
Deep Gaussian Markov Random Fields for
Graph-Structured Dynamical Systems

Fiona Lippert
University of Amsterdam
f.lippert@uva.nl

Bart Kranstauber
University of Amsterdam
b.kranstauber@uva.nl

E. Emiel van Loon
University of Amsterdam
e.e.vanloon@uva.nl

Patrick Forré
University of Amsterdam
p.d.forre@uva.nl

Abstract

Probabilistic inference in high-dimensional state-space models is computationally
challenging. For many spatiotemporal systems, however, prior knowledge about
the dependency structure of state variables is available. We leverage this structure
to develop a computationally efficient approach to state estimation and learning
in graph-structured state-space models with (partially) unknown dynamics and
limited historical data. Building on recent methods that combine ideas from deep
learning with principled inference in Gaussian Markov random fields (GMRF),
we reformulate graph-structured state-space models as Deep GMRFs defined by
simple spatial and temporal graph layers. This results in a flexible spatiotemporal
prior that can be learned efficiently from a single time sequence via variational
inference. Under linear Gaussian assumptions, we retain a closed-form posterior,
which can be sampled efficiently using the conjugate gradient method, scaling
favourably compared to classical Kalman filter based approaches.

1 Introduction

Consider the problem of monitoring air pollution, the leading environmental risk factor for mortality
worldwide [11, 42]. In the past years, sensor networks have been installed across major metropolitan
areas, measuring the concentration of pollutants across time and space [27, 38]. These measurements
are, however, prone to noise or might be missing completely due to hardware failures or limited
sensor coverage. To identify sources of pollution or travel routes with limited exposure, it is essential
to recover pollution levels and provide principled uncertainty estimates for unobserved times and
locations. Similar problems occur also in the geosciences, ecology, neuroscience, epidemiology,
or transportation systems, where animal movements, the spread of diseases, or traffic load need
to be estimated from imperfect data to facilitate scientific discovery and decision-making. From a
probabilistic inference perspective, all these problems amount to estimating the posterior distribution
over the latent states of a spatiotemporal system given partial and noisy multivariate time series data.

To make inference in these systems feasible, it is common to assume a state-space model, where
the latent states evolve according to a Markov chain. Then, the classical Kalman filter (KF) [29]
or its variants [47, 37] can be used for efficient inference, scaling linearly with the time series
length. However, the complexity with respect to the state dimension remains cubic due to matrix-
matrix multiplications and inversions. Thus, as the spatial coverage of available measurements and
thereby the dimensionality of the state variables increase, KF-based approaches quickly become
computationally prohibitive. This is especially problematic in cases where the underlying dynamics
are (partially) unknown and need to be learned from data, requiring repeated inference during the

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

optimization loop [21, 40, 9]. If, additionally, the access to historical training data is limited, it is
essential to incorporate prior knowledge for learning and inference to remain both data-efficient and
computationally feasible [56].

For spatiotemporal systems, prior knowledge is often available in the form of graphs, representing
the dependency structure of state variables. For air pollution, this could be the city road network and
knowledge about wind directions which influence the spread of particulate matter. Incorporating this
knowledge into the initial state distribution and the transition model of a state-space model results
in a Dynamic Bayesian network (DBN) [12, 39, 56], an interpretable and data-efficient graphical
model for multivariate time series data. If the joint space-time graph is sparse and acyclic, belief
propagation methods allow for fast and principled inference of marginal posteriors in DBNs, scaling
linear with the number of edges [45, 39]. However, when the underlying dynamics are complex,
requiring denser graph structures and flexible error terms with a loopy spatial structure, the scalability
and convergence of these methods is no longer guaranteed.

?

Figure 1: ST-DGMRF overview. We reconstruct
the latent states of a graph-structured dynamical
system from partial and noisy observations (orange
arrow with question mark). Temporal and spatial
layers transform the state x to a standard Gaussian,
which implicitly defines a space-time GMRF prior.

Combining the favorable statistical properties
of classical graphical models with the flexibility
and scalability of deep learning offers promis-
ing solutions in this regard [57]. Deep Gaus-
sian Markov random fields (DGMRF), for exam-
ple, integrate principled inference in Gaussian
Markov random fields (GMRF) with convolu-
tional [50] or graph layers [43] to define a new
flexible family of GMRFs that can be learned
efficiently by maximizing a variational lower
bound, while facilitating principled Bayesian in-
ference that remains computationally feasible
even for high-dimensional complex models with
dense dependency structures. While in principle
DGMRFs can be applied to spatiotemporal sys-
tems by treating each time step independently,
they are by design limited to spatial structures.

In this paper we extend the DGMRF framework
to spatiotemporal systems with graph-structured
states, transitions and noise terms. To this end,
we formulate a dynamical prior based on a DBN
that relates state variables over adjacent time
steps, and DGMRFs that capture the spatial
structure of unmodeled exogenous influences
and errors in the transition model. The key to our approach is the insight that, using locally linear
Gaussian transition models, the precision matrix of the joint space-time process preserves the struc-
ture of transition and noise precision matrices. This is in contrast to the marginal distributions used in
Kalman filter based approaches for which both precision and covariance matrices become dense over
time. A convenient factorization of the joint precision matrix then leads to a spatiotemporal DGMRF
formulation that is equivalent to the generative state-space formulation, but inherits the favorable
properties of DMGRFs for learning and inference.

1.1 Related work

The simplest approach to scaling Kalman filtering and smoothing to high-dimensional state variables
is to assume a decomposition into subprocesses, that can be reconstructed independently [30]. For
spatiotemporal processes, however, this assumption can be detrimental. Sample-based approaches,
like the Ensemble KF [17, 18, 26, 31], instead approximate state distributions with Monte Carlo
estimates, balancing computational complexity and accuracy. This is widely used in the geosciences
[53, 55] where accurate models of the underlying process are available. If the dynamics are (partially)
unknown, the parameters are typically estimated jointly with the system states via state augmentation
[2]. However, this becomes problematic if the transition model is only a poor approximation and
complex error covariances need to be estimated [15, 52]. Alternatively, expectation maximization

2

(EM) is used to estimate parameters iteratively [21], which requires repeated ensemble simulations
and thus quickly becomes computationally demanding.

In machine learning, neural network-based approaches map high-dimensional data to a latent space
that is either low-dimensional [19] or factorizes conveniently [7], such that standard KF inference
remains feasible. To learn suitable maps, however, these methods require sufficiently large training
data sets. Moreover, the projection to an abstract latent space hinders the incorporation of structural
or functional prior knowledge. Alternatively, variational inference allows for fast inference in (deep)
state space models [20, 3, 28, 34, 54] by approximating the true posterior with a computationally
convenient variational distribution. While this approach is highly flexible and scalable, it is known to
severely underestimate uncertainties [5], which can be detrimental for science and decision-making.

Gaussian processes (GP) are another widely used model class for spatiotemporal inference [35].
In contrast to KF-based approaches, GPs encode prior knowledge into their covariance kernel. To
increase the expressivity beyond standard kernels and overcome computational limitations, GPs have
been combined with deep learning [14, 13]. However, scaling GPs to large-scale spatiotemporal
processes with graph structure remains challenging. Scalable approaches for temporal data involve
reformulating GPs as state-space models and applying KF-based recursions [24, 49, 10, 1, 58, 23]
which, as discussed before, remains computationally prohibitive for large state spaces. Extensions
to graph-structured domains [8, 41] rely on the relation between GPs and stochastic differential
equations (SDE) [36, 51], which makes it cumbersome to design new kernels or to incorporate prior
knowledge that cannot be formulated as an SDE.

1.2 Our contributions

In contrast to most previous approaches, we focus on settings where the dynamics are (partially)
unknown and need to be learned from data, while historical training data is limited or even unavailable.
Our contributions can be summarized as follows:

1. We propose ST-DGMRF, which extends the DGMRF framework to spatiotemporal systems,
by reformulating graph-structured state-space models as joint space-time GMRFs that are
implicitly defined by simple spatial and temporal graph layers.

2. We show that the multi-layer space-time formulation facilitates efficient learning and infer-
ence, scaling linearly w.r.t. the number of layers, time series length, and state dimensionality.

3. In experiments on synthetic and real world data, we demonstrate that our approach provides
accurate state and uncertainty estimates, comparing favorably to other scalable approaches
relying on ensembles or simplifications of the dependency structure.

2 Preliminaries

2.1 Problem formulation

Consider a single sequence of high-dimensional measurements y0:K = (y0, . . . ,yK) taken at
consecutive time points t0, . . . , tK . Each yk ∈ RMk represents partial and noisy observations (e.g.
from spatially distributed sensors) generated according to a linear Gaussian noise model

yk = Hkxk + ξk, ξk ∼ N (0,Rk) (1)

from the latent state xk ∈ RN of an underlying dynamical process of dimensionality N ≥ Mk

(e.g. air pollution along N roads within an urban area). It is common to assume either Rk =
diag(σ2

k,1, . . . , σ
2
k,Mk

), representing independent sensors with varying noise levels, or Rk = σ2IMk
,

representing a fixed noise level across all sensors and time points [9]. Further, the observation
matrices Hk ∈ RMk×N are typically very sparse with O(Mk) number of non-zero entries.

Assuming that all Hk are known, we aim at reconstructing the latent system states x0:K =
(x0, . . . ,xK) ∈ R(K+1)×N from data y0:K . Since observations are partial and noisy, x0:K cannot
be recovered without ambiguity. It is therefore essential to treat the problem probabilistically and in-
corporate available domain knowledge into the prior distribution p(x0:K | θ). The task then amounts
to (i) specifying a suitable prior that captures the spatiotemporal structure of x0:T , (ii) estimating
unknown parameters, and (iii) computing the posterior distribution p(x0:K | y0:K , θ̂).

3

Notation We use x = vec(x0:K) ∈ R(K+1)N and y = vec(y0:K) ∈ RM with M =
∑K

k=0Mk

to denote vectorized states and measurements. Similarly, we use H = diag(H0, . . . ,HK) ∈
RM×(K+1)N and R = diag(R0, . . . ,RK) ∈ RM×M to denote the joint spatiotemporal observation
and covariance matrix.

In the following sections, we briefly introduce two graphical models, linear dynamical systems and
Gaussian Markov random fields, which form the temporal and spatial backbone of our method. We
then introduce the deep GMRF framework on which we build in Section 3 to formulate a flexible
multi-layer spatiotemporal prior.

2.2 Linear dynamical system

A discrete-time linear dynamical system (LDS) is a state-space model that defines the prior over
states x0:K in terms of linear Gaussian transition models

xk = Fkxk−1 + ck + ϵk, ϵk ∼ N (0,Q−1
k) ∀k ∈ {1, . . . ,K} (2)

and an initial distribution x0 ∼ N (µ0,Q
−1
0). The classical Kalman filter [29] and its variants

[47, 37] use recursive algorithms that exploit the temporal independence structure of the prior and
its conjugacy to the observation model (see Eq. (1)) to compute marginal posterior distributions
p(xk | y0:k) in O(KN3). The same formulas can be used within the EM-algorithm to learn unknown
parameters µ0,Q0,Fk, ck,Q

−1
k in O(JKN3) for J iterations. While this scales favorably for long

time series, it remains computationally prohibitive for high-dimensional systems with N ≫ K.

2.3 Gaussian Markov random fields

A multivariate Gaussian N (µ,Ω−1) forms a GMRF [48] with respect to an undirected graph
G = (V, E) if the edges E correspond to the non-zero entries of the precision matrix Ω, i.e. Ωij ̸=
0 ⇔ (i, j) ∈ E . Given a linear Gaussian observation model y ∼ N (Hx,R), the posterior can be
written in closed form p(x | y, θ̂) = N (µ+, (Ω+)−1) with precision matrix Ω+ = Ω+HTR−1H
and mean µ+ = (Ω+)−1(Ωµ+HTR−1y).

However, naively computing µ+ by matrix inversion requires O(K3N3) computations and
O(K2N2) memory, which is infeasible for high-dimensional systems. Instead, the conjugate gradi-
ent method [6] can be used to iteratively solve the sparse linear system Ω+µ+ = Ωµ+HTR−1y
for µ+. The same approach allows to generate samples x̂ ∼ N (µ+, (Ω+)−1) and obtain Monte
Carlo estimates of marginal variances [44]. In practice, however, it remains difficult to design suit-
able precision matrices that are expressive but sparse enough to remain computationally feasible.

2.4 Deep Gaussian Markov random fields

A DGMRF [50] is defined by an affine transformation

z = gθ(x) = Gθx+ bθ with z ∼ N (0, I), (3)

where gθ = g
(L)
θ ◦ · · · ◦g(1)

θ is a composition of L simple linear layers with convenient computational
properties. This implicitly defines a GMRF x ∼ N (µ,Ω−1) with µ = −G−1

θ bθ and Ω = GT
θ Gθ.

The multi-layer construction facilitates fast and statistically sound posterior inference using the
conjugate gradient method, as well as fast parameter learning using a variational approximation, even
when the resulting precision matrix Ω becomes dense.

While originally, [50] defined their layers only for lattice-structured data, [43] generalized this to
arbitrary graphs. Central to their approach is that each layer h(l) = G

(l)
θ h(l−1) + b

(l)
θ is defined on a

sparse base graph Ḡ with adjacency matrix A and degree matrix D such that

G(l) = αlD
γl + βlD

γl−1A and b
(l)
θ = bl1 (4)

with parameters θl = (αl, βl, γl, bl). This construction allows for fast log-determinant computations
during learning, and GPU-accelerated computation of gθ(x) using existing software for graph neural
networks. Note that for L layers defined on Ḡ, the sparsity pattern of Ω corresponds to the sparsity
pattern of (A+D)2L. And thus, the resulting model defines a GMRF w.r.t the 2L-hop graph of Ḡ.

4

3 Spatiotemporal DGMRFs

To extend the DGMRF framework to spatiotemporal systems, we first formulate a dynamical prior in
terms of a GMRF that encodes prior knowledge in the form of spatial and temporal independence
assumptions. We then parameterize this prior using simple spatial and temporal layers, which results
in a flexible model architecture that facilitates efficient learning and principled Bayesian inference in
high-dimensional dynamical systems, scaling favorably compared to Kalman filter based methods.

3.1 Graph-structured dynamical prior

Consider a dynamical system for which the state evolution is well described by Eq. (2). We say that
this process is graph-structured if each dimension di of the system state xk can be associated with
a node i ∈ V in a multigraph G = (V, Espatial, Etemporal), where the set of undirected spatial edges
Espatial ⊆ V × V defines the sparsity pattern of noise precision (inverse covariance) matrices

(Qk)ij ̸= 0 ⇐⇒ (Qk)ji ̸= 0 ⇐⇒ (j, i) ∈ Espatial ∀k ∈ {0, . . . ,K}, (5)
and the set of directed temporal edges Etemporal ⊆ V × V defines the sparsity pattern of the state
transition matrices

(Fk)ij ̸= 0 ⇐⇒ (j, i) ∈ Etemporal ∀k ∈ {1, . . . ,K}. (6)
This defines a DBN over x0:K encoding conditional independencies of the form

xk,i ⊥⊥ xk−1,V\ntemporal(i) | xk−1,ntemporal(i) and xk,i ⊥⊥ xl,V | xk−1,ntemporal(i) ∀l < k − 1, (7)
where ntemporal(i) denotes the set of neighbors j of i for which (j, i) ∈ Etemporal. Intuitively, Etemporal
represent causal effects over time, while Espatial represent the structure of random effects that are not
captured by the transition model. To define the graph structure, prior knowledge about, for example,
the physical system structure or underlying causal mechanisms can be exploited.

3.1.1 Joint distribution

The graph-structured dynamical prior induces a multivariate Gaussian prior N (µ,Ω−1) on x with
sparse precision matrix Ω ∈ R(K+1)N×(K+1)N . Importantly, Ω can be shown to factorize as FTQF
with block diagonal matrix Q and unit lower block bidiagonal matrix F defined as

Q = diag(Q0,Q1, . . . ,QK), F :=

 I
−F1 I

.
−FK I

 , (8)

where empty positions represent zero-blocks. Further, while the mean µ ∈ R(K+1)N needs to be
computed iteratively as µk = Fkµk−1 + ck, the information vector η = Ωµ can be expressed
compactly as

η = FTQFµ = FTQc (9)

with c = [µ0, c1, . . . , cK] ∈ R(K+1)N . See Appendix A.1 for detailed derivations.

3.1.2 DGMRF formulation

We now reformulate x ∼ N (µ,Ω−1) as a DGMRF. Importantly, in contrast to [50, 43], the graph-
structured dynamical prior allows us to impose additional structure, reflecting the spatiotemporal
nature of the underlying system. In particular, since Q0,Q1, . . . ,QK are symmetric positive definite,
we can factorize Q = STS with symmetric block-diagonal matrix S, and thus Ω = FTSTSF.
Together with Eq. (9), this results in a GMRF defined by

Gθ := SF and bθ := −Gθµ = −Sc (10)

Finally, we separate gθ into a temporal map fθ : R(K+1)N → R(K+1)N and a spatial map sθ :
R(K+1)N → R(K+1)N defined as

fθ(x) := Fx+ bf = h and sθ(h) := Sh+ bs = z. (11)
Note that this results in an overall bias bθ = Sbf + bs and thus c = −(bf + S−1bs), which allows
for modelling long-range spatial dependencies in µ0 and c1, . . . , cK . The combined transformation
z = (sθ ◦ fθ)(x) essentially defines a standard two-layer DGMRF, which describes a graph-structured
dynamical system if the parameters θ = (bs,bf ,F1, . . . ,FK ,Q0, . . . ,QK) are subject to sparsity
constraints (5) and (6).

5

3.2 Parameterization

Learning the unknown parameters θ directly from a single sequence y0:K will result in a highly over-
parameterized model that is unsuitable for the problem of interest. In addition, careful parameteriza-
tion of gθ can greatly reduce the computational complexity of the transformation and the associated
log-determinant computations required during learning [50, 43]. To achieve a good trade-off between
data-efficiency, expressivity and scalability, we define both sθ and fθ in terms of simple layers with
few parameters and convenient computational properties.

3.2.1 Spatial layer(s)

To enable fast log-determinant computations for arbitrary graph structures, we follow [43] and
parameterize sθ in terms of K + 1 independent DGMRFs zk = Skhk + (bs)k, each defining a
GMRF w.r.t Gspatial = (V, Espatial). Note that due to the multi-layer construction (see Section 2.4),
Gspatial is implicitly defined by the base graph Ḡspatial and the number of layers L, with special case
Gspatial = Ḡspatial if Lspatial = 1.

3.2.2 Temporal layer(s)

Compared to sθ, the definition of fθ is much less constrained as it does not affect the log-determinant
computation (see Section 3.3.1), and should hence incorporate as much domain knowledge into
transition matrices Fk as possible. This could be, for example, based on conservation laws or
knowledge about relevant covariates. To increase the flexibility in cases where the dynamics are
unknown or involve long-range dependencies, each Fk can again be decomposed into simpler layers
F

(Ltemporal)
k · · ·F(1)

k , each defined according to a temporal base graph Ḡtemporal. Table 1 provides several
example layers to give an idea of what is possible.

Note that any function can be used to define the entries of F(l)
k , including neural networks taking

available covariates or node/edge features as inputs [46]. The associated parameters can simply be
included in θ. Similarly, non-linear dynamics can be approximated either through linearization akin
to the Extended Kalman Filter [37], or through neural linearization [19, 7]. We, however, recommend
sharing parameters where appropriate to avoid overparameterization.

Table 1: Examples of linear transition layers F
(l)
k . The adjacency matrix A can be symmetric or

asymmetric, weighted or unweighted.

layer definition properties of Gtemporal

AR process F
(l)
k = λk,lI self-edges only

Diffusion F
(l)
k = λk,lI + ωk,l(A − D) bidirected (symmetric A)

Directed flow F
(l)
k = λk,lI + ωk,l(A − Dout) + ζk,l(A

T − Din) directed

Advection

(
F

(l)
k

)
ij

= − 1
2wijn

T
ijvl discretized Rd (e.g. triangulation),(

F
(l)
k

)
ii

= 1 −
∑

j∈n(i)

(
F

(l)
k

)
ij

edge weights wij and normals nij

Neural network
(
F

(l)
k

)
ij

= fNN(ui,uj , eij) node and edge features ui, eij

Higher order Markov processes It is straight forward to extend fθ to describe a p-th order Markov
process

xk =

p∑
τ=1

Fk,τxk−τ + ck + ϵk, ϵ ∼ N (0,Q−1
k), x0 ∼ N (µ0,Q

−1
0), (12)

where x−τ = 0 for τ = 1, . . . , p. This can be done by introducing edges Etemporal(2), . . . , Etemporal(p)
and adding the corresponding higher-order transition matrices (Fτ,τ , . . . ,FK,τ) to the τ -th lower
block diagonal of F (see Appendix A.2 for derivations).

3.3 Learning and inference

Although the marginal likelihood p(y | θ) is available in closed form (see Section 2.3), maximum
likelihood parameter estimation becomes computationally prohibitive in high dimensional settings

6

[50]. Instead, a variational approximation is used to learn parameters θ̂ for large-scale DGMRFs.
Then, the conjugate gradient method allows to efficiently compute the exact posterior mean and to
draw samples from p(x | y, θ̂).

3.3.1 Scalable parameter estimation

Given a variational distribution qϕ(x) = N (νϕ,Λϕ), the parameters {θ,ϕ} are optimized jointly by
maximizing the Evidence Lower Bound (ELBO)

L(y0:K ,θ,ϕ) = Eqϕ(x)

[
log pθ(x) +

K∑
k=0

log p(yk | xk)

]
+H [qϕ(x)] (13)

= −1

2
Eqϕ(x)

[
gθ(x)

Tgθ(x) +

K∑
k=0

(yk −Hkxk)
TR−1

k (yk −Hkxk)

]
(14)

+ log |det(Gθ)|+
1

2
log |det(Λϕ)| −

1

2

K∑
k=0

log |det(Rk)|+ const, (15)

using stochastic gradient descent, where the expectation is replaced by a Monte-Carlo estimate based
on samples x̂ ∼ qϕ.

Variational distribution To facilitate efficient log-determinant computations and sampling via the
reparameterization trick [33], we follow [43] and define qϕ as an affine transformation x = Pϕz+νϕ

with z ∼ N (0, I), resulting in Λϕ = Pϕ(Pϕ)
T . Then, Pϕ can be defined as a block-diagonal

matrix diag(P0, . . . ,PK) with Pk = diag(ρk)S̃kdiag(ψk), where ρk,ψk ∈ RN
+ are variational

parameters and S̃k is based on spatial DGMRF layers as discussed in Section 3.2.1. To relax the
temporal independence assumptions in Λϕ, we propose an extension Pϕ = diag(P0, · · · ,PK)F̃,
where F̃ has a similar structure to F (see Eq. (8)). Again, the design of F̃k is highly flexible as it
does not enter the log-determinant computation.

Log-determinant computations [50, 43] proposed specific lattice and graph layers for which the
associated log-determinants log |det(Gθ)| are computationally scalable. Conveniently, the spatiotem-
poral case does not require a new type of layer. Instead, we can build directly on top of existing
spatial layers. Specifically, using Eq. (8)&(10), the log-determinant log |det(Gθ)| simplifies to

log |det(SF)| (i)= log |det(S)| (ii)=
K∑

k=0

log |det(Sk)|, (16)

where (i) follows from S being block-diagonal and (ii) follows from F being unit-lower triangu-
lar with det(F) = 1. Note that each Sk is defined by a spatial DGMRF of dimension N (see Sec-
tion 3.2.1), for which efficient log-determinant methods have been developed. The same arguments
hold for the variational distribution proposed above. Finally, due to the diagonality assumptions on
Rt (see Section 2.1), 1

2 log |det(Rk)| simplifies to
∑Mk

i=1 log(σi).

Computational complexity During training, log |det(Gθ)| and log |det(Λϕ)| can be computed in
O(KNLspatial) using Eq. (16) together with the methods proposed in [43]. Note that no complexity
is added when introducing conditional dependencies between time steps. The necessary preprocess-
ing steps, i.e. computing eigenvalues or traces, only need to be performed for the spatial base graph
and are thus independent of the number of transitions K. Finally, assuming an average of dspatial and
dtemporal edges per node in Ēspatial and Ētemporal, the transformations sθ and fθ scale linearly with the
number of nodes N . In particular, gθ(x) = (sθ ◦ fθ)(x) can be computed in O(KNdspatialLspatial +
KNdtemporalLtemporal), which dominates the computational complexity of the training loop. In addi-
tion, we can leverage massively parallel GPU computations to speed up this process even further.

3.3.2 Exact inference with conjugate gradients

As discussed in Section 2.3, the conjugate gradient method can be used to iteratively compute the
posterior mean and obtain Monte Carlo estimates of marginal variances. Importantly, each iteration

7

is dominated by a single matrix-vector multiplication of the form

Ω+x = FTSTSFx+HTR−1Hx. (17)

This amounts to a series of sparse matrix-vector multiplications with total computational complexity
O(KNdspatialLspatial +KNdtemporalLtemporal), which is again linear in the number of nodes, time steps,
and layers, and can be implemented in parallel on a GPU.

4 Experiments

We implemented ST-DGMRF in Pytorch and Pytorch Geometric, and conducted experiments on a
consumer-grade GPU, leveraging parallel computations in both spatial and temporal layers. In all
experiments, we optimize parameters for 10 000 iterations using Adam [32] with learning rate 0.01,
and draw 100 posterior samples to estimate marginal variances. Unless specified otherwise, we use
Lspatial = 2, Ltemporal = 4 and p = 1, and define the variational distribution based on one spatial layer
and one temporal diffusion layer. Additional details on our experiments are provided in Appendix B.

4.1 Advection-diffusion process

We start with a synthetic dataset for which we have access to both the ground truth posterior
distribution and transition matrix. The dataset consists of K = 20 system states that are sampled
from an ST-DGMRF with time-invariant transition matrix Fadv-diff. This matrix is defined according
to the third-order Taylor approximation of an advection-diffusion process with constant velocity and
diffusion parameters, discretized on a 30× 30 lattice with periodic boundary conditions. From the
sampled state trajectory, we generate observations with varying amount of missing data by removing
pixels within a square mask of width w for 10 consecutive time steps and adding noise with σ = 0.01.
For all experiments, we use the masked pixels as test set, and 10% of the observed pixels as validation
set for hyperparameter tuning.

Two ST-DGMRF variants are considered: (1) using advection-diffusion matrices F(l)
k defined based

on the first-order Taylor approximation of the ground-truth dynamics, with trainable diffusion and
velocity parameters, and (2) replacing parts of these advection-diffusion matrices with small neural
networks, taking the edge unit vector nij pointing from pixel i to j as input. In both cases, Ḡtemporal

and Ḡspatial are defined as the 4-nearest neighbor graph. Further, as the underlying dynamics are time-
invariant, we enforce F

(l)
k = F

(l)
k+1 and S

(l)
k = S

(l)
k+1 ∀k ≥ 1.

Table 2: Performance on the advection-
diffusion data with w = 9. We report the
mean over 5 runs with different random seeds.

RMSEµ RMSEσ CRPS

ARMA 2.3054 0.6812 1.7064
ST-AR 1.4595 1.9216 0.9707
DGMRF 0.5901 0.3808 0.3495

EnKS
true dynamics 0.0661 0.0046 0.1027
estimated dynamics 0.1654 0.0039 0.1434

ST-DGMRF (ours)
advection-diffusion 0.0526 0.1146 0.0726
neural network 0.0854 0.1402 0.0839

Baselines We compare our approach to a range of
baselines accounting for varying degrees of spatial
and/or temporal dependencies. In particular, we con-
sider the original DGMRF applied to all time steps in-
dependently, an ARMA state-space model assuming
spatial independence among the state variables, and a
spatiotemporal AR state-space model (ST-AR) with
spatially correlated error terms ϵk for which an uncon-
strained covariance matrix Q−1 is estimated using
the EM algorithm. For both ARMA and ST-AR, we
use the standard Kalman smoother [47] to obtain pos-
terior estimates. Additionally, we consider two En-
semble Kalman Smoother (EnKS) variants, one with
an advection-diffusion transition model matching the
true data-generating process, and one using state augmentation to estimate the velocity and diffusion
parameters jointly with the system states. Note that, in contrast to the ST-DGMRF approach, we
consider initial and transition noise parameters to be fixed in order to avoid divergence of the EnKS.

Performance evaluation We evaluate the estimated posterior mean and marginal standard devia-
tions in terms of the root-mean-square-error (RMSEµ and RMSEσ) with respect to the ground truth
posterior. In addition, we use the mean negative continuous ranked probability score (CRPS) [22]
to evaluate the predictive distribution with respect to the masked out data. Table 2 shows that, by
exploiting the spatiotemporal structure of the process, our ST-DGMRF variants provide much more

8

accurate estimates than the purely spatial DGMRF, the purely temporal ARMA model, and the ST-
AR model with highly simplified transitions and unstructured noise terms. As expected, the two
EnKS variants with fixed noise parameters provide the most accurate uncertainty estimates. However,
the CRPS scores indicate that overall our ST-DGMRF approach results in better calibrated posterior
distributions. More detailed results are reported in Appendix C.

Figure 2: Left: snapshot of the advection-diffusion data at time k=8, and reconstructions by the time-
independent DGMRF and our ST-DGMRF with advection-diffusion Fk. Center: corresponding time
series for a single pixel (marked on the left). Shaded areas represent posterior mean ± std of a single
run. Right: RMSEµ as a function of the mask width (mean ± std over 5 runs).

Increasing mask size To evaluate the robustness to missing data, we analyze how posterior
estimates change with increasing mask size. Figure 2 (right) shows the effect on RMSEµ when
varying w from 6 to 12. Clearly, the purely spatial DGMRF suffers the most from expanding the
unobserved region. In contrast, the ST-DGMRF variants continue to provide accurate state estimates
that are on par with the EnKS using ground truth dynamics. Note that the decreasing errors for ST-
AR can be attributed to the changing set of pixels used for evaluation.

Figure 3: Stencil comparison. Center: absolute error between true and learned transition weights for
the neural network based ST-DGMRF. Right: Pearson correlation for increasing temporal depth.

Evaluation of learned transition models Finally, we assess how well the temporal ST-DGMRF
layers can approximate the true data-generating dynamics, given varying levels of complexity in
the transition model. For this purpose, we extract the stencil, i.e. the weights assigned to nearby
pixels, from the ground truth and learned transition matrices and compare them in terms of absolute
error and Pearson correlation. We find that the learned transition weights converge rapidly towards
the true weights as the number of temporal layers increases (see Figure 3). For small Ltemporal, the
neural network based layers show a stronger agreement with the true dynamics, suggesting that some
flexibility in the temporal layers helps to compensate for simplifications in the transition structure.

4.2 Air quality data

To test our method on a real world system exhibiting more complex dynamics and graph structures,
we conduct experiments on an air quality dataset obtained from [59]. The dataset contains hourly
PM2.5 measurements from 246 sensors distributed around Beijing, China, covering a time period
of K = 400 hours. To ensure that predicted PM2.5 concentrations are non-negative, we model
both system states and observations in log-space. The spatial and temporal base graphs are defined

9

based on the Delaunay triangulation, with edge weights proportional to the inverse distance between
sensors. To mimic a realistic scenario of local network failures, we randomly choose 10 time points
tk and mask out all data points within a spatial block containing 50% of all sensors, for time steps
tk, . . . , tk + 20 (see Figure 4). As before, we use the masked data for model evaluation, and use 10%
of the remaining data as validation set. The observation noise is assumed to be uniform with σ = 0.01.

The spatiotemporal distribution of particulate matter is strongly influenced by atmospheric processes
that transport and diffuse emitted particles. To incorporate this knowledge into the transition model,
we extract temperature and wind conditions for all sensors and time points from the ERA5 reanalysis
dataset [25] and feed them together with static graph features into a set of neural networks which
transform them into spatially and temporally varying bias and velocity parameters. The matrices F(l)

k
are then formed in the same way as in Section 4.1. In addition, we consider a simplified diffusion
transition model (see Table 1) which cannot capture any directional transport processes.

Table 3: Performance on the air quality
data. We report the mean over 5 runs
with different random seeds.

p RMSE CRPS

ARMA 0.6820 0.3625
ST-AR 0.7350 0.4261
DGMRF 0.7456 0.4037
MLP 0.8038 −

ST-DGMRF (ours)
diffusion 1 0.6190 0.3258
diffusion 2 0.5928 0.3161
neural network 1 0.5853 0.3092
neural network 2 0.5565 0.2925

Results Next to the baselines introduced in Section 4.1,
we consider a multi-layer perceptron (MLP) mapping lo-
cal weather features to the corresponding log-transformed
PM2.5 concentration. Following [50], we also include
weather features into the spatial DGMRF model by adding
linear effects to the measurement model. Table 3 reports
the resulting CRPS and the RMSE with respect to the
masked out data. Clearly, the neural network based ST-
DGMRF, accounting for time-varying directional trans-
port processes, provides the most accurate state estimates.
However, even with highly simplified diffusion transitions
our approach provides better estimates than the consid-
ered baselines. We attribute this to the expressive DGMRF
noise terms which can capture complex error structures
resulting from inaccuracies in the transition model. Increasing the Markov order from p = 1 to 2
clearly improves the resulting posterior estimates for both ST-DGMRF variants, reflecting the com-
plexity of the modeled process. A similar trend is observed as we increase Ltemporal (see Appendix C).

Figure 4: ST-DGMRF posterior estimates (neural network Fk and p = 2). Left: time series of log-
transformed and normalized PM2.5 levels for a masked sensor. Light red areas represent posterior
mean ± std of a single run. Unobserved time points are marked with gray bars. Right: Marginal std
for all sensors at k = 100. Masked out sensors (gray box) feature higher uncertainties.

5 Conclusion

We have presented ST-DGMRF, an extension to Deep Gaussian Markov Random Fields for infer-
ence in spatiotemporal dynamical systems with partial and noisy observations, (partially) unknown
dynamics, and limited historical data. Our reformulation of graph-structured state-space models
as multi-layer space-time GMRFs enables computationally efficient learning and inference even in
high-dimensional settings, scaling linear w.r.t. the number of both time steps and state variables.
Empirically, ST-DGMRF provides more accurate posterior estimates than other scalable approaches
relying on simplifications of the dependency structure. While our approach relies on linear Gaus-
sian assumptions, which can be restrictive for real systems, we find that expressive DGMRF noise
terms can compensate (to a certain extend) for approximations in the transition model. In the future,
non-linearities between the layers could be explored as discussed in [50]. Further, we see potential in
defining more flexible time-varying transition matrices based on a hierarchy of latent variables that
again follow a ST-DGMRF.

10

References
[1] V. Adam, S. Eleftheriadis, A. Artemev, N. Durrande, and J. Hensman. Doubly sparse variational gaussian

processes. In International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2020.

[2] J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review,
129(12):2884–2903, 2001.

[3] E. Archer, I. M. Park, L. Buesing, J. Cunningham, and L. Paninski. Black box variational inference for
state space models. arXiv preprint arXiv:1511.07367, 2015.

[4] Z. Z. Bai and S. L. Zhang. A regularized conjugate gradient method for symmetric positive definite system
of linear equations. Journal of Computational Mathematics, pages 437–448, 2002.

[5] D. Barber, A. T. Cemgil, and S. Chiappa. Bayesian time series models. Cambridge University Press, 2011.

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. Van der Vorst. Templates for the solution of linear systems: building blocks for iterative methods.
SIAM, 1994.

[7] P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor, and G. Neumann. Recurrent Kalman networks:
Factorized inference in high-dimensional deep feature spaces. In International Conference on Machine
Learning (ICML). PMLR, 2019.

[8] V. Borovitskiy, I. Azangulov, A. Terenin, P. Mostowsky, M. Deisenroth, and N. Durrande. Matérn Gaussian
processes on graphs. In International Conference on Artificial Intelligence and Statistics (AISTATS).
PMLR, 2021.

[9] J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino. Combining data assimilation and machine learning to
emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model.
Journal of Computational Science, 44:101171, 2020.

[10] P. E. Chang, W. J. Wilkinson, M. E. Khan, and A. Solin. Fast variational learning in state-space Gaussian
process models. In IEEE International Workshop on Machine Learning for Signal Processing (MLSP),
volume 30. IEEE, 2020.

[11] A. J. Cohen, M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef,
L. Dandona, R. Dandona, et al. Estimates and 25-year trends of the global burden of disease attributable to
ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet,
389(10082):1907–1918, 2017.

[12] P. Dagum, A. Galper, and E. Horvitz. Dynamic network models for forecasting. In Uncertainty in Artificial
Intelligence (UAI). Elsevier, 1992.

[13] Z. Dai, A. Damianou, J. González, and N. Lawrence. Variational auto-encoded deep Gaussian processes.
arXiv preprint arXiv:1511.06455, 2015.

[14] A. Damianou and N. D. Lawrence. Deep Gaussian processes. In International Conference on Artificial
Intelligence and Statistics (AISTATS). PMLR, 2013.

[15] T. DelSole and X. Yang. State and parameter estimation in stochastic dynamical models. Physica D:
Nonlinear Phenomena, 239(18):1781–1788, 2010.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

[17] G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143–10162, 1994.

[18] G. Evensen and P. J. Van Leeuwen. An ensemble Kalman smoother for nonlinear dynamics. Monthly
Weather Review, 128(6):1852–1867, 2000.

[19] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. A disentangled recognition and nonlinear dynamics
model for unsupervised learning. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[20] Z. Ghahramani and G. E. Hinton. Variational learning for switching state-space models. Neural Computa-
tion, 12(4):831–864, 2000.

[21] Z. Ghahramani and S. Roweis. Learning nonlinear dynamical systems using an EM algorithm. In Advances
in Neural Information Processing Systems (NeurIPS), 1998.

[22] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the
American statistical Association, 102(477):359–378, 2007.

[23] O. Hamelijnck, W. Wilkinson, N. Loppi, A. Solin, and T. Damoulas. Spatio-temporal variational Gaussian
processes. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[24] J. Hartikainen, J. Riihimäki, and S. Särkkä. Sparse spatio-temporal Gaussian processes with general
likelihoods. In International Conference on Artificial Neural Networks (ICANN), 2011.

11

[25] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey,
R. Radu, D. Schepers, et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological
Society, 146(730):1999–2049, 2020.

[26] P. L. Houtekamer and F. Zhang. Review of the ensemble Kalman filter for atmospheric data assimilation.
Monthly Weather Review, 144(12):4489–4532, 2016.

[27] H.-P. Hsieh, S.-D. Lin, and Y. Zheng. Inferring air quality for station location recommendation based on
urban big data. In SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.

[28] M. J. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. Composing graphical models
with neural networks for structured representations and fast inference. In Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[29] R. E. Kalman. A new approach to linear filtering and prediction problems. 1960.

[30] M. Katebi and M. Johnson. Predictive control design for large-scale systems. Automatica, 33(3):421–425,
1997.

[31] M. Katzfuss and N. Cressie. Spatio-temporal smoothing and EM estimation for massive remote-sensing
data sets. Journal of Time Series Analysis, 32(4):430–446, 2011.

[32] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[33] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on Learning
Representations (ICLR), 2014.

[34] R. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlinear state space models. In
AAAI Conference on Artificial Intelligence, 2017.

[35] P. C. Kyriakidis and A. G. Journel. Geostatistical space–time models: a review. Mathematical geology,
31:651–684, 1999.

[36] F. Lindgren, H. Rue, and J. Lindström. An explicit link between Gaussian fields and Gaussian Markov
random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 73(4):423–498, 2011.

[37] L. Ljung. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems.
IEEE Transactions on Automatic Control, 24(1):36–50, 1979.

[38] M. B. Marinov, I. Topalov, E. Gieva, and G. Nikolov. Air quality monitoring in urban environments. In
39th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2016.

[39] K. P. Murphy. Dynamic Bayesian networks: representation, inference and learning. University of
California, Berkeley, 2002.

[40] D. Nguyen, S. Ouala, L. Drumetz, and R. Fablet. EM-like learning chaotic dynamics from noisy and
partial observations. arXiv preprint arXiv:1903.10335, 2019.

[41] A. V. Nikitin, S. John, A. Solin, and S. Kaski. Non-separable spatio-temporal graph kernels via SPDEs. In
International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2022.

[42] S. Ohlwein, R. Kappeler, M. Kutlar Joss, N. Künzli, and B. Hoffmann. Health effects of ultrafine particles:
a systematic literature review update of epidemiological evidence. International Journal of Public Health,
64:547–559, 2019.

[43] J. Oskarsson, P. Sidén, and F. Lindsten. Scalable deep Gaussian Markov random fields for general graphs.
In International Conference on Machine Learning (ICML). PMLR, 2022.

[44] G. Papandreou and A. L. Yuille. Gaussian sampling by local perturbations. In Advances in Neural
Information Processing Systems (NeurIPS), 2010.

[45] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann,
1988.

[46] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski. Deep state space
models for time series forecasting. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[47] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems. AIAA
journal, 3(8):1445–1450, 1965.

[48] H. Rue and L. Held. Gaussian Markov random fields: theory and applications. CRC press, 2005.

[49] S. Sarkka, A. Solin, and J. Hartikainen. Spatiotemporal learning via infinite-dimensional Bayesian filtering
and smoothing: A look at Gaussian process regression through Kalman filtering. IEEE Signal Processing
Magazine, 30(4):51–61, 2013.

[50] P. Sidén and F. Lindsten. Deep Gaussian Markov random fields. In International Conference on Machine
Learning (ICML). PMLR, 2020.

12

[51] A. Solin and S. Särkkä. Explicit link between periodic covariance functions and state space models. In
International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2014.

[52] J. R. Stroud and T. Bengtsson. Sequential state and variance estimation within the ensemble Kalman filter.
Monthly Weather Review, 135(9):3194–3208, 2007.

[53] I. Szunyogh, E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke. A
local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus A:
Dynamic Meteorology and Oceanography, 60(1):113–130, 2008.

[54] H. Wang, A. Bhattacharya, D. Pati, and Y. Yang. Structured variational inference in Bayesian state-space
models. In International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2022.

[55] J. S. Whitaker, T. M. Hamill, X. Wei, Y. Song, and Z. Toth. Ensemble data assimilation with the NCEP
global forecast system. Monthly Weather Review, 136(2):463–482, 2008.

[56] C. K. Wikle and M. B. Hooten. A general science-based framework for dynamical spatio-temporal models.
TEST, 19:417–451, 2010.

[57] C. K. Wikle and A. Zammit-Mangion. Statistical deep learning for spatial and spatiotemporal data. Annual
Review of Statistics and Its Application, 10:247–270, 2023.

[58] W. Wilkinson, A. Solin, and V. Adam. Sparse algorithms for Markovian Gaussian processes. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2021.

[59] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li. Forecasting fine-grained air quality based on
big data. In SIGKDD Conference on Knowledge Discovery and Data Mining, 2015.

13

Appendices

Appendix A provides derivations supporting Section 3 in the main paper. In Appendix B, we explain
our experimental setup, including dataset preparation and model implementation, in more detail.
Finally, Appendix C provides additional results supporting our claims regarding the scalability of our
method, together with additional results from the experiments presented in Section 4.

A ST-DGMRF derivations

In this section we provide detailed derivations of the ST-DGMRF joint distribution, for both first-
order transition models (Section A.1) and higher-order transition models (Section A.2).

A.1 Joint distribution

The LDS (see Section 2.2 and 3.1 in the main paper) defines a joint distribution over system states
x0:K that factorizes as

p(x0:K) = N (x0 | µ0,Q
−1
0)

K∏
k=1

N (xk | Fkxk−1 + ck,Q
−1
k), (18)

with xk,µ0, ck ∈ RN and Fk,Qk ∈ RN×N . As a product of Gaussian distributions, p(x0:K) can be
written as a joint Gaussian N (µ,Ω−1) with mean µ ∈ R(K+1)N and precision (inverse covariance)
matrix Ω ∈ R(K+1)N×(K+1)N . Here, we derive expressions for µ and Ω in terms of µ0, ck,Fk,Qk.

First, note that Eq. (18) can be written as a set of linear equations

x0 = µ0 + ϵ0 ϵ0 ∼ N (0,Q−1
0)

x1 = F1x0 + c1 + ϵ1 ϵ1 ∼ N (0,Q−1
1)

x2 = F2x1 + c2 + ϵ2 ϵ2 ∼ N (0,Q−1
2)

. . .

xK = FKxK−1 + cK + ϵK ϵK ∼ N (0,Q−1
K).

Moving all xk-terms to the left-hand side, we can rewrite this as a matrix-vector multiplication
I

−F1 I
−F2 I

.
−FK I


︸ ︷︷ ︸

=F

·


x0

x1

x2

...
xK


︸ ︷︷ ︸

=x

=


µ0
c1
c2
...

cK


︸ ︷︷ ︸

=c

+


ϵ0
ϵ1
ϵ2
...
ϵK


︸ ︷︷ ︸

=ϵ

, (19)

with block-matrix F ∈ R(K+1)N×(K+1)N and vectorized x = vec(x0, . . . ,xK) ∈ R(K+1)N ,
c = vec(µ0, c1, . . . , cK) ∈ R(K+1)N and ϵ = vec(ϵ0, . . . , ϵK) ∈ R(K+1)N . Empty positions in F
represent zero-blocks.

Now, we can express x as an affine transformation of ϵ

x = F−1c+ F−1ϵ, (20)

where F−1 exists because det(F) = 1. Since ϵ is distributed as ϵ ∼ N (0,Q−1) with Q =
diag(Q0,Q1, . . . ,QK), and c is deterministic, we can use the affine property of Gaussian distribu-
tions to obtain the joint distribution

x ∼ N (F−1c,F−1Q−1F−T). (21)

Thus, the joint precision matrix Ω factorizes as

Ω = (F−1Q−1F−T)−1 = FTQF (22)

14

and has a block-tridiagonal structure

Ω =


Q0 + FT

1 Q1F1 −FT
1 Q1

−Q1F1 Q1 + FT
2 Q2F2 −FT

2 Q2

.
−QK−1FK−1 QK−1 + FT

KQKFT −FT
KQK

−QKFK QK

 .
(23)

Note that for matrix-vector multiplications of the form Ωx, the sparse structure of F and Q can be
leveraged by performing three consecutive matrix-vector multiplications, instead of first forming the
full precision matrix and then computing the matrix vector product. This reduces both computations
and memory requirements.

To compute the joint mean µ = F−1c without expensive matrix inversion, the components µk have
to be computed iteratively as

µk = Fkµk−1 + ck. (24)

In contrast, the information vector η = Ωµ can be expressed compactly as
η = FTQFF−1c = FTQc, (25)

which can be computed efficiently using sparse and parallel matrix-vector multiplications on a GPU.
We make use of this property in the DGMRF formulation and in the conjugate gradient method.

A.2 Extension to higher-order Markov processes

We can easily adjust the joint distribution to accommodate higher-order processes with dependencies
on multiple past time steps.

For a p-th order Markov process, the dynamics are defined by equations
x0 = µ0 + ϵ0 ϵ0 ∼ N (0,Q−1

0)

x1 = F1,1x0 + c1 + ϵ1 ϵ1 ∼ N (0,Q−1
1)

. . .

xk = Fk,1xk−1 + Fk,2xk−2 + · · ·+ Fk,pxk−p + ck + ϵk ϵk ∼ N (0,Q−1
k)

. . .

xK = FK,1xK−1 + FK,2xK−2 + · · ·+ FK,pxK−p + cK + ϵK ϵK ∼ N (0,Q−1
K).

Following the same steps as before, this results in a linear system

I
−F1,1 I
−F2,2 −F2,1 I
.

−Fp,p −Fp,p−1 . . . −Fp,1 I
.

−FK,p . . . −FK,2 −FK,1 I


︸ ︷︷ ︸

=F

·


x0

x1

x2

...
xK


︸ ︷︷ ︸

=x

=


µ0
c1
c2
...

cK


︸ ︷︷ ︸

=c

+


ϵ0
ϵ1
ϵ2
...
ϵK


︸ ︷︷ ︸

=ϵ

.

(26)
This means that the matrix F is extended by adding the higher-order transition matrices
(Fτ,τ , . . . ,FK,τ) to the τ -th lower block diagonal of F for all τ = 1, . . . , p. The expressions for
Ω,µ and η remain the same (using the extended F), resulting in a block p-diagonal precision matrix.

B Experimental details

B.1 Advection-diffusion process

The advection-diffusion dataset is a random sample from a ST-DGMRF for which the transition
matrices are defined according to an advection-diffusion process

∂ρ(t, s)

∂t
= D∇2ρ(t, s)−∇ · (vρ(t, s)) (27)

15

with constant diffusion coefficient D and velocity vector v = [u, v]
T . The process is discretized on

a 30 × 30 lattice with grid cell size ∆x = ∆y = 1 and periodic boundary conditions. The spatial
discretization results in a system of ordinary differential equations

∂ρ(t)

∂t
= Mρ(t), (28)

where ρ(t) is a vector containing the system states of all grid cells. Using a finite difference
discretization, matrix M is defined as

Mij =


D − 1

2n
T
ijv if d(i, j) = 1

−4D if i = j

0 otherwise,
(29)

where d(i, j) denotes the distance between cell i and j, and nij denotes the unit vector pointing
from lattice cell i to its neighbor j. For example, for cell i = (sx, sy) and cell j = (sx, sy − 1) it is
nij = [0,−1]

T , and thus nT
ijv = −v.

Eq. 28 is converted into a discrete-time dynamical system by approximating

ρt+∆t = exp(∆t ·M)ρt ≈

(
3∑

k=0

1

k!
(∆t)

k
(M)

k

)
ρt = Fadv-diffρt (30)

using a third-order Taylor series expansion. For simplicity, we use time resolution ∆t = 1 resulting in

Fadv-diff = I+M+
1

2
M2 +

1

6
M3. (31)

B.1.1 Process simulation

We sample the initial state ρ0 from a GMRF with µ0 = 0 and precision matrix Q0 = ST
0 S0 with

S0 = (D − A), where A is the adjacency matrix of the 4-nearest neighbour graph Glattice, and
D = 4 · I is the corresponding degree matrix. This corresponds to a 1-layer DGMRF with parameters
α = 1, β = −1, γ = 1 and b = 0.

Starting from ρ0, we iteratively sample the next system state according to

ρk = Fkρk−1 + ϵk ϵt ∼ N (0,Q−1
k) (32)

with time-invariant transition matrix Fk = (Fadv-diff)
4, where Fadv-diff is defined according to Eq. (31).

This effectively aggregates four simulation steps into one, i.e. ∆tk = (tk+1 − tk) = 4, resulting in
larger differences between consecutive system states. For the noise terms ϵk, we use a time-invariant
precision matrix Qk = ST

k Sk where Sk = (10 · I−A). This corresponds to a 1-layer DGMRF with
parameters α = 10

4 , β = −1, γ = 1 and b = 0.

We simulate forK = 20 time steps, usingD = 0.01 and v = [−0.3, 0.3]
T , and generate observations

by masking out grid cells within a square of width w ∈ {6, . . . , 12} for 10 consecutive time steps
and applying white noise with standard deviation σ = 0.01.

Figure 5: Advection-diffusion dataset with ground truth system states (bottom) and corresponding
observations using masks of width w = 9 (top).

B.1.2 ST-DGMRF parameterization

We consider two ST-DGMRF variants that capture different amounts of prior knowledge. In both
cases, spatial and temporal layers are defined based on Glattice, and temporal bias terms are, similar to
spatial bias terms, defined as b(l)

f = b
(l)
f 1.

16

Variant 1 If prior knowledge is available in the form of a parameterized transition model, the ST-
DGMRF transition matrices can be parameterized accordingly. Here, we consider temporal layers F(l)

k
that are a simplified first-order approximation to the true transition matrix Fadv-diff used to generate the
data (see Eq. (31)), i.e. F(l)

k = I+M(l), with time-invariant learnable diffusion coefficients D(l) and
velocity vectors v(l). To ensure that the diffusion coefficient is non-negative, we model it as D(l) =

(d(l))2. This leaves us with four learnable parameters d(l), u(l), v(l) and b(l)f per temporal layer.

Variant 2 If only partial knowledge about the underlying dynamics is available, the unknown parts
can, for example, be replaced by a small neural network. Here, we consider temporal layers of the
form F

(l)
k = I+M(l) with

M
(l)
ij =


(d(l))2 + ϕ

(l)
ij,1 if j ∈ n(i)

−4(d(l))2 +
∑

j∈n(i) ϕ
(l)
ij,2 if i = j

0 otherwise,
(33)

where we define ϕ(l)ij,1, ϕ
(l)
ij,2 = f

(l)
MLP (nij) where f (l)MLP : R2 → R2 is a multilayer perceptron

(MLP) with one hidden layer of width 16 with ReLU non-linearity, and Tanh output non-linearity.
Again, we define the transition model to be time-invariant and share MLP parameters across time and
space. This amounts to 83 learnable parameters per temporal layer.

Log-determinant computations In our experiments, the spatial base graph Glattice is small enough
to pre-compute eigenvalues exactly and use the eigenvalue method for log-determinant computations
proposed in [43].

Variational distribution For the variational distribution, we also consider two variants, one without
temporal dependencies (equivalent to the DGMRF baseline) and one with a single temporal layer
with time-invariant diffusion transition matrices F̃k = λI + ω(A −D). Note that for ω = 0, this
reduces to a simple auto-regressive process.

Observation model All ST-DGMRF variants assume a temporally and spatially invariant observa-
tion noise level of σ = 0.01. The observation matrices Hk are defined as selection matrices matching
the training masks during the learning phase and the training plus validation masks during the testing
phase.

B.2 Air quality data

The air quality dataset is based on hourly PM2.5 measurements obtained from [59]. We consider
246 sensors within the metropolitan area of Beijing, China, for which we extracted time series of
K = 400 hours between 13 March 2015 at 12pm and 30 March 2015 at 3am. Relevant weather
covariates (surface temperature, as well as u and v wind components at 10 meters above ground level)
were extracted from the ERA5 reanalysis dataset [25].

B.2.1 Data preprocessing

We define both the spatial and the temporal base graph based on the Delaunay triangulation of sensor
locations, GDelaunay, where we disregard edges between sensors that are more than 160 kilometers
apart. Edge weights are defined as the inverse distance between sensors, normalized to range between
0 and 1. The raw PM2.5 measurements are log-transformed and standardized to zero mean and unit
variance. Finally, we remove clear outliers where the transformed values jump up and down by more
than a threshold of δ = 2.0 within three consecutive time steps. The ERA5 covariates are normalized
to range between -1 and 1.

To mimic a realistic setting of repeatedly occurring partial network failures, we define our test set by
masking out all measurements within a predefined spatial block (containing 50% of all sensors) within
10 randomly placed windows of 20 time steps (see Figure 6). Note that these windows may overlap,
resulting in fewer periods of missing data with variable length. The masked out measurements are
used for the final model evaluation.

17

Figure 6: Left: air quality sensor network. Ca. 50% of the nodes are masked out (purple nodes within
the gray box) during 10 randomly placed (partially overlapping) windows of 20 time steps. Right:
associated log-transformed and normalized PM2.5 measurements for two sensors falling within the
masked area. Time points that have either missing data or fall within a masked time window are
shaded in gray.

B.2.2 ST-DGMRF parameterization

As with the advection-diffusion dataset, we consider two ST-DGMRF variants with different types
of temporal layers. In both cases, spatial and temporal layers are defined based on the Delaunay
triangulation described in Section B.2.1, and temporal bias terms bf are defined in terms of a neural
network mapping local weather covariates to temporally and spatially varying biases. We use a simple
MLP with one hidden layer of width 16 with ReLU activations and no output non-linearity. The MLP
parameters are shared over both space and time.

Variant 1 This variant accounts for directional transport processes, adopting a transition model
similar to the neural network model used in the advection-diffusion experiments. In particular, we
consider temporal layers of the form F

(l)
k = I+M

(l)
k with

(
M

(l)
k

)
ij
=


(d(l))2 + ϕ

(l)
k,ij if j ∈ n(i)

−4(d(l))2 +
∑

j∈n(i) ψ
(l)
k,ij if i = j

0 otherwise,

(34)

where we define ϕ(l)k,ij , ψ
(l)
k,ij = f

(l)
MLP (nij , wij , (uk)i) where f (l)MLP : R6 → R2 is a MLP with one

hidden layer of width 16 with ReLU activations, and Tanh output non-linearity. wij are the edge
weights of the base graph (see Section B.2.1), and (uk)i is the vector of weather covariates for node i
at time k. Since we use these time-dependent covariates as input to the MLP, the resulting transition
model is not time-invariant anymore. However, the parameters of the MLP remain shared across time
and space. As before, diffusion parameter d(l) is assumed to be spatially and temporally invariant.

Variant 2 The second variant uses highly simplified diffusion temporal layers of the form F
(l)
k =

λ(l)I+ ω(l)(A−D) with spatially and temporally invariant parameters λ(l) and ω(l).

Log-determinant computations Again, the spatial base graph GDelaunay is small enough to pre-
compute eigenvalues exactly and use the eigenvalue method for log-determinant computations [43].

Variational distribution As with the advection-diffusion dataset, we consider two variants for the
variational distribution, one without temporal dependencies and one with a single temporal diffusion
layer.

Observation model All ST-DGMRF variants assume a temporally and spatially invariant observa-
tion noise level of σ = 0.01. The observation matrices Hk are defined as selection matrices matching
the training masks during the learning phase and the training plus validation masks during the testing
phase.

18

B.3 Baseline models

B.3.1 DGMRF

We apply the DGMRF for general graphs introduced by [43] to each time frame of the time series, not
accounting for temporal dependencies. The DGMRF parameters are not shared across time, allowing
for dynamically changing spatial covariance patterns. We use one spatial layer in the variational
distribution, as proposed in [43], and run a hyperparameter search over Lspatial ∈ {1, 2, 3} with
Lspatial = 2 performing best.

Including covariates In our experiments on the air quality dataset, for which we have access to
relevant covariates, we follow [50] and add linear effects to the measurement model. Note that the
vector of coefficients if shared across both space and time.

B.3.2 ARMA

We implemented ARMA(p, q) models with p = 1 and q = 1 for the advection-diffusion data, and
with p = 2 and q = 2 for the air quality data, using the Python statsmodels package. For each
node in the test set, maximum likelihood parameter estimation is performed based on the observed
time points. Given the estimated model coefficients, we obtain posterior mean and variance estimates
using the standard Kalman smoother [47]. As the maximum likelihood estimates are deterministic,
we do not provide standard deviations of the evaluation metrics for these models.

B.3.3 ST-AR

The spatiotemporal autoregressive (ST-AR) model takes the form xk = α · xk−1 + ϵk, with initial
state x0 ∼ N (µ0,Σ0) and unconstrained spatial error terms ϵk ∼ N (0,Q−1). We fix Σ0 = 10 · I
to encode high uncertainty about the initial state x0, and fit α,µ0 and Q−1 to the data using closed-
form EM updates. The EM algorithm is initialized with α = 1,µ0 = 0 and Q−1 = diag(q) where
elements qi are drawn randomly from the interval [5, 6]. After convergence of the EM-algorithm, the
final state estimates are obtained with the Kalman smoother [47].

B.3.4 EnKS

We consider an Ensemble Kalman Smoother (EnKS) variant for which the transition model matches
the true data-generating process of the advection-diffusion dataset, as well as an EnKS variant for
which we use a state augmentation approach to estimate unknown parameters v and d =

√
D jointly

with the system states. For both variants, we use 104 ensemble members (the maximum feasible on
our machine). We fix the initial state distribution to x0 ∼ N (0, 10 · I), and sample transition noise
terms as ϵk ∼ N (0, 0.1 · I).
For the state augmentation approach, we define the initial distribution over velocities v as N (µv, 0.1 ·
I), where µv is randomly drawn from [−1, 1] for each repeated run of the EnKS. Similarly, the initial
distribution for diffusion parameter d is defined as N (µd, 0.01) where µd is randomly drawn from
[0, 0.2] for each repeated run of the EnKS. Finally, the transition noise terms for parameters v and d
are sampled from N (0, 0.01 · I).

B.3.5 MLP

For the air quality dataset, the MLP baseline maps local weather covariates (uk)i ∈ R3 to log-
transformed PM2.5 measurements. We use one hidden layer of width 16 with ReLU activations and
no output non-linearity. The MLP parameters are shared over both space and time.

B.4 Regularized Conjugate Gradients

We use a regularized variant of the conjugate gradient (CG) method [4] to avoid slow convergence in
the case of ill-conditioned matrices. Instead of directly solving a potentially ill-conditioned linear
system Ax = b, the idea is to iteratively solve a sequence of regularized (i.e. well conditioned)
linear systems

(νI+A)x = νx(i) + b. (35)

19

At each iteration, the solution from the previous iteration x(i) is used to obtain the next solution x(i+1).
Eventually, this sequence will converge towards the true solution x∗ of the original system Ax = b.

We start with ν = 10 and decrease it every 10 iterations by factor 10. In each iteration, the standard
CG method is employed to iteratively solve the regularized linear system until the residual norm
drops below a threshold of 10−7 or a maximum of 200 inner CG iterations is reached. This inner
loop is repeated until the norm of the residuals

r(i) =
(
(νI+A)x(i)

)
−
(
νx(i) + b

)
(36)

drops below a threshold of 10−7 or a maximum of 100 outer iterations is reached. The initial guess
x(0) is given by the mean of the variational distribution qϕ(x).

C Additional results

In this section, we present additional results regarding the scalability of our approach (Section C.1),
and provide more detailed results for the experiments in Section 4 of the main paper (Section C.2
and C.3). Finally, in Section C.4 we provide estimates of the total computation time required for our
experiments.

C.1 Scalability

To empirically demonstrate the scalability of our method, we generate additional advection-diffusion
datasets with varying lattice size and compare the runtime of our ST-DGMRF approach to a naive
Kalman smoother (KS) [47] approach. To this end, we consider a model with advection-diffusion
transition matrix using Ltemporal = 2 temporal and Lspatial = 2 spatial layers. To avoid additional
matrix inversions in the KS approach, we set the spatial and temporal bias terms bs,bf to zero,
resulting in µ0 = 0 and ck = 0. We train the model for 1 000 iterations and measure the average
wall clock time per iteration. In addition, we measure the wall clock time needed to perform inference
with the trained model.

ST-DGMRF For the ST-DGMRF approach, we proceed as before using a variational distribution
with one temporal diffusion layer during training. For better comparability, we employed the standard
(non-regularized) CG method (with a tolerance of 10−7) to compute the posterior mean and marginal
variances (based on 100 CG samples) and provide measurements of the average time per CG iteration
instead of the total time needed to perform inference. Multiplying this with the average number of
CG iterations needed until convergence results in an estimate of the average total time for inference.

Kalman smoother For the KS approach, instead of approximating the true posterior with a
variational distribution and estimating the ELBO based on Monte-Carlo samples, we use the KS to
obtain exact marginal posterior estimates, which are used to compute expectations in closed form.
The marginal covariance and transition matrices required for the KS equations are extracted from the
ST-DGMRF model in every iteration. The associated parameters are then optimized via a form of
Generalized EM-algorithm [16], where in each iteration a single gradient ascent step is taken.

Results Figure 7 shows how ST-DGMRF and KS training and inference scale as the number of
nodes N in the system increases. Clearly, the time per training iteration increases super-linearly when
the KS is used to obtain exact marginal posterior distributions, while the variational ST-DGMRF
training time increases only marginally and remains below the fastest KS iteration for all tested N . In
addition, KS memory requirements (due to storing K dense N ×N covariance matrices) exceeded
the available GPU memory for N > 1024, making this approach infeasible for larger systems. In
contrast, the ST-DGMRF exploits the sparsity of spatial and temporal graph-structured layers and
thereby avoids storing dense matrices, remaining feasible for N ≫ 1024.

For the tested systems, ST-DGMRF posterior inference with the CG method is slower than exact
KS inference. However, the memory requirements of the KS approach again limit its feasibility to
N ≤ 1024, while the CG method only requires storing vectors of size O(N) making it feasible for
N ≫ 1024. Moreover, Figure 7 confirms that computations per CG iteration scale linearly in N .
And since the number of CG iterations required for convergence remains approximately constant, the

20

Figure 7: Comparison of ST-DGMRF and KS computation time in seconds for training (per iteration)
and inference. For ST-DGMRF inference, the time per CG iteration is plotted together with the
average number of CG iterations needed to converge (in gray). All quantities are plotted as mean ±
std based on 5 runs with different random seeds. The vertical dotted lines indicate the maximum N
for which the KS approach was applicable.

total computation time for CG inference also scales linearly in N . In contrast, KS inference again
scales super-linearly. This means that even if the KS approach would remain feasible in terms of
memory requirements, its computation time will quickly approach, and eventually exceed, the time
needed for CG inference.

C.2 Advection-diffusion experiments

Table 4 summarizes all results for the advection-diffusion dataset with mask size w = 9, including
standard deviations for all metrics based on 5 runs with different random seeds. As discussed in the
main paper, the ST-DGMRF variants provide more accurate posterior estimates than the baselines
relying on simplified spatiotemporal dependency structures.

Ablation results Table 4 contains additional results for the ST-DGMRF variants using different
settings for the variational distribution (see Section B.1.2) For this dataset, we do not find a significant
effect of introducing temporal dependencies in the variational distribution. Further, Figure 8 shows
additional results for the ST-DGMRF variants when varying the number of temporal layers Ltemporal.
For all metrics, the performance improves significantly as we start adding temporal layers and
stabilizes around Ltemporal = 3. Note that around the same point, both ST-DGMRF variants converge
towards the EnKS using the true data-generating dynamics, in terms of the RMSEµ, and even drop
below it in terms of the CRPS. Only in terms of RMSEσ , the ST-DGMRF models remain inferior to
both EnKS variants. We hypothesize that increasing the expressivity (i.e. Lspatial) of the noise terms
can further reduce this gap.

Table 4: Model performance for the advection-diffusion dataset with w = 9, reported as mean ± std
over 5 runs with different random seeds. All ST-DGMRF variants use Lspatial = 2 and Ltemporal = 4.

VI dynamics RMSEµ ↓ RMSEσ ↓ CRPS ↓
ARMA − 2.3054 − 0.6812 − 1.7064 −
ST-AR − 1.4595±0.0098 1.9216±1.0392 0.9707±0.0163

DGMRF − 0.5901±0.0037 0.3808±0.0010 0.3495±0.0022

EnKS
true dynamics − 0.0661±0.0030 0.0046±0.0000 0.1027±0.0035

estimated dynamics − 0.1654±0.2031 0.0039±0.0005 0.1434±0.0902

ST-DGMRF (ours)
advection-diffusion none 0.0526±0.0001 0.1148±0.0003 0.0726±0.0001

advection-diffusion diffusion 0.0526±0.0001 0.1146±0.0005 0.0726±0.0000

neural network none 0.0839±0.0022 0.1334±0.0089 0.0833±0.0008

neural network diffusion 0.0854±0.0027 0.1402±0.0061 0.0839±0.0008

21

Figure 8: RMSEµ, RMSEσ and CRPS as a function of the number of temporal layers Ltemporal for
the advection-diffusion dataset with w = 9, plotted as mean ± std over 5 runs with different random
seeds. Both ST-DGMRF variants are trained with a variational distribution using one temporal
diffusion layer. Note that Ltemporal = 0 corresponds to the spatial-only DGMRF baseline.

C.3 Air quality experiments

Table 5 summarizes all results for the air quality dataset. It contains additional results for the ST-
DGMRF variants using different settings for the variational distribution (see Section B.2.2), and
provides standard deviations for all metrics based on 5 runs with different random seeds.

Ablation results We find that, in contrast to our experiments on the advection-diffusion data,
accounting for temporal dependencies in the variational distribution is clearly beneficial in the real
world setting. Especially for the ST-DGMRF with neural network based transitions, adding the
temporal diffusion layer results in significantly improved posterior estimates, and at the same time
reduces the variability across different runs. Further, we find that at least two temporal layers are
needed to achieve good posterior estimates that improve on the baselines (see Figure 9).

Example model outputs Figure 10 shows state estimates and associated uncertainties together
with sensor measurements for two example sensors within the masked out area of the network, for
ST-DGMRF, DGMRF and ARMA respectively. For all three models, state estimates are obtained by
conditioning on the input data points (used for training), resulting in low errors and uncertainties for
observed time points and higher errors and uncertainties for masked out time points. Moreover, for
both ST-DGMRF and DGMRF, higher uncertainties coincide with larger errors and larger fluctuations
in the measurements (top), while more accurate state estimates come with smaller uncertainties
(bottom). Finally, Figure 11 visualizes how spatial and temporal ST-DGMRF layers transform
samples from the estimated posterior over system states into (approximately) independent Gaussian
noise, as derived in Section 3.1.2 and visualized in Figure 1. Clearly, temporal layers remove daily
patterns and overall trends, while spatial layers remove dependencies between close-by sensors and
increase temporal fluctuations.

Figure 9: RMSE and CRPS for increasing Ltemporal (mean ± std over 5 runs). Both models use p = 2.
As before, Ltemporal = 0 corresponds to the spatial-only DGMRF baseline.

22

Figure 10: Model outputs for two air quality sensors falling within the masked area. Solid lines
represent posterior mean estimates, while shaded areas represent posterior std estimates. Time points
that have either missing data or fall within the masked time window are shaded in gray.

Table 5: Model performance for the air quality dataset, reported as mean ± std over 5 runs with
different random seeds. All ST-DGMRF variants use Lspatial = 2 and Ltemporal = 4.

p VI dynamics RMSE ↓ CRPS ↓
ARMA − − 0.6820 − 0.3625 −
ST-AR − − 0.7350±0.0006 0.4261±0.0003

DGMRF − − 0.7368±0.0135 0.3966±0.0032

MLP − − 0.8038±0.0245 −
ST-DGMRF (ours)

diffusion 1 none 0.6147±0.0082 0.3239±0.0058

diffusion 1 diffusion 0.6190±0.0073 0.3258±0.0043

diffusion 2 none 0.6020±0.0112 0.3214±0.0051

diffusion 2 diffusion 0.5928±0.0119 0.3161±0.0054

neural network 1 none 0.5995±0.0887 0.3147±0.0494

neural network 1 diffusion 0.5853±0.0457 0.3092±0.0257

neural network 2 none 0.5825±0.0626 0.3062±0.0353

neural network 2 diffusion 0.5565±0.0184 0.2925±0.0097

C.4 Total compute

Most computations were performed on a Nvidia Titan X GPU. On top of the final experiments, we
performed hyperparameter sweeps and additional test runs. Here, we provide estimates of the total
compute time grouped by experiment:

Advection-diffusion dataset:

• Performance comparison & ablations: ca. 50 GPU hours
• Varying mask size: ca. 30 GPU hours per w, resulting in ca. 210 GPU hours in total
• Scalability: ca. 15 GPU hours

Air quality dataset:

• Performance comparison & ablations: ca. 100 GPU hours

23

Figure 11: Effects of applying temporal (fθ) and spatial (sθ) ST-DGMRF layers to the predictive
posterior. Left column: The dark yellow line (top row) shows the estimated posterior mean for
an air quality sensor falling within the masked area. Light yellow lines represent corresponding
posterior samples. Similarly, green lines (center row) represent states after applying the temporal
transformation (fθ), and gray lines (bottom row) represent states after applying both temporal and
spatial layers (sθ ◦ fθ). As a reference, we also plot ground truth log-transformed and normalized
PM2.5 measurements (dashed black lines). Right column: corresponding (transformed) states for all
sensors at time k = 100.

24

	Introduction
	Related work
	Our contributions

	Preliminaries
	Problem formulation
	Linear dynamical system
	Gaussian Markov random fields
	Deep Gaussian Markov random fields

	Spatiotemporal DGMRFs
	Graph-structured dynamical prior
	Joint distribution
	DGMRF formulation

	Parameterization
	Spatial layer(s)
	Temporal layer(s)

	Learning and inference
	Scalable parameter estimation
	Exact inference with conjugate gradients

	Experiments
	Advection-diffusion process
	Air quality data

	Conclusion
	ST-DGMRF derivations
	Joint distribution
	Extension to higher-order Markov processes

	Experimental details
	Advection-diffusion process
	Process simulation
	ST-DGMRF parameterization

	Air quality data
	Data preprocessing
	ST-DGMRF parameterization

	Baseline models
	DGMRF
	ARMA
	ST-AR
	EnKS
	MLP

	Regularized Conjugate Gradients

	Additional results
	Scalability
	Advection-diffusion experiments
	Air quality experiments
	Total compute

