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ABSTRACT

Large language models (LLMs) demand substantial computational and memory
resources, creating deployment challenges. Quantization-aware training (QAT)
addresses these challenges by reducing model precision while maintaining per-
formance. However, the scaling behavior of QAT, especially at 4-bit precision
(W4A4), is not well understood. Existing QAT scaling laws often ignore key fac-
tors such as the number of training tokens and quantization granularity, which
limits their applicability. This paper proposes a unified scaling law for QAT that
models quantization error as a function of model size, training data volume, and
quantization group size. Through 268 QAT experiments, we show that quantiza-
tion error decreases as model size increases, but rises with more training tokens
and coarser quantization granularity. To identify the sources of W4A4 quantiza-
tion error, we decompose it into weight and activation components. Both com-
ponents follow the overall trend of W4A4 quantization error, but with different
sensitivities. Specifically, weight quantization error increases more rapidly with
more training tokens. Further analysis shows that the activation quantization er-
ror in the FC2 layer, caused by outliers, is the primary bottleneck of W4A4 QAT
quantization error. By applying mixed-precision quantization to address this bot-
tleneck, we demonstrate that weight and activation quantization errors can con-
verge to similar levels. Additionally, with more training data, weight quantization
error eventually exceeds activation quantization error, suggesting that reducing
weight quantization error is also important in such scenarios. These findings offer
key insights for improving QAT research and development.

1 INTRODUCTION

The emergence of large language models (LLMs)(Liu et al., [2024a; [Grattafiori et al., 2024} |Seed,
2025) revolutionizes natural language processing (NLP), enabling advances in tasks from text gen-
eration to complex reasoning. However, their large parameter sizes make them computationally
intensive and memory-demanding(Yuan et al.| 2024} Zhou et al., 2024), creating challenges for
deployment. Quantization (Xiao et al., |2023; [Shao et al.l [2023), which reduces the precision of
model weights and activations, addresses these challenges by lowering memory usage and compu-
tational cost. Post-training quantization (PTQ)(Xiao et al., 2023} |Ashkboos et al., 2024} Liu et al.,
2024b) achieves near-lossless accuracy at moderate precision, such as W8AS (8-bit weights and ac-
tivations), but struggles to maintain accuracy at lower precisions like W4A4(Liu et al., 2025a). In
contrast, quantization-aware training (QAT) (Chen et al., 2024b; |Liu et al., 2025bj; Ma et al.| 2024;
Panferov et al.,2025)) incorporates quantization during training, allowing models to adapt to reduced
precision and supporting more aggressive compression. However, the scaling behavior of QAT at
ultra-low bit-widths (e.g., W4A4) remains underexplored, limiting the design of efficient quantized
LLMs.

Scaling laws (Kaplan et al.,2020; Hoffmann et al.l[2022) have proven instrumental in understanding
LLMs performance as a function of model size, dataset size, and computational resources. Founda-
tional works, such as the Kaplan scaling law (Kaplan et al., 2020) and the refined Chinchilla scaling
law (Hoffmann et al.l 2022), provide predictive models for optimizing LLM training strategies in
full-precision settings. Recent efforts have extended these frameworks to account for model quanti-
zation (Kumar et al.| 2024} [Ouyang et al.,|[2024; [Frantar et al., |2025)), with some studies examining
PTQ (Kumar et al.,2024; |Ouyang et al.,2024) and others proposing QAT-specific scaling laws (Ku-
mar et al., |2024; |Frantar et al.l 2025). However, existing QAT scaling laws (Kumar et al., 2024;
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Figure 1: Quantization error contour based on the proposed unified QAT scaling law. The
quantization error decreases as the model size increases, but increases with both the number of
training tokens and with coarser quantization granularity.

Frantar et al., [2025) typically focused on either parameters count or fixed quantization settings, of-
ten neglecting critical factors such as number of training tokens or the granularity of quantization.
Empirical observations (see Figure ) indicate that quantization error can increase dramatically with
larger training datasets and coarser quantization groups. Yet, prior works (Kumar et al., 2024 Fran-
tar et al.,|2025) have not provided a unified framework that accounts for the interplay between all
these factors, reducing their practical utility for real-world model design and training.

In this paper, we address these limitations by presenting a unified scaling law for QAT. Our model ex-
plicitly describes how quantization error depends on model size, the number of training tokens, and
quantization granularity. Given that W8AS8 quantization achieves nearly lossless performance (Shao
et al., 2023 [Liu et al., 2024a; Fishman et al., [2024), we focus our analysis on W4A4 QAT. We
conduct 268 QAT experiments and show that quantization error decreases as model size increases,
but increases with larger training datasets and coarser quantization granularity. Figure [I]shows the
contours of quantization error in loss according to our proposed QAT scaling law. Our main contri-
butions are as follows:

* Unified QAT scaling law: We propose a mathematical model for QAT quantization error, captur-
ing its dependence on model size, dataset size, and quantization group size.

* Empirical validation: Through systematic experiments, we show that quantization error de-
creases with larger models but increases with more training tokens and coarser quantization.

* Quantization error decomposition: We decompose quantization error into weight and activa-
tion components, and find that weight quantization error is more sensitive to number of training
tokens. We also identify activation quantization—especially in the FC2 layer of the feed-forward
network—as the main bottleneck for W4A4 QAT.

* Bottleneck layer analysis: We show that activation quantization error in FC2 mainly arises from
outlier values that 4-bit quantization cannot capture. By keeping the bottleneck layer at 8-bit preci-
sion during W4A4 QAT, we demonstrate that weight and activation quantization errors contribute
almost equally to the total error at a data-to-parameter ratio of 100. With larger data-to-parameter
ratios, weight quantization error surpasses activation error. This highlights the importance of con-
sidering both weight and activation components in future QAT algorithm design.

2 RELATED WORKS

Scaling Law of LLMs. Scaling laws provide a general framework for understanding how model
performance changes with resources, guiding both architecture and training strategy design. The
Kaplan scaling law (Kaplan et al.,|2020) first described how model size, dataset size, and compute
relate to performance. Later, the Chinchilla scaling law (Hoffmann et al.l 2022) refined this by
emphasizing the balance between model parameters (N) and training data tokens (D) for optimal
performance under a fixed compute budget. Recent research extends scaling laws to model com-
pression, including quantization (Frantar et al., |2022} |Lin et al., 2023). Studies on PTQ scaling
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laws (Kumar et al., [2024; |Ouyang et al.l 2024} Panferov et al., [2025) find that PTQ error decreases
as model size increases, but increases with larger training datasets, implying that models trained
on more data may need higher precision. Other works on QAT scaling laws (Kumar et al., 2024;
Frantar et al., [2025) show that quantization error mainly depends on model size. Building on these
studies, our work explores QAT in greater depth and proposes a unified scaling law that considers
model size, training data size, and quantization granularity.

Quantization of LLMs. Quantization reduces the computational and memory costs of serving
LLMs. Current PTQ methods (Xiao et al., [2023)) perform well at 8-bit precision, often achiev-
ing near-lossless results (e.g., W8AS8 quantization). However, lowering the bit-width to 4-bit (e.g.,
W4A4) with PTQ usually leads to significant performance drops (Shao et al.l 2023} |Chen et al.|
2024a; |Liu et al.} [2025a). This accuracy loss limits the adoption of efficient 4-bit matrix multipli-
cation (GEMM) kernels (Li et al., 2024) for LLM inference. QAT (Liu et al., [2025b}; |Chen et al.|
2024b) addresses this by training models with quantization applied, which helps recover accuracy
at low bit-widths. The BitNet series (Ma et al., 2024; [Wang et al., 2024) shows that QAT out-
performs PTQ, especially at very low bit-widths, though a gap remains compared to full-precision
models. Understanding scaling behavior under QAT is therefore important for designing better QAT
strategies.

3 PRELIMINARIES

Classical scaling law. The Chinchilla scaling law (Hoffmann et al., 2022) models the final loss (L)
using model size (/V) and number of training tokens(D):

A B
L(IN,D)=—+ —+F 1
( ) ) Na Dﬁ + bl ( )
where A, o, B, 3, and E are fitted constants, listed in Table[I] Section [E]in the Appendix explains
the fitting process.

Existing QAT scaling law. Previous studies (Frantar et al., 2025} Kumar et al.,2024) modify Eq.
by introducing an effective parameter multiplier (EPM) on N, resulting in:

A B
LIND)= ————-+-—+FE 2
where eff (C) € [0, 1] denotes the EPM, which depends on the model architecture and compression
method. A higher value of EPM indicates better preservation of the original (BFloat16 (Kalamkar
et al.| 2019)) model performance.

Proposed QAT Scaling Law. Unlike existing QAT scaling laws that modify the N capacity term in
the Chinchilla scaling law, we directly model the final loss gap (i.e., the quantization error) between
QAT models and their BFloatl6 counterparts . For instance, the quantization error in the EPM
scaling law can be calculated through Eq. (@) — Eq. (I):

A A
(N -eff(C))e  No’

0p represents the quantization error with p-bit QAT. Eq. shows that previous QAT scaling laws
assume the quantization error depends only on N and is independent of the data size D. However,
our experiments (Figure b)) show that the quantization error between W4A4 QAT and BF16 models
increases as the data size grows. To address this, we introduce a new quantization error term that
depends on both N and D. Furthermore, since fine-grained quantization is essential for 4-bit QAT
performance (Dettmers & Zettlemoyer, 2023;|Rouhani et al.,[2023)), we also include the quantization
granularity G to capture its effect on performance degradation. Thus, our proposed QAT scaling law
is:

5,(N) = 3)

A B
L(N.D,G) = = + 55 + E+8,(N,D.G), )
—_— N

Chinchilla loss low-bit QAT effect

where d,(N, D, @) denotes the quantization error for p-bit QAT, as a function of N, D, and G.
Note that prior scaling laws for PTQ (Kumar et al.| [2024) consider both D and G when modeling
quantization error. In contrast, existing QAT scaling laws (Kumar et al.,|2024; Frantar et al., [2025)
consider only IV and neglect D. We are the first to show that D also affects QAT quantization error.
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4 QAT SCALING LAw

This section introduces a unified scaling law for QAT that incorporates model size N, training to-
kens D, and quantization granularity G. Section.T|outlines the training setups. Section[4.2]presents
the main scaling law and reveals an insightful finding distinct from previous studies (Frantar et al.,
2025; [Kumar et al.||2024) that the number of training tokens D significantly affects QAT error. Sec-
tion 4.3| analyzes quantization errors from weights and activations separately, identifying activation
quantization—especially for the F'C2 layer’s input—as the main performance bottleneck. This find-
ing supports a mixed-precision strategy discussed in Section[4.4] Finally, Section {f.5|compares our
scaling law with previous approaches.

4.1 TRAINING SETUP

Models and dataset. We train a series of Llama3-style (Grattafiori et al., [2024) models on the
OLMo2-Mix-1124 (OLMo et al, [2024) pretraining dataset. Our experiments systematically ex-
plore LLM pretraining across parameter sizes N € {74, 145,297,595} million and training token
numbers D € {10, 20, 50, 100} billion tokens. For validation purpose, we also train models with
973M parameters on 100 and 200 billion tokens to verify the extrapolation reliability of our scal-
ing law when increasing both model and dataset size. These 268 QAT experiments on A100 GPUs
consumed 276K GPU-hours in total. Detailed architectural settings for each model are provided in

Sec[EAl

Evaluation metric. Following the Chinchilla scaling law (Li et al., [2025), we use the smoothed
training loss as an unbiased estimate of validation loss for simplicity and consistency.

Quantization precision. Considering that 8-bit can achieve nearly lossless performance (Xiao et al.,
2023};Zheng et al.,[2025)) This work focuses on 4-bit quantization. We train models under three quan-
tization settings: W4A4, W4A16 (only weights quantized to 4-bit), and W16A4 (only activations
quantized to 4-bit). The latter two settings help decouple the error sources in W4A4.

Quantization granularity. Quantization granularity G refers to the number of elements in each
quantization group and is crucial for low-bit quantization (Dettmers & Zettlemoyer, |2023). For each
model, we experiment with group sizes G € {32, 64, 128, 256, per-token/channel }.

Low-precision formats. Low-bit quantization employs either integer (INT) or floating-point (FP)
types. Figure[2]shows that INT4 matches FP4 performance in group-wise quantization and surpasses
FP4 by 0.015 in loss for per-channel/token quantization. This advantage stems from INT4’s 16
representable values compared to FP4’s 15 (Wang et al.,|2025)), with greater impact in coarse-grained
quantization. We adopt the integer format for our scaling law due to its equivalent or superior
performance. We hypothesize that INT and FP exhibit similar scaling behavior. Figure [I3] verifies
that the scaling law fitted to INT4 data also accurately predicts QAT error trend for FP4.

Training hyper-parameters. We follow Olmo2 (OLMo et al.||2024) for training hyper-parameters,
detailed in Table ] One key hyper-parameter is the learning rate. For example, BitNet (Ma et al.,
2024])) shows ternary models benefit from higher learning rates than uncompressed models. In con-
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trast, our focus on 4-bit quantization, which is less aggressive than ternary, leads to less sensitivity
to learning rate. We compare uncompressed and W4A4 QAT models, as shown in Figure [3| ob-
serve that the quantization error remains nearly constant (within [0.6, 0.65]) across learning rates
from 5 x 107* to 4 x 10~3. This indicates that 4-bit QAT does not benefit from higher learning
rates compared to uncompressed models. Therefore, we use the same hyper-parameters for both
uncompressed and QAT training.

4.2 UNIFIED SCALING LAW FOR QAT

Observation. The ground truth for dy444 is defined as lossy 16 — losswaaa, Where lossy 16 and
lossyw 444 denote the final model losses obtained from training with original BFloat16 precision and
W4A4 QAT, respectively. To better understand dyy 444, We plot its relationship with N, D, and G in
Figure ] We observe three primary trends:

* Quantization error decrease with increasing model size: Figure [a] shows that dy4.44 consis-
tently decreases as model size increases, across different quantization granularities. For example,
when model size grows from 74M to 594M, dy444 decreases by an average of 34% across all
granularities.

* Quantization error increase with more training tokens: Figure indicates that dy444 in-
creases as the number of training tokens grows. Specifically, increasing the training tokens from
10B to 100B results in an average increase of 22% in dyy 444 across different granularities.

* Quantization error decrease with finer quantization granularity: As illustrated in Figure
dwa4a4 decreases as quantization granularity becomes finer. The difference in dyy444 between the
coarsest and finest quantization granularities is 0.037, which is nearly half the quantization error
of the coarsest quantization granularity.

Proposed scaling law for QAT quantization error. Existing QAT scaling laws (Kumar et al.,2024;
Frantar et al., |2025) account only for model size N, overlooking the effects of training data volume
D and quantization granularity GG. To enhance the prediction of QAT quantization error, we propose
a comprehensive formula based on our observations:

k.DYD . (logQ(G))’Yc
NN

where k, vy, 7p and v > 0 are fitted parameters. We incorporate a logarithmic term for G, as
G =1 (no quantization) yields ¢, = 0. The magnitudes of yn, yp and ¢ reflect the sensitivity of
the quantization error §,, to IV, D and G, respectively. The formula indicates that ¢,, increases with
D and G but decreases with V.

Fitting and validation. We fit Eq.(3)) to the ground truth W4A4 quantization error (Jyy444) obtained
from 80 W4A4 QAT runs. Tabld]l|lists the fitted parameters, and Figure [5| compares the actual
and predicted 0y 444. As shown in Figure[5] Eq. (5) accurately models the observed W4A4 QAT

5,(N,D,G) = , 5)
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Table 1: Fitted hyperparameters and their values in our proposed QAT error scaling law.

Type Constant Value Type Constant  Value
[T T L
Chinchill . W4A4 v .

inehiia a 03022 00745
B 596.2490 ole; 0.7779

B 0.3022
k 0.2522 k 0.1004
OwaAle YN 0.3589 w1644 YN 0.1816
fod 0.1610 oy 00331
Ya 0.3533 Y& 0.9812
TR T
(FC2 input 8-bit) w 00964 | (FC2 input 8-bit) N 00827
o 0.3407 To 04491

quantization errors. We further validate the fitted scaling law by predicting the QAT losses of 973M-
parameter models trained with {1008, 200B} tokens. The consistently accurate predictions indicate
that our proposed QAT scaling law generalizes well to larger models and more training data.

4.3 DECOMPOSITION OF QUANTIZATION ERROR: WEIGHT VS. ACTIVATION

Although the unified QAT scaling law in Eq. (5) predicts the overall quantization error for W4A4,
it remains unclear whether this error mainly arises from weights or activations. Understanding this
distinction is essential for targeted optimization. In practice, for a model trained with W4A4 QAT,
we cannot directly measure the individual contributions of weight and activation quantization errors.
For example, simply disabling quantization in a W4A4 QAT model does not restore the performance
of the original unquantized model and may even decrease accuracy further. This occurs because
quantization is integrated into the QAT training process, and model parameters adapt to quantization
errors during training. To analyze the sources of quantization error in a W4A4 QAT model, we train
two additional QAT models: one with W4A16 and another with W16A4.

Rationale for error decomposition. As shown in Figure [f] the final quantization error of W4A4
(0w 444) can be closely approximated by summing the quantization errors from W4A16 and W16A4
(Owaaie + Owiea4). The observed coefficient between dy444 and dywga16 + Owigas is 0.906.
This strong correlation suggests that we can effectively analyze dyy 444 by separately examining the
dwaate and dyy16a4-

How do dyy 4416 and dyy 1644 change with NV, D and G? Section @examines how Oy 444 varies
with model size N, number of training tokens D, and quantization granularity G. It is important to
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see if dyrqa16 and dyr16.44 follow similar patterns. To investigate this, we plot 4416 and Sy 1644
against N, D and G in Figure[7] and report the fitted QAT scaling law parameters in Table[T} The
results show that both dy4416 and dyy16.44 follow trends consistent with dy74 44, but the degree of
sensitivity differs between them:

* dwaa16 decreases faster than Jy1644 as model size increases: The parameter vy indicates the
sensitiveness of quantization error to model size. For dyy 4416, YN 18 0.3589, higher than 0.1816
for dy16.44. This means weight quantization error decreases more rapidly with larger model size
than activation quantization error. As shown in Figure[/| (a) and (d), when model size increases
from 74M to 594M, 4416 drops by 51% on average, while dy16.44 decreases by 34%.

* dwaa1e increases faster than dy;1644 as the number of training tokens increases: The pa-
rameter 7yp indicates the sensitiveness of quantization error to training tokens. For dy 4416, YD
is 0.1610, much larger than 0.0331 for dy1644. Thus, weight quantization error increases more
sharply with more training tokens than activation quantization error. As shown in Figure [7] (b)
and (e), increasing training tokens from 10B to 100B raises dy4416 by 43% on average, but only
increases dyy 1644 by 12%.

* dy1644 IS more sensitive to quantization granularity than dy4416: The parameter v in-
dicates the sensitiveness of quantization error to quantization granularity. For dw1644, Yo 1S
0.9821, much higher than 0.3533 for dy4416. This shows that activation quantization error is
much more sensitive to granularity, likely due to outliers. As shown in Figure [7| (c) and (f), the
gap in dyr16.44 between the coarsest and finest granularity is 0.031, nearly eight times larger than
the corresponding gap for dy4416-

Which contributes more to quantization error, dyy 4416 Or dy1644? Both weight and activation
quantization errors depend on D, N and G. To compare their contributions, we examine dy 4416

and dyy 1644 across different parameter values, including fixed data-to-parameter ratios %, as models

with similar % often show comparable convergence levels (Hoffmann et al.| [2022). Figureshows
heatmaps of R = mftx:' Across all tested % ratios and group sizes G, R is consistently greater
than 1, indicating that activation quantization error generally exceeds weight quantization error.

However, the value of R varies with different settings:

¢ R decreases as % increases, because dyg4a16 grows faster with D than dy1644. For example,

with G = 32, R drops from 1.67 at £ = 100 to 1.20 at £ = 1000.
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* Rincreases as group size GG increases, since 1644 1S more sensitive to quantization granularity.
For instance, at % = 1000, R rises from 1.20 when GG = 32 to 1.62 when G = 256.

Practical implications. These results show that as % increases, the main source of quantization er-

ror shifts from activations to weights. However, dy1/16.44 remains larger than dy4 416 €ven at high %
and fine granularity (G = 32), and the gap widens with coarser quantization. Therefore, activation
quantization error is usually the dominant factor in W4A4 quantization (as 2 > 1), highlighting the
importance of optimizing activation quantization to improve W4A4 QAT performance.

4.4 MITIGATING ACTIVATION QUANTIZATION ERROR IN FC2 PROJ INPUT

Since activation quantization error is the main bottleneck in W4A4 QAT, as shown in the previous
section, it is important to understand why activations are harder to quantize than weights and how
to address this issue. A major reason is the presence of outliers in large language models, which
make activation quantization more difficult 2023). This problem is well known in post-
training quantization (PTQ), where outliers can cause significant performance drops. Although QAT
applies quantization during the entire training process and acts as a regularizer to suppress activation
outliers (Nrusimha et all,[2024), some challenges remain, especially in certain layers.

Persistent outliers in FC2 Proj input with QAT. Kurtosis (DeCarlo), 1997, [Liu et al. [2024b}
2024) measures the “tailedness” of a distribution, with higher values indicating
more outliers. Figure [9a] shows that QAT effectively reduces outliers in the input activations of the
QKV Proj, O Proj, and FCI Proj layers, so further outlier suppression is not needed for these layers.
However, even though QAT lowers the kurtosis of the FC2 Proj input from 123 to 89, this value
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Table 2: Comparison with other scaling laws. “Num” indicates the number of scaling laws fitted.
“Relative Error” represents the difference between the predicted and actual quantization errors.

Method N D G 6, Precision Num. of §,, Relative Error
(Frantar et al.;[2025)(Kumar et al.,[2024) v* x x Eq. f %%‘AAE‘(S - - fg -—- == 71897.53%7 - -
@ NN b

is still significantly higher than in other layers. The high kurtosis means that the FC2 Proj input
remains prone to large quantization errors, making it a key contributor to the activation quantiza-
tion bottleneck described in Sec. The main reason for this high kurtosis is that the FC2 Proj
input comes from the output of the SwiGLU (Shazeer| [2020) module. The gating mechanism and
non-linear transformations in SwiGLU create a complex activation distribution that amplifies out-
liers (Zhang et al.l [2025). As a result, even with QAT regularization, the FC2 Proj input remains
sensitive to outliers and is the main source of activation quantization error in W4A4 QAT models.

Mixed-precision approach. To study the W4A4 scaling law without the activation bottleneck, it
is necessary to reduce quantization error in the FC2 Proj input. This can be achieved by using
higher quantization precision or outlier suppression strategies (Xiao et al., 2023} |Ashkboos et al.,
2024). Since 8-bit quantization achieves near-lossless training (Liu et al, [2024a), we use a simple
approach: quantizing the FC2 Proj input to 8 -bit (denoted as “FC2 input 8-bit”). While other
outlier suppression methods (Xiao et al., 2023; |Ashkboos et al., 2024} |Chen et al., [2024a) could
also be considered, 8-bit quantization provides an upper bound on the improvements possible. This
approach offers a general and robust baseline for understanding the potential of the W4A4 QAT
scaling law without the activation bottleneck.

Impact on quantization error. Figure 9b|shows that using 8-bit FC2 inputs significantly reduces
quantization error, especially for coarse-grained quantization, which is more sensitive to outliers.
For example, with W4A4 QAT, 8-bit FC2 lowers quantization error by 20.5% for G = 32 and
by 42.9% for G = 256. This demonstrates that 8-bit FC2 Proj inputs effectively reduce both the
overall activation quantization error and its sensitivity to granularity. Table |1| further supports this,
showing that the parameter ¢ for dyy 1644 decreases from 0.9812 to 0.4471 when using 8-bit FC2
Proj inputs. Figureillustrates that, under 8-bit FC2 inputs, dy/1644 and dyy4416 become similar
in magnitude, with their ratio R ranging from 0.85 to 1.10 for % ratios between 100 and 1000, and
for group sizes G = 32 and G = 256.

Practical implications. For practitioners, the main takeaway is that special treatment of the FC2
Proj input—through mixed-precision quantization or targeted outlier suppression—is crucial for
maximizing low-bit QAT performance. Once the FC2 Proj input bottleneck is removed, further
improvements to W4A4 QAT should focus on jointly optimizing both weight and activation quanti-
zation errors, as their effects become similar. This suggests a shift in QAT development from mainly
activation-focused methods (Panferov et al.| 2025} [Xiao et al.,|2023) to approaches that balance both
error sources.

4.5 COMPARISONS WITH OTHER QAT SCALING LAWS

We compare our proposed QAT scaling law (Eq. (B)) with existing scaling laws (Frantar et all
2025; [Kumar et al.l [2024). Previous methods (Kumar et al. 2024} [Frantar et all [2025) do
not account for quantization granularity G, so they require separate curves for each G €
{32, 64,128, 256, per-channel/token} for fair comparison. In contrast, our scaling law models dif-
ferent granularities with a single curve. As shown in Table 2] our approach reduces the relative
error from 19.3% to 5.2% for W4A16 QAT and from 8.5% to 4.7% for W4A4 QAT. The larger
improvement for W4A16 is due to dyy441¢ increasing more rapidly with D than dyy1644. Overall,
including D in d, improves prediction accuracy, and modeling G increases adaptability to different
quantization granularities.
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5 CONCLUSIONS

This paper proposes a comprehensive scaling law for 4-bit QAT of LLMs, integrating model size,
training dataset size, and quantization granularity. The new QAT scaling law is more practical, as
it jointly models IV, GG, and D, and achieves more accurate predictions than previous approaches.
We also show that processing the FC2 input with 8-bit in W4A4 QAT significantly reduces both
quantization error and sensitivity to quantization granularity. Furthermore, our analysis shows that,
after applying 8-bit quantization to the FC2 input in W4A4 QAT, weight and activation quantization
errors contribute almost equally to the total error. This result suggests that future QAT algorithms
should also investigate weight quantization error, rather than focusing solely on activation outliers
as previous methods do.
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A  OUTLINES

* Sec.[D} We justify the focus on 4-bit quantization and show that the proposed scaling law
generalizes to other bit widths, including 2-bit and 3-bit.

* Sec.[E} We offer more details on fitting the Chinchilla scaling law and the proposed QAT
scaling law.

* Sec. [} We provide technical details on quantization formats (INT, FP), quantizer methods
(e.g., AbsMax, LAC), and the model architecture.

* Sec.[G} We derive the quantization-error contours shown in Figure[I]
* Sec.|Ht We extend the analysis to the Efficient Parameter Multiplier (EPM).

* Sec. [l We present additional ablation studies on the scaling-law parameters and Hadamard
rotation.

B LIMITATIONS

This paper proposes a unified QAT scaling law and primarily focuses on experiments with 4-bit
dense models. One limitation is that we do not conduct experiments on the MoE (Cai et al., [2025))
architecture. Since MoE models contain more weight parameters but similar activation sizes, they
may exhibit a different ratio of weight to activation quantization error compared to dense models.
Additionally, our analysis mainly centers on W4A4 quantization. While some recent works explore
extremely low-bit QAT, such as ternary quantization (Ma et al., 2024} |[Panferov et al., |2025)), inves-
tigating unified scaling laws for these settings is also valuable. Finally, the largest training compute
consumed for our proposed QAT scaling law in this study is to train a 595M parameter model trained
over 100B tokens. Intuitively, the accuracy of scaling law extrapolation would be further improved
by increasing both the model size and the number of training tokens.

C THE USE OF LARGE LANGUAGE MODELS

We use LLMs to polish the paper, correct the grammar, and for some of the figures in the article, the
initial drawing codes are generated by LLMs.

D EXTEND TO OTHER BIT-WIDTH

Main scope. We deliberately focus on 4-bit quantization for the following reasons: (1) 8-bit quan-
tization is typically near-lossless, making it less critical for analyzing scaling-law errors; (2) 5—7-bit
formats currently have limited native hardware support, constraining their practical deployment; and
(3) 4-bit quantization is both practical and widely used, and it introduces non-negligible quantiza-
tion error. Because 4-bit already induces substantial error, we first conduct an in-depth analysis of
its bottlenecks—specifically disentangling weight vs. activation errors—before moving to more ex-
treme bit-widths (e.g., 2-bit). This focused approach establishes a clear baseline for understanding
quantization effects in realistic settings.

Other bit-widths. Some edge devices with tight memory budgets motivate even more aggressive
weight quantization (2 or 3-bits). To test how our scaling law generalizes, we additionally evaluate
2-bit and 3-bit weight-only quantization. The core principle of our law is the relationship between
quantization-induced error and the model size (D), number of training tokens (/V), and group size
(G; number of channels per scaling group). Consistent with our 4-bit findings, Table [3] shows that
these more extreme bit-widths follow the same predictable trends: error increases as training tokens
N increase; error decreases as model size D increases; and error decreases as group size G decreases
(i.e., more, smaller groups). These results indicate that our scaling law and analysis generalize well
across bit-widths.

E ScALING LAW FITTING

Chinchilla Scaling Law. Our QAT scaling law builds on the classical Chinchilla scaling law (Hotf-
mann et al, [2022), as defined in Eq. (I). Following the original methodology (Hoffmann et al.|

13
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Table 3: Quantization error in 2-bit and 3-bit quantization across different model size, training tokens
and quantization group size.

Model size  Training/Tokens Precision Loss  Quantization error
74M 10B Bf16 3.294 -
74M 20B Bf16 3.231 -
74M 50B Bf16 3.169 -
74M 100B Bf16 3.153 -
145M 10B Bf16 3.207 -
284M 10B Bf16 3.099 -
74M 10B W3A16G128  3.37 0.076
74M 20B W3A16G128 3.314 0.083
74M 50B W3A16G128 3.275 0.106
74M 10B W3A16G128  3.38 0.086
145M 10B W3A16G128 3.287 0.08
284M 10B W3A16G128 3.165 0.066
74M 10B W3A16G256  3.38 0.086
74M 10B W3A16G128 3.379 0.085
74M 10B W3A16G64  3.377 0.083
74M 10B W2A16G128  3.553 0.259
74M 20B W2A16G128  3.509 0.278
74M 50B W2A16G128  3.466 0.297
74M 10B W2A16G128  3.553 0.259
145M 10B W2A16G128  3.406 0.199
284M 10B W2A16G128  3.255 0.156
74M 10B W2A16G256  3.553 0.259
74M 10B W2A16G128  3.549 0.255
74M 10B W2A16G64  3.547 0.253

Predicted vs Actual Loss
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Model Size -
3.2 ® 145M <
298 M

® 594M ({ &
30{ @ 973Mm 6#"
g |33
o - A
; 2.8 12.78 8
3 v
S e
T 2.6 s
L
a

22 2.4 2.6 2.8 3.0 32
Actual Loss

Figure 10: Fitting performance of chinchilla scaling laws. The size of the data point is propor-
tional to training data size D.

2022), we estimate the parameters (F, A, «, B, ) by minimizing the Huber loss (Huber, [1964)
between the predicted and observed log losses, using the L-BFGS algorithm (Goldfarbl {1970).
Chinchilla scaling law (Hoffmann et al.| 2022) observes that the scaling exponents v and (3 are
approximately equal, which suggests that one should scale N and D equally as compute increases.
Therefore, we also set a = (3, in line with previous studies (Gadre et al., 2024} |Kumar et al., [2024).
For our experiments, we train models with sizes ranging from 145M to 2.8B parameters. To im-
prove the extrapolation of the scaling law fit, we include 6.5B and 12.7B parameter models, which
we obtain from the official OLMO—2—7B[H and OLMO—2—13BE] releases. As shown in Figure |10} the
empirical training losses closely match the predicted losses, achieving a mean squared error (MSE)

"https://huggingface.co/allenai/OLMo-2-1124-7B
*https://huggingface.co/allenai/OLMo-2-1124-13B
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of 0.0014 and an R? of 0.982, which indicates a highly accurate fit. It is important to note that
our proposed QAT scaling law (Eq. (3))) directly models the quantization error. As a result, it is
compatible with any scaling law related to the final loss (Hoffmann et al., [2022; |Gadre et al.| 2024;
Kaplan et al.|[2020). In this paper, we choose to use the Chinchilla scaling law for consistency with
previous QAT scaling law studies (Kumar et al., 2024; Frantar et al.| [2025)).

Proposed Scaling Law Across Different Precisions. Figure [5 in the main paper illustrates the
fitting performance of the proposed scaling law (Eq.(3)) in the W4A4 precision setting. In this
section, we further present the fitting results for W4A16 and W16A4 precisions in FigurdT1] which
achieve mean squared errors (MSE) of 0.001 and 0.003, respectively. These results demonstrate
the effectiveness of the proposed unified QAT scaling law across different precision configurations.
Additionally, we show the fitting performance for W16A4 and W4A4 precisions with the FC2 input

quantized to 8-bit in Figure 12}
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Figure 12: Fitting performance of proposed scaling laws on dyy1644 and dyy 444 scaling laws with
FC2 Proj inputs as 8-bit.

F QUANTIZATION IMPLEMENTATION DETAILS AND TYPES

F.1 QUANTIZATION TYPES

There are two main types of model quantization: integer (INT) and floating-point (FP) quantization.
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Integer Quantization. In integer quantization, continuous values are uniformly mapped to discrete
integer values. Mathematically, for a given matrix X, the quantization process is defined as:

X
XINT = Clamp <|'S—‘ 5 Qmina Qmaw) (6)

where |-] denotes the rounding operation, and s is the scaling factor. Here, Xyr represents the
quantized integer tensor, and X denotes the original full-precision tensor. After rounding, a clip-
ping operation ensures that the quantized values remain within the range [Qmin, Qmqz], Where
Qmin = —20=1 and Qmaz = 2b=1 _ 1, with b being the number of quantization bits. To recover
an approximate real value, the quantized tensor can be dequantized by multiplying by the scaling
factor s:

X - XINT X S, (7)

Floating-Point Quantization. Floating-point representation is more complex than the integer for-
mat. Each floating-point number consists of three components: the sign bit (S), the exponent (F),
and the mantissa (M). This format is typically denoted as ExMy, where = and y indicate the number
of bits allocated to the exponent and mantissa, respectively. The sign bit determines whether the
number is positive or negative. The exponent defines the range of representable values, while the
mantissa determines the precision. A floating-point number is decoded as:

Value = (—1)% x (1.M) x 2E-bias (8)

In this paper, we focus on 4-bit quantization and adopt the E2M1 FP4 format, following previous
works (Wang et al., 2025} Sun et al.,[2025). For a given matrix X, the quantization process is:

S

Xyp = MAP <X) , &)

where s is the scaling factor for normalization, and MAP () denotes mapping the normalized values
to the nearest floating-point values defined by Eq. (). Similar to integer quantization, the values can
be dequantized to approximate real values by multiplying by s:

X - XFP X S, (10)
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Figure 13: The QAT scaling law, fitted for INT4 quantization, also accurately models the quantiza-
tion error of FP4 quantization.

Scaling Behavior. Consistent with previous work (Kumar et al., [2024), we hypothesize that the
scaling behavior for INT and FP formats can be described by the same functional form. There are
two pieces of evidence supporting this assumption. First, Figure 2] shows that the performance gap
between FP4 and INT4 is negligible in the 4-bit setting. Second, Figure [I3] demonstrates that the
scaling law fitted on INT4 data also accurately predicts QAT error for FP4.
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Figure 14: Quantizer ablation studies for 145M model with 50B tokens.

F.2 QUANTIZER

The quantization format defines the representation space for discrete values. Both integer (INT) and
floating-point (FP) formats require a scaling factor to normalize continuous values into a discrete
range. Different quantizers employ distinct methods to compute the scaling factor s, which is shared
within a quantization group. For simplicity, we consider X as a quantization group here.

AbsMax. The AbsMax quantizer computes the scaling factor using the absolute maximum value,
given by m where M represents the maximum discrete value (e.g., M = 8 for INT4, M =6

for E2M1 FP4).

LWC and LAC. The LWC (Shao et al., 2023) and LAC (Chen et al., 2024a) quantizers extend Ab-
sMax by introducing learnable clipping factors for weight and activation quantization, respectively.
Their scaling factor is computed as m, where 7 is a learnable clipping factor. LWC assigns
a unique ~y per weight group, while LAC shares «y across the same group index for different tokens
to enhance deployability.

LSQ. The LSQ (Esser et al., 2019) quantizer treats the scaling factor as a directly learnable param-
eter.

Ablation of different quantizer. As shown in Figure activation quantization is more sensitive
to quantizer choice than weight quantization, primarily due to outliers in activation distributions (An
et al.,|2025)). For example, all three weight quantizers achieve similar final loss, with differences less
than 0.003 across most granularities except per-tensor. Thus, we set the weight quantizer to AbsMax,
as we do not use per-tensor quantization. However, for activations, LAC significantly outperforms
AbsMax when group size exceeds 256. Therefore, we use AbsMax for activation quantization with
fine group sizes (< 256), and LAC for activations with coarse group sizes (> 256).

F.3 MODEL ARCHITECTURE

We select the Llama-3 (Grattafiori et al.l [2024) style model for our experiments due to its wide
adoption. As shown in Figure each transformer block in the Llama-3 style model contains
four linear layers: QKV Proj, O Proj, FCI Proj, and FC2 Proj. Additionally, the Llama-3 style
model employs Group Query Attention (GQA)(Ainslie et al., [2023) for the self-attention module
and SwiGLU(Shazeer, [2020) for the feed-forward module. Tablepresents the detailed architectural
settings of the models used.

G QUANTIZATION ERROR CONTOUR

Figure [I|shows the contour plot of W4A4 QAT quantization using the proposed QAT scaling law in
Eq. (§). For clarity, we restate Eq. (3):

k- DD . (logQ(G))’Yc .

5,(N, D,G) = Fox
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Figure 15: Illustration of Llama-3-style (Grattafiori et al.| |2024) transformer block. Note that QKV
Proj can be divided into three separate layers, and FC1 Proj can be split into two layers.

Table 4: Model architecture and training hyper-parameters.

Model Size 74M  145M 297M 595M 973M  2.8B
Layers 12 12 12 24 16 28
Hidden Size 768 1024 1536 1536 2048 3072
FFN Hidden Size 2048 3072 4096 4096 8192 8192
Attention Heads 16 16 24 24 32 24
KV Heads 4 4 6 6 8 8
Batch Size (# Sequence) 256 256 512 512 512 512
Max LR 1.5¢-3 1.0e-3 8e-4 6e-4 6e-4  Ge-4
Min LR 0.1 x Max LR
Optimizer AdamW (5; = 0.9, 82 = 0.95)
Weight Decay 0.1
Clip Grad Norm 1.0
LR Schedule Cosine
Warmup Steps 500
Sequence Length 2048

We plot the contour by fixing G. Let C' = k - (log,(G))7¢, so Eq. (5) simplifies to:
0,(N,D,G)=C-D¥ . N7,
Each contour line represents a constant quantization error, i.e., 6, (N, D) = z:
C-D"P . N7 = z,.
Taking the base-10 logarithm of both sides, we have:
log1(C) + vp logyo(D) — v logy(N) = logyo(20)

vp logyo(D) — vn log(N) = logyo(20) — logyo(C)
vp10g10(D) + (—7N) logyo (V) = const

Let z = log;,(N) and y = log, (D). The contour equation becomes:
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YpY — YNT = const

or equivalently,
N

y = —x + const’
YD
Thus, in the (log, N, log,, D) space, the contours are straight lines. The slope of each contour line
is IX,
YD
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Figure 16: Efficient parameter multiplier (EPM) contour for W4A4 QAT. EPM of W4W4 QAT
consistently outperform 0.5, and setting F'C2 inputs as 8bit significantly improve the EPM with

H SCALING WITH EFFICIENT PARAMETER MULTIPLIER

To improve the practicality of the proposed QAT scaling law, we extend it to the efficient parameter
multiplier (EPM) (Eq. @)) (Frantar et al., |2025; [Kumar et al.l 2024)), which quantifies the impact of
quantization on the model’s effective parameter count. Previous studies (Frantar et al., 2025; Kumar,
et al., [2024) treat eff(C') as a constant determined by the model architecture and quantization type,
independent of model size and the number of training tokens. In contrast, we model the quantization
error ¢, instead of directly modeling eff(C'). However, we can derive the value of eff(C') by solving
the following equation:

A B A B

—+—+FE+6,N,D,G)= ——————+—+F. 11
NQ+D5+ +0,(N, D, G) (N~eff(C))a+D5+ (11)
Loss with QAT (Eq. @) Loss without QAT (Eq. (2))
From this, we obtain: .
A o
ff(C) = . 12
eff (C) (A+6P(N,D,G)-Na> (12)
By substituting d, with Eq. (5), the final expression for eff(C) is:
1
A o
ff(C) = 13
€ ( ) (A+ k-Dp . (1Og2(G))’YG .Na—’m) ’ (13)

where N, D, and G are variables, and A, k, o, vp, g, and vy are constants. Eq. (13) shows
that eff (C) decreases as D and G increase. Furthermore, the relationship between eff (C) and N
depends on the difference av — . Although the quantization error decreases as the model size
increases, with vy indicating the rate of this decrease, the speed at which the loss decreases also
slows down with larger model sizes, as represented by .. This explains why the relationship between
EPM and N depends on o — . Since o > 7y in the W4A4 scenario (as shown in Table, eff (C)
also decreases as N increases. As shown in Figure the EPM for W4A4 exceeds 0.5 in most
cases, indicating that W4A4 QAT achieves a better trade-off than even lossless W8AS8. Additionally,
Figure [[6b]demonstrates that setting the FC2 input to 8 bits significantly improves EPM, increasing
it by 0.06 to 0.14 across different values of IV and D.
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Practical implications. Our results show that EPM is sensitive to model size, training data, and
quantization granularity. EPM serves as a practical metric for evaluating the effective capacity of
quantized models under different settings. It also helps predict when resource-intensive quantiza-
tion methods, such as fine-grained or mixed-precision quantization, are worthwhile. While these
methods can improve EPM, they also increase inference overhead. EPM therefore helps balance the
trade-off between higher effective capacity and additional computational cost.

I MORE ABLATION STUDIES

Table 5: Ablation study of incorporating D in Eq. (5) across various precisions.

Precision Ablation Relative Error

wio D 8.6%
Waad /D 477%

T wioD ™~ " I3B%
WaAle L 'p 5.2%

Table 6: Ablation studies about random hadamard rotation. Models in this table are 145M parame-
ters with 20B training tokens.

Group size Precision Outlier Final training loss  Quantization error
- Bf16 - 3.125 -

channel/token ~ W4A4 - 3.209 0.084
channel/token =~ W4A4  FC2 input rotation 3.178 0.053
channel/token ~ W4A4 FC2 input 8-bit 3.173 0.048
256 W4A4 - 3.196 0.071

256 W4A4  FC2 input rotation 3.174 0.049

256 W4A4 FC2 input 8-bit 3.167 0.042

128 W4A4 - 3.19 0.065

128 W4A4  FC2 input rotation 3.171 0.046

128 W4A4 FC2 input 8-bit 3.165 0.04

64 W4A4 - 3.18 0.055

64 W4A4  FC2 input rotation 3.169 0.044

64 W4A4 FC2 input 8-bit 3.164 0.039

32 W4A4 - 3.172 0.047

32 W4A4  FC2 input rotation 3.165 0.04

32 W4A4 FC2 input 8-bit 3.16 0.035

Ablation studies about D. The main difference between our scaling law and existing methods (Ku-
mar et al., 2024; |Frantar et al., 2025) is that we recognize J,, increases with D and explicitly include
D in the scaling law. Table[5]shows ablation results for removing D from Eq. (5). Excluding D re-
duces prediction accuracy for both W4A4 and W4A16: the relative error for W4 A4 rises from 4.7%
to 8.6%, and for W4A16 from 5.2% to 13.8%. These results highlight the necessity of including D
in the QAT scaling law.

Ablation studies about Hadamard rotation. The activation-quantization error bottleneck lies in
the FC2 inputs. We therefore examine an outlier-mitigation technique for this bottleneck. As shown
in Table[6} we apply a random Hadamard rotation [Ashkboos et al| (2024) to the FC2 inputs and the
corresponding inverse rotation to the FC2 weights to preserve computational equivalence. Table [f]
shows that the Hadamard rotation significantly reduces quantization error, especially under coarser
quantization granularity. However, 8-bit quantization of the FC2 input consistently outperforms the
rotation, yielding an additional loss reduction of 0.005 to 0.007. This result indicates that 8-bit quan-
tization sets an upper bound on the achievable improvement. Therefore, in our main experiments, we
simply set the FC2 input to 8-bit to provide a robust and general baseline for assessing the potential
of the W4A4 QAT scaling law, without confounds from activation quantization bottleneck.
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