
ance is based on He et al. (2022), and uses SDEdit on real images with t0 = 0.5. Hyper-parameters
shared between Real Guidance and our method have equal values to ensure fairness. Real Guidance
is given the class agnostic prompt ”a photo” whereas our method is prompted with ”a photo of a
ClassX” where ClassX represents a new token fine-tuned according to Section 2. Each real image is
augmented M times, and a ResNet50 classifier pre-trained on ImageNet is fine-tuned on a mixture
of real and synthetic images sampled as discussed in Section 3. Solid lines in plots represent the
mean, and error bars denote the 68% confidence interval over 8 independent random trials.

Interpreting The Results Figure 3 shows results. We observe a consistent improvement by as
much as +10 validation accuracy on Pascal and COCO when compared to standard data augmen-
tation. DA-Fusion exceeds Real Guidance He et al. (2022) in all domains while utilizing the same
hyperparameters, without any prior information about class names given. In this setting, Real Guid-
ance performs comparably to the baseline, which suggests that gains in Real Guidance may stem
from information provided by the class name. This experiment shows DA-Fusion improves few-shot
learning and generalizes to out-of-vocabulary concepts. In the following sections, we ablate these
results to understand how important each part of the method is to these gains in performance.

4.1 ROBUSTNESS TO THE MIXING RATIO
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Figure 4: Ablation for mixing ratio. We run our method with three dif-
ferent mixing ratios α ∈ {0.3, 0.5, 0.7} and report the improvement
in few-shot classification accuracy over a Real Guidance baseline us-
ing the same α. The plot shows our method is robust to this hyper-
parameter and outperforms prior work for every α.

We next conduct an abla-
tion to understand the sen-
sitivity of our method to the
mixing parameter α that
controls the sampling ratio
of real and synthetic im-
ages. We chose this hyper-
parameter as α = 0.5
throughout this paper for
simplicity as this value is at
the center of the range for
this hyper-parameter (α ∈
[0, 1]). Insensitivity to the
particular value of α is a
desireable trait for any data
augmentation method us-
ing generative models, as it
simplifies hyper-parameter
tuning. We test sensitivity
to α by comparing runs of DA-Fusion with different alpha values. We report the gained accuracy
over Real Guidance with the same α in Figure 4. These results show stability as α varies, and that
α = 0.7 performs marginally better than α = 0.5, which suggests our method improves synthetic
images quality because sampling them more often improves accuracy.
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5 DISCUSSION

We proposed a flexible method for semantic data augmentation with diffusion models, DA-Fusion.
Our method adapts a pretrained diffusion model to generate high quality augmentations for all im-
ages regardless of their content. Our method improves few-shot classification accuracy in all do-
mains tested, and by up to +10 percentage points on the Pascal and COCO datasets. Similarly, our
method produces gains on a contributed weed-recognition dataset that lies outside the vocabulary
of the diffusion model. To understand these gains, we performed ablations that test the flexibility
and robustness of our method. We first observe that few-shot performance is boosted when using
multiple augmentations in parallel in Appendix D. Next, we test flexibility by selectively applying
DA-Fusion to either foreground objects or backgrounds in Appendix F. We obtain higher robustness
in the masked setting, suggesting our method remains effective when controlled with masks.

6 ACKNOWLEDGEMENTS

We thank MPG Ranch for supporting the leafy spurge component of this work. MPG Ranch staff,
including Charles Casper, Erik Samsoe, Beau Larkin, and Philip Ramsey coordinated planning and
acquisition of the leafy spurge imagery. In addition, we thank the effort of reviewers for helping to
improve the paper, and the feedback from peers on intermediate drafts. We specifically thank Jing
Yu Koh, Yutong He, Murtaza Dalal, So Yeon Min, and Martin Ma for their feedback. We thank
Stability AI and Huggingface for providing open source models. Brandon Trabucco is supported by
Amazon, and Ruslan Salakhutdinov is supported by ONR award N000141812861 and DSTA.

REFERENCES

Giuseppe Amatulli, Sami Domisch, Mao-Ning Tuanmu, Benoit Parmentier, Ajay Ranipeta, Jeremy
Malczyk, and Walter Jetz. A suite of global, cross-scale topographic variables for environmental
and biodiversity modeling. Scientific data, 5:180040, March 2018. ISSN 2052-4463. doi: 10.
1038/sdata.2018.40. URL https://europepmc.org/articles/PMC5859920.

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks, 2017. URL https://arxiv.org/abs/1711.04340.

Romain Beaumont. Clip retrieval. https://github.com/rom1504/clip-retrieval,
2022.

Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord, and Patrick Pérez. This dataset does
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A RELATED WORK

Generative models have been the subject of growing interest and rapid advancement. Earlier meth-
ods, including VAEs Kingma & Welling (2014) and GANs Goodfellow et al. (2014), showed initial
promise generating realistic images, and were scaled up in terms of resolution and sample quality
Brock et al. (2019); Razavi et al. (2019). Despite the power of these methods, many recent successes
in photorealistic image generation were the result of diffusion models Ho et al. (2020); Nichol &
Dhariwal (2021); Saharia et al. (2022b); Nichol et al. (2022); Ramesh et al. (2022). Diffusion models
have been shown to generate higher-quality samples compared to their GAN counterparts Dhariwal
& Nichol (2021), and developments like classifier free guidance Ho & Salimans (2022) have made
text-to-image generation possible. Recent emphasis has been on training these models with internet-
scale datasets like LAION-5B Schuhmann et al. (2022). Resulting models Rombach et al. (2022);
Saharia et al. (2022b); Nichol et al. (2022); Ramesh et al. (2022) have unlocked many application
areas for generative models.

Image Editing One application area that diffusion has popularized makes edits to existing real
images. Inpainting with diffusion is one such approach that allows the user to specify what to edit
as a mask Saharia et al. (2022a); Lugmayr et al. (2022). Other works avoid masks and modify
the attention weights of the diffusion process that generated the image instead Hertz et al. (2022);
Mokady et al. (2022). Perhaps the most relevant technique to our work is SDEdit Meng et al.
(2022a), where real images are inserted partway through the reverse diffusion process. SDEdit is
applied by He et al. (2022) to generate synthetic data for training classifiers, but differs from our
method in two key ways. Our method adapts the generative model to novel visual concepts and we
consider augmentations to individual objects.

Synthetic Data Training neural networks on synthetic data from generative models was popular-
ized using GANs Antoniou et al. (2017); Tran et al. (2017); Zheng et al. (2017). Various applications
for synthetic data generated from GANs have been studied, including representation learning Jaha-
nian et al. (2022), inverse graphics Zhang et al. (2021a), semantic segmentation Zhang et al. (2021b),
and training classifiers Tanaka & Aranha (2019); Dat et al. (2019); Yamaguchi et al. (2020); Besnier
et al. (2020); Xiong et al. (2020); Wickramaratne & Mahmud (2021); Haque (2021). More recently,
synthetic data from diffusion models has also been studied in a few-shot setting He et al. (2022).
These works position synthetic data from generative models as an additional dataset, while we de-
velop a framework for generative models as a stackable transformation.

B BACKGROUND

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Nichol & Dhariwal (2021); Song
et al. (2021); Rombach et al. (2022) are sequential latent variable models inspired by thermodynamic
diffusion Sohl-Dickstein et al. (2015). They generate samples via a Markov chain with learned
Gaussian transitions, called the reverse process, starting from an initial noise distribution p(xT ) =
N (xT ; 0, I).

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (4)

Transitions pθ(xt−1|xt) are designed to gradually reduce variance according to a schedule
β1, . . . , βT so the final sample x0 represents a sample from the true distribution. Transitions are
often parameterized by a fixed covariance Σt = βtI and a learned mean µθ(xt, t) defined below.

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− α̃t

ϵθ(xt, t)

)
(5)

This parameterization choice results from deriving the optimal reverse process Ho et al. (2020),
where ϵθ(·) is a neural network that is trained to process a noisy sample xt to predict the noise
added to real images by the forward process. Given real samples x0 and noise ϵ ∼ N (0, I), the
forward process can be sampled at an arbitrary timestep below.

xt(x0, ϵ) =
√
α̃tx0 +

√
1− α̃tϵ (6)
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We borrow the notation introduced by Ho et al. (2020) to define αt = 1 − βt and α̃t =
∏t

s=1 αt.
These components allow training and sampling from a diffusion model, which is used as the gen-
erative backbone in this work. In this work, we use a pretrained Stable Diffusion model trained by
Rombach et al. (2022). Among other differences, this model includes a text encoder that enables
text-to-image generation (refer to Appendix H for model details).

B.1 DATA PREPARATION

Figure 5: A sample from the Spurge dataset (the first on the left),
compared with top results of CLIP-retrieval queried on the prompt: ”a
drone image of leafy spurge”. We note closeup images from mem-
bers of the same genus (second, and third) in the top 20 results and a
closeup of the same species for the 35th result (fourth).

Leafy Spurge We
contribute a dataset of
top-down drone images
of semi-natural areas in
the western United States.
These data were gathered
in an effort to better map
the extent of a problematic
invasive plant, leafy spurge
(Euphorbia esula), that is
a detriment to natural and
agricultural ecosystems in
temperate regions of North
America. Prior drone-based work to detect leafy spurge achieved an accuracy of 0.75 Yang et al.
(2020). To our knowledge, top-down aerial imagery of leafy spurge was not present in the Stable
Diffusion training data. Results of CLIP-retrieval Beaumont (2022) returned close-up, side-on
images of members of the same genus (Figure 5) in the top 20 results. We observed the first instance
of our target species, Euphorbia esula, as a 35th result. Thus, the Spurge dataset represents a unique
opportunity to explore few-shot learning setting, and state-of-the art classification outcomes would
directly benefit efforts to restore natural ecosystems. Additional details about the Spurge dataset are
in Appendix I.

PASCAL We leverage the 2012 version of the PASCAL Visual Object Classes challenge Evering-
ham et al. (2009). This dataset contains 11,530 images and 6,929 object segmentation masks. We
adapt this dataset into an object classification task by filtering images that have at least one object
segmentation mask. We assign these images labels corresponding to the class of object with largest
area in the image, as measured by the pixels contained in the mask. There are 20 classes in total
using this methodology. We utilize the official training and validation sets for the 2012 challenge,
and randomly select q images per class from the training set, which are used to measure few-shot
classification accuracy.

COCO We process the 2017 version of the COCO dataset Lin et al. (2014) in a similar manner
to PASCAL. This dataset contains 330K images with 1.5M object segmentation masks. As before,
we filter images that have at least one object segmentation mask. We assign these images labels
corresponding to the class of the largest object, measured by segmentation mask area. This dataset
has 80 classes. We use the official training and validation sets for the 2017 dataset, and measure
few-shot classification accuracy using the same methodology described for the PASCAL dataset.

C STACKABLE AUGMENTATIONS

Having appropriately balanced the real and synthetic images, our goal becomes to maximize the aug-
mentation diversity. This goal is shared with the standard data augmentation Perez & Wang (2017);
Shorten & Khoshgoftaar (2019), where simple transformations are typically composed, yielding
more sophisticated and diverse data. Despite the prevalence of composition for the data augmen-
tation, methods using generative models treat their ”augmentations” like a secondary dataset, not
stackable transformations Antoniou et al. (2017); Tanaka & Aranha (2019); Yamaguchi et al. (2020);
Zhang et al. (2021b;a); He et al. (2022). Inspired by the success of standard data augmentation, we
propose stackable data augmentations based on generative models.

11



Published at the Workshop on Understanding Foundation Models at ICLR 2023

We define a sequence of augmentations A that consists of tuples of image transformations Di and
respective activation probabilities pi ∈ [0, 1] that collectively sum to one. This definition supports
multiple options for selecting which augmentations to use, and a complete empirical study of them
is an exciting future direction. In this work we opt for a simple approach: randomly sampling one
augmentation Da fromA weighted by the probability pa. Refer to Appendix H for hyperparameters
associated with this stacking approach.

Di : RH×W×3 → RH×W×3 (7)

A =
[
(D1, p1), (D2, p2), . . . , (Dk, pk)

]
(8)

To ensure stacking augmentations creates diversity in the samples, the image transformations Di

should be sufficiently unique. Several options are possible here, and we consider a first-principles
heuristic that transforms increasingly higher-level features of the image as i increases. This heuristic
ensures each Di operates with a different granularity on the image. We accomplish this with SDEdit
Meng et al. (2022a), and insert a noisy source image at a fraction t0 = i/k through the diffusion
process to guide generation. Source images are taken from X , observed training images. Previous
work in He et al. (2022) shows the effectiveness of SDEdit for creating synthetic images, and our
work turns this methodology into a stackable data augmentation.
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Figure 6: Ablation for stacking parameters. We evaluate DA-Fusion on three classification datasets
and vary the number of augmentations inA, from the setting used in the main experiments (k = 4),
to only one (k = 1). We report the improvement in area under the curve (AUC) for few-shot
classification accuracy, and observe a consistent improvement due to stacking in all domains.

D HOW IMPORTANT IS STACKING?

Our goal in this section is to understand what fraction of gains are due to the stacking methodology
of Section C. We employ the same experimental settings as in Section 4, and run an additional
version of our method without stacking (k = 1) and with t0 = 0.5, following the settings previously
used with Real Guidance. In Figure 6 we report the improvement in area under the curve (AUC)
versus standard data augmentation for our method. These results show that both versions of our
method outperform the baseline, and stacking improves our method in all domains, leading to an
overall improvement of 51%.

E OBJECT-CENTRIC AUGMENTATIONS

Our approach thus far applies to all images, regardless of their class and content. However, real
images often contain multiple classes with different visual invariances. Considering these visual
differences, applying transformations at the object level has an appealing property. While traditional
data augmentations violate this principle Perez & Wang (2017); Shorten & Khoshgoftaar (2019),
ours permits independent transformations that separate objects and backgrounds. To accomplish
this, we leverage inpainting Lugmayr et al. (2022); Saharia et al. (2022a). Given a pixelwise mask
v ∈ [0, 1]H×W specifying which image content to modify, we insert content into the diffusion
process at locations where vij is close to one. In particular, after every timestep t in the reverse
diffusion process, we assign the current sample xt to a new value, where η ∼ N (0, I) is unit
Gaussian noise with the same cardinality as xt.

xt ←
(
1− v

)
◦ xt + v ◦

(√
α̃tx

ref
0 +

√
1− α̃tη

)
(9)
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Figure 8: Ablation for masking. We evaluate our method when applied to foregrounds and back-
grounds separately. We report the improvement in few-shot classification accuracy on a validation
set for our method compared to a Real Guidance baseline using object segmentation masks from the
Pascal and COCO datasets. Results show a consistent improvement when masks are used.

The source image to inpaint is given by xref
0 , and the multiplication ◦ represents the elementwise

product of tensors. Before splicing, xt is taken from Equation 5 and represents standard reverse
diffusion applied to the entire image. Equipped with our flexible data augmentation strategy that
respects objects, stacks with other augmentations, and applies to all images regardless of class and
content, we proceed with evaluation.

F ROBUSTNESS TO OBJECT MASKS

Augmenting The Background:

Augmenting The Foreground:

Figure 7: Foreground and background augmentations. Our method
can be applied independently to each region of the image and main-
tains an improvement over prior work. In this example of the boat
class from the PASCAL dataset, we augment the boat (foreground)
separately from the water and hills (background).

Our previous results show
DA-Fusion is an effective
data augmentation strategy
when applied to whole im-
ages. However, real im-
ages often contain several
objects with different vi-
sual invariances. For exam-
ple, in a photo of a cat sit-
ting on a table, we may aim
to change only the breed
of the cat or the brand of
the table, which are defined
independently. Augmenta-
tions based on generative
models can achieve this be-
havior using inpainting Sa-
haria et al. (2022a); Lug-
mayr et al. (2022), and sta-
ble performance when var-
ious masks are given is a
desireable trait for any such
method. In this section we
test the robustness of DA-
Fusion when various masks
are used to constrain where
image changes occur.

Experimental Details We test robustness with two mask types: foreground object masks, and
background masks. In the foreground type, a mask around the focal object in each image is used
for inpainting with our pre-trained diffusion model. The mask is dilated by 16 pixels before use
for inpainting to ensure the focal object is fully contained within. Background type masks are
generated by inverting the foreground masks for each image. We test three versions of our method
that augment the whole image, only the foreground, or just the background. Performance represents
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the gain in few-shot classification accuracy over Real Guidance when training a classifier on samples
from our masked augmentation. To ensure fairness, we omit stacking in this experiment and share
all hyper-parameters with Real Guidance, including the mask used for inpainting, and the strength
value t0 = 0.5 from Section 4. As before, solid lines in plots represent the mean, and error bars
denote the 68% confidence interval over 8 independent random trials.

Interpreting The Results Figure 8 shows that our method consistently outperforms prior work
given masks for objects and backgrounds. Plots are shifted so that Real Guidance performance
corresponds to a gained accuracy of 0, and positive gains represent an improvement over the cor-
responding masked Real Guidance baseline. Interestingly, performance gains are lower for masked
augmentations than for whole images, suggesting there is room for improving DA-Fusion in the
masked case. Additionally, the common ordering in the plots suggests that DA-Fusion is more effec-
tive at modifying backgrounds than objects. These results suggest our method has greater flexibility
than prior work and produces effective synthetic images when directed with masks.

G FUTURE WORK

There are several directions to further improve the flexibility and performance of our method as fu-
ture work. First, our method does not explicitly control how an image is augmented by the diffusion
model. Extending the method with a mechanism to better control how objects in an image are modi-
fied, e.g. changing the breed of a cat, could improve the results. We explored this notion in Section F
when masks are present; though, recent work in prompt-based image editing Hertz et al. (2022) sug-
gests diffusion models can make localized edits without such masks. Second, data augmentation is
becoming increasingly important in the decision-making setting Yarats et al. (2022). Maintaining
temporal consistency is an important challenge faced when using our method in this setting. Solving
this challenge could improve the few-shot generalization of policies in complex visual environments.
Finally, improvements to diffusion models that enhance photo-realism when adapting the model to
novel visual concepts are likely to improve sample quality and task performance.

H HYPERPARAMETERS

Our method inherits the hyperparameters of text-to-image diffusion models and SDEdit Meng et al.
(2022a). In addition, we introduce several other hyperparameters in this work that control the diver-
sity of the synthetic images. Specific values for these hyperparameters are given in Table 1.

I LEAFY SPURGE DATASET ACQUISITION AND PRE-PROCESSING

In June 2022 botanists visited areas in western Montana, United States known to harbor leafy spurge
and verified the presence or absence of the target plant at 39 sites. We selected sites that represented a
range of elevation and solar input values as influenced by terrain. These environmental axes strongly
drive variation in the structure and composition of vegetation Amatulli et al. (2018); Doherty et al.
(2021). Thus, stratifying by these aspects of the environment allowed us to test the performance of
classifiers when presented with a diversity of plants which could be confused with our target.

During surveys, each site was divided into a 3 x 3 grid of plots that were 10m on side (Fig. 9),
and then botanists confirmed the presence or absence of leafy spurge within each grid cell. After
surveying we flew a DJI Phantom 4 Pro at 50m above the center of each site and gathered still RGB
images. All images were gathered on the same day in the afternoon with sunny lighting conditions.

We then cropped the the raw images to match the bounds of plots using visual markers installed
during surveys as guides (Fig. 10). Resulting crops varied in size because of the complexity of
terrain. E.G., ridges were closer to the drone sensor than valleys. Thus, image side lengths ranged
from 533 to 1059 pixels. The mean side length was 717 and the mean spatial resolution, or ground
sampling distance, of pixels was 1.4 cm.

In our initial hyperparameter search we found that the classification accuracy of plot-scale images
was less than that of a classifier trained on smaller crops of the plots. Therefore, we generated four
250x250 pixel crops sharing a corner at plot centers for further experimentation (Fig. 11). Because
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Hyperparameter Name Value
Synthetic Probability α 0.5
Stacked Augmentations k 4
Activation Probabilities pi 1/k
Synthetic Images Per Real M 10
Synthetic Images Per Real M (spurge) 50
Textual Inversion Token Initialization ”the”
Textual Inversion Batch Size 4
Textual Inversion Learning Rate 0.0005
Textual Inversion Training Steps 1000
Class Agnostic Prompt ”a photo”
Textual Inversion Prompt ”a photo of a ClassX”
Real Guidance Strength t0 0.5
Stable Diffusion Checkpoint CompVis/stable-diffusion-v1-4
Stable Diffusion Guidance Scale 7.5
Stable Diffusion Resolution 512
Stable Diffusion Denoising Steps 1000
Classifier Architecture ResNet50
Classifier Learning Rate 0.0001
Classifier Batch Size 32
Classifier Training Steps 10000
Classifier Early Stopping Interval 200

Table 1: Hyperparameters and their values.

spurge plants were patchily distributed within a plot, a botanist reviewed each crop in the present
class and removed cases in which cropping resulted in samples where target plants were not visually
apparent.

J BENCHMARKING THE LEAFY SPURGE DATASET

We benchmark classifier performance here on the full leafy spurge dataset, comparing a baseline ap-
proach incorporating legacy augmentations with our novel DA-fusion method. For 15 trials we gen-
erated random validation sets with 20 percent of the data, and fine-tuned a pretrained ResNet50 on
the remaining 80 percent using the training hyperparameters reported in section ?? for 500 epochs.
From these trials we compute cross-validated mean accuracy and 68 percent confidence intervals.

In the case of baseline experiments, we augment data by flipping vertically and horizontally, as
well as randomly rotating by as much as 45 degrees with a probability of 0.5. For DA-Fusion
augmentations we take two approaches(Fig. 12) The first we refer to as DA-Fusion Pooled, and
we apply the methods of Textual Inversion Gal et al. (2022), but include all instances of a class
in a single session of fine-tuning, generating one token per class. In the second approach we refer
to as DA-Fusion Specific, we fine-tune and generate unique tokens for each image in the training
set. In the specific case, we generated 90, 180, and 270 rotations as well as horizontal and vertical
flips and contribute these along with original image for Stable Diffusion fine-tuning to achieve the
target number of images suggested to maximize performanceGal et al. (2022). In both DA-Fusion
approaches we generated ten synthetic images per real image for model training. We maintain
α = 0.5, evenly mixing real and synthetic data during training. We also maximize synthetic diversity
by randomly selecting 0.25, 0.5, 0.75, and 1.0 t0 values.

Both approaches to DA-Fusion offer slight performance enhancements over baseline augmenta-
tion methods for the full leafy spurge dataset. We observe a 1.0% gain when applying DA-Fusion
Pooled and a 1.2% gain when applying DA-Fusion Specific(Fig. 13). It is important to note that, as
implemented currently, compute time for DA-Fusion Specific is linearly related to data amount, but
DA-Fusion Pooled compute is the same regardless of data size.

While pooling was not the most beneficial in this experiment, we support investigating it further.
This is because fine-tuning a leafy spurge token in a pooled approach might help to orient our target
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Figure 9: A drone image of surveyed areas containing leafy spurge. At each site botanists verified
spurge presence or absence in a grid of nine spatially distinct plots. Note that cell five is rich in leafy
spurge.
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Figure 10: Markers installed at the corners of plots were used to crop plots from source images.
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Figure 11: At each plot image center we cropped four 250x250 pixel sub-plots. We did this to
amplify our data and improve classifier performance. The crops of plots with spurge present labels
were inspected by a botanist to filter out examples where cropping excluded the target plant or the
plants were not apparent.
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Figure 12: Here we show examples of synthetic images generated from the leafy spurge dataset with
DA-Fusion methods. The top row shows output where images are pooled to fine-tune a single token
per class. The bottom row shows examples where tokens are generated specifically for each image.
Source images, inference hyperparameters, and seed are otherwise identical in each column.

Figure 13: Cross-validated accuracy of leafy spurge classifiers when trained with baseline augmen-
tations versus DA-Fusion methods on the full dataset. In addition to the benefits of DA-Fusion in
few-shot contexts, we also find our method improves performance on larger datasets. Generating
image-specific tokens (green line and bar) offers the most gains over baseline, though at the cost of
greater compute.
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in the embedding space where plants with similar diagnostic properties, such as flower shape and
color from the same genus, may be well represented. However, the leafy-spurge negative cases do
not correspond to a single semantic concept, but a plurality, such as green fields, brown fields, and
wooded areas. It is unclear if fine-tuning a single token for negative cases by a pooled method
would remove diversity from synthetic samples of spurge-free background landscapes, relative to
an image-specific approach. For this reason, we suspect a hybrid approach of pooled token for the
positive case and specific tokens for the negative cases could offer further gains, and support the
application of detecting weed invasions into new areas.
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