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ABSTRACT

Time series analysis supports a wide range of real-world applications. While exist-
ing time series foundation models primarily rely on large-scale unimodal pretrain-
ing, they lack complementary modalities to enhance time series understanding.
Building multimodal foundation models is a natural next step, but it introduces
key challenges: 1) lack of a unified multimodal pretraining paradigm and large-
scale multimodal corpora for time series analysis; 2) how to effectively integrate
heterogeneous modalities and enhance model generalization across both modali-
ties and domains. To address these challenges, we take an early step toward multi-
modal foundation models for time series analysis. We first propose a multimodal
pretraining paradigm that leverages time series together with their derived image
and text, enhancing time series analysis from a multi-view perspective. Build-
ing upon this paradigm , we construct MM-TS, a large-scale multimodal dataset
spanning time series, text, and image across six domains, with more than one bil-
lion time points. Then we propose HORAI, a frequency-enhanced multimodal
foundation model. HORAI integrates two core components: a Frequency-guided
Cross-Modality Encoder, which leverages the correspondence between modality-
specific information and different frequency components of time series to effec-
tively fuse multiple modalities, and a Time-Frequency Decoder, which incorpo-
rates frequency information into a MoE router to improve pattern discrimination
and generalization. After pretraining on MM-TS, HORAI achieves state-of-the-
art zero-shot performance on time series forecasting and anomaly detection tasks,
demonstrating strong task versatility and generalization.

1 INTRODUCTION

Time series analysis is widely applied across diverse domains, including energy management, med-
ical monitoring, and financial forecasting. Existing time series analysis approaches, ranging from
time-series-specific models (Zeng et al., 2023; Nie et al., 2023; Liu et al., 2024b; Chen et al., 2024b)
to recent time series foundation models (Liu et al., 2024c; Woo et al., 2024; Gao et al., 2024; Shi
et al., 2025; Wang et al., 2025b), primarily rely on time series numerical modality to capture tem-
poral patterns and uncover underlying regularities. While these methods have achieved competitive
performance, this single-modality paradigm remains limited in its ability to capture the complex and
multifaceted nature of real-world temporal dynamics (Xu et al., 2024a).

At the same time, foundation models in NLP and multimodal learning (Brown et al., 2020; Bai
et al., 2023; Wu et al., 2024; Chen et al., 2024c) have shown that large-scale pretraining on massive
datasets with complementary modalities can enhance generalization and adaptability across tasks.
Inspired by these, we propose developing multimodal foundation models for time series analysis.
By incorporating additional modalities for pretraining, such as texts and images, the model leverages
textual semantics and visual, spatial information to better capture complex temporal dynamics and
strengthen time series understanding.

However, the development of multimodal foundation models faces several significant challenges.
First, lack of a unified multimodal pretraining paradigm and large-scale multimodal corpora for
time series analysis. Multimodal pre-training for time series remains in a nascent stage. Existing
methods are either restricted to end-to-end training on small-scale multimodal datasets or confined
to large-scale unimodal pre-training due to the scarcity of aligned modalities. Therefore, establish-
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Figure 1: Left: The large-scale multimodal time series dataset MM-TS is characterized by its cover-
age of various modalities, heterogeneous domains, and diverse temporal patterns. Right: The mul-
timodal foundation model (HORAI) is pre-trained on the MM-TS dataset and evaluated on down-
stream scenarios and tasks.

ing an effective pre-training paradigm alongside large-scale, well-aligned datasets is indispensable
for advancing multimodal pre-training. Second, the architectural design for integrating different
modalities in time series analysis remains underexplored. Each modality exhibits unique character-
istics: text exhibits rich semantic information and provides a holistic, global description of events,
whereas image captures localized details and spatial structures (Zhong et al., 2025). Directly fusing
time series with textual or visual modalities (Phuong & Lampert, 2019; Kim & Rush, 2016) may
result in suboptimal alignment and ineffective representation learning. Therefore, it is critical to de-
sign fusion mechanisms that explicitly leverage the unique characteristics of each modality. Third,
time series data from different domains exhibit diverse patterns, and the incorporation of multiple
modalities further amplifies this diversity. Effectively modeling the heterogeneous patterns across
modalities and domains, while enhancing the generalization ability of pretrained models, remains a
challenge. Consequently, advancing multi-modal foundation models for time series analysis requires
further research and exploration.

In this paper, we take an early step toward developing multimodal foundation models for time se-
ries analysis. On the pretraining paradigm and dataset side, we propose a novel paradigm that
utilizes three time series, images, and text as three modalities by an endogenous construction strat-
egy. This approach synthesizes large-scale aligned multimodal data to enhance time series analysis
from a multi-view perspective, leveraging endogenous pre-training to adapt to exogenous modalities,
thereby enabling good zero-shot generalization in downstream scenarios. Based on this paradigm,
we construct the first large-scale multimodal time series dataset (MM-TS). As illustrated in Figure
1, different from existing time series datasets, MM-TS integrates three modalities, including time
series, text, and images, spanning six diverse domains and a wide range of temporal patterns, with
up to one billion time series points. The three modalities exhibit strong correlations and comple-
mentary characteristics, making MM-TS well-suited for multimodal pretraining to learn generalized
representations. This dataset provides a solid foundation for studying multimodal models.

On the modeling side, we propose HORAI, a frequency-enhanced multimodal time series foun-
dation model built on an autoregressive architecture, which consists of two core components:
Frequency-guided Cross-Modality Encoder and Time-Frequency Decoder. In the Frequency-guided
Cross-Modality Encoder, we leverage the correspondence between modality-specific information
and different frequency components of time series to align multiple modalities and enhance time se-
ries understanding. Specifically, time series are decomposed into multiple frequency bands, where
low-frequency components capture long-term dynamics and align with the global semantics embed-
ded in text, while mid- and high-frequency components encode rapid variations that tend to corre-
spond to the localized patterns present in visual inputs. Given the large number of tokens in text
and image modalities, we further incorporate the flow-attention alignment mechanism to facilitate
efficient cross-modal alignment while preserving the fidelity of features. In the Time-Frequency De-
coder, we design a Time-Frequency MoE-FFN to learn generalized multimodal representations from
multi-domain data. We introduce a time-frequency router that dynamically assigns each token to the
suitable expert based on both its temporal and frequency features. By incorporating frequency-
domain features, the router gains additional cues to better distinguish similar patterns and group
them coherently, which enhances feature consistency and improves generalization across domains
and modalities. As shown in Figure 1, HORAI is pre-trained on the MM-TS dataset and evaluated on
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various downstream scenarios and tasks: forecasting and anomaly detection, demonstrating strong
generalization capabilities. Specially, our contributions can be summarized as follows:

• We propose a multimodal pretraining paradigm that leverages time series together with
their derived image and text, enhancing time series analysis from a multi-view perspective.
Building upon this paradigm, we delve into the multimodal time series foundation model
development by constructing a large-scale multimodal time series pretraining dataset (MM-
TS), which covers six diverse domains and three modalities, with up to 1 billion time points.

• We propose HORAI, a frequency-enhanced multimodal foundation model for Time series
analysis, which incorporates two core components, the frequency-guided cross-modality
encoder and the time-frequency decoder, designed to effectively fuse multimodal features
and enhance model generalization across modalities and domains.

• After pre-training on large-scale multimodal time series data, HORAI achieves state-of-
the-art performance in time series forecasting and anomaly detection across zero-shot in-
ference and few-shot learning situations, which demonstrates strong task versatility and
generalization ability.

2 RELATED WORK

2.1 TIME SERIES ANALYSIS

Time series analysis spans a wide range of tasks, including forecasting and anomaly detection (Qiu
et al., 2024; Faloutsos et al., 2018; Darban et al., 2025; Paparrizos et al., 2022b). Existing approaches
can be broadly divided into unimodal and multimodal methods. Unimodal methods focus on time
series data and employ diverse architectures to model temporal dynamics and channel correlations.
These include MLP-based models (Zeng et al., 2023; Xu et al., 2024b; Zhong et al., 2024), RNN-
based models (Flunkert et al., 2017; Cirstea et al., 2019), CNN-based models (Wu et al., 2023; Luo
& Wang, 2024), GNN-based models (Zhao et al., 2023; Wu et al., 2021), as well as Transformer-
based architectures for capturing long-range dependencies (Zhang & Yan, 2023; Nie et al., 2023;
Chen et al., 2024b; Yang et al., 2023). In contrast, multimodal methods integrate additional modali-
ties or external knowledge to enhance time series analysis. One line of work introduces endogenous
prompts, such as statistical information, channel semantics, or task-related descriptions, to enrich
temporal representations (Jin et al., 2024; Chen et al., 2025; Pan et al., 2024; Zhong et al., 2025).
Another line of work leverages exogenous textual or visual modalities to provide additional contex-
tual knowledge (Li et al., 2025; Jia et al., 2024; Wang et al., 2025a; Liu et al., 2024a). Although these
methods achieve competitive performance, most require retraining and extensive parameter tuning
for each dataset, lacking zero-shot inference capabilities. While ChatTime (Wang et al., 2025a) en-
ables direct zero-shot inference, it suffers from precision loss due to data discretization and lacks
rich multimodal characterizations.

2.2 TIME SERIES FOUNDATION MODELS

Foundation models pre-trained on large-scale data have achieved notable success in lan-
guage (Brown et al., 2020; Touvron et al., 2023) and vision (Liu et al., 2021; Dosovitskiy et al.,
2021) domains. Recently, time series foundation models (TSFMs) have attracted increasing atten-
tion (Liu et al., 2024c; Ansari et al., 2024; Woo et al., 2024; Das et al., 2024; Goswami et al., 2024;
Ekambaram et al., 2024; Chen et al., 2024a; Shi et al., 2025; Liu et al., 2025). By pre-training on
large-scale and diverse time series datasets, these models exhibit strong adaptability to new tasks,
enabling both efficient fine-tuning and zero-shot transfer across domains. For instance, Timer (Liu
et al., 2024c) employs a decoder-only architecture with autoregressive pre-training to capture tem-
poral dependencies, while MOIRAI (Woo et al., 2024) introduces multi-scale patch projections to
model diverse patterns and an any-variate attention mechanism that allows flexible handling of time
series with arbitrary dimensionality. ROSE (Wang et al., 2025b) combines frequency decomposition
with time-series registers to jointly learn both domain-invariant and domain-specific representations,
facilitating knowledge transfer to downstream tasks. Sundial (Liu et al., 2025) proposes a TimeFlow
Loss that predicts the distribution of the next patch, enabling Transformer training without discrete
tokenization while supporting probabilistic forecasting.
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Existing TSFMs are all pre-trained solely on unimodal time series data, which provides some gen-
eralization ability but cannot leverage complementary modalities to model more complex tempo-
ral dynamics. In contrast, HORAI effectively leverages multiple modalities through a frequency-
enhanced cross-modality encoder and introduces a Time-Frequency Decoder to further strengthen
cross-modality and cross-domain generalization during pre-training.

3 METHODOLOGY

3.1 LARGE-SCALE MULTIMODAL TIME SERIES DATASET

Large-scale datasets are the cornerstone of pre-training foundation models, enabling them to acquire
transferable knowledge and improve generalization across diverse downstream scenarios. However,
existing large-scale time series corpora are mostly confined to unimodal time series data, which
limits the potential of multimodal learning. To address this problem, we conduct MM-TS, a large-
scale multimodal time series dataset for pre-training. As shown in Figure 1, MM-TS integrates three
modalities: time series, text, and image, covering six diverse domains, including Energy, Healthcare,
Web, Nature, Transport, and Economics. In total, MM-TS contains over 1 billion time points, setting
a new scale for multimodal time series research.

For the time series modality, MM-TS spans multiple temporal granularities such as seconds, min-
utes, hours, and months, and captures diverse characteristics including periodicity, trends, and non-
stationarity (see Appendix A.1 for details). For the textual modality, due to the scarcity of natural
paired descriptions, we design prompts and leverage large language models to generate semantic
descriptions. These descriptions capture temporal dynamics, for example, “stable low-volatility pe-
riods with irregular bursts of variability,” and also provide causal reasoning, such as attributing sud-
den growth to event-driven factors. For the visual modality, we construct line-plot images directly
from time series, offering an intuitive view of temporal fluctuations and structural patterns.

By unifying multimodal data across domains, MM-TS provides a high-quality, large-scale resource
for scalable multimodal pre-training, paving the way toward foundation models for time series anal-
ysis with generalization capabilities.

3.2 HORAI

To better leverage cross-modal and cross-domain features for enhanced time series understanding,
we propose HORAI, a frequency-enhanced multimodal foundation model for time series analysis.
HORAI consists of two core components: the Frequency-guided Cross-Modality Encoder and the
Time-Frequency Decoder. As illustrated in Figure 2, in the cross-modality encoder, the input time
series is first decomposed into low-frequency and mid-to-high-frequency components, which are
aligned with textual and visual features, respectively. Then, an adaptive modality fusion module sub-
sequently combines these aligned representations to produce unified multimodal representations. In
the Time-Frequency Decoder, the multimodal representations are first passed into a Time-Frequency
MoE-FFN, which is designed to capture diverse patterns across multiple domains. To guide the
routing of tokens to appropriate experts, both temporal-domain and frequency-domain features are
incorporated. The inclusion of frequency information provides additional cues that help distinguish
similar patterns and group them coherently, enhancing the model’s cross-modality and cross-domain
generalization. Finally, the learned representations are projected through a token projection layer for
autoregressive pre-training.

3.2.1 FREQUENCY-ENHANCED CROSS-MODAL ENCODER

Multimodal Embedding. For notational simplicity, we describe the method using a univariate
time series, which can be easily extended to the multivariate case by treating each channel indepen-
dently. Given an input time series Xts ∈ RT , where T denotes the sequence length, we first apply
instance normalization (Kim et al., 2021) to mitigate distribution shift, resulting in Xnorm ∈ RT .

Since different frequency components capture different aspects of temporal dynamics, with low-
frequency components reflecting global trends and mid-to-high-frequency components capturing lo-
cal variations, we transform the normalized sequence into the frequency domain by the Fast Fourier
Transform (FFT), obtaining Xfreq ∈ RL/2+1. To separate different frequency bands, we set a ratio
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Figure 2: The framework of the proposed HORAI consists of a Frequency-Enhanced Cross-Modal
Encoder (gray region) and a Time-Frequency Decoder (blue region).

parameter α to define a cutoff threshold τ = α ·(L/2+1). Based on this threshold, we construct two
binary masks: Mlow ∈ {0, 1}L/2+1 for low-frequency components and Mmh ∈ {0, 1}L/2+1 for
mid-to-high-frequency components. Applying these masks to Xfreq by element-wise multiplication
yields two masked spectra, which are then transformed back into the time domain using the inverse
FFT (iFFT). This process produces the low-frequency sequence Xlow ∈ RL and the mid-to-high-
frequency sequence Xmh ∈ RL.

Xlow = iFFT(Xnorm ⊙Mmh), Xmh = iFFT(Xnorm ⊙Mlow). (1)

Subsequently, we employ a patching strategy to divide Xlow, Xmh, and Xnorm into Nts patches
with patch size S. These patches are projected and fed into the time-series encoder (Nie et al.,
2023), producing corresponding time series representations: Elow, Emh, and Ets ∈ RNts×Dts .

For the textual input Xtext ∈ RLtext , we employ a text tokenizer followed by a pre-trained
text encoder to extract semantic features, yielding Etext ∈ RLtext×Dtext . For the visual input
Ximg ∈ RC×H×W , we apply a patching strategy and a pre-trained vision encoder to obtain im-
age representations Eimg ∈ RNimg×Dimg .

Frequency-enhanced Cross-Modality Alignment. Time series often exhibit rich frequency-
dependent patterns, where low-frequency components capture global trends and mid-to-high-
frequency components reflect local variations. Meanwhile, different modalities contribute differ-
ently to these patterns: textual information tends to describe global trends, aligning with low-
frequency time series components, whereas visual information focuses more on short-term varia-
tion, corresponding to mid-to-high-frequency components (Zhong et al., 2025). Motivated by this,
we propose a frequency-enhanced cross-modal fusion that explicitly leverages the characteristic cor-
respondence between modalities and frequency components. Additionally, given the large number
of tokens in text and image modalities, we integrate a Flow-Attention-based alignment mechanism
to efficiently model cross-modal interactions while preserving the fidelity of features.
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In the TS-Text Alignment module, the low-frequency time series embeddings and textual embed-
dings are first projected by MLPs into a shared representation space Dmodel. Cross-modal fusion is
then performed efficiently using the Flow-Attention mechanism. The core idea is to treat attention as
a flow of information and leverage the flow conservation principle to optimize the transmission and
aggregation of features across modalities. Specifically, the low-frequency time series embeddings
Elow are mapped to serve as the Query Q, while the textual embeddings E′

text are mapped to serve
as the Key K and Value V. The information flow between tokens is computed as:

Ii = ϕ(Qi)

Ntext∑
j=1

ϕ(Kj)
T , Oj = ϕ(Kj)

Nts∑
i=1

ϕ(Qi)
T , Ô = ϕ(K)

Nts∑
i=1

ϕ(Qi)
T

Ii
,

E′
text =

ϕ(Q)

I
(ϕ(K)T (Softmax(Ô)⊙V)),

(2)

ϕ(·) denotes the non-linear projection to the flow space, Ii and Oj represent the total outgoing and
incoming flows for each token. The output E′

text ∈ RNts×Dmodel is a flow-attention enhanced
textual embedding, which has been adaptively aligned with the low-frequency time-series features.

Similar to the low-frequency time-series and text fusion, the TS-Vision Alignment module also
leverages the Flow-Attention mechanism to integrate mid-to-high-frequency time-series embed-
dings Emh with image embeddings Eimg, yielding aligned image representations E′

img ∈
RNts×Dmodel for subsequent multimodal fusion.

Adaptive Modal Fusion. Considering that the contributions of image and text representations
vary across different time series patterns, we adaptively fuse the aligned image and text embed-
dings. The aligned image embeddings E′

img and text embeddings E′
text are concatenated along

the feature dimension and then passed through a linear projection followed by a sigmoid function
σ to perform gated weighting G, producing the multimodal representation Emm. This represen-
tation is subsequently added to the time series embeddings Ets to obtain the fused representation
Efused ∈ RNts×Dmodel . The specific process is as follows:

G = σ(Wg[E
′
image,E

′
text] + bg), Efused = G⊙E′

image + (1−G)⊙E′
text +Ets. (3)

3.2.2 TIME-FREQUENCY DECODER

Large-scale time series data inevitably involves diverse domains, which gives rise to a wide variety
of temporal patterns (Wang et al., 2025b; Woo et al., 2024). The incorporation of textual and visual
modalities further amplifies the diversity. To address this challenge, we propose a Time-Frequency
Decoder designed to capture and adapt to different patterns, enhancing the generalization ability
of pre-trained models. As illustrated in Figure 2, the Time-Frequency Decoder consists of key
components including Causal Attention, Normalization layers, and a Time-Frequency MoE-FFN.

Time-Frequency MoE-FFN. Different expert networks can capture distinct patterns from large-
scale data, so effectively routing multimodal features to the appropriate experts is crucial. However,
relying only on temporal-domain features may lead to entangled representations across different pat-
terns, which makes pattern discrimination less straightforward. By incorporating frequency-domain
features, similar patterns can be represented more compactly, offering additional cues for more ac-
curate expert routing. Motivated by this, we propose the Time-Frequency Router, which integrates
both temporal and frequency information to enhance the routing process.

Based on the fused multi-modal representation Efused, we obtain representation H through causal
attention followed by normalization. In the router, each token of H is projected in parallel across
both temporal and frequency domains: (i) an MLP produces temporal representations Htemp, while
(ii) an FFT followed by an MLP yields frequency representations Hfreq. These dual-domain signals
are adaptively integrated via a learnable gating function Grouter, resulting in router representation
Hr ∈ RNts×Dmodel :

Hi
r = Grouter ⊙MLP(Hi) + (1−Grouter)⊙MLP(FFT(Hi)), i = 1, · · · , Nts. (4)

Given Hr, the router applies an MLP-based routing function to compute routing weights W ∈ RM ,
which determine expert assignment. Following a Top-K strategy, the router selects the K experts
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with the highest weights, denoting the set of their indexes as K. Then their outputs are aggregated
through weight-normalized fusion, producing the representation Hmoe ∈ RNts×Dmodel :

Hi
moe =

∑
j∈K

exp(Wj)∑
m∈K exp(Wm)

FFNj(H
i), i = 1, · · · , Nts. (5)

Autoregressive Training. Given the strong performance of the autoregressive paradigm in both
NLP Bai et al. (2023); Brown et al. (2020) and time series domains (Liu et al., 2025; 2024c), we
adopt a GPT-style training objective to predict the next token. This autoregressive formulation not
only supports variable input and output lengths flexibly during inference but also excels at iterative,
multi-step generation. Specifically, each input token Xi ∈ RS is processed through the encoder,
decoder, and token projection layer to generate the prediction of the subsequent token X̂i+1 ∈ RS .
The overall optimization objective is defined as:

Ltrain =
1

NtsS

∑
||X̂i −Xi||2, i = 1, . . . , Nts. (6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We perform pre-training of HORAI on our proposed MM-TS dataset and ensure no
overlap between the pre-training MM-TS dataset and the downstream evaluation datasets. To assess
HORAI’s capability for time series analysis, we use the widely used evaluation datasets (Liu et al.,
2024a) for forecasting and anomaly detection tasks, including Climate, Energy, Environment, Social
Good, Traffic, EWJ, KR, MDT, and Weather. Specific dataset information is in Appendix A.

Baselines. We select both time series foundation models and time-series-specific models of each
task as baselines. For the forecasting task, we select five SOTA foundation models: ChatTime
(Wang et al., 2025a), VisionTS (Chen et al., 2024a), ROSE (Wang et al., 2025b), Timer (Liu et al.,
2024c), MOIRAI (Woo et al., 2024), and four multimodal time-series-specific models: GPT4MTS
(Jia et al., 2024), TATS (Li et al., 2025), GPT4TS (Zhou et al., 2023), TimeVLM (Zhong et al.,
2025). For the anomaly detection task, we select three unimodal foundation models: DADA (Shentu
et al., 2025), Timer, UniTS (Gao et al., 2024), and nine time-series-specific models: GPT4TS,
LLMMixer (Kowsher et al., 2024), TimesNet (Wu et al., 2023), DCdetector (Yang et al., 2023),
Anomlay Transformer(A.T.) (Xu et al., 2022), PatchTST (Nie et al., 2023), HBOS (Goldstein &
Dengel, 2012), IForest (Liu et al., 2008), and PCA (Shyu et al., 2003).

Settings. During pre-training, HORAI is optimized using the Adam optimizer with an initial learn-
ing rate of 0.0005 and trained for 20 epochs, employing an early stopping strategy with a patience
of 5 epochs. For the forecasting task, all methods predict future values at four horizons to en-
sure a fair comparison. Additionally, none of the models employ the drop-last strategy (Qiu et al.,
2024). For the anomaly detection task, evaluation is conducted using three score-based metrics:
AUC-ROC, VUS-ROC, and VUS-PR (Paparrizos et al., 2022a), which are threshold-independent.
Notably, time series foundation models perform zero-shot inference directly, whereas time-
series-specific models are trained in a full-shot setting for comparison.

4.2 TIME SERIES FORECASTING

As shown in Table 1, HORAI achieves state-of-the-art forecasting performance compared to both
unimodal foundation models and multimodal time-series-specific models, achieving top perfor-
mance on 14 out of 18 cases. Specifically, relative to unimodal foundation models, HORAI reduces
the MSE of Sunidal by 16.9% , and outperforms ROSE with reductions of 27.2% in MSE. These
results indicate that HORAI effectively leverages multimodal information to enhance time series un-
derstanding and improve predictive accuracy. Compared to multimodal time-series-specific models
trained in a full-shot manner, HORAI achieves superior performance even in the zero-shot setting:
exceeding GPT4MTS by 7.5% in MSE , and surpassing TimeVLM by 8.4% in MSE. This demon-
strates that pre-training on the large-scale multimodal time series dataset equips HORAI with strong
generalization ability for time series forecasting.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Time series forecasting results under zero-shot and full-shot settings, reported as the average
across four prediction horizons. The best results are highlighted in bold, and the second-best results
are underlined. Full results are presented in the Table 11.

Type Time Series Foundation Models (Zero-Shot) Time-Series-Specific Models (Full-Shot)

Models HORAI ChatTime VisionTS ROSE Timer MOIRAI GPT4MTS TATS GPT4TS TimeVLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.236 0.332 0.369 0.410 0.290 0.336 0.345 0.372 0.289 0.339 0.272 0.403 0.225 0.298 0.215 0.301 0.220 0.294 0.237 0.302

Climate 0.867 0.741 1.860 1.106 1.307 0.930 1.475 0.987 0.888 0.764 1.921 1.095 1.182 0.889 1.180 0.887 1.184 0.891 1.195 0.899

Energy 0.250 0.358 0.247 0.352 0.304 0.420 0.386 0.479 0.274 0.359 0.324 0.417 0.262 0.380 0.255 0.368 0.260 0.376 0.260 0.374

Environment 0.307 0.393 0.395 0.456 0.354 0.436 0.392 0.456 0.351 0.428 0.351 0.403 0.323 0.400 0.319 0.396 0.322 0.393 0.319 0.397

Social Good 0.792 0.451 1.069 0.535 1.126 0.618 1.141 0.581 0.974 0.489 1.430 0.651 0.920 0.451 0.918 0.428 0.917 0.476 0.868 0.444

Traffic 0.176 0.293 0.596 0.610 0.281 0.407 0.341 0.451 0.188 0.290 0.406 0.468 0.203 0.261 0.179 0.238 0.206 0.266 0.216 0.319

EWJ 0.591 0.542 0.887 0.641 0.645 0.584 0.706 0.605 0.696 0.595 0.937 0.688 0.626 0.549 0.612 0.546 0.607 0.543 0.609 0.544

KR 0.551 0.448 0.565 0.455 0.671 0.522 0.555 0.480 0.549 0.463 0.992 0.629 0.555 0.450 0.578 0.449 0.578 0.448 0.584 0.454

MDT 0.373 0.434 0.496 0.479 0.433 0.485 0.461 0.493 0.389 0.448 0.606 0.569 0.385 0.442 0.389 0.436 0.391 0.438 0.392 0.437

4.3 TIME SERIES ANOMALY DETECTION

As illustrated in Table 2, HORAI achieves state-of-the-art anomaly detection performance compared
to both unimodal foundation models and time-series-specific models, attaining top results on 13 out
of 15 cases. Compared to DADA, a general time series anomaly detector, HORAI outperforms
it by 14.6%, 22.4%, and 23.6% in AUC-ROC, VUS-ROC, and VUS-PR, respectively, under the
zero-shot setting. This highlights that integrating multimodal data, such as text and images, enables
the model to identify anomalous patterns better. Against time-series-specific anomaly detection
models, HORAI outperforms GPT4TS by 13.2%, 23.8%, and 26.7% in AUC-ROC, VUS-ROC, and
VUS-PR, respectively. These results demonstrate that pre-training on large-scale, multi-domain data
equips HORAI with robust general detection capability, effectively distinguishing between diverse
normal and anomalous patterns.

Table 2: Time series anomaly detection results under zero-shot and full-shot settings. The best
results are in bold, and the second-best results are underlined. More metric results are in Table 12.

Type Time Series Foundation Models (Zero-Shot) Time-Series-Specific Models (Full-shot)

Datasets Metric HORAI DADA Timer UniTS GPT4TS LLMMixer TimesNet DCdetector A.T. PatchTST HBOS IForest PCA

EWJ

AUC-ROC 86.32 79.11 76.15 79.87 75.58 57.69 82.39 53.40 43.81 78.53 71.82 69.20 54.35

VUS-ROC 82.13 71.79 67.72 73.91 67.95 52.79 75.76 47.10 31.75 71.96 62.07 59.24 45.26

VUS-PR 45.89 43.36 33.17 39.32 35.63 15.13 43.15 15.37 10.85 36.08 41.19 37.81 19.38

MDT

AUC-ROC 90.74 79.04 75.65 73.19 74.79 60.30 86.67 53.82 56.44 84.55 60.26 63.92 54.51

VUS-ROC 87.02 66.76 60.28 58.67 62.30 46.80 83.40 45.02 44.53 77.69 55.30 54.02 44.09

VUS-PR 52.72 46.81 38.38 37.61 44.81 15.21 52.13 15.72 15.93 41.67 44.77 35.32 22.93

KR

AUC-ROC 91.41 79.53 66.72 80.95 78.30 65.77 85.88 52.97 51.25 82.15 75.16 74.45 63.58

VUS-ROC 86.77 70.82 75.99 73.93 67.81 47.06 79.00 43.04 41.97 74.65 58.77 60.70 47.51

VUS-PR 58.58 45.90 51.41 43.32 38.23 19.10 51.60 8.49 7.94 36.18 54.17 43.31 24.19

Energy

AUC-ROC 69.53 62.33 60.54 63.38 66.54 61.31 68.36 48.75 38.68 66.70 60.80 60.32 61.14

VUS-ROC 61.46 54.37 46.03 51.15 53.10 53.04 59.47 45.93 31.56 58.31 51.50 53.61 53.07

VUS-PR 35.15 34.18 29.46 31.04 31.68 30.35 38.61 22.57 19.69 34.41 42.57 46.03 44.30

Weather

AUC-ROC 81.49 66.37 80.86 81.22 74.47 79.60 81.10 47.90 47.11 82.02 64.47 67.81 67.71

VUS-ROC 80.40 61.03 73.22 75.08 70.03 71.71 81.91 45.56 43.32 79.97 54.16 56.45 57.38

VUS-PR 50.76 30.00 43.21 44.35 41.30 43.47 50.09 18.33 19.17 50.13 46.58 49.66 47.13

4.4 ABLATION STUDY
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Figure 3: Ablation study on the Social Good dataset and the
Energy dataset.

To evaluate the effectiveness of each
component in HORAI, we conduct
ablation experiments. Figure 3 illus-
trates the unique impact of each mod-
ule. Removing the image and text
modalities (W/O Modality) leads to
a drop in performance, demonstrat-
ing that HORAI effectively leverages
textual semantics and visual spatial
information to enhance time series
modeling. In the Modality Exchange
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variant, mid- and high-frequency time series features are aligned with texts, while low-frequency
features are aligned with images. In contrast, HORAI aligns low-frequency features with text and
mid- to high-frequency features with images, effectively exploiting the correspondence between
modality-specific information and different frequency components of the time series, which im-
proves modeling performance. This demonstrates that frequency-aware cross-modality alignment
is crucial for capturing complementary patterns across modalities. Replacing the Time-Frequency
MoE-FFN with a standard FFN (W/O MoE-FFN) shows that the MoE-FFN allows each expert to
capture distinct patterns, thereby enhancing the model’s generalization ability. Removing frequency
information from the router (W/O Router) demonstrates that incorporating frequency information
helps guide multimodal tokens to the most appropriate FFN experts, further improving performance.

4.5 MODEL ANALYSIS

Fine-tune with downstream data. To examine how the amount of fine-tuning data affects down-
stream performance, we evaluate HORAI by progressively enlarging the training portion of the
Environment dataset. As shown in Figure 7 (a), the forecasting accuracy steadily improves as more
data is used, reaching its best with the full dataset. Specifically, the MAE decreases from 0.393
to 0.370, and the MSE decreases from 0.307 to 0.259. These results highlight HORAI’s strong
adaptability to downstream data availability.

Model Size Analysis. Scalability is a fundamental property of foundation models. To assess the
scalability of HORAI, we construct different variants by varying the number of Time-Frequency De-
coder layers and the model dimension Dmodel, and pre-train them on the proposed MM-TS dataset,
followed by evaluation on the environment dataset. Specifically, in the first setting, we keep Dmodel

fixed and increase the number of Decoder layers from 3 to 6 and then to 12. In the second setting,
we fix the number of Decoder layers while enlarging Dmodel from 256 to 768 and further to 1024.
As shown in Figure 7 (b), increasing the number of layers consistently enhances performance, with
MSE reduced from 0.313 to 0.305. Similarly, enlarging the model dimension also leads to fore-
casting performance improvements, as MSE decreases from 0.330 to 0.299. These results clearly
demonstrate HORAI’s scalability to larger model capacities.

(b) Model size analysis 
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Figure 4: (a) Fine-tuning HORAI with different data percentages on the Environment dataset (b)
Model performance on the different model dimensions and the number of decoder layers.
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Figure 5: Text replacement experiments on the Agriculture
dataset and the EWJ dataset.

Text Replacement. To examine
whether HORAI truly leverages
semantic information from text to
enhance time series analysis, we
conduct text replacement experi-
ments with three variants: using
randomly generated text (Random
Text), substituting all samples with
a single global domain description
derived from dataset information
(Domain Text), and removing the
text modality altogether (W/O Text).
As shown in Table 5, introducing random text leads to a substantial performance drop, even worse
than removing the text modality, indicating that HORAI does not simply rely on the presence of
text but actually understands and exploits its semantic content. Similarly, when every sample is
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assigned the same global domain description, the model’s performance also declines, suggesting
that sample-specific semantic information is crucial for effective time series analysis.

5 CONCLUSION

In this paper, we take an early step toward multimodal foundation models for time series analysis.
On the pre-training data side, we construct MM-TS, a large-scale multimodal dataset spanning time
series, text, and image across six domains, with more than one billion time points. This dataset
provides a solid foundation for studying multimodal foundation models. On the modeling side,
we propose HORAI, a frequency-enhanced multimodal foundation model. It integrates two core
components: the Frequency-guided Cross-Modality Encoder and the Time-Frequency Decoder, ef-
fectively fusing different multimodal features and enhancing model generalization across domains
and modalities. After pre-training on MM-TS, HORAI achieves state-of-the-art performance in
time series forecasting and anomaly detection tasks, which demonstrates strong task versatility and
generalization ability.
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A DATASETS

A.1 PRE-TRAIN DATASET MM-TS

For time series modality, we assemble a large and diverse set of publicly available time series
datasets covering domains such as energy, nature, transportation, web, health, and economics. The
corpus contains around 1 billion time points, with a strict separation from all target evaluation
datasets. The datasets vary widely in their sampling frequencies—from millisecond-level measure-
ments to monthly observations—reflecting both the heterogeneity of real-world scenarios and the
complexity of temporal dynamics.

Table 3: List of pretraining datasets of time series modality.
Domain Dataset Frequency Time Pionts Source

Energy

Aus. Electricity Demand Half Hourly 1155264 Monash (Godahewa et al., 2021)

Wind 4 Seconds 7397147 Monash (Godahewa et al., 2021)

Wind Farms Minutely 172178060 Monash (Godahewa et al., 2021)

Solar Power 4 Seconds 7397222 Monash (Godahewa et al., 2021)

London Smart Meters Half Hourly 166527216 Monash (Godahewa et al., 2021)

BDG-2 Rat Hourly 4596080 (Alexandrov et al., 2020)

BDG-2 Panther Hourly 893840 (Alexandrov et al., 2020)

BDG-2 Fox Hourly 2285288 (Alexandrov et al., 2020)

Nature

Phoneme - 2160640 UCRDau et al. (2019)

EigenWorms - 27947136 UEA (Bagnall et al., 2018)

PRSA Hourly 4628448 (Zhang et al., 2017)

Temperature Rain Daily 23252200 Monash (Godahewa et al., 2021)

StarLightCurves - 9457664 UCR (Dau et al., 2019)

Worms 0.033 Seconds 232200 UCR (Dau et al., 2019)

Saugeen River Flow Daily 23741 Monash (Godahewa et al., 2021)

Sunspot Daily 73924 Monash (Godahewa et al., 2021)

Weather Daily 43032000 Monash (Godahewa et al., 2021)

KDD Cup 2018 Daily 2942364 MonashGodahewa et al. (2021)

US Births Daily 7305 Monash (Godahewa et al., 2021)

Healthcare

MotorImagery 0.001 Seconds 72576000 UEA (Bagnall et al., 2018)

AtrialFibrillation 0.008 Seconds 38400 UEA (Bagnall et al., 2018)

PigArtPressure - 624000 UCR (Dau et al., 2019)

PIGCVP - 624000 UCR (Dau et al., 2019)

TDbrain 0.002 Seconds 79232703 (Wang et al., 2024)

Transport

Pems03 5 Minute 9382464 (Liu et al., 2022)

Pems04 5 Minute 5216544 (Liu et al., 2022)

Pems07 5 Minute 24921792 (Liu et al., 2022)

Pems08 5 Minute 3035520 (Liu et al., 2022)

Pems-bay 5 Minute 16937700 (Liu et al., 2022)

Pedestrian Counts Hourly 3132346 Monash (Godahewa et al., 2021)

SZ-Taxi 15 Minute 464256 (Wang et al., 2023)

Taxi Half Hourly 40584636 (Alexandrov et al., 2020)

Uber TLC Hourly 510284 (Alexandrov et al., 2020)

Web Web Traffic Daily 116485589 Monash (Godahewa et al., 2021)

Economic

FRED MD Monthly 77896 (McCracken & Ng, 2016)

Bitcoin Daily 75364 Monash (Godahewa et al., 2021)

NN5 Daily 87801 (Taieb et al., 2012)

For text modality, considering that pre-training foundation models require large amounts of high-
quality textual modality data, and that in real-world scenarios such text is often difficult to obtain,
scarce, and may contain noise or irrelevant information, we design specific prompts and leverage
large language models to generate large-scale, high-quality textual data. Taking the London Smart
Meters dataset as an example, we construct the following prompt:
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Prompt: You are a domain expert in {energy domain} systems and time series analysis, tasked with 
generating a detailed yet concise textual summary of time series data. The provided input is a 
univariate time series: {time series data}, sourced from the {London Smart Meters} dataset within 
the {energy domain}, with observations collected at regular half-hour intervals from {start time} to 
{end time}. Consider the broader contextual factors affecting this dataset, including seasonal 
variations, regional energy usage patterns, socio-economic events, and policy changes during the given 
period. Analyze the temporal progression of the data and summarize the key trends in a single 
coherent paragraph. Focus on identifying and describing patterns such as upward or downward trends, 
stable periods, sudden spikes or drops, cyclic behaviors, anomalies, and general fluctuations. Your 
description begin with: "The {London Smart Meters} series exhibits..."Ensure your summary 
integrates both statistical patterns and contextual reasoning, presenting a holistic overview of how the 
values evolve over time. Use precise, objective, and professional language.

Figure 6: The prompt designed for generating textual descriptions of the London Smart Meters
dataset.

A.2 EVALUATION DATASET

To evaluate HORAI in a multi-task setting, we employ widely used benchmark datasets for both
forecasting and anomaly detection. 1) Forecasting: As shown in Table 4, experiments are conducted
on TimeMMD (Liu et al., 2024a) and additional datasets (Dong et al., 2024), covering diverse do-
mains such as Agriculture, Climate, Energy, Environment, Social Good, Traffic, EWJ, KR, and
MDT. 2) Anomaly Detection: We evaluate HORAI on five datasets—Weather, Energy, KR, EWJ,
and MDT—with anomaly ratios ranging from 5.81% to 17.23%. Detailed statistics are provided in
Table 5.

Table 4: The statistics of evaluation datasets for the forecasting task.
Tasks Dataset Variate Frequency Dataset Size Timespan

Agriculture 1 Monthly 496 1983-2024

Forecasting

Climate 5 Monthly 496 1983-2024

Energy 9 Weekly 1479 1996-2024

Environment 4 Daily 11102 1982-2023

Social Good 1 Monthly 900 1950-2024

Traffic 1 Monthly 531 1980-2024

EWJ 1 Daily 2658 2009-2020

KR 1 Daily 2655 2009-2020

MDT 1 Daily 2732 2009-2020

Table 5: The statistics of evaluation datasets for the anomaly detection task.
Tasks Dataset Anomaly Ratio Frequency Dataset Description

Detection

Weather 17.10% Monthly Temperature and humidity information collected from government websites.

Energy 17.23% Weekly The dataset records weekly U.S. gasoline prices (dollars per gallon).

KR 6.21% Daily The dataset is collected from Yahoo, NASDAQ finance websites.

MDT 11.17% Monthly The dataset is collected from Yahoo, NASDAQ finance websites.

EWJ 9.96% Daily The dataset is collected from Yahoo, NASDAQ finance websites.

B BASELINES

We categorize the baselines into three groups: Unimodal Time Series Foundation Models, Multi-
modal Time-Series-Specific Models, and Unimodal Time-Series-Specific Models. Unimodal Time
Series Foundation Models are pre-trained on large-scale, cross-domain unimodal time series data,
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enabling direct inference on downstream tasks and demonstrating certain generalization capabili-
ties. In contrast, Time-Series-Specific Models require training on each downstream dataset and can
be further divided based on the input type. Multimodal Time-Series-Specific Models leverage ad-
ditional modalities, such as text or images, or reuse LLM representations to enhance time series
understanding. Unimodal Time-Series-Specific Models, on the other hand, design tailored modules
to exploit the inherent characteristics of time series data.

B.1 UNIMODAL TIME SERIES FOUNDATION MODELS

• Sundial (Liu et al., 2025) proposes a TimeFlow Loss that predicts the distribution of the next
patch, enabling Transformer training without discrete tokenization and supporting proba-
bilistic forecasting.

• VisionTS (Chen et al., 2024a) converts time series data into image form and uses visual
mask autoencoders for unsupervised feature learning.

• ROSE (Wang et al., 2025b) combines frequency decomposition with time-series registers to
jointly learn both domain-invariant and domain-specific representations, facilitating knowl-
edge transfer to downstream tasks.

• Timer (Liu et al., 2024c) adopts a decoder-only architecture employing autoregressive mod-
eling for generative pre-training.

• MOIRAI (Woo et al., 2024) introduces multi-scale patch projections to model diverse pat-
terns and an any-variate attention mechanism that allows flexible handling of time series
with arbitrary dimensionality.

• DADA (Shentu et al., 2025) leverages adaptive bottleneck and dual-adversarial decoding
to enable robust zero-shot anomaly detection across diverse domains.

• UniTS (Gao et al., 2024) proposes a novel unified network backbone for classification,
forecasting, and anomaly detection.

B.2 MULTIMODAL TIME-SERIES-SPECIFIC MODELS

• GPT4MTS (Jia et al., 2024) propose a prompt tuning-based LLM for time series forecasting
with multimodal input.

• TATS (Li et al., 2025) propose a plug-and-play multimodal time series forecasting frame-
work, which transforms text representations into auxiliary variables.

• GPT4TS (Zhou et al., 2023) fine-tunes the limited parameters of LLM, demonstrating com-
petitive performance by transferring knowledge from large-scale pre-training text data.

• LLMMixer (Kowsher et al., 2024) adapts LLMs for time series forecasting by breaking
down the data into different time scales.

• TimeVLM (Zhong et al., 2025) leverages pre-trained VLMs to enhance time series fore-
casting by unifying temporal, visual, and textual information.

B.3 UNIMODAL TIME-SERIES-SEPCIFIC MODELS

• TimesNet (Wu et al., 2023) transforms the 1D time series into a set of 2D tensors based on
multiple periods to handle the multi-periodicity of the time series.

• DCdetector (Yang et al., 2023) leverages dual-attention contrastive representation learn-
ing, extracting normal feature representations through self-supervised learning and dual-
attention mechanisms.

• Anomaly Transformer (Xu et al., 2022) leverages a self-attention mechanism to capture
both short- and long-term dependencies in time series, and detects anomalies by analyzing
differences in association matrices.

• PatchTST (Nie et al., 2023) segments time series into subseries-level patches that serve as
input tokens to the Transformer and applies the channel-independence strategy for training
on multivariate time series.

• HBOS (Goldstein & Dengel, 2012) is a fast unsupervised anomaly detection method based
on histogram density estimation.
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• IForest (Liu et al., 2008) detects anomalies by recursively partitioning data to isolate out-
liers, rather than modeling normal behavior.

• PCA (Shyu et al., 2003) detects anomalies by measuring deviations in the principal com-
ponent space, assuming outliers lie far from the normal distribution.

C EXPERIMENT SETTING

During pre-training, HORAI is optimized using the Adam optimizer with an initial learning rate of
0.0005 and trained for 20 epochs, with early stopping applied using a patience of 10 epochs. The
batch size is set to 2048, the input time series length to 576, and the patch size to 48. The Time-
Frequency Decoder is configured with 6 layers, the model dimension Dmodel is set to 768, and the
ratio parameter α for high- and low-frequency decomposition is fixed at 0.05. All experiments are
implemented in PyTorch, and pre-training is conducted on four NVIDIA Tesla A800 80GB GPUs.

For forecasting, To ensure fairness, we remove the drop-last strategy for HORAI and all base-
lines, since using it would result in inconsistent numbers of test samples across different batch
sizes Qiu et al. (2024). For each dataset, we evaluate four prediction horizons for both HORAI
and the baselines. Specifically, Agriculture, Climate, Social Good, Traffic, EWJ, KR, and MDT
are evaluated with horizons {6, 8, 10, 12}, Environment with {48, 96, 192, 336}, and Energy with
{12, 24, 36, 48}.

D EFFICIENCY ANALYSIS

We compare HORAI with unimodal foundation models and multimodal end-to-end models using
three common efficiency metrics: the number of parameters, MACs, and inference time. All ex-
periments are conducted on the Environment dataset with a batch size of 1. As shown in Table
6, HORAI does not exhibit a significant efficiency disadvantage compared to unimodal foundation
models, despite incorporating multimodal information. Specifically, HORAI achieves lower MACs
than VisionTS and MOIRAI, and demonstrates faster inference speed compared to Sundial, while
also delivering superior prediction performance on multimodal time series datasets. When compared
with multimodal time-series-specific models, although these models generally have few parameters,
low MACs, and short inference times, they require retraining on each downstream dataset. In con-
trast, HORAI supports direct zero-shot inference, which makes it far more efficient in terms of
overall time cost.

Table 6: Efficiency analysis on the environment dataset.
Models Parameters(M) MACs Inference(s)

TimeVLM 152 2.24 G 0.0576
GPT4MTS 167 1.21 G 0.0611
GPT4TS 85 514.36 M 0.0272

TaTS 83 14.77 M 0.0686
Sundial 128 1.32 G 0.0813

VisionTS 112 5.51 G 0.0073
ROSE 16 85.41 M 0.0542
Timer 84 84.14 M 0.0048

MOIRAI 310 4.23 G 0.0511
HORAI 426 3.51 G 0.0733

E DISCUSSION

We further provide a clarified discussion comparing ChatTime and HORAI, including the following
aspects: (1) Model perspective: HoRAI is specifically architected as a multimodal foundation
model integrating time series, images, and text. It leverages modality-specific encoders to extract
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distinct features and employs a novel frequency-enhanced alignment to explicitly fuse these repre-
sentations from multiple perspectives. In contrast, ChatTime adapts general-purpose LLMs for
time series analysis. While leveraging LLMs’ inherent reasoning abilities for time series analysis
offers generalization, discretizing continuous numerical values into textual tokens leads to precision
loss, making it difficult to capture time series patterns. (2) Data perspective: HORAI is pretrained
on a large-scale multimodal dataset incorporating aligned text and images. These modalities capture
diverse characterizations of temporal dynamics from multiple perspectives and simultaneously intro-
duce some external context, providing relevant supervision that improves generalization. However,
ChatTime relies only on simple prompts such as ”Please predict the following sequence,” which
offer limited text regarding the specific time series characteristics.

F MODEL ANALYSIS

F.1 SENSITIVITY ANALYSIS

We conduct sensitivity experiments on two key parameters: the frequency threshold α and the num-
ber of selected experts K. As shown in the Table 7, setting α to 0.05 achieves the best prediction
performance. This value distinctly partitions low-frequency from mid-to-high-frequency features,
facilitating optimal alignment with text and image modalities. Conversely, a larger α forces exces-
sive information into high-frequency components, thereby amplifying noise-like patterns; whereas
an overly small α introduces redundant low-frequency information, which disrupts the alignment
between image and time series representations. As shown in Table 8, selecting the Top-2 or Top-
3 experts yields superior performance. Activating all experts tends to introduce redundancy from
irrelevant experts, thereby diluting the model’s generalization. Whereas selecting only a single ex-
pert limits the representational capacity, preventing the model from modeling diverse time series
patterns.

Table 7: Hyper-parameter sensitivity analysis about the frequency threshold α.
α = 0.01 α= 0.05 α = 0.25 α = 0.5

Metrics MSE MSE MSE MSE
Agriculture 0.245 0.236 0.255 0.277

Climate 0.868 0.867 1.054 1.200
Energy 0.260 0.250 0.342 0.335

Environment 0.313 0.307 0.332 0.333

Table 8: Hyper-parameter sensitivity analysis about the number of selected experts K.
K=1 K=2 K=3 K=4

Metrics MSE MSE MSE MSE
Agriculture 0.258 0.236 0.232 0.252

Climate 1.062 0.867 0.884 0.896
Energy 0.262 0.250 0.260 0.265

Environment 0.320 0.307 0.315 0.326

F.2 ABLATION ANALYSIS ON SPECIFIC MODALITIES AND ALIGNMENT STRATEGIES

We perform ablation studies to evaluate the contributions of individual modalities (text, image) and
the efficacy of our frequency-based alignment strategy. Specifically, we analyze four settings: 1)
only text and time series; 2) only image and time series ; 3) text, image, and time series without
frequency-based alignment (w/o Freq-Align); and 4) swapping modalities by fusing low-frequency
time series with images and mid-to-high frequency time series with text (Modality Exchange). As
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shown in Table 9, both visual and textual modalities contribute to performance gains, though their
relative impact varies depending on the dataset characteristics. For datasets exhibiting clear long-
term trends, such as Agriculture and Energy, the text modality contributes more significantly. Con-
versely, for datasets dominated by local fluctuations, such as Climate, the image modality proves
more critical. Crucially, the significant performance drop observed when removing frequency-based
alignment and modality exchange underscores the validity of our design: it confirms that aligning
images with mid-to-high frequency components and text with low-frequency components is the most
effective strategy.

Table 9: Ablation analysis about each modality.
HORAI Text + Time Series Image + Time Series W/O Freq-Align Modality Exchange

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Agriculture 0.236 0.332 0.271 0.349 0.312 0.360 0.266 0.347 0.292 0.352

Climate 0.867 0.741 1.102 0.828 0.982 0.797 0.928 0.786 1.321 0.856
Energy 0.250 0.358 0.295 0.405 0.306 0.415 0.290 0.398 0.292 0.402

Environment 0.307 0.393 0.344 0.412 0.320 0.395 0.325 0.396 0.360 0.426

F.3 ABLATION ANALYSIS ABOUT TEXT ENCODER AND VISION ENCODER

To evaluate the model’s performance with different encoders, we conduct additional experiments by
replacing both text and visual encoders. Considering time and computational constraints, we select
encoders with relatively small parameter sizes. Specifically, the text encoders include GPT2-large,
LLaMA3-1B, and Qwen2.5-1.5B, while the visual encoder comparison uses Swin Transformer. As
shown in the Table 10, for a given text encoder, models with larger parameter sizes tend to perform
slightly better, and employing more advanced architectures (e.g., Qwen and LLaMA) generally
yields further improvements. In the comparison of visual encoders, ViT and Swin Transformer
achieve similar overall forecasting performance.

Table 10: Ablation analysis of different text encoders and image encoders.
HORAI GPT2-Large Llama3-1B Qwen-1.5B Swin Transformer-Base

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Agriculture 0.236 0.332 0.258 0.352 0.228 0.315 0.237 0.334 0.230 0.325

Climate 0.867 0.741 0.913 0.842 0.874 0.752 0.850 0.732 0.876 0.761
Energy 0.250 0.358 0.265 0.372 0.245 0.350 0.229 0.342 0.254 0.364

Environment 0.307 0.393 0.325 0.398 0.310 0.398 0.304 0.392 0.300 0.388

F.4 CONVERGENCE ANALYSIS OF FULL-SHOT TIME-SERIES-SPECIFIC MODELS

F.5 VISUALIZATION ANALYSIS OF FREQUENCY-BASED ALIGNMENT

To visually verify the efficacy of the frequency-based alignment, we employ t-SNE to visualize
the learned embeddings of the Energy dataset. As shown in Figure 8 of the revised paper, distinct
alignment patterns emerge: Image features align closely with Mid-to-High Frequency time series
components, while Text features cluster tightly with Low-Frequency components. This visual evi-
dence empirically confirms the effectiveness of our frequency-guided alignment mechanism.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In our proposed method, HORAI, we employ LLMs as the text tokenizer and text encoder to extract
semantic features and fuse with time series and image, enhancing the model’s ability for time series
understanding. For the constructed pre-training dataset MM-TS, we leverage DeepSeek to generate
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(a) TATS (b) GPT4MTS

Figure 7: Training and validation losses of TATS and GPT4MTS on the Traffic dataset.

Joint t-SNE Visualization of Multi-modal Alignment

TS Low-Freq

Text Modality

TS High-Freq

Image Modality

Figure 8: T-SNE visualization of frequency-based alignment.
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Table 11: Full time series forecasting results of HORAI, time series foundation models, and time-
series-specific models.

Type Time Series Foundation Models (Zero-Shot) Time-Series-Specific-Models (Full-Shot)

Models HORAI ChatTime VisionTS ROSE Timer MOIRAI GPT4MTS TATS GPT4TS TimeVLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture

6 0.150 0.274 0.243 0.340 0.210 0.289 0.219 0.299 0.168 0.272 0.187 0.342 0.161 0.257 0.140 0.251 0.135 0.242 0.143 0.245

8 0.209 0.318 0.349 0.399 0.266 0.323 0.278 0.339 0.243 0.317 0.245 0.391 0.207 0.288 0.187 0.282 0.198 0.284 0.215 0.287

10 0.273 0.355 0.390 0.418 0.307 0.348 0.408 0.406 0.328 0.361 0.297 0.423 0.230 0.305 0.244 0.320 0.258 0.313 0.271 0.320

12 0.312 0.382 0.497 0.483 0.376 0.386 0.474 0.443 0.415 0.405 0.357 0.455 0.301 0.342 0.290 0.350 0.291 0.338 0.322 0.359

avg 0.236 0.332 0.369 0.410 0.290 0.336 0.345 0.372 0.289 0.339 0.272 0.403 0.225 0.298 0.215 0.301 0.220 0.294 0.237 0.302

Climate

6 0.846 0.731 1.884 1.118 1.316 0.932 1.488 0.993 0.876 0.759 1.624 1.016 1.199 0.895 1.194 0.897 1.207 0.901 1.218 0.907

8 0.861 0.740 1.843 1.100 1.312 0.935 1.598 1.031 0.885 0.763 2.148 1.152 1.205 0.899 1.178 0.886 1.191 0.892 1.181 0.914

10 0.875 0.746 1.806 1.090 1.302 0.928 1.401 0.967 0.893 0.766 1.983 1.112 1.173 0.885 1.170 0.881 1.169 0.886 1.179 0.880

12 0.887 0.748 1.909 1.117 1.297 0.925 1.414 0.957 0.899 0.770 1.929 1.101 1.152 0.876 1.179 0.885 1.171 0.883 1.203 0.896

avg 0.867 0.741 1.860 1.106 1.307 0.930 1.475 0.987 0.888 0.764 1.921 1.095 1.182 0.889 1.180 0.887 1.184 0.891 1.195 0.899

Energy

12 0.108 0.233 0.104 0.222 0.173 0.313 0.268 0.401 0.118 0.236 0.183 0.309 0.111 0.244 0.105 0.232 0.111 0.243 0.114 0.253

24 0.211 0.332 0.203 0.321 0.264 0.395 0.363 0.469 0.225 0.336 0.290 0.396 0.232 0.362 0.216 0.344 0.223 0.355 0.227 0.359

36 0.299 0.404 0.292 0.396 0.346 0.454 0.413 0.497 0.328 0.403 0.367 0.449 0.308 0.418 0.309 0.418 0.314 0.423 0.309 0.410

48 0.381 0.466 0.389 0.470 0.434 0.516 0.501 0.549 0.424 0.460 0.457 0.515 0.398 0.496 0.391 0.480 0.393 0.484 0.390 0.475

avg 0.250 0.358 0.247 0.352 0.304 0.420 0.386 0.479 0.274 0.359 0.324 0.417 0.262 0.380 0.255 0.368 0.260 0.376 0.260 0.374

Environment

48 0.300 0.385 0.343 0.406 0.345 0.426 0.402 0.459 0.358 0.431 0.352 0.404 0.315 0.400 0.307 0.389 0.320 0.396 0.304 0.387

96 0.317 0.399 0.369 0.465 0.370 0.441 0.409 0.465 0.368 0.436 0.370 0.415 0.340 0.401 0.334 0.402 0.340 0.401 0.327 0.405

192 0.307 0.399 0.377 0.474 0.360 0.442 0.389 0.452 0.351 0.427 0.350 0.402 0.336 0.411 0.332 0.401 0.330 0.391 0.328 0.403

336 0.305 0.389 0.372 0.478 0.340 0.436 0.369 0.447 0.326 0.418 0.332 0.390 0.299 0.390 0.302 0.391 0.300 0.383 0.320 0.395

avg 0.307 0.393 0.359 0.456 0.354 0.436 0.392 0.456 0.351 0.428 0.351 0.403 0.323 0.400 0.319 0.396 0.322 0.393 0.319 0.397

Social Good

6 0.660 0.390 0.988 0.451 0.957 0.543 0.939 0.499 0.845 0.416 0.966 0.522 0.718 0.382 0.753 0.370 0.717 0.374 0.732 0.379

8 0.756 0.435 1.044 0.488 1.106 0.605 1.168 0.588 0.938 0.469 1.532 0.653 0.942 0.505 0.875 0.409 0.855 0.459 0.822 0.427

10 0.817 0.470 1.098 0.519 1.164 0.636 1.187 0.595 1.018 0.515 1.551 0.691 0.929 0.446 0.991 0.459 0.930 0.463 0.916 0.465

12 0.915 0.511 1.149 0.554 1.278 0.688 1.272 0.642 1.094 0.557 1.671 0.736 1.093 0.470 1.053 0.474 1.167 0.608 1.005 0.505

avg 0.792 0.451 1.069 0.503 1.126 0.618 1.141 0.581 0.974 0.489 1.430 0.651 0.920 0.451 0.918 0.428 0.917 0.476 0.868 0.444

Traffic

6 0.178 0.297 0.609 0.623 0.275 0.411 0.331 0.449 0.167 0.267 0.349 0.448 0.192 0.264 0.164 0.226 0.199 0.278 0.210 0.316

8 0.181 0.297 0.626 0.636 0.282 0.410 0.365 0.455 0.185 0.287 0.461 0.499 0.195 0.256 0.178 0.242 0.204 0.262 0.212 0.313

10 0.175 0.292 0.572 0.592 0.286 0.406 0.326 0.443 0.196 0.299 0.414 0.466 0.204 0.257 0.185 0.243 0.210 0.264 0.222 0.328

12 0.173 0.287 0.579 0.592 0.282 0.402 0.342 0.458 0.202 0.307 0.400 0.458 0.218 0.268 0.189 0.242 0.211 0.260 0.222 0.322

avg 0.176 0.293 0.596 0.610 0.281 0.407 0.341 0.451 0.188 0.290 0.406 0.468 0.203 0.261 0.179 0.238 0.206 0.266 0.216 0.319

EWJ

6 0.555 0.528 0.808 0.612 0.583 0.560 0.634 0.581 0.643 0.573 0.751 0.623 0.579 0.531 0.550 0.525 0.550 0.523 0.552 0.521

8 0.581 0.537 0.880 0.641 0.629 0.580 0.729 0.626 0.685 0.591 1.017 0.714 0.608 0.540 0.611 0.544 0.597 0.538 0.599 0.541

10 0.604 0.550 0.920 0.652 0.665 0.591 0.716 0.599 0.716 0.604 0.982 0.705 0.644 0.559 0.627 0.551 0.632 0.551 0.629 0.554

12 0.623 0.556 0.940 0.659 0.701 0.607 0.746 0.613 0.740 0.614 0.997 0.709 0.673 0.566 0.661 0.563 0.649 0.560 0.657 0.562

avg 0.591 0.542 0.887 0.641 0.645 0.584 0.706 0.605 0.696 0.595 0.937 0.688 0.626 0.549 0.612 0.546 0.607 0.543 0.609 0.544

KR

6 0.533 0.435 0.528 0.436 0.628 0.503 0.687 0.521 0.530 0.453 0.793 0.567 0.528 0.442 0.542 0.426 0.539 0.435 0.550 0.437

8 0.549 0.446 0.564 0.452 0.674 0.524 0.798 0.572 0.547 0.461 1.077 0.650 0.564 0.452 0.569 0.446 0.573 0.444 0.580 0.451

10 0.561 0.454 0.570 0.459 0.685 0.526 0.727 0.530 0.559 0.468 1.063 0.649 0.566 0.455 0.600 0.462 0.594 0.452 0.601 0.463

12 0.562 0.458 0.598 0.473 0.698 0.535 0.750 0.547 0.560 0.472 1.038 0.649 0.562 0.453 0.602 0.461 0.604 0.459 0.606 0.467

avg 0.551 0.448 0.565 0.455 0.671 0.522 0.741 0.542 0.549 0.463 0.992 0.629 0.555 0.450 0.578 0.449 0.578 0.448 0.584 0.454

MDT

6 0.360 0.425 0.466 0.455 0.412 0.471 0.426 0.476 0.366 0.437 0.494 0.521 0.369 0.436 0.365 0.423 0.373 0.422 0.369 0.423

8 0.369 0.432 0.474 0.473 0.431 0.486 0.483 0.514 0.383 0.446 0.668 0.591 0.377 0.439 0.383 0.433 0.386 0.432 0.385 0.434

10 0.379 0.438 0.526 0.494 0.437 0.487 0.456 0.486 0.397 0.453 0.630 0.580 0.389 0.444 0.397 0.440 0.395 0.448 0.400 0.443

12 0.387 0.442 0.518 0.494 0.453 0.495 0.477 0.499 0.408 0.458 0.632 0.582 0.405 0.450 0.411 0.447 0.411 0.452 0.414 0.448

avg 0.373 0.434 0.496 0.479 0.433 0.485 0.461 0.493 0.389 0.448 0.606 0.569 0.385 0.442 0.389 0.436 0.391 0.438 0.392 0.437
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text descriptions of time series. It is important to note that LLMs are not used for any part of the
manuscript writing process.

Table 12: Time series anomaly detection results under zero-shot and full-shot settings with multiple
metrics. The best results are in bold, and the second-best results are underlined.

Type Time Series Foundation Models (Zero-Shot) Time-Series-Specific-Models (Full-Shot)

Datasets Metric HORAI DADA Timer UniTS GPT4TS LLMMixer TimesNet DCdetector A.T. PatchTST HBOS IForest PCA

EWJ

Aff-F1 82.54 81.26 78.06 77.61 76.65 66.86 81.82 48.10 59.03 75.82 71.03 67.55 51.06

F1 56.28 49.33 41.21 39.18 48.33 18.95 49.37 17.09 14.39 45.39 44.80 41.67 18.68

Range-AUC-ROC 79.84 68.44 64.71 67.15 55.57 41.75 74.22 45.69 27.50 69.26 61.02 57.94 43.78

Range-AUC-PR 43.33 41.61 30.67 44.31 32.83 12.36 41.84 12.52 9.01 33.37 46.37 34.77 16.49

AUC-PR 51.97 55.24 44.01 50.33 46.75 18.81 54.99 10.88 8.97 47.91 25.24 24.16 10.99

AUC-ROC 86.32 79.11 76.15 79.87 75.58 57.69 82.39 53.40 43.81 78.53 71.82 69.20 54.35

VUS-ROC 82.13 71.79 67.72 73.91 67.95 52.79 75.76 47.10 31.75 71.96 62.07 59.24 45.26

VUS-PR 45.89 43.36 33.17 39.32 35.63 15.13 43.15 15.37 10.85 36.08 41.19 37.81 19.38

MDT

Aff-F1 80.66 77.99 78.51 75.57 80.81 67.65 80.08 47.33 66.12 79.47 52.33 53.74 54.66

F1 59.36 53.70 48.39 51.70 49.14 27.71 54.88 19.54 25.46 49.40 43.84 38.10 20.75

Range-AUC-ROC 86.59 63.94 58.98 58.78 59.00 42.44 77.01 43.65 41.41 75.61 54.86 53.22 41.90

Range-AUC-PR 51.11 44.63 37.54 36.14 42.48 15.30 48.60 13.30 13.20 13.11 43.16 33.63 19.53

AUC-PR 61.98 63.03 55.86 53.44 60.40 19.86 65.57 11.59 15.29 54.11 28.66 22.41 12.29

AUC-ROC 90.74 79.04 75.65 73.19 74.79 60.30 86.67 53.82 56.44 84.55 60.26 63.92 54.51

VUS-ROC 87.02 66.76 60.28 58.67 62.30 46.80 83.40 45.02 44.53 77.69 55.30 54.02 44.09

VUS-PR 52.72 46.81 38.38 37.61 44.81 15.21 52.13 15.72 15.93 41.67 44.77 35.32 22.93

KR

Aff-F1 85.44 84.22 89.55 82.24 79.56 71.80 85.47 61.94 70.99 79.52 64.78 69.38 58.11

F1 71.89 49.48 58.04 30.23 74.01 20.25 58.14 11.98 11.10 36.64 60.71 53.97 22.76

Range-AUC-ROC 86.16 69.91 74.61 71.29 65.15 49.01 78.29 41.75 40.18 72.72 61.80 61.10 51.01

Range-AUC-PR 59.64 46.95 51.59 40.75 37.53 13.25 52.83 6.04 7.44 35.22 51.69 43.07 18.99

AUC-PR 72.91 63.55 66.72 55.39 56.78 28.19 67.47 8.10 7.01 53.60 41.09 32.21 10.18

AUC-ROC 91.41 79.53 66.72 80.95 78.30 65.77 85.88 52.97 51.25 82.15 75.16 74.45 63.58

VUS-ROC 86.77 70.82 75.99 73.93 67.81 47.06 79.00 43.04 41.97 74.65 58.77 60.70 47.51

VUS-PR 58.58 45.90 51.41 43.32 38.23 19.10 51.60 8.49 7.94 36.18 54.17 43.31 24.19

Energy

Aff-F1 71.37 64.38 60.20 63.84 66.37 65.85 66.00 47.07 43.39 66.85 55.85 62.03 57.65

F1 37.71 31.54 31.71 31.66 33.22 33.08 33.95 12.63 12.05 34.81 34.83 34.39 35.12

Range-AUC-ROC 62.93 55.78 46.82 52.12 53.54 55.25 61.56 45.39 31.52 61.39 51.06 52.64 52.64

Range-AUC-PR 33.24 33.47 28.81 30.70 31.10 30.59 38.17 21.77 19.24 35.25 42.14 45.19 43.89
AUC-PR 39.82 37.81 38.05 27.51 33.75 32.85 42.05 17.69 14.02 34.25 21.55 21.17 21.69

AUC-ROC 69.53 62.33 60.54 63.38 66.54 61.31 68.36 48.75 38.68 66.70 60.80 60.32 61.14

VUS-ROC 61.46 54.37 46.03 51.15 53.10 53.04 59.47 45.93 31.56 58.31 51.50 53.61 53.07

VUS-PR 35.15 34.18 29.46 31.04 31.68 30.35 38.61 22.57 19.69 34.41 42.57 46.03 44.30

Weather

Aff-F1 80.84 69.01 75.46 76.17 72.56 73.68 80.58 42.80 49.22 77.17 47.70 54.06 64.91

F1 47.44 35.29 46.42 50.00 40.16 43.13 51.58 11.14 15.59 49.60 42.94 49.21 40.41

Range-AUC-ROC 80.61 61.95 73.37 75.55 71.43 72.54 83.11 45.41 43.11 80.47 54.12 56.69 57.80

Range-AUC-PR 50.88 29.86 43.20 44.31 41.37 43.40 50.58 18.06 18.85 49.81 46.37 49.65 47.47

AUC-PR 49.16 29.80 48.87 49.91 44.12 49.71 47.56 17.08 16.71 53.39 31.16 35.44 25.02

AUC-ROC 81.49 66.37 80.86 81.22 74.47 79.60 81.10 47.90 47.11 82.02 64.47 67.81 67.71

VUS-ROC 80.40 61.03 73.22 75.08 70.03 71.71 81.91 45.56 43.32 79.97 54.16 56.45 57.38

VUS-PR 50.76 30.00 43.21 44.35 41.30 43.47 50.09 18.33 19.17 50.13 46.58 49.66 47.13
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