
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENIE: GENERATIVE HARD NEGATIVE IMAGES
THROUGH DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Data augmentation is crucial in training deep models, preventing them from over-
fitting to limited data. Recent advances in generative AI, e.g., diffusion models,
have enabled more sophisticated augmentation techniques that produce data re-
sembling natural images. We introduce GeNIe a novel augmentation method
which leverages a latent diffusion model conditioned on a text prompt to combine
two contrasting data points (an image from the source category and a text prompt
from the target category) to generate challenging augmentations. To achieve this,
we adjust the noise level (equivalently, number of diffusion iterations) to ensure
the generated image retains low-level and background features from the source
image while representing the target category, resulting in a hard negative sample
for the source category. We further automate and enhance GeNIe by adaptively
adjusting the noise level selection on a per image basis (coined as GeNIe-Ada),
leading to further performance improvements. Our extensive experiments, in both
few-shot and long-tail distribution settings, demonstrate the effectiveness of our
novel augmentation method and its superior performance over the prior art. Our
code is available at: https://anonymous.4open.science/r/GeNIe-F6C6

1 INTRODUCTION

Augmentation has become an integral part of training deep learning models, particularly when faced
with limited training data. For instance, when it comes to image classification with limited number
of samples per class, model generalization ability can be significantly hindered. Simple transfor-
mations like rotation, cropping, and adjustments in brightness artificially diversify the training set,
offering the model a more comprehensive grasp of potential data variations. Hence, augmentation
can serve as a practical strategy to boost the model’s learning capacity, minimizing the risk of overfit-
ting and facilitating effective knowledge transfer from limited labelled data to real-world scenarios.
Various image augmentation methods, encompassing standard transformations, and learning-based
approaches have been proposed (Cubuk et al., 2019b;a; Yun et al., 2019; Zhang et al., 2018; Tra-
bucco et al., 2024). Some augmentation strategies combine two images possibly from two different
categories to generate a new sample image. The simplest ones in this category are MixUp (Zhang
et al., 2018) and CutMix (Yun et al., 2019) where two images are combined in the pixel space. How-
ever, the resulting augmentations often do not lie within the manifold of natural images and act as
out-of-distribution samples that will not be encountered during testing.

Recently, leveraging generative models for data augmentation has gained an upsurge of attention
(Trabucco et al., 2024; Roy et al., 2023; Luzi et al., 2022; He et al., 2022b). These interesting
studies, either based on fine-tuning or prompt engineering of diffusion models, are mostly focused
on generating generic augmentations without considering the impact of other classes and incorpo-
rating that information into the generative process for a classification context. We take a different
approach to generate challenging augmentations near the decision boundaries of a downstream clas-
sifier. Inspired by diffusion-based image editing methods (Meng et al., 2021; Luzi et al., 2022)
some of which are previously used for data augmentation, we propose to use conditional latent dif-
fusion models (Rombach et al., 2022) for generating hard negative images. Our core idea (coined
as GeNIe) is to sample source images from various categories and prompt the diffusion model with
a contradictory text corresponding to a different target category. We demonstrate that the choice of
noise level (or equivalently number of iterations) for the diffusion process plays a pivotal role in
generating images that semantically belong to the target category while retaining low-level features
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Figure 1: Generative Hard Negative Images Through Diffusion (GeNIe): generates hard negative images
that belong to the target category but are similar to the source image from low-level feature and contextual
perspectives. GeNIe starts from a source image passing it through a partial noise addition process, and condi-
tioning it on a different target category. By controlling the amount of noise, the reverse latent diffusion process
generates images that serve as hard negatives for the source category.

from the source image. We argue that these generated samples serve as hard negatives (Xuan et al.,
2021; Mao et al., 2017) for the source category (or from a dual perspective hard positives for the
target category). To further enhance GeNIe, we propose an adaptive noise level selection strategy
(dubbed as GeNIe-Ada) enabling it to adjust noise levels automatically per sample.

To establish the impact of GeNIe, we focus on two challenging scenarios: long-tail and few-shot
settings. In real-world applications, data often follows a long-tail distribution, where common sce-
narios dominate and rare occurrences are underrepresented. For instance, a person jaywalking a
highway causes models to struggle with such unusual scenarios. Combating such a bias or lack of
sufficient data samples during model training is essential in building robust models for self-driving
cars or surveillance systems, to name a few. Same challenge arises in few-shot learning settings
where the model has to learn from only a handful of samples. Our extensive quantitative and qual-
itative experimentation, on a suite of few-shot and long-tail distribution settings, corroborate the
effectiveness of the proposed novel augmentation method (GeNIe, GeNIe-Ada) in generating
hard negatives, corroborating its significant impact on categories with a limited number of samples.
A high-level sketch of GeNIe is illustrated in Fig. 1. Our main contributions are summarized below:

- We introduce GeNIe, a novel yet elegantly simple diffusion-based augmentation method to cre-
ate challenging augmentations in the manifold of natural images. For the first time, to our best
knowledge, GeNIe achieves this by combining two sources of information (a source image, and a
contradictory target prompt) through a noise-level adjustment mechanism.

- We further extend GeNIe by automating the noise-level adjustment strategy on a per-sample basis
(called GeNIe-Ada), to enable generating hard negative samples in the context of image classifi-
cation, leading also to further performance enhancement.

- To substantiate the impact of GeNIe, we present a suit of quantitative and qualitative results includ-
ing extensive experimentation on two challenging tasks: few-shot and long tail distribution settings
corroborating that GeNIe (and its extension GeNIe-Ada) significantly improve the downstream
classification performance.

2 RELATED WORK

Data Augmentations. Simple flipping, cropping, colour jittering, and blurring are some forms of
image augmentations (Shorten & Khoshgoftaar, 2019). These augmentations are commonly adopted
in training deep learning models. However, using these data augmentations is not trivial in some
domains. For example, using blurring might remove important low-level information from medical
images. More advanced approaches, such as MixUp (Zhang et al., 2018) and CutMix (Yun et al.,
2019), mix images and their labels accordingly (Hendrycks et al., 2020; Liu et al., 2022; Kim et al.,
2020; Cubuk et al., 2020). However, the resulting augmentations are not natural images anymore,
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and thus, act as out-of-distribution samples that will not be seen at test time. Another strand of
research tailors the augmentation strategy through a learning process to fit the training data (Ding
et al., 2024; Cubuk et al., 2019b;a). Unlike the above methods, we propose to utilize pre-trained
latent diffusion models to generate hard negatives (in contrast to generic augmentations) through a
noise adaptation strategy discussed in Section 3.

Data Augmentation with Generative Models. Using synthesized images from generative models
to augment training data has been studied before in many domains (Frid-Adar et al., 2018; Sankara-
narayanan et al., 2018), including domain adaptation (Huang et al., 2018), visual alignment (Peebles
et al., 2022), and mitigation of dataset bias (Sharmanska et al., 2020; Hemmat et al., 2023; Prabhu
et al., 2024). For example, (Prabhu et al., 2024) introduces a methodology aimed at enhancing
test set evaluation through augmentation. While previous methods predominantly relied on GANs
(Zhang et al., 2021c; Li et al., 2022b; Tritrong et al., 2021) as the generative model, more recent
studies promote using diffusion models to augment the data (Rombach et al., 2022; He et al., 2022b;
Shipard et al., 2023; Trabucco et al., 2024; Azizi et al., 2023; Luo et al., 2023; Roy et al., 2023;
Jain et al., 2022; Feng et al., 2023; Dunlap et al., 2023b; Chegini & Feizi, 2023). More specifically,
(Trabucco et al., 2024; Roy et al., 2023; He et al., 2022b; Azizi et al., 2023) study the effectiveness
of text-to-image diffusion models in data augmentation by diversification of each class with syn-
thetic images. (Roy et al., 2023) also utilizes a text-to-image diffusion model, but with a BLIP (Li
et al., 2022d) model to generate meaningful captions from the existing images. (Jain et al., 2022)
utilizes diffusion models for augmentation to correct model mistakes. (Feng et al., 2023) uses CLIP
(Radford et al., 2021) to filter generated images. Generative models for data augmentation may
produce out-of-distribution samples if the downstream task’s data distribution differs. Fine-tuning
on a small downstream dataset can address this. For example, DAFusion (Trabucco et al., 2024)
fine-tunes a diffusion model using textual inversion (Gal et al., 2022a), while SiSTA (Thopalli et al.,
2023) adapts a GAN for the task. (Graikos et al., 2023a) propose adapting generative models to
downstream tasks by leveraging the internal representations of the denoiser network. Investigations
by (Tian et al., 2023) explore the use of text-to-image synthetic images for generating positive sam-
ples in contrastive learning. (Dunlap et al., 2023b) utilizes text-based diffusion and a large language
model (LLM) to diversify the training data. (Chegini & Feizi, 2023) uses an LLM to generate text
descriptions of failure modes associated with spurious correlations, which are then used to generate
synthetic data through generative models. The challenge here is that the LLM has little understand-
ing of such failure scenarios and contexts.

We take a completely different approach here, without replying on any extra source of information
(e.g., through an LLM). Inspired by image editing approaches such as Boomerang (Luzi et al., 2022)
and SDEdit (Meng et al., 2021), we propose to adaptively guide a latent diffusion model to generate
hard negatives images (Mao et al., 2017; Xuan et al., 2021) on a per-sample basis per category. In
a nutshell, the aforementioned studies focus on improving the diversity of each class with effective
prompts and diffusion models, however, we focus on generating effective hard negative samples for
each class by combining two sources of contradicting information (images from the source category
and text prompt from the target category).

Language Guided Recognition Models. Vision-Language foundation models (VLMs) (Alayrac
et al., 2022; Radford et al., 2021; Rombach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022;
2021) utilize human language to guide the generation of images or to extract features from images
that are aligned with human language. CLIP (Radford et al., 2021) excels in zero-shot tasks by
aligning images with text, while recent works improve prompts (Dunlap et al., 2023a; Petryk et al.,
2022) or use diffusion models as classifiers (Li et al., 2023). Similarly, we leverage Stable Diffusion
1.5 (Rombach et al., 2022) to enhance downstream tasks by augmenting training data with hard
negative samples based on category names.

Few-Shot Learning. In Few-shot Learning (FSL), we pre-train a model with abundant data to learn
a rich representation, then fine-tune it on new tasks with only a few available samples. In supervised
FSL (Chen et al., 2019a; Afrasiyabi et al., 2019; Qiao et al., 2018; Ye et al., 2020; Dvornik et al.,
2019; Li et al., 2020; Sung et al., 2018; Zhou et al., 2021; Singh & Jamali-Rad, 2023), pretraining
is done on a labeled dataset, whereas in unsupervised FSL (Jang et al., 2022; Wang & Deng, 2022;
Lu et al., 2022; Qin et al., 2020; Antoniou & Storkey, 2019; Khodadadeh et al., 2019; Hsu et al.,
2018; Medina et al., 2020; Shirekar et al., 2023) the pretraining has to be conducted on an unlabeled
dataset posing an extra challenge in the learning paradigm and neighboring these methods closer to
the realm of self-supervised learning.
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Figure 2: Effect of noise ratio, r, in GeNIe: we employ GeNIe to generate augmentations for the target
classes (motorcycle and cat) with varying r. Smaller r yields images closely resembling the source semantics,
creating an inconsistency with the intended target label. By tracing r from 0 to 1, augmentations gradually
transition from source image characteristics to the target category. However, a distinct shift from the source
to the target occurs at a specific r that may vary for different source images or target categories. For more
examples, please refer to Fig. A9.

3 PROPOSED METHOD: GENIE

Given a source image XS from category S = <source category>, we are interested in generating
a target image Xr from category T = <target category>. In doing so, we intend to ensure
the low-level visual features or background context of the source image are preserved, so that we
generate samples that would serve as hard negatives for the source image. To this aim, we adopt
a conditional latent diffusion model (such as Stable Diffusion, (Rombach et al., 2022)) conditioned
on a text prompt of the following format “A photo of a T = <target category>”.

Key Idea. GeNIe in its basic form is a simple yet effective augmentation sample generator for
improving a classifier fθ(.) with the following two key aspects: (i) inspired by (Luzi et al., 2022;
Meng et al., 2021) instead of adding the full amount of noise σmax and going through all Nmax

(being typically 50) steps of denoising, we use less amount of noise (rσmax, with r ∈ (0, 1))
and consequently fewer number of denoising iterations (⌊rNmax⌋); (ii) we prompt the diffusion
model with a P mandating a target category T different than the source S. Hence, we denote the
conditional diffusion process as Xr = STDiff(XS , P, r). In such a construct, the proximity of
the final decoded image Xr to the source image XS or the target category defined through the text
prompt P depends on r. Hence, by controlling the amount of noise, we can generate images that
blend characteristics of both the text prompt P and the source image XS . If we do not provide much
of visual details in the text prompt (e.g., desired background, etc.), we expect the decoded image
Xr to follow the details of XS while reflecting the semantics of the text prompt P . We argue, and
demonstrate later, that the newly generated samples can serve as hard negative examples for the
source category S since they share the low-level features of XS while representing the semantics
of the target category, T . Notably, the source category S can be randomly sampled or be carefully
extracted from the confusion matrix of fθ(.) based on real training data. The latter might result in
even harder negative samples being now cognizant of model confusions. Finally, we will append
our initial dataset with the newly generated hard negative samples through GeNIe and (re)train the
classifier model.

Enhancing GeNIe: GeNIe-Ada. One of the remarkable aspects of GeNIe lies in its simple
application, requiring only XS , P , and r. However, selecting the appropriate value for r poses a
challenge as it profoundly influences the outcome. When r is small, the resulting Xr tends to closely
resemble XS , and conversely, when r is large (closer to 1), it tends to resemble the semantics of the
target category. This phenomenon arises because a smaller noise level restricts the capacity of the
diffusion model to deviate from the semantics of the input XS . Thus, a critical question emerges:
how can we select r for a particular source image to generate samples that preserve the low-level
semantics of the source category S in XS while effectively representing the semantics of the target
category T ? We propose a method to determine an ideal value for r.

Our intuition suggests that by varying the noise ratio r from 0 to 1, Xr will progressively resemble
category S in the beginning and category T towards the end. However, somewhere between 0
and 1, Xr will undergo a rapid transition from category S to T . This phenomenon is empirically
observed in our experiments with varying r, as depicted in Fig. 2. Although the exact reason for this
rapid change remains uncertain, one possible explanation is that the intermediate points between
two categories reside far from the natural image manifold, thus, challenging the diffusion model’s
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Algorithm 1: GeNIe-Ada
Require: XS , XT , fθ(.), STDiff(.), M
Extract ZS ← fθ(Xs), ZT ← fθ(XT )
for m ∈ [1,M ] do

r ← m
M , Zr ← fθ(STDiff(X,P, r) )

dm ← (Zr−ZS)T (ZT−ZS)
||ZT−ZS ||2

m∗ ← argmaxm |dm − dm−1|, ∀m ∈ [2,M ]

r∗ ← m∗

n
Return: Xr∗ = STDiff(XS , P, r

∗)

Figure 3: GeNIe-Ada: To choose r adaptively for each (source image, target category) pair, we propose trac-
ing the semantic trajectory from ZS (source image embeddings) to ZT (target embeddings) through backbone
feature extractor fθ(·) (Algorithm 1). We adaptively select the sample right after the largest semantic shift.

capability to generate them. Ideally, we should select r corresponding to just after this rapid semantic
transition, as at this point, Xr exhibits the highest similarity to the source image while belonging to
the target category.

We propose to trace the semantic trajectory between XS and XT through backbone feature extractor
fθ(.). As shown in Algorithm 1, assuming access to the classifier backbone fθ(.) and at least one
example XT from the target category, we convert both XS and XT into their respective latent vectors
ZS and ZT by passing them through fθ(.). Then, we sample M values for r uniformly distributed
∈ (0, 1), generating their corresponding Xr and their latent vectors Zr for all those r. Subsequently,
we calculate dr = (Zr−ZS)T (ZT−ZS)

||ZT−ZS ||2 as the distance between Zr and ZS projected onto the vector
connecting ZS and ZT . Our hypothesis posits that the rapid semantic transition corresponds to a
sharp change in this projected distance. Therefore, we sample n values for r uniformly distributed
between 0 and 1, and analyze the variations in dr. We identify the largest gap in dr and select the r
value just after the gap when increasing r, as detailed in Algorithm 1 and illustrated in Fig. 3.

4 EXPERIMENTS

Since the impact of augmentation is more pronounced when the training data is limited, we evaluate
the impact of GeNIe on Few-Shot classification in Section 4.1, Long-Tailed classification in Sec-
tion 4.3, and fine-grained classification in Section 4.2. For GeNIe-Ada in all scenarios, we utilize
GeNIe to generate augmentations from the noise level set {0.5, 0.6, 0.7, 0.8, 0.9}. The selection of
the appropriate noise level per source image and target is adaptive, achieved through Algorithm 1.

Baselines. We use Stable Diffusion 1.5 (Rombach et al., 2022) as our base diffusion model. In
all settings, we use the same prompt format to generate images for the target class: i.e., “A photo
of a <target category>”, where we replace the target category with the target category
label. We generate 512× 512 images for all methods. For fairness, we generate the same number of
new images for each class. We use a single NVIDIA RTX 3090 for image generation. We consider
4 diffusion-based baselines and a suite of traditional data augmentation baselines.

Img2Img (Luzi et al., 2022; Meng et al., 2021): We sample an image from a target class, add
noise to its latent representation and then pass it along with a prompt for the target category through
reverse diffusion. The focus here is on a target class for which we generate extra positive samples.
Adding large amount of noise leads to generating an image less similar to the original image. We
use two different noise magnitudes for this baseline: r = 0.3 and r = 0.7 and denote them by
Img2ImgL and Img2ImgH , respectively.

Txt2Img (Azizi et al., 2023; He et al., 2022b): For this baseline, we omit the forward diffusion
process and only use the reverse process starting from a text prompt for the target class of interest.
This is similar to the base text-to-image generation strategy adopted in (Rombach et al., 2022; He
et al., 2022b; Shipard et al., 2023; Azizi et al., 2023; Luo et al., 2023). Fig. 4 illustrates a set of
generated augmentation examples for Txt2Img, Img2Img, and GeNIe.

DAFusion (Trabucco et al., 2024): In this method, an embedding is optimized with a set of images
for each class to correspond to the classes in the dataset. This approach is introduced in Textual
Inversion (Gal et al., 2022c). We optimize an embedding for 5000 iterations for each class in the
dataset, followed by augmentation similar as the DAFusion method.
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Figure 4: Visualization of Generative Samples: We compare GeNIe with two baselines: Img2ImgL aug-
mentation: both image and text prompt are from the same category. Adding noise does not change the image
much, so they are not hard examples. Txt2Img augmentation: We simply use the text prompt only to gen-
erate an image for the desired category (e.g., using a text2image method). Such images may be far from the
domain of our task since the generation is not informed by any visual data from our task. GeNIe augmenta-
tion: We use the target category name in the text prompt only along with the source image.

Cap2Aug(Roy et al., 2023): It is a recent diffusion-based data augmentation strategy that uses image
captions as text prompts for an image-to-image diffusion model.

Traditional Data Augmentation: We consider both weak and strong traditional augmentations.
More specifically, for weak augmentation we use random resize crop with scaling ∈ [0.2, 1.0] and
horizontal flipping. For strong augmentation, we consider random color jitter, random grayscale,
and Gaussian blur. For the sake of completeness, we also compare against data augmentations such
as CutMix (Yun et al., 2019) and MixUp (Zhang et al., 2018) that combine two images together.

4.1 FEW-SHOT CLASSIFICATION

We assess the impact of GeNIe compared to other augmentations in a number of few-shot classifica-
tion (FSL) scenarios, where the model has to learn only from the samples contained in the (N -way,
K-shot) support set and infer on the query set. Note that this corresponds to an inference-only FSL
setting where a pretraining stage on an abundant dataset is discarded. The goal is to assess how well
the model can benefit from the augmentations while keeping the original N ×K samples intact.

Datasets. We conduct our few-shot experiments on two most commonly adopted few-shot classi-
fication datasets: mini-Imagenet (Ravi & Larochelle, 2017) and tiered-Imagenet (Ren et al., 2018).
mini-Imagenet is a subset of ImageNet (Deng et al., 2009) for few-shot classification. It contains 100
classes with 600 samples each. We follow the predominantly adopted settings of (Ravi & Larochelle,
2017; Chen et al., 2019a) where we split the entire dataset into 64 classes for training, 16 for valida-
tion and 20 for testing. tiered-Imagenet is a larger subset of ImageNet with 608 classes and a total
of 779, 165 images, which are grouped into 34 higher-level nodes in the ImageNet human-curated
hierarchy. This set of nodes is partitioned into 20, 6, and 8 disjoint sets of training, validation, and
testing nodes, and the corresponding classes form the respective meta-sets.

Evaluation. We evaluate the test-set accuracies of a state-of-the-art unsupervised few-shot learning
method with GeNIe and compare them against the accuracies obtained using other augmentation
methods. Specifically, we use UniSiam (Lu et al., 2022) pre-trained with ResNet-18, ResNet-34 and
ResNet-50 backbones and follow its evaluation strategy of fine-tuning a logistic regressor to perform
(N -way, K-shot) classification on the test sets of mini- and tiered-Imagenet. Following (Ravi &
Larochelle, 2017), an episode consists of a labeled support-set and an unlabelled query-set. The
support-set contains N randomly sampled classes where each class contains K samples, whereas the
query-set contains Q randomly sampled unlabeled images per class. We conduct our experiments
on the two most commonly adopted settings: (5-way, 1-shot) and (5-way, 5-shot) classification
settings. Following the literature, we sample 16-shots per class for the query set in both settings.
We report the test accuracies along with the 95% confidence interval over 600 and 1000 episodes
for mini-ImageNet and tiered-ImageNet, respectively.

Implementation Details: GeNIe generates augmented images for each class using images from all
other classes as the source image. We use r = 0.8 in our experiments. We generate 4 samples per

6
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Table 1: mini-ImageNet: We use our augmentations on (5-way, 1-shot) and (5-way, 5-shot) few-shot settings of
mini-Imagenet dataset with 3 different backbones (ResNet-18, 34, and 50). We compare with various baselines
and show that our augmentations with UniSiam outperform all the baselines including Txt2Img and DAFusion
augmentation. The number of generated images per class is 4 for 1-shot and 20 for 5-shot settings.

ResNet-18
Augmentation Method Pre-training 1-shot 5-shot
- iDeMe-Net 2019b sup. 59.1±0.9 74.6±0.7
- Robust + dist 2019 sup. 63.7±0.6 81.2±0.4
- AFHN 2020 sup. 62.4±0.7 78.2±0.6
Weak ProtoNet+SSL 2020 sup.+ssl - 76.6
Weak Neg-Cosine 2020 sup. 62.3±0.8 80.9±0.6
- Centroid Align2019 sup. 59.9±0.7 80.4±0.7
- Baseline 2019a sup. 59.6±0.8 77.3±0.6
- Baseline++ 2019a sup. 59.0±0.8 76.7±0.6
Weak PSST 2021 sup.+ssl 59.5±0.5 77.4±0.5

Weak UMTRA 2019 unsup. 43.1±0.4 53.4±0.3
Weak ProtoCLR 2020 unsup. 50.9±0.4 71.6±0.3
Weak SimCLR 2020 unsup. 62.6±0.4 79.7±0.3
Weak SimSiam 2021 unsup. 62.8±0.4 79.9±0.3
Weak UniSiam+dist 2022 unsup. 64.1±0.4 82.3±0.3
Weak UniSiam 2022 unsup. 63.1±0.8 81.4±0.5
Strong UniSiam 2022 unsup. 62.8±0.8 81.2±0.6
CutMix 2019 UniSiam 2022 unsup. 62.7±0.8 80.6±0.6
MixUp 2018 UniSiam 2022 unsup. 62.1±0.8 80.7±0.6
Img2ImgL2022 UniSiam 2022 unsup. 63.9±0.8 82.1±0.5
Img2ImgH2022 UniSiam 2022 unsup. 69.1±0.7 84.0±0.5
Txt2Img2023; 2022b UniSiam 2022 unsup. 74.1±0.6 84.6±0.5
DAFusion 2024 UniSiam 2022 unsup. 64.3±1.8 82.0±1.4
GeNIe (Ours) UniSiam 2022 unsup. 75.5±0.6 85.4±0.4
GeNIe-Ada (Ours) UniSiam 2022 unsup. 76.8±0.6 85.9±0.4

ResNet-34
Augmentation Method Pre-training 1-shot 5-shot
Weak Baseline 2019a sup. 49.8±0.7 73.5±0.7
Weak Baseline++ 2019a sup. 52.7±0.8 76.2±0.6

Weak SimCLR 2020 unsup. 64.0±0.4 79.8±0.3
Weak SimSiam 2021 unsup. 63.8±0.4 80.4±0.3
Weak UniSiam+dist 2022 unsup. 65.6±0.4 83.4±0.2
Weak UniSiam 2022 unsup. 64.3±0.8 82.3±0.5
Strong UniSiam 2022 unsup. 64.5±0.8 82.1±0.6
CutMix 2019 UniSiam 2022 unsup. 64.0±0.8 81.7±0.6
MixUp 2018 UniSiam 2022 unsup. 63.7±0.8 80.1±0.8
Img2ImgL2022 UniSiam 2022 unsup. 65.5±0.8 82.9±0.5
Img2ImgH2022 UniSiam 2022 unsup. 70.5±0.8 84.8±0.5
Txt2Img2023; 2022b UniSiam 2022 unsup. 75.4±0.6 85.5±0.5
DAFusion 2024 UniSiam 2022 unsup. 64.7±1.9 83.2±1.4
GeNIe (Ours) UniSiam 2022 unsup. 77.1±0.6 86.3±0.4
GeNIe-Ada (Ours) UniSiam 2022 unsup. 78.5±0.6 86.6±0.4

ResNet-50
Weak PDA+Net 2021 unsup. 63.8±0.9 83.1±0.6
Weak Meta-DM 2023 unsup. 66.7±0.4 85.3±0.2

Weak UniSiam 2022 unsup. 64.6±0.8 83.4±0.5
Strong UniSiam 2022 unsup. 64.8±0.8 83.2±0.5
CutMix 2019 UniSiam 2022 unsup. 64.3±0.8 83.2±0.5
MixUp 2018 UniSiam 2022 unsup. 63.8±0.8 84.6±0.5
Img2ImgL2022 UniSiam 2022 unsup. 66.0±0.8 84.0±0.5
Img2ImgH2022 UniSiam 2022 unsup. 71.1±0.7 85.7±0.5
Txt2Img2023; 2022b UniSiam 2022 unsup. 76.4±0.6 86.5±0.4
DAFusion 2024 UniSiam 2022 unsup. 65.7±1.8 83.9±1.2
GeNIe (Ours) UniSiam 2022 unsup. 77.3±0.6 87.2±0.4
GeNIe-Ada (Ours) UniSiam 2022 unsup. 78.6±0.6 87.9±0.4

class as augmentations in the 5-way, 1-shot setting and 20 samples per class as augmentations in the
5-way, 5-shot setting. For the sake of a fair comparison, we ensure that the total number of labelled
samples in the support set after augmentation remains the same across all different traditional and
generative augmentation methodologies. Due to the expensive training of embeddings for each class
in each episode, we only evaluated the DA-Fusion baseline on the first 100 episodes.

Results: The results on mini-Imagenet and tiered-Imagenet for both (5-way, 1 and 5-shot) set-
tings are summarized in Table 1 and Table 3, respectively. Regardless of the choice of backbone,
we observe that GeNIe helps consistently improve UniSiam’s performance and outperform other
supervised and unsupervised few-shot classification methods as well as other diffusion-based (Tra-
bucco et al., 2024; Luzi et al., 2022; Rombach et al., 2021; He et al., 2022b) and classical (Yun et al.,
2019; Zhang et al., 2018) data augmentation techniques on both datasets, across both (5-way, 1 and
5-shot) settings. Our noise adaptive method of selecting optimal augmentations per source image
(GeNIe-Ada) further improves GeNIe’s performance across all three backbones, both few-shot
settings, and both datasets (mini and tiered-Imagenet).

4.2 FINE-GRAINED FEW-SHOT CLASSIFICATION

To further investigate the impact of the proposed method, we compare GeNIe with other text-
based data augmentation techniques across four distinct fine-grained datasets in a 20-way, 1-shot
classification setting. We employ the pre-trained DINOV2 ViT-G (Oquab et al., 2023) backbone
as a feature extractor to derive features from training images. Subsequently, an SVM classi-
fier is trained on these features, and we report the Top-1 accuracy of the model on the test set.

Table 2: Few-shot Learning on Fine-grained
dataset: We utilize an SVM classifier trained atop the
DINOV2 ViT-G pretrained backbone, reporting Top-1
accuracy for the test set of each dataset. The baseline
is an SVM trained on the same backbone using weak
augmentation.

Method Birds Cars Foods Aircraft
CUB200 2011 Cars196 2013 Food101 2014 Aircraft 2013

Baseline 90.3 49.8 82.9 29.2
Img2ImgL2022 90.7 50.4 87.4 31.0
Img2ImgH2022 91.3 56.4 91.7 34.7
Txt2Img2022b 92.0 81.3 93.0 41.7
GeNIe (r=0.5) 92.0 84.6 91.5 39.8
GeNIe (r=0.6) 92.2 87.1 92.5 45.0
GeNIe (r=0.7) 92.5 87.9 92.9 47.0
GeNIe (r=0.8) 92.5 87.7 93.1 46.5
GeNIe (r=0.9) 92.4 87.1 93.1 45.7
GeNIe-Ada 92.6 87.9 93.1 46.9

Results: Table 2 summarizes the results. Ad-
ditional details about this experiment can be
found in Section A.8. GeNIe outperforms all
other baselines, including Txt2Img, by mar-
gins upto 0.5% on CUB200, 6.6% on Cars196,
0.1% on Food101 and 5.3% on FGVC-Aircraft.
GeNIe exhibits great effectiveness in more
challenging datasets, outperforming the base-
line with traditional augmentation by about
38% for the Cars dataset and by roughly 17%
for the Aircraft dataset. It can be observed here
that GeNIe-Ada performs on-par with GeNIe
with a fixed noise level, eliminating the neces-
sity for noise level search in GeNIe.
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Table 3: tiered-ImageNet: Accuracies (% ± std) for
5-way, 1-shot and 5-way, 5-shot classification settings
on the test-set. We compare against various SOTA su-
pervised and unsupervised few-shot classification base-
lines as well as other augmentation methods, with
UniSiam 2022 pre-trained ResNet-18,50 backbones.

ResNet-18
Augmentation Method Pre-training 1-shot 5-shot
Weak SimCLR2020 unsup. 63.4±0.4 79.2±0.3
Weak SimSiam 2021 unsup. 64.1±0.4 81.4±0.3

Weak UniSiam 2022 unsup. 63.1±0.7 81.0±0.5
Strong UniSiam 2022 unsup. 62.8±0.7 80.9±0.5
CutMix 2019 UniSiam 2022 unsup. 62.1±0.7 78.9±0.6
MixUp 2018 UniSiam 2022 unsup. 62.1±0.7 78.4±0.6
Img2ImgL2022 UniSiam 2022 unsup. 63.9±0.7 81.8±0.5
Img2ImgH2022 UniSiam 2022 unsup. 68.7±0.7 83.5±0.5
Txt2Img2022b UniSiam 2022 unsup. 72.9±0.6 84.2±0.5
DAFusion 2024 UniSiam 2022 unsup. 62.6±2.1 81.0±1.5
GeNIe(Ours) UniSiam 2022 unsup. 73.6±0.6 85.0±0.4
GeNIe-Ada(Ours) UniSiam 2022 unsup. 75.1±0.6 85.5±0.5

ResNet-50
Weak PDA+Net 2021 unsup. 69.0±0.9 84.2±0.7
Weak Meta-DM 2023 unsup. 69.6±0.4 86.5±0.3

Weak UniSiam + dist 2022 unsup. 69.6±0.4 86.5±0.3
Weak UniSiam 2022 unsup. 66.8±0.7 84.7±0.5
Strong UniSiam 2022 unsup. 66.5±0.7 84.5±0.5
CutMix 2019 UniSiam 2022 unsup. 66.0±0.7 83.3±0.5
MixUp 2018 UniSiam 2022 unsup. 66.1±0.5 84.1±0.8
Img2ImgL2022 UniSiam 2022 unsup. 67.8±0.7 85.3±0.5
Img2ImgH2022 UniSiam 2022 unsup. 72.4±0.7 86.7±0.4
Txt2Img2022b UniSiam 2022 unsup. 77.1±0.6 87.3±0.4
DAFusion 2024 UniSiam 2022 unsup. 66.5±2.2 84.8±1.4
GeNIe (Ours) UniSiam 2022 unsup. 78.0±0.6 88.0±0.4
GeNIe-Ada (Ours) UniSiam 2022 unsup. 78.8±0.6 88.6±0.6

Table 4: Long-Tailed ImageNet-LT: We
compare different augmentation methods on
ImageNet-LT and report Top-1 accuracy for
“Few”, “Medium”, and “Many” sets. On the
“Few” set and LiVT method, our augmentations
improve the accuracy by 11.7 points compared to
LiVT original augmentation and 4.4 points com-
pared to Txt2Img. GeNIe-Ada outperforms
Cap2Aug baseline in “Few” categories by 7.6%.
Refer to Table A8 for a full comparison with prior
Long-Tailed methods.

ResNet-50
Method Many Med. Few Overall Acc

ResLT 2022 63.3 53.3 40.3 55.1
PaCo 2021b 68.2 58.7 41.0 60.0
LWS 2019 62.2 48.6 31.8 51.5
Zero-shot CLIP 2021 60.8 59.3 58.6 59.8
DRO-LT 2021 64.0 49.8 33.1 53.5
VL-LTR 2022 77.8 67.0 50.8 70.1
Cap2Aug 2023 78.5 67.7 51.9 70.9
GeNIe-Ada 79.2 64.6 59.5 71.5

ViT-B
Method Many Med. Few Overall Acc

ViT 2021 50.5 23.5 6.9 31.6
MAE 2022a 74.7 48.2 19.4 54.5
DeiT 2022 70.4 40.9 12.8 48.4
LiVT 2023 73.6 56.4 41.0 60.9
LiVT + Img2ImgL 74.3 56.4 34.3 60.5
LiVT + Img2ImgH 73.8 56.4 45.3 61.6
LiVT + Txt2Img 74.9 55.6 48.3 62.2
LiVT + GeNIe-Ada 74.0 56.9 52.7 63.1

4.3 LONG-TAILED CLASSIFICATION

We evaluate our method on long-tailed data, where the number of instances per class is unbalanced,
with most categories having limited samples (tail). Our goal is to mitigate this bias by augmenting
the tail of the distribution with generated samples. We evaluate GeNIe using two backbones: ViT
with LViT (Xu et al., 2023) and ResNet50 with VL-LTR (Tian et al., 2022). Following LViT, we
first train an MAE (He et al., 2021) and ViT on the unbalanced dataset without any augmentation.
Next, we train the Balanced Fine-Tuning stage of LViT by incorporating the augmentation data
generated using GeNIe or other baselines. For ResNet50, we use VL-LTR code to fine-tune the
CLIP ResNet50 with generated augmentations by GeNIe.

Dataset: We perform experiments on ImageNet-LT (Liu et al., 2019). It contains 115.8K images
from 1, 000 categories. The number of images per class varies from 1280 to 5. Imagenet-LT classes
can be divided into 3 groups: “Few” with less than 20 images, “Med” with 20 − 100 images, and
“Many” with more than 100 images. Imagenet-LT uses the same validation set as ImageNet. We
augment “Few” categories only and limit the number of generated images to 50 samples per class.
For GeNIe, instead of randomly sampling the source images from other classes, we use a confusion
matrix on the training data to find the top-4 most confused classes and only consider those classes
for random sampling of the source image.

Results: Augmenting training data with GeNIe-Ada improves accuracy on the “Few” set by 11.7%
and 4.4% compared with LViT only and LViT with Txt2Img augmentation baselines respectively.
In ResNet50, GeNIe-Ada outperforms Cap2Aug baseline in “Few” categories by 7.6%. The results
are summarized in Table 4. Please refer to Section A.10 for implementation details.

4.4 ABLATION AND FURTHER ANALYSIS

Semantic Shift from Source to Target Class. The core motivation behind GeNIe-Ada is that by
varying the noise ratio r from 0 to 1, augmented sample Xr will progressively shift its semantic cat-
egory from source (S) in the beginning to target category (T ) towards the end. However, somewhere
between 0 and 1, Xr will undergo a rapid transition from S to T . To demonstrate this hypothesis
empirically, in Figs. 5 and A7, we visualize pairs of source images and target categories with their re-
spective GeNIe generated augmentations for different noise ratios r, along with their corresponding
PCA-projected embedding scatter plots (on the far left). We extract embeddings for all the images
using a DINOv2 ViT-G pretrained backbone, which we assume as an oracle model in identifying
the right category. We observe that as r increases from 0.3 to 0.8, the images transition to embody
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Figure 5: Embedding visualizations of generative augmentations: We pass all generative augmentations
through DINOv2 ViT-G (serving as an oracle) to extract their corresponding embeddings and visualize them
with PCA. As shown, the extent of semantic shifts varies based on both the source image and the target class.

Figure 6: Why GeNIe augmentations are challenging? While deciding which class the generated augmen-
tations (Xr) belong to is already difficult within r = [0.6, 0.7] (due to high overlap between P (YS |Xr) and
P (YT |Xr)), GeNIe-Ada selects the best noise threshold (r∗) offering the hardest negative sample.

more of the target category’s semantics while preserving the contextual features of the source image.
This transition of semantics can also be observed in the embedding plots (on the left) where they
consistently shift from the proximity of the source image (blue star) to the target class’s centroid
(red cross) as the noise ratio r increases. The sparse distribution of points within r = [0.4, 0.6] for
the first image and r = [0.2, 0.4] for the second image aligns with our intuition of a rapid transition
from category S to T , thus empirically affirming our motivation behind GeNIe-Ada.

To further establish this, in Fig. 6, we demonstrate the efficacy of GeNIe in generating hard neg-
atives at the decision boundaries of an SVM classifier, which is trained on the labelled support set
of the few-shot tasks of mini-Imagenet, without any augmentations. We then plot source and target
class probabilities (P (YS |Xr) and P (YT |Xr), respectively) of the generated augmentation samples
Xr. For both r = 0.6 and 0.7, there is significant overlap between P (YS |Xr) and P (YT |Xr), mak-
ing it difficult for the classifier to decide the correct class. On the right-hand-side, GeNIe-Ada
automatically selects the best r resulting in the most overlap between the two distributions, thus
offering the hardest negative sample among the considered r values (for more details see A.1). Note
that a large overlap between distributions is not sufficient to call the generated samples hard neg-
atives because they should also belong to the target category. This is, however, confirmed by the
high Oracle accuracy in Table 5 (elaborated in detail in the following paragraph) which verifies that
majority of the generated augmentation samples do belong to the target category.

Label consistency of the generated samples. The choice of noise ratio r is important in producing
hard negative examples. In Table 5, we present the accuracy of the GeNIe model across various
noise ratios, alongside the oracle accuracy, which is an ImageNet pre-trained DeiT-Base (Touvron
et al., 2021b) classifier. We observe a decline in the label consistency of generated data (quantified
by the performance of the oracle model) when decreasing the noise level. Reducing r also results in
a degradation in the performance of the final few-shot model (87.2% → 77.6%) corroborating that
an appropriate choice of r plays a crucial role. We investigate this further in the following paragraph.

Effect of Noise in GeNIe. We examine the impact of noise on the performance of the few-shot
model in Table 5. Noise levels r ∈ [0.7, 0.8] yield the best performance. Conversely, utilizing
noise levels below 0.7 diminishes performance due to label inconsistency, as is demonstrated in
Table 5 and Fig 5. As such, determining the appropriate noise level is pivotal for the performance
of GeNIe to be able to generate challenging hard negatives while maintaining label consistency.
An alternative approach to finding the optimal noise level involves using GeNIe-Ada to adaptively
select the noise level for each source image and target class. As demonstrated in Tables 5 and 2,
GeNIe-Ada matches or outperforms GeNIe with fixed noise levels.
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Table 5: Effect of Noise and Diffusion Models in GeNIe: We use the same setting as in Table 1 to study the
effect of the amount of noise. As expected (also shown in Fig 5), small noise results in worse accuracy since
some generated images may be from the source category rather than the target one. For r = 0.5 only 73%
of the generated data is from the target category. This behaviour is also shown in Fig. 2. Notably, reducing
the noise level below 0.7 is associated with a decline in oracle accuracy and subsequent degradation in the
performance of the final few-shot model. Note that the high oracle accuracy of GeNIe-Ada demonstrates
its capability to adaptively select the noise level per source and target, ensuring semantic consistency with the
intended target. To further demonstrate GeNIe’s ability to generalize across different diffusion models, we
replace the diffusion model with SD3 and SDXL-Turbo. The resulting accuracies follow a similar trend to
those in Table 1, confirming GeNIe’s advantage over Txt2Img across various diffusion models.

Method Generative Noise ResNet-18 ResNet-34 ResNet-50 Oracle
Model r= 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot Acc

Txt2Img SD 1.5 - 74.1±0.6 84.6±0.5 75.4±0.6 85.5±0.5 76.4±0.6 86.5±0.4 -
GeNIe SD 1.5 0.5 60.4±0.8 74.1±0.6 62.0±0.8 75.8±0.6 63.7±0.9 77.6±0.6 73.4±0.5
GeNIe SD 1.5 0.6 69.7±0.7 80.7±0.5 71.1±0.7 82.2±0.5 72.1±0.7 82.8±0.5 85.8±0.4
GeNIe SD 1.5 0.7 74.5±0.6 83.3±0.5 76.4±0.6 84.4±0.5 77.1±0.6 85.0±0.4 94.5±0.2
GeNIe SD 1.5 0.8 75.5±0.6 85.4±0.4 77.1±0.6 86.3±0.4 77.3±0.6 87.2±0.4 98.2±0.1
GeNIe SD 1.5 0.9 75.0±0.6 85.3±0.4 77.6±0.6 86.2±0.4 77.7±0.6 87.0±0.4 99.3±0.1
GeNIe-Ada SD 1.5 Adaptive 76.8±0.6 85.9±0.4 78.5±0.6 86.6±0.4 78.6±0.6 87.9±0.4 98.9±0.2

Txt2Img SDXL-Turbo - 72.5±0.3 82.1±0.6 76.2±0.2 84.4±0.3 76.7±0.6 85.9±0.5 -
GeNIe SDXL-Turbo 0.5 61.2±0.5 73.5±0.2 61.5±0.2 74.9±0.3 63.1±0.2 76.5±0.6 -
GeNIe SDXL-Turbo 0.6 70.2±0.2 79.3±0.4 71.2±0.7 81.4±0.6 73.2±0.2 82.4±0.5 -
GeNIe SDXL-Turbo 0.7 73.1±0.3 83.5±0.5 76.1±0.6 85.3±0.4 77.2±0.6 84.2±0.4 -
GeNIe SDXL-Turbo 0.8 74.2±0.3 85.1±0.3 76.9±0.4 85.5±0.5 78.7±0.6 87.7±0.4 -
GeNIe SDXL-Turbo 0.9 73.9±0.4 84.9±0.7 76.6±0.7 84.2±0.6 78.1±0.5 87.0±0.4 -
GeNIe-Ada SDXL-Turbo Adaptive 75.1±0.3 87.1±0.8 78.9±0.5 85.2±0.5 79.0±0.6 88.6±0.2 -

Txt2Img SD 3 - 73.6±1.7 82.9±1.2 76.7±1.5 85.5±1.3 77.2±1.9 85.0±1.2 -
GeNIe SD 3 0.5 62.0±1.2 72.9±1.1 62.5±0.9 73.9±1.0 64.1±0.5 76.1±1.9 -
GeNIe SD 3 0.6 70.8±1.5 79.1±1.9 71.8±1.2 82.1±1.3 74.1±1.5 83.4±1.8 -
GeNIe SD 3 0.7 74.6±0.8 84.5±1.2 76.5±1.9 86.2±1.6 78.5±1.9 84.0±1.1 -
GeNIe SD 3 0.8 75.9±1.2 86.3±1.7 77.8±1.9 85.5±1.9 79.2±1.7 88.3±1.9 -
GeNIe SD 3 0.9 75.1±0.5 85.2±1.2 78.1±1.3 86.2±1.2 77.1±1.9 88.9±0.8 -
GeNIe-Ada SD 3 Adaptive 76.8±1.3 87.5±1.5 78.9±1.3 87.7±1.5 79.1±1.4 89.5±1.0 -

Effect of Diffusion Models in GeNIe. We have tried experimenting with both smaller as well
as more recent diffusion models. More specifically, we have used Stable Diffusion XL-Turbo to
generate hard-negatives through GeNIe and GeNIe-Ada. Few-shot classification results on mini-
Imagenet with these augmentations are shown in Table 5. The accuracies follow a similar trend to
that of Table 1, where Stable Diffusion 1.5 was used to generate augmentations. GeNIe-Ada im-
proves UniSiam’s few-shot performance the most as compared to GeNIe with different noise ratios
r, and even when compared to Txt2Img. This empirically indicates the robustness of GeNIe and
GeNIe-Ada to different diffusion engines. Note that, Stable Diffusion XL-Turbo by default uses
4 steps for the sake of optimization, and to ensure we can have the right granularity for the choice
of r we have set the number of steps to 10. That is already 5 times faster than the standard Stable
Diffusion v1.5 with 50 steps. Our experiments with Stable Diffusion v3 (which is a totally different
model with a Transformers backbone) also in Table 5 also convey the same message. As such, we
believe our approach is generalizable across different diffusion models.

5 CONCLUDING REMARKS

GeNIe, for the first time to our knowledge, combines contradictory sources of information (a source
image, and a different target category prompt) through a noise adjustment strategy into a conditional
latent diffusion model to generate challenging augmentations, which can serve as hard negatives.

Limitation. The required time to create augmentations through GeNIe is on par with any typ-
ical diffusion-based competitors (Azizi et al., 2023; He et al., 2022b); however, this is naturally
slower than traditional augmentation techniques (Yun et al., 2019; Zhang et al., 2018). This is not
a bottleneck in offline augmentation strategies, but can be considered a limiting factor in real-time
scenarios. Recent studies are already mitigating this through advancements in diffusion model ef-
ficiency (Sauer et al., 2023; Meng et al., 2023; Liu et al., 2023). Another challenge present in any
generative AI-based augmentation technique is the domain shift between the distribution of training
data and the downstream context they might be used for augmentation. A possible remedy is to
fine-tune the diffusion backbone on a rather small dataset from the downstream task.

Broader Impact. GeNIe can have a significant impact when it comes to generating challenging
augmentations and thus enhancing downstream tasks beyond classification. Like any other genera-
tive model, GeNIe can also introduce inherent biases stemming from the training data used to build
its diffusion backbone, which can reflect and amplify societal prejudices or inaccuracies. Therefore,
it is crucial to carefully mitigate potential biases in generative models such as GeNIe to ensure a
fair and ethical deployment of deep learning systems.
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A APPENDIX

A.1 ANALYZING GENIE , GENIE-ADA’S CLASS-PROBABILITIES

The core aim of GeNIe and GeNIe-Ada is to address the failure modes of a classifier
by generating challenging samples located near the decision boundary of each class pair,
which facilitates the learning process in effectively enhancing the decision boundary between
classes. As summarized in Table 5 and illustrated in Fig. 5, we have empirically corrobo-
rated that GeNIe and GeNIe-Ada can respectively produce samples Xr, Xr∗ that are nega-
tive with respect to the source image XS , while semantically belonging to the class T . To

Figure A1: P (YS |Xr) and P (YT |Xr) for r ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. On average, the classifier confidently
predicts the source class more than the target class for Xr for r = 0.5, and vice-versa for r = 0.8, 0.9.
However, for r = 0.6, 0.7, the classifier struggles to classify Xr , indicating that the augmented samples are
located closer to the decision boundary.

further analyze the effectiveness of GeNIe and GeNIe-Ada, we compare the source class-
probabilities P (YS |Xr) and target-class probabilities P (YS |Xr) of augmented samples Xr.

Figure A2: Significant over-
lap between P (YS |Xr∗) and
P (YT |Xr∗) indicates high class-
confusion for augmented sam-
ples generated by GeNIe-Ada.

To compute these class probabilities, we first fit an SVM classi-
fier (as followed in UniSiam (Lu et al., 2022)) only on the labelled
support set embeddings of each episode in the miniImagenet test
dataset. Then, we perform inference using each episode’s SVM
classifier on its respective Xr’s and extract its class probabilities
of belonging to its source class S and target class T . These per
augmentation-sample source and target class probabilities are then
averaged for each episode for each r ∈ {0.5, 0.6, 0.7, 0.8, 0.9} in
the case of GeNIe and for the optimal r = r∗ per sample in the
case of GeNIe-Ada, plotted as density plots in Fig. A1, Fig. A2,
respectively. Fig. A1 illustrates that P (YS |Xr) and P (YT |Xr) have
significant overlap in the case of r ∈ {0.6, 0.7} indicating class-
confusion for Xr.

Furthermore, Fig. A2 illustrates that when using the optimal r = r∗

found by GeNIe-Ada per sample, P (YS |Xr) and P (YT |Xr) sig-
nificantly overlap around probability scores of 0.2−0.45, indicating
class confusion for GeNIe-Ada augmentations. This corroborates
with our analysis in Section 4.4, Table 5 and additionally empiri-
cally proves that the augmented samples generated by GeNIe for
r ∈ {0.6, 0.7} and GeNIe-Ada for r = r∗ are actually located
near the decision boundary of each class pair.

A.2 INDEPENDENCE OF GENERATED AUGMENTATIONS FROM DOWNSTREAM TEST SETS

Here we analyzed whether the augmented samples generated by GeNIe using the diffusion model
overlap with the test set of the downstream task. To set the stage, we extracted the latent embeddings
corresponding to the train set (i.e., support), test set (i.e., query), and augmentations generated by
GeNIe. Fig A3 illustrates the distribution of distances between train-test and augmentation-test
pairs across 600 episodes. Notably, the mean distance of augmentation-test pairs is higher than
that of train-test pairs, indicating that the augmented samples are distinct from the test set. This
observation aligns with the fundamental assumption of train and test sets being mutually exclusive.
Additionally, Fig A3 provides further evidence through a UMAP embedding plot of a randomly
selected episode, where the embeddings of train, test, and augmented samples are visualized. The

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure A3: Comparison of embedding distributions and UMAP visualization for train, test, and GeNIe-
augmented samples.

plot reveals clear separations between the test set and augmented samples, further confirming that the
augmented samples do not overlap with or resemble the test set in embedding space. These findings
validate that the diffusion-generated augmentations are independent of the downstream task’s test
set, ensuring the integrity of the evaluation process.

A.3 ADDITIONAL AUGMENTATION COMPARISONS

We compute few-shot classification scores on mini-ImageNet with additional combinations of tra-
ditional augmentations. We introduce a Mixed augmentation scheme where we use a combination
of Weak and Strong augmentations together. We also experiment the scenario where CutMix and
MixUp are used alongside the Mixed augmentation strategy as indicated by Mixed+CutMix and
Mixed+MixUp. Finally, we experiment with a combination of GeNIe along with MixUp, similar to
(Graikos et al., 2023b). As can be seen in Tab. A1, we notice marginal improvements of upto 0.6%
by using the Mixed augmentations either with or without the CutMix, MixUp counterparts. We also
notice a drop in performance of upto 0.9% when MixUp is used along with GeNIe. This follows
the general trend of drop in performance when using CutMix or MixUp, as reported in Tab. 1.

Table A1: mini-ImageNet: We use our augmentations on (5-way, 1-shot) and (5-way, 5-shot) few-shot settings
of mini-Imagenet dataset with 2 different backbones (ResNet-18 and 50). We compare with additional combi-
nations of traditional augmentations, with and without GeNIe. The number of generated images per class is 4
for 1-shot and 20 for 5-shot settings.

ResNet-18
Augmentation Method Pre-training 1-shot 5-shot
Weak UniSiam 2022 unsup. 63.1±0.8 81.4±0.5
Strong UniSiam 2022 unsup. 62.8±0.8 81.2±0.6
Mixed UniSiam 2022 unsup. 63.2±0.5 81.9±0.4
CutMix 2019 UniSiam 2022 unsup. 62.7±0.8 80.6±0.6
MixUp 2018 UniSiam 2022 unsup. 62.1±0.8 80.7±0.6
Mixed+MixUp 2018 UniSiam 2022 unsup. 65.7±0.9 82.1±0.2
Mixed+CutMix 2018 UniSiam 2022 unsup. 64.9±0.8 81.6±0.5
DAFusion 2024 UniSiam 2022 unsup. 64.3±1.8 82.0±1.4
GeNIe+MixUp UniSiam 2022 unsup. 74.8±0.5 84.5±0.3
GeNIe (Ours) UniSiam 2022 unsup. 75.5±0.6 85.4±0.4
GeNIe-Ada (Ours) UniSiam 2022 unsup. 76.8±0.6 85.9±0.4

ResNet-50
Augmentation Method Pre-training 1-shot 5-shot
Weak UniSiam 2022 unsup. 64.6±0.8 83.4±0.5
Strong UniSiam 2022 unsup. 64.8±0.8 83.2±0.5
Mixed UniSiam 2022 unsup. 64.5±0.5 83.8±0.5
CutMix 2019 UniSiam 2022 unsup. 64.3±0.8 83.2±0.5
MixUp 2018 UniSiam 2022 unsup. 63.8±0.8 84.6±0.5
Mixed+MixUp 2018 UniSiam 2022 unsup. 64.9±0.7 84.5±0.7
Mixed+CutMix 2018 UniSiam 2022 unsup. 63.5±0.5 83.0±0.8
DAFusion 2024 UniSiam 2022 unsup. 65.7±1.8 83.9±1.2
GeNIe+MixUp UniSiam 2022 unsup. 76.4±0.5 85.9±0.7
GeNIe (Ours) UniSiam 2022 unsup. 77.3±0.6 87.2±0.4
GeNIe-Ada (Ours) UniSiam 2022 unsup. 78.6±0.6 87.9±0.4

A.4 EFFECT OF BACKBONE FOR NOISE RATIO SELECTOR IN GENIE-ADA

To analyze the effect of the backbone feature extractor fθ on selecting the optimal hard-negative
using GeNIe-Ada, we use a pre-trained DeiT-B (Touvron et al., 2021a) instead of the UniSiam
pretrained ResNet backbone. However, we still utilize the same ResNet backbone for few-shot
classification. As shown in Tab. A2, we notice a marginal improvement of upto 0.7% when using
GeNIe-Ada+DeiT-B as compared to GeNIe-Ada which uses the UniSiam pre-trained ResNet
backbone. This suggests that there is still potential to develop more effective strategies for select-
ing noise ratios to further enhance GeNIe. However, in this paper, we limit our exploration to
GeNIe-Ada and leave these improvements for future work.

A.5 PSUEDOCODE OF GENIE:

As illustrated in Alg. 2, we provide a detailed pytorch-style pseudocode for GeNIe. First, a SDv1.5
pipeline initialized by loading all the components such as the VQ-VAE encoder and decoder, the
CLIP text encoder and the DPM scheduler for the forward and reverse diffusion process. Then, the
source image is input to the encoder to encode the image into latent space for the diffusion model.
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Table A2: Effect of Backbone for Noise Ratio Selector in GeNIe-Ada: We evaluate the impact of the noise
ratio selector used in GeNIe-Ada (fθ(.)). Note that in all experiments presented in this paper, we use the same
backbone for fθ(.) that is subsequently fine-tuned for few-shot classification tasks. However, to analyze the
effect of fθ(.) on sampled augmentations, we replace it with a more powerful backbone, specifically DeiT-B
pretrained on ImageNet-1K. It is important to note that this is not a practical assumption; if DeiT-B were avail-
able for noise selection, it could also be used as the classifier in few-shot experiments, outperforming the weaker
backbones employed in our study. Nevertheless, this experiment demonstrates that using a stronger backbone
can result in more accurate selection of augmentations in GeNIe, thereby enhancing the final accuracy. To
clarify, DeiT-B is utilized solely as fθ(.) for sampling augmentations and not as the classifier. Therefore, the
observed improvement is attributed exclusively to better augmentation sampling.

ResNet-18
Augmentation Noise Ratio Selector Method 1-shot 5-shot

Backbone fθ(.) [Classifier Backbone]
GeNIe (Ours) - UniSiam[ResNet18] 75.5±0.6 85.4±0.4
GeNIe-Ada UniSiam[ResNet18] UniSiam[ResNet18] 76.8±0.6 85.9±0.4
GeNIe-Ada IN-1K[DeiT-B] UniSiam[ResNet18] 77.5±0.5 86.3±0.2

ResNet-50
Augmentation Noise Selector Method 1-shot 5-shot

Backbone fθ(.) [Classifier Backbone]
GeNIe - UniSiam[ResNet50] 77.3±0.6 87.2±0.4
GeNIe-Ada UniSiam[ResNet50] UniSiam[ResNet50] 78.6±0.6 87.9±0.4
GeNIe-Ada IN-1K[DeiT-B] UniSiam[ResNet50] 79.2±0.4 88.3±0.5

Next, the encoded image is partially noised based on the noise ratio r using the scheduler. The dif-
fusion model then de-noises the partially noised latent embedding for a total of NUM INFERENCE
STEPS ×r steps, with an additional input of a text prompt from a contradictory target class. Fi-
nally, the decoder decodes the de-noised latent embedding into the generated hard-negative image,
that contains the low-level features of the source image and the class/category of the contradictory
text-prompt.

Algorithm 2: PyTorch-style Pseudocode of GeNIe.

# StableDiffusionPipeline: Pre-trained diffusion model
# DPMSolverMultistepScheduler: Scheduler for forward and reverse diffusion
# encode_latents: Encodes an image into latent space
# decode_latents: Decodes latents back into an image

def AugmentGeNIe(source_image, target_prompt, percent_noise):
NUM_INFERENCE_STEPS = 50 # Number of steps for reverse diffusion
NUM_TRAIN_STEPS = 1000 # Number of steps for forward diffusion

# Initialize the stable diffusion pipeline and scheduler
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5")
scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

# Encode the source image into latent space
latents = encode_latents(source_image)

# Forward Diffusion
noise = torch.randn(latents.shape) # Generate random noise
timestep = torch.Tensor([int(NUM_TRAIN_STEPS * percent_noise)]) # Calculate timestep
latents_noise = scheduler.add_noise(latents, noise, timestep) # Add noise to latents

# Reverse Diffusion
latents = pipe(

prompt=target_prompt,
percent_noise=percent_noise,
latents=latents_noise,
num_inference_steps=NUM_INFERENCE_STEPS

)

# Decode latents back into an augmented image
augmented_image = decode_latents(latents)

return augmented_image

A.6 IMPACT OF GENIE WITH FINE-TUNING:

For all our experiments regarding GeNIe and GeNIe-Ada, we assume that the base diffusion
model is aware/has been trained on some samples of the target class. This facilitates the addi-
tion of the target class (input as text-prompt) into the generated augmentation, while retaining the
low-level features of the source image through partial noising. However, there can be a scenario
where the base diffusion model does not understand the contradictory text prompt and thus fails
to incorporate it into the generated image. As a solution, we can use textual inversion (Gal et al.,
2022b) to fine-tune the diffusion model on few images belonging the unknown target class to learn
the corresponding embeddings for the target categories. This fine-tuning allows us to learn embed-
dings specific to the target class, enabling the generation of the desired hard-negative examples. To
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empirically demonstrate the robustness of GeNIe on these scenarios, we present few-shot classifi-
cation results on mini-Imagenet using GeNIe hard-negative augmentations in Tab. A3, generated
by textual-inversion fine-tuning the diffusion model on images of the target class. Note that once
the diffusion model is fine-tuned, the procedure to generate hard-negatives using partial noising and
a contradictory text-prompt remains the same. As can be seen in Tab. A3, GeNIe+TxtInv performs
significantly better than DAFusion baseline. It is important to note that, in this case, we do not
utilize any information about the target category labels. DAFusion also employs textual-inversion-
based fine-tuning; however, it does so without generating hard-negative samples. This indicates that
GeNIe is effective even in scenario where the diffusion model is unaware of the target-class.

Table A3: mini-ImageNet: We use our augmentations on (5-way, 1-shot) and (5-way, 5-shot) few-shot settings
of mini-Imagenet dataset with 2 different backbones (ResNet-18 and 50), by using Textual-Inversion (Gal et al.,
2022b) on the target-classes. The number of generated images per class is 4 for 1-shot and 20 for 5-shot settings.

ResNet-18
Augmentation Method Pre-training 1-shot 5-shot
DAFusion 2024 UniSiam 2022 unsup. 64.3±1.8 82.0±1.4
GeNIe+TxtInv UniSiam 2022 unsup. 73.9±0.8 84.6±0.9

ResNet-50
Augmentation Method Pre-training 1-shot 5-shot
DAFusion 2024 UniSiam 2022 unsup. 65.7±1.8 83.9±1.2
GeNIe+TxtInv UniSiam 2022 unsup. 76.2±1.2 86.2±0.9

A.7 COMPUTATIONAL COMPLEXITY OF GENIE AND GENIE-ADA

Table A4: Computational Complexity
Augmentation Inf. Steps Runtime [sec/img]
Txt2Img T 4.12
GeNIe(r=0.5) 0.5× T 2.17
GeNIe(r=0.6) 0.6× T 2.59
GeNIe(r=0.7) 0.7× T 2.98
GeNIe(r=0.8) 0.8× T 3.46
GeNIe-Ada 2.1× T 9.22

In this section, we provide further details on the com-
putational complexity of GeNIe across multiple nois-
ing ratios r and GeNIe-Ada when operating on a
search space of r ∈ [0.6, 0.8]. Computational com-
plexity has been reported in terms of the total number
of inference/denoising-diffusion steps and the runtime in
seconds per generated image. The runtime has been aver-
aged over 10 different image-generations on an NVIDIA
Tesla-V100 GPU with 16GB VRAM with 50 steps of
denoising using a DPM scheduler with StableDiffusion
v1.5. As can be seen in Tab. A4, GeNIe is approximately 1/r times faster than the base diffusion
model (referred to as the Txt2Img augmentation baseline). This empirically corroborates with the
total number of denoising steps using in GeNIe vs. Txt2Img. Since, GeNIe-Ada scans for the
best hard-negative in r ∈ [0.6, 0.8], it incurs a computational cost of ≈ 2.2× the Txt2Img. Note
that the runtime for GeNIe-Ada reported in Tab. A4 also includes the runtime of performing a
batched forward pass through a ResNet-50 feature extraction backbone.

A.8 DETAILS OF FINE-GRAINED FEW-SHOT CLASSIFICATION

Here we provide details of Fine-grained Few-shot Classification experiments.

Datasets: We assess our method on several datasets: Food101 (Bossard et al., 2014) with 101 classes
of foods, CUB200 (Wah et al., 2011) with 200 bird species classes, Cars196 (Krause et al., 2013)
with 196 car model classes, and FGVC-Aircraft (Maji et al., 2013) with 41 aircraft manufacturer
classes. We provide detailed information around fine-grained datasets in Table A5. The reported
metric is the average Top-1 accuracy over 100 episodes. Each episode involves sampling 20 classes
and 1-shot from the training set, with the final model evaluated on the respective test set.

Implementation Details: We enhance the basic prompt by incorporating the superclass name for the
fine-grained dataset: “A photo of a <target class>, a type of <superclass>”. For instance,
in the food dataset and the burger class, our prompt reads: “A photo of a burger, a type of food.” No
additional augmentation is used for generative methods in this context. We generate 19 samples for
both cases of our method and also the baseline with weak augmentation.

Table A5: Train and test split details of the fine-grained datasets. We use the provided train set for few-shot
task generation, and the provided test sets for our evaluation. Aircraft dataset uses the manufacturer hierarchy.

Dataset Classes Train Test
samples samples

CUB200 (Wah et al., 2011) 200 5994 5794
Food101 (Bossard et al., 2014) 101 75750 25250
Cars (Krause et al., 2013) 196 8144 8041
Aircraft (Maji et al., 2013) 41 6,667 3333
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Figure A4: Key components of GeNIe: (i) careful choice of r and (ii) contradictory prompt are two key idea
behind GeNIe

A.9 FEW-SHOT CLASSIFICATION WITH RESNET-34 ON tieredIMAGENET

Table A6: tiered-ImageNet: Accuracies (% ± std) for 5-way, 1-shot and 5-way, 5-shot classification settings
on the test-set. We compare against various SOTA supervised and unsupervised few-shot classification base-
lines as well as other augmentation methods, with UniSiam (Lu et al., 2022) pre-trained ResNet-34 backbone.

ResNet-34
Augmentation Method Pre-training 1-shot 5-shot
Weak MAML + dist (Finn et al., 2017) sup. 51.7±1.8 70.3±1.7
Weak ProtoNet (Snell et al., 2017) sup. 52.0±1.2 72.1±1.5

Weak UniSiam + dist (Lu et al., 2022) unsup. 68.7±0.4 85.7±0.3
Weak UniSiam (Lu et al., 2022) unsup. 65.0±0.7 82.5±0.5
Strong UniSiam (Lu et al., 2022) unsup. 64.8±0.7 82.4±0.5
CutMix (Yun et al., 2019) UniSiam (Lu et al., 2022) unsup. 63.8±0.7 80.3±0.6
MixUp (Zhang et al., 2018) UniSiam (Lu et al., 2022) unsup. 64.1±0.7 80.0±0.6
Img2ImgL(Luzi et al., 2022) UniSiam (Lu et al., 2022) unsup. 66.1±0.7 83.1±0.5
Img2ImgH (Luzi et al., 2022) UniSiam (Lu et al., 2022) unsup. 70.4±0.7 84.7±0.5
Txt2Img(He et al., 2022b) UniSiam (Lu et al., 2022) unsup. 75.0±0.6 85.4±0.4
DAFusion (Trabucco et al., 2024) UniSiam (Lu et al., 2022) unsup. 64.1±2.1 82.8±1.4
GeNIe (Ours) UniSiam (Lu et al., 2022) unsup. 75.7±0.6 86.0±0.4
GeNIe-Ada (Ours) UniSiam (Lu et al., 2022) unsup. 76.9±0.6 86.3±0.2

We follow the same evaluation protocol here as mentioned in section 4.1. As summarized in Ta-
ble A6, GeNIe and GeNIe-Ada outperform all other data augmentation techniques.

A.10 ADDITIONAL DETAILS OF LONG-TAIL EXPERIMENTS

We present a comprehensive version of Table 4 to benchmark the performance with different back-
bone architectures (e.g., ResNet50) and to compare against previous long-tail baselines; this is de-
tailed in Table A8.

Implementation Details of LViT: We download the pre-trained ViT-B of LViT (Xu et al., 2023) and
finetune it with Bal-BCE loss proposed therein on the augmented dataset. Training takes 2 hours on
four NVIDIA RTX 3090 GPUs. We use the same hyperparameters as in (Xu et al., 2023) for fine-
tuning: 100 epochs, lr = 0.008, batch size of 1024, CutMix and MixUp for the data augmentation.

Implementation Details of VL-LTR: We use the official code of VL-LTR (Tian et al., 2022) for our
experiments. We use a pre-trained CLIP ResNet-50 backbone. We followed the hyperparameters
reported in VL-LTR (Tian et al., 2022). We augment only “Few” category and train the backbone
with the VL-LTR (Tian et al., 2022) method. Training takes 4 hours on 8 NVIDIA RTX 3090 GPUs.

A.11 EXTRA COMPUTATION OF GENIE-ADA

Given that GeNIe-Ada searches for the best hard-negative between multiple noise-ratios r’s, it natu-
rally requires a higher compute budget than txt2Img that only uses r = 1. For this experiment, we
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Table A7: Few-shot classification comparison of GeNIe-Ada with Txt2Img on miniImagenet.

Method ResNet-18 ResNet-34 ResNet-50
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Txt2Img 76.9±1.0 86.5±0.9 77.1±0.8 86.7±1.0 77.2±1.3 86.8±0.9
GeNIe-Ada 77.7±0.8 87.4±1.0 78.3±0.9 87.8±0.9 79.1±1.1 88.4±1.2

use GeNIe-Ada with r ∈ {0.6, 0.7, 0.8} to compare with Txt2Img. Based on this, we only have
3 paths, with steps of 0.1), and for each of which we go through partial reverse diffusion process.
E.g. for r = 0.6 we do 30 steps instead of standard 50 steps of Stable Diffusion. This practically
breaks down the total run-time of GeNIe-Ada to approximately 2 times that of the standard reverse
diffusion (GeNIe-Ada: total r = 0.6 + 0.7 + 0.8 = 2.1 vs Txt2Img total r = 1). Thus, to be fair,
we generate twice as many Txt2Img augmentations as compared to GeNIe-Ada to keep a constant
compute budget across the methods, following your suggestion. The results are shown in Table A7.
As can be seen, even in this new setting, GeNIe-Ada offers a performance improvement of 0.8% to
1.9% across different backbones.

Table A8: Long-Tailed ImageNet-LT: We compare different augmentation methods on ImageNet-LT and
report Top-1 accuracy for “Few”, “Medium”, and “Many” sets. † indicates results with ResNeXt50. ∗: indicates
training with 384 resolution so is not directly comparable with other methods with 224 resolution. On the “Few”
set and LiVT method, our augmentations improve the accuracy by 11.7 points compared to LiVT original
augmentation and 4.4 points compared to Txt2Img.

ResNet-50
Method Many Med. Few Overall Acc

CE (Cui et al., 2019) 64.0 33.8 5.8 41.6
LDAM (Cao et al., 2019) 60.4 46.9 30.7 49.8
c-RT (Kang et al., 2020) 61.8 46.2 27.3 49.6
τ -Norm (Kang et al., 2020) 59.1 46.9 30.7 49.4
Causal (Tang et al., 2020) 62.7 48.8 31.6 51.8
Logit Adj. (Menon et al., 2021) 61.1 47.5 27.6 50.1
RIDE(4E)† (Wang et al., 2021) 68.3 53.5 35.9 56.8
MiSLAS (Zhong et al., 2021) 62.9 50.7 34.3 52.7
DisAlign (Zhang et al., 2021a) 61.3 52.2 31.4 52.9
ACE† (Cai et al., 2021) 71.7 54.6 23.5 56.6
PaCo† (Cui et al., 2021a) 68.0 56.4 37.2 58.2
TADE† (Zhang et al., 2021b) 66.5 57.0 43.5 58.8
TSC (Li et al., 2022f) 63.5 49.7 30.4 52.4
GCL (Li et al., 2022e) 63.0 52.7 37.1 54.5
TLC (Li et al., 2022a) 68.9 55.7 40.8 55.1
BCL† (Zhu et al., 2022) 67.6 54.6 36.6 57.2
NCL (Li et al., 2022c) 67.3 55.4 39.0 57.7
SAFA (Hong et al., 2022) 63.8 49.9 33.4 53.1
DOC (Wang et al., 2022) 65.1 52.8 34.2 55.0
DLSA (Xu et al., 2022) 67.8 54.5 38.8 57.5
ResLT (Cui et al., 2022) 63.3 53.3 40.3 55.1
PaCo (Cui et al., 2021b) 68.2 58.7 41.0 60.0
LWS (Kang et al., 2019) 62.2 48.6 31.8 51.5
Zero-shot CLIP (Radford et al., 2021) 60.8 59.3 58.6 59.8
DRO-LT (Samuel & Chechik, 2021) 64.0 49.8 33.1 53.5
VL-LTR (Tian et al., 2022) 77.8 67.0 50.8 70.1
Cap2Aug (Roy et al., 2023) 78.5 67.7 51.9 70.9
GeNIe-Ada 79.2 64.6 59.5 71.5

ViT-B
LiVT* (Xu et al., 2023) 76.4 59.7 42.7 63.8

ViT (Dosovitskiy et al., 2021) 50.5 23.5 6.9 31.6
MAE (He et al., 2022a) 74.7 48.2 19.4 54.5
DeiT (Touvron et al., 2022) 70.4 40.9 12.8 48.4
LiVT (Xu et al., 2023) 73.6 56.4 41.0 60.9
LiVT + Img2ImgL 74.3 56.4 34.3 60.5
LiVT + Img2ImgH 73.8 56.4 45.3 61.6
LiVT + Txt2Img 74.9 55.6 48.3 62.2
LiVT + GeNIe (r=0.8) 74.5 56.7 50.9 62.8
LiVT + GeNIe-Ada 74.0 56.9 52.7 63.1
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Figure A5: Analyzing the semantic trajectory of GeNIe augmentations across 10 different images of class
Mushroom (source image) to class Volcano (target class).

A.12 FURTHER ANALYSIS OF SEMANTIC SHIFTS USING GENIE

In Fig. 5, we empirically demonstrate that by increasing the noise ratio from 0 to 1, the semantic
category of the source image transitions gradually from the source class to the text-prompt’s target
class. To establish this further, we now choose 10 samples of a source class of Mushroom and gen-
erate GeNIe augmentations with the target class of a Volcano. The generated images corresponding
to each r ∈ [0, 1] are passed through a DINOv2 encoder and their embeddings are projected onto
their 2 principle eigen vectors using PCA. The trajectories extracted from each of these 10 source
images is depicted collectively and individually in Fig. A5. It can be noticed that each of the trajec-
tories demonstrate a gradual transition of semantic category from the source to the target class, with
a sparse distribution of points usually observed within [0.4, 0.6]. This is also observed in the plot
on the bottom-right side of the figure where all trajectories are collectively plotted. Here, however,
there is no clear range of r where a sparse distribution of points can be observed, thus indicating that
each source image has its own optimal r value. This can be attributed to the inter-sample variances
of images belonging to the same class. Since GeNIe-Ada operates on each individual source image
and target class text-prompt, it facilitates the selection of the best hard-negative per sample.

A.13 HOW DOES GENIE CONTROL WHICH FEATURES ARE RETAINED OR CHANGED?

We instruct the diffusion model to generate an image by combining the latent noise of the source
image with the textual prompt of the target category. This combination is controlled by the amount
of added noise and the number of reverse diffusion iterations. This approach aims to produce an
image that aligns closely with the semantics of the target category while preserving the background
and features from the source image that are unrelated to the target.

To demonstrate this, in Figure A4, We are progessivley moving towards the two key components of
GeNIe: (i) careful choice of r and (ii) contradictory prompt. The input image is a bird in a cage. The
top row shows a Stable Diffusion model, unprompted. As can be seen, such a model can generate
anything (irrespective of the input image) with a large r. Now prompting the same model with “a
photo of a bird” allows the model to preserve low-level and contextual features of the input image
(up to r = 0.7 and 0.8), until for a large r ≥ 0.9 it returns a bird but the context has nothing to do
with the source input. This illustrates how a careful choice of r can help preserve such low-level
features, and is a key idea behind GeNIe. However, we also need a semantic switch to a different
target class as shown in the last row where a hardly seen image of a dog in a cage is generated by a
combination of a careful choice of r and the contradictory prompt - leading to the full mechanics of
GeNIe. This sample now serves as hard negative for the source image (bird class).

A.14 ANALYZING NOISE EFFECTS IN BI-DIRECTIONAL TRANSFORMATIONS WITH GENIE

To further explore the effect of noise ratio r in GeNIe, we conducted an experiment where GeNIe
was applied twice to transform between a source image and a target category. For this experiment,
images from the “mushroom” category were used as the source, and “volcano” served as the target
category. In the first step, we applied GeNIe using a mushroom image as the source and a volcano
prompt as the target. In the second step, we reversed the process: the GeNIe-generated volcano
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image from the first step was used as the source, with the target prompt set to mushroom. Impor-
tantly, using a smaller noise ratio, r during the generation of the volcano image helps preserve more
low-level visual features from the original mushroom source image. Consequently, when the roles
of source and target are flipped in the second step, the final image retains a stronger resemblance
to the original mushroom source image for lower noise ratios. This phenomenon is visualized in
Fig. A6. As shown, a lower noise ratio during the first step results in the preservation of more visual
features, leading to a final image that more closely resembles the original mushroom source.

Figure A6: Trajectory of GeNIe augmentations: To further analyze the effect of noise ratio r in GeNIe, we
conducted an experiment using a set of augmentations generated from 10 different source images in the ”mush-
room” category, with a target label of ”Volcano,” across varying noise ratios. Similar to Fig. 5, all generated
augmentations were processed through the DinoV2 ViT-G model, which serves as our oracle, to extract their
embeddings. For visualization, we applied PCA to these embeddings. Next, we selected one augmentation
with a specific noise ratio, (r), and used it as the source image in for the ”volcano” category in GeNIe, with
the target prompt set to ”mushroom.” As observed, using a lower noise ratio samples as the source for ”vol-
cano” preserves more low-level visual features from the original mushroom source image. Consequently, after
a second round of applying GeNIe, the resulting augmentations (even rows) tend to more closely resemble the
original source image (first image in the corresponding odd rows above). The left plot presents the embeddings
of all 10 samples, while the right plot provides a detailed visualization of one sample, showcasing the impact
of varying noise ratios used in the second step of applying GeNIe.
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A.15 MORE VISUALIZATIONS

Additional qualitative results resembling the style presented in Fig. 4 are presented in Fig. A8, and
more visuals akin to Fig. 2 can be found in Fig. A9. Moreover, we also present more visualization
similar to the style in Fig. 5 in Fig. A7.

Figure A7: Effect of noise in GeNIe: Similar to Fig. 5, we pass all the generated augmentations through the
DinoV2 ViT-G model, which acts as our oracle model, to obtain their associated embeddings. Subsequently,
we employ PCA for visualization purposes. The visualization reveals that the magnitude of semantic transfor-
mations is contingent upon both the source image and the specified target category.
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Figure A8: Visualization of Generative Samples: More visualization akin to Fig. 4. We compare GeNIe
with two baselines: Img2ImgL augmentation uses both image and text prompt from the same category,
resulting in less challenging examples. Txt2Img augmentation generates images based solely on a text
prompt, potentially deviating from the task’s visual domain. GeNIe augmentation incorporates the target
category name in the text prompt along with the source image, producing desired images with an optimal
amount of noise, and balancing the impact of the source image and text prompt.
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Figure A9: Effect of noise in GeNIe: Akin to Fig. 2, we use GeNIe to create augmentations with varying noise
levels. As is illustrated in the examples above, a reduced amount of noise leads to images closely mirroring the
semantics of the source images, causing a misalignment with the intended target label.
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