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Abstract
Aspect-Based Sentiment Analysis (ABSA) de-001
mands nuanced modeling of complex aspect-002
sentiment interactions, a challenge amplified003
by the limited context in short texts. While004
graph-based methods have shown promise, they005
often fall short in capturing higher-order, multi-006
node relationships, leading them to construct007
multiple graphs that model fine-grained rela-008
tionships inherent in language. However, such009
approaches suffer from poor generalization and010
increased parameter overhead. To overcome011
these limitations, we introduce HyperABSA,012
the first hypergraph-based approach to ABSA,013
which uniquely leverages a novel hypergraph014
construction method based on hierarchical clus-015
tering with a variance-sensitive threshold. This016
enables dynamic control over relational gran-017
ularity via a acceleration based elbow crite-018
rion. This single hypergraph framework effi-019
ciently captures varying granularities of aspect-020
sentiment dependencies, while reducing param-021
eter overhead, thereby simplifying prior ap-022
proaches. Extensive experiments conducted023
on three public datasets (Lap14, Rest14 and024
MAMS) demonstrate the effectiveness of our025
proposed method.026

1 Introduction027

ABSA is a popular task within Natural Language028

Processing (NLP) that focuses on predicting the029

sentiment polarity of aspect terms within sentences.030

For instance, in the sentence “Service is good al-031

though a bit in your face , we were asked every032

five mins if food was ok, but better that than being033

ignored”, the aspects “service” and “food” reflect034

positive and neutral sentiments, respectively. This035

nuanced opinions in text is essential in domains036

like product reviews, customer feedback, and so-037

cial media monitoring.038

One of the key innovations in ABSA has been039

the integration of dependency trees (Poria et al.,040

2014; Chen et al., 2022), which capture syntac-041

tic relationships between aspect and opinions in042

Figure 1: A hypergraph of word interactions showing
several semantic clusters based on aspect and sentiment
polarity. This illustrates how words are grouped accord-
ing to meaning and sentiment.

text in a hierarchical manner. To further enhance 043

these contextual dependencies, graph-based meth- 044

ods have emerged as a powerful paradigm (Kipf 045

and Welling, 2016; Liang et al., 2020; Li et al., 046

2021; Zhang et al., 2022b; Tian et al., 2021; Bai 047

et al., 2020). However, a fundamental limitation 048

of these techniques lies in their inherent focus on 049

pairwise relationships potentially overlooking more 050

intricate, higher-order dependencies that are cru- 051

cial for nuanced sentiment understanding (Battaglia 052

et al., 2018). They also falter in managing varying 053

granularities of relationships, resulting in reduced 054

sensitivity between local and global dependencies, 055

leading to suboptimal performance. 056

To partially address these limitations, recent ap- 057

proaches have explored multi-graph architectures 058

(Aziz et al., 2024; Zheng and Li, 2024), which 059

capture different facets of text, such as syntactic 060

dependencies and semantic relationships, and then 061

attempt to fuse information from these disparate 062

graph sources. While they represent an advance- 063

ment, they introduce significant model complex- 064

ity, increasing the number of parameters and often 065

requiring sophisticated fusion mechanisms. This 066

complexity can potentially hinder model perfor- 067

mance, efficiency and generalization, especially 068
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when data is limited, as is often the case with short069

text in ABSA.070

To address these challenges, we utilize hyper-071

graphs which help capture varying granularities072

(Zhang et al., 2022a) between aspects and senti-073

ments as seen in Figure 1. We also propose a novel074

hypergraph construction methodology that lever-075

ages hierarchical clustering to dynamically form076

hyperedges. This involves employing an adaptive077

thresholding technique to identify the optimal cut-078

off distance for hyperedge formation by analyzing079

the change in merge distances and determining the080

point of diminishing returns. This flexibility al-081

lows the model to accommodate variations in node082

sizes and ensures a more robust construction of083

hyperedges. By optimizing the distance parame-084

ter, our method ensures that the constructed hyper-085

graph accurately captures the underlying structure086

of complex and densely packed data.087

This paper makes the following contributions to088

the field of ABSA:089

• We introduce HyperABSA, the first090

hypergraph-based framework for ABSA,091

demonstrating its effectiveness in capturing092

intricate aspect–sentiment interactions,093

particularly in small datasets.094

• We propose a novel hypergraph construction095

strategy that uses hierarchical clustering with096

an acceleration-based thresholding criterion097

to dynamically form hyperedges.098

• Our method achieves state-of-the-art perfor-099

mance. We also conduct a thorough ablation100

study on various graph and hypergraph con-101

struction methodologies.102

2 Related Work103

Over the years, ABSA has been widely explored104

using various methodologies.105

2.1 Graph Based Methods106

Graph-based approaches model syntactic and se-107

mantic word relationships using GCNs. Early108

works integrated dependency tags (Chen et al.,109

2019), as well as syntactic and semantic features110

from dependency trees (Zhang et al., 2022b, 2024;111

Gu et al., 2024) into GCNs to enrich the learning112

of word correlations and improve contextual under-113

standing. Other works employed relational graph114

attention networks and type-aware GCNs to cap-115

ture aspect-specific and inter-aspect dependencies116

(Wang et al., 2020; Tian et al., 2021; Ansari et al., 117

2020; Huang and Carley, 2019; Bao et al., 2023). 118

Attention mechanisms have also been pivotal, 119

as seen in (Xu et al., 2021; Pan et al., 2023; Cui 120

et al., 2023; Yuan et al., 2020), which combined 121

multi-head attention with graph convolutional net- 122

works to capture semantic and syntactic depen- 123

dencies effectively. Furthermore, heterogeneous 124

graphs (Zeng et al., 2023; Niu et al., 2022) repre- 125

sent these different relationships explicitly, ensur- 126

ing that sentiment propagation respects their dis- 127

tinct roles. Multi-graph models (Aziz et al., 2024; 128

Zheng and Li, 2024) have been proposed to capture 129

both local aspect-specific dependencies and global 130

shared contextual information within a sentence. 131

2.2 Hypergraph Construction Methods 132

While prior works have successfully leveraged hy- 133

pergraphs in other fields, their potential remains 134

unexplored in ABSA. Much of the focus has been 135

on developing advanced hypergraph neural network 136

architectures (Feng et al., 2019; Zhi, 2024), with 137

less emphasis on the original construction of hyper- 138

graph from text. 139

Recent hypergraph construction methods often 140

use techniques like the Nearest-neighbor methods 141

(Yu et al., 2012; Gao et al., 2022; Nguyen et al., 142

2020; Dai and Gao, 2023) that connect tokens 143

based on proximity in feature space but often in- 144

clude irrelevant tokens. Latent Dirichlet Allocation 145

(LDA) (Ding et al., 2020; Turnbull et al., 2024) 146

improves word relationship modeling by group- 147

ing similar words into predefined topics. Cluster- 148

ing methods (Han et al., 1997, 1998; Chang et al., 149

2008; Leordeanu and Sminchisescu, 2012; Saito, 150

2022) like K-Means enhance hyperedge coherence 151

by grouping tokens into clusters. 152

Despite their potential, hypergraphs have yet to 153

be applied to short text data, particularly for ABSA. 154

This is mainly due to the challenge posed by sparse 155

feature representations in short text, which make it 156

difficult for existing hypergraph algorithms to effec- 157

tively capture semantic and syntactic relationships. 158

due to their fixed constraints on cluster size and hy- 159

peredge count. Along with this, the computational 160

overhead associated with hypergraph modeling fur- 161

ther limits it’s ability to such tasks. 162

3 Methodology 163

In ABSA tasks, a p-word input sentence is rep- 164

resented as T = {v1, v2, . . . , vp}, where vi de- 165
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Figure 2: Architecture of HyperABSA.

notes the i-th word in the sequence. The task166

involves r distinct aspects, represented as B =167

{b11, b12, . . . , b1q , b21, . . . , brq}, where brq denotes the168

q-th word of the r-th aspect.169

The objective is to predict a mapping function,170

gr : (T, br) 7→ z, which takes as input the pair of171

the sentence T and aspect-specific features br, and172

outputs the sentiment polarity z for the respective173

aspects.174

3.1 Hypergraph Definition175

A hypergraph is a generalization of a standard176

graph, where an edge, called a hyperedge, can con-177

nect more than two nodes. Formally, a hypergraph178

is defined as H = (V, E), where V is the set of179

nodes (vertices), and E is the set of hyperedges,180

with each hyperedge e ∈ E being a subset of V181

(i.e., e ⊆ V).182

To mathematically represent a hypergraph, we183

use an incidence matrix I ∈ R|V|×|E|, which is a184

binary matrix where each entry Ii,j is defined as:185

Ii,j =

{
1 if node vi is part of hyperedge ej

0 otherwise
186

Given the sentence T = {v1, v2, . . . , vp}, each187

token vi is represented as a node vi ∈ V . A hyper-188

edge ei ∈ E will be formed if a subset of nodes189

{v1, v2, . . . , vn} ⊆ V share semantic information.190

3.2 Representation Learning 191

Similar to Zheng and Li (2024), we choose BERT 192

as the text encoder. Based on the approach of Zeng 193

et al. (2019), we format the input as "[CLS] + sen- 194

tence + [SEP] + aspect + [SEP]", where [CLS] is 195

used to represent the sentence, and [SEP] separates 196

the sentence and aspect, as illustrated in Figure 197

2. Since sentences may contain multiple aspects, 198

each aspect is treated independently. For the input 199

sentence T , the output of BERT would be the hid- 200

den states of the last layer, h = {h1, h2, . . . , hn} 201

where h ∈ Rn×d, with n being the sequence length 202

and d the dimensionality of the hidden state. 203

To further refine the representations, we pass the 204

hidden states through multiple layers of the trans- 205

former encoder which consists of two main com- 206

ponents: Multi-Head Self-Attention and a Position- 207

Wise Feed-Forward Network as implemented by 208

(Vaswani, 2017) 209

3.3 Hypergraph Construction 210

In this section, we construct a hypergraph based 211

on clusters derived from hierarchical clustering. 212

The key step in this process is determining an opti- 213

mal cutoff distance for partitioning the hierarchical 214

linkage matrix Z. To achieve this, we employ a 215

modified version of the elbow method that dynami- 216
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cally adjusts the cutoff threshold based on dataset217

size and variability.218

3.3.1 Hierarchical Clustering and Linkage219

Matrix220

Given a dataset with n samples, each represented221

by BERT hidden states h, hierarchical clustering222

generates a linkage matrix Z ∈ R(n−1)×4, where223

each row zi = [c1, c2, δi, si]. Here, c1 and c2 are224

the indices of the merged clusters at step i, δi rep-225

resents the inter-cluster dissimilarity, and si is the226

size of the resulting cluster. The dissimilarity val-227

ues {δi}n−1
i=1 quantify the hierarchical structure of228

the data.229

3.3.2 Optimal Cutoff Distance Using the230

Elbow Method231

To determine the optimal cutoff threshold for clus-232

tering, we employ an acceleration-based elbow233

method that dynamically adapts to the dataset’s234

size and structure. Traditional elbow methods often235

minimize the total within-cluster sum of squared er-236

rors (WSS) to estimate the optimal number of clus-237

ters (Nainggolan et al., 2019; Humaira and Rasyi-238

dah, 2020). In contrast, our approach directly ana-239

lyzes the hierarchical linkage distances and uses ac-240

celeration (second-order differences) to detect the241

"elbow point," where the rate of change in dissimi-242

larity exhibits a significant shift. Additionally, we243

introduce a fallback mechanism to handle datasets244

with limited hierarchical depth.245

Let ρ ∈ (0, 1] denote the proportion parameter246

that controls the fraction of merges considered in247

the hierarchical linkage matrix, balancing local and248

global cluster structures.249

The number of recent merges m is computed as:250

m = max(1, ⌊ρ · (n− 1)⌋), (1)251

where n−1 is the total number of merges in the hier-252

archical clustering dendrogram. The corresponding253

dissimilarities of the recent merges are:254

δrecent = [δn−m, δn−m+1, . . . , δn−1]. (2)255

When |δrecent| > 3, we analyze the second-order256

differences of the recent dissimilarities δrecent:257

∆2δrecent = [∆δi+1−∆δi | i = n−m, . . . , n−3],
(3)258

or equivalently:259

α = [δi+2−2δi+1+δi | i = n−m, . . . , n−3]. (4)260

A large positive value of αi indicates a sharp 261

increase in the dissimilarities, corresponding to 262

a transition from compact clusters to larger, less 263

cohesive groups. 264

The maximum acceleration is determined as: 265

k = argmax(α), (5) 266

where k is the index of the largest value in α. 267

When |δrecent| ≤ 3, there are too few values to 268

compute meaningful accelerations. In such cases, 269

a fallback threshold is calculated using the mean 270

and standard deviation of the recent dissimilarities: 271

δfallback = δ̄recent + λ · σrecent, (6) 272

where δ̄recent and σrecent are the mean and standard 273

deviation of δrecent, respectively, and λ > 0 is a 274

scaling factor. This fallback mechanism provides a 275

robust baseline cutoff threshold for small datasets 276

by accounting the variabilities in dissimilarities of 277

the recent merges, ensuring better cohesion. 278

We thus define the elbow dissimilarity δelbow as: 279

δelbow =

{
min(δn−m+k, δfallback), if |δrecent| > 3,

δfallback, otherwise.
(7) 280

This approach ensures that the cutoff distance 281

adapts to both the structure of the dataset and the 282

variability in the distances. 283

Once the cutoff distance δelbow is determined, the 284

dataset is partitioned into clusters {C}ki=1, where 285

each cluster Ci is a set of points such that the intra- 286

cluster distances are less than δelbow. The hyper- 287

graph H is then constructed, where the vertex set 288

V corresponds to the data points and the hyperedge 289

set E is defined as E = {ei | ei = Ci, Ci ∈ C} 290

3.4 Hypergraph Neural Network 291

We adopt a classic approach to a hypergraph neural 292

network (Feng et al., 2019), which involves multi- 293

ple layers of vertex and edge convolution. The net- 294

work ends with a final layer of aggregation which 295

combines the vertex and edge features. 296

3.4.1 Vertex Convolution 297

At layer l, we define the vertex feature matrix as 298

Vl ∈ R|V|×d and the edge feature matrix as El ∈ 299

R|E|×d where d is the feature dimension. 300

We perform convolution on the vertex set V us- 301

ing I and V(l). We compute the hidden states for 302

each edge e ∈ E by aggregating the features of all 303

the vertices in its set. 304
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To compute the edge weights for the current305

layer’s hidden states, we perform the following306

operations:307

Ae = softmax
(
IT ·

(
Wa ·El−1

))
(8)308

309

Mv = Vl ⊙
(
I ·Al

e

)
(9)310

311
El = α ·El−1 + (1− α) · (Wp ·Mv) (10)312

Here, Wa,Wp ∈ Rd×d are learnable weight313

matrices for the edge and node operations, respec-314

tively, α ∈ R is a learnable parameter which315

adaptively controls the contribution from the prior316

layer’s hidden states and the vertex aggregation at317

each step and ⊙ denotes element-wise multiplica-318

tion.319

3.4.2 Edge Convolution320

Similar to vertex convolution, edge convolution321

involves aggregating information across all hyper-322

edges associated with each vertex, updating the323

vertex feature matrix based on the edge features.324

Al
v = softmax

(
I ·

(
Wa ·Vl−1

))
(11)325

Me = El ⊙
(
IT ·Al

v

)
(12)326

327
Vl = α ·Vl−1 + (1− α) · (Wp ·Me) (13)328

3.4.3 Aggregation329

After performing vertex and edge convolution for330

multiple layers, we merge the refined vertex and331

edge feature matrices to get the final logits.332

E = We
L ·EL ⊙ softmax(We

L ·EL) (14)333

334
V = Wv

L ·VL ⊙ softmax(Wv
L ·VL) (15)335

336
Logits = F(V,E) (16)337

Here, Wv,We ∈ Rd×d are trainable weights338

and F is a mapping function designed to effectively339

combine V and E :340

F(V,E) = σ (Wg · [V;E])⊙V

+ (1− σ (Wg · [V;E]))⊙E
(17)341

where σ(·) is the sigmoid function, [V;E] repre-342

sents concatenation, and ⊙ denotes element-wise343

multiplication.344

4 Experiments 345

4.1 Datasets 346

We evaluate our proposed model using three bench- 347

mark datasets: the Multi-Aspect Multi-Sentiment 348

(MAMS) dataset (Jiang et al., 2019), the SemEval 349

2014 datasets for Restaurants (Rest14) and Laptops 350

(Lap14) (Pontiki et al., 2014). The split and the 351

statistics of the data is adopted from (Bai et al., 352

2020) 353

4.2 Baselines 354

HyperABSA, as the first approach to introduce hy- 355

pergraphs to ABSA, is initially compared against 356

several baseline methods, including IARM (Ma- 357

jumder et al., 2018), MIAD (Hazarika et al., 2018), 358

StageI+StageII (Ma et al., 2019), CDT (Sun et al., 359

2019) and RepWalk (Zheng et al., 2020), BERT- 360

SPC (Song et al., 2019) and CapsNet (Jiang et al., 361

2019) to showcase it’s effectiveness. We then eval- 362

uate HyperABSA’s performance against multiple 363

state-of-the-art methods which utilise dependency 364

trees or graphs that employ GCNs including In- 365

terGCN (Liang et al., 2020), R-GAT (Wang et al., 366

2020), DGEDT (Tang et al., 2020), RGAT (Bai 367

et al., 2020), RMN (Zeng et al., 2022), CHG- 368

MAN (Niu et al., 2022), DMGLT (Fang, 2022), 369

MWGCN (Yu and Zhang, 2023), YORO (Zheng 370

and Li, 2024). 371

4.3 Implementation details 372

For the encoder, we utilize the BERT architecture, 373

specifically the bert-base-uncased variant. To mit- 374

igate overfitting, we apply dropout with a rate se- 375

lected from the range [0.2,0.3] to both the BERT 376

encoder and the hypergraph convolution layers and 377

an L2 regularization of λ = 2 ∗ 10−5. Model opti- 378

mization is performed using the Adam optimizer 379

(Kingma, 2014) with a learning rate of 10−2, and a 380

batch size of 16 is used during training. We conduct 381

experiments on a single NVIDIA 4090 GPU. 382

4.4 Results 383

Table 1 presents a comparative analysis of Hyper- 384

ABSA against both baseline and recent state-of- 385

the-art models. On the MAMS dataset, our method 386

achieves the highest accuracy, outperforming ex- 387

isting approaches by a margin of 0.3%, while also 388

maintaining a competitive F1 score. For the Rest14 389

dataset, HyperABSA demonstrates superior per- 390

formance in both accuracy and F1 score, with an 391

average improvement of 0.4% over prior methods. 392
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Model MAMS Rest14 Lap14

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

BERT-SPC† (Song et al., 2019) 82.82 81.9 84.46 76.98 78.99 75.03
CapsNet† (Jiang et al., 2019) 83.46 82.89 84.91 76.59 77.12 71.84
InterGCN† (Liang et al., 2020) 82.49 81.95 85.45 77.64 78.06 73.83
R-GAT* (Wang et al., 2020) 83.16 82.42 84.64 77.14 78.21 74.07
DGEDT* (Tang et al., 2020) - - 86.30 80.00 79.80 75.60
RGAT* (Bai et al., 2020) 82.96 82.12 85.77 79.81 80.31 76.38
DMGLT (Fang, 2022) - - 86.25 79.04 78.82 75.56
RMN (Zeng et al., 2022) 79.97 78.79 84.56 79.05 77.95 70.83
CHGMAN* (Niu et al., 2022) 83.23 82.66 85.98 79.31 78.04 74.46
MWGCN (Yu and Zhang, 2023) - - 86.36 80.54 79.78 76.68
HGCN (Xu et al., 2023) - - 86.45 80.60 79.59 76.24
LLaMa2-13b‡ (Su et al., 2024) - - 78.00 67.00 73.00 65.00
ChatGPT (zero-shot)‡ - - 82.39 73.64 77.64 72.30
ChatGPT (few-shot)‡ - - 84.62 76.08 78.15 75.79
YORO*(Zheng and Li, 2024) 84.21 83.78 83.69 76.22 77.45 73.21
HyperABSA 84.56 83.74 86.762 80.641 80.46 77.42

Table 1: Performance of Accuracy and F1 score of HyperABSA with other models. † denotes implementation from
(Zheng and Li, 2024), ‡ denotes implementation from (Chen et al., 2024) and * denotes our implementation.

Similarly, on the Laptop dataset, our model attains393

the highest accuracy as well as F1 score, with an394

average margin of 2% over competitive baselines.395

This highlights HyperABSA’s ability to effectively396

handle short, multi-aspect, multi-sentiment textual397

complexities.398

5 Discussion399

5.1 Effects of Adaptive tuning400

We evaluate the effect of adaptive tuning in hyper-401

graph construction against a fixed, non-adaptive402

variant that uses a static fallback distance (Equa-403

tion 6), with varying α values, while the adaptive404

method dynamically adjusts this parameter based405

on local structure, enabling more flexible hyper-406

edge formation. To ensure a fair comparison, both407

methods are evaluated using the same sentence as408

in Figure 1409

As shown in Figure 3, the non-adaptive method410

is highly sensitive to α, producing fragmented clus-411

ters at lower values (e.g., α = 0.3) and overly412

coarse groupings at higher ones (α = 0.5, 0.7),413

which dilute semantic distinctions. This instabil-414

ity reveals the limitations of fixed thresholds. In415

contrast, the adaptive method consistently forms se-416

mantically coherent hyperedges by balancing local417

context and global structure. It effectively sepa-418

rates concepts, like grouping "service" and "food"419

as core subjects, while isolating sentiment-bearing420

words like "good", "ok", and "better", enabling421

more precise representation of contextual relation-422

Model Silhouette Score Davis-Bouldin Score

Min Mean Max Min Mean Max

Random -0.24 -0.23 -0.22 1.51 1.59 1.64
KNN-KMeans 0.31 0.33 0.40 1.05 1.17 1.32
HyperABSA 0.36 0.42 0.62 0.56 0.99 1.10

Table 2: Comparison of cluster quality across different
hypergraph construction methods.

ships. 423

5.2 Cluster Quality Analysis 424

We evaluate the effectiveness of our hypergraph 425

construction method by comparing it against (i) 426

a Random hypergraph, in which nodes and hy- 427

peredges are generated without structural priors, 428

and (ii) a KNN-KMeans hybrid hypergraph, where 429

local and global structural cues are captured by 430

integrating K-Nearest Neighbors and K-Means 431

clustering. The quality of the resulting cluster 432

structures is quantified using standard clustering 433

validation metrics, namely the Silhouette Score 434

(Rousseeuw, 1987), which evaluates cluster com- 435

pactness and separation, where higher values in- 436

dicate well-formed and distinct clusters, and the 437

Davis-Bouldin Score (Davies and Bouldin, 1979), 438

which measures the average similarity between 439

clusters, where lower values indicate better cluster- 440

ing, across different training epochs. 441

As shown in Table 2, HyperABSA consistently 442

outperforms these baseline methods. The Random 443

hypergraph fails to form meaningful clusters due 444
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(a) (b) (c)

Figure 3: Hypergraphs formed by a) Adaptive tuning, b) λ = 0.3, c) λ = 0.5 and 0.7
as in Equation 6

Figure 4: Comparison of test loss between HyperABSA
and a graph-based model RGAT on the Lap14 and
MAMS datasets

to it’s stochastic nature, often yielding negative sil-445

houette scores. While the KNN-KMeans hybrid446

introduces some structural priors, it still underper-447

forms in terms of clustering quality. These results448

highlight the effectiveness of HyperABSA in pre-449

serving structure and semantic coherence across450

training epochs.451

5.3 Generalization Gap452

Prior works often relied on constructing multiple453

graphs, each capturing a distinct semantic view or454

level of granularity to enrich representation learn-455

ing. While effective, this approach introduces sig-456

nificant overhead in graph construction and fusion457

mechanisms. To evaluate the generalization ability458

of our proposed model, we measured the general-459

ization gap, defined as the difference between train-460

ing and test accuracy, as well as loss, across varying461

Figure 5: Evaluation of HyperABSA against multi-
graph-based models on the Rest14 and MAMS datasets
in terms of generalization gap.

amounts of training data. Each configuration was 462

repeated across multiple random seeds, and we re- 463

port the average values to ensure robustness. We 464

conducted this evaluation on both the Lap14 and 465

Rest14 datasets, comparing HyperABSA with two 466

strong baselines: YORO, a multi-graph model, and 467

RGAT, a single-graph model. As shown in Figure 468

4 and Figure 5, HyperABSA consistently achieves 469

smaller generalization gaps across most training 470

sizes. Our model exhibits strong generalization 471

even in cases with less data, whereas the other 472

models require at least 50-70% of the training data 473

to achieve a comparable amount of generalization. 474

Notably, while our primary aim was to serve as 475

an alternative to multi-graph models, HyperABSA 476

also consistently outperforms the single-graph base- 477

line across both datasets. 478

These results suggest that the dynamic and 479

sample-sensitive structure of HyperABSA enables 480
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Method Variant (with Formula) ρ Rest14 Lap14 MAMS

Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

HyperABSA (Equation 7) Dynamic 86.76 80.64 80.46 77.42 84.56 83.74

δelbow = δfallback - 84.07 76.89 79.06 75.84 84.00 83.51

δelbow = δn−m+k

0.2 80.59 71.61 79.68 76.30 83.48 82.82
0.5 83.11 74.75 78.13 74.88 83.48 82.87
0.8 82.12 74.60 77.03 73.18 83.55 82.90

δelbow = min(δn−m+k, δfallback)
0.2 84.78 77.35 79.22 77.14 84.22 83.46
0.5 80.95 72.06 78.75 75.95 84.07 83.24
0.8 84.98 78.24 79.53 76.03 83.70 83.09

Table 3: Ablation study on Rest14, Lap14, and MAMS showing the impact of acceleration formula and proportion
(p) on HyperABSA’s performance. Formula types are indicated in parentheses within the method name.

Model MAMS Rest14 Lap14

Params(100M) Acc/P Params(100M) Acc/P Params(100M) Acc/P

RGAT 1.10 75.41 1.10 77.97 1.10 73.00
YORO 1.15 73.22 1.15 72.77 1.15 67.37
HyperABSA 1.10 76.87 1.10 78.87 1.11 73.14

Table 4: Model efficiency comparison based on parame-
ter count and accuracy-per-parameter (Acc/P).

it to better model context-specific relationships481

while avoiding overfitting, particularly in low-482

data regimes. In addition to generalization per-483

formance, we assessed model efficiency by com-484

puting accuracy-to-parameter ratios for all mod-485

els across datasets. As shown in Table 4, Hyper-486

ABSA achieves consistently better ratios compared487

to both YORO and RGAT, indicating higher perfor-488

mance per parameter. This demonstrates that our489

approach not only generalizes better but also incurs490

less overhead in terms of model size. Together,491

these findings reinforce our claim that HyperABSA492

is a robust, efficient, and generalizable alternative493

to multi-graph models in ABSA.494

5.4 Geometric Interpretation of Acceleration495

To better understand the role of acceleration in496

detecting the elbow point in hierarchical cluster-497

ing, we treat the sequence of recent dissimilari-498

ties drecent as a discrete signal capturing hierar-499

chical merge distances (Equation 2). The first-500

order differences, ∆drecent, describes the slope of501

this sequence, while the second-order differences,502

∆2drecent, describes the curvature, drecent, quantify-503

ing how much the sequence deviates from linearity.504

High curvature values indicate regions where the505

dissimilarity values exhibit sharp increases, cor-506

responding to structural shifts in the dendrogram.507

This curvature-based acceleration serves as a reli-508

able indicator for detecting the elbow and as de-509

scribed in Equation 5, the index of the maximum510

acceleration is selected to identify this point.511

5.5 Multi granular approach of hypergraph 512

To explore whether a dynamically constructed hy- 513

pergraph can serve as a viable alternative to manu- 514

ally designed multi-graph architectures for multi- 515

granular reasoning, we conduct a series of compar- 516

ative experiments. We compare our dynamic hyper- 517

graph approach with several fixed-granularity base- 518

lines, including models with only fallback connec- 519

tions (coarse granularity), and acceleration paths 520

with static thresholds (ρ = 0.2, 0.5, 0.8). As seen 521

in Table 3, across datasets, these fixed strategies 522

yield lower or inconsistent performance, indicating 523

their inability to capture the optimal granularity 524

across samples. In contrast, our model dynamically 525

selects both the threshold and the graph construc- 526

tion strategy per instance, effectively adapting to 527

sample-specific views. These findings support our 528

broader claim, that automatically identifying an ap- 529

propriate granularity per instance can offer a strong 530

alternative to using multiple graphs for capturing 531

the different granularities. 532

6 Conclusion 533

In this paper, we introduce HyperABSA, a novel 534

hypergraph construction methodology for ABSA 535

that dynamically forms hyperedges via adaptive 536

hierarchical clustering. Our approach addresses 537

the challenge of overfitting in short-text scenar- 538

ios by leveraging an acceleration-based thresh- 539

olding mechanism, ensuring that hyperedges cap- 540

ture meaningful multi-node interactions while pre- 541

venting excessive fragmentation or over-merging. 542

Comprehensive evaluations on Lap14, Rest14, and 543

MAMS datasets demonstrate that HyperABSA 544

achieves state-of-the-art performance among graph- 545

based approaches, highlighting its effectiveness in 546

capturing nuanced multi-node interactions for fine- 547

grained sentiment reasoning. 548
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7 Limitations549

Multi-graph models offer interpretable edge se-550

mantics grounded in syntactic or semantic roles,551

while hypergraphs, though rich in context, lack this552

clarity, posing challenges for interpretability and553

fine-grained error analysis. Our approach is com-554

putationally complex compared to conventional555

single-graph baselines, making it susceptible to556

overfitting, particularly on low-resource datasets557

such as Lap14, where aspect-opinion annotations558

are sparse and domain-specific vocabularies limit559

generalization. Although we introduced minor ar-560

chitectural adjustments to the base HGNN frame-561

work, it was not designed for ABSA. This mis-562

match added to the modeling complexity and may563

have hindered performance in ABSA-specific sce-564

narios.565
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