From Graphs to Hypergraphs: Enhancing Aspect-Based Sentiment
Analysis via Multi-Level Relational Modeling

Anonymous EMNLP submission

Abstract

Aspect-Based Sentiment Analysis (ABSA) de-
mands nuanced modeling of complex aspect-
sentiment interactions, a challenge amplified
by the limited context in short texts. While
graph-based methods have shown promise, they
often fall short in capturing higher-order, multi-
node relationships, leading them to construct
multiple graphs that model fine-grained rela-
tionships inherent in language. However, such
approaches suffer from poor generalization and
increased parameter overhead. To overcome
these limitations, we introduce HyperABSA,
the first hypergraph-based approach to ABSA,
which uniquely leverages a novel hypergraph
construction method based on hierarchical clus-
tering with a variance-sensitive threshold. This
enables dynamic control over relational gran-
ularity via a acceleration based elbow crite-
rion. This single hypergraph framework effi-
ciently captures varying granularities of aspect-
sentiment dependencies, while reducing param-
eter overhead, thereby simplifying prior ap-
proaches. Extensive experiments conducted
on three public datasets (Lapl4, Rest14 and
MAMS) demonstrate the effectiveness of our
proposed method.

1 Introduction

ABSA is a popular task within Natural Language
Processing (NLP) that focuses on predicting the
sentiment polarity of aspect terms within sentences.
For instance, in the sentence “Service is good al-
though a bit in your face , we were asked every
five mins if food was ok, but better that than being
ignored”, the aspects “service” and “food” reflect
positive and neutral sentiments, respectively. This
nuanced opinions in text is essential in domains
like product reviews, customer feedback, and so-
cial media monitoring.

One of the key innovations in ABSA has been
the integration of dependency trees (Poria et al.,
2014; Chen et al., 2022), which capture syntac-
tic relationships between aspect and opinions in
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Figure 1: A hypergraph of word interactions showing
several semantic clusters based on aspect and sentiment
polarity. This illustrates how words are grouped accord-
ing to meaning and sentiment.

text in a hierarchical manner. To further enhance
these contextual dependencies, graph-based meth-
ods have emerged as a powerful paradigm (Kipf
and Welling, 2016; Liang et al., 2020; Li et al.,
2021; Zhang et al., 2022b; Tian et al., 2021; Bai
et al., 2020). However, a fundamental limitation
of these techniques lies in their inherent focus on
pairwise relationships potentially overlooking more
intricate, higher-order dependencies that are cru-
cial for nuanced sentiment understanding (Battaglia
et al., 2018). They also falter in managing varying
granularities of relationships, resulting in reduced
sensitivity between local and global dependencies,
leading to suboptimal performance.

To partially address these limitations, recent ap-
proaches have explored multi-graph architectures
(Aziz et al., 2024; Zheng and Li, 2024), which
capture different facets of text, such as syntactic
dependencies and semantic relationships, and then
attempt to fuse information from these disparate
graph sources. While they represent an advance-
ment, they introduce significant model complex-
ity, increasing the number of parameters and often
requiring sophisticated fusion mechanisms. This
complexity can potentially hinder model perfor-
mance, efficiency and generalization, especially



when data is limited, as is often the case with short
text in ABSA.

To address these challenges, we utilize hyper-
graphs which help capture varying granularities
(Zhang et al., 2022a) between aspects and senti-
ments as seen in Figure 1. We also propose a novel
hypergraph construction methodology that lever-
ages hierarchical clustering to dynamically form
hyperedges. This involves employing an adaptive
thresholding technique to identify the optimal cut-
off distance for hyperedge formation by analyzing
the change in merge distances and determining the
point of diminishing returns. This flexibility al-
lows the model to accommodate variations in node
sizes and ensures a more robust construction of
hyperedges. By optimizing the distance parame-
ter, our method ensures that the constructed hyper-
graph accurately captures the underlying structure
of complex and densely packed data.

This paper makes the following contributions to
the field of ABSA:

e We introduce HyperABSA, the first
hypergraph-based framework for ABSA,
demonstrating its effectiveness in capturing
intricate  aspect—sentiment  interactions,
particularly in small datasets.

* We propose a novel hypergraph construction
strategy that uses hierarchical clustering with
an acceleration-based thresholding criterion
to dynamically form hyperedges.

* Our method achieves state-of-the-art perfor-
mance. We also conduct a thorough ablation
study on various graph and hypergraph con-
struction methodologies.

2 Related Work

Over the years, ABSA has been widely explored
using various methodologies.

2.1 Graph Based Methods

Graph-based approaches model syntactic and se-
mantic word relationships using GCNs. Early
works integrated dependency tags (Chen et al.,
2019), as well as syntactic and semantic features
from dependency trees (Zhang et al., 2022b, 2024;
Gu et al., 2024) into GCNss to enrich the learning
of word correlations and improve contextual under-
standing. Other works employed relational graph
attention networks and type-aware GCNs to cap-
ture aspect-specific and inter-aspect dependencies

(Wang et al., 2020; Tian et al., 2021; Ansari et al.,
2020; Huang and Carley, 2019; Bao et al., 2023).
Attention mechanisms have also been pivotal,
as seen in (Xu et al., 2021; Pan et al., 2023; Cui
et al., 2023; Yuan et al., 2020), which combined
multi-head attention with graph convolutional net-
works to capture semantic and syntactic depen-
dencies effectively. Furthermore, heterogeneous
graphs (Zeng et al., 2023; Niu et al., 2022) repre-
sent these different relationships explicitly, ensur-
ing that sentiment propagation respects their dis-
tinct roles. Multi-graph models (Aziz et al., 2024;
Zheng and Li, 2024) have been proposed to capture
both local aspect-specific dependencies and global
shared contextual information within a sentence.

2.2 Hypergraph Construction Methods

While prior works have successfully leveraged hy-
pergraphs in other fields, their potential remains
unexplored in ABSA. Much of the focus has been
on developing advanced hypergraph neural network
architectures (Feng et al., 2019; Zhi, 2024), with
less emphasis on the original construction of hyper-
graph from text.

Recent hypergraph construction methods often
use techniques like the Nearest-neighbor methods
(Yu et al., 2012; Gao et al., 2022; Nguyen et al.,
2020; Dai and Gao, 2023) that connect tokens
based on proximity in feature space but often in-
clude irrelevant tokens. Latent Dirichlet Allocation
(LDA) (Ding et al., 2020; Turnbull et al., 2024)
improves word relationship modeling by group-
ing similar words into predefined topics. Cluster-
ing methods (Han et al., 1997, 1998; Chang et al.,
2008; Leordeanu and Sminchisescu, 2012; Saito,
2022) like K-Means enhance hyperedge coherence
by grouping tokens into clusters.

Despite their potential, hypergraphs have yet to
be applied to short text data, particularly for ABSA.
This is mainly due to the challenge posed by sparse
feature representations in short text, which make it
difficult for existing hypergraph algorithms to effec-
tively capture semantic and syntactic relationships.
due to their fixed constraints on cluster size and hy-
peredge count. Along with this, the computational
overhead associated with hypergraph modeling fur-
ther limits it’s ability to such tasks.

3 Methodology

In ABSA tasks, a p-word input sentence is rep-
resented as T = {v1,v2,...,0p}, Where v; de-
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Figure 2: Architecture of HyperABSA.

notes the i-th word in the sequence. The task
involves r distinct aspects, represented as B =
{b1,b5,...,bg,b7,...,b0}, where b, denotes the
q-th word of the r-th aspect.

The objective is to predict a mapping function,
gr : (T, b,) — z, which takes as input the pair of
the sentence 7" and aspect-specific features b,., and
outputs the sentiment polarity z for the respective

aspects.

3.1 Hypergraph Definition

A hypergraph is a generalization of a standard
graph, where an edge, called a hyperedge, can con-
nect more than two nodes. Formally, a hypergraph
is defined as H = (V, ), where V is the set of
nodes (vertices), and £ is the set of hyperedges,
with each hyperedge e € £ being a subset of V
(ie,eCV).

To mathematically represent a hypergraph, we
use an incidence matrix I € RIVIXI€l which is a
binary matrix where each entry I; ; is defined as:

~_J1 ifnode v; is part of hyperedge e;
“ 10 otherwise

Given the sentence T = {vi,v,...,vp}, each
token v; is represented as a node v; € V. A hyper-
edge e; € £ will be formed if a subset of nodes
{v1,v2,...,v,} CV share semantic information.

3.2 Representation Learning

Similar to Zheng and Li (2024), we choose BERT
as the text encoder. Based on the approach of Zeng
et al. (2019), we format the input as "[CLS] + sen-
tence + [SEP] + aspect + [SEP]", where [CLS] is
used to represent the sentence, and [SEP] separates
the sentence and aspect, as illustrated in Figure
2. Since sentences may contain multiple aspects,
each aspect is treated independently. For the input
sentence 7', the output of BERT would be the hid-
den states of the last layer, h = {hq, ha,...,hyn}
where h € R™*?, with n being the sequence length
and d the dimensionality of the hidden state.

To further refine the representations, we pass the
hidden states through multiple layers of the trans-
former encoder which consists of two main com-
ponents: Multi-Head Self-Attention and a Position-
Wise Feed-Forward Network as implemented by
(Vaswani, 2017)

3.3 Hypergraph Construction

In this section, we construct a hypergraph based
on clusters derived from hierarchical clustering.
The key step in this process is determining an opti-
mal cutoff distance for partitioning the hierarchical
linkage matrix Z. To achieve this, we employ a
modified version of the elbow method that dynami-



cally adjusts the cutoff threshold based on dataset
size and variability.

3.3.1 Hierarchical Clustering and Linkage
Matrix

Given a dataset with n samples, each represented
by BERT hidden states h, hierarchical clustering
generates a linkage matrix Z € R(~1*4 where
each row z; = [c1, ¢2, 03, 8;]. Here, ¢1 and ¢y are
the indices of the merged clusters at step ¢, J; rep-
resents the inter-cluster dissimilarity, and s; is the
size of the resulting cluster. The dissimilarity val-
ues {0;}"~}' quantify the hierarchical structure of
the data.

3.3.2 Optimal Cutoff Distance Using the
Elbow Method

To determine the optimal cutoff threshold for clus-
tering, we employ an acceleration-based elbow
method that dynamically adapts to the dataset’s
size and structure. Traditional elbow methods often
minimize the total within-cluster sum of squared er-
rors (WSS) to estimate the optimal number of clus-
ters (Nainggolan et al., 2019; Humaira and Rasyi-
dah, 2020). In contrast, our approach directly ana-
lyzes the hierarchical linkage distances and uses ac-
celeration (second-order differences) to detect the
"elbow point," where the rate of change in dissimi-
larity exhibits a significant shift. Additionally, we
introduce a fallback mechanism to handle datasets
with limited hierarchical depth.

Let p € (0, 1] denote the proportion parameter
that controls the fraction of merges considered in
the hierarchical linkage matrix, balancing local and
global cluster structures.

The number of recent merges m is computed as:

m=max(L,|p-(n—-1))), (D)

where n—1 is the total number of merges in the hier-
archical clustering dendrogram. The corresponding
dissimilarities of the recent merges are:

5recent = [5n7mv 5nfm+1a ceey 5n71}' (2)

When |0recent| > 3, we analyze the second-order
differences of the recent dissimilarities Orecent:

A2(srecent = [A(Si-t,-l —Ad; ‘ t=n—m,... ,n—3],
3)

or equivalently:

o= [5i+2_25i+1+5i ’Z =n—-m,... ,n—3]. “4)

A large positive value of «a; indicates a sharp
increase in the dissimilarities, corresponding to
a transition from compact clusters to larger, less
cohesive groups.

The maximum acceleration is determined as:

k = arg max(a), (5)

where k is the index of the largest value in c.
When |drecent| < 3, there are too few values to
compute meaningful accelerations. In such cases,
a fallback threshold is calculated using the mean
and standard deviation of the recent dissimilarities:

5fallback = 5recent + Ao recent (6)

where Orecent and Trecent are the mean and standard
deviation of dyecent, respectively, and A > 0 is a
scaling factor. This fallback mechanism provides a
robust baseline cutoff threshold for small datasets
by accounting the variabilities in dissimilarities of
the recent merges, ensuring better cohesion.

We thus define the elbow dissimilarity dejpow as:

if ‘6recent’ > 37

otherwise.
(N

This approach ensures that the cutoff distance
adapts to both the structure of the dataset and the
variability in the distances.

Once the cutoff distance dqpow 1S determined, the
dataset is partitioned into clusters {C}¥_,, where
each cluster Cj is a set of points such that the intra-
cluster distances are less than depow. The hyper-
graph H is then constructed, where the vertex set
V corresponds to the data points and the hyperedge
set £ is defined as &€ = {e; | e; = C;, C; € C}

o min(én,erk, 5fallback)7
5elbow -

5fallback )

3.4 Hypergraph Neural Network

We adopt a classic approach to a hypergraph neural
network (Feng et al., 2019), which involves multi-
ple layers of vertex and edge convolution. The net-
work ends with a final layer of aggregation which
combines the vertex and edge features.

3.4.1 Vertex Convolution

At layer [, we define the vertex feature matrix as
V! e RVIXd and the edge feature matrix as E! €
RI€1Xd where d is the feature dimension.

We perform convolution on the vertex set V) us-
ing I and V(). We compute the hidden states for
each edge e € £ by aggregating the features of all
the vertices in its set.



To compute the edge weights for the current
layer’s hidden states, we perform the following
operations:

A, = softmax (IT : (wa : El—l)) (8)

M, = V! © (I : Ag) ©)

E'=a - E"' 4 (1-0a) - (W,-M,) (10)

Here, W,, W, € R are learnable weight
matrices for the edge and node operations, respec-
tively, « € R is a learnable parameter which
adaptively controls the contribution from the prior
layer’s hidden states and the vertex aggregation at
each step and ® denotes element-wise multiplica-
tion.

3.4.2 Edge Convolution

Similar to vertex convolution, edge convolution
involves aggregating information across all hyper-
edges associated with each vertex, updating the
vertex feature matrix based on the edge features.

Al = softmax (I- (Wa : VH)) (11)
M, = E' (IT : Aﬁ,) (12)
Vi=a -Vl (1-a) (W, -Me) (13)

3.4.3 Aggregation

After performing vertex and edge convolution for
multiple layers, we merge the refined vertex and
edge feature matrices to get the final logits.

E = W, El @ softmax(W L - EF)  (14)

V =W, L. VI @ softmax(W, L - VE)  (15)

Logits = F(V,E) (16)

Here, W,, W, € R are trainable weights
and F is a mapping function designed to effectively
combine V and E :

F(V,E)=0(W,-[V;E])OV (17

+(1-0(W,-[V;E])OE
where o(+) is the sigmoid function, [V; E] repre-
sents concatenation, and ® denotes element-wise
multiplication.

4 Experiments

4.1 Datasets

We evaluate our proposed model using three bench-
mark datasets: the Multi-Aspect Multi-Sentiment
(MAMS) dataset (Jiang et al., 2019), the SemEval
2014 datasets for Restaurants (Rest14) and Laptops
(Lap14) (Pontiki et al., 2014). The split and the
statistics of the data is adopted from (Bai et al.,
2020)

4.2 Baselines

HyperABSA, as the first approach to introduce hy-
pergraphs to ABSA, is initially compared against
several baseline methods, including IARM (Ma-
jumder et al., 2018), MIAD (Hazarika et al., 2018),
Stagel+Stagell (Ma et al., 2019), CDT (Sun et al.,
2019) and RepWalk (Zheng et al., 2020), BERT-
SPC (Song et al., 2019) and CapsNet (Jiang et al.,
2019) to showcase it’s effectiveness. We then eval-
uate HyperABSA’s performance against multiple
state-of-the-art methods which utilise dependency
trees or graphs that employ GCNs including In-
terGCN (Liang et al., 2020), R-GAT (Wang et al.,
2020), DGEDT (Tang et al., 2020), RGAT (Bai
et al., 2020), RMN (Zeng et al., 2022), CHG-
MAN (Niu et al., 2022), DMGLT (Fang, 2022),
MWGCN (Yu and Zhang, 2023), YORO (Zheng
and Li, 2024).

4.3 Implementation details

For the encoder, we utilize the BERT architecture,
specifically the bert-base-uncased variant. To mit-
igate overfitting, we apply dropout with a rate se-
lected from the range [0.2,0.3] to both the BERT
encoder and the hypergraph convolution layers and
an L2 regularization of A = 2 * 10~°. Model opti-
mization is performed using the Adam optimizer
(Kingma, 2014) with a learning rate of 1072, and a
batch size of 16 is used during training. We conduct
experiments on a single NVIDIA 4090 GPU.

4.4 Results

Table 1 presents a comparative analysis of Hyper-
ABSA against both baseline and recent state-of-
the-art models. On the MAMS dataset, our method
achieves the highest accuracy, outperforming ex-
isting approaches by a margin of 0.3%, while also
maintaining a competitive F1 score. For the Rest14
dataset, HyperABSA demonstrates superior per-
formance in both accuracy and F1 score, with an
average improvement of 0.4% over prior methods.



Model

MAMS \ Rest14 \ Lap14

Acc(%) FL(%) | Ace(%) FL(%) | Ace(%) F1(%)

BERT-SPC' (Song et al., 2019) 82.82 81.9 84.46 76.98 78.99 75.03
CapsNet' (Jiang et al., 2019) 83.46 82.89 84.91 76.59 77.12 71.84
InterGCNT (Liang et al., 2020) 82.49 81.95 85.45 77.64 78.06 73.83
R-GAT" (Wang et al., 2020) 83.16 82.42 84.64 77.14 78.21 74.07
DGEDT" (Tang et al., 2020) - - 86.30 80.00 79.80 75.60
RGAT" (Bai et al., 2020) 82.96 82.12 85.77 79.81 80.31 76.38
DMGLT (Fang, 2022) - - 86.25 79.04 78.82 75.56
RMN (Zeng et al., 2022) 79.97 78.79 84.56 79.05 77.95 70.83
CHGMAN" (Niu et al., 2022) 83.23 82.66 85.98 79.31 78.04 74.46
MWGCN (Yu and Zhang, 2023) - - 86.36 80.54 79.78 76.68
HGCN (Xu et al., 2023) - - 86.45 80.60 79.59 76.24
LLaMa2-13bt (Su et al., 2024) - - 78.00 67.00 73.00 65.00
ChatGPT (zero-shot)* - - 82.39 73.64 77.64 72.30
ChatGPT (few-shot)* - - 84.62 76.08 78.15 75.79
YORO"(Zheng and Li, 2024) 84.21 83.78 83.69 76.22 77.45 73.21
HyperABSA 84.56 83.74 | 86.762 80.641 | 80.46 77.42

Table 1: Performance of Accuracy and F1 score of HyperABSA with other models. T denotes implementation from
(Zheng and Li, 2024), t denotes implementation from (Chen et al., 2024) and * denotes our implementation.

Similarly, on the Laptop dataset, our model attains
the highest accuracy as well as F1 score, with an
average margin of 2% over competitive baselines.
This highlights HyperABSA’s ability to effectively
handle short, multi-aspect, multi-sentiment textual
complexities.

5 Discussion

5.1 Effects of Adaptive tuning

We evaluate the effect of adaptive tuning in hyper-
graph construction against a fixed, non-adaptive
variant that uses a static fallback distance (Equa-
tion 6), with varying « values, while the adaptive
method dynamically adjusts this parameter based
on local structure, enabling more flexible hyper-
edge formation. To ensure a fair comparison, both
methods are evaluated using the same sentence as
in Figure 1

As shown in Figure 3, the non-adaptive method
is highly sensitive to «, producing fragmented clus-
ters at lower values (e.g., a = 0.3) and overly
coarse groupings at higher ones (o = 0.5, 0.7),
which dilute semantic distinctions. This instabil-
ity reveals the limitations of fixed thresholds. In
contrast, the adaptive method consistently forms se-
mantically coherent hyperedges by balancing local
context and global structure. It effectively sepa-
rates concepts, like grouping "service" and "food"
as core subjects, while isolating sentiment-bearing
words like "good", "ok", and "better", enabling
more precise representation of contextual relation-

Model Silhouette Score Davis-Bouldin Score
Min Mean Max Min Mean Max
Random -0.24  -023 -022 1.51 1.59 1.64

KNN-KMeans 0.31 033 040 1.05 1.17 1.32
HyperABSA 036 042 0.62 0.56 099 1.10

Table 2: Comparison of cluster quality across different
hypergraph construction methods.

ships.

5.2 Cluster Quality Analysis

We evaluate the effectiveness of our hypergraph
construction method by comparing it against (i)
a Random hypergraph, in which nodes and hy-
peredges are generated without structural priors,
and (ii) a KNN-KMeans hybrid hypergraph, where
local and global structural cues are captured by
integrating K-Nearest Neighbors and K-Means
clustering. The quality of the resulting cluster
structures is quantified using standard clustering
validation metrics, namely the Silhouette Score
(Rousseeuw, 1987), which evaluates cluster com-
pactness and separation, where higher values in-
dicate well-formed and distinct clusters, and the
Davis-Bouldin Score (Davies and Bouldin, 1979),
which measures the average similarity between
clusters, where lower values indicate better cluster-
ing, across different training epochs.

As shown in Table 2, HyperABSA consistently
outperforms these baseline methods. The Random
hypergraph fails to form meaningful clusters due
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Figure 4: Comparison of test loss between HyperABSA
and a graph-based model RGAT on the Lapl4 and
MAMS datasets

to it’s stochastic nature, often yielding negative sil-
houette scores. While the KNN-KMeans hybrid
introduces some structural priors, it still underper-
forms in terms of clustering quality. These results
highlight the effectiveness of HyperABSA in pre-
serving structure and semantic coherence across
training epochs.

5.3 Generalization Gap

Prior works often relied on constructing multiple
graphs, each capturing a distinct semantic view or
level of granularity to enrich representation learn-
ing. While effective, this approach introduces sig-
nificant overhead in graph construction and fusion
mechanisms. To evaluate the generalization ability
of our proposed model, we measured the general-
ization gap, defined as the difference between train-
ing and test accuracy, as well as loss, across varying

Rest14
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Lap14

o~ HyperABSA
—e— YORO
—e— RGAT

Train Acc - Test Acc

Bgen

10 20 30 40 50 60 70 80 90
Training Data Percentage (%)

Figure 5: Evaluation of HyperABSA against multi-
graph-based models on the Rest14 and MAMS datasets
in terms of generalization gap.

amounts of training data. Each configuration was
repeated across multiple random seeds, and we re-
port the average values to ensure robustness. We
conducted this evaluation on both the Lap14 and
Rest14 datasets, comparing HyperABSA with two
strong baselines: YORO, a multi-graph model, and
RGAT, a single-graph model. As shown in Figure
4 and Figure 5, HyperABSA consistently achieves
smaller generalization gaps across most training
sizes. Our model exhibits strong generalization
even in cases with less data, whereas the other
models require at least 50-70% of the training data
to achieve a comparable amount of generalization.
Notably, while our primary aim was to serve as
an alternative to multi-graph models, HyperABSA
also consistently outperforms the single-graph base-
line across both datasets.

These results suggest that the dynamic and
sample-sensitive structure of HyperABSA enables



Method Variant (with Formula) p Rest14 Lap14 MAMS
‘ Accuracy (%) F1 Score (%) ‘ Accuracy (%) F1 Score (%) ‘ Accuracy (%) F1 Score (%)

HyperABSA (Equation 7) Dynamic | 86.76 80.64 \ 80.46 77.42 \ 84.56 83.74
Setbow = O fallback | 84.07 76.89 | 79.06 75.84 | 84.00 83.51

0.2 80.59 71.61 79.68 76.30 83.48 82.82
Oelbow = On—m-+k 0.5 83.11 74.75 78.13 74.88 83.48 82.87

0.8 82.12 74.60 77.03 73.18 83.55 82.90

0.2 84.78 77.35 79.22 77.14 84.22 83.46
5e1bow = HL’IZTI,((Sn,myrk, 5fa,llback:) 0.5 80.95 72.06 78.75 75495 84.07 83424

0.8 84.98 78.24 79.53 76.03 83.70 83.09

Table 3: Ablation study on Rest14, Lap14, and MAMS showing the impact of acceleration formula and proportion
(p) on HyperABSA’s performance. Formula types are indicated in parentheses within the method name.

Model MAMS | Rest14 | Lapl4 |
Params(100M) Acc/P ‘ Params(100M) Acc/P ‘ Params(100M) Acc/P
RGAT 1.10 75.41 1.10 7197 110 73.00
YORO 115 73.22 115 72.77 L.15 67.37
HyperABSA 110 76.87 110 78.87 111 73.14

Table 4: Model efficiency comparison based on parame-
ter count and accuracy-per-parameter (Acc/P).

it to better model context-specific relationships
while avoiding overfitting, particularly in low-
data regimes. In addition to generalization per-
formance, we assessed model efficiency by com-
puting accuracy-to-parameter ratios for all mod-
els across datasets. As shown in Table 4, Hyper-
ABSA achieves consistently better ratios compared
to both YORO and RGAT, indicating higher perfor-
mance per parameter. This demonstrates that our
approach not only generalizes better but also incurs
less overhead in terms of model size. Together,
these findings reinforce our claim that HyperABSA
is a robust, efficient, and generalizable alternative
to multi-graph models in ABSA.

5.4 Geometric Interpretation of Acceleration

To better understand the role of acceleration in
detecting the elbow point in hierarchical cluster-
ing, we treat the sequence of recent dissimilari-
ties drecent as a discrete signal capturing hierar-
chical merge distances (Equation 2). The first-
order differences, Adyecent, describes the slope of
this sequence, while the second-order differences,
A2d,ecent, describes the curvature, dyecent, quantify-
ing how much the sequence deviates from linearity.
High curvature values indicate regions where the
dissimilarity values exhibit sharp increases, cor-
responding to structural shifts in the dendrogram.
This curvature-based acceleration serves as a reli-
able indicator for detecting the elbow and as de-
scribed in Equation 5, the index of the maximum
acceleration is selected to identify this point.

5.5 Multi granular approach of hypergraph

To explore whether a dynamically constructed hy-
pergraph can serve as a viable alternative to manu-
ally designed multi-graph architectures for multi-
granular reasoning, we conduct a series of compar-
ative experiments. We compare our dynamic hyper-
graph approach with several fixed-granularity base-
lines, including models with only fallback connec-
tions (coarse granularity), and acceleration paths
with static thresholds (p = 0.2, 0.5, 0.8). As seen
in Table 3, across datasets, these fixed strategies
yield lower or inconsistent performance, indicating
their inability to capture the optimal granularity
across samples. In contrast, our model dynamically
selects both the threshold and the graph construc-
tion strategy per instance, effectively adapting to
sample-specific views. These findings support our
broader claim, that automatically identifying an ap-
propriate granularity per instance can offer a strong
alternative to using multiple graphs for capturing
the different granularities.

6 Conclusion

In this paper, we introduce HyperABSA, a novel
hypergraph construction methodology for ABSA
that dynamically forms hyperedges via adaptive
hierarchical clustering. Our approach addresses
the challenge of overfitting in short-text scenar-
ios by leveraging an acceleration-based thresh-
olding mechanism, ensuring that hyperedges cap-
ture meaningful multi-node interactions while pre-
venting excessive fragmentation or over-merging.
Comprehensive evaluations on Lap14, Rest14, and
MAMS datasets demonstrate that HyperABSA
achieves state-of-the-art performance among graph-
based approaches, highlighting its effectiveness in
capturing nuanced multi-node interactions for fine-
grained sentiment reasoning.



7 Limitations

Multi-graph models offer interpretable edge se-
mantics grounded in syntactic or semantic roles,
while hypergraphs, though rich in context, lack this
clarity, posing challenges for interpretability and
fine-grained error analysis. Our approach is com-
putationally complex compared to conventional
single-graph baselines, making it susceptible to
overfitting, particularly on low-resource datasets
such as Lap14, where aspect-opinion annotations
are sparse and domain-specific vocabularies limit
generalization. Although we introduced minor ar-
chitectural adjustments to the base HGNN frame-
work, it was not designed for ABSA. This mis-
match added to the modeling complexity and may
have hindered performance in ABSA-specific sce-
narios.
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