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Abstract
Differentiating relationships between entity001
pairs with limited labeled instances poses a002
significant challenge in few-shot relation classi-003
fication. Representations of textual data extract004
rich information spanning the domain, entities,005
and relations. In this paper, we introduce a006
novel approach to enhance information extrac-007
tion using multiple noisy representations and008
contrastive learning. While sentence represen-009
tations in relation classification commonly com-010
bine information from entity marker tokens,011
we argue that substantial information within012
the internal model representations remains un-013
tapped. To address this, we propose aligning014
multiple noisy sentence representations, such015
as the [CLS] token, the [MASK] token used in016
prompting, and entity marker tokens. We em-017
ploy contrastive learning to reduce the noise018
contained in the individual representations. We019
demonstrate the adaptability of our representa-020
tion contrastive learning approach, showcasing021
its effectiveness for both sentence representa-022
tions and additional data sources, such as rela-023
tion description representations. Our evaluation024
underscores the efficacy of incorporating mul-025
tiple noisy representations through contrastive026
learning, enhancing information extraction in027
settings where available data is limited.1028

1 Introduction029

Relation classification (RC) is an important sub-030

task in the relation extraction framework. It en-031

tails identifying relation types that correspond to032

a pair of entities within a given textual context.033

Extracting relevant information is central to this034

task. To achieve this, RC models must distill rich035

information from sentences, including contextual036

cues, entity attributes, and relation characteristics.037

While language models are essential to extract rep-038

resentations from text, it is noteworthy that previ-039

ous research has highlighted the suboptimal use040

1Our model is available at https://anonymous.4open.
science/r/MultiRep-6E39.

of vector space in sentence representations (Etha- 041

yarajh, 2019). Recent advances have addressed 042

this limitation by improving sentence representa- 043

tions through various techniques, including flow- 044

based approaches (Li et al., 2020), whitening oper- 045

ations (Huang et al., 2021), prompting (Jiang et al., 046

2022), and contrastive learning (Gao et al., 2021; 047

Kim et al., 2021; Zhou et al., 2022). 048

Relation extraction applications suffer from a 049

long-tail of relation types characterized by limited 050

data availability and disproportional data acqui- 051

sition costs (Yang et al., 2021). To address this 052

challenge, few-shot RC tasks models with quickly 053

adapting to unseen relation types using only few 054

labeled examples. Common approaches to this task 055

include meta-learning and prototypical networks 056

which leverage representation similarity to match 057

unseen query instances with few labeled support 058

instances (Snell et al., 2017). Recent research in- 059

corporated supplementary data to enrich model rep- 060

resentations. Yang et al. (2021) and Qu et al. (2020) 061

incorporate information from external knowledge 062

bases, augmenting entity-related knowledge. Wang 063

et al. (2020b) and Yu et al. (2022) utilize linguistic 064

dependencies to integrate structural sentence infor- 065

mation into the model. Textual relation descrip- 066

tions provide an additional perspective on relation 067

types, thereby enhancing the performance of pro- 068

totypical networks (Han et al., 2021; Dong et al., 069

2021; Liu et al., 2022). 070

To capture contextual information in sentences, 071

language models create representations of the tex- 072

tual data. Given the inherent complexity of distin- 073

guishing between various relation types, RC appli- 074

cations commonly combine representations of en- 075

tity marker tokens as sentence representations (Bal- 076

dini Soares et al., 2019; Dong et al., 2021). Addi- 077

tionally, recent work uses contrastive learning to 078

create more discriminative representations in few- 079

shot RC (Han et al., 2021; Zhang and Lu, 2022; 080

Dong et al., 2021). Other studies suggest that rep- 081
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Figure 1: Overview of the MultiRep model, which integrates relation description information. The ◦ represents the
vector dot product between the instance or relation description and the query samples, while the addition operation is
denoted by ⊗. Attracting and repelling forces in contrastive learning are represented by→← and 99K, respectively.

resenting sentences with the [MASK] token through082

prompting improves sentence representations as083

they avoid embedding biases (Jiang et al., 2022).084

In this study, we propose aligning multiple noisy085

sentence representations, such as the [CLS] to-086

ken, the [MASK] token used in prompting, and087

entity marker tokens. Recognizing that encoder088

representations are compressed perspectives of the089

model’s internal representations and consequently090

contain noise, we combine multiple noisy represen-091

tations to construct richer sentence embeddings. To092

achieve alignment among these noisy representa-093

tions, we employ contrastive learning, which aims094

to maximize the intra-sentence representation simi-095

larity. We concatenate the different representations096

to form the instance representation. This approach097

enriches sentence embeddings in two fundamen-098

tal ways: (i) by merging multiple perspectives, it099

encapsulates more information obtained from the100

model’s internal representations, and (ii) through101

the contrastive learning objective, it distills com-102

monalities among the embeddings while reducing103

the impact of noise. A key advantage in our ap-104

proach is the efficient utilization of resources, since105

all representations are derived from a single for-106

ward pass. We demonstrate that this approach can107

be extended to additional information sources, par-108

ticularly relation descriptions. In summary, our109

contributions are:110

• We introduce a novel methodology for informa-111

tion extraction in few-shot relation classification,112

which demonstrates how to align multiple noisy113

representations through contrastive learning.114

• Our approach extends its utility to diverse infor-115

mation sources, including relation descriptions,116

showcasing its adaptability. 117

• We emphasize the resource-efficiency of our ap- 118

proach, streamlining the information extraction 119

process while maintaining performance. 120

2 Approach 121

This section provides a detailed overview of our 122

approach, as depicted in Figure 1. 123

2.1 Task Definition 124

In the N-way K-shot evaluation setting, episodes 125

are randomly sampled from the training set. An 126

episode consists of N × K input sentences x in 127

the support set S = {(xi, reli)}N×K
i=1 and N ×K 128

inputs from the query set Q = {xi}N×K
i=1 . The 129

relations are randomly sampled from the relation 130

types included in the training dataset. Impor- 131

tantly, the relation types in the training set are not 132

overlapping with the test set (and validation set) 133

reltrain ∩ reltest = ∅ (Gao et al., 2019). 134

2.2 Sentence Representations 135

In line with related work, we utilize the BERT- 136

Base model (Devlin et al., 2019) to encode textual 137

inputs. This model creates representations of h = 138

768 dimensions for each input token. Below, we 139

elaborate on the methods used to create multiple 140

sentence representations from the BERT encoder. 141

Average Pooling is a simple technique that in- 142

volves computing sentence representations by av- 143

eraging the token representations. Devlin et al. 144

(2019) append the [CLS] token to all model in- 145

puts and employ its representation for next sen- 146

tence prediction. The entity marker approach 147

consists of augmenting the input sentence x with 148
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position markers that identify the tokens corre-149

sponding to the entities (Baldini Soares et al.,150

2019). This results in a modified input x̄ =151

[x0, ..., [E1_Start], xi, [E1_End], ..., xn]. The152

sentence representation is constructed by con-153

catenating the entity start marker representations154

[E1_Start] and [E2_Start] (Baldini Soares155

et al., 2019). In the prompting approach, the RC156

task is reformulated as a masked language model-157

ing problem. With a template T , each input is trans-158

formed into xprompt = T (x) containing at least one159

[MASK] token. The masked token is interpreted as160

the relation label and predicted based on the con-161

text, i.e. x̄ = [MASK]: x. (Schick and Schütze,162

2021). Gao et al. (2021) use various dropout163

masks to create augmented representations with164

varying levels of noise. As entity marker represen-165

tations are not available for relation descriptions,166

we instead use the prompting and [CLS] represen-167

tations with different dropout masks.168

2.3 Contrastive Representation Learning169

The objective of our representation-170

representation contrastive loss term is reducing171

noise within in the sentence representations172

obtained from the encoder. A key difference to173

contrastive learning objectives in related work lies174

in our method of constructing positive instance175

pairs. In a single forward pass, we derive M176

different representations from each sentence,177

and consider these representations as positive178

pairs. Consequently, representations from other179

sentences in the training set serve as negative180

instance pairs. For a given representation rmi181

(where m ∈ M , i ∈ N ×K), we define positive182

instances r+i and negative instances r−i as follows:183

184
r+i = {rk ̸=m

i | k ∈M}
r−i = {rmj ̸=i | j ∈ N ×K}185

This aims to maximize the similarity between186

different representations of the same sentence and187

minimize the similarity to representations obtained188

from other sentences (van den Oord et al., 2019;189

Gao et al., 2021). It ensures that the differentiating190

factors encoded in the embeddings primarily reflect191

the underlying sentences, regardless of how these192

representations are derived from the internal model193

representations. The representation-representation194

contrastive loss is computed as follows:195

LRCL =
N×K∑
i=1

M∑
m=1

−log
exp

(
ϕ(rmi , r+i )/τ

)
exp

(
ϕ(rmi , r−j )/τ

) ,196

where τ is a temperature scaling parameter, and 197

ϕ(rmi , r+i ) represents the element-wise cosine sim- 198

ilarity
∑M−1

k=1 rmi · rki /∥rmi ∥∥rki ∥ between repre- 199

sentation rmi and each representation in r+i . 200

In the instance-relation description con- 201

trastive loss, we leverage the relation descriptions 202

to maximize the similarity between instance repre- 203

sentations and corresponding relation description 204

representations. To construct the instance repre- 205

sentations Ri and the relation description represen- 206

tations Di, we concatenate all representations ex- 207

tracted from the encoder Ri = [r1i ; r
2
i ; ...; r

M
i ] and 208

Di = [d1i ; d
2
i ; ...; d

M
i ]. For instance representation 209

Ri, we select the corresponding relation description 210

D+ based on the label information in the support 211

set. Non-corresponding relation descriptions D− 212

form negative pairs. The instance-relation descrip- 213

tion contrastive loss is computed as follows: 214

LRDCL =

N×K∑
i=1

−log exp (ϕ(Ri, D
+)/τ)

exp (ϕ(Ri, D−)/τ)
215

2.4 Relation Classification 216

We obtain N class prototypes by averaging the 217

K instance representations in the support set. We 218

compute the similarity between query instances and 219

support prototypes using the vector dot product and 220

selecting the most similar class prototype. For the 221

relation description, we compute the similarity be- 222

tween query instances and relation description rep- 223

resentations D. We add the similarities obtained 224

from the relation descriptions with the similari- 225

ties obtained from the class prototypes and select 226

the most similar prototype and relation description. 227

This is in line with Liu et al. (2022), who instead 228

directly add the prototype and relation description 229

representations. We compute the cross-entropy loss 230

LCE = −log (zy), where zy is the probability for 231

class y. The total loss is defined as the sum of the 232

individual loss terms L = LCE+LRCL+LRDCL. 233

3 Experiments 234

3.1 Dataset and Evaluation 235

We conducted our experiments on the FewRel 236

dataset, which consists of 700 instances for each of 237

the 100 different relation types (Han et al., 2018). 238

This dataset is derived from Wikipedia and is di- 239

vided into training, validation, and test sets, encom- 240

passing 64, 16, and 20 relation types, respectively. 241

The training process involves exposing MultiRep 242

to a large number of episodes sampled from the 243
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Model Relation Descriptions 5-1 5-5 10-1 10-5 Avg.
Proto - - / 80.68 - / 89.60 - / 71.48 - / 82.89 - / 81.16
BERT-Pair - 85.66 / 88.32 89.48 / 93.22 76.84 / 80.63 81.76 / 87.02 83.44 / 87.30
CTEG - 84.72 / 88.11 92.52 / 95.25 76.01 / 81.29 84.89 / 91.33 84.54 / 89.00
DAPL - - / 85.94 - / 94.28 - / 77.59 - / 89.26 - / 86.77
SimpleFSRE - 84.77 / 89.33 89.54 / 94.13 76.85 / 83.41 83.42 / 90.25 83.64 / 89.28
MultiRep (Ours) - 87.13 / 89.20 92.93 / 95.09 78.42 / 84.18 87.29 / 91.65 86.44 / 90.03
TD-Proto ✓ - / 84.76 - / 92.38 - / 74.32 - / 85.92 - / 84.34
HCRP ✓ 90.90 / 93.76 93.22 / 95.66 84.11 / 89.95 87.79 / 92.10 89.01 / 92.87
SimpleFSRE ✓ 91.29 / 94.42 94.05 / 96.37 86.09 / 90.73 89.68 / 93.47 90.28 / 93.75
MultiRep (Ours) ✓ 92.73 / 94.18 93.79 / 96.29 86.12 / 91.07 88.80 / 91.98 90.36 / 93.38

Table 1: Accuracy on the FewRel validation / test set.

Model 5-1 10-1
MultiRep 92.73 86.12
w/o LRCL 92.08 85.95
w/o LRDCL 90.14 84.16
w/o Avg. Pooling 92.26 85.82
w/o Entity Marker 91.90 84.83
w/o [CLS] 91.35 85.51
w/o [MASK] 91.87 85.80
w/ prototype addition 91.75 85.82

Table 2: Model variants with (w/) or without (w/o) in-
dicated representations and architectural changes evalu-
ated on the FewRel validation set.

training set. Model performance is subsequently244

evaluated on previously unseen data from the val-245

idation and test sets. MultiRep was trained for246

30,000 iterations on the FewRel training set with a247

batch size of 4 and a learning rate of 2e-5.248

3.2 Results249

We present the results of our MultiRep approach250

and compare them to relevant benchmark models251

designed for few-shot RC, some of which incor-252

porate relation descriptions as additional informa-253

tion. For consistency, all benchmarked models use254

BERT-Base (Devlin et al., 2019) as the sentence255

encoder. The benchmark models include Proto256

(Gao et al., 2019), BERT-Pair (Gao et al., 2019),257

TD-Proto (Yang et al., 2020), CTEG (Wang et al.,258

2020a), DAPL (Yu et al., 2022), HCRP (Han et al.,259

2021), and SimpleFSRE (Liu et al., 2022).260

Our model evaluation results are summarized in261

Table 1. We analyze these results for two distinct262

scenarios: (i) models that do not incorporate addi-263

tional information, and (ii) models that incorporate264

relation description information. We observe that265

MultiRep outperforms existing models, particularly266

in settings where information is limited. Specifi-267

cally, this includes scenarios where relation descrip-268

tion information is unavailable, as well as 1-Shot269

settings in the presence of relation description in- 270

formation. To validate the importance of individual 271

components in the MultiRep model, we conducted 272

ablation studies and present the results in Table 2. 273

These results are based on the MultiRep model that 274

incorporates relation description information, eval- 275

uated on the FewRel validation set in the 5-Way 276

1-Shot and 10-Way 1-Shot settings. Our findings 277

indicate that removing the contrastive learning loss 278

terms, LRCL and LRDCL, substantially reduces 279

model performance. Furthermore, removing indi- 280

vidual representations from the MultiRep model 281

has a negative impact on performance, and there 282

are no specific representations that disproportion- 283

ately affect the model’s performance. Additionally, 284

we validate our approach of computing separate 285

instance prototypes and relation description proto- 286

types, as compared to the direct prototype addition 287

method introduced by Liu et al. (2022). Our re- 288

sults demonstrate that our approach yields the best 289

model performance for MultiRep. 290

4 Conclusion 291

In this study, we propose aligning multiple noisy 292

sentence representations for few-shot RC using con- 293

trastive learning to efficiently extract discrimina- 294

tive sentence representations. We demonstrate the 295

adaptability of our representation contrastive learn- 296

ing approach, showcasing its effectiveness for both 297

sentence representations and relation description 298

representations. We demonstrate that our approach 299

efficiently extracts relevant information from mul- 300

tiple sentence representations. It is particularly per- 301

formant in low-resource settings, such as few-shot 302

RC not including any additional data sources and 303

1-Shot scenarios. A key advantage of our approach 304

lies in its efficient use of resources, achieved by 305

obtaining all sentence representations from a single 306

forward pass. 307
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5 Limitations308

Although our approach efficiently utilizes multi-309

ple sentence representations within a single for-310

ward pass, it is important to note that this involves311

combining these representations into larger vec-312

tors. This aggregation process may require addi-313

tional memory and computational resources. More-314

over, the application of contrastive learning comes315

with additional computational requirements. Our316

method is specifically designed for few-shot RC317

tasks, and its performance might vary when applied318

to different types of NLP tasks.319
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