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Abstract

The label smoothness assumption is at the core of
Graph Convolutional Networks (GCNs): nodes in
a local region have similar labels. Thus, GCN per-
forms local feature smoothing operation to adhere
to this assumption. However, there exist some
nodes whose labels obtained by feature smooth-
ing conflict with the label smoothness assumption.
We find that the label smoothness assumption and
the process of feature smoothing are both prob-
lematic on these nodes, and call these nodes out
of GCN’s control (OOC nodes). In this paper,
first, we design the corresponding algorithm to
locate the OOC nodes, then we summarize the
characteristics of OOC nodes that affect their rep-
resentation learning, and based on their character-
istics, we present DaGCN, an efficient framework
that can facilitate the OOC nodes. Extensive ex-
periments verify the superiority of the proposed
method and demonstrate that current advanced
GCNs are improvements specifically on OOC
nodes; the remaining nodes under GCN’s con-
trol (UC nodes) are already optimally represented
by vanilla GCN on most datasets.

1. Introduction
Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017) exhibit a remarkable capacity to handle graph data.
Therefore, in recent years, many researchers have drawn in-
spiration from GCNs (Du et al., 2022; Gasteiger et al., 2018;
Chen et al., 2020; Feng et al., 2022; Liu et al., 2022a; Huang
et al., 2023a; Yang et al., 2024), leading to the development
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of numerous advanced GCN models. These models not
only perform well in the field of graph mining but have also
achieved great success in different fields such as healthcare
(Li et al., 2020b; Sun et al., 2020b), recommender systems
(Fan et al., 2022; 2019), and natural language processing
(Wu et al., 2023; Malekzadeh et al., 2021).

The success of GCN is primarily attributed to its smoothing
assumption: Connect nodes tend to have a high prob-
ability of sharing the same labels. (i.e., label smooth-
ness assumption)(Zhang et al., 2021). Most of the ad-
vanced GCNs are built upon this assumption to enhance
the capabilities of GCN, which can be roughly divided into
two categories: GCN-smoothing based methods and GCN-
smoothing enhanced methods. The GCN-smoothing based
methods utilize additional components to get a more ro-
bust and comprehensive representation based on GCN’s
smoothing operation. For example, Graph Contrastive
Learning methods (Liu et al., 2022b) generally utilizes GCN-
smoothing operation as the encoders to learn the invariance
of the representation, AM-GCN (Wang et al., 2020) uses
multiple GCN-smoothing operation for different channels
to enhance the GCN’s capability of fusing topological struc-
tures and node features substantially. The GCN-smoothing
enhanced methods aim to improve the smoothing operation
to ensure the node obtains richer and more appropriate in-
formation. For example, APPNP (Gasteiger et al., 2018),
DAGNN (Liu et al., 2020), and GCNII (Chen et al., 2020)
increase the GCN smoothing range while mitigating over-
smoothing (Li et al., 2018) for each node through various
residual techniques.

Although previous GCNs have achieved promising results
by using feature smoothing operation to adhere to label
smoothness assumption, a fundamental question remains
unexplored: Do all nodes equally benefit from it? Specif-
ically, GCN propagates features on the graph so that the
features of connected nodes are similar (i.e., feature smooth-
ing operation). Following this, GCNs utilize known labels to
guide the classification process. Given that connected nodes
exhibit similar features post feature smoothing, it is implic-
itly assumed that nodes near those with known labels should
share the same labels (i.e., label smoothness assumption).
Suppose the labels predicted through the feature smooth-
ing operation align with the label smoothness assumption,
such nodes meet the expectations of the GCN framework,
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Figure 1. (a) The accuracy of GCN on UC and OOC nodes. (b)
The average degree of UC and OOC nodes. (c) Average LPA
output logits of UC and OOC nodes. Node with higher average
LPA logits indicates closer to labeled nodes and vice versa.

indicating that they are suitable to be represented under the
GCN framework and we call these nodes under the con-
trol of GCN (i.e., UC nodes). On the other hand, if they
cannot be aligned and conflict occurs, these nodes are out
of the GCN’s control (i.e., OOC nodes). The GCN cannot
guarantee that OOC nodes learn the desired representation
compared to the UC nodes. Therefore, we consider OOC
nodes to be the primary limitation of the GCN frameworks.
To locate OOC nodes for further study, one challenge is that
the labels under the label smoothness assumption are not
clearly defined, so it is difficult to locate OOC nodes by
comparing the labels predicted by feature smoothing and
the labels under the smoothness assumption. Since GCN
performs most effectively when the label distribution of un-
known labels adheres to the label smoothness assumption.
Theoretically, we found that the label distribution that maxi-
mizes GCN’s effectiveness is equivalent to the distribution
produced by the Label Propagation Algorithm (LPA (Zhu,
2005; Zhou et al., 2003)). Therefore, we can use the labels
output by LPA to describe the label distribution under the
label smoothness assumption for further analysis. We find
that OOC nodes account for a fairly significant proportion
of unlabeled nodes, e.g., 39.6%, 53.5%, and 29.2% in the
Cora, Citeseer, and Pubmed datasets, respectively.

For OOC nodes, the conflict between the label smoothness
assumption and feature smoothing operation makes it chal-
lenging for them to learn effective representations within
the GCN framework (including the LPA algorithm). We
can verify this by observing the results in Figure 1 (a). The
accuracy of UC nodes is significantly higher than that of
OOC nodes on GCN and LPA algorithms. Therefore, OOC
nodes have more potential to be improved. Furthermore,
we found that there are at least two reasons for the conflict
on OOC nodes: (i) Nodes with few neighbors. Such nodes
are less affected by message passing and the nodes lack
sufficient neighbor information (i.e., feature and label in-

formation) to describe the correct node representation. We
further verified it on real-world datasets in Figure 1 (b). (ii)
Nodes away from labeled nodes. As they lack known la-
beled neighbors, the label smoothness assumption cannot
encompass these nodes. Additionally, the aggregation pro-
cess becomes uncorrectable, leading to error accumulation
during feature propagation (i.e., feature smoothing) on OOC
nodes. From Figure 1 (c), we validate that OOC nodes are
typically distant from label nodes.

In this paper, to boost the OOC nodes by addressing the
above issues, we propose a simple Dual augmented GCN
(DaGCN). Specifically, we employ the Conditional Varia-
tional Auto-encoder to generate virtual neighbors for every
node. Simultaneously, we propose the Dual Similarity K-
Nearest Neighbor (DSKNN) module to identify potential
real neighbors in the original graph. This approach enriches
the node’s neighbor information from two perspectives, thus
tackling the issue (i). Notably, the DSKNN module con-
siders both the original features and the generated virtual
neighbor features. To address the issue of being distant from
the labeled nodes, the DSKNN module provides a new prop-
agation path, and we show that this problem can be solved
as long as the DSKNN is set to a large k value, to tackle
the issue (ii). As a result, our method can optimize the rep-
resentation of OOC nodes by supplementing rich neighbor
information for them and increasing the probability of the
OOC nodes being closer to labeled nodes. The contributions
of this paper are summarized as follows:

• We first investigate the conflicts between GCN’s opera-
tion and its assumption, then design the corresponding
algorithm to locate the OOC nodes. Moreover, we
provide a new perspective that can help later work in
analyzing and enhancing the performance of GCNs.

• We propose the DaGCN model that can simultaneously
solve the two problems existing in OOC nodes, and
improve the generalization ability and robustness of
the GCN model.

• We empirically verified that our proposed model
achieves favorable results on the seven nodes classi-
fication benchmark dataset and further validates the
robustness and generalization of the model.

2. Related Work
This section briefly reviews the topics related to this work,
including Graph Convolutional Networks, Neighbor Gener-
ation Methods, and Graph Rewiring Methods.

2.1. Graph Convolutional Networks

The early graph convolution networks mainly focus on
the filter design of the eigenvalues of the Laplacian ma-
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trix (Bruna et al., 2014). (Defferrard et al., 2016) used
Chebyshev polynomials to fit the filter shape, enabling fast
convolution of spectral neural networks. Then GCN (Kipf
& Welling, 2017) truncates the first two Chebyshev poly-
nomials to further simplify the entire operation and bring
improved performance. SGC (Wu et al., 2019a) further
decouples the aggregation and mapping process of GCN,
which has fewer parameters and training speed while main-
taining performance with GCN. APPNP (Gasteiger et al.,
2018) decouples prediction and propagation by performing
personalized propagation of neural predictions. To make
the GCN deeper while avoiding the oversmoothing problem,
the GCNII (Chen et al., 2020) utilized the residual technical
and self-mapping parameter matrix to design the deeper and
more powerful GCN. ScatterGCN (Min et al., 2020) com-
bines low-pass and band-pass filters to make GCN not only
consider the similarity but also improve the discrimination
of GCN. Graph Gaussian Convolution Networks (G2CN)
(Li et al., 2022) develop a new framework i.e., concentration
analysis, propose a linear feature smooth method with flexi-
ble concentration properties. These methods stacking graph
layers to enlarge the receptive field can incorporate multi-
hop neighboring information but lead to over-smoothing
and over-squashing problems.

2.2. Neighbor Generation Methods

Since feature smooth benefits from the rich feature informa-
tion in the graph data, thus many works (Zhu et al., 2021;
Song et al., 2021; Yang et al., 2023b) naturally utilize struc-
ture information to generate more feature information. For
example, GRAND (Feng et al., 2020) random drop nodes
multiple times and uses feature smooth to generate the new
feature of dropped nodes. For generation methods, com-
monly used in deep learning are based on auto-encoders, and
here some methods extend it to graphs (Liu et al., 2022a;
Grover et al., 2019; Hou et al., 2022), which are based
on variational auto-encoder to generate the neighbor in-
formation, they directly use this generation information or
combine original information for the downstream task. Be-
yond that, other types of methods GraphSMOTE (Zhao
et al., 2021) and GraphMIXUP (Wu et al., 2021) generate
neighbors by SMOTE and mixup techniques and add them
directly to the original graph. All of the above methods gen-
erate virtual neighbor features and none of them consider
mining potential real neighbors from the original graph.

2.3. Graph Rewiring Methods

Graph rewiring methods can discover and connect the po-
tential neighbors from the real existing nodes while discon-
necting irrelevant neighbors to get a new graph structure,
thus applying the GCN on the proposed DSKNN graph in
this paper can be seen as a graph rewiring method. We can
divide graph rewiring methods into two categories: the first

category of rewiring methods such as SDRF (Topping et al.,
2022), SJLR (Giraldo et al., 2023) and BORF (Nguyen et al.,
2023) aims to enhance the curvature of the neighborhood
by rewiring connecting edges with small curvature. They
increase local connectivity in the graph topology indirectly
expanding the influence range of labels. However, these
methods focus solely on the graph structure, neglecting the
utilization of node features and neighboring features. More-
over, they cannot generate connections between distant and
disconnected nodes. The other is structure learning meth-
ods, such as DHGR (Bi et al., 2022), PTDNet (Luo et al.,
2021), SA-SGC (Huang et al., 2023b), BAGCN (Zhang
et al., 2024) and Pro-GNN (Jin et al., 2020), these methods
can adapt learning the robust and downstream task optimal
graph structure. However, these methods involve end-to-end
learning of graph structures, resulting in significant compu-
tational overhead and failing to address the challenge posed
by nodes distant from labeled nodes.

3. Preliminaries
In this section, we first define the common notation, and
then introduce the GCN and Label Propagation Algorithm,
both of which will be used in subsequent discussions.

3.1. Problem Formulation

Given a graph G = (V,E), where V is the node set and
E is the edge set. Nodes are described by a feature ma-
trix X ∈ Rn×f where n = |V | is the number of nodes
and f is the number of features for each node. One node
is associated with a class label that is depicted in the la-
bel matrix Y ∈ Rn×c with a total of c classes. In this
paper, we consider an undirected graph, whose adjacency
matrix is represented with a sparse matrix A ∈ Rn×n. Let
D = diag(d1, d2, · · · , dn) be the degree matrix, where
di =

∑
j∈Ni

aij is the degree of node i. The symmet-

ric normalized adjacency matrix is represented as Â =
D̃− 1

2 ÃD̃− 1
2 where Ã = A+ I, I is the identity matrix and

D̃ is the degree matrix of Ã. The row normalized adjacency
matrix is represented as Â = D̃−1Ã. In this paper, we aim
to solve graph-based semi-supervised node classification.
Here, we have labels for only a very small fraction of the
nodes, and the remainder we call the unknown label set. Our
goal is to predict some of the labels in the unknown label
set.

3.2. Graph Convolutional Network(GCN)

GCN (Kipf & Welling, 2017) is the most widely used and
representative graph neural network, which uses a symmet-
ric normalized adjacency matrix to aggregate information
about neighbors. The GCN at layer l can be written as:

H(l+1) = σ(ÂH(l)W(l)), (1)
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where σ is the activate function here is ReLU, H(0) = X
and W(l) is learnable parameters. By iterating L-layer
convolutions, the GCN will make the representations of con-
nected nodes closer and closer (Zhao & Akoglu, 2020; Rong
et al., 2019), thus satisfying the “Connect nodes tend to have
a high probability of sharing the same labels” assumption.

3.3. Label Propagation Algorithm

Label propagation algorithm(LPA) (Zhu, 2005; Zhou et al.,
2003) is a classic semi-supervised learning algorithm that
propagates known labels along the graph to unlabeled nodes.
It can be formulated as follows:

Y(l+1) = ÂY(l), l = 1, 2, · · · , L (2)

where Y(0) = Y and Y ∈ Rn×c consists of one-hot label
indicator vectors for labeled nodes or zero vectors for unla-
beled nodes. In addition, various propagation schemes can
be adopted for LP, such as commonly used methods like
Personalized PageRank where Y(l+1) = (1− α)ÂY(l) +
αY(l).

4. Method
4.1. Label-Feature Smoothing Alignment

In this section, we motivate the need to study the nodes
that conflict between feature smoothing operation and label
smoothness assumption. To do that, we introduce the Com-
plexity Measure to help us understand the GCN-expected
label distribution on an unknown label set (i.e., labels un-
der GCN label smoothness assumption). It is the current
mainstream method to measure the generalization ability
of the model (Neyshabur et al., 2017), which describes the
a lower complexity measure means a better generaliza-
tion ability. We follow (Natekar & Sharma, 2020) to adopt
Consistency of Representations as our Complexity Mea-
sure, which is designed based on the Davies-Bouldin Index
(Davies & Bouldin, 1979). Formally, for a given dataset and
a given layer of a model, the Davies-Bouldin Index can be
written as follows:

Sa =

(
1

na

na∑
τ

∣∣∣O(i)
a − µOa

∣∣∣p)1/p

for a = 1 · · · k (3)

Ma,b = ∥µOa − µOb
∥p for a, b = 1 · · · k, (4)

where a, b are two different classes, O
(i)
a is the GCN

smoothed feature of node i belonging to class a, µOa
is

the cluster centroid of the representations of class a, here
we set p = 2, thus Sa measures the intra-class distance
of class a and Ma,b is a measure of inter-class distance
between class a and b. Then, we can define complexity

measure based on the Davies-Bouldin Index as follows:

C =
1

k

k−1∑
i=0

max
a̸=b

Sa + Sb

Ma,b
. (5)

With the above basis, we give the following theory.

Theorem 4.1. For nodes with unknown labels in the graph,
the upper bound of the GCN’s generalization ability reaches
optimal if the true labels of these nodes are equal to the
labels generated by the LPA.

The proof is in Appendix A.2. From the theorem 4.1, we
found that the label distribution outputted by the LPA is
equivalent to the label distribution that makes GCN most
effective in the unknown label set. This is particularly signif-
icant since GCN performs most effectively when the labels
of the unknown label set adhere to the label smoothness
assumption. Thus, we can replace the labels under the label
smoothness assumption with those outputted by the LPA
to locate the OOC nodes. Consequently, if the labels pre-
dicted by feature smoothing are consistent with the labels
generated by LPA, these nodes are under GCN’s control
(i.e., UC nodes). Otherwise, it indicates that on these nodes,
the GCN label smoothness assumption conflicts with the
feature smoothing operation. Since these nodes operate
within the GCN feature smoothing but do not adhere to the
label smoothness assumption, we call these nodes out of the
GCN’s control (i.e., OOC nodes).

Therefore, we propose the Label-Feature Smoothing Align-
ment Algorithm to find the OOC nodes. To better align the
LPA, we rewrite the GCN feature smoothing in the follow-
ing form:

Yfs = ÂLMLP (X), (6)

where L is the number of the layers and MLP(·) is Multi-
Layer Perceptron. Note that here the MLP has been trained
in advance, so each dimension of MLP(X)∈ Rn×c is the
probability of each class. This feature smoothing form not
only aligns with the LPA form but also brings faster train-
ing/inference speed and better generalization ability (Yang
et al., 2023a). The LPA is then of the following form:

Ylp = ÂLY, (7)

Then in this paper, the OOC nodes can be defined as:

VOOC = {Vi|argmax(Yfs,i) ̸= argmax(Ylp,i), i ∈ [n]} .
(8)

The UC nodes should be VUC = V −VOOC .

As can be seen in Figure 1 (a), the accuracy of VUC ex-
ceeds that of VOOC by a significant margin. Moreover, it
is known from Theory 4.1 that the upper bound of GCN’s
generalization ability on VUC nodes is more likely to reach
the optimal compared to VOOC nodes, because the label
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distribution of UC nodes is closer to the output of LPA.
Therefore, VOOC nodes have more room for improvement.
In this paper, we analyze VOOC mainly and find that some
properties of these nodes harm graph representation learn-
ing. Specifically, these properties include being distant from
labeled nodes and having scarce neighbors. To address these
problems, we propose Dual-augmented GCN(DaGCN) to
solve them.

4.2. Dual augmented GCN

In this section, to overcome the problem of nodes with few
neighbors, we propose two types of neighbor enhancement:
virtual neighbor generation and potential real neighbor iden-
tification (i.e., DSKNN). Meanwhile, for the problem of
being far away from the labeled node, the DSKNN module
provides a new message passing path that can increase the
probability that the labeled node can influence the OOC
nodes.

4.2.1. VIRTUAL NEIGHBOR GENERATION

To address the issue of nodes having a limited number
of neighbors, we can utilize generative methods to create
additional local neighbor information, thereby enriching
the nodes with more comprehensive neighbor information.
Thus, we employ the conditional variational auto-encoder
(Kingma & Welling, 2011; Sohn et al., 2015) to condition
on the node’s own features to learn the distribution of its
neighbor’s features. Following (Liu et al., 2022a), we use
Xv(v ∈ V) as a condition, and to learn the distribution
of Xu(u ∈ Nv). The latent variable z is generated from
the prior distribution p(z|Xv) and the output Xu is gen-
erated from the distribution p(Xu|Xv, z), which objective
function is,

LELBO = −KL(q(z|XuXv)||p(z|Xv))

+ Eq(z|Xu,Xv)(p(Xu|Xv, z)).
(9)

The proof for the objective function is in Appendix A.1. The
first term makes the q(·) distribution as close as possible
to the p(·) distribution. The second term is the reconstruc-
tion loss, which makes the generated samples as close as
possible to the true samples. The Conditional Variational
Auto-encoder is composed of multiple MLPs.

According to the above two goals, the actual loss function
is designed as:

L = −1

2
(1 + log σ2 − σ2 − µ2)

+MSE(Xu, q(Xu|p(z|Xu,Xv))),
(10)

where MSE is mean squared error, p(·) is a standard nor-
mal distribution, its µ is 0 and σ is 1, and there µ and σ
is belong to q(·) learned by MLPs. Thus, we can utilize

the node feature Xv as the condition and sample a latent
variable z ∼ N(0, 1) as input for the decoder. This process
allows us to obtain the node v’s virtual neighbor feature
vector Xv .

4.2.2. POTENTIAL REAL NEIGHBOR IDENTIFICATION

The generated virtual neighbors are based on the nodes’
neighbor distribution. However, it cannot generate neighbor
information beyond first-order neighbor distribution, such
as high-order neighbors and influential nodes. Additionally,
virtual neighbors cannot enhance the impact of message
passing on OOC nodes. Therefore, beyond virtual neigh-
bors, we posit the existence of potential non-directly con-
nected neighbors in the graph, which can provide the OOC
nodes with additional necessary information and augment
the message passing of OOC nodes. Specifically, previous
studies (Chapelle et al., 2002) show that (i) nodes in the
same subspace may be potential neighbors, and (ii) nodes
whose neighbors are in the same subspace may be potential
neighbors. Thus, we have the following objective function:

min
S

n∑
i,j=0

(−si,jX
T
i Xj − si,jX

T

i Xj + s2i,j). (11)

In the above equation, the first and second terms encourage
nodes with similar features and neighbor features to be
assigned greater weights, the second term avoids the trivial
solution. We can easily obtain the closed-form solution si,j
as follows:

si,j =
1

2
(XT

i Xj +X
T

i Xj) =
1

2
(Xi ⊕Xi)

T (Xj ⊕Xj),

(12)

where ⊕ is concatenate operation. Through Equation 12, we
can identify the potential neighbors of any node in the graph.
To ensure the sparsity of S, we only consider the k neigh-
bors with the largest weights as potential neighbors. Thus
we refer to S as the Dual Similarity K-Nearest Neighbor
(DSKNN) graph adjacency matrix, and denote the symmet-
ric normalized adjacency matrix of the DSKNN graph as Ŝ.
The construction of DSKNN connects nodes with similar
features and neighboring features, making the features of
connected nodes in the DSKNN graph highly similar. As
a result, GCN (i.e., feature smoothing) is more likely to
classify nodes and their neighbors into the same category
compared to the original graph. This result is consistent with
the results of LPA(i.e., label smoothness) on the DSKNN
graph. Hence, it can reduce the probability of OOC nodes
appearing and we verified it experimentally in Appendix B.3.
Next, we discuss how to use DSKNN-graph to overcome
the problem of OOC nodes being far away from labels.

Analysis of the nodes which distance from labels. As the
two-layer GCN makes predictions based on second-order
neighbors of nodes, the classification loss does not influence
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Figure 2. The flowchart of DaGCN. First, generating the virtual
neighbor for every node by neighbor distribution condition on
themselves. Then, through the original feature matrix and the vir-
tual feature matrix select the top k similar neighbors (i.e., DSKNN
graph). Next, we concatenate the virtual features with the origi-
nal features as input, the model conducts GCN feature smoothing
operation on the original adjacency matrix and DSKNN graph
adjacency matrix, and afterward, using the adaptive node-level
assembling to fuse the two views’ information including the output
logits layer. Finally, we apply the entropy reduction loss i.e., Lred,
to reduce the entropy increase caused by fusing the two output
logits.

the features of nodes beyond two orders away from the la-
beled nodes, leaving these nodes unsupervised. Although
these unsupervised nodes may not affect the training loss,
most nodes predicted during testing rely on them. If their
representations are learned without sufficient supervision, er-
roneous information may accumulate and propagate through
GCN’s feature smoothing operation, potentially leading to
poor predictions at the test stage. This is one of the reasons
why the labels obtained by feature smoothing and LPA on
OOC nodes cannot be aligned. Intuitively, reducing the
number of OOC nodes can be achieved by decreasing the
occurrence probability of nodes that are not influenced by
labels. We proved the occurrence probability of such nodes
in the following Theory.

Theorem 4.2. Given an undirected graph G(V,E) has n
nodes and e edges. Assuming there are q nodes in the
graph with labels selected uniformly at random. The occur-
rence probability of nodes that not affected by labels with
a two-layer GCN is equal to (1− q

n )(1−
q

n−1 )
∏q

i=1(1−
2m

n(n−1)−2i )
∏2q

i=q(1−
2(m−1)

n(n−1)−2i )

The proof is in the Appendix A.3. From the results of
Theory 4.2, it is found that the occurrence probability of
unaffected by labeled nodes is negatively correlated with

the number of labels and total edges. However, in the semi-
supervised case, the exceptionally low number of labeled
nodes, combined with the generally sparse graph structure
(i.e., low number of edges), leads to the widespread pres-
ence of these nodes. Since the number of labels is fixed, we
can consider solving the problem by increasing the number
of edges. Since the DSKNN graph can ensure better con-
sistency between feature smoothing and label smoothing,
while also allowing flexible addition or removal of edges,
we just need to make sure that the value of k in constructing
the DSKNN graph is much larger than the average degree
of the original graph.

4.2.3. OVERALL ARCHITECTURE

In our previous analysis, we designed dedicated compo-
nents for the characteristics of OOC nodes, which logically
should be abstracted OOC nodes out and handled separately.
However, in our experiments 5.2, we observed that these
components do not have a significant impact on UC nodes.
Therefore, for implementation simplicity, we applied these
components uniformly across all nodes. The flowchart is
shown in Figure 2.

Since the generated virtual neighbors do not actually exist
in the graph, integrating them into the node aggregation pro-
cess is complex. Therefore, we directly fuse their informa-
tion with the corresponding nodes using the concatenation
operation,

X = X⊕X. (13)

Then, we use GCN to aggregate potential real neighbors on
the DSKNN graph, which not only expands the neighbor
information of the nodes at the same time reduces the av-
erage distance from the OOC nodes to the labeled nodes.
Simultaneously, to preserve the topological information of
the original graph, we apply the GCN layer on the original
graph. Here, to reduce the spatial complexity of the model,
we employ the shared parameters GCN layer both on the
DSKNN-graph view and the original graph view.

H
(l)
ori = ÂH(l−1)W(l−1),H

(l)
ds = ŜH(l−1)W(l−1), (14)

where H
(l)
ori, H

(l)
ds are the representations after convolution

of the origin graph and DSKNN graph (i.e., two views),
respectively, and H(0) = X .

Naturally, the information from H
(l)
ori and H

(l)
ds needs to be

fused here. We analyzed common fusion methods, which
may be problematic (e.g., concatenate, sum, etc.). Specifi-
cally, each node’s dependency on the two views is different.
Notably, OOC nodes may exhibit a greater dependency on
the DSKNN views compared to UC nodes overall. More-
over, the fusion method should vary for each layer because
each layer focuses on different information, resulting in
nodes in different layers having different dependencies on
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the two views. To solve the above problems, we design the
adaptive node-level assembling as follows,

H(l) = diag(λ
(l)
0 )H

(l)
ori+diag(λ

(l)
1 )H

(l)
ds , λ

(l)
0 +λ

(l)
1 = 1,

(15)
where λ(l)

0 ,λ
(l)
1 ∈ Rn and diag(λ

(l)
0 ) represents a diagonal

matrix consisting of element of vector λ(l)
0 as its diagonal

elements at layer l. The corresponding weights λ
(l)
0 ,λ

(l)
1

denote the node-level weights for different views They are
computed by two fully connected layers (i.e., FC

(l)
0 , FC

(l)
1 )

with the input being the respective two views node embed-
dings as follows:

λ
(l)
0 = σ(FC

(l)
0 (H

(l)
ori)),λ

(l)
1 = σ(FC

(l)
1 (H

(l)
ds ))

[λ
(l)
0 ,λ

(l)
1 ] =

[λ
(l)
0 ,λ

(l)
1 ]

max(
∥∥∥[λ(l)

0 ,λ
(l)
1 ]
∥∥∥
2
, ϵ)

,
(16)

where σ is sigmoid activate function and ϵ is a small value
to avoid division by zero. In adaptive node-level assembling,
the contribution of the representation of two views to the
next layer’s representation is determined by the node em-
bedding generated by the corresponding view. That is to say,
the nodes themselves decide which view is more reliable
for downstream tasks. Note that we use adaptive node-level
assembling on each layer including the output layer.

4.2.4. OBJECTIVE FUNCTION

While assembling logits at the output layer is an intuitively
feasible approach, this approach is problematic in semi-
supervised learning. A fundamental assumption of semi-
supervised learning is that the decision boundary of the
classifier should not pass through a high-density region of
the marginal data distribution (Berthelot et al., 2019). One
way to accomplish this is to require the classifier to output
low-entropy predictions on unlabeled data (Grandvalet &
Bengio, 2004). When the output layer uses the logits assem-
bling, according to the concavity of entropy (see Lemma
4.3) the entropy will increase beyond a linear combination
of the two view output logits’ entropy values and it is easy to
know that the entropy after the assembly of logits is greater
than the entropy of at least one view output logits, we proof
it in Appendix A.4. This is obviously moving in the oppo-
site direction of the basic assumptions of semi-supervised
learning mentioned above.
Lemma 4.3. (concavity of entropy) Given two probability
distributions p1, p2, with probability λ ∈ [0, 1], the follow-
ing inequality holds.

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2) (17)

where H(p1) and H(p2) denote entropy of p1 and p2.

The proof please see the (Ash, 2012). In addition, the as-
sembly of the two view’s outputs can increase accuracy

but decrease confidence (i.e., high entropy corresponding
to low confidence), which, coupled with the general under-
confidence exhibited by GNNs (Wang et al., 2021), further
undermines the explainability and the credibility of GCNs’
prediction results.

To mitigate the issues mentioned above, we propose a simple
entropy reduction constraint as follows:

Lred =
1

c

c∑
i=1

(yi − y
1
τ
i

/ c∑
j

y
1
τ
j )

2 + I(||yori − yds| |2),

(18)
where τ ∈ [0, 1] is a hyper-parameter, functioning as a slack
variable. The lower the value τ is, the lesser the entropy

of y becomes, when the τ → 0, the y
1
τ
i

/∑c
j y

1
τ
j term

will approach a Dirac (i.e., one-hot) distribution and in this
time the entropy is minimized, and yori, yds, y denote
the outputs of origin graph view, DSKNN-graph view, and
whole model(i.e., y = λ0yori + λ1yds), respectively. The
second term acts as a counterbalance to the entropy increase
by augmenting the similarity between the outputs produced
from the two distinct views, where the I(·) is the selection
function means that we can choose I(x) = x or I(x) = 0 to
control whether to use the second term on different datasets.

Thus, the total objective function of DaGCN is as follows:

L = Lsup + βLred, (19)

where Lsup is the cross-entropy loss function and β is a
hyper-parameter that controls the balance between the two
losses. We analyze the model complexity and real running
time in Appendix C.1.

5. Empirically Studies
5.1. Experimental Setting

Datasets. We evaluate the effectiveness of the proposed
method on seven datasets based on citation, co-authorship,
and co-purchase graphs for semi-supervised node classifi-
cation tasks; including Cora, Citeseer, Pubmed (Sen et al.,
2008), Coauthor CS, Coauthor Physics, Amazon Computers
and Amazon Photo (Shchur et al., 2018). The statistics and
details of these datasets are in Appendix B.1.

Baseline and Setting. The comparison methods include
two traditional GNN methods(i.e., GCN (Kipf & Welling,
2017), GAT (Velickovic et al., 2018)), four state-of-the-art
GCN promotion methods (i.e., APPNP (Gasteiger et al.,
2018), GCN-LPA (Wang & Leskovec, 2021), DAGNN (Liu
et al., 2020), AERO-GNN (Lee et al., 2023), wGNN (Ji
et al., 2023)). Since wGNN is a plug-and-play approach,
we compare its performance on GCN. The details of these
baselines are in the Appendix B.4. For all baselines, we use
the best parameter settings for the corresponding paper.
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Table 1. Overall classification accuracy (%). The best results are in blod.

Datasets Cora Citeseer Pubmed Computers Photo Physics CS

GCN 81.5±0.82 70.9±0.71 79.0±0.52 82.6±2.43 91.2±1.21 92.8±1.00 91.1±0.52

GAT 83.0±0.41 71.1±0.51 79.1±0.44 78.0±19.0 85.7±20.3 92.5±0.94 90.5±0.61

APPNP 83.3±0.51 72.5±0.62 79.9±0.32 82.2±2.13 90.8±1.32 93.7±0.69 92.5±0.32

GCN-LPA 83.1±0.73 72.6±0.80 78.6±1.32 83.5±1.41 91.1±0.83 93.6±1.06 91.8±0.42

DAGNN 84.4±0.57 73.3±0.65 80.5±0.53 83.5±1.28 92.0±1.22 94.0±0.62 91.5±0.33

wGCN 83.1 ± 0.31 73.9 ±0.46 80.8±0.25 83.6±0.86 92.4±0.18 92.8±0.23 89.3±0.14

AERO-GNN 83.9 ± 0.51 73.2 ±0.68 80.6±0.55 83.3 ±0.72 91.1±0.83 93.3±0.65 92.0±0.71

Ours 84.8± 0.53 75.3 ± 0.41 81.7±0.88 84.0±1.25 92.9±0.56 94.3±0.25 93.4±0.18

Table 2. The UC nodes and OOC nodes classification accuracy (%) in test set. The best results of OOC nodes are in bold.
Datasets Cora Citeseer Pubmed Computers Photo Physics CS

UC nodes OOC nodes UC nodes OOC nodes UC nodes OOC nodes UC nodes OOC nodes UC nodes OOC nodes UC nodes OOC nodes UC nodes OOC nodes

GCN 87.01 ± 0.6 73.95 ± 1.1 77.75±0.5 62.66±0.8 83.66± 0.3 67.05±1.0 87.41±0.5 70.13±0.8 96.58±0.7 78.02±1.4 97.01±0.2 86.45±0.3 95.65±0.4 84.53± 0.6

APPNP 87.47± 0.5 76.21±1.3 78.21±0.6 67.59±0.9 84.36±0.5 67.96±1.1 87.23 ± 0.9 69.84± 2.6 95.98± 0.8 78.13±1.5 97.13± 0.5 89.25± 0.9 95.31± 0.2 87.01 ± 0.5

DAGNN 87.80 ±0.5 78.52±1.5 78.33±0.7 68.27±0.93 84.48±0.8 68.32±0.7 88.21±0.7 71.97± 1.5 95.36±0.8 80.64±1.2 97.16±0.5 89.98±0.7 94.75±0.2 87.53±0.7

AERO-GNN 87.74±0.3 77.38±0.8 78.14±0.8 68.78±1.0 85.38±0.3 69.79±1.1 88.56±0.8 71.72±1.3 96.34± 0.6 77.65± 1.0 97.03±0.4 88.65±0.9 95.89±0.6 86.01±1.1

Ours 87.70±0.5 79.26± 0.7 78.39±0.5 72.04±1.5 85.54± 0.3 73.16 ± 1.0 88.12±0.8 73.39± 1.5 95.57± 0.5 82.75±0.8 97.12±0.2 91.15±0.3 95.53±0.1 89.51±0.3

We conduct all experiments on a server with Nvidia RTX
4090 (24GB memory each) and conduct each experiment
on ten random seeds and report the average results. In the
proposed method, we optimize all parameters by Adam
optimization (Kingma & Ba, 2015) with the learning rate
0.01 except for Pubmed is 0.2, and set the weight decay
as 0.0005 for all datasets. Moreover, we set the number of
model layers in the range of {2,3,4}, set the dropout in the
range of {0.5, 0.6}, and set the size of the hidden unit in
the range of {4, 8, 16, 62, 64}. We set τ in from 0 to 1 at
intervals of 0.1 and β in from 0 to 1.5 at intervals of 0.1.
The best hyperparameters for each dataset can be found in
Appendix B.5. To evaluate the effectiveness of the proposed
method, We follow the evaluation protocol and split of (Kipf
& Welling, 2017) on the Citation Network dataset (i.e., 20
per class for train, 500 nodes for valid, 1000 nodes for test)
and follow (Shchur et al., 2018; Liu et al., 2020) on the
co-authorship and co-purchase datasets(i.e., 20 per class for
train, 30 per class for valid, remain nodes for test).

5.2. Overall Results

We first evaluate the effectiveness of our method on the node
classification task and report the classification accuracy of
all methods on all datasets in Table 1. Obviously, we can ob-
serve that the proposed method consistently achieves large-
margin outperformance over all baselines across all datasets.
Specifically, compared to GCN, the proposed method out-
performs GCN by a margin of 3.3%, 4.4%, 2.7%, 1.4%,
1.6%, 1.5%, 2.3% on Cora, Citeseer, Pubmed, Computers,
Photo, Physics, and CS datasets, respectively. This is be-
cause our proposed method improves the correctness of
OOC nodes’ representation relative to GCN. When com-
pared to the very recent work AERO-GNN, the proposed

model achieves 0.9%, 2.1%, 1.1%, 0.7%, 1.8%, 1.0% and
1.4% improvements.

To better examine the effectiveness of our proposed on OOC
nodes, we further evaluate the model’s improvement over
GCN on these two types of nodes (i.e., OOC nodes and UC
nodes) separately in the test set. The results are in Table 2.
Firstly, We can observe that almost all methods (including
ours) have similar effectiveness on UC nodes, this is because
the UC nodes exhibit aligned neighbor label distributions
and feature distributions, making them well-suited for GCN.
Consequently, GCN has been able to learn the representation
of UC nodes very well. Second, we find that the gap in
performance between models is mainly centered on the
OOC nodes. This suggests that previous work is implicitly
improving the effectiveness of OOC nodes, but since they do
not capture the key issues of OOC nodes, the improvement
is not large relative to what we proposed. In particular, the
proposed DaGCN on average improves by 5.9%, compared
to the GCN on OOC nodes. Therefore, the study of OOC
nodes is particularly important in graph semi-supervised
learning.

5.3. Adversarial Robustness

Recent researches point out that graph neural networks are
vulnerable to adversarial attacks (Jin et al., 2020; 2021;
Li et al., 2020a; Huang et al., 2023a). Specifically, mak-
ing slight changes to the graph structure that go unnoticed
can significantly decrease the performance of graph neural
networks. This susceptibility has sparked significant con-
cerns regarding the application of graph neural networks in
safety-critical scenarios. Adversarial attacks on graphs are
primarily attacks on graph structures, inspired by (Jin et al.,
2021) shows that edges with high similarity will be removed
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Figure 3. Metattack on Cora, Citeseer and Pubmed.

and edges with low similarity will be connected. Recall that
DaGCN has the DSKNN component which selects the k
neighbors with the highest similarity to connect (i.e., con-
necting nodes with high similarity and not connecting nodes
with low similarity), which can somewhat better recover the
clean graph information. Therefore, in this subsection, we
are interested in examining its potential benefit on adver-
sarial robustness. We adopt the state-of-the-art nontargeted
attack method metattack (Sun et al., 2020a) to perturbed
graphs. To make a better comparison, we include GCN,
GAT, and the state-of-the-art defense models, GCN-Jaccard
(Wu et al., 2019b), GCN-SVD (Peng et al., 2022), and
RGCN (Zhu et al., 2019) implemented by DeepRobust (Li
et al., 2021) as baselines and use the default hyper-parameter
settings in the authors’ implementations. As we can observe
from Figure 3, our proposed method consistently improves
the performance of GCN under different perturbation rates
of adversarial attack on all three datasets and also achieves
the best performance in most cases compared to the defense
of GCN. Specifically, DaGCN improves GCN by a larger
margin when the perturbation rate is higher. For example,
it achieves over 20% improvement over GCN under the
25% perturbation rate on the Cora dataset. These observa-
tions suggest the potential robustness of DaGCN against
adversarial attacks.

5.4. Analysis Generalization Ability

Section 4.1 mentioned that the presence of OOC nodes af-
fects the generalization ability of GCNs. Since our method
solves some of the problems with the OOC nodes, our
method is promising to improve the generalization ability
of GCNs. To achieve this, we analyze the model’s loss on
both training and validation sets on Cora and Citeseer. A
small gap between the two losses (i.e., , generalization gap
(Keskar et al., 2016))indicates a model with good general-
ization. Figure 4 reports the results for DaGCN and GCN.
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Figure 4. Generalization gap analysis.

We can observe that the generalization gap of DaGCN is
significantly smaller for GCN, and even on the Cora dataset,
the DaGCN generalization gap is almost 0. This observation
demonstrates our proposed improve the GCN’s generaliza-
tion ability. More experiments are in Appendix C.

6. Conclusion
In this paper, we revisit the GCN’s assumption and its oper-
ation and find that the GCN’s feature smoothing operation
can not completely confirm the label smoothness assump-
tion, thus we design the corresponding algorithm to find the
nodes that result in this problem (i.e., OOC nodes), then
we proposed the DaGCN around the OOC nodes’ proper-
ties. Extensive experiments demonstrate that our proposed
method, specifically designed for OOC nodes, achieves sig-
nificant performance in various aspects, including effective-
ness, adversarial robustness, and generalizability. Moreover,
we arrive at a compelling and insightful conclusion: the
actual improvements of current advanced GCNs are pre-
dominantly manifested in OOC nodes. Meanwhile, vanilla
GCN has been able to achieve high-quality representation
learning on UC nodes.
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A. Theoretical Proof
A.1. Proof for Loss of Conditional Variational Auto-Encoder

Proof. The specific conditional variational auto-encoder loss function is derived as follows,

log p (Xu | Xv) =

∫
q (z | Xu,Xv) log p (Xv | Xv) dz

=

∫
q (z | Xu,Xv) log

p (Xu,Xv)

p (Xv)
dz

=

∫
q (z | Xu,Xv) log

p (Xu,Xv) p (Xv,Xv, z)

p (Xv) p (Xv,Xv, z)
dz

=

∫
q (z | Xv,Xv) log

p (Xu,Xv, z)

p (Xv)

1
p(Xu,Xv,z)
p(Xu,Xv)

dz

=

∫
q (z | Xu,Xv) log

p (Xu, z | Xv)

p (z | Xu,Xv)
dz

=

∫
q (z | Xu,Xv) log

p (Xu, z | Xv)

p (z | Xu,Xv)

q (z | Xu,Xv)

q (z | Xu,Xv)
dz

=

∫
q (z | Xu,Xv)

(
log

p (Xu, z | Xv)

q (z | Xu,Xv)
+ log

q (z | Xu,Xv)

p (z | Xu,Xv)

)
dz

=

∫
q (z | Xu,Xv) log

p (Xu, z | Xv)

q (z | Xu,Xv)
dz+KL (q (z | Xu,Xv) ∥p (z | Xu,Xv))

≥
∫

q (z | Xu,Xv) log
p (Xu, z | Xv)

q (z | Xu,Xv)
dz

(20)

LELBO =

∫
q (z | Xu,Xv) log

p (Xu, z | Xv)

q (z | Xu,Xv)
dz

=

∫
q (z | Xu,Xv) log

p (Xu,Xv, z)

q (z | Xu,Xv) p (Xv)
dz

=

∫
q (z | Xu,Xv) log

p (Xu | Xv, z) p (Xv, z)

q (z | Xu,Xv) p (Xv)
dz

=

∫
q (z | Xu,Xv) log

p (Xu | Xv, z) p (z | Xv)

q (z | Xu,Xv)
dz

=

∫
q (z | Xu,Xv) log

p (z | Xv)

q (z | Xu,Xv)
dz+

∫
q (z | Xu,Xv) log p (Xu | Xv, z) dz

= −KL (q (z | Xu,Xv) ||p (z | Xv)) + Eq(z|Xu,Xv)(p (Xu | Xv, z))

(21)

A.2. Proof for Theorem 4.1

Theorem A.1. For nodes with unknown labels in the graph, the upper bound of the GCN’s generalization ability reaches
optimal if the true labels of these nodes are equal to the labels generated by the LPA.

Proof. To facilitate a clear description, we first consider the binary classification task. We prove the theorem by analyzing the
exact lower bound of the complexity measure of the graph convolutional layer. Based on the Consistency of Representations
and Fisher discriminant analysis, which all use the ratio of the inter-class variance to the intra-class variance as an indicator,
we rewrite the Consistency of Representations for the convenience of theoretical analysis:

C =
S0 + S1

M0,1
. (22)
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We define P0 as the probability that a node’s neighbor belongs to the ’0-th’ class, and I0 as the probability that the node
itself belongs to the ’0-th’ class. Thus, we can calculate the cluster centroid after GCN smoothed features:

µO0
= E[Oi

0] = E[W
∑
j∈Ni

1

di
Xj ]

= W(I0P0µX0 + I0(1− P0)µX1),

(23)

where Xj is the ’j-th’ node feature and µXi is the cluster centroid of the node features of class i. Likewise, we have:

µO1
= W(I1P1µX1

+ I1(1− P1)µX0
). (24)

Then, the M0,1 can be computed by:

M0,1 = ∥µOa
− µOb

∥
= ∥W(I0P0µX0

+ I0(1− P0)µX1
− (I1P1µX1

+ I1(1− P1)µX0
))∥

= ∥W(I0P0µX0
+ I0µX1

− I0P0µX1
− I1P1µX1

− I1µX0
+ I1P1µX0

)∥
= (I0P0 + I1P1) ∥W(µX0

− µX1
)∥+ ∥I0µX1

− I1µX0
∥

≤ (I0P0 + I1P1) ∥W(µX0
− µX1

)∥+ ∥µX1
∥+ ∥µX0

∥ .

(25)

Then S2
0 is calculated by:

S2
0 = E

[∥∥∥O(i)
0 − µO0

∥∥∥2] = E
[
< O

(i)
0 − µO0

, O
(i)
0 − µO0

>
]

= E[(I0P0)(I0P0(X0 − µX0)
TWTW(X0 − µX0))] + E[I0(1− P0)I0(1− P0)(X1 − µX1)

TWTW(X1 − µX1))]

= I20P
2
0E[∥W(X0 − µX0

)∥] + I20 (1− P0)
2E[∥W(X1 − µX1

)∥].
(26)

Similarly, we have:

S2
1 = E

[∥∥∥O(i)
1 − µO1

∥∥∥2] = E
[
< O

(i)
1 − µO1 , O

(i)
1 − µO1 >

]
= E[(I1P1)(I1P1(X1 − µX1

)TWTW(X1 − µX1
))] + E[I1(1− P1)I1(1− P1)(X0 − µX0

)TWTW(X0 − µX0
))]

= I21P
2
1E[∥W(X1 − µX1

)∥] + I21 (1− P1)
2E[∥W(X0 − µX0

)∥],
(27)

where < ·, · > is inner production. For simplicity, let σ2
0 = E[∥W(X0 − µX0)∥] and σ2

1 = E[∥W(X1 − µX1)∥], then the
above equation can then be simplified to:

S2
0 = (I0P0)

2σ2
0 + (I0(1− P0))

2σ2
1 ≥ I20

σ2
0σ

2
1

σ2
0 + σ2

1

. (28)

Similarly, we have:

S2
1 = (I1P1)

2σ2
1 + (I1(1− P1))

2σ2
1 ≥ I21

σ2
0σ

2
1

σ2
0 + σ2

1

. (29)

Then the complexity measure can be represented as:

C =

√
S2
0 + S2

1 + 2S0 · S1

M0,1
≥ 2σ0σ1(I0 + I1)

2√
σ2
0 + σ2

1 · ((I0P0 + I1P1) ∥W(µX0
− µX1

)∥+ ∥µX1
∥+ ∥µX0

∥)
. (30)
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Thus, we obtain a lower bound of complexity measure. Also this is the upper bound of the generalization ability. Notice
that σ0 and σ1 could not be zero, otherwise the classification problem is meaningless. We observe the above equation for
nodes with unknown labels and analysis the relationship between distribution of label I0, I1 and lower bound of complexity
measure, we find that the probability of their own label (i.e., I0 or I1) and the probability of their neighbors’ labels (i.e., P0

or P1) affect the upper bound on their generalization ability. Since I0 + I1 = 1, we analyze term (I0P0 + I1P1),

(I0P0 + I1P1) =
1

n

n∑
i

I0,iP0,i + I1,iP1,i (31)

where I0,i ∈ {0, 1} is the binary probability that the ’i-th’ node label belongs to class 0 where I1,i = 1− I0,i and P0,i is
the probability that the ’i-th’ node whose neighbor belongs to class 0. In order to minimize the lower bound of complexity
measure, i.e., to maximize the upper bound of generalization ability, it is necessary to maximize (I0P0 + I1P1) here.
Obviously, the maximum (I0P0 + I1P1) is obtained at I0,i = argmax(P1,iP0,i).

Let’s look at Label Propagation Algorithm(LPA). For nodes with unknown labels,

ŷi =
1

di

∑
j∈Ni

yj . (32)

Then the probability that the LPA predicts that the ’i-th’ node belongs to class 0 can be obtained:

Î0,i = argmax(
1

di

∑
j∈Ni

yi == 1,
1

di

∑
j∈Ni

yi == 0) = argmax(P1,iP0,i). (33)

Similarly, the probability of predicting the ’i-th’ node to belong to class 1 is:

Î1,i = argmax(
1

di

∑
j∈Ni

yi == 0,
1

di

∑
j∈Ni

yi == 1) = argmax(P0,iP1,i). (34)

Thus for binary classification, the upper bound on the generalization ability is maximized when the labels of the unknown
label set are distributed as LPA-generated labels.

Next, we consider the multi-classification case, to facilitate the calculation, the complexity measure can be write as:

C =
1

k

k−1∑
i=0

max
i ̸=j

(Si + Sj)

Mi,j
=

1

k

k−1∑
i=0

max
i ̸=j

Ci,j (35)

where i, j ∈ 0, 1, · · · , c and i ̸= j. To simplify the equation, we can rewrite Ci,j in equation 30 as:

Ci,j ≥
Φ1,ij

Φ2,ij · ((IiPi + IjPj)Φ3,ij +Φ4,ij)
, (36)

where Φ1,ij = 2σiσj , Φ2,ij =
√
σ2
i + σ2

j , Φ3,ij =
∥∥W(µXi

− µXj
)
∥∥ and Φ4,ij = ∥µXi

∥ +
∥∥µXj

∥∥. The complexity
measure for multi-classification is:

C ≥ 1

k

k−1∑
i=0

max
i̸=j

Ci,j =
1

k

k−1∑
i=0

max
i ̸=j

Φ1,ij

Φ2,ij · ((IiPi + IjPj)Φ3,ij +Φ4,ij)

=
1

k

k−1∑
i=0

max
i̸=j

Φ1,ij

Φ2,ij · (( 1n
∑n

r Ii,rPi,r + Ij,rPj,r)Φ3,ij +Φ4,ij)
.

=
1

k

k−1∑
i=0

max
i̸=j

Φ1,ij

Φ2,ij

1
1
n

∑n
r ((Ii,rPi,r + Ij,rPj,r)Φ3,ij + nΦ4,ij)

.

(37)
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where in multi-classification case, Ii,r ∈ {0, 1} is the binary probability and if Ii,r = 1 then any j on node r have Ij,r = 0,
because a node can only belong to one class. Then, we analyze under what circumstances the label of node v should belong
to l (i.e., Il,v = 1, Ii,v = 0, s.t., i ∈ [0, 1, · · · , c] − [l]) can minimizing Complexity measure’s lower bound. The above
equation can be:

C ≥ n

k

k−1∑
i=0

max
i ̸=j

Φ1,ij

Φ2,ij

1

(Ii,vPi,v + Ij,vPj,v)Φ3,ij +
∑n

r ̸=v((Ii,rPi,r + Ij,rPj,r)Φ3,ij + nΦ4,ij)

=
n

k
(

i=l|j=l∑
max
i̸=j

Φ1,lj

Φ2,lj

1

(Il,vPl,v)Φ3,lj +
∑n

r ̸=v((Il,rPl,r + Ij,rPj,r)Φ3,lj + nΦ4,lj)

+

i ̸=l&j ̸=l∑
max
i ̸=j

Φ1,ij

Φ2,ij

1

0 +
∑n

r ̸=v((Ii,rPi,r + Ij,rPj,r)Φ3,ij + nΦ4,ij)
).

(38)

Since (Il,vPl,v)Φ3,lj ≥ 0, obviously, we have:

∑i=l|j=l
maxi̸=j

1
(Il,vPl,v)Φ3,lj+

∑n
r ̸=v((Il,rPl,r+Ij,rPj,r)Φ3,lj+nΦ4,lj)

≤
∑i ̸=l&j ̸=l

maxi ̸=j
Φ1,ij

Φ2,ij

1
0+

∑n
r ̸=v((Ii,rPi,r+Ij,rPj,r)Φ3,ij+nΦ4,ij)

.

(39)
For node v is only relevant to the first term and we can easy to know that when Il,vPl,v is maximized, the first term is
minimum. Thus, for any node v, the condition for minimizing Complexity Measure when its label is l is satisfied if and only
if the probability of its neighbor labels are belong to l is maximized.

This conclusion is the same as in the case of binary classification: the Complexity Measure is minimized when
the node’s own category and the maximum probability category of its neighbors are the same. i.e., Ii,v =
int(argmax(P0,v, P1,v, · · · , Pc,v) == i). This is consistent with the multi-class LPA.

Therefore, for nodes with unknown label, the predictions of LPA happen to coincide with the conditions that make the upper
bound on the generalization ability of GCN reaches optimal, so the proof is complete.

A.3. Proof for Theorem 4.2

Theorem A.2. Given a undirected graph G(V,E) has n nodes and e edges. Assuming there are q nodes in the graph with
labels selected uniformly at random. The occurrence probability of nodes that not affected by labels with a two-layer GCN
is equal to (1− q

n )(1−
q

n−1 )
∏q

i=1(1−
2m

n(n−1)−2i )
∏2q

i=q(1−
2(m−1)

n(n−1)−2i )

Proof. We follow the proof idea of (Fatemi et al., 2021). For simplicity, we refer to nodes that are not influenced by labels
as ’starved nodes’. To compute the probability of a node being a starved node, we first compute the probability of the node v
being unlabeled and not connected to any labeled nodes then compute the probability of it’s neighbor u not being connected
to any labeled nodes.

With n nodes and q labels, the probability of a node being labeled is q
n , then we have Pr(lv ∈ lU ) = (1− q

n ).

In the undirected graph G, there are 1
2n(n− 1) pairs of nodes that can potentially have an edge between them. Therefore,

the probability that node v is not connected to one of the labeled node is (1− m
1
2n(n−1)−1

) = (1− 2m
n(n−1)−2 ). If the node v

not being connected to one of the labeled nodes, then total number of edges still remains m and the number of potential
connected pair nodes number is 1

2n(n− 1)− 1, so we can compute probability that node v being disconnected to the second
labeled node is (1− m

1
2n(n−1)−2

) = (1− 2m
n(n−1)−4 ). With the similar reasoning, the probability of node v being disconnected

to the i− st labeled node given that it is disconnected from the first i− 1 labeled nodes is (1− 2m
n(n−1)−2i ). Therefore, the

probability of the node v being unlabeled and not connected to any labeled nodes is equal to (1− q
n )
∏q

i=1(1−
2m

n(n−1)−2i ).

For the node v, given that we know node v is unlabeled, the probability of its neighbor u being unlabeled is Pr(lu ∈ lU |lv ∈
lU ) = (1− q

n−1 ). Therefore, Pr(lv ∈ lU , lu ∈ lU ) = (1− q
n )(1−

q
n−1 ).

Follow the similar reasoning with node v, the probability that node u being disconnected to first one of the labeled node
given that node v is disconnected from all labeled nodes is (1− m

1
2n(n−1)−q−1

) = (1− 2(m−1)
n(n−1)−2(q+1) ). This is because
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there are m− 1 remaining edges, excluding the one connecting v and u, and 1
2n(n− 1)− q − 1 pairs of nodes that can

potentially be connected. Similarly, we can also compute the probability of node u being disconnected to the i− st labeled
node given that it is disconnected from the first i − 1 labeled nodes and that v is disconnected from all labeled nodes is
(1 − 2m

n(n−1)−2(q+i) ). Thus, we can obtain the probability of u being disconnected to any labeled nodes given v being

unlabeled and not connected to any labeled nodes is
∏2q

i=q(1−
2(m−1)

n(n−1)−2i ).

Finally, we can compute the joint probability of them to get the probability of a node being a starved node, and it is equal to
(1− q

n )(1−
q

n−1 )
∏q

i=1(1−
2m

n(n−1)−2i )
∏2q

i=q(1−
2(m−1)

n(n−1)−2i ).

A.4. Proof for The Entropy After the Assembly of Logits Is Greater Than the Entropy of at Least One Perspective
Output Logit

Proof. We already know that H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2) We utilize the counterfactual. Suppose
that both H(p1) and H(p2) are greater than H(λp1 + (1− λ)p2), we have,

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2)

= λH(p1) +H(p2)− λH(p2)

= (H(p1)−H(p2))λ+H(p2)

(40)

It is very easy to know that (H(p1) − H(p2))λ + H(p2) is monotone with respect to λ, so its minimum value should
be at both ends, so you can find its minimum value is min(H(p1), H(p2)) when λ = 0 and λ = 1. Conclusions can be
drawn H(λp1 + (1 − λ)p2) ≥ min(H(p1), H(p2)), which is a contradiction of the hypothesis. Therefore the proof is
complete.

B. Experimental Details

Table 3. The statistics of the datasets
Datasets Nodes Edges Train/Valid/Test Nodes Features Classes

Cora 2,708 5,429 140/500/1000 1,433 7
Citeseer 3,327 4,732 120/500/1,000 3,703 6
Pubmed 19,717 44,338 60/500/1,000 500 3

Amazon Photo 7,487 119,043 160/240/7,084 745 8
Amazon Computers 13,381 245,778 200/300/12,881 767 10

Coauthor CS 18,333 81,894 300/450/17,583 6,805 15
Coauthor Physics 34,493 247,962 360/540/33,593 100 18

B.1. Dataset

We use seven benchmark datasets widely used in node classification tasks including three standard citation networks (Kipf
& Welling, 2017), namely, Cora, Citeseer, and Pubmed, co-authorship networks (Shchur et al., 2018) namely, Coauthor CS,
Coauthor Physics, and co-purchase networks (Shchur et al., 2018) namely, Amazon Computers and Amazon Photo. Table 3
summarizes the statistics of those benchmark datasets.

1. Citation networks include Cora, Citeseer and Pubmed. They are composed of papers as nodes and their relationships
such as citation relationships, common authoring. Node feature is a one-hot vector that indicates whether a word is
present in that paper. Words with frequency less than 10 are removed.

2. Coauthor CS and Coauthor Physics are co-authorship graphs based on the Microsoft Academic Graph from the KDD
Cup 2016 challenge 3. Here, nodes are authors, that are connected by an edge if they co-authored a paper; node features
represent paper keywords for each author’s papers, and class labels indicate the most active fields of study for each
author.
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Following the setting of prior work (Kipf & Welling, 2017), we apply the standard fixed training/validation/testing split on
Cora, Citeseer , and Pubmed. For the Coauthor CS and Coauthor Physics datasets, we follow (Shchur et al., 2018; Liu et al.,
2020) utilize 20 labeled nodes per class for training, 30 labeled nodes for validation, and the rest for the testing set.

B.2. Percentage of OOC Nodes

We statistics the number and percentage of OOC nodes on all datasets in Table 5, we can observe that the percentage of
OOC nodes is significant.

Table 4. The number and percentage of OOC nodes of whole datasets.

Datasets Cora Citeseer Pubmed Computers Photo Physics CS

Numberof UC nodes 1552 1491 13915 10250 6006 23301 11080
Number of OOC nodes 1016 1716 5742 3302 1484 11092 6953

Percentage of OOC nodes 39.60% 53.50% 29.20% 25.00% 20.20% 32.50% 38.60%

B.3. Number of UC nodes on the DSKNN Graph

We list the number of UC nodes in the test set on the DSKNN graph in the following table, where the ”Combined Graph” in
the table is the union of UC nodes from the original graph and the DSKNN graph.

Table 5. The number and percentage of OOC nodes of whole datasets.

Number of UC nodes Cora Citeseer Pubmed

Original Graph 633 485 708
DSKNN Graph 660 711 720
Combine Graph 833 840 879
Improve Ratio 31.6% 73.2% 24.2%

Based on the above information, we have the following observations:

First, on all three datasets, the number of UC nodes in the DSKNN graph is greater than that in the original graph, especially
on the Citeseer dataset. This demonstrates that the DSKNN graph can increase the occurrence of UC nodes.

Second, the overlap of the UC nodes between the original graph and the DSKNN graph is low. This indicates that integration
information from both the original graph and the DSKNN graph can increase the likelihood of UC node occurrences.

Therefore, the integration in the DSKNN graph can significantly reduce the impact of OOC nodes.

B.4. Baseline

The comparison methods include two traditional GNN methods and four state-of-the-art GCN promotion methods:

• GCN (Kipf & Welling, 2017) is a semi-supervised graph convolutional network model which learns node representations
by aggregating information from neighbors.

• GAT (Velickovic et al., 2018) is a graph neural network model using the attention mechanism as the weights to smooth
node features.

• APPNP (Gasteiger et al., 2018) decouples prediction and propagation with performing personalized propagation of
neural predictions.

• DAGNN (Liu et al., 2020) adaptively incorporate information from large receptive felds.

• wGCN (Ji et al., 2023) select the large label non-uniformity nodes join into the train set and random drop the small
label non-uniformity nodes’s edge. Then use GCN as the backbone.
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• AERO-GNN (Lee et al., 2023) implements a deep graph attention network using symmetric normalized attention
weights and node-level HOP attention.

B.5. Best Hyper-Parameters

Table 6 reports the detailed hyperparameters of DaGCN. Note that we only performed simple tuning. Regarding the selection
of the k value, we found it to be insensitive, and the average degree of all datasets is less than 20. So it was set to 20 for all
datasets.

Table 6. Hyperparameters of DaGCN for reproducibility.

Hyperparameter Cora Citeseer Pubmed Photo Computers CS Physics

λ 1.3 1.1 0.1 1.5 1.3 1.3 1.3
τ 0.5 0.5 0.6 0.1 0.4 0.5 0.5

Learning rate 0.01 0.01 0.02 0.01 0.01 0.01 0.01
L2 weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

Dropout rate 0.6 0.6 0.5 0.6 0.5 0.6 0.6
Hidden layer size 8 8 4 64 64 128 128

k 20 20 20 20 20 20 20
I(·) True True False False False False False

C. Additional Experiments
C.1. Model Complexity and Running Time
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Figure 5. Accuracy v.s. running time.

The complexity of feature smoothing on the origin graph is O(|E|fh), where |E| is the number of edges, h is the number
of hidden units, and smoothing on the DSKNN graph is O(k|V |fh) where |V | is the number of nodes. The adaptive
node-level assembling module consists of a fully connected layer and output dimension is 1, thus which complexity is
O(|V |f). Since we set k|V | > |E|, so running the DaGCN layer takes O(k|V |fh) computational time, which is slightly
above GCN O(|E|fh′). Actually, we use a very small number of hidden units, the actually running time and accuracy are
shown in Figure 5. We can observe that, our proposal obtains an excellent balance between accuracy and running time.

C.2. Analysis Adaptive Node-level Assembling

To study how the weights are learned by adaptive node-level assembling mechanism. We visualize the learned value on
DSKNN sides in Fig 6.
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Figure 6. Visualization of average node-level adaptive weights of UC nodes and OOC nodes on each layer on Cora and Pubmed.

First, the learned values vary in a range, indicating that the designed aggregation scheme can adapt the information differently
for individual nodes. In particular, the OOC nodes learn that the average weights of the weights for the DSKNN side are
heavier than those of the UC nodes, especially in the second layer. This indicates that OOC nodes benefit more from the
DSKNN side relative to UC nodes.

Second, the weights learned by each layer are differentiated, and we can observe that the weights of the second layer tend to
be larger, which suggests that our adaptive node-level assembling mechanism can adaptively learn different information
from each layer.

C.3. Ablation Study

To get a better understanding of how different components affect the model performance, we conduct ablation studies on
citation networks. Specifically, we build the following ablations:

• Without Virtual Neighbor Generation(VNG): The input only utilizes the original features, which do not concatenate
the X.

• Without Real Neighbor Generation (RNG): We replace the DSKNN-graph with the origin graph.

• Without Entropy Reduction Loss(ERL): We only use the cross entropy loss, i.e., β = 0.

In Table 7, we have two observations. First, all DaGCN variants with some components removed witness clear performance
drops when compared to the full model, suggesting that each of the designed components contributes to the success of
DaGCN. Second, DaGCN without any component still outperforms GCN, demonstrating that even incomplete DaGCN can
perform well in semi-supervised learning.

Table 7. Ablation study results (%).

Ablation Cora Citeseer Pubmed

DaGCN 84.8±0.53 75.3±0.41 81.7±0.88

- w/o VNG 84.2±0.96 74.5±0.66 81.2±1.00

- w/o RNG 83.6±0.46 73.6±0.37 80.7±0.62

- w/o ERL 84.0±0.56 73.8±0.72 81.3±0.75

GCN 81.5±0.82 70.9±0.71 79.0±0.52
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C.4. Analysis Parameter Sensitivity
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Figure 7. The classification performance of the proposed method at different parameter settings (i.e., τ , β) on the Cora dataset.

Analyze τ , β: In the proposed method, we employ the non-negative parameters(i.e., τ , β) to achieve the temperature control
of entropy reduction and a trade-off between each term of the entropy reduction loss and cross-entropy loss. To investigate
the impact of τ and β with different settings, we conduct the node classification on the Cora dataset by varying the value of
parameters in the range of [0.0, 1.0] for τ and [0.0, 1.5] for β, then reporting the results in Figure 7.

From Figure 7, we have the following observations: First, the temperature parameter τ is significantly important, since when
τ is in the interval [0.4, 0.8], the model performance maintains an excellent level. This is because when the τ is closer to 0,
the distribution will approach a Dirac (i.e., one-hot) distribution, then the logits confidence of some false prediction are
also increased too much, thus making the model’s decision boundaries away from the misclassified samples, in extreme
cases causing the model to have an undesired situation where all samples are on the same side of the decision boundary
(i.e., τ = 0 and β is large). Second, if we ensure that τ is in a suitable range, the selection of β is not sensitive.

Analyze k: As shown in Figure 8. Our method achieves the best performance with k = 20. It is greater than the average
degree of these three datasets.
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Figure 8. The classification performance of the proposed method under various k on the Cora, Citeseer, and Pubmed datasets.
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Table 8. Test accuracy (%) on ogbn-arxiv.

Model Ogbn-arxiv

GCN 71.7±0.29

GraphSAGE 71.5±0.27

DAGNN 72.1±0.19

DaGCN 72.4±0.21

C.5. Validation on Large-scale Graph

We further validate the proposed method on the large-scale graph, i.e., ogbn-arxiv (Hu et al., 2020), which has 139,343
nodes and 1,166,243 edges. The results are shown in Table 8, we can see that our proposed method still maintains relatively
good results on graph datasets of such size.

D. Discuss on heterophily
Currently, heterophily is a hot research topic, and it seems that heterophily may lead to the emergence of OOC nodes, so we
experimentally observed the heterophily ratio of UC nodes and OOC nodes, as shown in Table 9. We find that node-level
heterophily is not one of the factors leading to the existence of OOC nodes.

Table 9. Homophily ratio on representative datasets.

Homophily ratio Cora Citeseer

Avr. all nodes 0.81 0.71
Avr. OOC nodes 0.78 0.71
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