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Abstract

Mathematical reasoning represents a critical001
frontier in advancing large language models002
(LLMs). While step-by-step approaches have003
emerged as the dominant paradigm for mathe-004
matical problem-solving in LLMs, the quality005
of reasoning steps in training data fundamen-006
tally constrains the performance of the models.007
Recent studies has demonstrated that more de-008
tailed intermediate steps can enhance model009
performance, yet existing methods for step ex-010
pansion either require more powerful exter-011
nal models or incur substantial computational012
costs. In this paper, we introduce MathFimer,013
a novel framework for mathematical reason-014
ing step expansion inspired by the "Fill-in-the-015
middle" task from code completion. By de-016
composing solution chains into prefix-suffix017
pairs and training models to reconstruct miss-018
ing intermediate steps, we develop a special-019
ized model, MathFimer-7B, on our carefully cu-020
rated NuminaMath-FIM dataset. We then apply021
these models to enhance existing mathematical022
reasoning datasets by inserting detailed inter-023
mediate steps into their solution chains, creat-024
ing MathFimer-expanded versions. Through025
comprehensive experiments on multiple mathe-026
matical reasoning datasets, including MathIn-027
struct, MetaMathQA and etc., we demonstrate028
that models trained on MathFimer-expanded029
data consistently outperform their counterparts030
trained on original data across various bench-031
marks such as GSM8K and MATH. Our ap-032
proach offers a practical, scalable solution for033
enhancing mathematical reasoning capabilities034
in LLMs without relying on powerful external035
models or expensive inference procedures.036

1 Introduction037

Recent advances in large language models038

(LLMs) (OpenAI, 2023; DeepSeek-AI, 2025)039

have demonstrated remarkable capabilities across040

various reasoning tasks (Gao et al., 2024; Xu041

et al., 2025a), from logical deduction to complex042

FIM Models

MathFimer

Q: In a store, the total number of 
apples and oranges is 24. The 
number of apples is 6 more than 
the number of oranges. How many 
apples and oranges are there?

Let the number of apples be 𝑥, then 
the number of oranges is 𝑥 − 6.
<FIM_SPACE>

𝑥 + (𝑥 − 6) = 24
The number of apples be 𝑥 = 15, then 
the number of oranges is 𝑥 − 6 = 9

Let the number of apples be 𝑥, then the 
number of oranges is 𝑥 − 6.
According to the problem, the total 
number of apples and oranges is 24, so 
we can set up the equation:

𝑥 + (𝑥 − 6) = 24
The number of apples be 𝑥 = 15, then 
the number of oranges is 𝑥 − 6 = 9

Task: Fibonacci Sequence

(a)

(b)
Figure 1: We developed MathFimer inspired by the fill-
in-the-middle task in code reasoning of LLMs. Panel
(a) demonstrates an example where the FIM model com-
pletes a given code context, while Panel (b) shows how
MathFimer, as proposed in this paper, extends the steps
of an existing step-by-step answer.

problem-solving (Phan et al., 2025). Among these, 043

mathematical reasoning stands as a particularly 044

challenging frontier (Sun et al., 2024; Xu et al., 045

2025b), serving as a critical benchmark for evaluat- 046

ing an LLM’s ability to perform structured, multi- 047

step reasoning processes. 048

A key breakthrough in improving LLMs’ math- 049

ematical reasoning capabilities has been the intro- 050

duction of chain-of-thought (CoT) prompting (Wei 051

et al., 2023), where models explicitly articulate in- 052

termediate steps in their problem-solving process. 053

This approach has not only enhanced solution ac- 054

curacy but has also provided valuable insights into 055

the models’ reasoning mechanisms. However, the 056

effectiveness of CoT prompting raises a fundamen- 057

tal question: What characteristics of training data 058

are crucial for developing LLMs that can gener- 059
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ate high-quality reasoning chains and arrive at060

correct mathematical solutions?061

Prior research has revealed that the granularity062

and completeness of reasoning steps in training063

data significantly impact a model’s reasoning capa-064

bilities (Jin et al., 2024). Models trained on more065

detailed step-by-step solutions tend to exhibit supe-066

rior performance in mathematical reasoning tasks.067

This observation has led to various approaches068

for expanding reasoning steps in training data, in-069

cluding the use of stronger external models and070

sophisticated search algorithms like Monte Carlo071

Tree Search (MCTS) (Zhou et al., 2023; Wu et al.,072

2024; Liu et al., 2024). However, these current073

approaches to improving reasoning steps face three074

main challenges. First, they rely on using even075

larger models to create better steps, which creates076

a cycle where we constantly need bigger models077

to make improvements (Guan et al., 2025; Toshni-078

wal et al., 2024). Second, these methods require079

substantial computing resources, particularly when080

using advanced techniques like MCTS to explore081

different reasoning paths. Third, instead of build-082

ing upon existing human-verified steps, these meth-083

ods often generate entirely new reasoning chains,084

which can introduce unexpected errors and reduce085

the reliability of solutions.086

These limitations motivate our central research087

question: Can we develop a more efficient and088

reliable method for expanding reasoning steps089

while preserving the validity of existing human-090

generated solutions? Drawing inspiration from091

the "Fill-in-the-middle" task in code reasoning,092

where LLMs successfully complete missing code093

segments based on surrounding context, we pro-094

pose a novel approach to this problem. Rather than095

generating entirely new reasoning chains, we ex-096

plore whether the FIM paradigm can be adapted097

to supplement missing steps in existing reasoning098

processes or insert more detailed explanations into099

steps that are already sufficient.100

Building on this insight, we propose MathFimer,101

a framework for enhancing mathematical reason-102

ing through step expansion. We first construct103

NuminaMath-FIM by decomposing NuminaMath-104

CoT (Li et al., 2024) solutions into prefix-suffix105

pairs with missing intermediate steps. Using106

this dataset, we train a step-expansion model107

MathFimer-7B on math-specialized base model108

Qwen2.5-Math-7B (Yang et al., 2024). This model109

learns to supplement intermediate reasoning steps110

while preserving the original solution structure.111

We apply MathFimer-7B to expand the reason- 112

ing steps in several existing mathematical reason- 113

ing datasets and evaluate their impact through com- 114

prehensive experiments. Our results demonstrate 115

that training on MathFimer-expanded data consis- 116

tently improves model performance across vari- 117

ous mathematical reasoning benchmarks, includ- 118

ing GSM8K and MATH. This improvement is 119

observed across both general-purpose and math- 120

specialized foundation models, with expanded 121

datasets leading to more detailed reasoning steps 122

and higher solution accuracy compared to the orig- 123

inal training data. 124

Our main contributions are threefold: 125

• We propose a novel step expansion framework 126

inspired by code completion techniques, intro- 127

ducing MathFimer to enhance mathematical 128

reasoning through targeted insertion of inter- 129

mediate steps in existing solutions. 130

• We develop and release a specialized training 131

dataset (NuminaMath-FIM) along with a step- 132

expansion model MathFimer-7B, providing a 133

practical and scalable solution for improving 134

mathematical reasoning datasets. 135

• Through extensive experiments across multi- 136

ple benchmarks and model architectures, we 137

demonstrate that our approach consistently im- 138

proves mathematical reasoning performance, 139

offering new insights into the relationship be- 140

tween step granularity and reasoning quality 141

in LLMs. 142

2 Approach 143

In this paper, we propose a reasoning step expan- 144

sion method that enhances the quality of exist- 145

ing data by filling in possible missing steps at the 146

step level. This is achieved through the fill-in-the- 147

middle (FIM) task, which supplements existing 148

CoT data. Specifically, the work presented in this 149

paper can be divided into two parts: the first part 150

involves training the aforementioned FIM models, 151

and the second part applies the trained FIM models 152

to extend steps in existing data. Figure 2 shows an 153

overview of our work. 154

2.1 FIM Model Training 155

The goal of this section is to train a Fill-in-the- 156

Middle (FIM) model for mathematical reasoning 157

tasks, which can generate the missing intermediate 158
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Figure 2: An overview of our work. The upper part illustrates how we construct FIM training data from existing
CoT data and train FIM models, MathFimer, which works on chain-of-thought. The lower part demonstrates the
process where MathFimer is used to expand the steps of existing CoT data for more detailed reasoning.

steps between a mathematical problem, its preced-159

ing steps, and its succeeding steps. This can be160

expressed as:161

FIM(Q,P,S) ⇒ M162

where FIM refers to the model we are training,163

Q (question) represents the mathematical problem,164

P (prefix) refers to the preceding steps, S (suffix)165

refers to the succeeding steps, and M (middle)166

denotes the intermediate steps between P and S.167

We construct the data for training the FIM model168

using the existing high-quality mathematical rea-169

soning dataset, NuminaMath-CoT. NuminaMath-170

CoT includes mathematical reasoning data of vary-171

ing difficulty levels, containing 853K mathematical172

question-and-answer pairs, providing us with more173

generalizable data.174

Specifically, we first performed a step-by-step175

decomposition of the NuminaMath-CoT data, trans-176

forming the standard answers into individual steps.177

We provide the details of step decomposition in178

Appendix B. Then, for each case, we randomly179

select one step and treat all the preceding steps as180

the prefix and all the succeeding steps as the suffix.181

This can be represented as:182

(P, S,M) = (y1...i−1, yi+1...n, yi), yi ∈ Y183

where yi is a step randomly selected from the an-184

swer Y , which contains n steps.185

For the organization format of the FIM train- 186

ing data, we refer to the work of Bavarian 187

et al. (2022) and adopt the PSM(Prefix-Suffix- 188

Middle) sequence order. We use three special 189

tokens: <|fim_prefix|>, <|fim_suffix|>, and 190

<|fim_middle|>, to construct the format for the 191

FIM training data. An example of the FIM data 192

construction is provided in Figure 3. 193

For each case in NuminaMath-CoT, we per- 194

formed three rounds of random sampling as de- 195

scribed above. As a result, for each mathe- 196

matical problem, we constructed three FIM data 197

entries, which together formed our FIM train- 198

ing set, NuminaMath-FIM, consisting of 2.5M 199

training samples for FIM task. Next, we con- 200

ducted SFT on a math-specialized base model, 201

Qwen2.5-Math-7B(Yang et al., 2024). Specifi- 202

cally, we only computed the loss for the tokens af- 203

ter <|fim_middle|>, ultimately obtaining the FIM 204

model MathFimer-7B for step expansion. 205

2.2 Expansion of Reasoning Steps 206

After training MathFimer-7B, we can use it to ex- 207

pand the reasoning steps in existing mathematical 208

solutions. Specifically, for each pair of consecu- 209

tive steps in the original solution, we perform an 210

inference using the FIM model to generate poten- 211

tially missing intermediate steps or provide more 212

detailed reasoning between them. This can be for- 213
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A: To find the speed of the train, we can use the formula:
Speed = Distance / Time
We know the distance (the length of the train) is 125.01 
meters, and the Fme taken to cross the pole is 5 seconds.
First, we convert the distance from meters to kilometers:
125.01 meters = 125.01 / 1000 kilometers
125.01 meters = 0.12501 kilometers
Now, we convert the Fme from seconds to hours:
5 seconds = 5 / 3600 hours
5 seconds = 0.00138889 hours
Now we can calculate the speed:
Speed = 0.12501 kilometers / 0.00138889 hours
Speed ≈ 90.0072 km/h
Therefore, the speed of the train is approximately 
$\boxed{90.0072}$  kilometers per hour (km/h).

Q: A train is travelling at a certain speed and crosses a pole in 5 
seconds. The length of the train is 125.01 meters. What is the 
speed of the train in kmph?

A train is travelling at a certain speed and crosses a pole in 5 
seconds. The length of the train is 125.01 meters. What is the 
speed of the train in kmph?
<|fim_prefix|>To find the speed of the train, we can use the 
formula:
Speed = Distance / Time
We know the distance (the length of the train) is 125.01 
meters, and the Fme taken to cross the pole is 5 seconds.
First, we convert the distance from meters to kilometers:
<|fim_suffix|> 125.01 meters = 0.12501 kilometers
Now, we convert the Fme from seconds to hours:
5 seconds = 5 / 3600 hours
5 seconds = 0.00138889 hours
Now we can calculate the speed:
Speed = 0.12501 kilometers / 0.00138889 hours
Speed ≈ 90.0072 km/h
Therefore, the speed of the train is approximately 
$\boxed{90.0072}$  kilometers per hour (km/h).
<|fim_middle|> 125.01 meters = 125.01 / 1000 kilometers

Figure 3: An example of NuminaMath-FIM. The left side represents a mathematical problem and its corresponding
solution from NuminaMath-CoT, while the right side shows the FIM data constructed from it. The underlined portion
represents a randomly selected step from all the steps, with the blue tokens <|fim_prefix|>, <|fim_suffix|>,
and <|fim_middle|> being three special tokens. During supervised fine-tuning, we only compute the loss for the
underlined portion.

mally expressed as follows:214

ŷi = FIM(Q, y1 . . . yi−1, yi . . . yn)215

where i represents each position in the original216

answer, n is the total number of steps in the original217

answer, yi is the i-th step in the original answer,218

FIM is the trained MathFimer model, Q is the219

question for the sample, and ŷi is the missing part220

generated by the FIM model between the i-th step221

and the subsequent steps.222

In our experiments, we observed that when the223

original steps are already sufficiently detailed, the224

model tends to generate content that is very similar225

to the subsequent step yi . Therefore, after the226

FIM model generates the supplementary step ŷi ,227

we added a similarity calculation step. Specifically,228

we compute the sequence similarity between ŷi and229

yi . We set a threshold η and mark those generated230

steps with a similarity greater than η as invalid.231

In this paper, we set η = 0.8 .232

Next, we insert the steps generated by the FIM233

model into the original steps. Specifically, if the234

similarity score in the previous step is not labeled as235

invalid, we will insert it into the original sequence.236

More precisely, for any step ŷi where the similarity237

score is less than η, we insert it between step yi−1238

and step yi. This insertion operation is carried239

out between each pair of original steps, ultimately240

constructing a more detailed answer with additional 241

steps. 242

To evaluate the effectiveness and generalization 243

of MathFimer-7B in expanding reasoning steps, 244

we used it to extend the reasoning steps on sev- 245

eral existing step-by-step reasoning datasets, in- 246

cluding a mixture of GSM8K(Cobbe et al., 2021) 247

and MATH(Hendrycks et al., 2021), MathInstruct- 248

CoT(Yue et al., 2023), MetaMathQA(Yu et al., 249

2024), NuminaMath-CoT(Li et al., 2024), and 250

ScaleQuestMath(Ding et al., 2024). For all datasets, 251

we only used the training set. We conducted in- 252

struction fine-tuning experiments on multiple foun- 253

dation LLMs. For general-purpose LLMs, we se- 254

lected Meta-Llama-3.1-8B and Meta-Llama-3.1- 255

70B(AI, 2024), and for math-specialized LLMs, 256

we chose Qwen2.5-Math-7B and Qwen2.5-Math- 257

72B(Yang et al., 2024). After instruction fine- 258

tuning, we evaluated performance on multiple 259

mathematical reasoning benchmarks, including 260

GSM8K(Cobbe et al., 2021), MATH(Hendrycks 261

et al., 2021), Math Odyssey(Fang et al., 2024), and 262

OlympiadBench-EN(He et al., 2024). 263

3 Experiments 264

3.1 Settings 265

We conducted supervised instruction fine-tuning 266

experiments on both general-purpose and math- 267
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Dataset FIM Model
Elementary Math Competition Math

AVERAGEGSM8K MATH Odyssey OB-EN

Base Model: Meta-Llama3.1-8B

GSM8K+MATH / 67.55 18.32 21.59 1.78 27.31
MathFimer-7B 73.16+5.61 21.84+3.52 21.34-0.25 2.52+0.74 29.72+2.41

MathInstruct-CoT / 67.78 18.74 22.11 2.37 27.75
MathFimer-7B 75.21+7.43 22.90+4.16 24.42+2.31 3.56+1.19 31.52+3.77

MetaMathQA / 84.15 34.66 29.05 6.37 38.56
MathFimer-7B 84.69+0.54 35.12+0.46 28.79-0.26 6.81+0.44 38.85+0.29

Base Model: Meta-Llama3.1-70B

GSM8K+MATH / 89.23 40.22 38.30 8.74 44.12
MathFimer-7B 92.72+3.49 44.36+4.14 37.79-0.51 12.15+3.41 46.76+2.63

MathInstruct-CoT / 89.31 41.96 36.50 9.19 44.24
MathFimer-7B 90.98+1.67 44.72+2.76 39.33+2.83 12.15+2.96 46.8+2.56

MetaMathQA / 90.52 49.06 40.36 13.48 48.36
MathFimer-7B 92.57+2.05 51.34+2.28 38.30-2.06 14.81+1.33 49.26+0.9

Base Model: Qwen2.5-Math-7B

GSM8K+MATH / 82.71 50.90 36.25 15.41 46.32
MathFimer-7B 85.37+2.66 51.92+1.02 34.7-1.55 14.37-1.04 46.59+0.27

MathInstruct-CoT / 86.28 59.80 44.22 20.59 52.72
MathFimer-7B 90.30+4.02 58.86-0.94 43.44-0.78 20.00-0.59 53.15+0.43

MetaMathQA / 93.18 70.22 49.10 34.81 61.83
MathFimer-7B 93.10-0.08 79.08+8.86 52.70+3.6 41.04+6.23 66.48+4.65

Base Model: Qwen2.5-Math-72B

GSM8K+MATH / 93.25 70.74 50.13 30.37 61.12
MathFimer-7B 94.24+0.99 75.16+4.42 52.70+2.57 36.30+5.93 64.6+3.48

MathInstruct-CoT / 91.36 69.26 46.27 26.67 58.39
MathFimer-7B 92.49+1.13 71.70+2.44 46.02-0.25 29.63+2.96 59.96+1.57

MetaMathQA / 90.22 57.68 42.93 20.00 52.71
MathFimer-7B 92.95+2.73 63.40+5.72 47.30+4.37 24.89+4.89 57.14+4.43

Table 1: Our main experimental results (%) on four mathematical reasoning tasks (GSM8K, MATH, Math Odyssey
and OlympiadBench-EN). The evaluation results are obtained by sampling the model 16 times with a temperature
of 0.7 and calculating the average accuracy.

specialized foundation LLMs. To demonstrate the268

generalizability of the proposed method, we car-269

ried out experiments with different model sizes.270

We selected the original data before applying271

MathFimer-7B as the baseline for each experi-272

mental group and compared the performance im-273

provements achieved after applying our proposed274

method for step expansion. In all experiments, we275

maintained identical training settings, only varying276

the data used for training. Specifically, we used277

Megatron-LM as the framework for SFT, with a278

model max_length set to 8192 and a global batch279

size of 128 (GSM8K+MATH datasets were set to280

32 due to their smaller sample sizes, as a large281

batch size would result in an insufficient number of 282

optimization steps). The learning rate for training 283

was set to 1e-5. We packed all training samples 284

for faster training. All SFT experiments were con- 285

ducted on 64 Ascend H910B-64G. 286

For evaluation, we employ vLLM(Kwon et al., 287

2023) as the inference framework. To reduce eval- 288

uation variance, each question is sampled 16 times 289

with a temperature setting of 0.7, and the average 290

accuracy is calculated. To determine whether the 291

model-generated answers are correct, we utilize 292

LLM-as-a-judge, thereby mitigating evaluation er- 293

rors caused by answer extraction and rule-based 294

comparison. All model inferences in this study 295
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are conducted on NVIDIA A100-80G GPUs, with296

1-card inference for 7B/8B models and 4-cards in-297

ference for 70B/72B models.298

3.2 Main Results299

We conducted our experiments on base mod-300

els of different sizes, including both general-301

purpose and math-specialized models. Specif-302

ically, we evaluated Meta-Llama-3.1-8B, Meta-303

Llama-3.1-70B, Qwen2.5-Math-7B, and Qwen2.5-304

Math-72B. We employed the MathFimer-7B model,305

which was trained based on Qwen2.5-Math-306

7B, to perform a single round of step expan-307

sion. For comparative analysis, we selected308

five datasets: GSM8K+MATH, MathInstruct-CoT,309

MetaMathQA, NuminaMath-CoT, and ScaleQuest-310

Math, to examine whether step expansion via311

MathFimer-7B leads to improved performance312

on relevant mathematical reasoning benchmarks.313

For evaluation, we used the GSM8K, MATH,314

Math Odyssey, and OlympiadBench-EN datasets.315

Among them, GSM8K and MATH primarily assess316

elementary-level mathematical problems, while317

Math Odyssey and OlympiadBench-EN consist of318

competition-level mathematics questions.319

We present all our main results in Table 1, and320

our full experimental results in Appendix D. As321

shown in the results, our method achieves con-322

sistent improvements across different base mod-323

els and datasets. Specifically, for Meta-Llama3.1-324

8B, MathInstruct-CoT, when expanded using Math-325

Fimer, increases the average accuracy from 27.75%326

to 32.52%, yielding a 3.77 percentage point im-327

provement. Similarly, for Qwen2.5-Math-72B,328

MetaMathQA, after step expansion via Math-329

Fimer, raises the average accuracy from 52.71%330

to 57.14%, achieving a gain of 4.43%.331

Due to computational resource constraints, we332

perform only a single round of step expansion in333

our main experiment to observe the general ap-334

plicability of our proposed MathFimer. However,335

MathFimer is capable of iterative step expansion,336

meaning that previously expanded steps can be fur-337

ther refined. We explore the scalability of step338

expansion in more detail in the Analysis section339

4.2.340

4 Analysis341

4.1 Disentangling Model Effects342

To disentangle the impact of our FIM methodol-343

ogy from model distillation effects, we conducted344

a systematic ablation study addressing a critical 345

question: To what extent do our performance gains 346

stem from the FIM-based step expansion versus 347

knowledge transfer from the base model? 348

We designed a controlled experiment using 349

Qwen2.5-Math-7B as the base model. We first gen- 350

erated distillation datasets by fine-tuning the base 351

model on NuminaMath-CoT and using it to gen- 352

erate solutions for GSM8k+MATH, MathInstruct, 353

and MetaMathQA. We then applied MathFimer- 354

7B’s step expansion to these distilled datasets to 355

isolate the contribution of our FIM approach. 356

Dataset FIM Model GSM8K MATH Odyssey OB-EN

G+M / 67.55 18.32 21.59 1.78
7B 73.16+5.61 21.84+3.52 21.34-0.25 2.52+0.74

G+M / 81.58 29.32 27.76 4.44
(distill) 7B 82.41+0.83 32.6+3.28 28.19+0.43 6.59+2.15

MI-CoT / 67.78 18.74 22.11 2.37
7B 75.21+7.43 22.9+4.16 24.42+2.31 3.56+1.19

MI-CoT / 83.32 35.90 32.90 6.22
(distill) 7B 86.2+2.88 37.88+1.98 32.85-0.05 8.63+2.41

MMQA / 84.15 34.66 29.05 6.37
7B 84.69+0.54 35.12+0.46 28.79-0.26 6.81+0.44

MMQA / 84.23 35.18 24.42 6.81
(distill) 7B 87.57+3.34 36.98+1.8 26.16+1.74 8.11+1.3

Table 2: Performance decomposition experimental re-
sults. For the abbreviations in the table, G+M refers to
GSM8K+MATH, MI-CoT refers to MathInstruct-CoT,
MMQA refers to MetaMathQA, Odyssey refers to Math
Odyssey, and OB-EN refers to OlympiadBench-EN. Ex-
periments are conduct on Meta-Llama-3.1-8B.

The results in Table 2 reveal several key insights. 357

First, while distillation alone yields substantial im- 358

provements (e.g., MATH accuracy increases from 359

18.32% to 29.32% for G+M), MathFimer’s step ex- 360

pansion provides additional gains even on distilled 361

data (+3.28%). This pattern is consistent across 362

datasets, with MI-CoT showing similar additive 363

benefits (+2.88% on GSM8K). The smaller magni- 364

tude of improvements on distilled data compared 365

to original data (e.g., +3.52 % vs +3.28 % for G+M 366

on MATH) suggests that while knowledge trans- 367

fer from the base model contributes significantly 368

to overall performance, our FIM-based step ex- 369

pansion provides complementary benefits through 370

structural enhancement of reasoning chains. 371

4.2 Analysis of Iteration Effects 372

Our iterative step expansion experiments demon- 373

strate the robust scalability of MathFimer. As 374
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shown in Table 3, each iteration of step expan-375

sion consistently improves reasoning performance376

across most benchmarks. Notably, on the GSM8K377

benchmark, MI-CoT achieves substantial gains of378

+7.43%, +12.43%, and +15.54% percentage points379

over three iterations, reaching 83.32% accuracy.380

Similar patterns emerge on MATH, with consistent381

improvements culminating in a +9.42% percentage382

point gain.383

Dataset Iter GSM8K MATH Odyssey OB-EN

G+M

0 67.55 18.32 21.59 1.78
1 73.16+5.61 21.84+3.52 21.34-0.25 2.52+0.74

2 77.03+9.48 23.5+5.18 21.08-0.51 6.07+4.29

3 78.7+11.15 25.54+7.22 22.37+0.78 6.67+4.89

MI-CoT

0 67.78 18.74 22.11 2.37
1 75.21+7.43 22.9+4.16 24.42+2.31 3.56+1.19

2 80.21+12.43 26.68+7.94 27.76+5.65 4.44+2.07

3 83.32+15.54 28.16+9.42 26.48+4.37 6.67+4.3

Table 3: Iteration effect analysis results. Model used for
step expansion is MathFimer-7B.

This iterative enhancement suggests that Math-384

Fimer effectively constructs increasingly sophisti-385

cated reasoning chains, where each expansion cy-386

cle introduces valuable intermediate steps that con-387

tribute to improved reasoning capabilities. The con-388

sistent performance gains across different datasets389

and iteration counts validate the scalability of our390

approach and its ability to leverage extended rea-391

soning chains for enhanced reasoning.392

4.3 Impact of Model Scale393

To investigate the relationship between model ca-394

pacity and step expansion capability, we conducted395

a systematic comparison between MehtFimer-396

1.5B, MathFimer-7B and MathFimer-72B. We397

trained MathFimer-1.5B on Qwen2.5-Math-1.5B,398

MathFimer-72B on Qwen2.5-Math-72B using399

identical training data and hyperparameters as400

MathFimer-7B to ensure fair comparison.401

Our experimental results, as presented in Table 4,402

reveal an interesting finding: the performance gap403

between MathFimer-7B and MathFimer-72B is no-404

tably small across all benchmarks. For instance, on405

GSM8K+MATH, performance is nearly identical406

across all three model sizes (73.09%, 73.16%, and407

73.09% on GSM8K). This pattern of comparable408

performance persists across different datasets and409

evaluation metrics, suggesting that step expansion410

quality may not be significantly bottlenecked by411

model capacity. These results indicate that the step412

Dataset FIM Model GSM8K MATH Odyssey OB-EN

G+M

/ 67.55 18.32 21.59 1.78
MathFimer-1.5B 73.09+5.54 22.76+4.44 21.59 1.78
MathFimer-7B 73.16+5.61 21.84+3.52 21.34-0.25 2.52+0.74

MathFimer-72B 73.09+5.54 21.84+3.52 23.39+1.8 2.07+0.29

MI-CoT

/ 67.78 18.74 22.11 2.37
MathFimer-1.5B 73.01+5.23 21.84+3.1 22.62+0.51 3.26+0.89

MathFimer-7B 75.21+7.43 22.9+4.16 24.42+2.31 3.56+1.19

MathFimer-72B 73.92+6.14 23.06+4.32 24.68+2.57 2.67+0.3

Table 4: Different model size of MathFimer.

expansion task might be effectively addressed with 413

relatively modest model sizes, potentially due to the 414

structured nature of mathematical reasoning steps 415

and the explicit decomposition in our approach. 416

4.4 Compare with Prompt-based Fill 417

We try to compare our method with prompt-based 418

step expansion using general-purpose models, al- 419

though we found it challenging to ensure a fair 420

comparison. Prompt-based methods typically rely 421

on external LLMs and repeated inference, which in- 422

troduces additional computational costs and tuning 423

complexity. In contrast, our approach leverages ex- 424

isting data and directly trains a FIM model, making 425

step expansion more efficient and scalable without 426

requiring external resources. 427

Dataset FIM Model GSM8K MATH Odyssey OB-EN

G+M

/ 67.55 18.32 21.59 1.78
MathFimer-1.5B 73.09 22.76 21.59 1.78
Llama-3.2-3B-Instruct 68.76 18.88 22.39 2.52

MI-CoT

/ 67.78 18.74 22.11 2.37
MathFimer-1.5B 73.01 21.84 22.62 3.26
Llama-3.2-3B-Instruct 71.30 20.34 22.16 3.04

Table 5: Comparison with prompt-based fill method.
For the abbreviations in the table, G+M refers to
GSM8K+MATH, MI-CoT refers to MathInstruct-CoT.
Experiments are conduct on Meta-Llama-3.1-8B.

To provide a more concrete comparison, we con- 428

ducted an ablation experiment leveraging prompt- 429

based fill approach. Specifically, we prompted 430

Llama-3.2-3B-Instruct in a zero-shot manner to 431

expand intermediate steps in original answers, 432

and perform SFT on this expanded dataset with 433

the same settings of former experiments. As 434

shown in Table 5, our approach consistently outper- 435

forms prompt-based expansion(on G+M, 73.09% 436

vs. 68.76%), both in accuracy and quality of gen- 437

erated intermediate reasoning. This highlights the 438

effectiveness of training specialized FIM models 439

for automatic step enrichment. 440
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Type Method Base Model GSM8K MATH

Fill-in-the-middle MathFimer(ours) Meta-Llama3.1-8B 84.15 -> 86.58 (+2.43) 34.66 -> 37.04 (+2.38)

Preference-based DPO (Lai et al., 2024) Qwen2-7B unknown 54.80 -> 55.00 (+0.20)
Step-DPO (Lai et al., 2024) Qwen2-7B 88.20 -> 88.50 (+0.30) 54.80 -> 55.80 (+1.00)

Rejection Sampling RFT (Wang et al., 2024) Mistral-7B 77.90 -> 79.00 (+1.10) 28.60 -> 29.90 (+1.30)
RL-based PPO (Wang et al., 2024) Mistral-7B 77.90 -> 81.80 (+3.90) 28.60 -> 31.30 (+2.70)

Table 6: Comparison with other methods for reasoning enhancement.

4.5 Evaluation of Filled Steps441

To assess the correctness of the generated steps, we442

conducted a quantitative evaluation using Qwen2.5-443

Math-PRM-7B as a process reward model. Specif-444

ically, we scored the reasoning steps both before445

and after expansion, and the results, reported as the446

proportion of steps achieving a PRM scores, are447

summarized in Table 7. After expansion, approxi-448

mately 90% of the steps achieved a score exceeding449

this threshold, indicating that the expanded steps450

exhibit a high degree of correctness.451

PRM score Proportion 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

GSM8k+MATH raw 2.66% 2.14% 2.69% 5.50% 87.01%
expanded 2.29% 1.87% 2.16% 4.14% 89.55%

MathInstruct-CoT raw 2.19% 2.04% 2.48% 5.38% 87.91%
expanded 2.21% 2.44% 3.51% 6.16% 85.67%

MetaMathQA raw 1.37% 0.90% 1.21% 2.10% 94.42%
expanded 1.57% 1.32% 1.65% 3.06% 92.40%

Table 7: PRM score distribution before and after step
insertion with MathFimer-7B. The PRM scores range
from 0 to 1.

Moreover, when comparing the PRM scores of452

expanded steps to those of the original reasoning453

chains, we observe that the correctness is largely454

preserved. In some cases, the expanded steps even455

outperform the original ones. These findings sug-456

gest that our step-expansion method does not de-457

grade answer quality and, in fact, can improve the458

plausibility and completeness of intermediate rea-459

soning. This supports the viability of our approach460

as a reliable step enhancement strategy for improv-461

ing LLM-generated reasoning.462

4.6 Compare with Other Methods463

To better showcase how MathFimer compares with464

other methods for enhancing reasoning in LLMs,465

we collected several representative approaches ap-466

plied to the MetaMathQA benchmark, including467

Direct Preference Optimization(DPO), Step-DPO,468

Rejection Sampling Fine-tuning(RFT) and Proxi-469

mal Policy Optimization(PPO). As shown in Ta-470

ble 6, our method achieves comparable perfor- 471

mance under the same experimental settings. We 472

summarize the comparative results of MathFimer 473

and other methods as follows. 474

Different optimization targets: Methods like re- 475

inforcement learning and preference optimization 476

typically focus on optimizing for final answer cor- 477

rectness, while our approach specifically targets the 478

quality and granularity of intermediate steps. These 479

approaches are actually complementary rather than 480

competitive - our expanded data could potentially 481

serve as better starting points for RL. 482

Orthogonality and compatibility: Our FIM- 483

based approach can actually be used alongside RL 484

and preference optimization. The expanded steps 485

we generate could serve as higher-quality starting 486

points for these optimization methods, potentially 487

leading to even better results when combined. 488

Computational efficiency: Our method is signif- 489

icantly more efficient than RL-based approaches, 490

which require substantial computational resources 491

for reward modeling and policy optimization. 492

MathFimer can be applied using smaller models 493

(even 1.5B parameters) with minimal overhead. 494

5 Conclusion 495

In this paper, we introduce the Fill-in-the-middle 496

(FIM) paradigm into mathematical reasoning 497

chains. We construct NuminaMath-FIM by de- 498

composing solutions into prefix-suffix pairs, where 499

intermediate steps are held out for reconstruc- 500

tion. Through training on these prefix-middle- 501

suffix triplets, we develop MathFimer models that 502

can effectively expand reasoning steps while pre- 503

serving solution coherence. Our comprehensive 504

experiments across multiple mathematical reason- 505

ing datasets demonstrate that MathFimer-enhanced 506

data consistently improves model performance 507

with relative improvements of 7.43% on GSM8K 508

and 8.86% on MATH. 509
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Limitations510

While our MathFimer framework demonstrates511

promising results in enhancing mathematical rea-512

soning through step expansion, we identify several513

important limitations that warrant careful consider-514

ation and future investigation.515

Domain Generalization While our approach516

demonstrates effectiveness in mathematical reason-517

ing, its applicability to other reasoning domains518

remains uncertain. The current implementation519

and evaluation focus exclusively on mathematical520

problem-solving, leaving open questions about the521

framework’s generalizability to domains such as522

code reasoning, logical deduction, and common-523

sense reasoning, where solution structures and vali-524

dation requirements may differ significantly.525

Generation Reliability Our step expansion pro-526

cess inherently relies on model generation, intro-527

ducing potential risks of error propagation. Despite528

overall improvements in reasoning quality, we cur-529

rently lack robust mechanisms for verifying the530

logical consistency and mathematical correctness531

of inserted steps. This limitation becomes partic-532

ularly critical when applying multiple iterations533

of step expansion, where errors could potentially534

accumulate.535

Methodological Limitations The framework’s536

effectiveness inherently depends on the quality of537

initial training data and may inherit biases from538

base models. Additionally, the current approach539

primarily focuses on expanding existing solution540

patterns rather than generating novel solution ap-541

proaches, potentially limiting its applicability to542

extremely complex or unconventional problems.543
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A Related Works757

A.1 Mathematical Reasoning of LLMs758

Mathematical reasoning is one of the advanced ca-759

pabilities of large language models (LLMs). By760

transforming real-world mathematical problems761

into a sequence of sub-problems and engaging762

in step-by-step thinking, the model’s ability to763

solve related mathematical tasks is enhanced (Wei764

et al., 2023). Currently, the mathematical reason-765

ing ability of models can be strengthened at various766

stages of LLM’s training. During the pre-training767

phase, reasoning-related knowledge texts, such as768

mathematical forum discussions, textbooks, and769

so on, are typically used for enhancement (Paster770

et al., 2023; Zhang et al., 2024). Additionally,771

a large number of synthetic step-by-step reason-772

ing question-answer pairs are used to train the773

model, allowing it to learn various reasoning pat-774

terns. In the instruction fine-tuning (SFT) phase,775

high-quality question-answer pairs are usually em-776

ployed to help the model master the pattern of step-777

by-step thinking, thereby enabling it to solve rea-778

soning problems (Ding et al., 2024; Zhou et al.,779

2024; Xu et al., 2024b). After SFT, researchers780

also use techniques such as outcome supervision781

and process supervision to reinforce the model’s782

mathematical reasoning process, ensuring that the783

model generates more accurate reasoning steps dur-784

ing inference (Lightman et al., 2023; Xu et al.,785

2024a; Wang et al., 2024; Zhang et al., 2025).786

A.2 Expansion of Reasoning Steps787

Just as the scaling law in model training applies,788

there is also a scaling law for LLMs during test-789

time. The former improves the model’s reason-790

ing ability by providing more training data (Hoff-791

mann et al., 2022), while the latter increases the792

model’s computational load during inference to793

enhance calculation accuracy, thereby improving794

performance (Brown et al., 2024; Snell et al., 2024).795

Expanding reasoning steps is one way to enhance796

the test-time computation of LLMs. By generating797

more detailed reasoning steps during inference, the798

model’s reasoning performance can be improved.799

There are several ways to expand reasoning steps.800

For example, in a training-free approach, prompts801

like Chain-of-Thought (Wei et al., 2023) can guide802

the model to perform more detailed reasoning. Us-803

ing self-consistency (Wang et al., 2023b) to per-804

form multiple reasoning paths and vote on the805

most consistent answers is another option. Ad-806

ditionally, methods like tree-search combined with 807

a verifier can be used to select the optimal rea- 808

soning path (Chen et al., 2024; Feng et al., 2024; 809

Guan et al., 2025). On the other hand, training- 810

based approaches involve transforming training 811

data into more detailed steps (Jin et al., 2024; Ying 812

et al., 2024) or incorporating behaviors like plan- 813

ning (Wang et al., 2023a) and self-correction (Yan 814

et al., 2024), which can increase the model’s com- 815

putation during test-time, thus improving reasoning 816

performance. 817

B Details of Step Decomposition 818

Following previous research (Lightman et al., 819

2023; Wang et al., 2024), in this paper, we con- 820

structed a detailed set of rules for step segmen- 821

tation. These rules primarily divide steps based 822

on natural language sentences, while additionally 823

handling common mathematical elements such as 824

formulas, making the steps more reasonable. 825

Our decomposition approach for NuminaMath- 826

CoT solutions into individual steps employed a 827

combination of rule-based parsing and mathemati- 828

cal structure recognition: 829

• Step Identification: We primarily used ex- 830

plicit step markers as boundaries (e.g., "Step 831

1:", "First,", "Next,", "Finally,"). When 832

these weren’t present, we identified natural 833

breakpoints in the reasoning through sentence 834

boundaries that introduce new mathematical 835

operations. 836

• Mathematical Structure Parsing: We 837

parsed solutions to identify self-contained 838

mathematical units, such as individual equa- 839

tion formations, algebraic manipulations, nu- 840

merical computations, and logical deductions. 841

• Granularity Control: We ensured each step 842

contained a single conceptual operation or 843

transformation, avoiding steps that combined 844

multiple reasoning actions. 845

Since our method involves expansion between 846

steps, a more fine-grained segmentation approach 847

allows for more reasonable expansion. 848

C Prompts 849

We provide the prompt we use to do zeroshot 850

prompt-based fill with general-purpose LLMs in 4. 851
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I will give you a ques/on and its answer, please make the answer more detailed. You can only 
insert new steps into the exis/ng steps, DO NOT modify the exis/ng steps. Please directly 
output the new answer.

Ques/on: {ques/on}

Answer: {answer}

Prompt for zero-shot prompt-based Fill

Figure 4: Prompt for zero-shot prompt-based step fill.

D Full Experiments result852

We provide our full experimental results on853

NuminaMath-CoT and ScaleQuest-Math in Table854

8.855
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Dataset FIM Model
Elementary Math Competition Math

AVERAGEGSM8K MATH Odyssey OB-EN

Base Model: Meta-Llama3.1-8B

GSM8K+MATH / 67.55 18.32 21.59 1.78 27.31
MathFimer-7B 73.16+5.61 21.84+3.52 21.34-0.25 2.52+0.74 29.72+2.41

MathInstruct-CoT / 67.78 18.74 22.11 2.37 27.75
MathFimer-7B 75.21+7.43 22.9+4.16 24.42+2.31 3.56+1.19 31.52+3.77

MetaMathQA / 84.15 34.66 29.05 6.37 38.56
MathFimer-7B 84.69+0.54 35.12+0.46 28.79-0.26 6.81+0.44 38.85+0.29

NuminaMath-CoT / 89.08 48.10 36.76 13.04 46.75
MathFimer-7B 91.21+2.13 50.5+2.4 38.3+1.54 14.52+1.48 48.63+1.89

ScaleQuest-Math / 91.21 59.52 38.82 20.74 52.57
MathFimer-7B 91.05-0.16 59.56+0.04 40.36+1.54 21.63+0.89 53.15+0.58

Base Model: Meta-Llama3.1-70B

GSM8K+MATH / 89.23 40.22 38.30 8.74 44.12
MathFimer-7B 92.72+3.49 44.36+4.14 37.79-0.51 12.15+3.41 46.76+2.63

MathInstruct-CoT / 89.31 41.96 36.50 9.19 44.24
MathFimer-7B 90.98+1.67 44.72+2.76 39.33+2.83 12.15+2.96 46.8+2.56

MetaMathQA / 90.52 49.06 40.36 13.48 48.36
MathFimer-7B 92.57+2.05 51.34+2.28 38.3-2.06 14.81+1.33 49.26+0.9

NuminaMath-CoT / 96.44 66.36 47.30 31.70 60.45
MathFimer-7B 96.36-0.08 67.82+1.46 46.79-0.51 33.33+1.63 61.08+0.63

ScaleQuest-Math / 94.24 74.02 52.44 35.70 64.10
MathFimer-7B 95+0.76 74.42+0.4 49.36-3.08 36.89+1.19 63.92-0.18

Base Model: Qwen2.5-Math-7B

GSM8K+MATH / 82.71 50.90 36.25 15.41 46.32
MathFimer-7B 85.37+2.66 51.92+1.02 34.7-1.55 14.37-1.04 46.59+0.27

MathInstruct-CoT / 86.28 59.80 44.22 20.59 52.72
MathFimer-7B 90.3+4.02 58.86-0.94 43.44-0.78 20-0.59 53.15+0.43

MetaMathQA / 93.18 70.22 49.10 34.81 61.83
MathFimer-7B 93.1-0.08 79.08+8.86 52.7+3.6 41.04+6.23 66.48+4.65

NuminaMath-CoT / 85.37 55.16 43.19 17.33 50.26
MathFimer-7B 87.72+2.35 53-2.16 42.16-1.03 16.74-0.59 49.91-0.36

ScaleQuest-Math / 93.78 70.52 50.13 34.81 62.31
MathFimer-7B 93.86+0.08 79.38+8.86 54.24+4.11 40.44+5.63 66.98+4.67

Base Model: Qwen2.5-Math-72B

GSM8K+MATH / 93.25 70.74 50.13 30.37 61.12
MathFimer-7B 94.24+0.99 75.16+4.42 52.7+2.57 36.3+5.93 64.6+3.48

MathInstruct-CoT / 91.36 69.26 46.27 26.67 58.39
MathFimer-7B 92.49+1.13 71.7+2.44 46.02-0.25 29.63+2.96 59.96+1.57

MetaMathQA / 90.22 57.68 42.93 20.00 52.71
MathFimer-7B 92.95+2.73 63.4+5.72 47.3+4.37 24.89+4.89 57.14+4.43

NuminaMath-CoT / 96.29 77.54 55.27 43.26 68.09
MathFimer-7B 96.13-0.16 77.4-0.14 55.01-0.26 44.15+0.89 68.17+0.08

ScaleQuest-Math / 94.09 80.22 54.24 44.30 68.21
MathFimer-7B 94.47+0.38 80.82+0.6 55.27+1.03 43.7-0.6 68.57+0.35

Table 8: Our main experimental results (%) on four mathematical reasoning tasks (GSM8K, MATH, Math Odyssey
and OlympiadBench-EN). The evaluation results are obtained by sampling the model 16 times with a temperature
of 0.7 and calculating the average accuracy.
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