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Abstract

The efficacy of availability poisoning, a method of poisoning data by injecting imperceptible per-
turbations to prevent its use in model training, has been a hot subject of investigation. Previous
research suggested that it was difficult to effectively counteract such poisoning attacks. However, the
introduction of various defense methods has challenged this notion. Due to the rapid progress in this
field, the performance of different novel methods cannot be accurately validated due to variations
in experimental setups. To further evaluate the attack and defense capabilities of these poisoning
methods, we have developed a benchmark — APBench for assessing the efficacy of adversarial
poisoning. APBench consists of 9 state-of-the-art availability poisoning attacks, 8 defense algorithms,
and 4 conventional data augmentation techniques. We also have set up experiments with varying
different poisoning ratios, and evaluated the attacks on multiple datasets and their transferability
across model architectures. We further conducted a comprehensive evaluation of 2 additional attacks
specifically targeting unsupervised models. Our results reveal the glaring inadequacy of existing
attacks in safeguarding individual privacy. APBench is open source and available to the deep learning
community1.

1 Introduction

Recent advancements of deep neural networks (DNNs) (LeCun et al., 2015; Schmidhuber, 2015; He et al., 2016) heavily
rely on the abundant availability of data resources (Deng et al., 2009; Russakovsky et al., 2015; Karras et al., 2020).
However, the unauthorized collection of large-scale data through web scraping for model training has raised concerns
regarding data security and privacy. In response to these concerns, a new paradigm of practical and effective data
protection methods has emerged, known as availability poisoning attacks (APA) (Tao et al., 2021; Yuan & Wu, 2021;
Fowl et al., 2021; Huang et al., 2021; Wu et al., 2023; Fu et al., 2022; Ren et al., 2023; He et al., 2023; Sandoval-Segura
et al., 2022b; Feng et al., 2019; Yu et al., 2022; He et al., 2023; Ren et al., 2023) or unlearnable example attacks. These
poisoning methods inject small perturbations into images that are typically imperceptible to humans, in order to hinder
the model’s ability to learn the original features of the images. Recently, the field of deep learning has witnessed
advancements in defense strategies (Liu et al., 2023; Qin et al., 2023; Dolatabadi et al., 2023; Huang et al., 2021)
that hold the potential to challenge APAs, thereby undermining their claimed effectiveness and robustness. These
defenses reveal the glaring inadequacy of existing APAs in safeguarding individual privacy in images. Consequently,
we anticipate an impending arms race between attack and defense strategies in the near future.

However, evaluating the performance of these new methods across diverse model architectures and datasets poses a
significant challenge due to variations in experimental settings of recent literatures. In addition, researchers face the
daunting task of staying abreast of the latest methods and assessing the effectiveness of various competing attack-defense
combinations. This could greatly hamper the development and empirical exploration of novel attack and defense
strategies.

To tackle this challenge, we propose the APBench, a benchmark specifically designed for availability poisoning attacks
and defenses. It involves implementing poisoning attack and defense mechanisms under standardized perturbations
and training hyperparameters, in order to ensure fair and reproducible comparative evaluations. APBench comprises a
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range of availability poisoning attacks and defense algorithms, and commonly-used data augmentation policies. This
comprehensive suite allows us to evaluate the effectiveness of the poisoning attacks thoroughly.

Our contributions can be summarized as follows:

• An open source benchmark for state-of-the-art availability poisoning attacks and defenses, including 9
supervised and 2 unsupervised poisoning attack methods, 8 defense strategies and 4 common data augmentation
methods.

• We conduct a comprehensive evaluation competing pairs of poisoning attacks and defenses.

• We conducted experiments across 4 publicly available datasets, and also extensively examined scenarios of
partial poisoning, increased perturbations, the transferability of attacks to 4 CNN and 2 ViT models under
various defenses, and unsupervised learning. We provide visual evaluation tools such as t-SNE, Shapley value
map and Grad-CAM to qualitatively analyze the impact of poisoning attacks.

The aim of APBench is to serve as a catalyst for facilitating and promoting future advancements in both availability
poisoning attack and defense methods. By providing a platform for evaluation and comparison, we aspire to pave the
way for the development of future availability poisoning attacks that can effectively preserve utility and protect privacy.

2 Related Work

2.1 Availability Poisoning Attacks

Availability poisoning attacks (APAs) belong to a category of data poisoning attacks (Goldblum et al., 2022) that adds
a small perturbation to images, that is often imperceptible to humans. However, the objective contrasts with that of
traditional data poisoning. The purpose of these perturbations is to protect individual privacy from deep learning
algorithms, preventing DNNs from effectively learning the features present in the images. The attacker’s goal is to
thus render their data unlearnable with perturbations, hindering the unauthorized trainer from utilizing the data to learn
models that can generalize effectively to the original data distribution. The intent of APAs is therefore benign rather
than malicious as generally assumed of data poisoning attacks. We typically assume that the attacker publishes (a
subset of) the images, which get curated and accurately labeled by the defender to train on them without consent from
the attacker.

Formally, consider a source dataset comprising original examples Dclean = {(x1, y1), . . . , (xn, yn)} where xi ∈ X
denotes an input image and yi ∈ Y represents its label. The objective of the attacker is thus to construct a set
of availability perturbations δ, such that models trained on the set of availability poisoned examples Dpoi(δ) =
{(x + δx, y) | (x, y) ∈ Dclean} are expected to perform poorly when evaluated on a test set Dtest sampled from the
distribution S:

max
δ

E(xi,yi)∼Dtest [L(fθ?(δ)(xi), yi)],

s.t. θ?(δ) = argmin
θ

E(x̂i,yi)∼Dpoi(δ) L(fθ(x̂i), yi),
(1)

where L denotes the loss function, usually the softmax cross-entropy loss. In order to limit the impact on the original
utility of images, the perturbation δi is generally constrained within a small ε-ball of `p distance.

To enforce a small perturbation budget, recent methods typically constrain their perturbations within a small `p-ball
of ε radius, where typically p ∈ {0, 2, ∞}. DeepConfuse (DC) (Feng et al., 2019) proposes to use autoencoders to
generate training-phase adversarial perturbations. Neural tangent generalization attacks (NTGA) (Yuan & Wu, 2021)
approximates the target model as a Gaussian process (Jacot et al., 2018) using the generalized neural tangent kernel,
and solves a bi-level optimization for perturbations. Error-minimizing attacks (EM) (Huang et al., 2021) minimizes the
training error of the perturbed images relative to their original labels on the target model, creating shortcuts for the
data to become “unlearnable” by the target model. Building upon EM, robust error-minimizing attacks (REM) (Fu
et al., 2022) use adversarially trained models to generate perturbations in order to counter defense with adversarial
training. Hypocritical (Tao et al., 2021) also generates error-minimizing perturbations similar to EM, but instead uses a
pretrained surrogate model. Targeted adversarial poisoning (TAP) (Fowl et al., 2021), inspired by (Nakkiran, 2019),
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found adversarial examples could be used for availability poisoning. In contrast to the above approaches, indiscriminate
poisoning (UCL) (He et al., 2023) and transferable unlearnable examples (TUE) (Ren et al., 2023) instead consider
availability poisoning for unsupervised learning. On the other hand, `2 and `0 perturbation-based poisoning methods do
not require a surrogate model. They achieve poisoning by searching for certain triggering patterns to create shortcuts
in the network. Besides the above `∞-bounded methods, Linear-separable poisoning (LSP) (Yu et al., 2022) and
Autoregressive Poisoning (AR) (Sandoval-Segura et al., 2022b) both prescribe perturbations within an `2 perturbation
budget. Specifically, LSP generates randomly initialized linearly separable color block perturbations, while AR fills the
starting rows and columns of each channel with Gaussian noise and uses an autoregressive process to fill the remaining
pixels, generating random noise perturbations. One Pixel Shortcut (Wu et al., 2023) (OPS), as an `0-bounded poisoning
method, perturbs only a single pixel in the training image to achieve strong poisoning in terms of usability. Figure 1
provides visual examples of these attacks.

Clean

DC NTGA HYPOEM REM TAP LSP AR OPS

Figure 1: Visualizations of unlearnable CIFAR-10 images with corresponding perturbations. Perturbations are normal-
ized for visualization.

2.2 Availability Poisoning Defenses

The goal of the defender is to successfully train a model with good generalization abilities (e.g., test accuracies on
natural unseen images) on protected data. Generally, the defender can control the training algorithm, and only have
access to a training data set with data poisoned either partially or fully. The objective of the defender is thus to find a
novel training algorithm g(Dpoi) that trains models to generalize well to the original data distribution:

mingE(xi,yi)∼Dtest [L(fθ?(xi), yi)], s.t. θ? = g(Dpoi). (2)

Notably, if the method employs the standard training loss but performs novel image transformations h, then g can be
further specialized as follows:

g(Dpoi) = argminθ E(x̂i,yi)∼Dpoi(δ) L(fθ(h(x̂i)), yi). (3)

Currently, defense methods against perturbative availability poisoning can be mainly classified into two categories:
preprocessing and training-phase defenses. Data preprocessing methods preprocess the training images to eliminate
the poisoning perturbations prior to training. Image shortcuts squeezing (ISS) (Liu et al., 2023) consists of simple
countermeasures based on image compression, including grayscale transformation, JPEG compression, or bit-depth
reduction (BDR) to perform poison removal. Recently, AVATAR (Dolatabadi et al., 2023) leverages the method
proposed in DiffPure (Nie et al., 2022) to employ diffusion models to disrupt deliberate perturbations while preserving
semantics in the training images. On the other hand, training-phase defense algorithms apply specific modifications
to the training phase to defense against availability attacks. Adversarial training has long been considered the most
effective defense mechanism (Huang et al., 2021; Fu et al., 2022) against such attacks. Recent report (Sandoval-Segura
et al., 2022a) finds that peak accuracy can be reached early in the training of availability poisons, and thus early stopping
can be an effective mean of training-phase defense. Adversarial augmentations (Qin et al., 2023) sample multiple
augmentations on one image, and train models on the maximum loss of all augmented images to prevent learning from
poisoning shortcuts. For referential baselines, APBench also includes commonly used data augmentation techniques
such as Gaussian blur, random crop and flip (standard training), CutOut (DeVries & Taylor, 2017), CutMix (Yun et al.,
2019), and MixUp (Zhang et al., 2018), and show their (limited) effect in mitigating availability poisons.
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2.3 Related Benchmarks

Availability poisoning is closely connected to the domains of adversarial and backdoor attack and defense algorithms.
Adversarial attacks primarily aim to deceive models with adversarial perturbations during inference to induce misclassi-
fications. There are several libraries and benchmarks available for evaluating adversarial attack and defense techniques,
such as Foolbox (Rauber et al., 2020), AdvBox (Goodman et al., 2020), and RobustBench (Croce et al., 2020).

Backdoor or data poisoning (Cinà et al., 2023) attacks focus on injecting backdoor triggers into the training algorithm or
data respectively, causing trained models to misclassify images containing these triggers while maintaining or minimally
impacting clean accuracy. In contrast to APAs, such attacks introduce hidden behaviors into the model that can be
triggered by specific inputs, often for malicious purposes. Benchmark libraries specifically designed for backdoor
attacks and defenses include TrojanZoo (Pang et al., 2020), Backdoorbench (Wu et al., 2022), and Backdoorbox (Li
et al., 2023). Moreover, (Schwarzschild et al., 2021; Geiping et al., 2021) introduce benchmarks and frameworks for
data poisoning attacks.

However, there is currently a lack and an urgent need of a dedicated and comprehensive benchmark that standardizes
and evaluates availability poisoning attack and defense strategies. To the best of our knowledge, APBench is the first
benchmark that fulfills this purpose. It offers an extensive library of recent attacks and defenses, explores various
perspectives, including the impact of poisoning rates and model architectures, as well as attack transferability. We hope
that APBench can make significant contributions to the community and foster the development of future availability
attacks for effective privacy protection.

3 A Unified Availability Poisoning Benchmark

As shown in Figure 2, APBench consists of three main components: (a) The availability poisoning attack module. This
library includes a set of representative availability poisoning attacks that can generate unlearnable versions of a given
clean dataset. (b) The poisoning defense module. This module integrates a suite of state-of-the-art defenses that can
effectively mitigate the unlearning effect and restore clean accuracies to a certain extent. (c) The evaluation module.
This module can efficiently analyze the performance of various availability poisoning attack methods using accuracy
metrics and visual analysis strategies.

We built an extensible codebase as the foundation of APBench. In the attack module, we provide a total of 9 availability
poisoning attacks of 3 different perturbation types (`p) for supervised learning, and 2 attacks for unsupervised learning.
For each availability poisoning attack method, we can generate their respective poisoned datasets. This module also
allows us to further expand to different perturbations budgets, poisoning ratios, and easily extend to future poisoning
methods. Using the poisoned datasets generated by the attack module, we can evaluate defenses through the defense
module. The goal of this module is to ensure that models trained on unlearnable datasets can still generalize well on
clean data. The defense module primarily achieves poisoning mitigation through data preprocessing or training-phase
defenses. Finally, the evaluation module computes the accuracy metrics of different attacks and defense combinations,
and can also perform qualitative visual analyses to help understand the characteristics of the datasets.

Our benchmark currently includes 9 supervised and 2 unsupervised availability poisoning attacks, 8 defense algorithms,
and 4 traditional image augmentation methods. In Table 1 and Table 2, we provide a brief summary of the properties of
attack and defense algorithms. More detailed descriptions for each algorithm are provided in Appendix B.

4 Evaluations

Datasets We evaluated our benchmark on 4 commonly used datasets (CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and an ImageNet (Deng et al., 2009) subset) and 5
mainstream models (ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2016), MobileNetV2 (Sandler et al., 2018), and
DenseNet-121 (Huang et al., 2017)). To ensure a fair comparison between attack and defense methods, we used only
the basic version of training for each model. Appendix A summarizes the specifications of the datasets and the test
accuracies achievable through standard training on clean training data, and further describes the detail specifications of
each dataset.
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Figure 2: The overall system design of APBench.

Attacks and defenses We evaluated combinations of availability poisoning attacks and defense methods introduced
in Section 3. Moreover, we explored 5 different data poisoning rates and 5 different models. In addition, We also
explore two availability poisonings for unsupervised learning (UCL (He et al., 2023) and TUE (Ren et al., 2023)) and
evaluate them on the recently proposed defenses (Gray, JPEG, Early stopping (ES), UEraser-Lite (Qin et al., 2023), and
AVATAR (Dolatabadi et al., 2023)). The implementation details of all algorithms and additional results can be found in
Appendix B.

Types of Threat Models We can classify adversarial attacks based on three distinct availability poisoning threat models:
`∞-bounded attacks (DC, NTGA, EM, REM, TAP, and HYPO); `2-bounded attacks (LSP and AR); an `0-bounded
attack (OPS). Given that `0 perturbations resist disruption from image preprocessing or augmentations and remain
unaffected by `∞ adversarial training, the `0-bounded OPS attack demonstrates robustness against a plethora of defenses.
Conversely, in terms of stealthiness, the `0 attacks are less subtle than their `∞ and `2 counterparts, as illustrated
in Figure 1. Perturbations bounded by both `∞ and `2 are comparable w.r.t. the degree of visual stealthiness and
effectiveness. Importantly, the two `2-bounded attacks (LSP and AR) do not require surrogate model training, and are
thus more efficient in the unlearnable examples synthesis.

Training settings We trained the CIAFR-10, CIFAR-100 and ImageNet-subset models for 200 epochs and the SVHN
models for 100 epochs. We used the stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a
learning rate of 0.1 by default. As for unsupervised learning, all experiments are trained for 500 epochs with the SGD
optimizer. The learning rate is 0.5 for SimCLR (Chen et al., 2020a) and 0.3 for MoCo-v2 (Chen et al., 2020b). Please
note that we generate sample-wise perturbations for all availability poisoning attacks. Specific settings for each defense
method may have slight differences, and detailed information can be found in the Appendix C.

Standard Scenario To start, we consider a common scenario where both the surrogate model and target model are
ResNet-18, and the poisoning rate is set to 100%. We first evaluate the performance of the supervised poisoning
methods against 4 state-of-the-art defense mechanisms and 4 commonly used data augmentation strategies. Table 3
presents the evaluation results on CIFAR-10 from our benchmark. It is evident that the conventional data augmentation
methods appear to be ineffective against all poisoning methods. Yet, even simple image compression methods (BDR,
grayscale, and JPEG corruption from ISS (Liu et al., 2023)) demonstrate a notable effect in mitigating the poisoning
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Table 1: Availability poisoning attack algorithms implemented in APBench. “Type” and “Budget” respectively denotes
the type of perturbation and its budget. “Mode” denotes the training mode, where “S” and “U” and respectively mean
supervised and unsupervised training. “No surrogate” denotes whether the attack requires access to a surrogate model
for perturbation generation. “Class-wise” and “Sample-wise” indicate if the attack supports class-wise and sample-wise
perturbation generation. “Stealthy” denotes whether the attack is stealthy to human.

Attack Method Type Budget Mode No surrogate Class-wise Sample-wise Stealthy

DC (Feng et al., 2019)

`∞ 8/255

S X X
NTGA (Yuan & Wu, 2021) S X X
HYPO (Tao et al., 2021) S X X
EM (Huang et al., 2021) S X X X
REM (Fu et al., 2022) S X X X
TAP (Fowl et al., 2021) S X X
UCL (He et al., 2023) U X X X
TUE (Ren et al., 2023) U X X

LSP (Yu et al., 2022)
`2

1.30 S X � X
AR (Sandoval-Segura et al., 2022b) 1.00 S X � X X

OPS (Wu et al., 2023) `0 1 S X X

Table 2: Availability poisoning defense algorithms implemented in APBench.

Defense Method Type Time Cost Description

Standard

Data augmentations

Low Random image cropping and flipping
CutOut (DeVries & Taylor, 2017) Low Random image erasing
MixUp (Zhang et al., 2018) Low Random image blending
CutMix (Yun et al., 2019) Low Random image cutting and stitching

Gaussian (used in (Liu et al., 2023))

Data preprocessing

Low Image blurring with a Gaussian kernel
BDR (used in (Liu et al., 2023)) Low Image bit-depth reduction
Gray (used in (Liu et al., 2023)) Low Image grayscale transformation
JPEG (used in (Liu et al., 2023)) Low Image compression
AVATAR (Dolatabadi et al., 2023) High Image corruption and restoration

Early stopping (Sandoval-Segura et al., 2022a)

Training-phase defense

Low Finding peak validation accuracy
UEraser-Lite (Qin et al., 2023) Low Stronger data augmentations
UEraser-Max (Qin et al., 2023) High Adversarial augmentations
AT (Madry et al., 2017) High Adversarial training

attacks, but fails to achieve high clean accuracy. Despite requiring more computational cost or additional resources
(pretrained diffusion models for AVATAR), methods such as UEraser-Max (Qin et al., 2023) and AVATAR (Dolatabadi
et al., 2023), generally surpass the image compression methods from ISS in terms of effectiveness. While AVATAR
is inferior to UEraser-Max in gaining accuracy, it decouples the defense into an independent data sanitization phase,
allowing it to be directly used in all existing training scenarios. While the early stopping (ES) method can be somewhat
effective as a defense, is not usually considered a good one. mainly due to the fact that the peak accuracy of the
availability poisoning is not ideal. Adversarial training appears effective but in many cases is outperformed by even a
simple JPEG compression, it also fails notably against OPS, as the `∞ perturbation budget cannot mitigate `0 threats.
We further conduct experiments on the CIFAR-100, SVHN, and ImageNet-subset datasets, and the results are shown
in Table 4.

Our findings indicate that perturbations constrained by traditional `p norms are ineffective against adversarial augmen-
tation (UEraser-Max), and image restoration by pretrained diffusion models (AVATAR), as they break free from the
assumption of `p constraints. Even simple image compression techniques (JPEG, Grayscale, and BDR) can effectively
remove the effect of perturbations. At this stage, availability poisoning attacks that rely on `p-bounded perturbations
may not be as effective as initially suggested by the relevant attacks.
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Table 3: Test accuracies (%) of models trained on poisoned CIFAR-10 datasets. The model trained on a clean CIFAR-10
dataset attains an accuracy of 94.32%.

Method Standard CutOut CutMix MixUp Gaussian BDR Gray JPEG ES U-Max AVATAR AT

DC 15.19 19.94 17.91 25.07 16.10 67.73 85.55 83.57 26.08 92.17 82.10 76.85
EM 20.78 18.79 22.28 31.14 14.71 37.94 92.03 80.72 25.39 93.61 75.62 82.51
REM 17.47 21.96 26.22 43.07 21.80 58.60 92.27 85.44 31.32 92.43 82.42 77.46
HYPO 70.38 69.04 67.12 74.25 62.17 74.82 63.35 85.21 70.52 88.44 85.94 81.49
NTGA 22.76 13.78 12.91 20.59 19.95 59.32 70.41 68.72 28.19 86.78 86.22 69.70
TAP 6.27 9.88 14.21 15.46 7.88 70.75 11.01 84.08 39.54 79.05 87.75 79.92

LSP 13.06 14.96 17.69 18.77 18.61 53.86 64.70 80.14 29.10 92.83 76.90 81.38
AR 11.74 10.95 12.60 14.15 13.83 36.14 35.17 84.75 44.29 90.12 88.60 81.15

OPS 14.69 52.98 64.72 49.27 13.38 37.32 19.88 78.48 38.20 77.99 66.16 14.95

Table 4: Test accuracies (%) on poisoned CIFAR-100, SVHN and ImageNet-subset datasets.

Dataset Method Standard CutOut CutMix MixUp Gaussian BDR Gray JPEG ES U-Max

CIFAR-100

EM 3.03 4.15 3.98 6.46 2.99 34.10 59.14 58.71 7.06 68.81
REM 3.73 4.00 3.71 10.90 3.59 29.16 57.47 55.60 10.99 67.72
LSP 2.56 2.33 4.52 4.86 1.71 27.12 39.45 52.82 9.52 68.31
AR 1.87 1.63 3.17 2.35 2.62 31.15 16.13 54.73 26.58 55.95

SVHN

EM 10.33 13.38 10.77 12.79 8.82 36.65 65.66 86.14 13.47 90.24
REM 14.02 18.92 9.55 19.56 7.54 42.52 19.59 90.58 19.61 88.26
LSP 12.16 12.98 8.17 18.86 7.15 26.67 16.90 84.06 12.91 90.64
AR 19.23 14.92 6.71 13.52 7.75 39.24 10.00 92.46 89.32 90.07

ImageNet-100
EM 2.94 4.05 4.73 4.15 3.15 6.45 12.20 31.73 8.80 44.07
REM 3.66 4.13 4.78 3.94 4.28 4.03 3.95 40.98 17.19 42.14
LSP 38.52 40.56 29.78 7.85 42.68 26.58 25.18 36.83 39.52 63.28

4.1 Challenging Scenarios

To further investigate the effectiveness and robustness of availability poisoning attacks and defenses, we conducted
evaluations in more challenging scenarios. We considered partial poisoning scenarios, larger perturbation poisoning,
and the attack transferability to different models.

Partial poisoning In realistic scenarios, it is difficult for an attacker to achieve modification of the entire dataset. We
thus investigate the impact of poisoning rate on the performance of availability poisoning. Figure 3 presents the results
on CIFAR-10 and ResNet-18, w.r.t. each poisoning rate for attack-defense pairs, where each subplot corresponds to a
specific poisoning attack method. We explore four different poisoning rates (20%, 40%, 60%, 80%).

No defense Grayscale JPEG UEraser-Max

20 40 60 80
75

80

85

90
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(a) EM.
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(b) REM.
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(d) AR.

Figure 3: The efficacy in test accuracies (%, vertical axes) of defenses (No defense, Grayscale, JPEG, and UEraser-Max)
against different partial poisoning attacks including EM (a), REM (b), LSP (c), and AR (d) with poisoning ratios
(horizontal axes) ranging from 20% to 80%.

Privacy protection under partial poisoning As can be seen in Figure 3, the test accuracy of the model in the case of
partial poisoning is only slightly lower than that in the case of a completely clean dataset. This raises the following
question: Are APAs effective in protecting only a portion of the training data? To answer, we introduce poisoning
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perturbations with APAs to a varying portion of the training data, and investigate how well the models learn the origin
features that exist in the poisoned images for different poisoning rates. For this, Figure 4 evaluates and compares the
mean losses of the unlearnable images used during training (“Unlearnable”), the origin images of the unlearnable part
(“Clean”), and for reference, the mean losses of images unseen by the model from the test set (“Test”), and “Train”
means the loss of the clean part of the training set. We find that the losses on the original images of the unlearnable
part is similar to that of the test set, or even lower. This suggests that the availability poisoning perturbations can
reasonably protect the private data against undefended learning. For a similar comparison of accuracies, please
refer to Appendix C.1.

Unlearnable Original Unseen Train

20 40 60 80

10 2

10 1

100

(a) EM.

20 40 60 80

10 2

10 1

100

(b) REM.

20 40 60 80

10 2

10 1

100

(c) LSP.

20 40 60 80

10 2

10 1

100

(d) AR.

Figure 4: The mean losses (vertical axes) indicate that original features in unlearnable examples are not learned by the
model. All evaluations consider partial poisoning scenarios (poisoning rates from 20% to 80%, horizontal axes). Note
that “Unlearnable” and “Original” respectively denote the set of unlearnable examples, and their original clean variants,
“Train” means the loss of the clean part of the training set. and “Unseen” denote images from the test set unobserved
during model training.

Table 5: Test accuracies (%) of adaptive poisoning with EM on ResNet-18.

Method Standard Gray JPEG U-Max

EM + Gray 19.48 21.64 78.39 90.52
EM + JPEG 20.67 90.29 76.25 93.22
EM + UEraser 35.24 88.62 80.46 89.55

Table 6: Test accuracies (%) of adaptive poisoning with REM on ResNet-18.

Method Standard Gray JPEG U-Max

REM + Gray 16.70 56.33 82.47 91.37
REM + JPEG 19.45 91.71 75.84 92.53
REM + UEraser 21.61 89.26 77.51 91.84

Table 7: Test accuracies (%) on poisoned CIFAR-10 datasets with increased perturbations.

Method Type Budget No defense Gray JPEG ES U-Max AT

EM
`∞

8/255 20.78 92.03 80.72 25.39 93.61 82.51
16/255 18.74 76.76 55.96 27.39 88.09 77.82

REM 8/255 17.47 92.27 85.44 31.32 92.43 77.46
16/255 19.80 83.65 80.07 33.07 80.36 75.64

LSP
`2

1.30 13.06 64.70 80.14 29.10 92.83 81.38
1.74 15.83 37.60 42.83 27.30 87.20 77.92

AR 1.00 11.74 35.17 84.75 44.29 90.12 81.15
1.50 11.20 26.10 78.24 20.96 68.42 70.14

Larger perturbations We increased the magnitude of perturbations in availability poisoning attacks to further evaluate
the performance of attacks and defenses. Table 7 presents the results of availability poisoning with larger perturbations
on CIFAR-10. Due to such significant perturbations, their stealthiness is further reduced, making it challenging to
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Table 8: Performance of availability poisoning attacks and defense on different unsupervised learning algorithms and
datasets. Note that “U-Lite” denotes UEraser-Lite.

Algorithm Method No Defense Gray JPEG U-Lite AVATAR

SimCLR UCL 47.25 46.91 66.76 68.42 83.22
TUE 57.10 56.37 67.54 66.59 84.24

MoCo-v2 UCL 53.78 53.34 65.44 72.13 83.08
TUE 66.73 64.95 67.28 74.82 82.48

Table 9: Clean test accuracies of different CIFAR-10 target models, where attacks are oblivious to the model architectures.
Note that AR and LSP are surrogate-free, and for EM and REM the surrogate model is ResNet-18.

Model Clean Method No defense Gray JPEG ES U-Max AVATAR

ResNet-50 94.47

EM 14.41 83.40 76.88 26.69 85.89 77.64
REM 16.26 87.26 75.79 31.37 92.69 83.68
LSP 19.23 68.94 73.24 32.73 93.08 76.47
AR 11.83 27.51 80.24 28.66 81.40 86.39

SENet-18 94.83

EM 13.60 86.03 79.35 16.35 83.27 74.22
REM 20.99 84.50 78.92 22.85 93.17 84.37
LSP 18.54 65.06 76.51 26.38 92.53 75.19
AR 13.68 34.26 79.29 37.04 75.06 84.37

MobileNetV2 94.62

EM 15.62 77.21 70.96 16.71 82.71 75.62
REM 20.83 80.81 72.27 21.92 91.03 82.77
LSP 16.82 61.07 72.03 28.12 92.10 76.81
AR 13.36 28.54 68.14 39.45 73.40 81.63

DenseNet-121 95.08

EM 13.89 82.49 78.42 15.68 82.37 76.69
REM 21.45 85.47 78.42 22.35 93.09 83.04
LSP 18.94 67.95 74.90 26.86 93.47 78.22
AR 13.43 25.51 81.12 36.51 82.36 89.92

ViT-small 84.66

EM 21.47 80.42 72.64 30.91 74.29 54.84
REM 32.17 79.65 74.92 43.07 83.27 73.57
LSP 29.06 59.34 68.07 32.69 87.01 66.74
AR 25.04 38.90 74.77 45.54 63.90 78.64

CaiT-small 71.96

EM 17.01 64.76 63.75 39.69 63.37 41.94
REM 26.11 65.05 66.43 47.39 72.05 62.53
LSP 25.08 63.06 57.15 37.95 70.92 51.39
AR 68.63 66.27 69.30 67.41 70.04 62.77

carry out such attacks in realistic scenarios. However, larger perturbations indeed have a more pronounced impact
on suppressing defense performance, leading to significant accuracy losses for all defense methods. There exists a
trade-off between perturbation magnitude and accuracy recovery. Considering that at larger perturbations, availability
poisoning is dramatically less stealthy, and some defense methods are still effective, it is not recommended to use larger
perturbations.

Attack transferability across models In real-world scenarios, availability poisoning attackers can only manipulate the
data and do not have access to specific details of the defender. Therefore, we conducted experiments on different model
architectures. It is worth noting that all surrogate-based attack methods are considered using ResNet-18. The results are
shown in Table 9. It is evident that all surrogate-based and -free poisoning methods exhibit strong transferability, while
the three recently proposed defenses also achieve successful defense across different model architectures. The only
exception is the AR method, which fails against CaiT-small.

Adaptive poisoning We evaluated strong adaptive poisons against various defenses using two poisoning methods,
EM (Huang et al., 2021) and REM (Fu et al., 2022). We assume that the defenders can be adapted to three defenses
(Gray, JPEG, and UEraser), by using the attack in the perturbation generation process. From Tables 5 and 6, it can be
seen that adaptive poisoning significantly affects the performance of the Gray defense, but has less effect on JPEG and
UEraser.

9



Under review as submission to TMLR

Unsupervised learning We evaluated the availability poisoning attacks targeting unsupervised models on CIFAR-10.
We considered two popular unsupervised learning frameworks: SimCLR (Chen et al., 2020a) and MoCo-v2 (Chen
et al., 2020b). All defense methods were applied before the data augmentation process, which means they were applied
to preprocessed images before undergoing different data augmentations. Therefore, we only applied UEraser-Lite as a
data preprocessing method. The results of all experiments are shown in Table 8.

Visual analyses We provide visualization tools (Grad-CAM (Selvaraju et al., 2017) and Shapley value maps (Lundberg
& Lee, 2017)) to facilitate the analysis and understanding of availability poisoning attacks. We also use t-SNE (Van der
Maaten & Hinton, 2008) to visualize the availability poisons (Figure 7). Although t-SNE cannot accurately represent
high-dimensional spaces, it aids in the global visualization of feature representations, allowing us to observe specific
characteristics of availability poisons. For additional discussions on the visualizations, please refer to Appendix C.3.

Future outlook Future research directions on APAs should explore methods that enhance the resilience of perturbations.
Increasing the perturbation size is direct. However, as a data poisoning method, the trade-off between perturbation size
and stealthiness is crucial. Therefore, the focus of this method lies in how to measure this trade-off. Moreover, it’s also
a promising approach to consider generalizable attacks, which can simultaneously target the DNNs being trained,
diffusion models for image restoration, and remain robust against color distortions. On the other hand, semantic-based
perturbations offer an alternative strategy, as such modifications to images can be challenging to remove by defenses.

Key Takeaways

(1) The efficacy of availability poisoning attacks in terms of hindering the model’s generalization ability is
suboptimal when the poisoning rate is relatively low. However, it can still ensure the effectiveness of privacy
protection for data that has been poisoned, when no defense is employed.
(2) Nearly all availability poisoning attacks exhibit a high degree of transferability across diverse model
architectures, with the exception of AR, which appears to be ineffective on CaiT-small. This suggests that
current attacks may exploit common training algorithmic flaws rather than model-specific vulnerabilities.
Furthermore, all defenses demonstrate similar defense performance on different architectures.
(3) For defenses, the most promising method is based on pretrained diffusion generative models, e.g., AVATAR.
Without the availability of additional data, UEraser variants stand out as the most effective defense methods.

5 Conclusions

We have established the first comprehensive and up-to-date benchmark for the field of availability poisoning, covering a
diverse range of availability poisoning attacks and state-of-the-art defense algorithms. We have conducted effective
evaluations and analyses of different combinations of attacks and defenses, as well as additional challenging scenarios.
Through this new benchmark, our primary objective is to provide researchers with a clearer understanding of the current
progress in the field of availability poisoning attacks and defenses. We hope it can enable rapid comparisons between
existing methods and new approaches, while also inspiring fresh ideas through our comprehensive benchmark and
analysis tools. We believe that our benchmark will contribute to the advancement of availability poisoning research and
the development of more effective methods to safeguard privacy.

6 Reproducibility Statement

We provide an open-source implementation of all attacks and defenses in the supplementary material. Following the
README file, users can run all experiments on their own device to reproduce the results shown in paper.

7 Ethics Statement

Similar to many other technologies, the implementation of availability poisoning algorithms can be used by users for
both beneficial and malicious purposes. We understand that these poisoning attack methods were originally proposed to
protect privacy, but they can also be used to generate maliciously data to introduce model backdoors. The benchmark
aims to promote an understanding of various availability poisoning attacks and defense methods, as well as encourage
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the development of new algorithms in this field. It is also important for us to raise awareness of the false sense of
security provided by availability poisoning attacks. However, we emphasize that the use of these algorithms and
evaluation results should comply with ethical guidelines and legal regulations. We encourage users to be aware of
the potential risks of the technology and take appropriate measures to ensure its beneficial use for both society and
individuals.
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A Datasets

Table 10 summarizes the specifications of datasets and the respective test accuracies of typical training on ResNet-18
architectures.

Table 10: Dataset specifications and the respective test accuracies on ResNet-18.

Datasets #Classes Training / Test Size Image Dimensions Clean Accuracy (%)

CIFAR-10 (Krizhevsky et al., 2009) 10 50,000 / 10,000 32×32×3 94.32
CIFAR-100 (Krizhevsky et al., 2009) 100 50,000 / 10,000 32×32×3 75.36
SVHN (Netzer et al., 2011) 10 73,257 / 26,032 32×32×3 96.03
ImageNet-subset (Deng et al., 2009) 100 20,000 / 4,000 224×224×3 64.18

B Implementation Details

In addition to the discussion of properties of the availability poisoning attacks and defenses presented in Tables 1 and 2,
here, we provide a high-level description of the attack and defense algorithms implemented in APBench.

Attacks:

• Deep Confuse (DC) (Feng et al., 2019): DC is proposed as a novel approach to manipulating classifiers
by modifying the training data. Its key idea involves employing an autoencoder-like network to capture the
training trajectory of the target model and adversarially perturbing the training data.

• Error-minimizing attack (EM) (Huang et al., 2021): EM trains a surrogate model by minimizing the error of
images relative to their original labels, generating perturbations that minimize the errors and thus render the
perturbed images unlearnable. The authors of EM introduce the threat model of availability poisoning attacks,
highlighting their role as a mechanism for privacy protection.

• Neural tangent generalization attack (NTGA) (Yuan & Wu, 2021): NTGA simulates the training dynamics
of a generalized deep neural network using a Gaussian process and leverages this surrogate to find better local
optima with improved transferability.

• Hypocritical (HYPO) (Tao et al., 2021): HYPO, similar to EM, generates images that minimize errors relative
to their true labels using a pre-trained model.

• Targeted adversarial poisoning (TAP) (Fowl et al., 2021): TAP achieves availability poisoning by generating
targeted adversarial examples of non-ground-truth labels of pre-trained models.

• Robust error-minimizing attacks (REM) (Fu et al., 2022): REM improves the poisoning effect of availability
poisoning by replacing the training process of the surrogate model with adversarial training.

• Linear-separable poisoning (LSP) (Yu et al., 2022): LSP generates randomly initialized linearly separable
color block perturbations, enabling effective availability poisoning attacks without requiring surrogate models
or excessive computational overhead.

• Autoregressive Poisoning (AR) (Sandoval-Segura et al., 2022b): AR, similar to LSP, does not require
additional surrogate models. It fills the initial rows and columns of each channel with Gaussian noise and uses
an autoregressive process to fill the remaining pixels, generating random noise perturbations.

• One-Pixel-Shortcut (OPS) (Wu et al., 2023): OPS is a targeted availability poisoning attack that perturbs
only one pixel of an image, generating an effective availability poisoning attack against traditional adversarial
training methods.

• Indiscriminate poisoning (UCL) (He et al., 2023): UCL considers generating unlearnable examples for
unsupervised learning by minimizing the CL loss (e.g., the InfoNCE loss) in the unsupervised learning setting.
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• Transferable unlearnable examples (TUE) (Ren et al., 2023): TUE discovers that UCL is effective only
in unsupervised learning, while its performance significantly deteriorates in supervised learning. Therefore,
TUE is proposed that simultaneously targets both supervised and unsupervised learning. Different to UCL, it
additionally embeds linear separable poisons into unsupervised unlearnable examples using the class-wise
separability discriminant.

Defenses:

• Adversarial training (AT) (Madry et al., 2017): AT is a widely-recognized effective approach against
availability poisoning. Small adversarial perturbations are applied to the training images during training, in
order to improve the robustness of the model against perturbations.

• Image Shortcut Squeezing (ISS) (Liu et al., 2023): ISS uses traditional image compression techniques
such as grayscale transformation, bit-depth reduction (BDR), and JPEG compression, as defenses against
availability poisoning.

• Early stopping (ES) (Sandoval-Segura et al., 2022a): Early stopping can quickly achieve peak accuracy
on availability poisons, but due to the difference in behavior of various poisons, it fails to achieve favorable
defense results.

• Adversarial augmentations (UEraser) (Qin et al., 2023): UEraser-Lite uses an effective augmentation
pipeline to suppress availability poisoning shortcuts. UEraser-Max further improves the defense against
availability poisoning through adversarial augmentations.

• AVATAR (Dolatabadi et al., 2023): Following DiffPure (Nie et al., 2022), AVATAR cleans the images of the
unlearnable perturbations with diffusion models.

C Experimental Settings and Additional Results

Table 11 presents the default hyperparameters for all availability poisoning attacks implemented in APBench.

C.1 Partial Poisoning

In addition to the discussion on partial poisoning in Section 4, we provide the results in terms of accuracies in Figure 5.
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Figure 5: The accuracies (%, vertical axes) indicate that original features in unlearnable examples are not learned by the
model. All evaluations consider partial poisoning scenarios (poisoning rates from 20% to 80%, horizontal axes). Note
that “Unlearnable” and “Original” respectively denote the set of unlearnable examples, and their original clean variants,
and “Unseen” denote images from the test set unobserved during model training.
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Table 11: Default hyperparameter settings of attack methods.

Methods Hyperparameter Settings

DC Perturbation `∞ = 8/255
Pre-trained model Official pretrained

NTGA Perturbation `∞ = 8/255
Poisoned dataset Official pretrained CIFAR-10 CNN (best)

EM

Perturbation `∞ = 8/255
Perturbation type Sample-wise
Stopping error rate 0.01
Learning rate 0.1
Batch size 128
Optimizer SGD

HYPO Perturbation `∞ = 8/255
Step size `∞ = 0.8/255

TAP Perturbation `∞ = 8/255

REM

Perturbation `∞ = 8/255
Perturbation type Sample-wise
Stopping error rate 0.01
Learning rate 0.1
Batch size 128
Optimizer SGD
Adversarial training perturbation `∞ = 4/255

LSP Perturbation `2 = 1.30 (Project from `∞ = 6/255)
Patch size 8 for CIFAR-10/100 and SVHN; 32 for ImageNet

AR Perturbation `2 = 1.00
Default hyperparameters Follows official code

OPS
Perturbation `0 = 1
Perturbation type Sample-wise
Default hyperparameters Follows official code

UCL Perturbation `∞ = 8/255
Poisoned dataset Official pretrained CP-S of UCL

TUE Perturbation `∞ = 8/255
Poisoned dataset Official pretrained

C.2 Test Robustness

Table 14 additionally compared the test accuracy of the PGD-20 adversarial examples on CIFAR-10 with a perturbation
budget of 8/255. Note that all experiments considered both the white-box scenario, and black-box transferability from
a different initialization, and the step size is set to 2/255.

C.3 Visualizations

Grad-CAM and Shapley visualizations Gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al.,
2017) and Shapley value map (Lundberg & Lee, 2017) are commonly used image analysis tools that visualize the
contributions of different pixels in an image to the model’s predictions. From the Shapley value map and Grad-
CAM visualizations (Figure 6), we can observe discernible changes in activation features in the poisoned model
relative to the clean model. AVATAR showed activation features most similar to the clean model compared to other
defense mechanisms, as it aims to restore the original features while disrupting the availability poisoning perturbations.
Contrarily, models applying the other defense strategies typically have different activation features than clean models.
This discrepancy implies that image preprocessing or augmentations may modify the inherent feature extraction from
the original images instead of restoring them.

T-SNE visualizations Figure 8 shows the t-SNE visualization Figure 7 of the models’ feature representations on the
clean test set for CIFAR-10. Notably, models without defenses struggle to create coherent class clusters, although there
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Table 12: Default training hyperparameter settings.

Datasets Hyperparameter Settings

CIFAR-10/-100

Optimizer SGD
Momentum 0.9
Weight-decay 0.0005
Batch size 128
Standard Augmentations Random crop, random horizontal flip
Initial learning rate 0.1

SVHN

Optimizer SGD
Momentum 0.9
Weight-decay 0.0005
Batch size 128
Standard augmentations None
Initial learning rate 0.1

ImageNet-100

Optimizer SGD
Momentum 0.9
Weight-decay 0.0005
Batch size 256
Standard augmentations Random crop, horizontal flip, and color jitter
Initial learning rate 0.1

Table 13: Default hyperparameter settings of defenses.

Methods Hyperparameter Settings

No defense Training epochs
CIFAR-10/100: 50

SVHN: 40
ImageNet-1000: 100

Adversarial training (Madry et al., 2017)

Perturbation `∞ = 8/255
Steps size `∞ = 2/255
PGD steps 10
Training epochs 200

CutOut (DeVries & Taylor, 2017)
Training epochs 200CutMix (Yun et al., 2019)

MixUp (Zhang et al., 2018)

Gaussian (Liu et al., 2023)
Kernel size 3
Standard deviation 0.1
Training epochs 200

JPEG (Liu et al., 2023) Quality 10
Training epochs 200

BDR (Liu et al., 2023) Number of bits 2
Training epochs 200

UEraser-Lite (Qin et al., 2023)
PlasmaBrightness / PlasmaContrast p = 0.5
ChannelShuffle p = 0.5
Training epochs 200

UEraser-Max (Qin et al., 2023)

PlasmaBrightness / PlasmaContrast p = 0.5
ChannelShuffle p = 0.5
Number of Repeats K 5
Training epochs 300

AVATAR (Dolatabadi et al., 2023)

Diffusion sampler Score-SDE
Starting step / Total diffusion steps 60 / 1000
Pre-trained model Official pretrained
Training epochs 200

exist spatial variations in class frequency. Conversely, models equipped with defenses display a feature distribution akin
to the clean baseline. Models with higher clean accuracies often exhibit better separated clusters.
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Table 14: Test accuracies (%) on CIFAR-10 PGD-20 adversarial examples.

Type Method Standard Gray JPEG U-Max AVATAR AT

Black-box

EM 16.83 19.77 73.85 71.43 20.07 69.77
REM 22.53 19.16 73.70 80.46 17.36 70.74
LSP 14.29 24.34 67.01 80.40 15.42 71.39
AR 15.82 16.55 75.21 76.97 16.84 68.81

White-box

EM 0.00 0.00 3.74 1.37 0.00 28.60
REM 0.00 0.00 3.35 3.11 0.00 32.52
LSP 0.00 0.00 0.39 3.83 0.00 34.45
AR 0.00 0.00 2.59 2.83 0.00 32.04

EM

LSP

REM

AR

Clean No-defense ISS U-max AVATAR Clean No-defense ISS U-max AVATAR

Grad-CAM Shapley value map

Figure 6: Grad-CAM and Shapley value map visualizations of regions contributed to model decision under different
attack methods and defense methods with ResNet-18. (Left) Grad-CAM visualizations of EM and LSP attacks. (Right)
Shapley value map visualizations of REM and AR attacks.

C.4 Additional Results

Finally, Table 15 shows the detailed test accuracies of models trained on poisoned CIFAR-10 datasets, including an
error range of 3 independent runs for each experiment.

D Limitations

APBench has mainly focused on providing algorithms and evaluations related to image data. However, such availability
poisoning methods may also be applicable to text, speech, or video domains. In the future, we plan to expand APBench
to include more domains, aiming to establish a more comprehensive and valuable benchmark for personal privacy
protection against deep learning.

E Attack and Defense Baselines

APBench is open source, and the source code will be made available upon publication. Table 16 provides the licenses
of the derived implementations of the original algorithms and datasets.
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TAP

OPS

No defense ISS UEraser-max AVATAR

Figure 7: The t-SNE visualization of the models’ feature representations on the clean test set. Note that without
defenses, the feature representations of the poisoned models are mostly scrambled as the models struggle to learn useful
features.

Clean

EM/No defense EM/ISS EM/UEraser EM/AVATAR

REM/No defense REM/ISS REM/UEraser REM/AVATAR

LSP/No defense LSP/ISS LSP/UEraser LSP/AVATAR

AR/No defense AR/ISS AR/UEraser AR/AVATAR

Figure 8: The t-SNE visualization of the models’ feature representations on the clean test set under additional attacks
for CIFAR-10. “UEraser” denotes “UEraser-Max”.
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Table 16: Licenses of the datasets and codebases used in this paper.

Name License URL

PyTorch BSD GitHub: pytorch/pytorch
DC — GitHub: kingfengji/DeepConfuse
NTGA Apache-2.0 GitHub: lionelmessi6410/ntga
EM MIT GitHub: HanxunH/Unlearnable-Examples
HYPO MIT GitHub: TLMichael/Delusive-Adversary
TAP MIT GitHub: lhfowl/adversarial_poisons
REM MIT GitHub: fshp971/robust-unlearnable-examples
LSP — GitHub: dayu11/Availability-Attacks-Create-Shortcuts
AR MIT GitHub: psandovalsegura/autoregressive-poisoning
OPS Apache-2.0 GitHub: cychomatica/One-Pixel-Shotcut
UCL MIT GitHub: kaiwenzha/contrastive-poisoning
TUE — GitHub: renjie3/TUE
ISS — GitHub: liuzrcc/ImageShortcutSqueezing
DiffPure NVIDIA GitHub: NVlabs/DiffPure
CIFAR-10 — https://www.cs.toronto.edu/~kriz/cifar.html
CIFAR-100 — https://www.cs.toronto.edu/~kriz/cifar.html
SVHN — http://ufldl.stanford.edu/housenumbers
ImageNet-100 — GitHub: TerryLoveMl/ImageNet-100-datasets
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