

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PR-CAD: PROGRESSIVE REFINEMENT FOR UNIFIED CONTROLLABLE AND FAITHFUL TEXT-TO-CAD GEN- ERATION WITH LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

The construction of CAD models has traditionally relied on labor-intensive manual operations and specialized expertise. Recent advances in large language models (LLMs) have inspired research into text-to-CAD generation. However, existing approaches typically treat generation and editing as disjoint tasks, limiting their practicality. We propose PR-CAD, a progressive refinement framework that unifies generation and editing for controllable and faithful text-to-CAD modeling. To support this, we curate a high-fidelity interaction dataset spanning the full CAD lifecycle, encompassing multiple CAD representations as well as both qualitative and quantitative descriptions. The dataset systematically defines the types of edit operations and generates highly human-like interaction data. Building on a CAD representation tailored for LLMs, we propose a reinforcement learning-enhanced reasoning framework that integrates intent understanding, parameter estimation, and precise edit localization into a single agent. This enables an “all-in-one” solution for both design creation and refinement. Extensive experiments demonstrate strong mutual reinforcement between generation and editing tasks, and across qualitative and quantitative modalities. On public benchmarks, PR-CAD achieves state-of-the-art controllability and faithfulness in both generation and refinement scenarios, while also proving user-friendly and significantly improving CAD modeling efficiency. The code and dataset are be available at <will be filled in upon acceptance>.

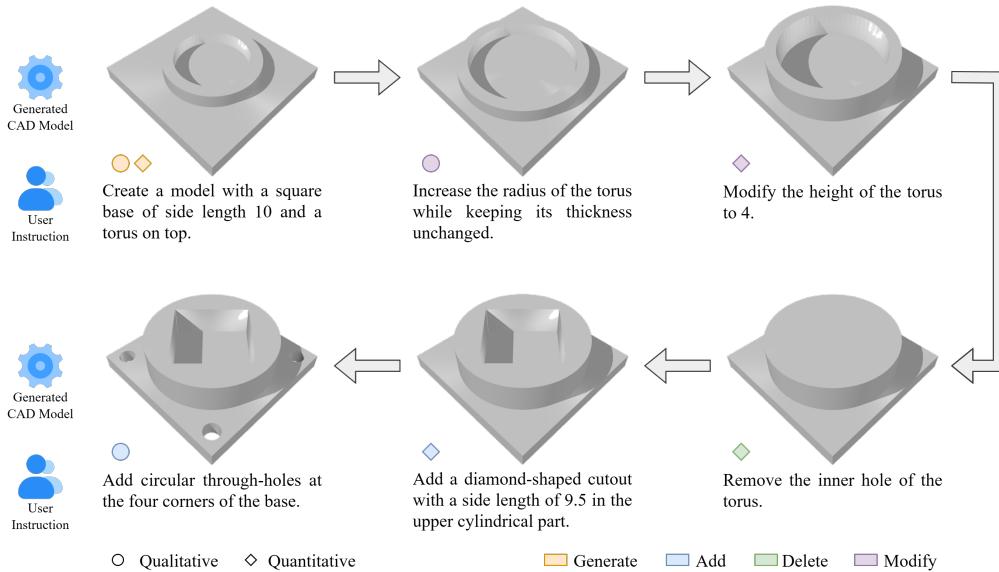


Figure 1: PR-CAD enables user-friendly and controllable CAD generation through progressive refinement. Below each subfigure is the user’s intended input described via text instructions, with the corresponding CAD model output above. PR-CAD allows users to generate and progressively refine (add, modify, and delete) their designs from scratch. Users can flexibly choose either qualitative or quantitative descriptions of their intent until the model matches their envisioned design.

054 **1 INTRODUCTION**

055

056

057 Computer-Aided Design (CAD) is a cornerstone of modern manufacturing, engineering, and indus-
 058 trial design, enabling the creation of precise and complex 3D models. However, traditional CAD
 059 modeling remains a labor-intensive process that demands significant expertise, with designers need-
 060 ing to master intricate software interfaces and possess a deep understanding of geometric modeling
 061 principles. This steep learning curve limits accessibility and efficiency, highlighting a long-standing
 062 research challenge: enabling the intuitive creation and manipulation of CAD models through natural
 063 language.

064 The advent of large language models (LLMs) has spurred progress in text-to-CAD generation, with
 065 recent work demonstrating the feasibility of converting textual descriptions into CAD operations.
 066 Despite these advancements, a critical limitation remains: current approaches largely treat genera-
 067 tion and editing as separate, disjoint tasks. In practice, design is an inherently iterative process. De-
 068 signers rarely produce a perfect model on their first attempt; rather, they refine their designs through
 069 a series of edits (modifying, adding, or removing) features in response to evolving requirements or
 070 identified improvements. Existing systems lack a unified framework for this iterative refinement,
 071 forcing users to either settle for suboptimal initial models or revert to manual editing outside of
 072 the generative process. This disconnection severely limits the practicality and user-friendliness of
 073 text-to-CAD systems.

074 Moreover, many current methods rely on highly detailed, technical text prompts, which are often
 075 unnatural for non-expert users to formulate. While some efforts have begun to explore editing, they
 076 are often constrained by training data that predominantly features simplistic, randomly generated
 077 edits, failing to capture the nuanced, intent-driven nature of real-world design refinements. There is
 078 a pressing need for a unified solution that seamlessly integrates generation with controllable, faithful
 079 editing based on both qualitative (e.g., "make the base thicker") and quantitative (e.g., "reduce the
 080 radius by 6mm") instructions.

081 To address these challenges, we propose PR-CAD, a progressive refinement framework that unifies
 082 controllable and faithful text-to-CAD generation. Our approach is built on three key innovations:
 083 First, we curate a high-quality, human-like interaction dataset that spans the entire CAD lifecycle,
 084 systematically defining and generating diverse edit operations alongside both qualitative and quanti-
 085 tative descriptions. Second, we introduce a reinforcement learning-enhanced reasoning framework
 086 that integrates intent understanding, parameter estimation, and precise edit localization into a sin-
 087 gle agent, enabling an "all-in-one" solution for both generation and iterative refinement. Third, we
 088 employ a structured chain-of-thought (SCoT) methodology to guide the LLM's reasoning, breaking
 089 down complex tasks into manageable steps for robust and interpretable generation.

090 Extensive experiments demonstrate that PR-CAD achieves state-of-the-art performance on public
 091 benchmarks, significantly outperforming existing methods in both generation and editing tasks
 092 across multiple metrics, including geometric accuracy (Chamfer Distance) and faithfulness to
 093 user intent (VLM-Eval). Crucially, human evaluations confirm that our progressive refinement
 094 paradigm dramatically improves usability and success rates for both expert and novice users, making
 095 professional-grade CAD modeling more accessible.

096 In summary, our contributions are:

- 097 • We propose PR-CAD, a novel progressive refinement framework that unifies text-driven
 098 CAD generation and editing within a single, controllable agent, providing a seamless work-
 099 flow for both creation and modification tasks.
- 100 • We introduce a high-fidelity interaction dataset for the full CAD lifecycle, supporting di-
 101 verse edit types, descriptive modalities, and ensuring comprehensive coverage of CAD
 102 interactions from start to finish.
- 103 • We develop a reinforcement learning-enhanced reasoning method combining supervised
 104 fine-tuning (SFT), structured chain-of-thought (SCoT), and reinforcement learning (RL)
 105 to optimize for geometric fidelity, executability, and alignment with user intent, validated
 106 through empirical experiments using ChatCAD.

108
109
110
111
2 RELATED WORK112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

CAD Model Generation. Traditional CAD modeling is a highly manual process, requiring deep domain expertise and precision in design. In recent years, research has emerged that aims to automate or simplify this process, particularly by integrating natural language input for CAD generation. Parametric CAD Monedero, 2000 generation has been an important focus, where CAD models are represented as a sequence of operations (e.g., sketching and extrusion). This approach not only describes the geometric structure of the model but also captures the historical process and evolution of the design. With the introduction of large-scale datasets like DeepCAD (Wu et al., 2021), significant progress has been made in text-to-CAD model generation based on Transformer architectures (Vaswani et al., 2017). Khan et al. (2024) proposed Text2CAD, a Transformer-based framework that effectively generates CAD models from textual descriptions. This was followed by additional works leveraging the DeepCAD dataset, such as Text-to-CADQuery (Xie & Ju, 2025) and GeoCAD (Zhang et al., 2025). GeoCAD introduces local geometric controls into the text-to-CAD generation process, enabling more flexible models with fewer input details. Furthermore, Seek-CAD (Li et al., 2025c) introduces a self-improvement mechanism, where the model iteratively refines its designs based on feedback, improving the accuracy of CAD models and enhancing their applicability in real-world scenarios. Lu et al. (2024), Wang et al. (2025), Liao et al. (2025), Li et al. (2025b) and Li et al. (2024) are also paying attention to this research area. However, these methods heavily rely on detailed and highly technical text inputs, making it challenging for users to write instructions that ensure accurate CAD model generation. For example, in the Text2CAD dataset, an average of 100 words is required to describe a single s-E operation, which significantly impacts the practical usability of these models.

131
132
133
134
135
136
137
138
139
140
141
142

CAD Model Editing. To address issues such as localized errors or changing requirements in CAD models, the task of CAD model editing has been proposed. Methods like FLEXCAD (Zhang et al., 2024b) explore the random editing of CAD models, allowing users to modify various model parameters without needing to regenerate the entire design. These techniques increase design flexibility but often fall short in high-precision CAD modeling tasks due to the inherent randomness of the editing process. On the other hand, directed editing approaches, such as CAD-Editor (Yuan et al., 2025), allow users to make controlled, targeted modifications to specific parts of a model. These methods offer a more structured editing approach by optimizing certain design features based on predefined parameters. However, these approaches are still constrained by the data construction process, where most of the editing operations are randomly generated. Consequently, the editing data is dominated by add and delete operations, with only a small proportion of quantitative edits, which limits their practical applicability.

143
144
145
146
147
148
149
150

CAD Model Sequential Representation. The sequential representation of CAD models has been another significant area of research. DeepCAD introduced a domain-specific language (DSL) that describes SE operations using function definitions to represent CAD models. Text-to-CAD proposed a generalized programming language (GPL) based on the cadquery library in Python to generate CAD models. FLEXCAD used structured text (ST) to represent different hierarchical elements of CAD models. These representation methods have been optimized for specific tasks in their respective studies. However, due to the differences in language and format, conversion between these representations is challenging, and they are rarely interchangeable within the same task or context.

151
152
153
154
155
156
157
158
159
160
161

Inference with Large Language Models. Inference with Large Language Models. Large Language Models (LLMs) excel not only in natural language tasks but also in complex, structured reasoning such as mathematical problem-solving and code generation. Key methods for adapting LLMs to these tasks include Supervised Fine-Tuning (SFT) (Devlin et al., 2019; Hu et al., 2022), Reinforcement Learning (RL) (Sutton et al., 1998; Mnih et al., 2015; Shao et al., 2024), and Chain-of-Thought (SCoT) prompting Li et al., 2025a. SFT trains LLMs on task-specific data to learn domain patterns. RL further refines outputs based on reward signals to improve quality and alignment. SCoT enhances reasoning by prompting the model to generate explicit step-by-step rationales before answering. In CAD generation, these techniques improve model accuracy and controllability. SFT helps learn basic text-to-CAD mappings, RL optimizes design validity and efficiency, and SCoT supports logical planning of construction steps. The combination of SFT, RL, and SCoT offers a promising approach to overcome the reliance on overly technical inputs in existing methods, enabling more intuitive and precise CAD model generation and editing, laying the groundwork for our proposed approach.

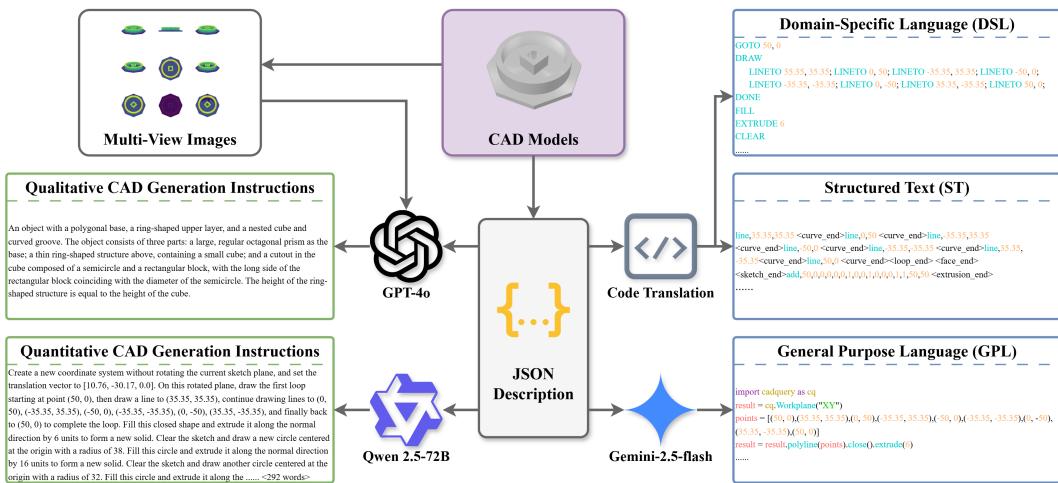
162 3 METHODOLOGY

164 In this section, we introduce PR-CAD, a unified framework for text-driven CAD generation and
 165 editing under a progressive refinement paradigm. We detail the core components of our methodology,
 166 including the high-quality, human-like interaction data annotation process (Sec. 3.1), as well
 167 as the post-training strategy for the progressive refinement model in CAD generation (Sec. 3.2).

169 3.1 HIGH-QUALITY HUMAN-LIKE INTERACTION DATA ANNOTATION

171 To support both generation and editing tasks, we create a comprehensive interaction dataset that
 172 covers the full CAD lifecycle. This includes generating textual descriptions of CAD designs (both
 173 qualitative and quantitative) and annotating them with specific edit operations (deletions, additions,
 174 modifications). These annotated datasets are then used to train our model to understand, generate,
 175 and refine CAD models through a unified interaction framework.

176 **For Generation Task**, we utilize the DeepCAD dataset to create a comprehensive collection of
 177 textual instructions that describe CAD models. These instructions are categorized into two types:
 178 qualitative and quantitative. Qualitative descriptions focus on high-level design attributes, while
 179 quantitative descriptions involve specific numerical details. In the process of qualitative description
 180 generation, we first render the CAD models from multiple perspectives, producing a set of nine
 181 views. These views, along with their corresponding JSON descriptions, are used as input for large
 182 vision models (Hurst et al., 2024; Bai et al., 2025). This ensures consistency with the original model
 183 while emphasizing the broader design intent. For quantitative descriptions, similar to the method
 184 of Khan et al. (2024), we directly input the JSON descriptions into a large language model (Team
 185 et al., 2023), which generates the specific operations and precise parameters for each step. Simul-
 186 taneously, to identify a CAD serialization format that is compatible with large models, we generate
 187 multiple representations of each CAD model using code translation tools and large language models.
 188 Specifically, we employ LogoUp 3D, structured text used by Zhang et al. (2024b), and Python, to
 189 represent Domain-Specific Language (DSL), Structured Text (ST) and General-Purpose Language
 (GPL), as shown in Fig. 2.



200 **Figure 2: High-quality data annotation pipeline for generation task.** Based on the DeepCAD dataset,
 201 it generates both generation instructions and CAD sequence representations. Multimodal large
 202 models are utilized to produce quantitative and qualitative CAD generation instructions from nine views
 203 and JSON descriptions. Code translation and large language models are applied to convert JSON
 204 descriptions into various CAD sequence representations.

211 **For Editing Task**, we developed a multi-stage method for generating interaction data. Specifically,
 212 we simulate human deletion actions by systematically removing specific S-E operations or loops
 213 from existing CAD models, with the reverse process representing addition actions. Using these
 214 CAD model pairs, we train an interaction model capable of both addition and deletion, as outlined in
 215 Section 3.2. Furthermore, we generate qualitative addition instructions based on the model obtained
 after deletion and the removed parts, following the approach shown in Figure 2. Next, we employ

these editing instructions to guide the model in generating new CAD models. Since the model is trained to align with human generation patterns and the newly created parts are derived from those previously created by humans, the new models and the originals form pairs that simulate human editing actions in CAD. The process of creating this interaction data is visually represented in Figure 3, which illustrates the entire workflow: generating CAD model pairs, annotating them with both qualitative and quantitative instructions, and converting them into final editable CAD sequence representations. This multi-stage annotation process ensures that our model can learn a broad spectrum of human editing operations.

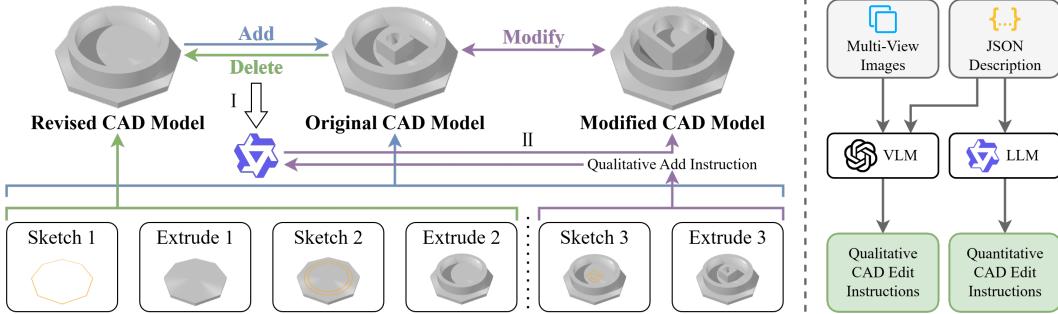


Figure 3: Human-like instruction annotation pipeline for CAD model editing task. In the first stage, CAD model pairs are generated by removing S-E operations or loops, forming deletion and addition pairs as training data (as shown in I). Simultaneously, qualitative add instructions are generated based on the deleted portions. Next, using the trained add/delete model, new CAD models are generated based on the above instructions (as shown in II). The resulting new model and the original model form the edited CAD model pair. Finally, the JSON descriptions are converted into editing instructions and sequence representations in the same manner as for generation tasks (Figure 2).

3.2 PROGRESSIVE REFINEMENT CAD GENERATION MODEL POST-TRAINING

In the following, we will detail how we fully leverage the potential of large language models through post-training techniques to achieve progressive refinement for CAD generation. First, we introduce a structured chain of thought (SCoT) method using structured text (see Fig. 4(a)). By combining supervised fine-tuning (SFT) with SCoT data, we enable the LLM to generate CAD models using domain-specific language and enhance its understanding of reasoning patterns (see Fig. 4(b)). Finally, we incorporate reinforcement learning based on Generalized Reward Optimization (GRPO) to further improve the model’s generalization capabilities (see Fig. 4(c)).

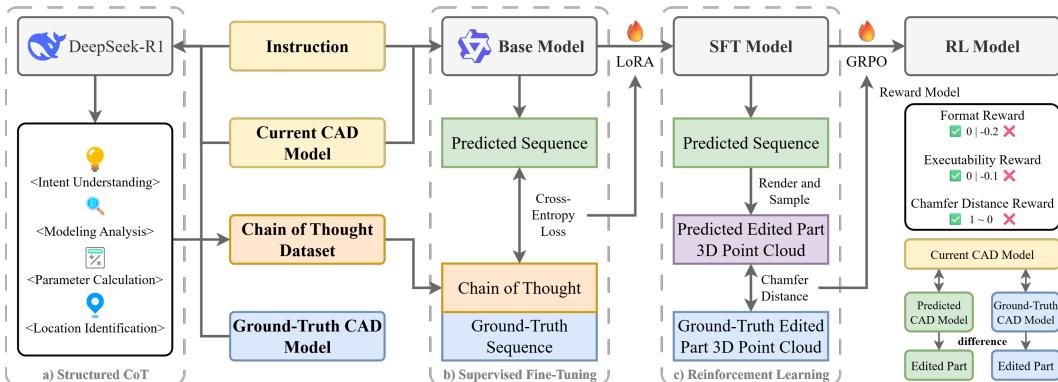


Figure 4: Overview of the PR-CAD post-training process. The post-training process consists of two stages: supervised fine-tuning and reinforcement learning. Using the highly human-like interaction data curated earlier, we employ Qwen2.5-7B-Instruction as the base model. First, DeepSeek (Liu et al., 2024) is used to construct a structured chain of thought by analyzing the input and output data. Then, the model is fine-tuned through supervised learning with cross-entropy loss to learn the task patterns. Afterward, reinforcement learning is applied to the fine-tuned model using rewards based on chamfer distance, among others. For generation tasks, the Current CAD Model is initially empty; for editing tasks, chamfer distance is calculated only for the edited portion of the model.

270 We found that the performance of LLMs varies across different tasks, depending on the CAD serial-
 271 ization method employed. Specifically, domain-specific languages (DSLs) produce the best results
 272 for generation tasks, while structured text proves most effective for editing tasks. The complete
 273 results can be found in Appendix A.1. Therefore, to achieve better generation performance, we
 274 construct a structured chain of thought using structured text and select a domain-specific language
 275 (LogoUp 3D) as the model output in the subsequent experiments (Wong et al., 2025).

276 **Structured Chain of Thought (SCoT)** guides the model’s reasoning process through structured
 277 text formats, breaking down the design process into four key steps: intent understanding, modeling
 278 analysis, parameter computation, and position identification. In the intent understanding step, the
 279 current CAD model is described in textual form and aligned with the user’s instructions to match
 280 the intended design. Modeling analysis uses special markers (Wang et al., 2023), such as `<sketch>`,
 281 `</sketch>`, to represent elements in the CAD model and their relationships. Parameter computa-
 282 tion performs necessary calculations for transformations like coordinate system rotation, sketch
 283 plane displacement, and arc parameters, ensuring the generated model matches the desired geom-
 284 etric properties. Finally, position identification identifies the portions of the CAD model that need
 285 to be edited and outputs the corresponding sequence of actions. To support this process, we use
 286 a dataset of 1,000 triplets consisting of current CAD models, textual instructions, and target CAD
 287 models, which are fed into the DeepSeek-R1-671B model to generate the structured reasoning chain,
 288 forming the reasoning chain dataset.

289 **Supervised Fine-Tuning (SFT)** plays a crucial role in refining the LLM’s ability to generate CAD
 290 models by leveraging a cross-entropy loss function. Through SFT, the model learns the patterns and
 291 relationships inherent in the task by mapping input instructions to the corresponding domain-specific
 292 language for CAD modeling. This step involves fine-tuning a pre-trained LLM using structured
 293 reasoning data, allowing it to develop a deeper understanding of CAD generation and improve its
 294 predictive capabilities.

295 **Reinforcement Learning (RL)** process depends crucially on an efficient reward function (Devidze
 296 et al., 2024; Xie et al., 2023; Devidze, 2025). Our reward function is designed to guide the rein-
 297 forcement learning agent toward generating high-quality geometric shapes by optimizing for several
 298 key properties: format correctness, executability, geometric accuracy, and output length. The total
 299 reward R is a summation of four distinct reward components:

$$R = R_{\text{chamfer}} + R_{\text{format}} + R_{\text{exec}} + R_{\text{length}} \quad (1)$$

300 - Chamfer Distance Reward (R_{chamfer}): This is the primary reward component, a dense reward that
 301 measures the geometric similarity between the generated shape and the ground truth. We use the
 302 Chamfer Distance (D_{CD}) as our metric. To map this distance to a reward value between 0 and 1,
 303 we use an exponential decay function. This ensures that even small improvements in geometry are
 304 rewarded, with the maximum reward of 1 given for a perfect match ($D_{\text{CD}} = 0$) (Guo et al., 2025)..

$$R_{\text{chamfer}} = e^{-\alpha D_{\text{CD}}} \quad (2)$$

305 where α is a hyperparameter controlling the decay rate.

306 - Format Reward (R_{format}): This is a sparse reward that provides a significant penalty if the agent’s
 307 output does not conform to the predefined format specifications. A valid output receives no penalty,
 308 while an invalid one is penalized by -0.2 .

$$R_{\text{format}} = \begin{cases} 0 & \text{if format is correct} \\ -0.2 & \text{if format is incorrect} \end{cases} \quad (3)$$

309 - Executability Reward (R_{exec}): This component penalizes outputs that are not executable or lead to
 310 runtime errors. A penalty of -0.1 is applied if the generated sequence of actions or code fails to
 311 execute successfully.

$$R_{\text{exec}} = \begin{cases} 0 & \text{if executable} \\ -0.1 & \text{if not executable} \end{cases} \quad (4)$$

312 - Length Reward (R_{length}): To encourage the agent to find concise and efficient solutions, we intro-
 313 duce a penalty proportional to the length of the generated output sequence, L . This prevents the
 314 agent from generating unnecessarily long or complex outputs to achieve the same result.

$$R_{\text{length}} = -\beta \cdot L \quad (5)$$

315 where $\beta > 0$ is a hyperparameter that scales the penalty for each added step or token (Ling et al.,
 316 2025).

324

4 EXPERIMENTS

325

4.1 EXPERIMENTAL SETUP

328 **Datasets.** Earlier CAD generation research was constrained by the Transformer architecture, which
 329 could only represent specific model parameters within a fixed numerical range, leading to the scaling
 330 of real parameters to a predefined interval. In the era of large models, this limitation no longer
 331 applies, and we found that excessive scaling might introduce unnecessary errors. Therefore, as
 332 described in Section 3.1, we have reconstructed a text-to-CAD model dataset based on the DeepCAD
 333 dataset that does not rely on scaling. We also randomly split the dataset into training, validation, and
 334 test sets with a 90%-5%-5% ratio.

335 **Implementation Details.** We use the open-source Qwen 2.5-7B-Instruct as the base model. During
 336 Supervised Fine-Tuning (SFT), we employ the LLaMA-Factory framework (Zheng et al., 2024) and
 337 apply LoRA with a rank of 8 is applied across all layers, and a sequence length cutoff of 4096 tokens
 338 is set. Training runs for 3 epochs with a batch size of 4 per device and 8 gradient accumulation steps.
 339 The cosine learning rate scheduler is configured with a learning rate of 1.0e-4 and a warmup ratio of
 340 0.1. Training utilizes BF16 precision with a LoRA dropout rate of 0.1. For reinforcement learning,
 341 we use the GRPO method from the veRL framework (Sheng et al., 2024), setting $\alpha = 5.0$ and
 342 $\beta = 0.01$. The total reward is computed at the end of each generation episode. All experiments
 343 are conducted on 8 NVIDIA H20 and 8 NVIDIA L40s. To ensure consistency with prior work,
 344 evaluation metrics were computed using the Text2CAD scripts.

345 **Metrics.** To evaluate the performance of PR-CAD, we employ the following metrics: (1) Mean
 346 Chamfer Distance (Mean CD): Measures the geometric similarity between the generated and ground
 347 truth models; lower values indicate higher accuracy. (2) Invalidity Ratio (IR): Proportion of invalid
 348 models; lower values reflect better reliability. (3) Qwen 2-VL-72B-Instruct (Team, 2024) (VLM-
 349 Eval): Assesses how well the model preserves user intent and design expectations using a multi-
 350 modal large model Lin & Chen (2023); Gu et al. (2024); Zhang et al. (2024a). (4) Human-Eval:
 351 Expert evaluation of the quality and relevance of generated models, scored as 1 if the model meets
 352 the instruction, otherwise 0.

353

4.2 MAIN RESULTS

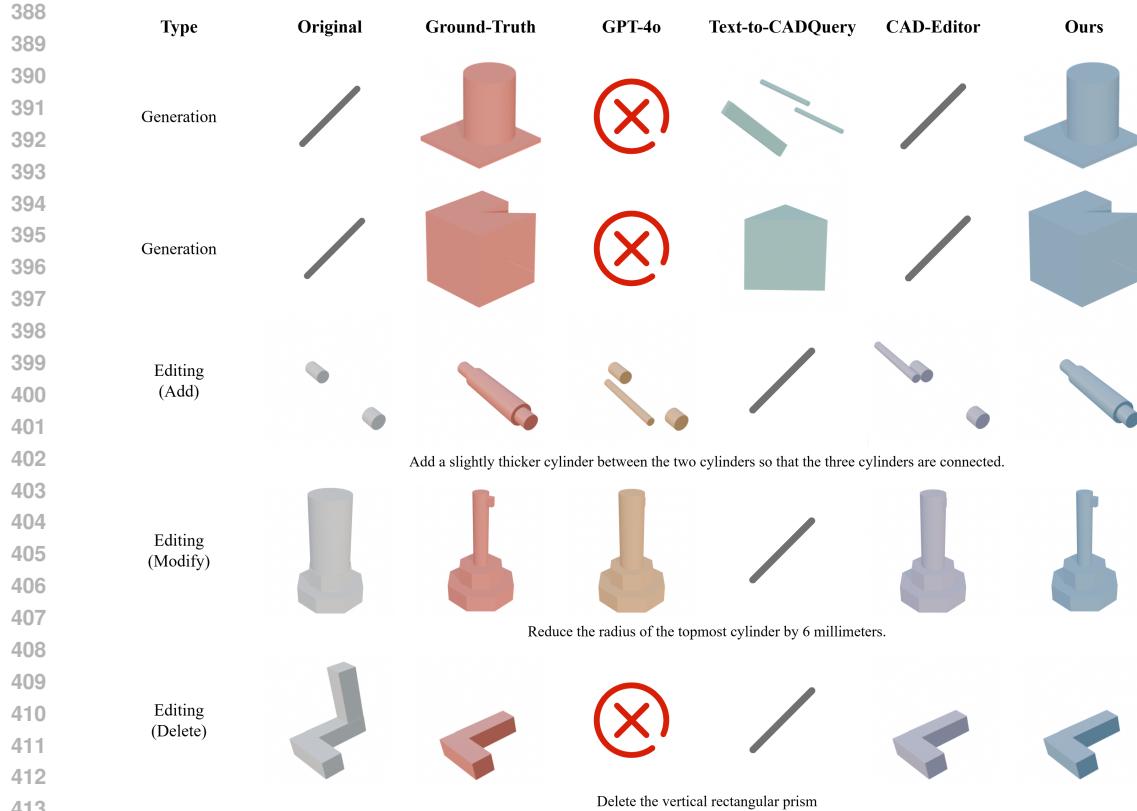
355 We evaluate PR-CAD through comprehensive experiments comparing it to existing methods in both
 356 generation and editing tasks. Our results demonstrate that PR-CAD significantly outperforms other
 357 state-of-the-art models in terms of controllability, faithfulness, and overall performance across mul-
 358 tiple evaluation metrics.

359 **Comparison with Existing Methods.** PR-CAD outperforms other models in both quantitative and
 360 qualitative evaluations, excelling in generation and editing tasks while effectively preserving user
 361 intent and design expectations. We evaluated 2,000 CAD models, and Human-Eval scored 52.94.

362 Table 1: Comparison of PR-CAD with existing methods for both generation and editing tasks. The
 363 evaluation metrics include quantitative measures (IR, Mean CD) and qualitative evaluations (IR,
 364 VLM-Eval). PR-CAD significantly outperforms other methods across both tasks, demonstrating
 365 superior controllability and model faithfulness. CD values are scaled by 10^3 . “ \times ” indicates that the
 366 method does not support the corresponding task. \uparrow : the higher, the better; \downarrow : the lower, the better.
 367 Best performance is highlighted in **bold**.

Method	Generation Task				Editing Task			
	Quantitative		Qualitative		Quantitative		Qualitative	
	IR \downarrow	Mean CD \downarrow	IR \downarrow	VLM-Eval \uparrow	IR \downarrow	Mean CD \downarrow	IR \downarrow	VLM-Eval \uparrow
GPT-4o (zero-shot)	74.22	133.52	66.48	55.85	25.81	23.30	27.76	61.01
GPT-4o (few-shot)	55.95	77.49	49.24	58.91	15.47	15.52	13.47	66.18
Text2CAD	0.97	27.68	3.41	66.35	\times	\times	\times	\times
Text-to-CadQuery	6.62	11.32	\times	\times	\times	\times	\times	\times
FLEXCAD	\times	\times	\times	\times	\times	\times	18.26	64.38
CAD-Editor	\times	\times	\times	\times	7.18	8.85	5.77	69.52
PR-CAD (Ours)	0.62	5.87	1.52	69.26	0.91	6.30	1.71	77.83

378 In the generation task, PR-CAD outperforms GPT-4o, Text2CAD, and Text-to-CadQuery, achieving
 379 the lowest Invalidity Ratio (IR) of 0.62 and Mean Chamfer Distance (CD) of 5.87, indicating high
 380 geometric accuracy and reliability. In the editing task, PR-CAD continues to outperform existing
 381 methods, including FLEXCAD and CAD-Editor, with an IR of 0.91 and Mean CD of 6.30, while
 382 also achieving a remarkable VLM-Eval score of 77.83, demonstrating its ability to preserve user
 383 intent and design expectations. A detailed comparison in Table 1 reveals that PR-CAD consistently
 384 delivers the best performance across both generation and editing tasks, outperforming zero-shot and
 385 few-shot variants of GPT-4o, as well as other specialized CAD models. The improvements in IR
 386 and Mean CD highlight PR-CAD’s ability to generate and refine CAD models with greater precision
 387 and fewer errors. The visual comparison of results is shown in Figure 5.



414 Figure 5: Visualization comparison among different methods or models, including the closed-source
 415 model GPT-4o relying on context learning capabilities, Text-to-CADQuery for CAD model genera-
 416 tion, CAD-Editor designed for CAD editing, and our proposed method.

417 Table 2: Human Interaction Results. Comparison of experts and novices using two interaction
 418 methods: end-to-end generation and Progressive Refinement. Metrics evaluated include success
 419 rate, average number of turns, average time per turn, and System Usability Scale (SUS) scores.

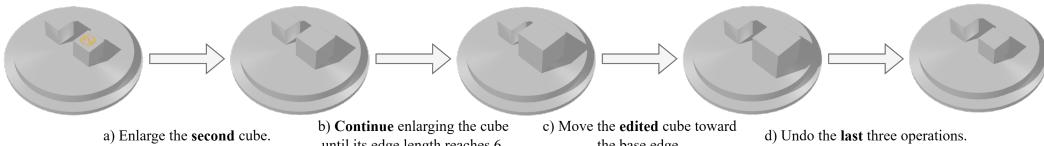
Interaction	Experts				Novices			
	Method	Success Rate	Avg. Turns	Avg. Time	SUS	Success Rate	Avg. Turns	Avg. Time
Single-turn Generation	56.25%	1	6'48"	38.125	31.25%	1	9'27"	25.125
Multi-turn Interaction	100%	3.375	3'24"	93.125	81.25%	4.53	5'16"	80.625

429 **User Interaction Performance.** In addition to quantitative performance, we conducted a human
 430 evaluation of the CAD models generated by PR-CAD. Table 2 shows that both experts and novices
 431 benefit from PR-CAD’s multi-turn interaction. Experts achieved a 100% success rate with an aver-
 age of 3.375 turns and 3'24" per turn. Novices also performed well, with an 81.25% success rate

432 and improved efficiency compared to single-turn generation. Remarkably, we found that novices
 433 outperformed experts using traditional end-to-end methods, with PR-CAD’s assistance. The System
 434 Usability Scale (SUS) scores (Brooke et al., 1996; Sauro & Lewis, 2011; Lewis, 2018) further un-
 435 derscore PR-CAD’s user-friendliness, with experts rating it at 93.125 and novices at 80.625, demon-
 436 strating the effectiveness of the progressive refinement approach in enhancing user interaction.
 437

438 4.3 CHATCAD: CAD MODELING THROUGH MULTI-TURN DIALOGUES

440 To further evaluate the real-world applicability of PR-CAD, we introduce ChatCAD, a system de-
 441 signed for CAD modeling through multi-turn dialogues. As demonstrated in Figure 6, ChatCAD
 442 allows users to iteratively refine and update CAD models based on conversational instructions. Our
 443 results show that PR-CAD enables seamless transitions between steps, providing high accuracy and
 444 flexibility for users to modify their designs through simple dialogue exchanges.
 445



446 Figure 6: Examples of CAD modeling through multi-turn dialogues. (a) In this step, the specified
 447 cube is enlarged based on the earlier description. (b) The next step accurately identifies the cube
 448 from the previous operation and completes the enlargement. (c) In this step, the edited cube is
 449 identified and moved towards the base edge. (d) Finally, this step precisely undoes all the operations
 450 performed in the previous three steps.
 451

452 4.4 ABLATION STUDIES

453 We conduct ablation studies to assess the impact of various components in our model, as shown
 454 in Table 3. Our findings indicate that both supervised fine-tuning (SFT) and reinforcement learning
 455 (RL) are essential for achieving the best performance. Specifically, removing either SFT or RL leads
 456 to substantial drops in performance, particularly in chamfer distance and VLM-Eval scores. Addi-
 457 tionally, the structured chain of thought (SCoT) significantly contributes to the model’s reasoning
 458 capabilities, with its absence resulting in a noticeable decline in model accuracy.
 459

460 Table 3: Ablation Studies for Post-Tuning LLMs with Various Training Configurations. We assess
 461 the impact of different training configurations, including baseline models, reinforcement learning-
 462 only fine-tuning (w/o SFT), supervised fine-tuning-only (w/o RL), training without structured rea-
 463 soning (w/o SCoT), and single-task data training. The notation *t/o/o* (trained only on) indicates that
 464 the model was trained exclusively on one type of data. Best performance is highlighted in **bold**.
 465

466 Training Strategy	467 IR	468 Mean CD	469 Median CD	470 VLM-Eval
471 Qwen2.5-7B	X	X	X	X
472 Qwen2.5-7B w/o SFT	X	X	X	X
473 Qwen2.5-7B w/o RL	12.67	84.63	6.54	56.44
474 Qwen2.5-7B w/o SCoT	2.48	11.34	2.08	68.81
475 Qwen2.5-7B t/o/o Generation	9.45	42.07	5.49	60.56
476 Qwen2.5-7B t/o/o Editing	6.94	20.05	1.90	65.54
477 Qwen2.5-7B t/o/o Quantitative	3.71	14.75	1.72	67.19
478 Qwen2.5-7B t/o/o Qualitative	7.78	34.07	2.55	66.91
479 PR-CAD (Ours)	1.18	8.37	0.78	70.84

480 5 CONCLUSION

481 We present PR-CAD, a unified framework for controllable and faithful text-to-CAD generation and
 482 refinement, which integrates both tasks into a single, iterative workflow. Our approach significantly
 483 improves performance and usability over existing methods, achieving state-of-the-art results in geo-
 484 metric accuracy, reliability, and user intent preservation. Human evaluations demonstrate its superior
 485 usability, especially for novice users, making CAD modeling more accessible. PR-CAD’s ability to
 486 generate and iteratively refine designs with both qualitative and quantitative instructions offers a
 487 powerful tool for democratizing CAD design.
 488

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
This research follows ethical guidelines in the use of AI and machine learning technologies. We
ensure that all data used is synthetic and anonymized, with no personal or proprietary information
involved. Consent was obtained from human evaluators, and ethical standards were maintained
throughout the study. Our system was designed to be fair and transparent, with efforts to mitigate
biases and ensure that generated designs do not favor any particular group. We aim to democratize
CAD modeling, making it accessible to both experts and novices, while acknowledging the potential
impacts on traditional CAD roles. We also strive to minimize the environmental impact of our AI
models by using energy-efficient hardware and optimizing computational resources.496
497
REPRODUCIBILITY STATEMENT
498499
500
501
502
503
504
505
506
507
508
509
510
To ensure the reproducibility of our work, we will make the full set of resources available upon
acceptance of the paper. This includes the source code for the PR-CAD framework, which will
be accessible through a public GitHub repository, complete with installation instructions and us-
age guidelines. We will also release the curated high-quality interaction dataset, encompassing
both qualitative and quantitative CAD descriptions along with corresponding edit operations, for
academic and research use. Additionally, the pre-trained models used in our experiments will be
shared, enabling others to replicate our results directly. All model training details, including hy-
perparameters, loss curves, and evaluation metrics, are recorded using Weights and Biases (Wandb),
and these logs will be made publicly available to ensure full transparency in the training process. We
will provide detailed documentation on the experimental setup, including model configurations, hy-
perparameters, and hardware specifications, to facilitate accurate replication of our results. Through
these efforts, we aim to ensure that our research is transparent, reproducible, and accessible to the
broader academic community.511
512
THE USE OF LARGE LANGUAGE MODELS
513514
515
516
517
518
519
In order to clarify our work, we used large language models solely for the modification and refine-
ment of a small portion of the written content, focusing on grammar and rhetorical aspects, without
involving any substantial content generation. None of the content was generated from scratch by the
large language model, nor was any content released without thorough inspection by us after being
generated by the model.520
521
REFERENCES

- 522
-
- 523
-
- 524
-
- 525
-
- 526
-
- 527
-
- 528
-
- 529
-
- 530
-
- 531
-
- 532
-
- 533
-
- 534
-
- 535
-
- 536
-
- 537
-
- 538
-
- 539
-
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
-
- Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report.
- arXiv preprint arXiv:2502.13923*
- ,
-
- 2025.
-
- John Brooke et al. Sus-a quick and dirty usability scale.
- Usability evaluation in industry*
- , 189(194):
-
- 4–7, 1996.
-
- Rati Devidze. Reward design for reinforcement learning agents.
- arXiv preprint arXiv:2503.21949*
- ,
-
- 2025.
-
- Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Informativeness of reward functions
-
- in reinforcement learning.
- arXiv preprint arXiv:2402.07019*
- , 2024.
-
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
-
- bidirectional transformers for language understanding. In
- Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers)*
- , pp. 4171–4186, 2019.
-
- Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
-
- han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge.
- arXiv preprint
arXiv:2411.15594*
- , 2024.

- 540 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 541 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
 542 ment learning. *Nature*, 645(8081):633–638, 2025.
- 543
- 544 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 545 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- 546
- 547 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 548 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 549 *arXiv:2410.21276*, 2024.
- 550
- 551 Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muham-
 552 mad Zeshan Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level
 553 text prompts. *Advances in Neural Information Processing Systems*, 37:7552–7579, 2024.
- 554
- 555 James R Lewis. The system usability scale: past, present, and future. *International Journal of*
 556 *Human–Computer Interaction*, 34(7):577–590, 2018.
- 557
- 558 Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
 559 *ACM Transactions on Software Engineering and Methodology*, 34(2):1–23, 2025a.
- 560
- 561 Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-
 562 llama: leveraging large language models for computer-aided design parametric 3d model gener-
 563 ation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18563–
 564 18573, 2025b.
- 565
- 566 Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive for
 567 text to 3d parametric computer-aided design generative modeling. In *Proceedings of the 32nd*
 568 *ACM International Conference on Multimedia*, pp. 8461–8470, 2024.
- 569
- 570 Xueyang Li, Jiahao Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Seek-cad: A self-refined
 571 generative modeling for 3d parametric cad using local inference via deepseek. *arXiv preprint*
 572 *arXiv:2505.17702*, 2025c.
- 573
- 574 Jianxing Liao, Junyan Xu, Yatao Sun, Maowen Tang, Sicheng He, Jingxian Liao, Shui Yu, Yun Li,
 575 and Hongguan Xiao. Automated cad modeling sequence generation from text descriptions via
 576 transformer-based large language models. *arXiv preprint arXiv:2505.19490*, 2025.
- 577
- 578 Yen-Ting Lin and Yun-Nung Chen. Llm-eval: Unified multi-dimensional automatic evaluation for
 579 open-domain conversations with large language models. *arXiv preprint arXiv:2305.13711*, 2023.
- 580
- 581 Zehui Ling, Deshu Chen, Hongwei Zhang, Yifeng Jiao, Xin Guo, and Yuan Cheng. Fast on
 582 the easy, deep on the hard: Efficient reasoning via powered length penalty. *arXiv preprint*
 583 *arXiv:2506.10446*, 2025.
- 584
- 585 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 586 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 587 *arXiv:2412.19437*, 2024.
- 588
- 589 Jiaxing Lu, Heran Li, Fangwei Ning, Yixuan Wang, Xinze Li, and Yan Shi. Constructing mechanical
 590 design agent based on large language models. *arXiv preprint arXiv:2408.02087*, 2024.
- 591
- 592 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 593 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 594 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
- 595
- 596 Javier Monedero. Parametric design: a review and some experiences. *Automation in construction*,
 597 9(4):369–377, 2000.
- 598
- 599 Jeff Sauro and James R Lewis. When designing usability questionnaires, does it hurt to be positive?
 600 In *Proceedings of the SIGCHI conference on human factors in computing systems*, pp. 2215–2224,
 601 2011.

- 594 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 595 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 596 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- 597 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 598 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 599 *arXiv: 2409.19256*, 2024.
- 600 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 601 press Cambridge, 1998.
- 602 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricu-
 603 t, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 604 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 605 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.
- 606 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 607 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 608 tion processing systems*, 30, 2017.
- 609 Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, Yanzhou Zhang, and Jie Yang. Cad-gpt:
 610 Synthesising cad construction sequence with spatial reasoning-enhanced multimodal llms. In
 611 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 7880–7888, 2025.
- 612 Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessan-
 613 dro Sordoni. Guiding language model reasoning with planning tokens. *arXiv preprint*
 614 *arXiv:2310.05707*, 2023.
- 615 Zhen Hao Wong, Jingwen Deng, Runming He, Zirong Chen, Qijie You, Hejun Dong, Hao Liang,
 616 Chengyu Shen, Bin Cui, and Wentao Zhang. Logicpuzzlerl: Cultivating robust mathematical
 617 reasoning in llms via reinforcement learning. *arXiv preprint arXiv:2506.04821*, 2025.
- 618 Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
 619 aided design models. In *Proceedings of the IEEE/CVF International Conference on Computer
 620 Vision*, pp. 6772–6782, 2021.
- 621 Haoyang Xie and Feng Ju. Text-to-cadquery: A new paradigm for cad generation with scalable large
 622 model capabilities. *arXiv preprint arXiv:2505.06507*, 2025.
- 623 Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
 624 Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. *arXiv
 625 preprint arXiv:2309.11489*, 2023.
- 626 Yu Yuan, Shizhao Sun, Qi Liu, and Jiang Bian. Cad-editor: A locate-then-infill framework with
 627 automated training data synthesis for text-based cad editing. *arXiv preprint arXiv:2502.03997*,
 628 2025.
- 629 Yue Zhang, Ming Zhang, Haipeng Yuan, Shichun Liu, Yongyao Shi, Tao Gui, Qi Zhang, and Xu-
 630 anjing Huang. Llmeval: A preliminary study on how to evaluate large language models. In
 631 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 19615–19622,
 632 2024a.
- 633 Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and
 634 versatile controllable cad generation with fine-tuned large language models. *arXiv preprint*
 635 *arXiv:2411.05823*, 2024b.
- 636 Zhanwei Zhang, Kaiyuan Liu, Junjie Liu, Wenxiao Wang, Binbin Lin, Liang Xie, Chen
 637 Shen, and Deng Cai. Geocad: Local geometry-controllable cad generation. *arXiv preprint*
 638 *arXiv:2506.10337*, 2025.
- 639 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 640 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 641 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 642 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 643 tics. URL <http://arxiv.org/abs/2403.13372>.

648 649 Appendix

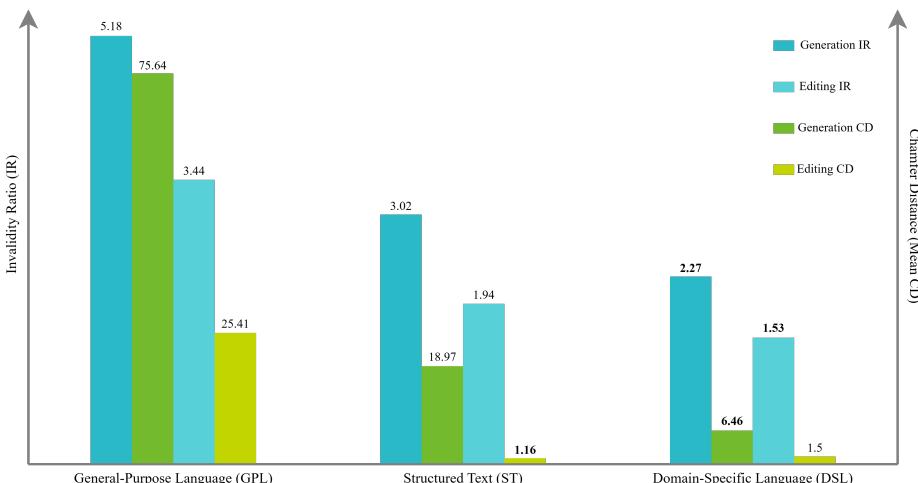
650 Due to space constraints in the main paper, additional results and discussions are provided in this
651 appendix, which is organized as follows:

- 652
653 • **Section A: Additional Implementation Details and Analysis.**
- 654 – Sec. A.1: The Impact of Different CAD Serialization Representations
655 – Sec. A.2: Errors Caused by Scaling Operations
656 – Sec. A.3: Definition of Editing Operation Types
657 – Sec. A.4: Injecting Robustness into PR-CAD with Reinforcement Learning
658 – Sec. A.5: Limitations and Future Work.

660 661 A ADDITIONAL IMPLEMENTATION DETAILS AND ANALYSIS.

662 A.1 THE IMPACT OF DIFFERENT CAD SERIALIZATION REPRESENTATIONS

663 In our experiments, we found that the performance of the PR-CAD framework varies based on the
664 serialization method used for CAD models. Specifically, we evaluated different methods such as
665 Domain-Specific Language (DSL), Structured Text (ST), and General-Purpose Language (GPL) for
666 CAD serialization. The results show that DSL-based representations provide the best performance in
667 generation tasks, while ST-based representations are more effective in editing tasks. This distinction
668 is crucial in understanding how CAD serialization impacts both the generation of new models and
669 the iterative editing process. Figure 7 demonstrates the comparative performance across different
670 serialization methods.

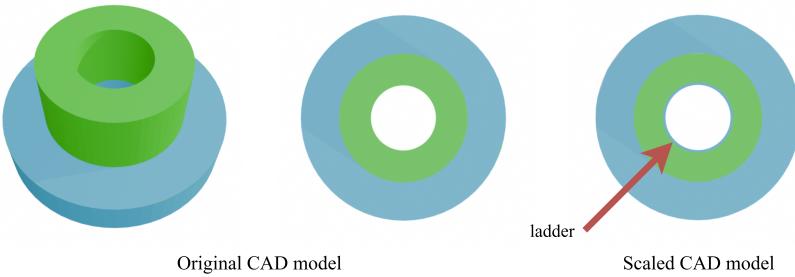


689 Figure 7: The difference in model performance caused by using different CAD sequence repre-
690 sentations, while keeping all other supervised fine-tuning strategies identical. Best performance is
691 highlighted in bold.

692
693 While General-Purpose Languages like Python have the advantage of being learned on the largest
694 datasets during training, they are not specifically designed for CAD modeling tasks. As a result,
695 there is a significant gap between their natural language instructions and the CAD representation
696 space, which leads to poor performance in CAD modeling tasks. In contrast, Structured Text, with
697 its embedded structural tags, excels in editing tasks by allowing accurate positioning. However,
698 its excessive parameters and unclear semantics make it less effective for generation tasks. On the
699 other hand, Domain-Specific Languages incorporate part of the CAD sequence structure while being
700 closer to natural language and human cognitive patterns, making them ideal for generation tasks.
701 Based on this analysis, we treat Structured Text as part of a structured reasoning chain and ultimately
702 use Domain-Specific Language to represent CAD models.

702 A.2 ISSUES CAUSED BY SCALING OPERATIONS
703

704 Scaling operations in CAD model generation can lead to significant issues when applied indiscriminately. In our study, we noted that excessive scaling of model parameters, which was previously a
705 limitation in older transformer-based methods, could introduce undesirable deviations in geometric
706 accuracy. To mitigate these issues, we reconstructed our dataset based on the DeepCAD dataset,
707 avoiding the need for scaling operations and directly using raw CAD model data. This approach
708 significantly reduced issues in model generation, as shown in Figure 9.
709



710
711
712
713
714
715
716
717
718
719
720 Figure 8: Numerical issues due to scaling. The above image shows a typical example where accu-
721 racy errors caused by scaling result in internal through-holes, which should have the same radius,
722 displaying ladder.

723 A.3 DEFINITION OF EDITING OPERATION TYPES
724

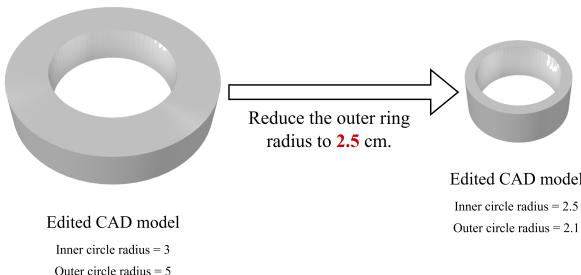
725 In this study, we defined several types of editing operations to ensure robust interaction modeling.
726 These operations include:

- 727 - Addition: Involves introducing new S-E operations or loops to an existing model.
- 728 - Modification: Involves changing the properties or parameters of existing elements.
- 729 - Deletion: Involves removing S-E operations or loops from a model.

730 Each of these operations plays a vital role in the iterative refinement of CAD models. We annotated
731 a diverse set of CAD model interactions, ensuring that each operation type was well-represented in
732 our training data, enabling the model to handle real-world editing scenarios effectively.

733 A.4 INJECTING ROBUSTNESS INTO PR-CAD WITH REINFORCEMENT LEARNING
734

735 In the model after reinforcement learning, we observed an interesting phenomenon. When the input
736 command contains potential errors or is likely to cause a crash, the model actively adjusts parts
737 beyond the editing intent to prevent the error from occurring. We believe this is related to the
738 Executability Reward used during the reinforcement learning phase.



739
740
741
742
743
744
745
746
747
748
749
750
751
752
753 Figure 9: Robustness Example. When the user requests the outer ring radius to be smaller than
754 the inner ring radius, the model automatically reduces the inner ring radius to ensure the model can
755 generate correctly.

756
757

A.5 LIMITATIONS AND FUTURE WORK.

758
759
760
761
762
763
764
765

Despite the promising results, PR-CAD has certain limitations. While our approach successfully integrates CAD generation and editing, strictly adhering to the user's qualitative and quantitative intentions, and performing excellently in interactive modeling within real-world scenarios, it still requires further refinement to handle more complex designs and specialized domains. In future work, we aim to enhance the model's planning capabilities to support more intricate editing operations and further improve its efficiency for large-scale CAD projects. Additionally, we plan to explore more advanced techniques for model scalability, enabling real-time applications in industry-specific scenarios.

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809