
Deep Learning for Solving Linear Integral Equations
Associated with Markov Chains

Yanlin Qu
Columbia Business School
qu.yanlin@columbia.edu

Jose Blanchet
Stanford University

jose.blanchet@stanford.edu

Peter Glynn
Stanford University

glynn@stanford.edu

Abstract

Linear integral equations are central to the analysis of general state-space Markov
chains; solving them leads to Lyapunov functions (drift equation), the central
limit theorem (Poisson’s equation), and stationary distributions (global balance
equation). This paper develops a simple, simulator-based procedure that solves such
equations by training a neural network to minimize a squared residual estimated
via an unbiased “double-sample” loss of one-step transitions. The method does
not require access to stationary distributions or long trajectories, and it extends
to non-compact state spaces through a first-return decomposition that localizes
training. A queueing case study demonstrates accuracy and robustness relative to
Monte Carlo baselines.

1 Introduction

In operations research and stochastic modeling, linear integral equations are central to the analysis of
general state-space Markov chains; solving them leads to Lyapunov functions (drift equation), the
central limit theorem (Poisson’s equation), and stationary distributions (global balance equation). In
this paper, we show how deep learning can be used to numerically solve such equations.

Given a Markov chain X = (Xn : n ≥ 0) on S ⊆ Rd with one-step transition kernel P =
(P (x, dy) : x, y ∈ S), we leverage deep learning to globally compute expectation functionals of the
form

u∗(x) = Ex

 T∑
k=0

exp

−
k−1∑
j=0

β(Xj)

 r(Xk)

 , (1)

for r ≥ 0 and x ∈ C, where T = inf{n ≥ 0 : Xn ∈ Cc}. Expected hitting times, exit probabilities,
and infinite-horizon expected discounted rewards (obtained by making Cc the empty set) are all
special cases of (1). By conditioning on the first transition of the Markov chain (i.e., using first-
transition analysis (FTA)), these functionals are characterized by linear integral equations, and our
algorithm trains a neural network to minimize the associated residual.

As a canonical special case, this viewpoint recovers the Lyapunov framework commonly used for
stability. The typical Lyapunov construction involves a nonnegative function v = (v(x) : x ∈ S)
satisfying

(Pv)(x) ≤ v(x)− 1, (2)

for x ∈ Ac and a suitable set A, where (Ph)(x) =
∫
S h(y)P (x, dy) for a generic function h; see

Meyn and Tweedie (2012). The function v then provides an upper bound on ExTA, where Ex denotes
expectation on the path-space of X conditioned on X0 = x, and TA = inf{n ≥ 0 : Xn ∈ A}. In
fact, our deep learning algorithm computes the minimal nonnegative function satisfying (2), namely
v∗(x) = ExTA, which satisfies (2) with equality.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MLxOR: Mathematical
Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making.



We train neural networks to satisfy these equations by minimizing the integrated squared residual
error with respect to the network parameters using stochastic gradient descent (SGD). To obtain
an unbiased gradient estimator, we use the double-sampling trick that utilizes two independent and
identically distributed (iid) copies of the first transition. We have used this idea in related work of ours
on computing rates of convergence to equilibrium for Markov chains; see Qu et al. (2024). This idea
has also been used to compute splitting probabilities and to predict rare events without simulating
long sample paths, thereby achieving great efficiency; see Strahan et al. (2023); Cheng and Weare
(2024) and the references therein. In the context of reinforcement learning, the same idea can be used
to perform policy evaluation, leading to the residual gradient algorithm (RGA); see Baird (1995);
Baird and Moore (1998); Sutton and Barto (2018).

Our main contribution in this paper is to expose the use of deep learning to the applied probability
community, as a means of solving the linear integral equations that arise from Markov chain models.
In the course of explaining these ideas, we describe how deep learning can be applied to compute
global approximations to the solutions of FTA equations arising within the general setting of (1). In
particular, as explained above, our proposed approach therefore provides a vehicle for deep-learning-
based numerical construction of Lyapunov functions. Hence, deep learning can potentially play a
role in settling the types of stability questions that often arise in Markov chain modeling applications.

In addition to solving the linear integral equations that arise within the setting of FTA expectations
and probabilities, this paper also contributes suitable deep-learning-based algorithms for solving
Poisson’s equation and estimating stationary distributions. Moreover, we show that the deep learning
method can be applied to Markov chains on non-compact state spaces, despite the fact that the theory
and practice of deep-learning-based function approximation require compact domains. In summary,
with the deep learning method, we can construct Lyapunov functions, solve Poisson’s equation, and
estimate stationary distributions, for Markov chains on compact or non-compact state spaces. Qu et al.
(2025) is an extended version of this paper that discusses, for example, related sample complexity
issues.

2 First-transition analysis via deep learning

We start by observing that the expectation u∗ = (u∗(x) : x ∈ C) defined by (1) solves
u = g +Hu, (3)

where
H(x, dy) = e−β(x)P (x, dy)

for x, y ∈ C and

g(x) = r(x) +

∫
Cc

e−β(x)P (x, dy)r(y)

for x ∈ C.

Neural networks are flexible function approximators that can be trained to satisfy functional equations
such as (3). Given a neural network {uθ : θ ∈ Θ} (a parametrized family of functions), to choose θ
such that uθ approximately satisfies (3) on C, we minimize the integrated squared residual error

l(θ) =

∫
C

(uθ(x)− g(x)− (Huθ)(x))
2
ν(dx),

where ν is a probability measure on C (e.g., the uniform distribution). Let X0 ∼ ν and X1 ∼
P (X0, ·), where we write Y ∼ η to denote P (Y ∈ ·) = η(·). Then l(θ) can be written as

E
[(

E
[
uθ(X0)− Γ(X0, X1)− e−β(X0)uθ(X1)I(X1 ∈ C))

∣∣∣X0

])2
]
,

where Γ(X0, X1) = r(X0) + e−β(X0)r(X1)I(X1 ∈ Cc). Stochastic gradient descent (SGD)
θt+1 = θt −αt l̂

′(θt) can be used to minimize l(θ), where αt is the step size and l̂′(θt) is an unbiased
estimator of the gradient of l(θ) at θt, i.e., El̂′(θt) = l′(θt). To construct such an unbiased estimator,
we use the double-sampling trick. Given X0, let X1 and X−1 be independent samples from P (X0, ·).
Then

l̂′(θ) = 2
[
uθ(X0)− Γ(X0, X1)− e−β(X0)uθ(X1)I(X1 ∈ C)

]
·
[
u′
θ(X0)− e−β(X0)u′

θ(X−1)I(X−1 ∈ C)
]

2



is an unbiased estimator of the gradient of

l(θ) = E
[
uθ(X0)− Γ(X0, X1)− e−β(X0)uθ(X1)I(X1 ∈ C)

]
·
[
uθ(X0)− Γ(X0, X−1)− e−β(X0)uθ(X−1)I(X−1 ∈ C)

]
.

Here, u′
θ is the gradient of the neural network with respect to its parameters, computed via backpropa-

gation. (We note that the expression for l̂′(θ) is not symmetric in X1 and X−1. We do not recommend
the symmetrized estimator for l̂′(θ) because it contains both u′

θ(X1) and u′
θ(X−1), consuming too

much computational effort relative to the typical variance reduction.) With l̂′(θ) at hand, we can
solve (3) by minimizing l(θ) via SGD (Algorithm 1).

Algorithm 1 FTA-RGA

Require: probability measure ν, neural network {uθ : θ ∈ Θ}, initialization θ0, step size α, number
of iterations T̄
for t ∈ {0, ..., T̄ − 1} do

sample X0 ∼ ν and X1, X−1
iid∼ P (X0, ·)

Compute l̂′(θt) as

2
[
uθt(X0)− Γ(X0, X1)− e−β(X0)uθt(X1)I(X1 ∈ C)

]
·
[
u′
θt(X0)− e−β(X0)u′

θt(X−1)I(X−1 ∈ C)
]

θt+1 = θt − αl̂′(θt)
end for
return uθT̄

3 Dealing with non-compact state spaces

When C is non-compact, we can not expect an algorithm that terminates in finite time to globally
approximate u∗ on C (because to encode the approximation then consumes infinite memory). Even
the issue of whether the algorithm can faithfully approximate u∗ over a compact set K is not
immediately obvious, because u∗ on the compact set is influenced by the behavior of the Markov
chain over the entire infinite state space.

To approximate u∗ on K, instead of (3), we can solve

u∗(x) =Ex

T∧τ−1∑
k=0

exp

−
k−1∑
j=0

β(Xj)

 r(Xk)


+ Ex

I(T > τ) · exp

−
τ−1∑
j=0

β(Xj)

u∗(Xτ )

 ,

where x ∈ K, a ∧ b = min(a, b), and τ = inf{n ≥ 1 : Xn ∈ K}. Again, SGD can be used
to minimize the corresponding l(θ), and the double-sampling trick can be used to construct the
corresponding l̂(θ). Instead of two iid first transitions, we need two iid sample paths returning to K.

As an example on a non-compact state space, we consider a G/G/2 queue. It is a single waiting
line served by two parallel servers, with iid U [0, 2/0.6] interarrival times (arrival rate 0.6) and iid
U [0, 2/0.5] service times (service rate 0.5). Customers are served in the order in which they arrive,
by the first server to become available. The Kiefer-Wolfowitz workload vector W = (Wmin,Wmax)
(Kiefer and Wolfowitz, 1956) records the remaining workload at each server immediately after each
arrival, ordered from smallest to largest, providing a Markovian description of the system. To be

3



specific,

Wmin
n+1 =min((Wmin

n −An+1)+ + Sn+1, (W
max
n −An+1)+),

Wmax
n+1 =max((Wmin

n −An+1)+ + Sn+1, (W
max
n −An+1)+),

where An+1 is the interarrival time while Sn+1 is the service time.

Since the state space S = {(x1, x2) : 0 ≤ x1 ≤ x2} is non-compact, we compute u∗(x) = ExTA on
K where A = {(x1, x2) : 0 ≤ x1 ≤ x2 ≤ 3} and K = {(x1, x2) : 3 ≤ x1 ≤ x2 ≤ 9}. We train a
single-layer neural network with width m = 1000 and sigmoid activation σ(z) = 1/(1 + e−z). We
run T̄ = 106 SGD steps with step size αt ≡ 10−3. To visualize the result, we evaluate the trained
neural network uθT̄ on a mesh grid with spacing 0.2 in K (left plot of Figure 1). To validate the
result, we independently estimate ExTA for each x on the same grid using 10000 iid simulation
runs (right plot of Figure 1). From Figure 1, we observe that the “minimal” Lyapunov function
u∗(x1, x2) remains nearly flat when x1 is small and then smoothly transitions to linear growth as x1

increases. This may explain why quadratic-then-linear (Huberized) Lyapunov functions work well in
the stability analysis of queueing systems; see, e.g., Blanchet and Chen (2020).

Figure 1: Left: The learned solution of Pu = u− 1. Right: The estimated u∗(x) = ExTA on a grid.

4 Solving Poisson’s equation

Let X be a Markov chain with stationary distribution π, and suppose r is π-integrable. To solve
Poisson’s equation

u− Pu = r − πr,

we can eliminate the centering constant πr =
∫
S r(y)π(dy) by applying I−P to both sides, yielding

u− 2Pu+ P 2u = r − Pr,

where (P 2u)(x) = Exu(X2). To minimize the corresponding integrated squared residual error, the
double-sampling trick requires iid (X1, X2) and (X−1, X−2).

5 Estimating stationary distributions

Suppose both P and π have continuous density. Then we can estimate π by solving

π(y) =

∫
S
π(x)η(dx)p(x, y),

for y ∈ S, where η is a reference probability measure. This time the double-sampling trick requires
Z1, Z−1

iid∼ η (and Y0 ∼ ν) to minimize

l̃(θ) = E [[πθ(Y0)− πθ(Z1)p(Z1, Y0)] [πθ(Y0)− πθ(Z−1)p(Z−1, Y0)]] .

4



References
Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In

Proceedings of the Twelfth International Conference on Machine Learning, pages 30–37, 1995.

Leemon Baird and Andrew Moore. Gradient descent for general reinforcement learning. Advances in
Neural Information Processing Systems, 11:968–974, 1998.

Jose Blanchet and Xinyun Chen. Rates of convergence to stationarity for reflected Brownian motion.
Mathematics of Operations Research, 45(2):660–681, 2020.

Xiaoou Cheng and Jonathan Weare. The surprising efficiency of temporal difference learning for rare
event prediction. Advances in Neural Information Processing Systems, 37:81257–81286, 2024.

J Kiefer and Jacob Wolfowitz. On the characteristics of the general queueing process, with applications
to random walk. The Annals of Mathematical Statistics, pages 147–161, 1956.

Sean P Meyn and Richard L Tweedie. Markov Chains and Stochastic Stability. Springer Science &
Business Media, London, 2012.

Yanlin Qu, Jose Blanchet, and Peter Glynn. Deep learning for computing convergence rates of
Markov chains. Advances in Neural Information Processing Systems, 37:84777–84798, 2024.

Yanlin Qu, Jose Blanchet, and Peter Glynn. Deep learning for Markov chains: Lyapunov functions,
Poisson’s equation, and stationary distributions. arXiv preprint arXiv:2508.16737, 2025.

John Strahan, Justin Finkel, Aaron R Dinner, and Jonathan Weare. Predicting rare events using neural
networks and short-trajectory data. Journal of Computational Physics, 488:112152, 2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2nd edition, 2018.

5


	Introduction
	First-transition analysis via deep learning
	Dealing with non-compact state spaces
	Solving Poisson's equation
	Estimating stationary distributions

