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ABSTRACT

Reinforcement learning from human feedback (RLHF) is a standard approach for
fine-tuning large language models to follow instructions. As part of this process,
learned reward models are used to approximately model human preferences. How-
ever, as imperfect representations of the “true” reward, these learned reward mod-
els are susceptible to overoptimization. Gao et al. (2023) studied this phenomenon
in a synthetic human feedback setup with a significantly larger “gold” reward
model acting as the true reward (instead of humans) and showed that overopti-
mization remains a persistent problem regardless of the size of the proxy reward
model and training data used. Using a similar setup, we conduct a systematic
study to evaluate the efficacy of using ensemble-based conservative optimization
objectives, specifically worst-case optimization (WCO) and uncertainty-weighted
optimization (UWO), for mitigating reward model overoptimization when using
two optimization methods: (a) best-of-n sampling (BoN) (b) proximal policy op-
timization (PPO). We additionally extend the setup of Gao et al. (2023) to include
25% label noise to better mirror real-world conditions. Both with and without
label noise, we find that conservative optimization practically eliminates overop-
timization and improves performance by up to 70% for BoN sampling. For PPO,
ensemble-based conservative optimization always reduces overoptimization and
outperforms single reward model optimization. Moreover, combining it with a
small KL penalty successfully prevents overoptimization at no performance cost.
Overall, our results demonstrate that ensemble-based conservative optimization
can effectively counter overoptimization.

1 INTRODUCTION

With the advent of large language models, reinforcement learning from human feedback (RLHF) has
emerged as a powerful technique to fine-tune and enhance models’ behaviors (Ziegler et al., 2019;
Ouyang et al., 2022; Bai et al., 2022a). However, despite its empirical success, RLHF remains
a fickle method suffering from many failure modes (Casper et al., 2023). One such failure mode
is overoptimization, a phenomenon in which policy optimization appears to be making progress
according to the learned reward model, but in reality begins to regress with respect to the true reward
function (Ziegler et al., 2019; Stiennon et al., 2020; Gao et al., 2023). While many works on RLHF
contain anecdotal evidence of overoptimization (Ziegler et al., 2019; Stiennon et al., 2020; Dubois
et al., 2023), Gao et al. (2023) is the only work that studies overoptimization in a systematic way.
As working directly with human labelers is expensive, Gao et al. (2023) introduce a synthetic setup
to study overoptimization in which a much larger language model is first trained as a “gold” reward
model and is then used to generate preference labels for training of proxy reward models.

In this work, we conduct a systematic study investigating whether combining ensembles with con-
servative optimization can help mitigate overoptimization. Our results indicate that not only does
ensemble-based conservative optimization help mitigate overoptimization, it also results in im-
proved performance. Our setup is identical to that of Gao et al. (2023) with one modification:
the addition of label noise. Gao et al. assume that the preference labels used to train the proxy
reward model do not contain any noise. However, this does not mirror the real-world RLHF setup,
in which agreement rates among human annotators are typically between 60 − 75% (Ziegler et al.,

The code is available at: https://github.com/tlc4418/llm_optimization.
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Figure 1: RLHF pipeline used in this work - our modifications on top of the standard RLHF setup
used in Gao et al. (2023) are highlighted in green.

2019; Stiennon et al., 2020; Dubois et al., 2023). To simulate that disagreement and to better reflect
the real-world RLHF, we extend the setup to include 25% label noise as well. In both the cases of
no label noise and 25% label noise, we provide strong evidence that ensemble-based conservative
optimization methods are effective in mitigating overoptimization and improving performance.

Scaling laws for reward model overoptimization discovered by Gao et al. (2023) indicate that in-
creasing the size of the proxy reward model reduces overoptimization as well. However, reward
models are derived from pretrained language models. Thus, acquiring a larger reward model would
require significant pretraining, which is not always feasible and can be very costly (Morgan, 2022;
Venigalla & Li, 2022). However, our approach, using ensembles of reward models, only requires
fine-tuning multiple copies of an already pretrained reward model, which is relatively inexpensive.
Moreover, our model and data scaling results (Figures 8 and 9) indicate that the gains provided by
our method are orthogonal to the gains achieved by increasing the reward model size; thus, the two
approaches can be combined seamlessly for even better results.

Our main contributions are as follows:

• We conduct the first study of using ensembles to counter overoptimization in RLHF-based
fine-tuning of language models.

• Our results indicate that using ensembles and conservative optimization eliminates overop-
timization for BoN and results in up to 70% improvement in some cases.

• For PPO, ensemble-based conservative optimization typically outperforms single reward
model optimization, and when combined with a suitable KL penalty weight successfully
eliminates overoptimization.

• We further conduct studies to establish the robustness of the ensemble-based conservative
optimization methods to any new hyperparameters it introduces (e.g. size of the ensemble).

2 BACKGROUND

In this section, we briefly review two commonly used policy optimization methods: best-of-n sam-
pling (BoN) and proximal policy optimization (PPO), followed by a discussion of overoptimization.

2.1 BEST-OF-N SAMPLING (BON)

Best-of-n (BoN) sampling, also called rejection sampling, is a simple inference-time optimization
method (Ouyang et al., 2022; Nakano et al., 2021). For a given prompt, n responses are generated
from the policy model, and the answer with the highest proxy reward model score is returned. To
evaluate the degree of optimization, the KL distance is defined analytically as a function of n:

KLbon = logn− n− 1

n
(1)
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2.2 PROXIMAL POLICY OPTIMIZATION (PPO)

Proximal Policy Optimization (Schulman et al., 2017) is a policy-gradient-based online reinforce-
ment learning method that maximizes a given reward function by repeatedly performing small in-
cremental updates to the policy. PPO is the standard algorithm used in fine-tuning language models
based on human feedback (Ouyang et al., 2022; Bai et al., 2022a; Stiennon et al., 2020; Zheng et al.,
2023). When using PPO to fine-tune a language model, a KL penalty term is added during the
reward calculation to regularize the policy by preventing it from deviating far from the initial policy:

RPPO(q, a) = R(q, a)− β log

[
πPPO(a|q)
πinit(a|q)

]
(2)

where πPPO is the policy being optimized and πinit is the initial (pretrained) language model. The
degree of optimization is measured in terms of KL distance between the initial policy and the one
being optimized, with details for this calculation provided in Appendix C.

2.3 OVEROPTIMIZATION

In reinforcement learning from human feedback (RLHF) a reward model is used to approximate
human preferences, to remove the need for querying humans for every policy generation. As the
learned reward model is only a proxy for the true reward function, optimizing it may not always
result in an improvement according to true human preferences. In practice, optimizing a (fixed)
learned reward model almost always leads to improvement according to this learned reward model,
but only improves according to the true reward model (i.e. humans) for some initial period, after
which performance often begins to regress. This phenomenon is referred to as overoptimization, an
example of which is shown in Figure 2.

Figure 2: An example of overoptimiza-
tion. The KL divergence is the distance
between the initial and current policy,
measuring the degree of optimization.

To study the problem of overoptimization, Gao et al.
(2023) introduced a synthetic setup in which, instead of
human annotators, a gold reward model is used to score
responses and generate preferences to train proxy reward
models. The gold reward model is generally chosen to
be much larger than the proxy reward model, to simulate
the fact that in a real setup, human preferences are too
complex to be captured by a neural network with a finite
capacity. Within this setup, Gao et al. (2023) discover
overoptimization to be a persistent issue, although they
note that larger proxy reward model sizes and greater
amounts of training data can help reduce overoptimiza-
tion. However, scaling up is not always a feasible so-
lution as the proxy reward models are generally derived
from extensively pretrained language models.

3 METHOD

Standard RLHF often learns a single reward model to estimate the true reward, which is then used
to optimize the policy. However, many works in wider machine learning have shown that learning
multiple estimators and combining them can help improve robustness (Lakshminarayanan et al.,
2017; Ovadia et al., 2019; Yu et al., 2020b). Taking inspiration from this insight, we propose to
learn an ensemble of reward models {R1, ..., Rk} in the reward model training stage. During policy
optimization, we combine the reward estimates from different reward models within the ensemble
according to the following three methods.

Mean Optimization: Mean optimization (Boyd & Vandenberghe, 2004; Wright, 2006) simply takes
the mean of the outputs of the different ensemble members:

Rµ(q, a) :=
1

k

k∑
i=1

Ri(q, a) (3)

where q is the prompt given to language model and a is the corresponding response sampled from
the language model.
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We note that mean optimization is not a conservative optimization technique; if at least one member
of the ensemble overestimates the reward (even while other members accurately estimate it), mean
optimization will not prevent the policy from exploiting the faulty reward model.

Worst-Case Optimization: Worst-case optimization (WCO) (Boyd & Vandenberghe, 2004;
Wright, 2006) creates a conservative estimate by choosing the lowest reward from the ensemble
at every step. Choosing the lowest reward helps ensure that as long as at least one ensemble member
does not overestimate the true reward, policy optimization will not result in overoptimization.

RWCO(q, a) := min
i

Ri(q, a) (4)

A major advantage of WCO is that it does not have any hyperparameters that might require tuning.
However, it can sometimes result in a performance penalty due to its highly conservative nature.

Uncertainty-Weighted Optimization: In uncertainty-weighted optimization (UWO) (Wu et al.,
2021b; Yu et al., 2020b; Brantley et al., 2019), the reward for a sample is calculated by combining
the average reward across all models in an ensemble with the intra-ensemble variance, weighted
by a coefficient λ. Intuitively, UWO works by penalizing the policy for generating responses for
which there is high disagreement among reward models within the ensemble. This helps prevent the
exploitation of a single faulty reward model which might be erroneously assigning high rewards to
incorrect or low-quality responses. Mathematically, this objective is given by:

RUWO(q, a) :=
1

k

∑
i

Ri(q, a)︸ ︷︷ ︸
mean

−λ
1

k

∑
i

(
Ri(q, a)−

1

k

∑
i

Ri(q, a)

)2

︸ ︷︷ ︸
variance

(5)

where λ is a hyperparameter which controls the weight of the uncertainty component.

4 EXPERIMENTAL SETUP

We based our experiments on the setup proposed by Gao et al. (2023), however, we use open source
models (Biderman et al., 2023; Dubois et al., 2023), open source datasets (Taori et al., 2023), and
train our proxy reward models under 25% label noise. We also present qualitative reproduction of
the results of Gao et al. in Appendix E.

4.1 DATA

In order to train proxy reward models, we use the Alpaca dataset (Taori et al., 2023), with 52, 000 in-
structions covering a range of commands and corresponding demonstrations generated by OpenAI’s
text-davinci-003 (OpenAI, 2023a). Each entry is composed of an instruction, an optional additional
input, and a demonstrator output. More specifically, we use the AlpacaFarm (Dubois et al., 2023)
variant of the dataset, as it provides splits for use in the different RLHF stages and for validation,
as well as human preference annotations. Further details concerning the splits, prompt format, and
examples are given in Appendix D.

4.2 PRETRAINED MODELS

For the policy model and (proxy) reward model, we use pretrained language models provided in the
Pythia suite (Biderman et al., 2023). The policy model used everywhere in this work is the 1.4B
Pythia model. For proxy reward models, we remove the unembedding layers from Pythia models of
sizes 14M, 70M, and 1.4B and add a scalar head to output the reward to get proxy reward models of
sizes 7M, 44M, and 1.3B.

Finally, the 7B human preference reward model from AlpacaFarm (Dubois et al., 2023) is used as
the gold reward model. It is of very similar size to the (closed-source) 6.9B gold reward model used
in Gao et al. (2023) and is significantly larger than any of our proxy RMs (with the largest being
1.3B) and as such is a reasonable choice for a gold standard.
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4.3 RLHF PIPELINE

Our RLHF pipeline is similar to that of Gao et al. (2023) with several modifications highlighted in
Figure 1. We explain the full setup below for completeness.

Supervised Fine-tuning: As the first step in our RLHF pipeline, both the policy model and the
proxy reward model undergo supervised fine-tuning using 10k instruction demonstrations from the
“sft” split of the AlpacaFarm dataset (see Section 4.1 and Appendix D.2 for details). This fine-tunes
the models to have better instruction-following capabilities.

Preference Generation and Labeling: To generate a preference dataset, the SFT model is prompted
using instructions from the AlpacaFarm dataset, for which it produces two responses per instruc-
tion. Relevant hyperparameters for sampling these responses are given in Appendix D.1. The two
responses are then scored with the gold reward model, which assigns a score to each of them. Hu-
man annotators tend to have high disagreement rates, often around 25% (Stiennon et al., 2020) or
more (Ziegler et al., 2019; Dubois et al., 2023). To simulate this, we optionally mislabel 25% of the
dataset. This results in two datasets: one with no label noise and one with 25% label noise.

Proxy Reward Model Training: We train our proxy reward model by minimizing cross-entropy
loss on the preference dataset generated in the previous timestep. Unless mentioned otherwise,
we use the complete dataset of 46, 000 prompts for reward model training and train all the reward
models for 5 epochs. We give other hyperparameters for reward model training in Appendix D.1 and
example validation loss curves for a set of reward models in Appendix F.1. Trained reward models
reach between 60-75% validation accuracy.

Ensemble Creation: To create an ensemble, we train a fixed number of proxy reward models using
identical data and hyperparameters but with different random seeds. This results in different random
initialization for the scalar reward head added on top of the pretrained language model and a different
data shuffling order. We use all the available training data for the training of every reward model as
training on lesser data results in higher validation loss and poorer performance (Lakshminarayanan
et al., 2017). Unless stated otherwise, we train an ensemble consisting of five reward models.

Policy Optimization: Similar to Gao et al. (2023), we use BoN sampling and PPO as optimization
algorithms. For BoN, the evaluation cost for greater KL nats increases exponentially. As a result,
due to constraints on available compute, we only evaluate BoN for a maximum of nmax = 12, 500
samples1, which roughly equals 8.4 nats of KL. For PPO, we train for 3000 PPO steps. We give
further details on implementation and other hyperparameters in Appendix D.1.

5 RESULTS

In this section, we report the results of our experiments. To summarize, our main findings are:

• Using an ensemble, with any of the objectives highlighted in Section 3, almost always helps over
using a single reward model.

• For BoN, we do not observe any overoptimization when using WCO and UWO as optimization
methods; however, in the 25% label noise case, mean optimization does overoptimize (Figure 3).

• For BoN, all three ensemble-based optimization methods result in up to ∼ 30% improvement in
final performance over the average performance attained by optimizing individual reward models
in the no label noise case and up to ∼ 75% improvement in the 25% label noise case (Figure 3).

• For PPO, WCO, and UWO do reduce overoptimization (Figure 5), but completely mitigating
overoptimization requires combining them with a small KL penalty (Figure 4).

• For PPO, WCO, and UWO always match or outperform single reward model optimization in
terms of final performance for all values of KL penalties (Figure 7).

• Our findings are robust to scaling of model size and training dataset size (Figures 8 and 9).

To present our results, we primarily rely on policy optimization curves where we show the gold
reward model score on the left y-axis and the proxy reward model score on the right y-axis. For

1Generating the n = 12, 500 answers for 1000 prompts and then relabeling them with proxy and gold
reward model takes approximately 700 A100 GPU hours.
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(a) With no label noise. (b) With 25% label noise.

Figure 3: BoN results for 44M reward model size. In this and future BoN Figures, KL divergence is
defined as per Eq. 1 and measures the degree of optimization.

(a) With no label noise. For all four methods,
KL penalty 0.01 is used.

(b) With 25% label noise. KL penalty 0.1 for
mean and 0.01 for all other methods is used.

Figure 4: PPO results for 44M reward model size, over three PPO seeds. The KL divergence scale
is different from BoN due to differences in the algorithm and the KL calculation (Appendix C). For
each method, we choose the KL penalty that gives the best final performance.

the x-axis, following the common practice (Bai et al., 2022a; Gao et al., 2023), we use the KL
divergence as defined in Eq. 1 or Appendix C, on a square root scale for clarity. For PPO, most runs
do not exceed a KL divergence of 150, but those that do are truncated to maintain a more legible plot.
Additionally, runs in Figure 4, the main PPO optimization illustration, are averaged over three PPO
seeds, with standard deviation shown. For other PPO optimization figures, due to the low variance
observed, a single seed is used. However, the results for single RMs are averaged over the five RMs
which make up the ensemble for the other methods. When comparing many experiment results at
once, we present bar plots showing the final performance on the gold reward model and the variable
of interest on the x-axis. As an additional evaluation metric for quality, Appendix F.9 compares
the final policy win-rate of different ensemble methods. Finally, we also include some qualitative
samples in Appendix F.10.

5.1 BEST-OF-N SAMPLING

In Figure 3, we present results for BoN sampling for a 44M size reward model. Across both noiseless
and noisy settings, ensembles help improve performance by ∼ 30% and ∼ 75% respectively and
successfully avoid overoptimization, except for mean optimization in the case of noisy labels. For
UWO, we show results for λ = 0.5 which we found to be most performant; however, in Section 5.4,
we show that many reasonable values of λ work well. Additional results for different sizes of reward
models are presented in Appendices F.3 and F.4.

5.2 PROXIMAL POLICY OPTIMIZATION

For PPO we observe that WCO and UWO reduce overoptimization and outperform other methods
in terms of final performance in the absence of KL penalty, although they do not eliminate overop-
timization completely (as shown in Figure 5). However, in Figure 4, we show that with a small KL
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(a) With no label noise. (b) With 25% label noise.

Figure 5: PPO results for different optimization objectives without using a KL penalty.

Figure 6: Individual reward model opti-
mization (i.e. no ensemble) for different
values of KL penalty in the 25% label
noise case.

Figure 7: Effectiveness of conserva-
tive optimization methods across KL
penalty weights in the 25% label noise
case.

penalty coefficient of 0.01, WCO and UWO both successfully prevent overoptimization, without
any notable reduction in performance. On the other hand, when using KL penalty on its own, a 20x
larger KL penalty weight of 0.2 is required to eliminate overoptimization which incurs a significant
performance penalty (Figure 6). In Figure 7, we show that for all penalties, WCO and UWO match
or outperform the average final performance achieved by optimizing a single reward model. More-
over, for small KL penalties, they comprehensively outperform single reward model optimization.

5.3 MODEL AND DATA SCALING RESULTS

Prior work (Gao et al., 2023) has shown that increasing reward model size or training dataset size
helps improve performance as measured by the gold reward model. In Figure 8, we vary the size
of reward models (keeping the dataset size fixed at 46k samples and policy size fixed at 1.4B) and
plot the final performance of each method for the fixed training budget. Recall that for BoN, this is
n = 12, 500 samples and for PPO, this is 3000 timesteps. Our results show that the improvement
due to the use of ensembles is orthogonal to the improvement in performance achieved by scaling
the reward model size. In particular, with the 1.3B reward model, we highlight that even when the
policy and reward model have a similar number of parameters, WCO and UWO still provide non-
trivial gains over using a single reward model. A more detailed illustration of this example can be
found in Appendix F.4.

Similarly, in Figure 9, we vary the size of the training dataset (keeping the reward model size fixed
at 44M) and plot the final performance for each method for the fixed training budget. The results
again indicate that using ensembles provides additional improvement in addition to increasing the
size of the training dataset.
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(a) BoN. (b) PPO.

Figure 8: Final gold reward model performance achieved by different objectives when optimizing
reward models with varying parameter sizes, but trained with the same dataset containing 25% label
noise. The 1.3B PPO models are exceptionally trained for 6000 PPO steps, due to a slower policy
optimization rate with large reward models (Appendix F.4).

(a) BoN. (b) PPO.

Figure 9: Final gold reward model performance achieved by different objectives when optimizing
(44M) reward models trained under varying amounts of data. A label noise ratio of 25% was main-
tained for all dataset sizes.

5.4 EVALUATING ROBUSTNESS TO HYPERPARAMETERS

Using an ensemble-based approach introduces an additional hyperparameter: the cardinality, or
size, of the ensemble. In Figure 11, we plot the final performance for BoN and PPO for the three
ensemble-based approaches: mean optimization, WCO, and UWO. We note that while there is a no-
ticeable gap between 3-member and 4-member ensembles, in most cases the performance is highly
similar for 4-member and 5-member ensembles, indicating that 4-member or 5-member ensembles
are likely to work best, and diminishing returns will be seen after this point.

For UWO, the value of the uncertainty penalty is another hyperparameter. Our results in Figure 12
indicate that most reasonable values of uncertainty penalty actually work well, indicating that there
is potentially no need to tune this hyperparameter.

5.5 EFFECTS OF LABEL NOISE AND UNCERTAINTY PENALTY

Figure 10: Intra ensemble variance for
different optimization objectives under
different levels of noise for PPO.

In Figure 10, we show intra-ensemble variance for an
ensemble of 44M parameter reward models optimized
via UWO and mean optimization objectives using PPO.
The variance among the ensemble members starts at a
small value in the no label noise case, and increases
by a relatively small amount during training for UWO.
However, the uncertainty increases by almost 3 times
for mean optimization during training.

For the case of 25% label noise, the variance starts
much higher and during the course of training, in-
creases by about 2.5 times for mean optimization.
However, the variance only increases by about 20% for
UWO (using λ = 0.1). Further, using a KL penalty of
0.01 results in a slight reduction in the variance at the
end of training. This hints at the fact that while mean optimization is able to exploit any reward
model that overestimates the reward, the uncertainty penalty in UWO prevents that - resulting in
better final performance (shown in Figure 7) and reduced overoptimization.
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(a) BoN. (b) PPO.

Figure 11: Impact of the cardinality of the ensemble on the final performance of mean, UWO, and
WCO for the 25% label noise case.

(a) BoN. (b) PPO.

Figure 12: Impact of uncertainty penalty weight on final performance for different numbers of
reward models within the ensemble. We note that there is considerable robustness to the value of
the uncertainty penalty.

6 DISCUSSION

We have demonstrated that ensemble-based conservative optimization methods improve perfor-
mance and are highly effective in combating the overoptimization problem in RLHF. This work
opens up the possibility of several interesting follow-ups. Firstly, future work should consider repli-
cating our findings in other environments (i.e. other RLHF datasets) and with larger-scale language
models. Secondly, our setup is based on offline RLHF, in which human feedback is collected up-
front and there are no updates made to the reward model throughout the policy optimization process.
This contrasts with online RLHF (Bai et al., 2022a; Christiano et al., 2017), where reward models
are periodically retrained on freshly collected data from humans. Does ensembling result in similar
gains in this setup as well or not?

7 RELATED WORKS

Overoptimization in RLHF: Several works (Ibarz et al., 2018; Ziegler et al., 2019; Stiennon et al.,
2020) have provided anecdotal evidence of overoptimization in RLHF. However, to the best of our
knowledge, Gao et al. (2023) are the only ones who study it systematically within the setup of fine-
tuning of LLMs. Our work utilizes their setup, reproduces their results, and performs a systematic
study evaluating the effectiveness of using ensembles for mitigating overoptimization.

Use of Ensembles in (Model-Based) RL: Ensembles are often used in deep learning as a tool to
estimate uncertainty (Lakshminarayanan et al., 2017; Dietterich, 2000) and can often outperform
more complex Bayesian deep learning methods (Ovadia et al., 2019). Learning an ensemble of
dynamics models is especially popular in model-based reinforcement learning where often a reliable
uncertainty estimate over state space is critical for avoiding distribution shift (Depeweg et al., 2016;
Gal et al., 2016; Chua et al., 2018; Yu et al., 2020a). Disagreement among ensemble members is also
a popular approach for driving the exploration of learning agents in an environment (Henaff, 2019;
Pathak et al., 2019; Shyam et al., 2019; Lee et al., 2021). Brantley et al. (2019) uses an ensemble-
based approach to estimate the support of expert policies in an imitation learning setup. Within
language models setting, Gleave & Irving (2022) explore the use of ensembles for uncertainty-
based active learning to improve sample efficiency of reward models. However, to the best of our
knowledge, there is no prior work that explores the use of ensembles for improving the robustness
of RLHF; especially in the setting of language models fine-tuning.
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Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
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APPENDIX

A ADDITIONAL RELATED WORKS

RLHF: Reinforcement learning from human feedback (RLHF), in its modern form, was popularized
by Christiano et al. (2017). Ziegler et al. (2019) was the first work to demonstrate the effectiveness
of RLHF for fine-tuning language models. This led to several applications of RLHF to fine-tuning
LLMs focused on improving several aspects of language models e.g. instruction following (Ouyang
et al., 2022; Abramson et al., 2022), summarization capabilities (Stiennon et al., 2020; Wu et al.,
2021a), web browsing (Nakano et al., 2021), translation (Gulcehre et al., 2023) and helpfulness &
harmlessness (Bai et al., 2022a). This has also caused a great amount of interest in improving RLHF
as a method. One main line of research here is methods that try to augment the learning signal for the
reward model in some form e.g. language feedback (Scheurer et al., 2023) or process supervision
(Lightman et al., 2023; Uesato et al., 2022). This, however, generally incurs additional costs in
labeling. This has prompted research on extracting feedback signal from a pretrained language
model via appropriate prompting (Bai et al., 2022b; OpenAI, 2023b; Madaan et al., 2023; Saunders
et al., 2022), however, this requires effective prompting and a highly capable language model to
be successful. Another line of research focuses on the use of alternative algorithms to PPO for
policy optimization step (Gulcehre et al., 2023; Rafailov et al., 2023; Zhao et al., 2023; Yuan et al.,
2023; Dong et al., 2023; Xu et al., 2023). Orthogonal to both these lines of work, we explore using
ensembles to improve RLHF.

Reward Hacking: Overotpimization in RLHF is an instance of reward hacking. Many examples
of reward hacking exist in literature (Clark & Amodei, 2016; Lehman et al., 2020; Krakovna et al.,
2020). Skalse et al. (2022) provide a formal definition for reward hacking and theoretically study
whether unhackable proxies can exist or not under different conditions. Zhuang & Hadfield-Menell
(2020) study the reward hacking that might arise due to partial observability. Pan et al. (2022)
provide examples of proxy reward functions in various reinforcement learning environments where
low-capacity policies do not elicit reward hacking but policies with greater capacity do.

B BON ESTIMATOR

The naive way of estimating the average reward of the BoN policy under a gold reward model, when
using a proxy reward model as the ranking function, is to use a Monte Carlo estimate in which n
answers {A1, ..., A2} are sampled from a language model f and then scored for a given prompt q as
follows:

Rgold
n (q) := EA1,A2,...,An∼f(q)

[
Rgold

(
argmax

a∈{A1,A2,...,An}
Rproxy(a|q)|q

)]
(6)

This is very wasteful as it does not reuse answers for different values of n. Therefore, we instead
use the following unbiased estimator (Nakano et al., 2021) that samples N ≥ nmax outputs for a
given input q:

Rgold
n (q) =

1(
N
n

) ∑
1≤i1<···<in≤N

Rgold

 argmax
a∈{Ai1

,...,Ain}
Rproxy (a | q) | q

 (7)

This can be computed efficiently by first sorting all answers A1, ..., AN under the proxy reward
model to obtain scores S1, ..., SN and then computing:

1(
N
n

) ∑
1≤i1<···<in≤N

Rgold

 argmax
a∈{Si1

,...,Sin}
Rproxy (a | q) | q

 =

N∑
i=n

(
i−1
n−1

)(
N
n

) Rgold (Si | q) (8)

To get the gold reward model score for a given range of values n = 1, 2, ..., nmax, we simply
evaluate the empirical average of the above estimator for all questions for each n.
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C KL DISTANCE CALCULATION FOR PPO

The naive way to calculate KL distance between the PPO-optimized policy πRL and the pretrained
model is as follows:

KLRL(πRL, πinit) = Ex∼πRL

[
log

πRL

πinit

]
(9)

However, this estimator has high variance and can be negative, unlike actual KL. Therefore, we use
the following estimator (Schulman, 2020):

KLRL(πRL, πinit) = Ex∼πRL

[
1

2

(
log

πRL

πinit

)2
]

(10)

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 HYPERPARAMETERS

We give the hyperparameters here for different components of our RLHF pipeline:

Table 1: SFT hyperparameters.

Parameter Value
Learning rate 8e-6
Epochs 3
Batch size 4

Table 2: RM hyperparameters.

Parameter Value
Learning rate 1e-5
Epochs 5
Batch size 32

Table 3: PPO hyperparameters.

Parameter Value
Learning rate 1e-6
Cosine annealing scheduler 1e-7
PPO epochs 4
Batch size 32
Number of rollouts 256
Chunk size 32
Clipping range & value 0.2
GAE lambda 0.95

D.2 ALPACAFARM DATASET DETAILS

The AlpacaFarm dataset (Dubois et al., 2023) employed in our experiments uses the Alpaca data
(Taori et al., 2023) made up of 52,000 samples. This data is chosen due to its large size and success in
training instruction-following models. AlpacaFarm contains five splits: a labeled 10k ”sft” split for
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Table 4: Generation hyperparameters.

Parameter Value
Max instruction length 520
Max new tokens (answer length) 256
PPO epochs 4
Top-p 0.9 (1.0 for PPO training)
Top-k 0
Temperature 1.0

Table 5: Example answer generation and reward modeling prompts with proper formatting.

Answer generation prompt Reward modelling prompt
<|prompter|>What geometric
shape has 5 sides and
5 angles?<|endoftext|>
<|assistant|>

<|prompter|>What geometric
shape has 5 sides and
5 angles?<|endoftext|>
<|assistant|>The
geometric shape is a
pentagon.<|endoftext|>

<|prompter|>Analyze the
following sentence and identify
the verb and its tense.\nShe
played the piano.<|endoftext|>
<|assistant|>

<|prompter|>Analyze the
following sentence and identify
the verb and its tense.\nShe
played the piano.<|endoftext|>
<|assistant|>Verb: Played
Tense: Past<|endoftext|>

supervised fine-tuning, a 10k ”pref” split containing pairwise preference labels, a 20k ”unlabeled”
split for training algorithms such as PPO, a 2k validation split, and an unused 10k split.

D.3 PROMPT FORMAT

Though we use instructions from the AlpacaFarm dataset, this only provides content for prompting
the LLM and still requires formatting. We opt for minimalism, following the v2 format used in
OpenAssistant (Köpf et al., 2023). This format follows the GPTNeoXTokenizer class used to
pretrain our LLMs and introduces two special tokens: <|prompter|> and <|assistant|>.

For answer generation, the model should be prompted with the instruction and the input. Inputs,
should they be present, are appended to the instruction after a new line to form the prompt. The
prompt is then prepended with the <|prompter|> token and closed off with an end-of-text (EOT)
<|endoftext|> token declaring the end of the instruction, and the <|assistant|> token to
start the answer. An example is shown in Table 5.

For reward modeling, the prompt should also contain an answer to be evaluated. In this case, the an-
swer text (from an AlpacaFarm dataset demonstration or a previous answer generation) is appended
to the initial prompt containing the instruction and closed off with the EOT token. This forms the
full RM prompt, with an example shown in Table 5.
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E REPRODUCTION OF RESULTS OF GAO ET AL. (2023)

We also successfully reproduced the results of Gao et al. in our setup shown in Figures 13 and 14.
Note that our setup uses open-source models derived from the Pythia suite (Biderman et al., 2023) as
the base for policy and proxy reward models and the AlpacaFarm human-preference reward model
(Dubois et al., 2023) is used as the gold reward model. In contrast, Gao et al. used closed-source
models based on GPT series. Our successful reproduction of their results in our setup hints at the
general nature of overoptimization.

(a) BoN results for various reward model sizes,
with data size held constant (46k).

(b) BoN results for various reward model training
data sizes, with RM size held constant (44M).

Figure 13: Gold reward model scores for BoN follow a similar trend as that observed by Gao et al.
(2023) when varying reward model and data sizes. Runs are averaged over five seeds, with standard
deviation additionally shown. 25% label noise is used here to highlight overoptimization, as we
found it difficult to observe with our limited BoN optimization capability. This is in line with label
noise ablation experiments from Dubois et al. (2023).

Figure 14: PPO optimization results for various reward model training data sizes, with reward model
size held constant (44M). Average and standard deviation over three runs are shown. A similar trend
to Gao et al. (2023) is observed, with greater overoptimization as optimization is pushed further.
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F ADDITIONAL RESULTS

F.1 RM VALIDATION LOSS CURVE

Figure 15: Reward model validation loss during training for 44M reward models with no label noise.
Reward models are trained for 5 epochs, with each epoch lasting 359 steps. We note that while there
is a minor variation in validation loss, this variation is not predictive of whether the reward model
is robust to overoptimization or not. For example, in Figure 16, we see that the reward model with
the highest validation loss does not suffer overoptimization but other reward models with lower
validation losses do.
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F.2 INDIVIDUAL REWARD MODEL TRAINING OPTIMIZATION PLOTS

For the single reward model results, we optimize each reward model separately and present their
average in Figures 3 and 4. Here, we present the training curve for each reward model separately.

(a) No label noise. (b) 25% label noise case.

Figure 16: BoN for 44M reward model. The average of these curves is presented in Figure 3.

(a) No label noise. (b) 25% label noise case.

Figure 17: PPO results for 44M reward model. The average of these curves is presented in Figure 4.
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F.3 7M REWARD MODEL TRAINING OPTIMIZATION RESULTS

(a) BoN. (b) PPO.

Figure 18: BoN and PPO results with the 7M reward models to supplement the bar plot in Figure 8.

F.4 1.3B REWARD MODEL TRAINING OPTIMIZATION RESULTS

(a) BoN.

(b) PPO, 3000 steps. (c) PPO, 6000 steps.

Figure 19: BoN and PPO results with the 1.3B reward models to supplement the bar plot in Figure 8.
Although all PPO experiments are run for 3000 steps, here we also include an experiment with 6000
steps for the 1.3B reward model, due to the policy being optimized at a slower rate for large reward
models. Differences can be observed at higher KL divergence, which is generally reached in the
later steps of PPO training. In particular, the difference in performance between the single RMs and
ensemble methods is clearer when the policy is trained for longer.
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F.5 ADDITIONAL NO LABEL NOISE RESULTS

Figure 20: Effectiveness of conservative optimization methods across KL penalty weights in the no
label noise case.

(a) BoN (b) PPO

Figure 21: Final gold reward model performance achieved by different objectives when optimizing
reward models with varying parameter sizes, but trained with the same dataset without label noise.

(a) BoN (b) PPO

Figure 22: Final gold reward model performance achieved by different objectives when optimizing
(44M) reward models trained under varying amounts of data. No label noise is used in the data.

(a) BoN. (b) PPO.

Figure 23: Impact of the cardinality of the ensemble on the final performance of mean, UWO, and
WCO for the no label noise case.
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(a) BoN. (b) PPO.

Figure 24: Impact of uncertainty penalty weight on final performance for different numbers of
reward models within the ensemble. We note that there is considerable robustness to the value of
the uncertainty penalty. No label noise is included in the data.

F.6 35% LABEL NOISE RESULTS

(a) BoN. (b) PPO.

Figure 25: BoN and PPO results for 44M reward models with KL penalty 0.01, when there is 35%
label noise in the reward model training data. Results show that the increase in performance and
overoptimization mitigation of ensembles is robust to a different noise level.

F.7 LONGER PPO RESULTS

Figure 26: PPO results for 44M reward models with KL penalty 0.01 and 25% label noise. Opti-
mization is extended to 10k steps for this experiment. These results show the stability of ensemble
methods even for high levels of optimization. Thus, our ensembling removes the need for early stop-
ping and the risk of overoptimziation. It would seem that no matter how far the model is optimized,
the performance will stay close to optimal.
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F.8 FULL UNCROPPED KL DIVERGENCE PPO RESULTS

Figure 27: Individual reward model optimization (i.e. no ensemble) for different values of KL
penalty in the 25% label noise case. This figure does not crop the x-axis at 150 KL divergence, to
illustrate the behavior of Fig. 6 beyond this point. As mentioned in Section 5, we usually stop our
optimization curves at 150 KL divergence because the overoptimization trends are already visible,
and doing so provides consistency across figures. Moreover, the plot is clearer as it isn’t made
narrow by more extreme values.

F.9 WIN-RATE EVALUATION OF ENSEMBLE METHODS

As an additional measure of quality, Tables 6 and 7 show the win-rate of final policies trained with
the different ensemble methods, when compared with the single reward models, across multiple
reward model scales. These tables correspond to runs shown earlier in Figures 3, 4, 18 and 19.
For BoN, we use the unbiased estimator at n = 12500 and compare gold scores between each
method and the single reward models for each prompt. For PPO, we compare the gold scores of
answers generated by the policy after 3000 PPO training steps. Win-rate is calculated by averaging
the individual win-rates against each of the five single reward models, with standard deviation also
presented. Results for PPO are additionally averaged over the three PPO seeds.

Table 6: Final policy win-rates (in percent) of ensemble methods against single reward models, when
using 44M reward models. Standard deviation across the five single reward models is indicated.
Models correspond to those shown in Figures 3 and 4.

BoN PPO
No noise 25% noise No noise 25% noise

Mean 54.9 ± 0.9 57.8 ± 1.3 58.1 ± 3.3 60.2 ± 3.5
WCO 57.1 ± 0.6 58.3 ± 0.8 59.4 ± 3.3 62.2 ± 2.9
UWO λ = 0.5 57.2 ± 0.9 58.2 ± 1.0 60.2 ± 3.4 63.0 ± 3.1

Table 7: Final policy win-rates (in percent) of ensemble methods against single reward models,
when using smaller (7M) and larger (1.3B) reward models. Standard deviation across the five single
reward models is shown. Noise level is fixed to 25%, such that models correspond to those in
Figures 18 and 19. The 6000-step final policy is used for PPO in the 1.3B reward model case.

BoN PPO
7M RM 1.3B RM 7M RM 1.3B RM

Mean 57.7 ± 1.4 72.3 ± 1.0 50.8 ± 3.4 56.2 ± 3.5
WCO 58.8 ± 1.4 71.2 ± 1.2 57.9 ± 3.7 62.9 ± 2.9
UWO λ = 0.5 61.3 ± 1.4 73.8 ± 0.8 59.0 ± 3.7 63.1 ± 3.2

23



Published as a conference paper at ICLR 2024

F.10 QUALITATIVE SAMPLES

Quantitative metrics are used throughout our experiments as they enable the rapid and comprehen-
sive evaluation of various methods. Here we provide a brief insight into the qualitative aspect of the
methods discussed in this work. For a given prompt, answers from the final policy (n = 12500 for
BoN, and 3000 steps for PPO) of each method are provided. Policies from the runs in Figures 3 and
4, which provide the strongest final results, are used.

The main takeaways are as follows. First, the BoN answers are shorter, because policy optimization
does not occur in the same way it does for PPO. Second, single reward models show signs of failure
and overoptimization. For BoN, this translates to poor answers and even hallucinations in the case
of Table 8. For PPO, this also translates to poor answers, which are very long and highly repetitive.
These are clear instances of overoptimization, where the reward model seems to have learned to
produce long answers regardless of the content, which offers good proxy reward model performance
but poor gold model performance. Finally, we note that the conservative optimization methods
produce strong qualitative results, even when single reward models are struggling.

Table 8: First set of example answers to an evaluation prompt.

Prompt Find the closest airport to the given location.
Seattle, Washington

Single RM (BoN) The closest airport to the given location is Sea-Tac Airport, with
a direct flight from SFO airport in San Francisco, CA to Seattle-
Tacoma International Airport available on up to dates.

Mean (BoN) The nearest airport to Seattle, Washington is Sea-Tac Interna-
tional Airport (SEA). It is located a distance of 17.6 miles away
and has an estimated time of arrival of around 12:30 PM.

WCO (BoN) The closest airport to the given location is Seattle-Tacoma Inter-
national Airport (SITE). It is located approximately 10.7 miles
away from the given location.

UWO (BoN) The closest airport to the given location is Seattle-Tacoma Inter-
national Airport. It is located 23.7 miles away, and the estimated
time of arrival is 2 hours, 28 minutes.

Single RM (PPO) The closest airport to the given location is Seattle-Tacoma Inter-
national Airport, located in the Seattle, Washington, region. It is
a major airport with a major hub, serving over 15 million pas-
sengers each year. It is located just 10 miles from the city center
and is connected to the city by the Bunker Hill and Space Needle
commuter rail lines. It is the primary airport for the region and is
one of the most important hubs in the country. It is a major hub
for a variety of airlines, and is a popular destination for travel-
ers from around the world. It is a hub for a variety of domestic
and international flights, and is the main hub for the region. It is
a major hub for several airlines, and is a popular destination for
travelers from around the world. It is a major hub for a variety of
domestic and international flights, and is the primary hub for the
region. It is a major hub for a variety of airlines, and is a popular
destination for travelers from around the world. It is a major hub
for a variety of domestic and international flights, and is the main
hub for the region. It is a major hub for a variety of airlines, and
is a popular destination for travelers from around the world.

Continued on the next page
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Prompt Find the closest airport to the given location.
Seattle, Washington

Mean (PPO) The closest airport to Seattle is Boeing Field, located in Seattle,
Washington. It is served by several airlines, including Alaska
Airlines, United Airlines, Delta Air Lines, and American Air-
lines. It is located approximately 35 miles away from the given
location. The airport is also served by several car rental compa-
nies, including Hertz, Avis, and Budget.

WCO (PPO) The closest airport to the given location is Seattle-Tacoma Inter-
national Airport (SEA). It is located approximately 43 miles from
the location. The average time to get to the airport is around 2
hours. The cost to get to the airport is around $110 for a single-
occupancy car. It is the most popular airport in the area and is
served by many airlines. The airport offers a variety of services,
including a baggage claim, a car rental counter, and a currency
exchange. There are also a number of attractions nearby, includ-
ing the Space Needle, the Aquarium of the Pacific, and the Seattle
Center. The airport is well-served by public transportation, mak-
ing it easy to get around.

UWO (PPO) The closest airport to the given location is Seattle-Tacoma In-
ternational Airport (SEA). The airport is located in the Seattle-
Tacoma, Washington, area and is served by many domestic and
international airlines. It is located about 70 miles east of the city
of Seattle and is accessible by car, bus, train, and ferry. The air-
port has several terminals, including a domestic terminal, an in-
ternational terminal, and a car rental center. The airport has two
runways, allowing for both domestic and international flights.
The airport is served by many international carriers, including
Alaska, American, Delta, United, and Virgin. It is also home to
many domestic carriers, including American, Delta, and United.

Table 9: Second set of example answers to an evaluation prompt.

Prompt Create an analogy to explain cloud computing.

Single RM (BoN) Cloud computing is like the sky; it is a vast, untamed expanse
filled with a variety of colorful shapes and textures. Just like
clouds move and shift based on the weather, so too does cloud
computing. It is constantly evolving and adapting to meet the
demands of modern technology.

Mean (BoN) Cloud computing is like a sprawling house, with multiple rooms
and floors that each represent a specific type of resource. Each
room serves a specific purpose, such as storage, processing, or
network access, and each floor has its own features such as stor-
age, computing power, or network connectivity. The cloud pro-
vides a central hub where resources can be accessed from any-
where in the house, and enables users to access the resources
they need quickly and easily.

Continued on the next page
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Prompt Create an analogy to explain cloud computing.

WCO (BoN) Cloud computing is like a giant server room in your home, with
multiple computers connected together to store, process, and re-
trieve data. The computers are like small servers in the server
room, performing different tasks such as running virtual ma-
chines, performing analytics, and performing other tasks. Each
computer is connected to the server, and the data stored in the
server is retrieved and used by the computers. The data is stored
in a database, allowing data to be quickly and easily accessed,
updated, and processed.

UWO (BoN) Cloud computing is like a stack of pancakes; each pancake is
a machine that processes data and provides computing power.
When you want to make pancakes, you simply select the ingre-
dients, put them in a pan, and flip them to make pancakes. Simi-
larly, when you use cloud computing, you select the services you
need to make use of, then pay a monthly fee to use them. When
you’re done with your work, you can shut down the machine and
delete the files, or if you need more power, you can simply pur-
chase more power and pay a recurring fee to make use of it.

Single RM (PPO) The analogy is that of a computer being a network of intercon-
nected servers, each with its own processing power and mem-
ory, and the cloud as the central hub where the data is stored,
allowing the various servers to access the data in a more efficient
and cost-effective manner. It is the cloud that allows the various
servers to be able to access the same data in the same way, and
the data is stored and managed in the cloud, thus allowing the
various servers to work together to provide a more efficient and
cost-effective solution. It is the cloud that is the backbone of the
modern technology and it is the ability to access the data from
the various servers, in a more cost-effective and efficient manner,
that makes cloud computing the ideal solution for the modern
technology. It is the cloud that is the future of technology and
it is the ability to access the data from the various servers, in a
more cost-effective and efficient manner, that is the foundation
of the modern technology. It is the cloud that is the new standard
and it is the ability to access the data from the various servers, in
a more cost-effective and efficient manner, that is the foundation
of the future of technology. It is the cloud that is the future of
technology, and it is the ability

Mean (PPO) Cloud computing is like a giant cloud of air that provides all of
the computing power needed to run a business. The cloud pro-
vides access to the necessary computing resources to enable busi-
nesses to remain competitive and stay ahead of the competition.
Cloud computing is a cost-effective way to access the computing
power needed to run a business, and it can reduce the time it takes
to develop and deploy new software. It also allows businesses to
scale their operations quickly, with the ability to quickly add or
remove resources as needed. Cloud computing is a great way for
businesses to remain competitive and stay ahead of the competi-
tion.

Continued on the next page
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Prompt Create an analogy to explain cloud computing.

WCO (PPO) Cloud computing is like a huge, open room with many different
walls and floors. The walls provide security and privacy, while
the floors provide resources and data access. The ceiling is the
sky, and the sky is the sky, providing a vast amount of resources,
power, and opportunities. The cloud is a room full of resources,
and the resources are the people, providing a diverse community
of expertise and resources. The walls, floors, and sky are all im-
portant, and together they provide an invaluable resource. This
analogy helps to explain the importance of cloud computing, and
how it can be beneficial to organizations of all sizes. It shows
the power of the cloud and the opportunities it provides, allowing
organizations to scale quickly and efficiently. It also illustrates
the importance of providing a secure, reliable, and cost-effective
infrastructure.

UWO (PPO) Cloud computing is like a modern-day library, where data is
stored and processed on a centralized server. The data is accessed
and manipulated from any device connected to the internet, al-
lowing for faster and more efficient services. The data is stored
in the cloud and is accessible from any device, allowing for the
user to access the data quickly and efficiently. The cloud comput-
ing platform is easy to use, provides the user with the flexibility
to access the data quickly and easily, and is cost effective. The
cloud computing platform provides the user with the ability to ac-
cess the data quickly and easily, allowing them to make decisions
based on the data. The cloud computing platform also provides
the user with the flexibility to access the data quickly and easily,
allowing them to make decisions based on the data. This allows
the cloud computing platform to be a cost effective solution for
the user, while providing them with the ability to access the data
quickly and easily.
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