
Under review as submission to TMLR

Offline Deep Reinforcement Learning for Visual Distractions
via Domain Adversarial Training

Anonymous authors
Paper under double-blind review

Abstract

Recent advances in offline reinforcement learning (RL) have relied predominantly on learning
from proprioceptive states. However, obtaining proprioceptive states for all objects may not
always be feasible, particularly in offline settings. Therefore, RL agents must be capable
of learning from raw sensor inputs such as images. However, recent studies have indicated
that visual distractions can impair the performance of RL agents when observations in
the evaluation environment differ significantly from those in the training environment. This
issue is even more crucial in the visual offline RL paradigm, where the collected datasets can
differ drastically from the testing environment. In this work, we investigated an adversarial-
based algorithm to address the problem of visual distraction in offline RL settings. Our
adversarial approach involves training agents to learn features that are more robust against
visual distractions. Furthermore, we proposed a complementary dataset to add to the
V-D4RL distraction dataset by extending it to more locomotion tasks. We empirically
demonstrate that our method surpasses state-of-the-art baselines in tasks on both the V-
D4RL and proposed dataset when evaluated on random visual distractions.

1 Introduction

Common model-free (Kumar et al., 2020; Fujimoto & Gu, 2021; An et al., 2021; Kostrikov et al., 2022)
and model-based (Kidambi et al., 2020; Guo et al., 2022) offline reinforcement learning (RL) algorithms
rely on learning from the proprioceptive states to address continuous control tasks. However, obtaining
proprioceptive states is almost impractical in certain scenarios, such as large-scale environments, where
defining the states of all objects is nearly unfeasible. Therefore, RL agents must learn from raw sensory
inputs such as images. Training offline RL agents based on visual observations provides opportunities to
make RL more widely applicable to real-world settings. Unlike offline RL agents trained from proprioceptive
states, studies on offline RL agent training using visual observations (Lu et al., 2023) for continuous control
tasks and well-designed benchmarks are scarce.

Frequently, using a visual encoder, we can estimate the latent proprioceptive features of an image-based
observation and use these latent features to train the RL backbone algorithms (Hansen et al., 2021a; Yarats
et al., 2022). Although this well-established approach is effective in scenarios with static backgrounds, it has
limitations when confronted with visual distractions. These distractions may include changes in background
elements, viewpoints, or variations in the agent’s colour scheme. Existing RL agents, whether offline or
online, underperform in the presence of random visual distractions (Cobbe et al., 2020; Stone et al., 2021;
Wang et al., 2021; Dupuis et al., 2022). By contrast, humans possess a remarkable ability to disregard
visual distractions when observing actions from a visual input. This adeptness highlights our capacity to
concentrate on domain-invariant features, focusing on aspects that remain consistent across diverse settings,
such as an agent’s movement patterns.

We hypothesised that existing vision-based RL algorithms are susceptible to random visual distractions
because the visual encoder in these RL algorithms tends to overfit certain visual distractions during training.
Consequently, these algorithms struggle to estimate robust latent features when exposed to unseen visual
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Figure 1: Our problem formulation. The agent is trained on two types of domains: a normal observation
and a distracted observation. Intuitively, we can say that the latent features consist of agent features and
distraction features. The visual encoder is incentivised by the adversarial training loss to extract latent
features that are common to both domains by suppressing domain-specific visual distractions.

distractions during the evaluation. Our objective is to train the visual encoder in RL agents such that they
can learn domain-invariant features within offline RL settings.

In this work, we investigated an adversarial learning approach to address the visual distraction issue in offline
RL settings by extending a technique originally developed for domain adaptation (Ganin & Lempitsky, 2015).
We consider a framework where the agent is trained on two types of domains and subsequently evaluated
on other unseen visual distractions. We introduce a domain discriminator that attempts to classify the
latent features estimated by a visual encoder into two classes. The visual encoder is trained to minimise
the discrepancy between the latent features of the two domains, whereas the domain discriminator aims
to maximise this discrepancy. The problem formulation and schematics of the adversarial training method
are presented in Figure 1. The visual encoder is incentivised by the adversarial training loss to extract
latent features common to both domains by suppressing domain-specific visual distractions. Furthermore,
we empirically demonstrated that incorporating DropBlock (Ghiasi et al., 2018) into a visual encoder is
essential for improving the robustness of the proposed domain-adversarial training scheme.

To investigate the performance of offline RL algorithms in the presence of unseen distractions, we empiri-
cally evaluated existing offline RL algorithms on the V-D4RL distraction dataset. For a more comprehensive
comparison, we collected offline datasets from additional locomotion tasks. We observed that these agents
performed well when evaluated with previously seen distractions present in the training dataset, but exhib-
ited a significant drop in performance when encountering unseen distractions during evaluation. Figure 2
illustrates this phenomenon. In summary, the contributions of this work are as follows:

1. We empirically demonstrated that commonly used offline RL methods are frequently susceptible
to visual distractions. This highlights the need to develop techniques to enhance policy robustness
against visual distractions.

2. We adopted an adversarial algorithm to visual-based offline RL settings and address the problem
of visual distraction. The adversarial algorithm allows the visual encoder to learn domain-invariant
features. Furthermore, we introduce DropBlock (Ghiasi et al., 2018) into our proposed offline RL
algorithm for further robustness against unseen visual distractions.

3. We extended the existing V-D4RL distraction dataset, which contains only one visual distraction
task, to four additional locomotion tasks for a comprehensive benchmarking of visual distractions
between offline RL algorithms.

4. We empirically demonstrate that the adopted domain-adversarial learning method improves perfor-
mance. Additionally, we compare our method with state-of-the-art offline RL algorithms and related
online-based RL algorithms and empirically demonstrate that our method is more robust in visual
distraction settings in both the V-D4RL dataset and our proposed novel dataset.

2



Under review as submission to TMLR

Figure 2: Initial result of baseline agents DrQv2+BC and AWAC+BC trained on the V-D4RL cheetah-run
medium-expert easy-distraction dataset (Lu et al., 2023). When evaluating on the seen visual distractions
that can be found in the training dataset, we can observe offline agents achieving expert-level performance
(left). However, the agents perform very poorly when exposed to unseen random visual distractions (right).

2 Related Work

2.1 Domain Invariance in RL

Recent advancements in RL, such as RAD (Laskin et al., 2020), DrQ (Yarats et al., 2021), and DrQv2
(Yarats et al., 2022), have demonstrated the effectiveness of data augmentation techniques in improving the
RL performance, sample efficiency, and generalisation. Particularly in vision-based RL, data augmentation
has emerged as a prominent strategy for reducing the reliance on specific training domains. These augmen-
tation schemes enhance the robustness of the encoder representations and subsequently improve the policy,
yielding superior results compared with previous methods (Yarats et al., 2022). For online visual-based RL,
(Cobbe et al., 2019) investigated the effectiveness of common computer vision techniques for improving RL
generalisation, and (Li et al., 2021) employed a gradient reversal layer in online RL settings.

Various visual-based generalisation methods include PAD (Hansen et al., 2021b) which employs self-
supervised learning during evaluation; SVEA (Hansen et al., 2021a) which updates typical CNNs in encoders
to transformers and uses stronger image augmentation; and ILA (Yoneda et al., 2022) which uses dynamic
models to adapt during evaluation. In a broader context, Igl et al. (2019); Islam et al. (2023) proposed using
the variational information bottleneck theory to enhance domain generalisation in RL. They introduced an
additional policy gradient objective to simultaneously minimise the mutual information between different
inputs, alongside actor-critic methods, thereby achieving better feature robustness. Our work focuses specif-
ically on the robustness of the visual encoder, distinguishing it from previous methods. Domain invariance is
also an important topic from the RL safety perspective, and (Haider et al., 2021) provided an overview and
demonstrated how RL agents struggle to provide clear safety boundaries when deployed on safety-related
tasks.

2.2 Benchmarks for Offline Continuous Control

D4RL (Fu et al., 2020) is a prominent benchmark for continuous control of proprioceptive states in offline RL.
The large variety of data distributions has allowed for the comprehensive benchmarking of state-of-the-art
offline RL algorithms (Kidambi et al., 2020; Kostrikov et al., 2022; Kumar et al., 2020) and an understanding
of the strengths and weaknesses of different tasks. Florence et al. (2022) discusses when offline RL algorithms
would outperform behavioural cloning (BC) in learning from proprioceptive states. Conversely, vision-based
datasets for discrete control were created for Atari by (Agarwal et al., 2020); however, they contained
only 50M samples per environment. Hence, V-D4RL (Lu et al., 2023) aims to develop a comprehensive
benchmark for visual-based continuous-control tasks. V-D4RL’s 100 K benchmark represents a significantly
more approachable challenge. Another issue with the current datasets is that they are all simulation-based.
Zhou et al. (2022) proposed using data collected in real-world settings and demonstrated its suitability for
robot learning in realistic environments. However, visual distraction data are lacking in the original V-
D4RL dataset. Our novel datasets aimed to complement the V-D4RL dataset for visual distractions, which
originally included only one task.
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2.3 Dropout and its variants in RL

The application of dropout (Srivastava et al., 2014) to the RL domain is not new. For instance, Hiraoka
et al. (2022) employed dropout in a critic network, demonstrating improved sample efficiency and achieved
comparable performance with only two critic networks compared to the ten critic networks required in REDQ
(Chen et al., 2021). Jaques et al. (2019) deployed dropout to obtain uncertainty estimates of the target Q
values to alleviate the Q-learning overestimation bias. Unlike prior studies that focused on critic networks
to enhance sample efficiency, this study targets the encoder as a source of improvement. To the best of our
knowledge, this is one of the first studies to apply DropBlock (Ghiasi et al., 2018) to RL.

3 Preliminaries

3.1 Reinforcement Learning from Images

A standard RL problem for image-based control can be defined as an infinite-horizon Markov Decision
Process MDP = 〈S, A, p, R, γ〉, where S is the set of observations, A is the set of actions, p is the transition
probability function, R is the reward function, and γ ∈ (0, 1) is the discount factor for future rewards.
Generally, in image settings, image rendering of the system is not sufficient to fully describe the underlying
state of the system. To this end, and per common practice (Mnih et al., 2013), we approximated the current
observation of the system by stacking three consecutive prior images as an observation. We define the replay
buffer D containing the observation, action, reward, and next observation at time step t as D = (st, at, rt,
st+1). The RL agent aims to maximise the discounted expected return Eπ[

∑∞
t=0 γtR(st, at)], which is the

expected cumulative sum of rewards when following the policy in the MDP, where the importance of the
horizon is determined by γ. Consequently, the goal is to determine a policy π that maximises discounted
expected returns.

3.2 Visual Actor-Critic Methods

We consider an architecture in which the input observation s is first transformed using a data augmentation
scheme. Subsequently, the encoder f with parameters θf maps s to a lower-dimensional latent feature vector
z = f(s; θf ). Q-networks have parameters θq. For the replay buffer D and policy π, the policy objective
becomes:

π = argmax
π

Est∼D,aπ
t ∼π(·|f(st;θf )) [Q(f(st; θf ), aπ

t ; θq)] (1)

We employ clipped double Q-learning (Fujimoto et al., 2018) to reduce overestimation bias in the target
value following previous works (Yarats et al., 2021; 2022; Lu et al., 2023). Target Q networks are Q networks
with parameters θq which are a slow-moving copy of θq. The overall critic objective is

min
Q

L = E(st,at,st+1)∼D,aπ
t+1∼π(·|f(st+1;θf ))

[
(y −Q(f(st; θf ), at; θq))2]

(2)

where target value y = r + min
j=1,2

γQj(f(st+1; θf ), aπ
t+1; θq) (3)

3.3 Offline Reinforcement Learning

Offline RL problems can be defined as a data-driven formulation of the RL problem. In offline RL, an
agent can no longer interact with the environment and collect additional transitions using its learned policy.
Instead, the agent was provided with a static dataset of transitions loaded into the replay buffer D =
{(si

t, ai
t, ri

t, si
t+1)}N

i=1. In visual offline RL, following DrQv2+BC (Lu et al., 2023), if we consider an additional
policy constraint behavioural cloning (BC) term with its strength regulated by a hyperparameter λbc, the
policy objective becomes
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π = argmax
π

E(st,at)∼D,aπ
t ∼π(·|f(st;θf ))

[
Q(f(st; θf ), aπ

t ; θq)− λbc(aπ
t − at)2]

(4)

3.4 Visual Distractions Dataset

We describe the visual distraction datasets as static datasets of transitions, where observations are
sampled from different observation distributions, and the reward and action are sampled from the
same distribution. We can define datasets with and without visual distractions as Dnormal =
{(si,normal

t , ai,normal
t , ri,normal

t , si,normal
t+1 )}N

i=1 and Ddis = {(si,dis
t , ai,dis

t , ri,dis
t , si,dis

t+1 )}N
i=1, respectively. The V-

D4RL benchmark (Lu et al., 2023) is a more commonly used offline dataset for visual-based offline RL
methods but contains only one visual distraction task. The V-D4RL dataset was generated with a fixed
visual distraction; that is, the same visual distraction persisted throughout the dataset, whereas during the
evaluation, visual distractions were generated randomly.

4 Domain Adversarial Training for Visual Distractions

We hypothesise that the subpar performance of the current state-of-the-art baselines can be attributed to
visual distractions present during the evaluation but absent from the offline RL training dataset. These
unseen visual distractions confuse the encoder, making the encoder estimate less robust latent features z.
Consequently, the actor-critic backbone, which relies on the latent features z, cannot learn robust policy
and state-action estimations. Baseline agents can achieve expert-level performance in an environment where
the same visual distractions exist in the training dataset. However, when we evaluated the same agent in
an environment with random visual distractions, the agent’s performance diminished significantly, as shown
previously in Figure 2.

In this section, we discuss the proposed approach for improving the robustness of visual-based offline RL
for visual distractions. Our proposed method is based on DrQv2+BC (Yarats et al., 2022; Lu et al., 2023)
and incorporates two components. We adopt (i) a domain discriminator that trains adversarially against the
encoder, and (ii) DropBlock (Ghiasi et al., 2018) layers added to the encoder to achieve robustness against
unseen visual distractions. An overview of this architecture is presented in Figure 3.

To address this issue, we propose a framework in which an agent is trained using datasets from two domains: a
normal observation domain denoted by Dnormal and a visually distracted domain denoted by Ddis. Intuitively,
the presence of domain-specific visual distractions may allow the discriminator to accurately classify latent
features belonging to a particular class. However, we aim to induce the opposite and train the visual encoder
such that the estimated latent features are indistinguishable from the domain discriminator.

For the actor-critic backbone, we chose the same actor-critic RL backbone as presented in DrQv2 (Yarats
et al., 2022; Lu et al., 2023), which is a variant of the actor-critic structure in TD3 (Fujimoto et al., 2018)
using a stochastic policy. We use only the distraction latent features zdis = f(sdis; θf ) to train the actor-critic
backbone. Only the image encoder, which we hypothesise as the source of underperformance, is trained with
both Dnormal and Ddis.

4.1 Domain Discriminator

To facilitate domain adversarial learning, we introduce a discriminator g which trains adversarially against
the encoder via gradient reversal (Ganin & Lempitsky, 2015). The domain discriminator g(z; θg) maps the
latent features z = f(s; θf ) with parameters θg, and outputs the probability of the latent feature z. We use k
as the label for classes k ∈ {0, 1}, representing normal and distraction observations respectively. Both normal
and distraction observations underwent the same data augmentation scheme, which was the same as that in
DrQv2 (Yarats et al., 2022) and DrQv2+BC (Lu et al., 2023). Given that we sample n observations from the
replay buffers Dnormal and Ddis, the discriminator objective Lk can be expressed as a binary cross-entropy
loss, and is defined as follows:
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Figure 3: An overview of general visual actor-critic RL methods with our additional proposed discriminator.
The lower branch is a common actor-critic backbone where an visual encoder is used to estimate latent
proprioceptive features z and uses z to train the RL backbone. The upper adversarial branch is where
we reverse the sign of gradients from discriminator loss from the discriminator g such that the encoder is
incentivised to learn features that cannot be classified successfully by g.

Lk = − 1
n

∑
si∈(Dnormal∪Ddis)

[
ki log(g(zi; θg)) + (1− ki) log(1− g(zi; θg))

]
, where z = f(s; θf ) (5)

Contrary to conventional binary classification tasks, our objective was not to discriminate between different
domains. Rather, we aimed to ensure that the discriminator is unable to classify encoded latent features
when they are similar, irrespective of the domain from which the observations were encoded. To achieve this
goal, we adopted the gradient reversal technique proposed for classical domain adaptation tasks (Ganin &
Lempitsky, 2015).

Although the discriminator learns to use the encoded latent features z to classify the domains, the encoder
learns features that cannot be used to classify the domain successfully because the gradients are reversed.
In other words, while the discriminator learns to maximise the latent feature discrepancy between the
domains, the encoder attempts to minimise this discrepancy. Consequently, the encoder learns to extract
latent features that are shared across both domains, that is, domain-invariant features, while simultaneously
suppressing features that are exclusive to one domain. The parameter updates rule for the encoder f and
for discriminator g are, in addition to the gradients from the critic objective L, as follows, where η1 and η2
are the learning rates:

θf ←− θf − η1

(
∂L

∂θf
−µ

∂Lk

∂θf

)
θg ←− θg − η2

(
∂Lk

∂θg

)
(6)

The encoder parameters θf are jointly updated based on two gradients: one based on the critic objective
and the other based on the discriminator objective, as illustrated in Equation (6). The key distinction in
a typical update is the −µ hyperparameter. This hyperparameter is crucial in adversarial training. This
−µ hyperparameter is necessary for preventing a typical encoder update from learning the dissimilarities
between features across domains. For all experiments, we selected µ = 1.
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4.2 DropBlock in Encoder

Common to supervised learning approaches, forcing the encoder not to rely on specific features discourages
overfitting the visual distractions found in the offline dataset. To this end, we added DropBlock (Ghiasi
et al., 2018) to the visual encoder, driving the encoder to rely on a wider patch of features during the
learning process to improve its robustness, thus preventing less robust latent feature z estimations when
unseen distractions are present. DropBlock drops patches of a convolutional map (e.g. a 7 × 7 map) rather
than a single cell (as in dropout (Srivastava et al., 2014)). The visual encoder would be less likely to overfit
the detailed observations that are present in the dataset but would gather information that exists in both
Dnormal and Ddis, consequently reducing the reliance on background information. We empirically found that
adding DropBlock to the visual encoder f frequently enhanced the performance of the proposed domain
adversarial training approach. The results are presented in Table 6.

5 Novel visual distractions dataset

Table 1: Comparison between V-D4RL distraction benchmark and our novel dataset. ✓denotes that the
data exists. △ denotes that although the distraction data exist for walker-walk random, it was only collected
in 64 × 64 pixels, whereas the cheetah-run medium-expert data were collected in 84 × 84 pixels. In contrast,
ours are all 84 × 84 pixels.

Task Difficulty V-D4RL distractions our datasets
cheetah-run random ✓
cheetah-run medium-expert ✓ ✓

ball-in-cup-catch random ✓
ball-in-cup-catch medium-expert ✓

reacher-easy random ✓
reacher-easy medium-expert ✓
reacher-hard random ✓
reacher-hard medium-expert ✓
walker-walk random △ ✓
walker-walk medium-expert ✓

V-D4RL (Lu et al., 2023) provides a starting benchmark for visual distractions in offline RL settings. How-
ever, specifically for distraction observations, they only collected the cheetah-run medium-expert set (in 84
× 84-pixel format) and the walker-walk random set (in 64 × 64-pixel format). Therefore, it is suitable
to extend the existing V-D4RL dataset to provide a more comprehensive benchmark for offline continuous
control with visual distraction. We collected the Distracting Control Suite (Stone et al., 2021) data and the
original DeepMind Control Suite (Tassa et al., 2018) for four additional tasks with three difficulties each, all
in a unified 84 × 84-pixel format: medium, expert and random sets (medium and expert are combined to
form the medium-expert set). Specifically, we collected for the following tasks: cheetah-run, walker-walk,
ball-in-cup catch, reacher-easy, and reacher-hard. For comparison, we also collected our set for the
existing walker-walk random set and the cheetah-run medium-expert set. A brief comparison between the
proposed novel dataset and the V-D4RL benchmark is presented in Table 1. For dataset collection, we fol-
lowed the procedures described in V-D4RL (Lu et al., 2023). A more detailed comparison of the benchmarks
is provided in Appendix H. We plan to release the dataset and codes after the publication.

6 Comparison with offline RL algorithms

To evaluate the proposed method, we train four baseline offline RL agents: DrQv2+BC, visual AWAC+BC,
and visual IQL and offline-adapted DreamerV2 (Danijar Hafner, 2021), noted as DV2 (following to V-D4RL).
Visual-AWAC+BC is a variant of DrQv2+BC that uses AWAC (Nair et al., 2020) as an actor-critic backbone
in addition to the BC term, and visual-IQL uses IQL (Kostrikov et al., 2022) as the backbone (without the
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BC term). Both use the same visual data augmentation and encoder scheme in DrQv2+BC and only replace
the actor-critic method. All four baseline algorithms were trained directly using the distraction dataset. As
mentioned in the proposed method, the input domains for the discriminator are normal and dis-x and dis-x ∈
{easy, medium, hard}. This is to ensure that the RL backbones were trained on the same offline data, and to
isolate the effects of the proposed method on the encoder. The input domain for the RL backbone contained
distracted data x, x ∈ {easy, medium, hard}, as noted in the training set column in Table 8 for all algorithms.
The discussion and results on two alternative formulations where 1) the encoder of baseline methods were
trained on both distracting data, and 2) where our proposed method is trained with two difficulties of
distractions (no normal observation) are included in Appendix D. A full list of hyperparameters are shown
in Appendix I.4. We follow the original works’ hyperparameters for baseline methods. A brief robustness
analysis can be found in Appendix G

All reported numbers were unnormalised, with a maximum reward of 1000 and evaluated over 30 episodes.
All reported numbers represent the evaluation results at 1M steps. We trained five seeds: seed ∈ {0,1,2,3,4}.
For the best practices (Agarwal et al., 2021), we report the IQM and 95% stratified bootstrap confidence
intervals (CIs). The drop rates for different tasks are presented in Appendix I.

6.1 V-D4RL Distraction Dataset

As defined in V-D4RL (Lu et al., 2023) and the Distracting Control Suite (Stone et al., 2021), there are three
levels of distractions: distraction-easy, distraction-medium and distraction-hard. The training results evalu-
ated on all three types of distractions (noted respectively as e, m and h), alongside the normal observations
(noted as n), are summarised in Table 8. Overall, the experimental results demonstrate that the proposed
method consistently outperforms other model-free offline RL baselines in most tasks. DrQv2+BC and IQL
were the second-best algorithms overall. Interestingly, training directly on more challenging datasets does
not result in better performance, even on difficult tasks, compared with agents trained on simpler datasets
and evaluated on more difficult tasks. We hypothesise that this is because the datasets do not contain suf-
ficient variations in distractions for the more difficult distractions; thus, the agents have difficulty learning
to deal with them, whereas training on easier tasks allows the agent to infer some domain invariance across
distractions.

Table 2: Training result with V-D4RL cheetah-run medium-expert distraction dataset. The reported num-
bers are IQM and 95% stratified bootstrap CIs in between parentheses. We mark numbers in bold when one
algorithm performs statistically significantly better using t-test with p ≤ 0.05 compared to other algorithms
on IQM. Abbreviations: N=normal, E=easy, M=medium, H=hard.

cheetah-run medium-expert (V-D4RL)
train eval DrQv2+BC AWAC+BC IQL DV2 Ours

E

N 115.1 (51.4, 177.6) 82.2 (66.0, 250.8) 113.9 (66.0, 155.6) 59.6 (21.9, 118.2) 229.7 (160.6, 251.5)

E 83.6 (57.9, 96.0) 60.9 (53.3, 72.8) 67.1 (54.8, 76.9) 70.0 (42.2, 92.1) 130.6 (102.0, 161.0)

M 35.0 (33.1, 44.5) 28.5 (20.2, 47.5) 41.9 (39.7, 54.4) 76.2 (36.0, 134.6) 81.0 (66.3, 109.3)

H 18.1 (14.2, 28.0) 18.6 (14.8, 22.7) 20.3 (14.8, 27.6) 90.2 (42.5, 136.8) 55.4 (42.2, 60.5)

M

N 69.6 (48.1, 87.2) 35.1 (3.1, 106.8) 55.8 (37.6, 115.3) 84.2 (49.7, 88.5) 84.4 (36.2, 116.0)

E 32.5 (22.3, 56.2) 18.4 (17.5, 26.4) 39.3 (26.1, 61.5) 55.3 (41.1, 121.1) 60.5 (33.0, 72.8)

M 34.4 (21.3, 49.4) 24.5 (17.2, 29.8) 36.9 (29.7, 40.1) 61.8 (34.8, 88.9) 49.2 (37.0, 66.9)

H 13.5 (12.5, 18.6) 22.0 (17.3, 32.3) 20.4 (12.7, 24.9) 65.4 (48.0, 98.8) 20.2 (13.8, 30.8)

H

N 17.3 (9.9, 29.2) 9.9 (5.8, 16.0) 4.9 (2.4, 7.1) 73.6 (48.6, 134.3) 39.2 (16.9, 60.8)

E 14.2 (9.8, 16.5) 16.6 (13.9, 25.8) 8.5 (6.0, 12.6) 76.5 (37.6, 104.7) 29.4 (21.0, 41.2)

M 11.6 (10.4, 22.3) 15.8 (12.5, 21.1) 10.8 (9.2, 19.5) 105.5 (82.7, 116.9) 24.9 (17.7, 28.5)

H 12.4 (9.1, 15.7) 16.6 (13.3, 32.7) 9.8 (9.2, 14.0) 58.5 (37.6, 81.7) 27.3 (16.7, 33.6)

IQM total 457.3 349.1 430.2 876.8 831.8
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Table 3: Results comparison on our dataset walker-walk medium-expert distraction dataset. The reported
numbers are IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N,
dis-easy: E, dis-medium: M, dis-hard: H.

walker-walk medium-expert (ours)
train eval DrQv2+BC IQL DV2 Ours

E

N 469.8 (296.3, 511.3) 184.7 (37.1, 394.2) 30.6 (27.3, 45.2) 633.4 (600.4, 768.2)

E 231.9 (184.7, 254.0) 246.4 (165.9, 294.1) 21.0 (19.4, 28.7) 293.8 (234.4, 401.3)

M 118.0 (97.4, 153.4) 96.7 (70.0, 155.5) 26.4 (25.2, 31.0) 156.5 (124.1, 251.7)

H 70.1 (41.9, 83.5) 56.2 (40.4, 74.8) 29.1 (24.5, 30.3) 104.0 (55.5, 142.2)

M

N 229.8 (121.2, 317.7) 143.6 (39.5, 345.1) 31.5 (27.8, 41.8) 362.9 (145.6, 407.9)

E 163.8 (113.9, 173.6) 105.6 (76.1, 170.7) 32.0 (28.9, 39.7) 209.1 (178.5, 259.2)

M 125.2 (108.4, 166.2) 130.6 (94.7, 140.8) 35.6 (31.2, 42.1) 191.1 (164.3, 249.7)

H 69.0 (58.9, 78.4) 70.4 (57.6, 96.0) 31.4 (30.4, 37.3) 112.5 (104.3, 131.6)

H

N 30.0 (26.5, 65.1) 30.6 (18.8, 41.9) 45.1 (35.5, 62.7) 42.5 (39.2, 81.7)

E 32.3 (26.1, 37.9) 31.4 (25.6, 36.5) 47.5 (35.9, 64.1) 47.6 (39.4, 80.2)

M 38.9 (34.3, 42.0) 31.1 (24.2, 40.6) 40.2 (34.0, 50.8) 56.6 (42.5, 79.0)

H 37.1 (33.3, 71.9) 30.9 (29.7, 45.6) 38.4 (30.4, 48.1) 51.2 (42.0, 71.3)

IQM total 1615.9 1158.2 408.8 2261.2

6.2 Our Distraction Dataset

The selected results on the walker-walk medium-expert distraction dataset are shown in Table 3, and an
overview of the results is presented in Table 4 for our proposed novel dataset. We observed that our
proposed method outperformed all the tasks overall. For more detailed results for our dataset, please refer
to Appendix B. The drop rates for different tasks differ; more details regarding the hyperparameters are
presented in Appendix I.

Table 4: Aggregated IQM totals on V-D4RL distractions dataset and our novel visual distractions dataset,
evaluated on medium, expert and medium-expert difficulty of respective datasets. For some of the tasks
below, we only train DrQv2+BC for baseline comparison. Please refer to Appendix B for the full results.

Task DrQv2+BC Ours
cheetah-run (V-D4RL) 1407.0 2298.0

cheetah-run (ours) 853.9 2035.0
ball-in-cup-catch (ours) 15298.4 18465.9

reacher-easy (ours) 1792.1 2432.6
reacher-hard (ours) 52.0 231.6
walker-walk (ours) 4644.7 6594.3

7 Comparison with visual generalisation methods in RL adapted to offline settings

In this section, we compare the existing generalisation methods in RL that utilise both normal-domain and
distracted-domain data. These methods are closely related to our proposed method. The main difference
from our work is that these methods were generally developed for online RL with access to two environments,
and we assume that we have access to two datasets. Another difference is that these methods often require
consecutive training, whereas our method can be trained in an end-to-end manner.

Specifically, we adopted PAD (Hansen et al., 2021b), SVEA (Hansen et al., 2021a), and ILA (Yoneda et al.,
2022) for purely offline settings. To facilitate comparison, we adapted these methods to offline RL by initially
training them on one distracted observation, then adapting them to the respective test environments, and

9



Under review as submission to TMLR

Table 5: Results comparison with related domain adaption methods in RL trained with V-D4RL cheetah-
run medium-expert distracting dataset. The reported numbers are IQM and 95% stratified bootstrap CIs
in between parentheses.

cheetah-run medium-expert (V-D4RL)
train eval PAD ILA SVEA Ours

E

N 65.8 (43.1, 85.3) 100.4 (60.7, 124.6) 39.2 (28.7, 56.8) 229.7 (160.6, 251.5)

E 28.7 (24.7, 39.8) 13.7 (8.7, 28.3) 28.1 (23.0, 40.8) 130.6 (102.0, 161.0)

M 17.5 (13.8, 19.3) 25.9 (15.6, 31.7) 36.8 (26.7, 46.4) 81.0 (66.3, 109.3)

H 22.4 (16.3, 24.8) 29.0 (20.1, 40.1) 57.9 (42.6, 82.0) 55.4 (42.2, 60.5)

M

N 23.6 (17.6, 26.9) 155.3 (101.6, 160.7) 51.2 (38.7, 62.8) 84.4 (36.2, 116.0)

E 19.2 (16.4, 28.8) 60.0 (43.6, 66.8) 35.0 (25.6, 42.4) 60.5 (33.0, 72.8)

M 14.1 (11.9, 19.8) 34.2 (29.1, 39.5) 35.8 (28.4, 55.7) 49.2 (37.0, 66.9)

H 21.3 (16.7, 26.8) 26.4 (23.6, 33.0) 41.2 (25.7, 56.2) 20.2 (13.8, 30.8)

H

N 16.8 (14.2, 38.2) 96.4 (89.3, 108.1) 31.0 (22.6, 37.0) 39.2 (16.9, 60.8)

E 16.3 (11.4, 20.8) 38.3 (22.7, 56.1) 25.9 (20.1, 28.0) 29.4 (21.0, 41.2)

M 18.8 (13.2, 22.0) 40.5 (23.1, 45.7) 25.3 (21.4, 32.1) 24.9 (17.7, 28.5)

H 20.3 (12.9, 23.3) 23.4 (22.5, 27.5) 21.5 (16.0, 34.4) 27.3 (16.7, 33.6)

IQM total 284.8 607.5 430.9 831.8

subsequently demonstrating their performance post-adaptation. All hyperparameters were in accordance
with the original authors; we did not make algorithmic changes but only data changes.

In PAD (Hansen et al., 2021b), we used the V-D4RL dataset (distracted observations) as the replay buffer
during training and used the inverse dynamics task as the auxiliary training task because it was the best-
performing setup in their work. During deployment, we directly adapted to the distracting control suite
environment. In the ILA (Yoneda et al., 2022), we train the source domain (in Figure 4 in their paper)
purely on the V-D4RL dataset (distracted observations). For the target domain, we adopted the V-D4RL
distraction dataset. We used the dynamic model introduced in ILA. For the SVEA, we trained directly on
the V-D4RL dataset (distracted observations). The selected results are shown in Table 5, and the full results
are summarised in Appendix C. Our proposed method outperforms three domain adaptation approaches in
distracted environments.

Interestingly, PAD and SVEA usually exhibit fewer performance drops when trained on an easier distraction
dataset and are evaluated in a more difficult environment. Similar to ours, the ILA (Yoneda et al., 2022) uses
an adversarial approach, which may explain why our proposed method and the ILA suffer from significant
performance drops when distraction difficulties increase, whereas the PAD and SVEA are generally less
affected.

8 Ablation Studies

8.1 DropBlock drop rate

We investigated the effect of DropBlock drop rate using the original V-D4RL cheetah-run distraction dataset.
To achieve this, we train agents with p = {0.0, 0.1, 0.2, 0.3, 0.5}. To understand how the DropBblock helps,
we train the proposed adversarial discriminator without a DropBlock (p = 0.0) in the encoder. We observe
that p = 0.3 is the best performing overall, whereas having no DropBlock (p = 0) is the least performing
variation. Selected results is shown in Table 6, and the full results is shown in Table 19.

8.2 Different types of distractions

It is important to understand which types of distraction are easier for the agent to learn, and which types
are more difficult. As noted previously, there are three types of distractions: background, viewpoint, and
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Table 6: DropBlock ablation results on V-D4RL cheetah-run distraction dataset. The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations for dataset type: medium:
m, expert: e, medium-expert: m-e. Abbreviations for visual distractions difficulty: normal: N, easy: E,
medium: M, hard: H. For example, "e H" equals "expert Hard".

Task eval p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.5

m-E E

N 85.4 (45.4, 119.5) 185.9 (172.9, 243.9) 171.7 (94.4, 216.1) 229.7 (160.6, 251.5) 194.3 (75.8, 208.5)

E 71.7 (56.9, 89.9) 130.6 (102.0, 161.0) 121.7 (99.9, 141.2) 110.6 (83.2, 141.2) 96.8 (91.9, 118.6)

M 42.4 (31.9, 48.8) 68.0 (56.7, 84.9) 94.0 (57.6, 102.6) 81.0 (66.3, 109.3) 77.0 (65.5, 82.0)

H 34.3 (32.0, 36.0) 50.9 (31.3, 53.4) 49.1 (48.0, 55.4) 55.4 (42.2, 60.5) 42.3 (36.7, 46.7)

m-E M

N 63.7 (35.7, 116.4) 33.5 (14.3, 115.4) 43.0 (4.5, 108.4) 84.4 (36.2, 116.0) 60.2 (26.1, 76.5)

E 33.4 (27.8, 47.4) 27.3 (22.6, 38.2) 40.5 (31.1, 55.0) 60.5 (33.0, 72.8) 53.0 (39.8, 90.6)

M 45.0 (31.9, 59.6) 29.7 (21.0, 32.2) 31.2 (25.1, 44.0) 43.9 (22.0, 59.5) 49.2 (37.0, 66.9)

H 25.3 (22.1, 27.5) 13.2 (10.4, 31.7) 20.2 (13.8, 30.8) 13.4 (9.0, 25.7) 15.3 (12.1, 39.5)

m-E H

N 21.9 (15.7, 39.4) 6.0 (2.4, 7.7) 21.5 (17.1, 39.7) 39.2 (16.9, 60.8) 24.4 (11.3, 50.0)

E 12.0 (10.1, 21.9) 16.4 (13.0, 21.0) 29.4 (21.0, 41.2) 21.5 (14.7, 48.6) 18.0 (15.6, 23.5)

M 14.9 (13.0, 16.0) 18.6 (11.0, 22.5) 24.9 (17.7, 28.5) 19.0 (11.2, 26.2) 15.0 (11.5, 19.2)

H 17.1 (11.5, 23.2) 18.1 (13.2, 22.4) 27.3 (16.7, 33.6) 12.7 (10.9, 22.9) 12.8 (9.5, 21.0)

IQM total 467.1 598.2 674.5 771.3 658.3

colour, with three levels of distraction respectively. We performed ablation studies on different types by
enabling only one distraction at a time and testing at three levels each. The evaluation task is cheetah-run.
We used p = 0.3 in our proposed algorithm as the basis for ablation. The results for the medium-expert
dataset are presented in Table 7, and the full results are presented in Appendix E. Generally, the proposed
method performs the best overall. Interestingly, robot colour changes had a minimal effect on the agents’
performance. The background changes also had a slight impact. Agents are generally heavily impacted
by viewpoint changes, and the final performance is significantly related to the agents’ ability to adapt to
viewpoint changes.

9 Limitations

Our method requires two datasets. In addition to the fact that our proposed method requires two
datasets, we also have not discussed in depth the impact of the quality of the two datasets effect performance.
For example, one interesting question to ask is, how different must the two datasets be for our proposed
method to work? We briefly discuss on using two distraction dataset for our proposed method in Appendix D.
An interesting future direction is to further propose novel methods using only distracting data for training.

10 Conclusion

In this work, we tackle the issue of visual distraction in offline RL settings, where the distractions that
exist in the dataset might significantly differ from those in evaluation. We investigated an adversarial-based
algorithm for visual-based offline RL using an additional discriminator with gradient reversal and introduced
DropBlock to the visual encoder. Our approach trains the encoder such that it will learn domain-invariant
features that are more generalisable when unseen visual distractions are present during evaluation. Our
method can be easily implemented by adding a discriminator branch while reversing the gradient flow and
adding DropBlock. Despite the simplicity and efficiency of this method, we empirically demonstrated that
it achieved excellent performance across various difficulties in the V-D4RL visual distraction dataset, as well
as in our proposed datasets. We demonstrated that our proposed method is more robust to various types
of distractions, both individually and in combination. We also showed the importance of having DropBlock
to achieve better performance. Additionally, we empirically found that agents are significantly affected by
changes in viewpoint, a topic that, to the best of our knowledge, has not been extensively discussed. Future
studies should address this issue.
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Table 7: Distractions ablation results on V-D4RL cheetah-run distraction medium-expert dataset, which is
essentially an extended version of Table 2. The "all" row is the same as in Table 2. The reported numbers
are IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations for dataset type: medium-
expert: m-e. Abbreviations for visual distractions difficulty: normal: N, easy: E, medium: M, hard: H. The
ablation studies for the expert and medium distractions datasets are presented in Appendix E.

train eval type of dis DrQv2+BC AWAC+BC IQL Ours

m-e E

E background 91.3 (50.8, 111.8) 69.1 (66.0, 103.8) 97.8 (71.1, 112.0) 215.2 (187.3, 220.5)

E viewpoint 47.1 (23.0, 74.1) 51.3 (28.2, 119.6) 106.3 (50.4, 120.1) 170.7 (145.5, 192.3)

E colour 69.0 (45.4, 140.7) 95.6 (46.5, 143.8) 114.0 (75.5, 158.1) 227.9 (202.1, 269.1)

E all 83.6 (57.9, 96.0) 60.9 (53.3, 72.8) 67.1 (54.8, 76.9) 130.6 (102.0, 161.0)

M background 111.4 (102.2, 123.1) 95.8 (80.3, 128.5) 157.3 (95.7, 188.6) 236.8 (199.6, 244.9)

M viewpoint 32.9 (14.2, 44.7) 28.3 (16.7, 68.6) 48.2 (20.6, 59.2) 94.3 (81.5, 119.9)

M colour 95.0 (53.2, 146.8) 98.2 (49.3, 143.2) 96.0 (68.8, 142.0) 217.0 (189.0, 282.3)

M all 35.0 (33.1, 44.5) 28.5 (20.2, 47.5) 41.9 (39.7, 54.4) 81.0 (66.3, 109.3)

H background 92.7 (78.6, 160.3) 71.1 (61.3, 104.5) 107.7 (91.5, 155.1) 194.7 (149.4, 222.3)

H viewpoint 21.0 (10.5, 25.3) 16.7 (12.2, 30.4) 25.4 (17.1, 41.7) 65.3 (47.3, 74.8)

H colour 71.2 (51.5, 122.1) 105.8 (50.8, 166.7) 98.8 (59.5, 125.2) 200.2 (162.4, 239.5)

H all 18.1 (14.2, 28.0) 18.6 (14.8, 22.7) 20.3 (14.8, 27.6) 55.4 (42.2, 60.5)

m-e M

E background 25.0 (14.3, 47.6) 27.6 (21.5, 79.9) 18.2 (12.9, 51.7) 49.3 (33.5, 63.6)

E viewpoint 37.2 (27.1, 41.6) 53.9 (22.3, 85.0) 29.3 (19.2, 79.3) 80.8 (51.8, 102.7)

E colour 55.3 (38.7, 74.6) 49.9 (19.2, 84.6) 53.9 (32.0, 72.3) 70.8 (38.7, 90.5)

E all 32.5 (22.3, 56.2) 18.4 (17.5, 26.4) 39.3 (26.1, 61.5) 60.5 (33.0, 72.8)

M background 44.0 (28.6, 64.0) 40.2 (35.0, 85.6) 25.3 (20.9, 69.7) 56.0 (47.6, 73.1)

M viewpoint 23.5 (12.5, 30.4) 48.1 (21.8, 70.0) 17.1 (13.8, 35.1) 44.7 (28.6, 61.1)

M colour 39.2 (24.3, 50.7) 57.3 (26.8, 72.7) 44.3 (32.5, 64.5) 76.2 (38.3, 99.9)

M all 34.4 (21.3, 49.4) 24.5 (17.2, 29.8) 36.9 (29.7, 40.1) 49.2 (37.0, 66.9)

H background 39.4 (29.8, 51.7) 41.7 (31.7, 51.8) 34.6 (28.1, 69.0) 68.5 (33.2, 86.4)

H viewpoint 15.5 (10.6, 18.3) 24.5 (15.7, 32.0) 16.4 (9.4, 23.5) 35.3 (17.9, 53.8)

H colour 40.6 (25.9, 66.1) 50.4 (31.5, 71.3) 41.7 (25.7, 66.1) 84.0 (42.8, 96.9)

H all 13.5 (12.5, 18.6) 22.0 (17.3, 32.3) 20.4 (12.7, 24.9) 20.2 (13.8, 30.8)

m-e H

E background 11.6 (9.5, 32.6) 22.2 (19.0, 34.0) 6.7 (5.1, 12.8) 44.3 (27.1, 79.8)

E viewpoint 16.4 (9.0, 36.8) 9.2 (7.2, 14.3) 7.7 (6.6, 10.3) 32.4 (22.6, 46.5)

E colour 16.9 (9.0, 28.0) 11.2 (9.6, 21.7) 6.3 (3.8, 11.3) 43.8 (19.4, 64.4)

E all 14.2 (9.8, 16.5) 16.6 (13.9, 25.8) 8.5 (6.0, 12.6) 29.4 (21.0, 41.2)

M background 18.0 (12.2, 21.0) 22.9 (15.5, 34.3) 8.6 (6.7, 13.1) 34.0 (26.3, 78.5)

M viewpoint 14.8 (7.2, 24.8) 12.7 (10.6, 15.2) 9.2 (6.7, 14.6) 27.1 (21.2, 45.3)

M colour 14.5 (9.8, 24.1) 18.0 (11.7, 24.2) 10.7 (7.0, 16.3) 41.9 (18.3, 54.8)

M all 11.6 (10.4, 22.3) 15.8 (12.5, 21.1) 10.8 (9.2, 19.5) 24.9 (17.7, 28.5)

H background 14.0 (11.3, 20.4) 20.5 (18.4, 28.1) 8.2 (8.1, 9.3) 27.9 (20.3, 45.5)

H viewpoint 10.8 (7.0, 20.7) 12.3 (11.0, 17.9) 8.6 (6.7, 16.7) 32.7 (22.5, 36.3)

H colour 15.9 (9.7, 25.7) 13.6 (10.3, 23.8) 13.1 (7.9, 16.7) 29.1 (17.4, 36.2)

H all 12.4 (9.1, 15.7) 16.6 (13.3, 32.7) 9.8 (9.2, 14.0) 27.3 (16.7, 33.6)
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A Visualisations of tasks

Brief visualisation of tasks is shown below in Figure 4 with different difficulties of the tasks.

Figure 4: Brief visualisation of tasks showing the different difficulties of the tasks. From top to bottom are
normal observations, dis-easy observations, dis-medium observations and dis-hard observations.
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B Full experiment results with offline RL algorithms

In this section, we include the full table results train on V-D4RL cheetah-run distraction dataset, our pro-
posed cheetah-run distraction dataset, ball-in-cup-catch distraction dataset, reacher-easy distraction dataset,
reacher-hard distraction dataset and walker-walk distraction dataset. For V-D4RL dataset, we compare with
baseline agents DrQv2+BC, AWAC+BC and IQL. For our datasets, we mainly compared with DrQV2+BC
as it was the best performing for the V-D4RL dataset, with the exception of walker-walk distraction dataset
where we included IQL to compare.
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Table 8: Training result with V-D4RL cheetah-run distraction dataset. The reported numbers are IQM
and 95% stratified bootstrap CIs in between parentheses. We mark numbers in bold when one algorithm
performs statistically significantly better using t-test with p ≤ 0.05 compared to other algorithms on IQM.
Abbreviations: N: normal, E: dis-easy, M: dis-medium, H=dis-hard. e: expert. m: medium. m-e: medium-
expert.

cheetah-run (V-D4RL)
train eval DrQv2+BC AWAC+BC IQL DV2 Ours

e E

N 108.7 (42.0, 132.9) 44.6 (26.3, 129.5) 59.1 (27.4, 97.3) 124.2 (92.1, 193.3) 233.7 (197.9, 256.8)

E 34.2 (30.5, 47.3) 31.4 (18.4, 45.2) 50.0 (41.9, 95.6) 61.6 (48.1, 105.1) 100.8 (83.6, 113.7)

M 13.7 (11.6, 21.7) 7.8 (5.4, 25.1) 17.3 (7.6, 22.1) 141.2 (130.4, 150.1) 42.0 (35.6, 73.5)

H 9.7 (7.4, 12.7) 6.6 (4.5, 8.0) 6.8 (5.0, 14.7) 61.0 (48.4, 154.7) 33.6 (22.3, 39.1)

e M

N 18.9 (4.2, 64.7) 41.1 (11.7, 93.3) 252.8 (197.0, 346.7) 145.4 (76.6, 233.1) 76.5 (28.2, 110.3)

E 33.3 (18.5, 40.7) 15.0 (9.3, 21.2) 15.2 (5.9, 28.8) 106.4 (80.0, 133.0) 31.1 (26.0, 51.1)

M 28.3 (22.7, 39.3) 17.9 (8.8, 23.1) 11.4 (5.6, 13.9) 85.8 (60.4, 186.1) 27.7 (24.7, 41.5)

H 11.1 (9.3, 14.8) 7.1 (5.7, 13.1) 5.3 (4.5, 8.8) 145.3 (86.7, 196.8) 20.1 (15.9, 27.3)

e H

N 1.5 (1.0, 3.4) 5.0 (1.7, 15.3) 11.2 (4.1, 24.7) 79.5 (58.1, 163.0) 24.3 (17.8, 44.8)

E 9.1 (8.4, 14.2) 14.4 (11.9, 16.8) 8.3 (6.2, 12.6) 69.6 (52.6, 83.9) 18.8 (12.6, 22.2)

M 9.8 (7.9, 17.8) 12.4 (10.2, 13.9) 11.5 (8.1, 15.5) 76.0 (35.3, 123.2) 16.2 (12.9, 18.8)

H 11.1 (7.8, 17.2) 13.6 (10.1, 19.0) 8.7 (6.0, 11.0) 75.6 (53.5, 95.2) 12.4 (9.8, 18.5)

m E

N 131.0 (115.0, 143.2) 79.6 (31.3, 145.2) 124.9 (52.2, 176.6) 186.1 (130.7, 208.4) 246.9 (219.7, 279.7)

E 99.5 (65.6, 110.4) 56.4 (44.0, 77.7) 98.8 (63.1, 118.4) 83.8 ( 66.6, 117.1) 152.0 (122.0, 178.9)

M 41.4 (32.4, 56.8) 23.2 (17.2, 42.8) 26.1 (20.0, 70.4) 182.6 (101.6, 228.5) 68.2 (49.0, 83.3)

H 18.6 (12.7, 22.6) 14.4 (8.7, 19.5) 11.2 (7.6, 18.6) 128.9 (94.1, 171.1) 34.0 (26.9, 41.5)

m M

N 125.9 (81.9, 145.0) 70.4 (49.9, 133.2) 28.3 (15.4, 72.2) 128.7 (73.9, 179.2) 116.4 (68.0, 154.3)

E 37.6 (31.0, 53.2) 18.6 (11.9, 26.8) 27.0 (17.1, 41.6) 63.3 (41.9, 80.5) 45.5 (36.0, 97.9)

M 40.3 (23.6, 52.5) 14.3 (8.7, 17.7) 15.6 (13.5, 19.8) 131.4 (82.5, 189.3) 50.3 (27.5, 52.9)

H 21.2 (14.4, 29.6) 9.8 (7.2, 20.6) 8.1 (7.2, 29.1) 71.8 (62.2, 74.4) 26.5 (19.7, 38.0)

m H

N 60.3 (43.5, 70.7) 19.3 (4.2, 77.9) 13.6 (6.3, 24.7) 194.9 (101.6, 233.5) 36.2 (27.6, 47.7)

E 26.3 (19.3, 33.6) 21.8 (13.0, 31.3) 8.7 (5.5, 14.5) 112.4 (86.7, 218.1) 18.5 (16.0, 24.8)

M 24.5 (20.4, 32.6) 14.0 (7.1, 21.6) 10.6 (7.6, 16.2) 172.6 (113.7, 176.8) 18.3 (14.4, 21.6)

H 33.7 (21.1, 37.6) 12.8 (9.3, 16.2) 15.6 (11.7, 21.2) 123.6 (90.1, 207.7) 16.2 (15.6, 19.9)

m-e E

N 115.1 (51.4, 177.6) 82.2 (66.0, 250.8) 113.9 (66.0, 155.6) 59.6 (19.5, 118.2) 229.7 (160.6, 251.5)

E 83.6 (57.9, 96.0) 60.9 (53.3, 72.8) 67.1 (54.8, 76.9) 70.0 (43.8, 92.2) 130.6 (102.0, 161.0)

M 35.0 (33.1, 44.5) 28.5 (20.2, 47.5) 41.9 (39.7, 54.4) 76.2 (36.5, 136.9) 81.0 (66.3, 109.3)

H 18.1 (14.2, 28.0) 18.6 (14.8, 22.7) 20.3 (14.8, 27.6) 90.2 (42.4, 136.8) 55.4 (42.2, 60.5)

m-e M

N 69.6 (48.1, 87.2) 35.1 (3.1, 106.8) 55.8 (37.6, 115.3) 84.2 (50.3, 88.6) 84.4 (36.2, 116.0)

E 32.5 (22.3, 56.2) 18.4 (17.5, 26.4) 39.3 (26.1, 61.5) 55.3 (40.6, 112.3) 60.5 (33.0, 72.8)

M 34.4 (21.3, 49.4) 24.5 (17.2, 29.8) 36.9 (29.7, 40.1) 61.8 (34.8, 89.2) 49.2 (37.0, 66.9)

H 13.5 (12.5, 18.6) 22.0 (17.3, 32.3) 20.4 (12.7, 24.9) 65.4 (48.0, 98.7) 20.2 (13.8, 30.8)

m-e H

N 17.3 (9.9, 29.2) 9.9 (5.8, 16.0) 4.9 (2.4, 7.1) 73.6 (48.6, 134.3) 39.2 (16.9, 60.8)

E 14.2 (9.8, 16.5) 16.6 (13.9, 25.8) 8.5 (6.0, 12.6) 76.5 (36.2, 104.7) 29.4 (21.0, 41.2)

M 11.6 (10.4, 22.3) 15.8 (12.5, 21.1) 10.8 (9.2, 19.5) 105.5 (82.7, 116.9) 24.9 (17.7, 28.5)

H 12.4 (9.1, 15.7) 16.6 (13.3, 32.7) 9.8 (9.2, 14.0) 58.5 (37.9, 81.7) 27.3 (16.7, 33.6)

IQM total 1407.0 920.6 1275.7 3628.5 2298.0
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Table 9: Results comparison on our proposed walker-walk distraction dataset. The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E,
dis-medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert.

walker-walk (ours)
train eval DrQv2+BC IQL DV2 Ours

E

N 532.8 (503.7, 564.4) 244.3 (92.6, 423.8) 30.0 (25.4, 40.9) 633.2 (609.8, 691.9)

E 190.5 (145.3, 217.5) 186.0 (154.7, 211.7) 41.2 (27.5, 51.7) 289.5 (269.8, 398.5)

M 82.5 (71.9, 117.7) 76.9 (56.5, 92.8) 26.8 (21.3, 32.9) 137.9 (129.2, 234.3)

H 63.5 (52.2, 73.0) 51.5 (37.2, 65.0) 28.8 (22.8, 69.3) 96.9 (67.0, 121.2)

M

N 91.1 (47.3, 154.8) 59.1 (28.9, 92.8) 27.3 (25.7, 54.0) 246.4 (183.5, 276.0)

E 99.6 (94.4, 113.8) 50.7 (45.2, 59.1) 31.7 (27.4, 44.5) 170.6 (110.9, 213.9)

M 96.5 (65.4, 104.5) 51.6 (46.1, 91.9) 24.0 (21.2, 27.0) 154.9 (145.1, 205.5)

H 65.6 (46.2, 74.0) 50.3 (45.4, 58.2) 31.6 (30.5, 54.1) 79.9 (65.8, 89.8)

H

N 48.3 (24.8, 65.6) 22.4 (17.5, 29.1) 38.1 (33.6, 42.8) 38.9 (33.6, 59.1)

E 44.3 (26.2, 46.2) 29.7 (27.2, 33.6) 42.0 (33.2, 48.0) 36.8 (35.2, 63.8)

M 38.3 (32.7, 43.5) 28.8 (26.7, 32.3) 33.4 (25.6, 43.6) 40.6 (35.3, 52.8)

H 43.5 (32.3, 47.0) 35.5 (32.1, 43.5) 26.3 (24.0, 57.0) 48.5 (42.3, 63.8)

E

N 531.0 (469.1, 555.2) 312.8 (111.1, 476.1) 30.0 (25.3, 40.9) 544.9 (533.5, 555.1)

E 156.6 (138.0, 176.6) 205.1 (134.3, 251.2) 41.2 (27.5, 51.7) 279.1 (257.1, 347.0)

M 81.8 (68.9, 115.9) 96.0 (63.2, 108.9) 26.8 (21.4, 32.9) 160.1 (132.4, 203.8)

H 66.7 (50.4, 83.9) 49.0 (42.9, 64.4) 28.8 (23.0, 69.3) 73.0 (58.5, 146.6)

M

N 247.9 (113.9, 325.3) 104.0 (56.5, 168.5) 27.3 (25.7, 53.4) 420.8 (336.5, 488.0)

E 175.6 (127.2, 249.7) 119.9 (106.4, 212.5) 31.7 (27.4, 44.5) 263.6 (201.4, 317.1)

M 125.8 (102.7, 148.3) 77.7 (56.7, 102.1) 24.0 (21.2, 27.0) 227.9 (155.8, 258.1)

H 92.1 (83.2, 98.7) 85.6 (66.9, 96.5) 31.6 (30.5, 53.8) 117.4 (84.5, 178.4)

H

N 27.8 (20.3, 60.8) 32.8 (24.1, 53.4) 38.1 (33.6, 42.8) 71.2 (54.6, 132.1)

E 36.5 (31.9, 40.2) 35.6 (24.1, 42.7) 42.0 (34.1, 48.0) 64.4 (48.8, 90.7)

M 49.9 (40.7, 59.9) 39.2 (27.2, 45.9) 33.4 (25.6, 43.6) 68.6 (46.2, 96.4)

H 40.6 (36.3, 45.3) 39.8 (34.6, 44.3) 26.3 (24.0, 57.1) 68.0 (63.1, 82.8)

E

N 469.8 (296.3, 511.3) 184.7 (37.1, 394.2) 30.6 (27.3, 45.2) 633.4 (600.4, 768.2)

E 231.9 (184.7, 254.0) 246.4 (165.9, 294.1) 21.0 (19.4, 28.7) 293.8 (234.4, 401.3)

M 118.0 (97.4, 153.4) 96.7 (70.0, 155.5) 26.4 (25.2, 31.0) 156.5 (124.1, 251.7)

H 70.1 (41.9, 83.5) 56.2 (40.4, 74.8) 29.1 (24.5, 30.3) 104.0 (55.5, 142.2)

M

N 229.8 (121.2, 317.7) 143.6 (39.5, 345.1) 31.5 (27.8, 41.8) 362.9 (145.6, 407.9)

E 163.8 (113.9, 173.6) 105.6 (76.1, 170.7) 32.0 (28.9, 39.7) 209.1 (178.5, 259.2)

M 125.2 (108.4, 166.2) 130.6 (94.7, 140.8) 35.6 (31.2, 42.1) 191.1 (164.3, 249.7)

H 69.0 (58.9, 78.4) 70.4 (57.6, 96.0) 31.4 (30.4, 37.3) 112.5 (104.3, 131.6)

H

N 30.0 (26.5, 65.1) 30.6 (18.8, 41.9) 45.1 (35.5, 62.7) 42.5 (39.2, 81.7)

E 32.3 (26.1, 37.9) 31.4 (25.6, 36.5) 47.5 (35.9, 64.1) 47.6 (39.4, 80.2)

M 38.9 (34.3, 42.0) 31.1 (24.2, 40.6) 40.2 (34.0, 50.8) 56.6 (42.5, 79.0)

H 37.1 (33.3, 71.9) 30.9 (29.7, 45.6) 38.4 (30.4, 48.1) 51.2 (42.0, 71.3)

IQM total 4644.7 4518.2 1204.4 6594.3
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Table 10: Results comparison on our proposed cheetah-run distraction dataset. The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E,
dis-medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert.

cheetah-run (ours)
train eval DrQv2+BC Ours

e E

N 8.4 (2.5, 16.5) 114.9 (40.3, 133.8)

E 22.4 (12.2, 35.5) 54.6 (50.9, 81.2)

M 12.7 (8.6, 17.4) 39.8 (31.4, 44.5)

H 5.4 (4.3, 6.2) 21.9 (15.7, 30.1)

e M

N 9.9 (5.8, 18.8) 22.0 (7.9, 47.0)

E 5.1 (3.8, 7.7) 24.2 (21.8, 27.5)

M 9.3 (6.0, 14.0) 23.0 (15.3, 32.0)

H 6.1 (4.7, 7.3) 9.8 (8.1, 11.7)

e H

N 3.5 (1.7, 4.3) 17.0 (11.7, 122.1)

E 7.0 (5.3, 9.9) 13.4 (8.9, 17.1)

M 8.2 (7.7, 10.4) 9.3 (6.1, 14.7)

H 10.6 (6.7, 15.1) 7.2 (6.0, 18.0)

m E

N 132.3 (46.4, 165.9) 205.6 (105.3, 295.7)

E 90.5 (50.4, 95.4) 149.3 (106.1, 168.3)

M 35.3 (28.6, 50.8) 63.9 (53.3, 81.2)

H 19.1 (17.3, 21.1) 41.6 (33.6, 52.2)

m M

N 46.1 (16.8, 103.9) 163.2 (144.4, 197.9)

E 18.4 (12.6, 26.0) 72.6 (42.0, 77.7)

M 28.5 (15.5, 42.5) 68.5 (60.8, 73.4)

H 13.8 (10.6, 24.1) 37.3 (30.0, 53.1)

m H

N 12.3 (6.4, 16.3) 25.8 (14.4, 47.3)

E 11.8 (9.5, 16.7) 23.3 (17.0, 42.2)

M 16.7 (10.4, 18.5) 22.1 (13.6, 28.9)

H 18.7 (12.4, 24.4) 23.4 (15.7, 35.2)

m-e E

N 47.3 (18.8, 78.6) 212.4 (185.9, 231.4)

E 61.6 (42.7, 65.0) 151.3 (108.2, 178.5)

M 46.0 (30.0, 60.9) 91.8 (80.0, 101.3)

H 26.1 (19.9, 37.0) 58.2 (34.7, 76.6)

m-e M

N 24.1 (11.6, 69.6) 67.0 (39.1, 191.0)

E 27.7 (16.4, 37.1) 48.0 (37.7, 66.4)

M 23.2 (14.9, 27.6) 34.3 (18.7, 56.4)

H 15.0 (12.5, 16.9) 26.3 (16.6, 41.9)

m-e H

N 2.6 (1.3, 4.0) 37.2 (19.2, 82.7)

E 9.5 (7.2, 14.7) 20.0 (13.5, 29.3)

M 8.2 (6.5, 10.2) 17.4 (12.2, 26.6)

H 10.5 (8.9, 11.6) 17.4 (14.0, 24.6)

total 853.9 2035.0
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Table 11: Results comparison on our proposed ball-in-cup-catch distraction dataset. The reported numbers
are IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E,
dis-medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert.

ball-in-cup-catch (ours)
train eval DrQv2+BC Ours

e E

N 329.7 (0.0, 797.8) 641.7 (189.8, 974.4)

E 329.7 (0.0, 797.8) 640.6 (189.4, 973.1)

M 329.7 (0.0, 797.8) 633.5 (185.2, 967.3)

H 329.7 (0.0, 797.8) 639.8 (189.0, 972.6)

e M

N 330.3 (0.0, 798.2) 659.3 (197.6, 991.6)

E 330.3 (0.0, 800.0) 557.5 (163.7, 896.8)

M 330.5 (0.0, 798.3) 581.0 (153.2, 938.3)

H 330.3 (0.0, 800.0) 560.8 (148.5, 882.6)

e H

N 330.0 (0.0, 796.2) 656.0 (195.6, 987.6)

E 330.0 (0.0, 796.2) 650.5 (194.6, 982.6)

M 341.0 (13.2, 802.8) 581.1 (154.5, 935.8)

H 339.3 (5.6, 800.4) 596.5 (165.4, 927.4)

m E

N 968.3 (918.8, 985.2) 972.0 (966.0, 992.8)

E 541.0 (308.0, 856.1) 578.4 (334.4, 884.5)

M 369.0 (111.8, 791.9) 465.8 (213.7, 825.9)

H 300.2 (81.9, 759.2) 400.7 (108.1, 796.1)

m M

N 965.3 (365.0, 980.4) 662.0 (198.2, 995.4)

E 452.6 (193.7, 831.2) 430.8 (139.6, 817.5)

M 371.2 (152.3, 824.1) 452.4 (196.7, 843.3)

H 398.7 (127.9, 779.4) 375.0 (154.9, 778.2)

m H

N 484.7 (119.6, 833.2) 595.3 (159.4, 952.8)

E 289.7 (192.5, 827.4) 242.5 (117.4, 785.3)

M 224.1 (80.6, 766.8) 241.3 (75.3, 704.8)

H 245.2 (69.2, 682.0) 296.0 (46.9, 807.5)

m-e E

N 958.3 (191.6, 980.6) 950.0 (825.6, 980.6)

E 432.1 (167.4, 829.2) 574.1 (271.9, 896.9)

M 362.7 (88.0, 801.6) 442.9 (159.2, 830.2)

H 313.6 (67.6, 809.1) 413.7 (117.7, 814.3)

m-e M

N 972.7 (192.6, 984.6) 563.7 (143.4, 926.6)

E 506.0 (214.7, 832.4) 366.8 (57.4, 803.4)

M 355.6 (103.5, 790.5) 399.0 (110.7, 789.1)

H 362.0 (60.0, 800.0) 344.2 (52.2, 792.2)

m-e H

N 633.3 (218.8, 804.2) 332.3 (0.0, 799.4)

E 203.9 (70.4, 610.9) 322.2 (59.9, 794.6)

M 289.3 (33.5, 675.1) 331.0 (17.3, 790.4)

H 318.4 (46.0, 719.0) 315.5 (17.1, 766.1)

IQM total 15298.4 18465.9
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Table 12: Results comparison on our proposed reacher-easy distraction dataset. The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E,
dis-medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert.

reacher-easy (ours)
train eval DrQv2+BC Ours

e E

N 48.3 (23.6, 551.2) 46.0 (6.6, 213.6)

E 61.6 (30.9, 91.1) 52.5 (12.2, 212.9)

M 62.2 (31.6, 120.2) 49.7 (8.8, 213.6)

H 61.3 (31.4, 100.6) 48.6 (7.5, 213.6)

e M

N 85.7 (25.8, 173.4) 46.3 (7.8, 214.4)

E 71.7 (29.8, 108.2) 45.4 (7.8, 220.4)

M 79.8 (34.4, 132.4) 44.8 (7.8, 218.7)

H 68.4 (27.8, 111.1) 44.7 (7.8, 217.9)

e H

N 41.3 (14.2, 112.5) 46.7 (7.8, 211.2)

E 43.7 (21.0, 56.5) 46.2 (5.2, 212.8)

M 58.6 (26.6, 83.5) 46.7 (5.2, 209.7)

H 48.8 (32.7, 114.5) 46.7 (5.2, 209.7)

m E

N 14.6 (7.6, 760.0) 315.3 (0.0, 771.2)

E 132.2 (70.1, 463.4) 199.8 (83.0, 362.4)

M 45.2 (29.6, 358.3) 80.6 (62.9, 375.8)

H 57.7 (26.3, 197.0) 87.5 (48.0, 265.7)

m M

N 30.0 (13.0, 661.8) 129.6 (0.0, 748.8)

E 28.7 (16.2, 266.0) 12.3 (6.0, 457.4)

M 37.6 (21.7, 312.9) 102.5 (40.3, 325.3)

H 11.7 (6.8, 310.3) 45.6 (13.7, 262.7)

m H

N 0.0 (0.0, 232.0) 4.3 (2.0, 755.0)

E 24.9 (14.5, 271.4) 91.2 (40.8, 207.0)

M 37.5 (17.2, 259.1) 49.2 (29.0, 239.9)

H 18.6 (4.6, 332.0) 36.5 (19.0, 230.8)

m-e E

N 62.3 (18.2, 130.4) 50.4 (26.2, 648.3)

E 43.6 (24.7, 292.4) 84.0 (29.0, 183.4)

M 63.0 (26.7, 216.3) 49.3 (26.7, 186.0)

H 59.6 (24.5, 218.8) 38.3 (21.7, 179.6)

m-e M

N 69.1 (32.1, 763.0) 47.9 (16.7, 64.1)

E 54.7 (20.7, 288.2) 78.5 (30.6, 109.3)

M 28.0 (17.8, 205.4) 86.9 (48.8, 139.1)

H 68.5 (43.0, 237.6) 66.2 (36.8, 159.5)

m-e H

N 0.0 (0.0, 752.8) 24.3 (7.8, 723.8)

E 93.1 (40.7, 338.4) 69.5 (41.0, 251.3)

M 42.0 (27.5, 310.6) 21.1 (15.7, 301.8)

H 38.1 (29.4, 196.8) 57.1 (33.3, 295.3)

IQM total 1792.1 2432.6
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Table 13: Results comparison on our proposed reacher-hard distraction dataset. The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E,
dis-medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert.

reacher-hard (ours)
train eval DrQv2+BC Ours

e E

N 0.0 (0.0, 4.0) 1.0 (0.0, 3.0)

E 0.0 (0.0, 4.0) 1.0 (0.0, 3.2)

M 0.0 (0.0, 4.0) 1.0 (0.0, 3.2)

H 0.0 (0.0, 4.0) 1.0 (0.0, 3.0)

e M

N 0.0 (0.0, 3.2) 1.7 (0.0, 4.0)

E 0.0 (0.0, 3.2) 1.7 (0.0, 4.0)

M 0.0 (0.0, 3.2) 1.7 (0.0, 4.0)

H 0.0 (0.0, 3.2) 1.7 (0.0, 4.0)

e H

N 0.0 (0.0, 4.0) 1.3 (0.0, 6.4)

E 0.0 (0.0, 4.1) 1.2 (0.0, 6.3)

M 0.0 (0.0, 4.0) 1.3 (0.0, 6.3)

H 0.0 (0.0, 4.0) 1.3 (0.0, 6.1)

m E

N 0.7 (0.4, 20.3) 2.3 (0.0, 8.6)

E 1.0 (0.9, 32.6) 30.2 (13.6, 52.1)

M 1.1 (0.5, 2.3) 8.1 (0.5, 27.0)

H 1.4 (1.1, 4.9) 2.5 (0.6, 30.5)

m M

N 0.0 (0.0, 0.0) 0.0 (0.0, 33.0)

E 0.3 (0.1, 0.9) 0.5 (0.3, 1.2)

M 0.4 (0.3, 1.0) 15.2 (5.1, 54.1)

H 12.0 (1.1, 27.0) 0.8 (0.5, 4.9)

m H

N 0.0 (0.0, 0.0) 0.0 (0.0, 3.2)

E 1.4 (0.7, 2.3) 2.7 (0.9, 8.0)

M 1.5 (1.1, 2.4) 0.6 (0.3, 29.9)

H 0.9 (0.6, 1.4) 32.1 (13.1, 50.6)

m-e E

N 0.1 (0.0, 1.6) 0.0 (0.0, 20.9)

E 3.1 (1.1, 5.5) 8.6 (4.7, 28.2)

M 0.7 (0.3, 5.3) 7.0 (0.3, 26.6)

H 4.1 (3.1, 21.8) 16.6 (5.8, 26.3)

m-e M

N 0.4 (0.3, 35.2) 0.0 (0.0, 42.4)

E 3.6 (2.1, 6.6) 10.7 (4.1, 36.7)

M 3.9 (1.9, 5.6) 10.0 (4.8, 16.0)

H 5.8 (2.5, 6.9) 12.4 (7.6, 23.7)

m-e H

N 0.0 (0.0, 0.0) 25.3 (0.0, 638.8)

E 3.6 (2.4, 6.7) 11.0 (2.4, 42.1)

M 1.5 (1.4, 9.4) 11.7 (1.5, 29.5)

H 4.5 (2.7, 25.9) 7.4 (3.3, 17.0)

total 52.0 231.6
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C Full experiment results with visual generalisation methods in RL adapted to
offline settings

Table 14: Results comparison with related domain adaption methods in RL. The reported numbers are IQM
and 95% stratified bootstrap CIs in between parentheses.

cheetah-run (V-D4RL)
train eval PAD ILA SVEA Ours

e E

N 55.3 (33.9, 67.8) 133.8 (104.5, 158.6) 32.8 (29.0, 38.4) 233.7 (197.9, 256.8)

E 25.7 (20.5, 27.2) 45.2 (41.4, 55.7) 25.5 (18.4, 35.5) 100.8 (83.6, 113.7)

M 14.7 (13.4, 15.9) 53.0 (37.7, 64.3) 29.0 (23.8, 37.3) 42.0 (35.6, 73.5)

H 18.4 (16.4, 19.3) 32.3 (30.0, 38.7) 46.9 (40.8, 49.9) 33.6 (22.3, 39.1)

e M

N 24.8 (13.7, 33.6) 115.3 (87.9, 141.6) 37.7 (36.1, 54.2) 76.5 (28.2, 110.3)

E 17.2 (13.2, 22.2) 54.9 (45.5, 57.5) 42.5 (34.8, 47.9) 31.1 (26.0, 51.1)

M 13.9 (10.0, 15.7) 30.9 (28.1, 41.9) 39.6 (35.2, 48.6) 27.7 (24.7, 41.5)

H 18.3 (12.1, 20.6) 30.1 (26.8, 33.9) 40.2 (28.5, 47.6) 20.1 (15.9, 27.3)

e H

N 17.4 (13.8, 26.9) 99.1 (87.4, 120.2) 42.3 (18.4, 48.3) 24.3 (17.8, 44.8)

E 14.6 (12.5, 15.7) 29.1 (17.9, 47.7) 39.1 (21.9, 47.8) 18.8 (12.6, 22.2)

M 16.9 (13.2, 20.4) 39.2 (14.3, 43.9) 37.9 (17.5, 47.9) 16.2 (12.9, 18.8)

H 16.2 (14.3, 19.1) 23.5 (10.6, 25.6) 49.6 (15.2, 52.1) 12.4 (9.8, 18.5)

m E

N 23.3 (18.4, 30.5) 102.5 (90.1, 221.3) 21.5 (13.0, 24.5) 246.9 (219.7, 279.7)

E 17.8 (14.6, 23.3) 37.1 (29.6, 48.0) 11.2 (5.6, 17.5) 152.0 (122.0, 178.9)

M 11.1 (9.2, 13.4) 42.4 (28.9, 56.7) 12.6 (5.4, 17.6) 68.2 (49.0, 83.3)

H 15.4 (11.9, 19.6) 34.7 (28.7, 40.5) 45.1 (30.9, 61.3) 34.0 (26.9, 41.5)

m M

N 27.2 (21.5, 33.3) 93.5 (80.1, 105.1) 32.5 (25.5, 34.2) 116.4 (68.0, 154.3)

E 12.2 (9.5, 15.8) 55.0 (47.9, 61.4) 21.5 (16.2, 23.1) 45.5 (36.0, 97.9)

M 9.2 (8.0, 12.9) 41.7 1.0, 45.5) 23.1 (18.1, 26.0) 50.3 (27.5, 52.9)

H 11.0 (9.0, 16.2) 17.7 12.2, 21.4) 39.8 (27.7, 48.4) 26.5 (19.7, 38.0)

m H

N 12.5 (8.0, 17.6) 109.9 (81.4, 143.5) 27.6 (21.5, 31.4) 36.2 (27.6, 47.7)

E 13.6 (10.5, 17.2) 46.9 (39.0, 53.5) 25.8 (17.7, 28.3) 18.5 (16.0, 24.8)

M 16.2 (13.9, 19.4) 33.1 (24.1, 47.0) 20.4 (17.1, 23.8) 18.3 (14.4, 21.6)

H 15.6 (13.0, 18.0) 24.3 (20.6, 37.9) 18.2 (10.0, 25.9) 16.2 (15.6, 19.9)

m-e E

N 65.8 (43.1, 85.3) 100.4 (60.7, 124.6) 39.2 (28.7, 56.8) 229.7 (160.6, 251.5)

E 28.7 (24.7, 39.8) 13.7 (8.7, 28.3) 28.1 (23.0, 40.8) 130.6 (102.0, 161.0)

M 17.5 (13.8, 19.3) 25.9 (15.6, 31.7) 36.8 (26.7, 46.4) 81.0 (66.3, 109.3)

H 22.4 (16.3, 24.8) 29.0 (20.1, 40.1) 57.9 (42.6, 82.0) 55.4 (42.2, 60.5)

m-e M

N 23.6 (17.6, 26.9) 155.3 (101.6, 160.7) 51.2 (38.7, 62.8) 84.4 (36.2, 116.0)

E 19.2 (16.4, 28.8) 60.0 (43.6, 66.8) 35.0 (25.6, 42.4) 60.5 (33.0, 72.8)

M 14.1 (11.9, 19.8) 34.2 (29.1, 39.5) 35.8 (28.4, 55.7) 49.2 (37.0, 66.9)

H 21.3 (16.7, 26.8) 26.4 (23.6, 33.0) 41.2 (25.7, 56.2) 20.2 (13.8, 30.8)

m-e H

N 16.8 (14.2, 38.2) 96.4 (89.3, 108.1) 31.0 (22.6, 37.0) 39.2 (16.9, 60.8)

E 16.3 (11.4, 20.8) 38.3 (22.7, 56.1) 25.9 (20.1, 28.0) 29.4 (21.0, 41.2)

M 18.8 (13.2, 22.0) 40.5 (23.1, 45.7) 25.3 (21.4, 32.1) 24.9 (17.7, 28.5)

H 20.3 (12.9, 23.3) 23.4 (22.5, 27.5) 21.5 (16.0, 34.4) 27.3 (16.7, 33.6)

total 723.3 1968.7 1191.3 2298.0

24



Under review as submission to TMLR

D Additional experiments on Data Usage

In the section, we show the results of an alternative formulation where the encoder of the baseline algotihm
uses both normal dataset and distraction dataset during training. DrQv2+BC denotes the baseline algorithm,
DrQv2+BC, both data denotes the baseline algorithm where its encoder has access to both distracting data
and normal data, and Ours denotes our proposed algorithm, as shown in Table 15. Furthermore, we can
train another version where our proposed algorithm is trained on two distracting datasets, shown in Table 16.

Table 15: Results comparison on cheetah-run distraction dataset (V-D4RL). The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E,
dis-medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert. Our method performs better
when the quality of data is mixed (medium-expert), while DrQv2+BC, both data performs much better on
normal observation.

cheetah-run (V-D4RL)
train eval DrQv2+BC DrQv2+BC, both data Ours

e E

N 108.7 (42.0, 132.9) 579.2 (542.4, 661.9) 233.7 (197.9, 256.8)

E 34.2 (30.5, 47.3) 56.6 (52.2, 73.9) 100.8 (83.6, 113.7)

M 13.7 (11.6, 21.7) 23.3 (19.0, 28.0) 42.0 (35.6, 73.5)

H 9.7 (7.4, 12.7) 12.2 (10.4, 14.0) 33.6 (22.3, 39.1)

e M

N 18.9 (4.2, 64.7) 569.0 (432.5, 603.0) 76.5 (28.2, 110.3)

E 33.3 (18.5, 40.7) 36.3 (29.7, 44.8) 31.1 (26.0, 51.1)

M 28.3 (22.7, 39.3) 27.0 (16.9, 36.4) 27.7 (24.7, 41.5)

H 11.1 (9.3, 14.8) 12.7 (8.6, 18.0) 20.1 (15.9, 27.3)

e H

N 1.5 (1.0, 3.4) 419.0 (148.2, 480.0) 24.3 (17.8, 44.8)

E 9.1 (8.4, 14.2) 21.8 (12.5, 40.2) 18.8 (12.6, 22.2)

M 9.8 (7.9, 17.8) 21.9 (14.4, 29.8) 16.2 (12.9, 18.8)

H 11.1 (7.8, 17.2) 16.6 (13.4, 27.5) 12.4 (9.8, 18.5)

m E

N 131.0 (115.0, 143.2) 562.4 (555.5, 577.5) 246.9 (219.7, 279.7)

E 99.5 (65.6, 110.4) 96.5 (78.6, 106.2) 152.0 (122.0, 178.9)

M 41.4 (32.4, 56.8) 66.5 (40.4, 70.6) 68.2 (49.0, 83.3)

H 18.6 (12.7, 22.6) 25.4 (19.3, 28.4) 34.0 (26.9, 41.5)

m M

N 125.9 (81.9, 145.0) 548.5 (541.4, 560.3) 116.4 (68.0, 154.3)

E 37.6 (31.0, 53.2) 63.2 (53.1, 91.3) 45.5 (36.0, 97.9)

M 40.3 (23.6, 52.5) 49.7 (37.6, 59.1) 50.3 (27.5, 52.9)

H 21.2 (14.4, 29.6) 23.0 (17.2, 37.1) 26.5 (19.7, 38.0)

m H

N 60.3 (43.5, 70.7) 531.6 (515.1, 549.5) 36.2 (27.6, 47.7)

E 26.3 (19.3, 33.6) 65.2 (45.7, 79.1) 18.5 (16.0, 24.8)

M 24.5 (20.4, 32.6) 40.9 (35.2, 65.5) 18.3 (14.4, 21.6)

H 33.7 (21.1, 37.6) 26.4 (21.0, 36.5) 16.2 (15.6, 19.9)

m-e E

N 115.1 (51.4, 177.6) 93.3 (35.5, 142.8) 229.7 (160.6, 251.5)

E 83.6 (57.9, 96.0) 69.6 (53.8, 129.7) 130.6 (102.0, 161.0)

M 35.0 (33.1, 44.5) 28.2 (20.8, 38.8) 81.0 (66.3, 109.3)

H 18.1 (14.2, 28.0) 20.6 (16.0, 29.5) 55.4 (42.2, 60.5)

m-e M

N 69.6 (48.1, 87.2) 88.2 (35.6, 137.2) 84.4 (36.2, 116.0)

E 32.5 (22.3, 56.2) 33.1 (27.0, 54.0) 60.5 (33.0, 72.8)

M 34.4 (21.3, 49.4) 23.5 (20.7, 26.1) 49.2 (37.0, 66.9)

H 13.5 (12.5, 18.6) 13.5 (11.9, 29.3) 20.2 (13.8, 30.8)

m-e H

N 17.3 (9.9, 29.2) 7.7 (3.0, 18.2) 39.2 (16.9, 60.8)

E 14.2 (9.8, 16.5) 14.5 (11.3, 19.2) 29.4 (21.0, 41.2)

M 11.6 (10.4, 22.3) 16.3 (14.4, 20.6) 24.9 (17.7, 28.5)

H 12.4 (9.1, 15.7) 15.1 (10.8, 19.4) 27.3 (16.7, 33.6)

IQM total 1407.0 4318.5 2298.0
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Table 16: Results comparison on cheetah-run distraction dataset (V-D4RL). The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E,
dis-medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert. Two distraction data is trained
on easy distraction and medium distraction, with dropblock drop rate p = 0.3. Without tuning
the dropblock probability p, we can observe that even when using two different difficulties of distraction
observations data for training, our proposed method can achieve similar performance compared to training
on normal and distraction observation.

cheetah-run (V-D4RL)
train eval Ours, easy+medium (p=0.3) Ours, normal+dis(p=0.3) Ours normal+dis (best p)

e E

N 202.6 (170.8, 231.6) 233.7 (197.9, 256.8) 233.7 (197.9, 256.8)

E 85.3 (63.6, 99.9) 88.3 (72.1, 107.4) 100.8 (83.6, 113.7)

M 44.0 (27.0, 48.2) 44.9 (34.3, 57.1) 42.0 (35.6, 73.5)

H 30.9 (26.9, 42.9) 21.4 (17.3, 28.1) 33.6 (22.3, 39.1)

e M

N 78.5 (58.6, 102.3) 76.5 (28.2, 110.3) 76.5 (28.2, 110.3)

E 30.3 (25.0, 36.8) 32.8 (29.2, 37.4) 31.1 (26.0, 51.1)

M 29.6 (28.7, 40.6) 23.0 (17.4, 27.4) 27.7 (24.7, 41.5)

H 16.3 (11.6, 23.9) 20.1 (9.7, 24.0) 20.1 (15.9, 27.3)

e H

N 13.4 (7.9, 15.2) 24.3 (17.8, 44.8) 24.3 (17.8, 44.8)

E 7.7 (5.8, 11.6) 16.0 (12.8, 21.0) 18.8 (12.6, 22.2)

M 11.9 (10.4, 18.0) 16.2 (12.9, 18.8) 16.2 (12.9, 18.8)

H 10.8 (8.3, 12.8) 9.8 (7.5, 11.9) 12.4 (9.8, 18.5)

m E

N 222.1 (123.8, 318.5) 246.9 (219.7, 279.7) 246.9 (219.7, 279.7)

E 129.1 (106.7, 142.6) 152.0 (122.0, 178.9) 152.0 (122.0, 178.9)

M 70.8 (60.2, 83.0) 64.0 (52.2, 77.8) 68.2 (49.0, 83.3)

H 38.4 (30.4, 50.1) 30.7 (24.6, 35.7) 34.0 (26.9, 41.5)

m M

N 86.3 (73.5, 121.8) 116.4 (68.0, 154.3) 116.4 (68.0, 154.3)

E 52.8 (43.3, 59.5) 45.5 (36.0, 97.9) 45.5 (36.0, 97.9)

M 40.0 (31.1, 46.9) 30.7 (21.1, 40.4) 50.3 (27.5, 52.9)

H 21.0 (18.1, 28.5) 23.9 (15.4, 37.4) 26.5 (19.7, 38.0)

m H

N 24.3 (11.3, 40.0) 36.2 (27.6, 47.7) 36.2 (27.6, 47.7)

E 8.4 (6.5, 25.7) 14.8 (8.7, 21.3) 18.5 (16.0, 24.8)

M 8.7 (6.5, 23.2) 12.1 (7.6, 14.2) 18.3 (14.4, 21.6)

H 7.9 (4.6, 11.2) 11.4 (7.7, 20.4) 16.2 (15.6, 19.9)

m-e E

N 218.5 (194.5, 235.2) 229.7 (160.6, 251.5) 229.7 (160.6, 251.5)

E 145.0 (129.7, 178.9) 110.6 (83.2, 141.2) 130.6 (102.0, 161.0)

M 81.9 (68.1, 95.9) 81.0 (66.3, 109.3) 81.0 (66.3, 109.3)

H 50.2 (39.5, 61.4) 55.4 (42.2, 60.5) 55.4 (42.2, 60.5)

m-e M

N 119.5 (99.8, 142.2) 84.4 (36.2, 116.0) 84.4 (36.2, 116.0)

E 45.0 (36.1, 60.4) 60.5 (33.0, 72.8) 60.5 (33.0, 72.8)

M 39.1 (32.4, 51.2) 43.9 (22.0, 59.5) 49.2 (37.0, 66.9)

H 20.5 (18.0, 30.1) 13.4 (9.0, 25.7) 20.2 (13.8, 30.8)

m-e H

N 19.5 (7.8, 29.3) 39.2 (16.9, 60.8) 39.2 (16.9, 60.8)

E 29.5 (19.5, 42.8) 21.5 (14.7, 48.6) 29.4 (21.0, 41.2)

M 16.3 (8.9, 29.0) 19.0 (11.2, 26.2) 24.9 (17.7, 28.5)

H 24.0 (12.4, 28.8) 12.7 (10.9, 22.9) 27.3 (16.7, 33.6)

IQM total 2080.1 2162.9 2298.0
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E Ablation on Distractions

Table 17: Distractions ablation results on V-D4RL cheetah-run distraction expert benchmark. The reported
numbers are IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations for dataset type:
expert: e. Abbreviations for visual distractions difficulty: normal: N, easy: E, medium: M, hard: H.

train eval type of dis DrQv2+BC AWAC+BC IQL Ours
e E E background 37.9 (22.8, 58.1) 49.8 (29.6, 72.7) 40.1 (25.4, 147.7) 135.6 (110.5, 244.6)

e E E viewpoint 67.1 (26.4, 91.2) 32.8 (20.4, 64.9) 45.3 (23.9, 80.3) 137.0 (101.5, 150.4)

e E E colour 102.3 (36.0, 127.3) 49.0 (27.2, 127.7) 67.7 (40.0, 95.9) 203.0 (157.8, 226.3)

e E E all 34.2 30.5, 47.3) 31.4 (18.4, 45.2) 50.0 (41.9, 95.6) 100.8 (83.6, 113.7)

e E M background 43.8 (25.6, 59.3) 37.1 (24.1, 58.8) 69.8 (34.8, 114.1) 173.2 (128.1, 212.2)

e E M viewpoint 34.7 (16.1, 44.8) 17.2 (9.7, 21.0) 17.6 (9.8, 22.3) 60.3 (47.4, 72.1)

e E M colour 98.1 (42.0, 121.6) 55.6 (36.6, 118.4) 61.8 (47.0, 69.9) 170.9 (130.7, 207.3)

e E M all 13.7 (11.6, 21.7) 7.8 (5.4, 25.1) 17.3 (7.6, 22.1) 42.0 (35.6, 73.5)

e E H background 55.6 (30.1, 68.6) 20.6 (12.75, 34.2) 35.2 (16.2, 68.4) 127.3 (97.8, 162.9)

e E H viewpoint 12.8 (9.5, 17.7) 12.4 (7.79, 18.1) 9.9 (6.31, 17.1) 46.9 (32.9, 53.9)

e E H colour 70.1 (33.4, 95.6) 52.1 (36.89, 73.9) 53.9 (32.07, 61.7) 170.8 (137.6, 187.4)

e E H all 9.7 (7.4, 12.7) 6.6 (4.5, 8.0) 6.8 (5.0, 14.7) 33.6 (22.3, 39.1)

e M E background 23.7 (13.5, 49.3) 8.4 (7.5, 19.1) 43.0 (20.0, 91.6) 29.6 (16.4, 38.7)

e M E viewpoint 20.8 (9.4, 36.7) 25.3 (6.0, 69.2) 118.5 (85.9, 127.9) 95.8 (28.1, 107.0)

e M E colour 22.6 (13.0, 42.2) 25.8 (6.8, 52.1) 319.8 (272.1, 359.1) 84.5 (32.2, 105.6)

e M E all 33.3 (18.5, 40.7) 15.0 (9.3, 21.2) 15.2 (5.9, 28.8) 31.1 (26.0, 51.1)

e M M background 45.6 (31.6, 61.3) 23.9 (11.5, 44.3) 31.2 (15.5, 67.1) 27.9 (18.7, 35.3)

e M M viewpoint 23.3 (13.0, 36.9) 14.0 (3.7, 35.4) 57.2 (44.7, 69.8) 62.1 (31.7, 83.1)

e M M colour 31.8 (11.9, 36.5) 28.2 (7.0, 57.5) 251.4 (184.8, 267.2) 77.5 (41.9, 94.6)

e M M all 28.3 (22.7, 39.3) 17.9 (8.8, 23.1) 11.4 (5.6, 13.9) 27.7 (24.7, 41.5)

e M H background 31.1 (19.2, 40.5) 20.7 (15.2, 23.5) 23.7 (21.6, 41.8) 23.7 (19.7, 29.0)

e M H viewpoint 12.5 (7.4, 19.6) 6.4 (4.4, 35.0) 24.8 (13.9, 29.4) 36.6 (21.4, 39.9)

e M H colour 36.2 (20.1, 42.1) 29.2 (10.3, 72.6) 200.6 (192.8, 221.3) 65.1 (42.4, 91.0)

e M H all 11.1 (9.3, 14.8) 7.1 (5.7, 13.1) 5.3 (4.5, 8.8) 20.1 (15.9, 27.3)

e H E background 12.4 (9.4, 22.1) 14.0 (11.0, 26.1) 11.6 (10.6, 18.7) 20.6 (17.8, 28.7)

e H E viewpoint 4.1 (2.4, 10.0) 3.1 (2.0, 9.7) 8.9 (3.6, 11.9) 16.9 (13.2, 18.8)

e H E colour 4.4 (2.6, 9.1) 3.9 (2.2, 8.5) 11.8 (7.4, 20.4) 20.6 (15.5, 39.2)

e H E all 9.1 (8.4, 14.2) 14.4 (11.9, 16.8) 8.3 (6.2, 12.6) 18.8 (12.6, 22.2)

e H M background 12.2 (9.0, 29.6) 22.2 (14.5, 29.1) 9.9 (7.1, 11.5) 25.8 (17.9, 54.9)

e H M viewpoint 5.9 (3.4, 7.7) 3.9 (2.6, 9.0) 5.0 (2.6, 7.6) 12.6 (11.2, 22.7)

e H M colour 5.5 (2.7, 8.2) 5.3 (2.8, 8.1) 10.9 (7.4, 21.4) 24.5 (16.6, 32.2)

e H M all 9.8 (7.9, 17.8) 12.4 (10.2, 13.9) 11.5 (8.1, 15.5) 16.2 (12.9, 18.8)

e H H background 12.4 (10.8, 20.1) 13.1 (10.2, 17.7) 11.3 (7.8, 16.3) 22.6 (16.7, 27.1)

e H H viewpoint 5.6 (3.5, 9.4) 4.6 (3.5, 8.5) 5.9 (3.3, 16.8) 21.3 (14.7, 28.1)

e H H colour 7.0 (5.2, 10.5) 5.6 (3.3, 8.1) 10.7 (7.5, 23.0) 18.5 (15.3, 26.7)

e H H all 11.1 (7.8, 17.2) 13.6 (10.1, 19.0) 8.7 (6.0, 11.0) 12.4 (9.8, 18.5)
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Table 18: Distractions ablation results on V-D4RL cheetah-run distraction medium benchmark. The reported
numbers are IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations for dataset type:
medium: m. Abbreviations for visual distractions difficulty: normal: N, easy: E, medium: M, hard: H.

train eval type of dis DrQv2+BC AWAC+BC IQL Ours
m E E background 129.7 (115.1, 163.5) 101.5 (62.6, 123.7) 165.4 (82.7, 167.5) 293.1 (258.5, 317.0)

m E E viewpoint 69.9 (61.1, 103.1) 72.1 (42.7, 105.3) 59.8 (26.8, 99.0) 148.1 (119.4, 172.9)

m E E colour 125.7 (115.88, 136.8) 84.0 (35.9, 130.1) 117.5 (44.3, 166.7) 223.8 (208.1, 301.9)

m E E all 99.5 (65.6, 110.4) 56.4 (44.0, 77.7) 98.8 (63.1, 118.4) 152.0 (122.0, 178.9)

m E M background 53.9 (35.6, 66.6) 8.8 (7.2, 30.0) 10.9 (2.6, 30.5) 30.3 (23.9, 70.3)

m E M viewpoint 105.6 (85.0, 120.0) 68.4 (49.8, 83.9) 33.4 (21.4, 52.3) 98.7 (62.0, 117.7)

m E M colour 95.6 (90.1, 103.6) 76.4 (62.2, 90.0) 45.4 (32.1, 92.7) 103.1 (63.5, 121.2)

m E M all 41.4 (32.4, 56.8) 23.2 (17.2, 42.8) 26.1 (20.0, 70.4) 68.2 (49.0, 83.3)

m E H background 26.8 (18.4, 36.9) 25.6 (15.2, 41.3) 8.8 (6.5, 21.6) 13.7 (8.6, 35.3)

m E H viewpoint 42.9 (34.2, 62.6) 14.0 (10.5, 34.2) 14.5 (10.4, 33.9) 27.2 (22.8, 28.4)

m E H colour 49.4 (36.3, 64.3) 14.9 (4.8, 38.3) 21.3 (9.5, 30.7) 38.0 (26.8, 43.4)

m E H all 18.6 (12.7, 22.6) 14.4 (8.7, 19.5) 11.2 (7.6, 18.6) 34.0 (26.9, 41.5)

m M E background 153.7 (100.4, 180.1) 111.4 (47.2, 122.0) 177.5 (95.8, 202.9) 308.2 (266.4, 351.5)

m M E viewpoint 41.1 (30.9, 65.8) 42.5 (32.6, 59.7) 34.6 (20.4, 66.7) 84.1 (53.1, 97.6)

m M E colour 115.7 (110.3, 148.7) 94.3 (48.1, 132.3) 101.7 (37.3, 145.1) 244.4 (207.2, 290.8)

m M E all 37.6 (31.0, 53.2) 18.6 (11.9, 26.8) 27.0 (17.1, 41.6) 45.5 (36.0, 97.9)

m M M background 49.5 (44.9, 91.6) 20.8 (14.8, 63.5) 34.6 (22.0, 54.0) 61.1 (40.7, 76.5)

m M M viewpoint 72.4 (57.3, 85.4) 56.0 (47.4, 64.9) 20.6 (18.8, 71.3) 76.3 (43.5, 90.0)

m M M colour 94.1 (65.7, 98.7) 66.2 (53.0, 91.8) 46.6 (35.9, 85.4) 88.0 (56.8, 108.5)

m M M all 40.3 (23.6, 52.5) 14.3 (8.7, 17.7) 15.6 (13.5, 19.8) 50.3 (27.5, 52.9)

m M H background 27.8 (21.0, 30.5) 22.1 (12.3, 34.4) 8.4 (6.7, 17.0) 12.3 (7.3, 31.6)

m M H viewpoint 29.2 (27.4, 60.3) 13.3 (8.8, 36.4) 25.4 (12.3, 34.6) 23.4 (18.5, 24.9)

m M H colour 51.2 (32.7, 58.8) 12.4 (6.2, 40.4) 18.5 (9.2, 31.8) 35.4 (27.9, 43.9)

m M H all 21.2 (14.4, 29.6) 9.8 (7.2, 20.6) 8.1 (7.2, 29.1) 26.5 (19.7, 38.0)

m H E background 121.6 (95.2, 163.5) 76.5 (51.6, 108.0) 105.4 (58.2, 143.6) 274.8 (223.7, 310.8)

m H E viewpoint 26.0 (23.6, 42.4) 28.0 (15.1, 38.3) 12.1 (6.3, 25.1) 28.7 (17.9, 39.0)

m H E colour 120.4 (109.5, 128.8) 88.5 (57.3, 132.4) 69.5 (35.2, 124.5) 245.0 (162.3, 279.2)

m H E all 26.3 (19.3, 33.6) 21.8 (13.0, 31.3) 8.7 (5.5, 14.5) 18.5 (16.0, 24.8)

m H M background 42.7 (37.5, 47.7) 19.8 (11.0, 31.9) 38.1 (23.7, 48.3) 39.8 (25.4, 52.7)

m H M viewpoint 41.6 (29.6, 60.9) 32.2 (20.0, 42.3) 12.5 (6.7, 18.8) 38.3 (16.1, 64.9)

m H M colour 85.5 (80.8, 90.0) 67.3 (52.9, 76.2) 46.8 (23.5, 49.9) 75.6 (64.8, 94.5)

m H M all 24.5 (20.4, 32.6) 14.0 (7.1, 21.6) 10.6 (7.6, 16.2) 18.3 (14.4, 21.6)

m H H background 25.5 (19.3, 28.5) 20.9 (14.7, 27.3) 8.9 (7.0, 17.8) 16.8 (12.0, 20.4)

m H H viewpoint 27.4 (25.0, 53.4) 10.6 (6.9, 18.2) 21.2 (11.4, 31.2) 23.9 (20.2, 34.6)

m H H colour 43.1 (26.7, 56.5) 13.2 (6.8, 23.7) 19.2 (7.7, 26.5) 27.0 (24.2, 29.5)

m H H all 33.7 (21.1, 37.6) 12.8 (9.3, 16.2) 15.6 (11.7, 21.2) 16.2 (15.6, 19.9)
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F Ablation on Effectiveness of Dropblock

In this section, we investigate further the effect of dropblock on baseline algorithms. Firstly, the full results
of ablation study on dropblock for our proposed algorithms is shown in Table 19. Secondly, an ablation
study on using only dropblock with baseline algorithm DrQv2+BC is shown in Table 20. We can note that
adding dropblock on baseline algorithm can improve the performance by a fair margin, but the full proposed
algorithm consisting of dropblock and gradient reversal layer is the most performant.

Table 19: DropBlock ablation results on V-D4RL cheetah-run distraction dataset. The reported numbers
are IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations for dataset type: medium:
m, expert: e, medium-expert: m-e. Abbreviations for visual distractions difficulty: normal: N, easy: E,
medium: M, hard: H. For example, "e H" equals "expert Hard".

cheetah-run (V-D4RL)
train eval p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.5

e E

N 114.1 (93.2, 176.2) 176.0 (149.2, 216.8) 153.6 (61.5, 197.3) 233.7 (197.9, 256.8) 176.6 (82.2, 254.7)

E 40.0 (26.5, 59.1) 65.3 (52.9, 85.7) 100.8 (83.6, 113.7) 88.3 (72.1, 107.4) 71.0 (64.0, 99.8)

M 17.2 (16.0, 23.1) 46.1 (30.0, 50.2) 42.0 (35.6, 73.5) 44.9 (34.3, 57.1) 43.7 (35.5, 53.9)

H 15.2 (11.2, 21.7) 22.5 (18.1, 30.0) 22.5 (20.4, 51.4) 21.4 (17.3, 28.1) 33.6 (22.3, 39.1)

e M

N 81.8 (48.7, 105.8) 46.9 (34.4, 78.4) 29.9 (14.5, 70.2) 76.5 (28.2, 110.3) 33.9 (15.9, 60.7)

E 49.1 (30.3, 58.7) 30.2 (22.1, 35.5) 31.1 (26.0, 51.1) 32.8 (29.2, 37.4) 30.8 (25.6, 50.9)

M 30.2 (26.1, 47.4) 27.7 (17.4, 38.5) 22.6 (15.1, 30.6) 23.0 (17.4, 27.4) 27.7 (24.7, 41.5)

H 21.6 (10.8, 23.2) 11.2 (9.2, 27.5) 20.1 (15.9, 27.3) 20.1 (9.7, 24.0) 17.7 (12.2, 20.5)

e H

N 16.1 (8.0, 29.9) 9.4 (5.9, 45.7) 11.1 (6.6, 98.9) 24.3 (17.8, 44.8) 23.7 (17.7, 38.7)

E 19.0 (15.6, 21.2) 18.8 (12.6, 22.2) 10.4 (7.5, 27.3) 16.0 (12.8, 21.0) 9.2 (6.5, 13.5)

M 14.7 (11.9, 22.6) 15.6 (9.9, 17.5) 10.8 (7.5, 19.3) 16.2 (12.9, 18.8) 9.0 (6.4, 16.4)

H 16.2 (13.6, 26.5) 11.5 (9.0, 19.1) 12.4 (9.8, 18.5) 9.8 (7.5, 11.9) 9.8 (6.1, 13.0)

m E

N 134.1 (100.6, 174.2) 181.3 (75.5, 249.6) 101.3 (82.6, 141.6) 246.9 (219.7, 279.7) 104.4 (41.0, 230.8)

E 82.0 (69.0, 100.3) 127.2 (105.2, 153.1) 123.1 (107.3, 182.2) 152.0 (122.0, 178.9) 114.4 (91.3, 136.9)

M 66.0 (31.7, 73.6) 68.2 (49.0, 83.3) 58.2 (55.6, 63.4) 64.0 (52.2, 77.8) 44.1 (34.3, 52.7)

H 28.8 (27.5, 39.3) 32.8 (28.3, 40.1) 28.0 (20.4, 32.4) 30.7 (24.6, 35.7) 34.0 (26.9, 41.5)

m M

N 124.7 (59.7, 134.3) 96.3 (82.4, 154.7) 79.9 (46.2, 93.2) 116.4 (68.0, 154.3) 62.8 (23.3, 105.7)

E 49.4 (31.2, 59.4) 49.9 (31.4, 66.6) 35.5 (28.4, 61.1) 45.5 (36.0, 97.9) 48.5 (38.5, 56.2)

M 36.3 (27.1, 67.1) 31.3 (19.9, 41.7) 50.3 (27.5, 52.9) 30.7 (21.1, 40.4) 35.4 (31.2, 40.2)

H 25.5 (20.7, 29.8) 8.0 (6.6, 26.0) 26.5 (19.7, 38.0) 23.9 (15.4, 37.4) 12.8 (8.5, 16.4)

m H

N 35.7 (25.8, 81.3) 8.6 (4.6, 26.9) 11.9 (7.5, 34.2) 36.2 (27.6, 47.7) 19.3 (10.6, 36.0)

E 24.5 (22.2, 31.8) 18.5 (16.0, 24.8) 11.7 (7.9, 13.1) 14.8 (8.7, 21.3) 7.9 (4.6, 20.0)

M 22.0 (19.5, 28.8) 18.3 (14.4, 21.6) 12.7 (11.5, 15.3) 12.1 (7.6, 14.2) 6.9 (5.5, 22.6)

H 19.1 (14.9, 23.4) 16.2 (15.6, 19.9) 13.3 (8.4, 19.9) 11.4 (7.7, 20.4) 9.6 (6.6, 15.5)

m-e E

N 85.4 (45.4, 119.5) 185.9 (172.9, 243.9) 171.7 (94.4, 216.1) 229.7 (160.6, 251.5) 194.3 (75.8, 208.5)

E 71.7 (56.9, 89.9) 130.6 (102.0, 161.0) 121.7 (99.9, 141.2) 110.6 (83.2, 141.2) 96.8 (91.9, 118.6)

M 42.4 (31.9, 48.8) 68.0 (56.7, 84.9) 94.0 (57.6, 102.6) 81.0 (66.3, 109.3) 77.0 (65.5, 82.0)

H 34.3 (32.0, 36.0) 50.9 (31.3, 53.4) 49.1 (48.0, 55.4) 55.4 (42.2, 60.5) 42.3 (36.7, 46.7)

m-e M

N 63.7 (35.7, 116.4) 33.5 (14.3, 115.4) 43.0 (4.5, 108.4) 84.4 (36.2, 116.0) 60.2 (26.1, 76.5)

E 33.4 (27.8, 47.4) 27.3 (22.6, 38.2) 40.5 (31.1, 55.0) 60.5 (33.0, 72.8) 53.0 (39.8, 90.6)

M 45.0 (31.9, 59.6) 29.7 (21.0, 32.2) 31.2 (25.1, 44.0) 43.9 (22.0, 59.5) 49.2 (37.0, 66.9)

H 25.3 (22.1, 27.5) 13.2 (10.4, 31.7) 20.2 (13.8, 30.8) 13.4 (9.0, 25.7) 15.3 (12.1, 39.5)

m-e H

N 21.9 (15.7, 39.4) 6.0 (2.4, 7.7) 21.5 (17.1, 39.7) 39.2 (16.9, 60.8) 24.4 (11.3, 50.0)

E 12.0 (10.1, 21.9) 16.4 (13.0, 21.0) 29.4 (21.0, 41.2) 21.5 (14.7, 48.6) 18.0 (15.6, 23.5)

M 14.9 (13.0, 16.0) 18.6 (11.0, 22.5) 24.9 (17.7, 28.5) 19.0 (11.2, 26.2) 15.0 (11.5, 19.2)

H 17.1 (11.5, 23.2) 18.1 (13.2, 22.4) 27.3 (16.7, 33.6) 12.7 (10.9, 22.9) 12.8 (9.5, 21.0)

total 1550.4 1736.0 1694.2 2162.9 1645.1
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Table 20: Results comparison on cheetah-run distraction dataset (V-D4RL). The reported numbers are
IQM and 95% stratified bootstrap CIs in between parentheses. Abbreviations: normal: N, dis-easy: E, dis-
medium: M, dis-hard: H. e: expert. m: medium. m-e: medium-expert. To save space, we note DrQv2+BC
as DB, and DrQv2+BC with dropblock (drop probability = p) is noted as DB-p

cheetah-run (V-D4RL)
train eval DB DB-0.1 DB-0.2 DB-0.3 Ours

e E

N 108.7 (42.0, 132.9) 70.6 (26.2, 113.4) 33.5 (19.9, 92.7) 88.6 (48.3, 138.5) 233.7 (197.9, 256.8)

E 34.2 (30.5, 47.3) 42.2 (35.9, 75.1) 52.9 (40.3, 65.5) 60.1 (51.9, 74.5) 100.8 (83.6, 113.7)

M 13.7 (11.6, 21.7) 27.7 (18.0, 34.6) 23.4 (15.3, 35.8) 26.6 (19.3, 33.4) 42.0 (35.6, 73.5)

H 9.7 (7.4, 12.7) 14.7 (8.2, 18.6) 12.9 (9.2, 16.8) 19.3 (14.6, 28.5) 33.6 (22.3, 39.1)

e M

N 18.9 (4.2, 64.7) 14.4 (4.9, 72.3) 54.3 (20.0, 128.8) 45.2 (20.9, 53.6) 76.5 (28.2, 110.3)

E 33.3 (18.5, 40.7) 24.1 (13.4, 35.2) 14.4 (12.8, 23.4) 22.6 (18.8, 35.7) 31.1 (26.0, 51.1)

M 28.3 (22.7, 39.3) 19.8 (14.4, 25.4) 20.9 (18.8, 25.9) 19.8 (14.9, 28.5) 27.7 (24.7, 41.5)

H 11.1 (9.3, 14.8) 9.9 (6.5, 15.6) 9.5 (5.7, 11.3) 11.1 (8.4, 13.7) 20.1 (15.9, 27.3)

e H

N 1.5 (1.0, 3.4) 3.1 (2.1, 4.9) 8.4 (7.1, 65.8) 8.7 (5.7, 11.5) 24.3 (17.8, 44.8)

E 9.1 (8.4, 14.2) 9.6 (5.8, 9.8) 8.6 (7.5, 13.0) 9.9 (7.1, 11.6) 18.8 (12.6, 22.2)

M 9.8 (7.9, 17.8) 8.0 (6.2, 12.3) 9.0 (6.5, 11.6) 5.9 (5.0, 9.3) 16.2 (12.9, 18.8)

H 11.1 (7.8, 17.2) 7.0 (5.4, 8.6) 8.0 (6.9, 10.4) 6.4 (5.0, 10.4) 12.4 (9.8, 18.5)

m E

N 131.0 (115.0, 143.2) 49.9 (17.0, 73.2) 133.0 (58.6, 219.4) 271.7 (110.1, 287.3) 246.9 (219.7, 279.7)

E 99.5 (65.6, 110.4) 108.6 (105.3, 122.9) 111.9 (102.5, 150.0) 115.8 (97.8, 134.2) 152.0 (122.0, 178.9)

M 41.4 (32.4, 56.8) 42.7 (37.7, 50.7) 60.1 (48.2, 68.4) 36.8 (26.9, 44.9) 68.2 (49.0, 83.3)

H 18.6 (12.7, 22.6) 19.7 (11.6, 25.1) 22.2 (16.9, 27.3) 14.9 (11.0, 40.8) 34.0 (26.9, 41.5)

m M

N 125.9 (81.9, 145.0) 113.3 (35.3, 188.6) 100.7 (59.1, 138.2) 119.1 (41.1, 163.2) 116.4 (68.0, 154.3)

E 37.6 (31.0, 53.2) 34.6 (30.4, 38.8) 54.3 (42.7, 74.1) 45.5 (28.8, 59.8) 45.5 (36.0, 97.9)

M 40.3 (23.6, 52.5) 30.2 (24.8, 39.0) 47.3 (19.7, 51.1) 25.8 (22.6, 31.3) 50.3 (27.5, 52.9)

H 21.2 (14.4, 29.6) 21.0 (16.6, 24.5) 19.7 (15.5, 27.1) 9.9 (8.6, 45.1) 26.5 (19.7, 38.0)

m H

N 60.3 (43.5, 70.7) 6.1 (4.6, 15.4) 15.2 (11.7, 21.1) 12.3 (8.2, 49.3) 36.2 (27.6, 47.7)

E 26.3 (19.3, 33.6) 15.5 (9.3, 18.3) 11.4 (8.2, 15.0) 4.7 (3.6, 7.9) 18.5 (16.0, 24.8)

M 24.5 (20.4, 32.6) 10.1 (8.2, 19.4) 8.1 (6.1, 10.9) 7.5 (5.1, 8.9) 18.3 (14.4, 21.6)

H 33.7 (21.1, 37.6) 14.5 (8.3, 21.6) 13.3 (9.7, 18.9) 4.5 (3.7, 5.2) 16.2 (15.6, 19.9)

m-e E

N 115.1 (51.4, 177.6) 119.6 (43.4, 154.5) 184.3 (85.2, 228.1) 171.7 (86.8, 223.0) 229.7 (160.6, 251.5)

E 83.6 (57.9, 96.0) 114.4 (81.3, 134.0) 141.4 (106.7, 152.5) 93.6 (84.5, 117.7) 130.6 (102.0, 161.0)

M 35.0 (33.1, 44.5) 45.8 (37.8, 55.1) 71.6 (56.3, 82.9) 67.2 (55.9, 92.2) 81.0 (66.3, 109.3)

H 18.1 (14.2, 28.0) 30.7 (24.1, 50.1) 31.8 (27.2, 43.2) 38.9 (35.4, 47.7) 55.4 (42.2, 60.5)

m-e M

N 69.6 (48.1, 87.2) 11.4 (6.6, 109.5) 41.4 (8.9, 104.4) 86.1 (32.6, 133.1) 84.4 (36.2, 116.0)

E 32.5 (22.3, 56.2) 27.6 (15.4, 38.2) 40.8 (29.2, 62.9) 35.8 (27.2, 40.7) 60.5 (33.0, 72.8)

M 34.4 (21.3, 49.4) 24.1 (17.9, 30.1) 24.3 (19.3, 36.2) 39.6 (24.0, 45.6) 49.2 (37.0, 66.9)

H 13.5 (12.5, 18.6) 15.3 (8.1, 22.1) 12.4 (9.8, 25.1) 9.6 (5.2, 13.7) 20.2 (13.8, 30.8)

m-e H

N 17.3 (9.9, 29.2) 2.4 (1.7, 6.7) 21.1 (11.0, 39.0) 22.5 (10.4, 43.1) 39.2 (16.9, 60.8)

E 14.2 (9.8, 16.5) 9.8 (7.5, 13.7) 17.6 (14.2, 44.9) 12.3 (9.2, 18.6) 29.4 (21.0, 41.2)

M 11.6 (10.4, 22.3) 7.0 (6.5, 11.0) 12.3 (9.7, 33.9) 12.3 (9.1, 14.8) 24.9 (17.7, 28.5)

H 12.4 (9.1, 15.7) 7.5 (5.4, 10.3) 12.1 (8.9, 15.2) 10.0 (8.2, 18.7) 27.3 (16.7, 33.6)

IQM total 1407.0 1132.9 1464.1 1592.3 2298.0
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G Robustness analysis

To show the robustness of the proposed method over baseline, we perform two additional analysis, all based
on training with cheetah-run medium-expert easy dataset. Firstly, We calculated the Wasserstein distance
between the encoded features of from different level of distractions. The Wasserstein distance can be seen as
a similarity metric between the two encoded features. Specifically, we have two scenarios. One is sampling
a batch of images from the V-D4RL cheetah-run medium-expert dataset, and another is collected via online
environment (cheetah-run) by using a random policy, to collect online distractions not existing on the dataset.
The values are averaged over the batch of observations (batch size = 256).

Table 21: Wasserstein distance calculated using different data sources. In the "distance between" column,
all distance are compared between a distraction observation and a normal observation.

cheetah-run medium-expert (V-D4RL)
data source distance between DrQv2+BC Ours

offline normal - dis-easy 0.5577 0.1413
offline normal - dis-medium 0.5346 0.1709
offline normal - dis-hard 0.2832 0.0887
online normal - dis-easy 0.3732 0.1093
online normal - dis-medium 0.3311 0.0483
online normal - dis-hard 0.3312 0.1156

Secondly, we plot the t-SNE (van der Maaten, 2008) results of the trained policy distribution using different
distraction observations. There are also two scenario of data source; from the dataset and one from online
environment. As we can observe, in both scenarios, our proposed method brings the policy distribution
closer for different distraction observations.

Figure 5: t-SNE plot on the policy distribution. Blue dots are normal observation. Red dots are easy
distraction observations. Green dots are medium distraction. Purple dots are hard distraction.
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H Additional Benchmark Comparison with V-D4RL

V-D4RL was collected by training an online SAC agent and using the saved checkpoints to collect visual
observations while running the agent in proprioceptive states. As we could not access the SAC checkpoints of
the original V-D4RL authors, we followed their guidelines as closely as possible to reproduce data collection.
The checkpoint used to collect the medium dataset is described as the first stable checkpoint, resulting in
consistent 500 rewards. Simultaneously, the expert agent is the stable checkpoint resulting in nearly the
maximum possible reward, which translates to nearly 1000 rewards in DM Control tasks.

Figure 6 presents the histogram of collected cheetah-run medium-expert data, plotted by rewards per episode
versus frequencies (counts). The figure shows that the original data and broad data are comparable in most
parts; the main difference is that the medium difficulty of the broad dataset is a bit lower compared to
the original, and the expert difficulty is significantly concentrated in the final rewards (around 900). The
difference is because of the checkpoint used to gather data.

Figure 6: The original dataset is in orange, while the broad dataset is in blue.

Table 22: Full summary statistics of per-episode return in the V-D4RL vs our proposed dataset.
Dataset task difficulty Timesteps Mean Std. Min P25 Median P75 Max

V-D4RL

cheetah-run
random 100k 6.9 2.6 1.7 4.8 6.4 8.6 15.9
medexp 200k 707.5 186.0 253.8 527.7 710.6 894.1 905.7
medium 100k 523.3 32.9 253.8 511.1 527.6 539.2 578.3
expert 100k 891.6 11.1 843.0 888.3 894.1 899.2 905.7

walker-walk
random 100k 40.1 7.9 28.1 33.8 38.6 44.2 66.3
medexp 200k 703.7 270.4 65.6 444.4 739.6 969.6 990.6
medium 100k 436.8 57.4 65.6 419.2 444.2 469.0 538.6
expert 100k 970.6 11.1 940.6 964.2 969.7 979.2 990.6

Ours

cheetah-run
random 100k 6.9 2.6 1.7 4.8 6.4 8.6 15.9
medexp 200k 705.9 192.8 447.3 514.6 695.6 899.4 905.1
medium 100k 514.0 21.3 447.3 501.3 514.4 525.9 582.1
expert 100k 897.8 8.7 809.0 896.9 899.3 901.2 905.1

walker-walk
random 100k 40.0 7.9 28.3 33.8 38.4 44.4 66.1
medexp 200k 723.6 198.0 39.1 547.9 710.1 915.3 972.6
medium 100k 535.7 81.2 39.1 522.3 547.8 572.7 661.1
expert 100k 911.5 32.1 759.0 896.4 915.3 935.2 972.6

reacher-easy
random 100k 52.2 81.9 0.0 0.0 4.0 81.0 378.0
medexp 200k 738.5 385.2 0.0 514.8 961.0 979.0 1000.0
medium 100k 502.5 430.6 0.0 10.2 512.5 952.2 1000.0
expert 100k 974.5 13.7 920.0 964.0 975.0 985.0 1000.0

reacher-hard
random 100k 10.4 22.2 0.0 0.0 0.0 12.0 167.0
medexp 200k 845.1 296.1 0.0 946.0 961.0 976.0 999.0
medium 100k 735.0 374.5 0.0 583.2 949.0 967.2 999.0
expert 100k 955.2 105.7 4.0 958.0 969.5 980.0 999.0

cup-catch
random 100k 52.3 190.7 0.0 0.0 0.0 0.0 846.0
medexp 200k 931.1 91.0 431.0 937.0 960.5 986.0 1000.0
medium 100k 891.3 114.4 431.0 859.8 937.5 962.0 1000.0
expert 100k 970.9 18.4 937.0 953.0 964.0 990.0 1000.0
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I Implementation Details

The implementation details and hyperparameters settings used for our experiments are presented below.
Similar to DrQv2, we employed clipped double Q-learning (Fujimoto et al., 2018) to reduce the overestimation
bias in the target value. We also provide a schematic of how the overall network architecture is implemented as
in Figure 3, as well as the network architecture used in Table 28. The Actor and critic networks follow DrQv2
exactly; therefore, they are omitted. Additionally, we show the hyperparameters used in the experiments.

Table 23 lists the common hyperparameters for all methods. Table 24 lists the additional hyperparameters
used in our proposed method. Table 25 lists the additional hyperparameters used in the experiments for the
baseline DrQv2+BC. Table 26 lists the additional hyperparameters used in the experiments for the baseline
AWAC+BC. Table 27 lists the additional hyperparameters used in the experiments for the baseline IQL.

For PAD (Hansen et al., 2021b), ILA (Yoneda et al., 2022) and SVEA Hansen et al. (2021a), we use
their default hyperparameters. We include some brief explanation on some of the baseline algorithms to
complement the hyperparameters listed in Appendix I.4.

I.1 DrQv2+BC

DrQv2+BC (Lu et al., 2023) is a modified version of DrQv2 (Yarats et al., 2022) by adding a BC term into
the policy network training. The term is regulated by a hyperparameter λbc. The usage of λbc is as:

π = argmax
π

E(st,at)∼D,aπ∼π(·|f(s;θf ))
[
Q(f(st; θf ), aπ

t ; θq)− λbc(aπ
t − at)2]

I.2 AWAC

AWAC updates its policy by a weighted maximum likelihood, where the targets are obtained by reweight-
ing the state-action pairs observed in the dataset versus the predicted advantages from the critic,
(Q(f(st; θf ), at) − Q(f(st; θf ), aπ

t ); θq)), where aπ ∼ π(·|f(s; θf )). By adding a BC term into the policy
training, the policy objective is calculated as:

π = argmax
π

E(st,at)∼D,aπ
t ∼π(·|f(s;θf ))[[

log aπ exp( 1
λawac

(Q(f(st; θf ), at; θq)−Q(f(st; θf ), aπ
t ; θq)))

]
− λbc(aπ

t − at)2
]

I.3 IQL

IQL uses the same advantage-weighted regression policy training as AWAC while renaming the hyperparam-
eter to a more straightforward scale β. In our experiments, we did not include an additional BC term for
IQL. The policy objective for IQL is:

π = argmax
π

E(st,at)∼D,aπ
t ∼π(·|f(s;θf ))[[log aπ exp(β( Q(f(st; θf ), at; θq)−Q(f(st; θf ), aπ

t ; θq)))]

For the expectile regression loss, IQL minimises the following two losses, where τIQL is given as a hyperpa-
rameter for expectile ℓ2

IQL:

min
Q

LQ
IQL = E(st,at,st+1)∼D

[
(r + γV (st+1; θv)−Q(st, at))2]

min
V

LV
IQL = E(st,at)∼D

[
(ℓ2

IQL(Q(st, at)− V (s))
]

, where ℓ2
IQL = |τIQL − 1(x < 0)|x2

33



Under review as submission to TMLR

I.4 Hyperparameters

Table 23: Common hyperparameters.
Parameters Value Parameters Value

optimiser (all networks) Adam batch size 256
encoder learning rate 3e− 04 critic learning rate 3e− 04

actor learning rate 3e− 04 feature dim 50
activation function ReLU hidden dim 1024

frame stacking (all tasks) 3 action repeat (all tasks) 2
nstep (all tasks) 3 weight decay 0

critic target tau (τ) 0.01

Table 24: Additional hyperparameters for our proposed algorithm.
Parameters Value Parameters Value

behaviour cloning (BC) weight λbc 2.5 gradient reversal µ -1
dropblock drop rate Table 29 discriminator learning rate 1e− 05

Table 25: Additional hyperparameters for baseline DrQv2+BC.
Parameters Value

behaviour cloning (BC) weight λbc 2.5

Table 26: Additional hyperparameters for baseline AWAC+BC.
Parameters Value

AWAC lambda λawac 0.3

Table 27: Additional hyperparameters for baseline IQL.
Parameters Value Parameters Value
IQL scale β 3 IQL expectile τIQL 0.7

I.5 Revelant Network Structures

Table 28: Network architectures
Network name Operations Kernel Strides Ch I/O

Encoder

Conv + ReLU 3x3 2 9/32
DropBlock - - -

Conv + ReLU 3x3 1 32/32
DropBlock - - -

Conv + ReLU 3x3 1 32/32
DropBlock - - -

Conv + ReLU 3x3 1 32/32

Discriminator
Linear + ReLU - - 39200/1024
Linear + ReLU - - 1024/50
Linear + ReLU - - 50/1
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I.6 DropBlock hyperparameters

Table 29: DropBlock rate p for all layers in the encoder for all tasks of the results in Table 8, Table 10,
Table 11, Table 12, Table 13 and Table 9. Abbreviations for dataset type: medium: m, expert: e, medium-
expert: m-e. Abbreviations for visual distractions difficulty: normal: N, easy: E, medium: M, hard: H.

Task eval cheetah-run cheetah-run (add.) ball-catch reacher-easy reacher-hard walker-walk
e E N 0.3 0.5 0.5 0.5 0.5 0.2
e E E 0.2 0.3 0.5 0.5 0.5 0.1
e E M 0.2 0.3 0.5 0.5 0.5 0.2
e E H 0.5 0.3 0.5 0.5 0.5 0.2
e M N 0.3 0.1 0.3 0.3 0.5 0.1
e M E 0.2 0.1 0.3 0.5 0.5 0.2
e M M 0.5 0.1 0.5 0.5 0.5 0.3
e M H 0.2 0.1 0.5 0.5 0.5 0.1
e H N 0.3 0.5 0.5 0.3 0.2 0.1
e H E 0.1 0.5 0.5 0.5 0.2 0.1
e H M 0.3 0.5 0.5 0.3 0.2 0.1
e H H 0.2 0.2 0.5 0.3 0.2 0.1
m E N 0.3 0.1 0.2 0.1 0.2 0.2
m E E 0.3 0.1 0.3 0.3 0.1 0.2
m E M 0.1 0.5 0.5 0.2 0.5 0.2
m E H 0.5 0.5 0.3 0.2 0.5 0.3
m M N 0.1 0.1 0.2 0.3 0.1 0.5
m M E 0.3 0.3 0.1 0.3 0.3 0.5
m M M 0.2 0.5 0.2 0.3 0.2 0.5
m M H 0.2 0.5 0.1 0.1 0.2 0.2
m H N 0.3 0.5 0.5 0.5 0.2 0.1
m H E 0.1 0.5 0.1 0.3 0.2 0.1
m H M 0.1 0.5 0.1 0.5 0.1 0.2
m H H 0.1 0.2 0.2 0.2 0.2 0.1

m-e E N 0.3 0.5 0.3 0.1 0.3 0.5
m-e E E 0.1 0.5 0.2 0.3 0.5 0.2
m-e E M 0.3 0.1 0.3 0.3 0.5 0.3
m-e E H 0.3 0.2 0.2 0.2 0.1 0.5
m-e M N 0.3 0.5 0.1 0.1 0.3 0.1
m-e M E 0.3 0.5 0.2 0.5 0.5 0.1
m-e M M 0.5 0.3 0.2 0.1 0.5 0.2
m-e M H 0.2 0.5 0.3 0.1 0.5 0.2
m-e H N 0.3 0.5 0.5 0.2 0.1 0.1
m-e H E 0.2 0.3 0.1 0.2 0.5 0.2
m-e H M 0.2 0.3 0.5 0.3 0.1 0.1
m-e H H 0.2 0.3 0.1 0.1 0.3 0.3

35


	Introduction
	Related Work
	Domain Invariance in RL
	Benchmarks for Offline Continuous Control
	Dropout and its variants in RL

	Preliminaries
	Reinforcement Learning from Images
	Visual Actor-Critic Methods
	Offline Reinforcement Learning
	Visual Distractions Dataset

	Domain Adversarial Training for Visual Distractions
	Domain Discriminator
	DropBlock in Encoder

	Novel visual distractions dataset
	Comparison with offline RL algorithms
	V-D4RL Distraction Dataset
	Our Distraction Dataset

	Comparison with visual generalisation methods in RL adapted to offline settings
	Ablation Studies
	DropBlock drop rate
	Different types of distractions

	Limitations
	Conclusion
	Visualisations of tasks
	Full experiment results with offline RL algorithms
	Full experiment results with visual generalisation methods in RL adapted to offline settings
	Additional experiments on Data Usage
	Ablation on Distractions
	Ablation on Effectiveness of Dropblock
	Robustness analysis
	Additional Benchmark Comparison with V-D4RL
	Implementation Details
	DrQv2+BC
	AWAC
	IQL
	Hyperparameters
	Revelant Network Structures
	DropBlock hyperparameters


