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Abstract

Mathematical reasoning represents a critical
frontier in advancing large language models
(LLMs). While step-by-step approaches have
emerged as the dominant paradigm for mathe-
matical problem-solving in LLMs, the quality
of reasoning steps in training data fundamen-
tally constrains the performance of the models.
Recent studies has demonstrated that more de-
tailed intermediate steps can enhance model
performance, yet existing methods for step ex-
pansion either require more powerful exter-
nal models or incur substantial computational
costs. In this paper, we introduce MathFimer,
a novel framework for mathematical reason-
ing step expansion inspired by the "Fill-in-the-
middle" task from code completion. By de-
composing solution chains into prefix-suffix
pairs and training models to reconstruct miss-
ing intermediate steps, we develop a special-
ized model, MathFimer-7B, on our carefully cu-
rated NuminaMath-FIM dataset. We then apply
these models to enhance existing mathematical
reasoning datasets by inserting detailed inter-
mediate steps into their solution chains, creat-
ing MathFimer-expanded versions. Through
comprehensive experiments on multiple mathe-
matical reasoning datasets, including MathIn-
struct, MetaMathQA and etc., we demonstrate
that models trained on MathFimer-expanded
data consistently outperform their counterparts
trained on original data across various bench-
marks such as GSM8K and MATH. Our ap-
proach offers a practical, scalable solution for
enhancing mathematical reasoning capabilities
in LLMs without relying on powerful external
models or expensive inference procedures.

1 Introduction

Recent advances in large language models
(LLMs) (OpenAl, 2023; DeepSeek-Al, 2025)
have demonstrated remarkable capabilities across
various reasoning tasks (Gao et al., 2024; Xu
et al., 2025a), from logical deduction to complex

#1/usr/bin/python
# %= coding: UTF-8 —*- Task: Fibonacci Sequence
# Return the nth number of
# the Fibonacci sequence.
def fibonacci(n):
# The first and second numbers of
#  the Fibonacci sequence are 1.

#1/usr/bin/python
# -*- coding: UTF-8 -*-

# Return the nth number of

#  the Fibonacci sequence.

# Starting from the third term, def fibonacci(n):

# each term is the sum of the # The first and second numbers of
# previous two terms. # the Fibonacci sequence are 1.
return fib(n-1) + fib(n-2) ifn==1lorn==2

return 1
# Starting from the third term,
# each term is the sum of the
# previous two terms.

(a) FIM Models return (n-1) + fib(n-2)

Q: In a store, the total number of
apples and oranges is 24. The
number of apples is 6 more than
the number of oranges. How many
apples and oranges are there?

Let the number of apples be x, then
the number of oranges is x — 6.
<FIM_SPACE>

x+(x—6)=24
The number of apples be x = 15, then
the number of orangesisx — 6 =9

SN

MathFimer
(b)

Figure 1: We developed MathFimer inspired by the fill-
in-the-middle task in code reasoning of LLMs. Panel
(a) demonstrates an example where the FIM model com-
pletes a given code context, while Panel (b) shows how
MathFimer, as proposed in this paper, extends the steps
of an existing step-by-step answer.

Let the number of apples be x, then the

number of oranges is x — 6.

According to the problem, the total

number of apples and oranges is 24, so

we can set up the equation:
x+(x—6) =24

The number of apples be x = 15, then

the number of orangesisx —6 =9

problem-solving (Phan et al., 2025). Among these,
mathematical reasoning stands as a particularly
challenging frontier (Sun et al., 2024; Xu et al.,
2025b), serving as a critical benchmark for evaluat-
ing an LL.M’s ability to perform structured, multi-
step reasoning processes.

A key breakthrough in improving LLMs’ math-
ematical reasoning capabilities has been the intro-
duction of chain-of-thought (CoT) prompting (Wei
et al., 2023), where models explicitly articulate in-
termediate steps in their problem-solving process.
This approach has not only enhanced solution ac-
curacy but has also provided valuable insights into
the models’ reasoning mechanisms. However, the
effectiveness of CoT prompting raises a fundamen-
tal question: What characteristics of training data
are crucial for developing LLMs that can gener-



ate high-quality reasoning chains and arrive at
correct mathematical solutions?

Prior research has revealed that the granularity
and completeness of reasoning steps in training
data significantly impact a model’s reasoning capa-
bilities (Jin et al., 2024). Models trained on more
detailed step-by-step solutions tend to exhibit supe-
rior performance in mathematical reasoning tasks.
This observation has led to various approaches
for expanding reasoning steps in training data, in-
cluding the use of stronger external models and
sophisticated search algorithms like Monte Carlo
Tree Search (MCTYS) (Zhou et al., 2023; Wu et al.,
2024; Liu et al., 2024). However, these current
approaches to improving reasoning steps face three
main challenges. First, they rely on using even
larger models to create better steps, which creates
a cycle where we constantly need bigger models
to make improvements (Guan et al., 2025; Toshni-
wal et al., 2024). Second, these methods require
substantial computing resources, particularly when
using advanced techniques like MCTS to explore
different reasoning paths. Third, instead of build-
ing upon existing human-verified steps, these meth-
ods often generate entirely new reasoning chains,
which can introduce unexpected errors and reduce
the reliability of solutions.

These limitations motivate our central research
question: Can we develop a more efficient and
reliable method for expanding reasoning steps
while preserving the validity of existing human-
generated solutions? Drawing inspiration from
the "Fill-in-the-middle" task in code reasoning,
where LLMs successfully complete missing code
segments based on surrounding context, we pro-
pose a novel approach to this problem. Rather than
generating entirely new reasoning chains, we ex-
plore whether the FIM paradigm can be adapted
to supplement missing steps in existing reasoning
processes or insert more detailed explanations into
steps that are already sufficient.

Building on this insight, we propose MathFimer,
a framework for enhancing mathematical reason-
ing through step expansion. We first construct
NuminaMath-FIM by decomposing NuminaMath-
CoT (Li et al., 2024) solutions into prefix-suffix
pairs with missing intermediate steps. Using
this dataset, we train a step-expansion model
MathFimer-7B on math-specialized base model
Qwen2.5-Math-7B (Yang et al., 2024). This model
learns to supplement intermediate reasoning steps
while preserving the original solution structure.

We apply MathFimer-7B to expand the reason-
ing steps in several existing mathematical reason-
ing datasets and evaluate their impact through com-
prehensive experiments. Our results demonstrate
that training on MathFimer-expanded data consis-
tently improves model performance across vari-
ous mathematical reasoning benchmarks, includ-
ing GSM8K and MATH. This improvement is
observed across both general-purpose and math-
specialized foundation models, with expanded
datasets leading to more detailed reasoning steps
and higher solution accuracy compared to the orig-
inal training data.

Our main contributions are threefold:

* We propose a novel step expansion framework
inspired by code completion techniques, intro-
ducing MathFimer to enhance mathematical
reasoning through targeted insertion of inter-
mediate steps in existing solutions.

* We develop and release a specialized training
dataset (NuminaMath-FIM) along with a step-
expansion model MathFimer-7B, providing a
practical and scalable solution for improving
mathematical reasoning datasets.

* Through extensive experiments across multi-
ple benchmarks and model architectures, we
demonstrate that our approach consistently im-
proves mathematical reasoning performance,
offering new insights into the relationship be-
tween step granularity and reasoning quality
in LLMs.

2 Approach

In this paper, we propose a reasoning step expan-
sion method that enhances the quality of exist-
ing data by filling in possible missing steps at the
step level. This is achieved through the fill-in-the-
middle (FIM) task, which supplements existing
CoT data. Specifically, the work presented in this
paper can be divided into two parts: the first part
involves training the aforementioned FIM models,
and the second part applies the trained FIM models
to extend steps in existing data. Figure 2 shows an
overview of our work.

2.1 FIM Model Training

The goal of this section is to train a Fill-in-the-
Middle (FIM) model for mathematical reasoning
tasks, which can generate the missing intermediate
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Figure 2: An overview of our work. The upper part illustrates how we construct FIM training data from existing
CoT data and train FIM models, MathFimer, which works on chain-of-thought. The lower part demonstrates the
process where MathFimer is used to expand the steps of existing CoT data for more detailed reasoning.

steps between a mathematical problem, its preced-
ing steps, and its succeeding steps. This can be
expressed as:

FIM(Q,P,S) = M

where FIM refers to the model we are training,
() (question) represents the mathematical problem,
P (prefix) refers to the preceding steps, .S (suffix)
refers to the succeeding steps, and M (middle)
denotes the intermediate steps between P and S.

We construct the data for training the FIM model
using the existing high-quality mathematical rea-
soning dataset, NuminaMath-CoT. NuminaMath-
CoT includes mathematical reasoning data of vary-
ing difficulty levels, containing 853K mathematical
question-and-answer pairs, providing us with more
generalizable data.

Specifically, we first performed a step-by-step
decomposition of the NuminaMath-CoT data, trans-
forming the standard answers into individual steps.
We provide the details of step decomposition in
Appendix B. Then, for each case, we randomly
select one step and treat all the preceding steps as
the prefix and all the succeeding steps as the suffix.
This can be represented as:

(P7 S7 M) - (yl...i—byi-‘rl...nvyi)ayi S Y

where y; is a step randomly selected from the an-
swer Y, which contains n steps.

For the organization format of the FIM train-
ing data, we refer to the work of Bavarian
et al. (2022) and adopt the PSM(Prefix-Suffix-
Middle) sequence order. We use three special
tokens: <|fim_prefix|>, <|fim_suffix|>, and
<|fim_middle|>, to construct the format for the
FIM training data. An example of the FIM data
construction is provided in Figure 3.

For each case in NuminaMath-CoT, we per-
formed three rounds of random sampling as de-
scribed above. As a result, for each mathe-
matical problem, we constructed three FIM data
entries, which together formed our FIM train-
ing set, NuminaMath-FIM, consisting of 2.5M
training samples for FIM task. Next, we con-
ducted SFT on a math-specialized base model,
Qwen2.5-Math-7B(Yang et al., 2024). Specifi-
cally, we only computed the loss for the tokens af-
ter <|fim_middle|>, ultimately obtaining the FIM
model MathFimer-7B for step expansion.

2.2 Expansion of Reasoning Steps

After training MathFimer-7B, we can use it to ex-
pand the reasoning steps in existing mathematical
solutions. Specifically, for each pair of consecu-
tive steps in the original solution, we perform an
inference using the FIM model to generate poten-
tially missing intermediate steps or provide more
detailed reasoning between them. This can be for-
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Q: A train is travelling at a certain speed and crosses a pole in 5 A train is travelling at a certain speed and crosses a pole in 5
seconds. The length of the train is 125.01 meters. What is the - seconds. The length of the train is 125.01 meters. What is the

\_speed of the train in kmph? ) speed of the train in kmph?

- — <|fim_prefix|>To find the speed of the train, we can use the
A: To find the speed of the train, we can use the formula: formula: . .

Speed = Distance / Time Speed = D'Sta”?e /Time o

We know the distance (the length of the train) is 125.01 We know the dlst'ance (the length of the tralry) is 125.01
meters, and the time taken to cross the pole is 5 seconds. — meters, and the time taken to cross the pole is 5 seconds.
First, we convert the distance from meters to kilometers: L First, we convert the distance from meters to kilometers:
125.01 meters = 125.01 / 1000 kilometers - <|fim_suffix|> 125.01 meters = 0.12501 kilometers
125.01 meters = 0.12501 kilometers - Now, we convert the time from seconds to hours:

Now, we convert the time from seconds to hours: 5 seconds =5/ 3600 hours

5 seconds = 5 / 3600 hours 5 seconds = 0.00138889 hours

5 seconds = 0.00138889 hours Now we can calculate the speed:

Now we can calculate the speed: ‘ Speed = 0.12501 kilometers / 0.00138889 hours

Speed = 0.12501 kilometers / 0.00138889 hours Syl NI Tl » ,

Speed = 90.0072 km/h Therefore, the speed of the train is approximately
Therefore, the speed of the train is approximately - $\b.oxed{.90.0072}$ kilometers per hour (km/h). .
$\boxed{90.0072}$ kilometers per hour (km/h). ] <|fim_middle|> 125.01 meters = 125.01 / 1000 kilometers
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Figure 3: An example of NuminaMath-FIM. The left side represents a mathematical problem and its corresponding
solution from NuminaMath-CoT, while the right side shows the FIM data constructed from it. The underlined portion
represents a randomly selected step from all the steps, with the blue tokens <|fim_prefix|>, <|fim_suffix]|>,
and <|fim_middle|> being three special tokens. During supervised fine-tuning, we only compute the loss for the

underlined portion.

mally expressed as follows:

Ui = FIM(Q, Y1 .- Yi—1,Yi---Yn)

where i represents each position in the original
answer, 7 is the total number of steps in the original
answer, y; is the i-th step in the original answer,
FIM is the trained MathFimer model, () is the
question for the sample, and ¢; is the missing part
generated by the FIM model between the i-th step
and the subsequent steps.

In our experiments, we observed that when the
original steps are already sufficiently detailed, the
model tends to generate content that is very similar
to the subsequent step y; . Therefore, after the
FIM model generates the supplementary step v; ,
we added a similarity calculation step. Specifically,
we compute the sequence similarity between g; and
y; . We set a threshold 7 and mark those generated
steps with a similarity greater than n as invalid.
In this paper, we set n = 0.8 .

Next, we insert the steps generated by the FIM
model into the original steps. Specifically, if the
similarity score in the previous step is not labeled as
invalid, we will insert it into the original sequence.
More precisely, for any step y; where the similarity
score is less than 7, we insert it between step y;_1
and step y;. This insertion operation is carried
out between each pair of original steps, ultimately

constructing a more detailed answer with additional
steps.

To evaluate the effectiveness and generalization
of MathFimer-7B in expanding reasoning steps,
we used it to extend the reasoning steps on sev-
eral existing step-by-step reasoning datasets, in-
cluding a mixture of GSM8K(Cobbe et al., 2021)
and MATH(Hendrycks et al., 2021), MathInstruct-
CoT(Yue et al., 2023), MetaMathQA(Yu et al.,
2024), NuminaMath-CoT(Li et al., 2024), and
ScaleQuestMath(Ding et al., 2024). For all datasets,
we only used the training set. We conducted in-
struction fine-tuning experiments on multiple foun-
dation LLMs. For general-purpose LLMs, we se-
lected Meta-Llama-3.1-8B and Meta-Llama-3.1-
70B(Al 2024), and for math-specialized LLMs,
we chose Qwen2.5-Math-7B and Qwen2.5-Math-
72B(Yang et al., 2024). After instruction fine-
tuning, we evaluated performance on multiple
mathematical reasoning benchmarks, including
GSMS8K(Cobbe et al., 2021), MATH(Hendrycks
et al., 2021), Math Odyssey(Fang et al., 2024), and
OlympiadBench-EN(He et al., 2024).

3 Experiments

3.1 Settings

We conducted supervised instruction fine-tuning
experiments on both general-purpose and math-



Elementary Math Competition Math
Dataset FIM Model GSMSK MATH Odyssey OB-EN AVERAGE
Base Model: Meta-Llama3.1-8B

GSM8K+MATH / 67.55 18.32 21.59 1.78 27.31
MathFimer-7B 73.16+5.61 21.84+352 21.34.025 2.52+074 29.72+0.41

Mathlnstruct-CoT / 67.78 18.74 22.11 2.37 27.75
MathFimer-7B 75.21+7.43 22.90+4.16 24.422.31 3.56+1.19 31.52+3.77

MetaMathQA / 84.15 34.66 29.05 6.37 38.56
MathFimer-7B 84.69-0.54 35.12+0.46 28.79-0.26 6.81+0.44 38.85+0.29

Base Model: Meta-Llama3.1-70B

GSM8K+MATH / 89.23 40.22 38.30 8.74 44.12
MathFimer-7B 92.72+3.49 44.36+4.14 37.79-051 12.15+3.41 46.76+2.63

MathInstruct-CoT / 89.31 41.96 36.50 9.19 44.24
MathFimer-7B 90.98+1.67 44.72+276 39.33+283 12.15+2.96 46.8+256

MetaMathQA / 90.52 49.06 40.36 13.48 48.36
MathFimer-7B 92.57+2.05 51.34+208 38.30-2.06 14.81+133 49.26+0.9

Base Model: Qwen2.5-Math-7B

GSM8K+MATH / 82.71 50.90 36.25 1541 46.32
MathFimer-7B 85.37+2.66 51.92+1.02 34.7-1.55 14.37-1.04 46.59+0.27

MathlInstruct-CoT / 86.28 59.80 44.22 20.59 52.72
MathFimer-7B 90.30+4.02 58.86-0.04 43.44.0.78 20.00-0.50 53.15+0.43

MetaMathQA / 93.18 70.22 49.10 34.81 61.83
MathFimer-7B 93.10-0.08 79.08:+3.56 52.70+3.6 41.04+6.23 66.48+4.05

Base Model: Qwen2.5-Math-72B

GSMSK+MATH / 93.25 70.74 50.13 30.37 61.12
MathFimer-7B 94.24+0.99 75.16+4.42 52.70+2.57 36.30+5.93 64.6+3.48

Mathlnstruct-CoT / 91.36 69.26 46.27 26.67 58.39
MathFimer-7B 92.49+1.13 71.70+2.44 46.02-0.25 29.63+2.96 59.96-+1.57

MetaMathQA / 90.22 57.68 42.93 20.00 52.71
MathFimer-7B 92.95+2.73 63.40+572 47.30+4.37 24.89+4.89 57.14+4.43

Table 1: Our main experimental results (%) on four mathematical reasoning tasks (GSM8K, MATH, Math Odyssey
and OlympiadBench-EN). The evaluation results are obtained by sampling the model 16 times with a temperature

of 0.7 and calculating the average accuracy.

specialized foundation LLMs. To demonstrate the
generalizability of the proposed method, we car-
ried out experiments with different model sizes.
We selected the original data before applying
MathFimer-7B as the baseline for each experi-
mental group and compared the performance im-
provements achieved after applying our proposed
method for step expansion. In all experiments, we
maintained identical training settings, only varying
the data used for training. Specifically, we used
Megatron-LM as the framework for SFT, with a
model max_length set to 8192 and a global batch
size of 128 (GSM8K+MATH datasets were set to
32 due to their smaller sample sizes, as a large

batch size would result in an insufficient number of
optimization steps). The learning rate for training
was set to le-5. We packed all training samples
for faster training. All SFT experiments were con-
ducted on 64 Ascend H910B-64G.

For evaluation, we employ vLLM(Kwon et al.,
2023) as the inference framework. To reduce eval-
uation variance, each question is sampled 16 times
with a temperature setting of 0.7, and the average
accuracy is calculated. To determine whether the
model-generated answers are correct, we utilize
LLM-as-a-judge, thereby mitigating evaluation er-
rors caused by answer extraction and rule-based
comparison. All model inferences in this study



are conducted on NVIDIA A100-80G GPUs, with
1-card inference for 7B/8B models and 4-cards in-
ference for 70B/72B models.

3.2 Main Results

We conducted our experiments on base mod-
els of different sizes, including both general-
purpose and math-specialized models. Specif-
ically, we evaluated Meta-Llama-3.1-8B, Meta-
Llama-3.1-70B, Qwen2.5-Math-7B, and Qwen?2.5-
Math-72B. We employed the MathFimer-7B model,
which was trained based on Qwen2.5-Math-
7B, to perform a single round of step expan-
sion. For comparative analysis, we selected
five datasets: GSM8K+MATH, MathInstruct-CoT,
MetaMathQA, NuminaMath-CoT, and ScaleQuest-
Math, to examine whether step expansion via
MathFimer-7B leads to improved performance
on relevant mathematical reasoning benchmarks.
For evaluation, we used the GSM8K, MATH,
Math Odyssey, and OlympiadBench-EN datasets.
Among them, GSM8K and MATH primarily assess
elementary-level mathematical problems, while
Math Odyssey and OlympiadBench-EN consist of
competition-level mathematics questions.

We present all our main results in Table 1, and
our full experimental results in Appendix D. As
shown in the results, our method achieves con-
sistent improvements across different base mod-
els and datasets. Specifically, for Meta-Llama3.1-
8B, Mathlnstruct-CoT, when expanded using Math-
Fimer, increases the average accuracy from 27.75%
to 32.52%, yielding a 3.77 percentage point im-
provement. Similarly, for Qwen2.5-Math-72B,
MetaMathQA, after step expansion via Math-
Fimer, raises the average accuracy from 52.71%
to 57.14%, achieving a gain of 4.43%.

Due to computational resource constraints, we
perform only a single round of step expansion in
our main experiment to observe the general ap-
plicability of our proposed MathFimer. However,
MathFimer is capable of iterative step expansion,
meaning that previously expanded steps can be fur-
ther refined. We explore the scalability of step
expansion in more detail in the Analysis section
4.2.

4 Analysis

4.1 Disentangling Model Effects

To disentangle the impact of our FIM methodol-
ogy from model distillation effects, we conducted

a systematic ablation study addressing a critical
question: To what extent do our performance gains
stem from the FIM-based step expansion versus
knowledge transfer from the base model?

We designed a controlled experiment using
Qwen2.5-Math-7B as the base model. We first gen-
erated distillation datasets by fine-tuning the base
model on NuminaMath-CoT and using it to gen-
erate solutions for GSM8k+MATH, Mathlnstruct,
and MetaMathQA. We then applied MathFimer-
7B’s step expansion to these distilled datasets to
isolate the contribution of our FIM approach.

Dataset FIM Model GSMS8K MATH Odyssey OB-EN

G+M / 67.55 18.32 21.59 1.78

7B 73.16+561 21.84+352 21.34.025 2.52+:074
G+M / 81.58 29.32 27.76 4.44
(distill) 7B 82.41+083 32.6+328 28.19:+043 6.59+2.15
MI-CoT / 67.78 18.74 22.11 2.37

7B 75.214743 22.9+406  24.42:231 3.56+41.19
MI-CoT / 83.32 35.90 32.90 6.22
(distill) 7B 86.2+2583  37.88+195 32.85-005 8.63+2.41
MMQA / 84.15 34.66 29.05 6.37

7B 84.69+054 35.12+046 28.79-026 6.81+0.44
MMQA / 84.23 35.18 24.42 6.81
(distill) 7B 87.57+334 3698418 26.16+1.74 8.11+13

Table 2: Performance decomposition experimental re-
sults. For the abbreviations in the table, G+M refers to
GSM8K+MATH, MI-CoT refers to MathInstruct-CoT,
MMOQA refers to MetaMathQA, Odyssey refers to Math
Odyssey, and OB-EN refers to OlympiadBench-EN. Ex-
periments are conduct on Meta-Llama-3.1-8B.

The results in Table 2 reveal several key insights.
First, while distillation alone yields substantial im-
provements (e.g., MATH accuracy increases from
18.32% to 29.32% for G+M), MathFimer’s step ex-
pansion provides additional gains even on distilled
data (+3.28%). This pattern is consistent across
datasets, with MI-CoT showing similar additive
benefits (+2.88% on GSM8K). The smaller magni-
tude of improvements on distilled data compared
to original data (e.g., +3.52 % vs +3.28 % for G+M
on MATH) suggests that while knowledge trans-
fer from the base model contributes significantly
to overall performance, our FIM-based step ex-
pansion provides complementary benefits through
structural enhancement of reasoning chains.

4.2 Analysis of Iteration Effects

Our iterative step expansion experiments demon-
strate the robust scalability of MathFimer. As



shown in Table 3, each iteration of step expan-
sion consistently improves reasoning performance
across most benchmarks. Notably, on the GSM8K
benchmark, MI-CoT achieves substantial gains of
+7.43%, +12.43%, and +15.54% percentage points
over three iterations, reaching 83.32% accuracy.
Similar patterns emerge on MATH, with consistent
improvements culminating in a +9.42% percentage
point gain.

Dataset Iter GSMS8K MATH Odyssey OB-EN

0 67.55 18.32 21.59 1.78
73.16+561 21.84+352 21.34-025 2.52+0.74
77.03+948 23.5+508  21.08-051 6.07+429
78.7+11.15  25.54+720 22.37+078 6.67+4.89

1
2
3
0 6778 18.74 22.11 2.37
1
2
3

G+M

75214745 22.9+416  24.42:231 3.56+1.19
80.21+12.43 26.68+7.94 27.76+5065 4.44+2.07
83.32+1554 28.16+9.42 26.48+437 6.67+43

MI-CoT

Table 3: Iteration effect analysis results. Model used for
step expansion is MathFimer-7B.

This iterative enhancement suggests that Math-
Fimer effectively constructs increasingly sophisti-
cated reasoning chains, where each expansion cy-
cle introduces valuable intermediate steps that con-
tribute to improved reasoning capabilities. The con-
sistent performance gains across different datasets
and iteration counts validate the scalability of our
approach and its ability to leverage extended rea-
soning chains for enhanced reasoning.

4.3 Impact of Model Scale

To investigate the relationship between model ca-
pacity and step expansion capability, we conducted
a systematic comparison between MehtFimer-
1.5B, MathFimer-7B and MathFimer-72B. We
trained MathFimer-1.5B on Qwen2.5-Math-1.5B,
MathFimer-72B on Qwen2.5-Math-72B using
identical training data and hyperparameters as
MathFimer-7B to ensure fair comparison.

Our experimental results, as presented in Table 4,
reveal an interesting finding: the performance gap
between MathFimer-7B and MathFimer-72B is no-
tably small across all benchmarks. For instance, on
GSM8K+MATH, performance is nearly identical
across all three model sizes (73.09%, 73.16%, and
73.09% on GSM8K). This pattern of comparable
performance persists across different datasets and
evaluation metrics, suggesting that step expansion
quality may not be significantly bottlenecked by
model capacity. These results indicate that the step

Dataset FIM Model GSM8K MATH Odyssey OB-EN

/ 67.55 1832 2159 178
MathFimer-1.5B 73.09:55: 22.76:44¢ 21.59 178

G+M  MathFimer-7B  73.16:561 21.84+352 21.34025 2.52:074
MathFimer-72B  73.09:55 21.84:152 23.39415 2.07:029

/ 67.78 1874 2211 237
MathFimer-1.5B 73.01+523 21.84+3.1 22.62+051 3.26+0.9
MI-CoT MathFimer-7B  75.2147.43 22.9-416  24.42:231 3.56+1.19

MathFimer-72B  73.92:6.14 23.06+4.32 24.68:2.57 2.67+03

Table 4: Different model size of MathFimer.

expansion task might be effectively addressed with
relatively modest model sizes, potentially due to the
structured nature of mathematical reasoning steps
and the explicit decomposition in our approach.

4.4 Compare with Prompt-based Fill

We try to compare our method with prompt-based
step expansion using general-purpose models, al-
though we found it challenging to ensure a fair
comparison. Prompt-based methods typically rely
on external LLMs and repeated inference, which in-
troduces additional computational costs and tuning
complexity. In contrast, our approach leverages ex-
isting data and directly trains a FIM model, making
step expansion more efficient and scalable without
requiring external resources.

Dataset FIM Model GSM8K MATH Odyssey OB-EN
/ 67.55 18.32 21.59 1.78
G+M  MathFimer-1.5B 73.09 22.76 21.59 1.78
Llama-3.2-3B-Instruct 68.76  18.88 22.39 2.52
/ 67.78 18.74 22.11 2.37
MI-CoT MathFimer-1.5B 73.01 21.84 22.62 3.26
Llama-3.2-3B-Instruct 7130 20.34 22.16 3.04

Table 5: Comparison with prompt-based fill method.
For the abbreviations in the table, G+M refers to
GSM8K+MATH, MI-CoT refers to Mathlnstruct-CoT.
Experiments are conduct on Meta-Llama-3.1-8B.

To provide a more concrete comparison, we con-
ducted an ablation experiment leveraging prompt-
based fill approach. Specifically, we prompted
Llama-3.2-3B-Instruct in a zero-shot manner to
expand intermediate steps in original answers,
and perform SFT on this expanded dataset with
the same settings of former experiments. As
shown in Table 5, our approach consistently outper-
forms prompt-based expansion(on G+M, 73.09%
vs. 68.76%), both in accuracy and quality of gen-
erated intermediate reasoning. This highlights the
effectiveness of training specialized FIM models
for automatic step enrichment.



Type Method Base Model GSMSK MATH

Fill-in-the-middle = MathFimer(ours) Meta-Llama3.1-8B 84.15 -> 86.58 (+2.43)  34.66 -> 37.04 (+2.38)

Preference-based =~ DPO (Lai et al., 2024) Qwen2-7B

Step-DPO (Lai et al., 2024) Qwen2-7B
Rejection Sampling RFT (Wang et al., 2024) Mistral-7B
RL-based PPO (Wang et al., 2024) Mistral-7B

unknown 54.80 -> 55.00 (+0.20)
88.20 -> 88.50 (+0.30)  54.80 -> 55.80 (+1.00)
77.90 > 79.00 (+1.10)  28.60 ->29.90 (+1.30)
77.90 > 81.80 (+3.90)  28.60 -> 31.30 (+2.70)

Table 6: Comparison with other methods for reasoning enhancement.

4.5 Evaluation of Filled Steps

To assess the correctness of the generated steps, we
conducted a quantitative evaluation using Qwen?2.5-
Math-PRM-7B as a process reward model. Specif-
ically, we scored the reasoning steps both before
and after expansion, and the results, reported as the
proportion of steps achieving a PRM scores, are
summarized in Table 7. After expansion, approxi-
mately 90% of the steps achieved a score exceeding
this threshold, indicating that the expanded steps
exhibit a high degree of correctness.

PRM score Proportion 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
GSM8k+MATH  raw 2.66% 2.14% 2.69% 5.50% 87.01%
expanded 2.29% 1.87% 2.16% 4.14% 89.55%
MathInstruct-CoT raw 2.19% 2.04% 2.48% 5.38% 87.91%
expanded 2.21% 2.44% 3.51% 6.16% 85.67%
MetaMathQA raw 1.37% 090% 1.21% 2.10% 94.42%

expanded 1.57% 1.32% 1.65% 3.06% 92.40%

Table 7: PRM score distribution before and after step
insertion with MathFimer-7B. The PRM scores range
from O to 1.

Moreover, when comparing the PRM scores of
expanded steps to those of the original reasoning
chains, we observe that the correctness is largely
preserved. In some cases, the expanded steps even
outperform the original ones. These findings sug-
gest that our step-expansion method does not de-
grade answer quality and, in fact, can improve the
plausibility and completeness of intermediate rea-
soning. This supports the viability of our approach
as a reliable step enhancement strategy for improv-
ing LLM-generated reasoning.

4.6 Compare with Other Methods

To better showcase how MathFimer compares with
other methods for enhancing reasoning in LL.Ms,
we collected several representative approaches ap-
plied to the MetaMathQA benchmark, including
Direct Preference Optimization(DPO), Step-DPO,
Rejection Sampling Fine-tuning(RFT) and Proxi-
mal Policy Optimization(PPO). As shown in Ta-

ble 6, our method achieves comparable perfor-
mance under the same experimental settings. We
summarize the comparative results of MathFimer
and other methods as follows.

Different optimization targets: Methods like re-
inforcement learning and preference optimization
typically focus on optimizing for final answer cor-
rectness, while our approach specifically targets the
quality and granularity of intermediate steps. These
approaches are actually complementary rather than
competitive - our expanded data could potentially
serve as better starting points for RL.

Orthogonality and compatibility: Our FIM-
based approach can actually be used alongside RL
and preference optimization. The expanded steps
we generate could serve as higher-quality starting
points for these optimization methods, potentially
leading to even better results when combined.

Computational efficiency: Our method is signif-
icantly more efficient than RL-based approaches,
which require substantial computational resources
for reward modeling and policy optimization.
MathFimer can be applied using smaller models
(even 1.5B parameters) with minimal overhead.

5 Conclusion

In this paper, we introduce the Fill-in-the-middle
(FIM) paradigm into mathematical reasoning
chains. We construct NuminaMath-FIM by de-
composing solutions into prefix-suffix pairs, where
intermediate steps are held out for reconstruc-
tion. Through training on these prefix-middle-
suffix triplets, we develop MathFimer models that
can effectively expand reasoning steps while pre-
serving solution coherence. Our comprehensive
experiments across multiple mathematical reason-
ing datasets demonstrate that MathFimer-enhanced
data consistently improves model performance
with relative improvements of 7.43% on GSM8K
and 8.86% on MATH.



Limitations

While our MathFimer framework demonstrates
promising results in enhancing mathematical rea-
soning through step expansion, we identify several
important limitations that warrant careful consider-
ation and future investigation.

Domain Generalization While our approach
demonstrates effectiveness in mathematical reason-
ing, its applicability to other reasoning domains
remains uncertain. The current implementation
and evaluation focus exclusively on mathematical
problem-solving, leaving open questions about the
framework’s generalizability to domains such as
code reasoning, logical deduction, and common-
sense reasoning, where solution structures and vali-
dation requirements may differ significantly.

Generation Reliability Our step expansion pro-
cess inherently relies on model generation, intro-
ducing potential risks of error propagation. Despite
overall improvements in reasoning quality, we cur-
rently lack robust mechanisms for verifying the
logical consistency and mathematical correctness
of inserted steps. This limitation becomes partic-
ularly critical when applying multiple iterations
of step expansion, where errors could potentially
accumulate.

Methodological Limitations The framework’s
effectiveness inherently depends on the quality of
initial training data and may inherit biases from
base models. Additionally, the current approach
primarily focuses on expanding existing solution
patterns rather than generating novel solution ap-
proaches, potentially limiting its applicability to
extremely complex or unconventional problems.
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A Related Works
A.1 Mathematical Reasoning of LLMs

Mathematical reasoning is one of the advanced ca-
pabilities of large language models (LLMs). By
transforming real-world mathematical problems
into a sequence of sub-problems and engaging
in step-by-step thinking, the model’s ability to
solve related mathematical tasks is enhanced (Wei
et al., 2023). Currently, the mathematical reason-
ing ability of models can be strengthened at various
stages of LLM’s training. During the pre-training
phase, reasoning-related knowledge texts, such as
mathematical forum discussions, textbooks, and
so on, are typically used for enhancement (Paster
et al., 2023; Zhang et al., 2024). Additionally,
a large number of synthetic step-by-step reason-
ing question-answer pairs are used to train the
model, allowing it to learn various reasoning pat-
terns. In the instruction fine-tuning (SFT) phase,
high-quality question-answer pairs are usually em-
ployed to help the model master the pattern of step-
by-step thinking, thereby enabling it to solve rea-
soning problems (Ding et al., 2024; Zhou et al.,
2024; Xu et al., 2024b). After SFT, researchers
also use techniques such as outcome supervision
and process supervision to reinforce the model’s
mathematical reasoning process, ensuring that the
model generates more accurate reasoning steps dur-
ing inference (Lightman et al., 2023; Xu et al.,
2024a; Wang et al., 2024; Zhang et al., 2025).

A.2 Expansion of Reasoning Steps

Just as the scaling law in model training applies,
there is also a scaling law for LLMs during test-
time. The former improves the model’s reason-
ing ability by providing more training data (Hoft-
mann et al., 2022), while the latter increases the
model’s computational load during inference to
enhance calculation accuracy, thereby improving
performance (Brown et al., 2024; Snell et al., 2024).
Expanding reasoning steps is one way to enhance
the test-time computation of LLMs. By generating
more detailed reasoning steps during inference, the
model’s reasoning performance can be improved.
There are several ways to expand reasoning steps.
For example, in a training-free approach, prompts
like Chain-of-Thought (Wei et al., 2023) can guide
the model to perform more detailed reasoning. Us-
ing self-consistency (Wang et al., 2023b) to per-
form multiple reasoning paths and vote on the
most consistent answers is another option. Ad-
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ditionally, methods like tree-search combined with
a verifier can be used to select the optimal rea-
soning path (Chen et al., 2024; Feng et al., 2024;
Guan et al., 2025). On the other hand, training-
based approaches involve transforming training
data into more detailed steps (Jin et al., 2024; Ying
et al., 2024) or incorporating behaviors like plan-
ning (Wang et al., 2023a) and self-correction (Yan
et al., 2024), which can increase the model’s com-
putation during test-time, thus improving reasoning
performance.

B Details of Step Decomposition

Following previous research (Lightman et al.,
2023; Wang et al., 2024), in this paper, we con-
structed a detailed set of rules for step segmen-
tation. These rules primarily divide steps based
on natural language sentences, while additionally
handling common mathematical elements such as
formulas, making the steps more reasonable.

Our decomposition approach for NuminaMath-
CoT solutions into individual steps employed a
combination of rule-based parsing and mathemati-
cal structure recognition:

* Step Identification: We primarily used ex-
plicit step markers as boundaries (e.g., "Step
1:", "First,", "Next,", "Finally,"). When
these weren’t present, we identified natural
breakpoints in the reasoning through sentence
boundaries that introduce new mathematical
operations.

* Mathematical Structure Parsing: We
parsed solutions to identify self-contained
mathematical units, such as individual equa-
tion formations, algebraic manipulations, nu-
merical computations, and logical deductions.

* Granularity Control: We ensured each step
contained a single conceptual operation or
transformation, avoiding steps that combined
multiple reasoning actions.

Since our method involves expansion between
steps, a more fine-grained segmentation approach
allows for more reasonable expansion.

C Prompts

We provide the prompt we use to do zeroshot
prompt-based fill with general-purpose LLMs in 4.



-

Prompt for zero-shot prompt-based Fill

| will give you a question and its answer, please make the answer more detailed. You can only
insert new steps into the existing steps, DO NOT modify the existing steps. Please directly
output the new answer.

Question: {question}

Answer: {answer}

Figure 4: Prompt for zero-shot prompt-based step fill.

D Full Experiments result

We provide our full experimental results on
NuminaMath-CoT and ScaleQuest-Math in Table
8.
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Elementary Math Competition Math
Dataset FIM Model GSMSK MATH Odyssey OB-EN AVERAGE
Base Model: Meta-Llama3.1-8B
GSMS8K+MATH / 67.55 18.32 21.59 1.78 27.31
MathFimer-7B 73.16+5.61 21.84+352 21.34.025 2.52+0.74 29.72+2.41
MathInstruct-CoT / 67.78 18.74 22.11 2.37 27.75
MathFimer-7B 75.21+7.43 22.9+4.16 24424231 3.56+1.19 31.52+3.77
MetaMathQA / 84.15 34.66 29.05 6.37 38.56
MathFimer-7B 84.69+0.54 35.12+046 28.79-0.26 6.81+0.44 38.85+029
NuminaMath-CoT / 89.08 48.10 36.76 13.04 46.75
MathFimer-7B 91.21+2.13 50.5+24 38.3+154 14.52+1.48 48.63+1.89
ScaleQuest-Math / 91.21 59.52 38.82 20.74 52.57
MathFimer-7B 91.05-0.16 59.56+0.04 40.36+1.54 21.63+0.89 53.15+058
Base Model: Meta-Llama3.1-70B
GSMS8K+MATH / 89.23 40.22 38.30 8.74 44.12
MathFimer-7B 92.72+3.49 44.36+4.14 37.79-051 12.15+3.41 46.76+2.63
MathInstruct-CoT / 89.31 41.96 36.50 9.19 44.24
MathFimer-7B 90.98+1.67 44.72+276 39.33+283 12.15+2.96 46.8+2.56
MetaMathQA / 90.52 49.06 40.36 13.48 48.36
MathFimer-7B 92.57+2.05 51.3442.28 38.3-2.06 14.81+133 49.26+09
NuminaMath-CoT / 96.44 66.36 47.30 31.70 60.45
MathFimer-7B 96.36-0.08 67.82+1.46 46.79-0.51 33.33+1.63 61.08+0.63
ScaleQuest-Math / 94.24 74.02 52.44 35.70 64.10
MathFimer-7B 954076 74.42+04 49.36-3.08 36.89+1.19 63.92-0.18
Base Model: Qwen2.5-Math-7B
GSM8K+MATH / 82.71 50.90 36.25 15.41 46.32
MathFimer-7B 85.37+2.66 51.92+1.02 34.7-155 14.37-1.04 46.59+0.27
MathInstruct-CoT / 86.28 59.80 44.22 20.59 52.72
MathFimer-7B 90.3+4.02 58.86-0.94 43.44.0.78 20-0.59 53.15+043
MetaMathQA / 93.18 70.22 49.10 34.81 61.83
MathFimer-7B 93.1-0.08 79.08+8.86 52.7+36 41.04+6.23 66.48+4.65
NuminaMath-CoT / 85.37 55.16 43.19 17.33 50.26
MathFimer-7B 87.72+235 53216 42.16-1.03 16.74-0.59 4991036
ScaleQuest-Math / 93.78 70.52 50.13 34.81 62.31
MathFimer-7B 93.86+0.08 79.38+8.86 54.24+4.11 40.44+5.63 66.98+4.67
Base Model: Qwen2.5-Math-72B
GSM8K+MATH / 93.25 70.74 50.13 30.37 61.12
MathFimer-7B 94.24+0.99 75.16+4.42 52.7+257 36.3+5.93 64.6+3.48
MathlInstruct-CoT / 91.36 69.26 46.27 26.67 58.39
MathFimer-7B 92.49+1.13 T1.7+2.44 46.02-0.25 29.63+2.96 59.96+1.57
MetaMathQA / 90.22 57.68 42.93 20.00 52.71
MathFimer-7B 92.95+273 63.4+572 47 34437 24.89+4.89 57.14+443
NuminaMath-CoT / 96.29 77.54 55.27 43.26 68.09
MathFimer-7B 96.13-0.16 77.4-014 55.01-026 44.15+0.89 68.17+0.08
ScaleQuest-Math / 94.09 80.22 54.24 44.30 68.21
MathFimer-7B 94.47+038 80.82+0.6 55.27+1.03 43.7-06 68.57+035

Table 8: Our main experimental results (%) on four mathematical reasoning tasks (GSM8K, MATH, Math Odyssey
and OlympiadBench-EN). The evaluation results are obtained by sampling the model 16 times with a temperature
of 0.7 and calculating the average accuracy.
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