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Abstract

Streaming principal component analysis (PCA) is an integral tool in large-scale machine
learning for rapidly estimating low-dimensional subspaces from very high-dimensional data
arriving at a high rate. However, modern datasets increasingly combine data from a variety
of sources, and thus may exhibit heterogeneous quality across samples. Standard stream-
ing PCA algorithms do not account for non-uniform noise, so their subspace estimates can
quickly degrade. While the recently proposed Heteroscedastic Probabilistic PCA Technique
(HePPCAT) addresses this heterogeneity, it was not designed to handle streaming data,
which may exhibit non-stationary behavior. Moreover, HePPCAT does not allow for miss-
ing entries in the data, which can be common in streaming data. This paper proposes
the Streaming HeteroscedASTic Algorithm for PCA (SHASTA-PCA) to bridge this divide.
SHASTA-PCA employs a stochastic alternating expectation maximization approach that
jointly learns the low-rank latent factors and the unknown noise variances from streaming
data that may have missing entries and heteroscedastic noise, all while maintaining a low
memory and computational footprint. Numerical experiments demonstrate the superior
subspace estimation of our method compared to state-of-the-art streaming PCA algorithms
in the heteroscedastic setting. Finally, we illustrate SHASTA-PCA applied to highly het-
erogeneous real data from astronomy.

1 Introduction

Modern data are increasingly large in scale and formed by combining heterogeneous samples from diverse
sources or conditions that exhibit heteroscedastic noise, or noises of different variances (Hong et al., 2021),
such as in astronomy (Ahumada et al., 2020), medical imaging (Pruessmann et al., 1999; Anam et al., 2020),
and cryo-electron microscopy imaging (Andén & Singer, 2017; Bendory et al., 2020). Principal component
analysis (PCA) for visualization, exploratory data analysis, data compression, predictive tasks, or other
downstream tasks is often a fundamental tool to process these high-dimensional data. However, several
practical challenges arise when computing PCA on these types of data. In many applications, due to
memory or physical constraints, the full data cannot be observed in their entirety at computation time
and are instead read partially into memory piece by piece, or observations may stream in continuously and
indefinitely. Moreover, the signal may evolve over time and require adaptive tracking algorithms for the low-
rank component. Adding to these difficulties, it is also common for big data to contain missing entries, such
as in magnetic resonance imaging (Mensch et al., 2017), collaborative filtering (Candes & Plan, 2010), and
environmental sensing (Ni et al., 2009). Consequently, there is a need for scalable streaming PCA techniques
that can handle heteroscedastic noise and missing data.

A tremendous body of work has studied streaming PCA techniques for learning a signal subspace from noisy
incremental data observations that have missing entries. Streaming or online PCA algorithms often enjoy the
advantages of computational efficiency, low memory overhead, and adaptive tracking abilities, making them
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very useful in real-world big-data applications. However, no existing streaming methods account for noise
with differing variances across samples, i.e., sample-wise heteroscedastic noise, and their subspace estimates
can be highly corrupted by the noisiest samples. The work in Hong et al. (2021) developed a Heteroscedastic
Probabilistic PCA technique (HePPCAT) for data with varying noise levels across the samples. HePPCAT
learns the low-rank factors and the unknown noise variances via maximum-likelihood estimation, but only
in the batch setting with no missing entries. Other batch heteroscedastic PCA algorithms, like weighted
PCA studied in Jolliffe (2002); Young (1941); Hong et al. (2023) and HeteroPCA (Zhang et al., 2022) for
data with heteroscedastic features, also lack streaming and adaptive tracking abilities. None of the existing
methods handle all of the real-data complexities we study here: missing entries, heteroscdastic noise, and
streaming data. Tackling this non-trivial setting requires developing new algorithms.

To the best of our knowledge, this paper is the first work to develop a streaming PCA algorithm for data
with missing entries and heteroscedastic noise. Our algorithm jointly estimates the factors and unknown
noise variances in an online fashion from streaming incomplete data using an alternating stochastic minorize-
maximize (SMM) approach with small computational and memory overhead. We carefully design minorizers
with a particular alternating schedule of stochastic updates that distinguishes our approach from existing
SMM methods. Notably, handling missing entries and heteroscedastic noise involves more complex updates
than the simpler algebraic formulations of algorithms like HePPCAT or PETRELS (Chi et al., 2013). We
demonstrate that our algorithm can estimate the signal subspace from subsampled data (even without know-
ing the noise variances) better than state-of-the-art streaming PCA methods that assume homogeneous noise.
Our algorithm is unique in that it not only tracks low-dimensional dynamic subspaces, but can also track
dynamic noise variances that can occur, e.g., in sensor calibration (Jun-hua et al., 2003) and beamforming in
nonstationary noise environments (Cohen, 2004). Finally, this work extends our understanding of streaming
PCA to the setting of heteroscedastic noise and draws connections to existing work in the literature. In par-
ticular, the proposed method closely relates to the streaming PCA algorithm PETRELS (Chi et al., 2013),
but differs by learning the noise variances of the data on-the-fly and downweighting noisier data samples
in the factor updates. Furthermore, we show that our proposed method implicitly optimizes a regularized
least-squares problem whose adaptive hyperparameter varies by the learned heterogeneous noise variances.

Section 2 discusses related works for both streaming PCA and heteteroscedastic PCA. Sections 3 to 6
describe the model we consider, define the resulting optimization problem, and derive the proposed algorithm.
Section 7 presents synthetic and real data experiments that demonstrate the benefits of the proposed method
over existing state-of-the-art streaming PCA algorithms.

1.1 Notation

We use bold upper case letters A to denote matrices, bold lower case letters v to denote vectors, and non-
bold lower case letters c for scalars. We denote the Hermitian transpose of a matrix as A′ and the trace of
a matrix as tr(A). The Euclidean norm is denoted by ∥ · ∥2. The identity matrix of size d × d is denoted as
Id. The notation i ∈ [k] means i ∈ {1, . . . , k}.

2 Related work

2.1 Streaming PCA

A rich body of work has investigated a variety of streaming PCA algorithms for learning a signal subspace
from incremental and possibly incomplete data observations. These methods, however, assume the data have
homogeneous quality and do not model heteroscedastic properties like those considered in this paper. Since
there are too many related works to detail here (see, e.g., Balzano et al. (2018); Boutsidis et al. (2016), for
surveys), we highlight a few of the most related.

One prominent branch of algorithms use stochastic gradient optimization approaches to update the learned
subspace based on a new data observation at each iteration; see, e.g., Bertsekas (2011) and Bottou (2010).
Mardani et al. (2015) use stochastic gradient descent to learn matrix and tensor factorization models in
the presence of missing data and also include an exponentially weighted data term that trades off adapting
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to new data with fitting historical data. Stochastic gradient descent over Riemannian manifolds is also a
popular approach; see, e.g., Bonnabel (2013); Balzano et al. (2010); He et al. (2011); Goes et al. (2014). Oja’s
method (Oja, 1982) takes a stochastic gradient step to update the subspace basis from the most recent data
vector, obtaining a new orthonormal basis after orthogonalization. Balzano (2022) proved the equivalence of
the GROUSE algorithm (Balzano et al., 2010) with Oja’s method for a certain step size. Other progress on
improving and understanding Oja’s method has recently been made, such as an algorithm to adaptively select
the learning rate in one pass over the data (Henriksen & Ward, 2019) and an analysis of the convergence
rate for non-i.i.d. data sampled from a Markov chain (Kumar & Sarkar, 2024).

Some streaming PCA methods share commonalities with quasi-second-order optimization methods. For
example, the PETRELS algorithm proposed in Chi et al. (2013) fits a factor model to data with missing
entries via a stochastic quasi-Newton method. PETRELS has computationally efficient updates but can
encounter numerical instability issues in practice after a large number of samples.

More recently, streaming PCA and its analogs have been extended to a variety of new problems. Giannakis
et al. (2023) propose a streaming algorithm for forecasting dynamical systems that they show is a type of
streaming PCA problem. Streaming algorithms have been proposed for robust PCA (Thanh et al., 2021;
Diakonikolas et al., 2023), federated learning and differential privacy (Grammenos et al., 2020), a distributed
Krasulina’s method (Raja & Bajwa, 2022), and probabilistic PCA to track nonstationary processes (Lu et al.,
2024). Although not strictly a streaming algorithm, Blocker et al. (2023) also estimate dynamic subspaces
but by using a piecewise-geodesic model on the Grassmann manifold. All of these approaches implicitly
assume that the data quality is homogeneous across the dataset, in contrast to our proposed approach.

2.2 Stochastic MM methods

Another vein of work on streaming algorithms, which has the closest similarities to this paper, is stochastic
majorization-minimization (SMM) algorithms for matrix and tensor factorization. MM methods construct
surrogate functions that are more easily optimized than the original objective; algorithms that successively
optimize these surrogates are guaranteed to converge to stationary points of the original objective function
under suitable regularity conditions (Jacobson & Fessler, 2007; Lange, 2016). SMM algorithms such as
Mairal (2013); Strohmeier et al. (2020); Lyu (2024) update and optimize a stochastic approximation of
the surrogate function upon observing each new data sample. The work in Mairal (2013) proved almost
sure convergence to a stationary point for non-convex objectives with one block of variables for the SMM
technique. The work in Mensch et al. (2017) proposes subsampled online matrix factorization (SOMF)
for large-scale streaming subsampled data and gives convergence guarantees under mild assumptions. In
Strohmeier et al. (2020); Lyu (2024), the authors extend SMM to functions that are multi-convex in blocks
of variables for online tensor factorization. Their framework performs block-coordinate minimization of a
single majorizer at each time point. They prove almost sure convergence of the iterates to a stationary
point assuming certain regularity conditions of the loss function and learning rate and that the data tensors
follow a Markovian process. and the data tensors form a Markov chain with a unique stationary distribution.
More recently, Phan et al. (2024) propose and analyze several stochastic variance-reduced MM algorithms.
Like these works, our paper also draws upon SMM techniques; we use an alternating SMM approach to
optimize the log-likelihood function for our model. However, our setting and approach differ from these
existing methods in key ways; we detail these differences and their impact on the related convergence theory
in §6.3.1.

A close analogue to SMM is the Doubly Stochastic Successive Convex (DSSC) approximation algorithm
(Mokhtari & Koppel, 2020) that optimizes convex surrogates to non-convex objective functions from stream-
ing samples or minibatches. A key feature of their algorithm is that it decomposes the optimization variable
into B blocks and operates on random subsets of blocks at each iteration. Specifically, the DSSC algorithm
chooses a block i ∈ [B], computes stochastic gradients with respect to the ith block of variables and then
recursively updates the approximation to the ith surrogate function. From the optimizer to the approximate
surrogate, their algorithm performs momentum updates of the iterates very similarly to SMM. Our own al-
gorithm SHASTA-PCA in §6 can be interpreted as following a similar approach, but without using gradient
methods since our problem does not have Lipschitz-continuous gradients.
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2.3 Heterogeneous data

Several recently proposed PCA algorithms consider data contaminated by heteroscedastic noise across sam-
ples, which is the setting we study in this paper. Weighted PCA is a natural approach in this context
(Jolliffe, 2002), either weighting the samples by the inverse noise variances (Young, 1941) or by an optimal
weighting derived in Hong et al. (2023). In both instances, the variances must be known a priori or esti-
mated to compute the weights. Probabilistic PCA (PPCA) (Tipping & Bishop, 1999b) uses a probabilistic
interpretation of PCA via a factor analysis model with isotropic Gaussian noise and latent variables. For
a single unknown noise variance (i.e., homoscedastic noise), the learned factors and noise variance are solu-
tions to a maximum-likelihood problem that can be optimized using an expectation maximization algorithm;
these solutions correspond exactly to PCA. Hong et al. (2021) studied the heteroscedastic probabilistic PCA
problem that considers a factor model where groups of data may have different (unknown) noise variances.
Their method, HePPCAT, performs maximum-likelihood estimation of the latent factors and unknown noise
variances (assuming knowledge of which samples belong to each noise variance group); they consider various
algorithms and recommend an alternating EM approach. Other batch heteroscedastic PCA methods have
since followed HePPCAT. ALPACAH (Salazar Cavazos et al., 2025) estimates the low-rank component and
variances for data with sample-wise heteroscedastic noise, but because their objective function is not sep-
arable by the samples, no streaming counterpart currently exists. HeMPPCAT (Xu et al., 2023) extends
mixtures of probabilistic PCA (Tipping & Bishop, 1999a) to the case of heteroscedastic noise across samples.

More broadly, there is an increasing body of work that investigates PCA techniques for data contaminated
by some sort of heterogeneous noise, including noise that is heteroscedastic across features. HeteroPCA
(Zhang et al., 2022) iteratively imputes the diagonal entries of the sample covariance matrix to address
bias that arises when the noise has feature-wise heteroscedasticity, and Zhou & Chen (2023) then extended
HeteroPCA to the case of ill-conditioned low-rank data. Another line of work in Leeb & Romanov (2021) and
Leeb (2021) has considered rescaling the data to instead whiten the noise. Yan et al. (2024) develops inference
and uncertainty quantification procedures for PCA with missing data and feature-wise heteroscedasticity.
There has also been recent progress on developing methods to estimate the rank in heterogeneous noise
contexts (Hong et al., 2020; Ke et al., 2021; Landa et al., 2022; Landa & Kluger, 2025) and on establishing
fundamental limits for recovery in these settings (Behne & Reeves, 2022; Zhang & Mondelli, 2024).

A closely related problem in signal processing applications, such as heterogeneous clutter in radar, is data with
heterogeneous “textures”, also called the “mixed effects” problem. Here, the signal is modeled as a mixture
of scaled Gaussians, each sharing a common low-rank covariance scaled by an unknown deterministic positive
“texture” or power factor (Breloy et al., 2019). In fact, the heterogeneous texture and HPPCA problems are
related up to an unknown scaling (Hong et al., 2021). Ferrer et al. (2021) and Hippert-Ferrer et al. (2022)
also studied variations of the heterogeneous texture problem for robust covariance matrix estimation from
batch data with missing entries. Collas et al. (2021) study the probabilistic PCA problem in the context
of isotropic signals with unknown heterogeneous textures and a known noise floor. Their paper casts the
maximum-likelihood estimation as an optimization problem over a Riemannian manifold, using gradient
descent on the manifold to jointly optimize for the subspace and the textures. Their formulation also readily
admits a stochastic gradient algorithm for online optimization.

Heteroscedastic data has also been investigated in the setting of supervised learning for fitting linear re-
gression models with stochastic gradient descent (Song et al., 2015). The authors show that the model’s
performance given “clean” and “noisy” datasets depends on the learning rate and the order in which the
datasets are processed. Further, they propose using separate learning rates that depend on the noise levels
instead of using one learning rate as is done in classical SGD. In the context of generalized linear bandits,
Zhao et al. (2023) propose an online algorithm for the heteroscedastic bandit problem using weighted linear
regression with weights selected as the inverse noise variance.

3 Probabilistic Model

Similar to Hong et al. (2019; 2021), we model data samples in Rd from L noise level groups as:

yi = F zi + εi, for i = 1, 2, . . . , (1)
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where F ∈ Rd×k is a deterministic factor matrix to estimate, zi ∼ N (0k, Ik) are independent and identically
distributed (i.i.d.) coefficient vectors, εi ∼ N (0d, vgiId) are i.i.d. noise vectors, gi ∈ {1, . . . , L} is the noise
level group to which the ith sample belongs, and v1, . . . , vL are deterministic noise variances to estimate.
Typically, we assume k ≪ d to model the data from a low-dimensional subspace. We also assume the group
memberships gi are known. This is a valid assumption in some real applications where we know the sources
of the data, e.g., the sensor type in air quality monitoring (Hong et al., 2021), or data from a particular coil
in the MRI machine.

Let Ωi ⊆ {1, . . . , d} denote the set of entries observed for the ith sample, and let yΩi
∈ R|Ωi| and FΩi

∈
R|Ωi|×k denote the restrictions of yi and F to the entries and rows defined by Ωi. Then the observed entries
of the data vectors are distributed as

yΩi
∼ N (0|Ωi|, FΩi

F ′
Ωi

+ vgi
I|Ωi|).

We will express the joint log-likelihood over only the observed entries of the data and maximize it for the
unknown deterministic model parameters.

For a batch of n vectors, the joint log-likelihood over the observed batch data for Ω = (Ω1, . . . , Ωn) can
be easily written in an incremental form as a sum of log-likelihoods over the partially observed dataset
YΩ ≜ (yΩ1 , . . . , yΩn

):

L(YΩ; F , v) = 1
2

n∑
i=1

Li(yΩi
; F , v) + C, (2)

where v = [v1, . . . , vL]′, C is a constant independent of F and v, and

Li(yΩi ; F , v) ≜ ln det(FΩiF
′
Ωi

+ vgiI|Ωi|)−1 − y′
Ωi

(FΩiF
′
Ωi

+ vgiI|Ωi|)−1yΩi (3)

is the loss for a single vector yΩi
. To jointly estimate the factor matrix F and the variances v, we maximize

this likelihood. Optimizing the log-likelihood (2) is a challenging non-concave optimization problem, so we
propose an efficient alternating minorize-maximize (MM) approach.

4 Expectation Maximization Minorizer

This section derives a minorizer for the log-likelihood (2) that will be used to develop the proposed alternating
MM algorithm in the following sections. In particular, we derive a minorizer at the point (F̃ , ṽ) in the style
of expectation maximization methods. The minorizer follows from the work in Hong et al. (2021); here we
extend it to the case for data with missing entries.

For the complete-data log-likelihood, we use the observed samples yΩi
and unknown coefficients zi, leading

to the following complete-data log-likelihood for the ith sample:

Lc
i (F , v) ≜ ln p(yΩi , zi; F , v)

= ln p(yΩi |zi; F , v) + ln p(zi; F , v)

= −|Ωi|
2 ln vgi

− ∥yΩi − FΩizi∥2
2

2vgi

− ∥zi∥2
2

2 , (4)

where (4) drops the constants ln(2π)−|Ωi|/2 and ln(2π)−k/2.

Next, we take the expectation of (4) with respect to the following conditional distribution z|y, derived in
Appendix B:

zi|{yΩi
, F = F̃ , v = ṽ} ind∼ N (ži(F̃ , ṽ), ṽgi

Mi(F̃ , ṽ)),
where we define ži and Mi for use here and in following derivations as:

ži(F , v) ≜ Mi(F , v)F ′
Ωi

yΩi
(5)

Mi(F , v) ≜ (F ′
Ωi

FΩi
+ vgi

Ik)−1. (6)
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Doing so yields the following minorizer for Li at (F̃ , ṽ):

Ψi(F , v; F̃ , ṽ) ≜ −|Ωi|
2 ln vgi

− ∥yΩi
∥2

2
2vgi

+ 1
vgi

y′
Ωi

FΩi
ži(F̃ , ṽ)

− 1
2vgi

(
∥FΩi

ži(F̃ , ṽ)∥2
2 + ṽgi

tr{F ′
Ωi

FΩi
Mi(F̃ , ṽ)}

)
,

(7)

where (7) drops terms that are constant with respect to F and v. See Appendix B for a short derivation.

5 A Batch Algorithm

Before deriving the proposed streaming algorithm, SHASTA-PCA, we first derive a batch method for com-
parison purposes. Summing the sample-wise minorizer (7) across all the samples gives the following batch
minorizer at the point (F̃ , ṽ):

Ψ(F , v; F̃ , ṽ) ≜
n∑

i=1
Ψi(F , v; F̃ , ṽ) (8)

=
L∑

ℓ=1

∑
i : gi=ℓ

−|Ωi|
2 ln vℓ − ∥yΩi

∥2
2

2vℓ
+ 1

vℓ
y′

Ωi
FΩi

ži(F̃ , ṽ)

− 1
2vℓ

(
∥FΩi ži(F̃ , ṽ)∥2

2 + ṽℓ tr{F ′
Ωi

FΩiMi(F̃ , ṽ)}
)

.

Similar to HePPCAT (Hong et al., 2021), which is a batch method for fully sampled data, in each iteration
t, we first update v (with F fixed at Ft−1) then update F (with v fixed at vt), i.e.,

vt = arg max
v

Ψ(Ft−1, v; Ft−1, vt−1), (9)

Ft = arg max
F

Ψ(F , vt; Ft−1, vt). (10)

Here i refers to index of the data sample, and t denotes only the algorithm iteration, in contrast to the
streaming algorithm in §6, where t denotes both the time index (sample) and algorithm iteration. The
following subsections derive efficient formulas for these updates and discuss the memory and computational
costs.

5.1 Optimizing v for fixed F

Here we derive an efficient formula for the v update in (9). While the update is similar to HePPCAT (Hong
et al., 2021), the key difference lies in computing the minorizer parameters. Specifically, the missing data
makes the sample-wise quantities ži(·, ·) and Mi(·, ·) in (5) and (6) depend on the sampling patterns for the
ith data vector and must be computed for every sample i ∈ [n] per iteration compared to the single z̃ and
M̃ used in HePPCAT. This update separates into L univariate optimization problems, one in each variance
vℓ:

vt,ℓ = arg max
vℓ

−
θbatch

t,ℓ

2 ln vℓ −
ρbatch

t,ℓ

2vℓ
,

where

θbatch
t,ℓ ≜

∑
i : gi=ℓ

|Ωi|, ρbatch
t,ℓ ≜

∑
i : gi=ℓ

[
∥yΩi − Ft−1,Ωi ži(Ft−1, vt−1)∥2

2 + vt−1,ℓ tr(F ′
t−1,Ωi

Ft−1,ΩiMi(Ft−1, vt−1))
]
,

Ft−1,Ωi denotes the iterate Ft−1 restricted to the rows defined by Ωi. The corresponding solutions are

vt,ℓ =
ρbatch

t,ℓ

θbatch
t,ℓ

.

We precompute θbatch
t,ℓ because it remains constant across iterations.
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5.2 Optimizing F for fixed v

Here we derive an efficient formula for the F update in (10). The update differs from the factor update in
HePPCAT again due to the missing entries in the data. Specifically, this update separates into d quadratic
optimization problems, one in each row fj of F :

ft,j = arg max
fj

f ′
jsbatch

t,j − 1
2f ′

jRbatch
t,j fj ,

where

Rbatch
t,j ≜

L∑
ℓ=1

∑
i : gi=ℓ

Ωi∋j

1
vt,ℓ

(ži(Ft−1, vt)ži(Ft−1, vt)′ + vt,ℓMi(Ft−1, vt))

sbatch
t,j ≜

L∑
ℓ=1

∑
i : gi=ℓ

Ωi∋j

1
vt,ℓ

yij ži(Ft−1, vt),

capture the data-dependent terms in the minorizer in (8), and yij is the jth coordinate of the vector yi. We
compute the solutions for fj in parallel as

ft,j =
(
Rbatch

t,j

)−1
sbatch

t,j ∀j ∈ [d].

5.3 Memory and Computational Complexity

The batch algorithm above involves first accessing all n =
∑L

ℓ=1 nℓ data vectors to compute the minorizer
parameters Mi(·, ·) ∈ Rk×k and ži(·, ·) ∈ Rk at a cost of O(nk3+

∑L
ℓ=1

∑
i : gi=ℓ |Ωi|k2) flops per iteration and

O(n(k2 + k)) memory elements. Computing Rbatch
t,j and sbatch

t,j incurs a cost of O(
∑L

ℓ=1
∑

i : gi=ℓ |Ωi|(k2 + k))
flops for all j = 1, ..., d, and finally solving for the rows of F costs O(dk3) flops per iteration. Updating v

requires O(
∑L

ℓ=1
∑

i : gi=ℓ |Ωi|k2) computations.

Since each complete update depends on all n samples, the batch algorithm must have access to the entire
dataset at run-time, either by reading over all the data in multiple passes while accumulating the computed
terms used to parameterize the minorizers, or by storing all the data at once, which requires O(

∑n
i=1 |Ωi| +

dk2) memory. This requirement, combined with the O(n) inversions of k × k matrices in each iteration,
significantly limits the practicality of the batch algorithm for massive-scale or high-arrival-rate data as well
as in infinite-streaming applications.

6 Proposed Algorithm: SHASTA-PCA

The structure of the log-likelihood in (2) suggests a natural way to perform incremental (in the finite data
setting) or stochastic (in expectation) updates. If each data sample from the ℓth group is drawn i.i.d. from
the model in (1) , then under uniform random sampling of the data entries, each Li is an unbiased estimator
of L. Hence, we leverage the work in Mairal (2013), which proposed a stochastic MM (SMM) technique for
optimizing empirical loss functions from large-scale or possibly infinite data sets. For the loss function we
consider, these online algorithms have recursive updates with a light memory footprint that is independent
of the number of samples.

In the streaming setting with only a single observation yΩt at each time index t, we do not have access to the
full batch minorizer in (8), but rather only a single Ψt(F , v; F̃ , ṽ). Key to our approach, for each t, our pro-
posed algorithm uses Ψt(F , v; F̃ , ṽ) to update two separate approximations to Ψ(F , v; F̃ , ṽ) parameterized
by F and v, respectively, i.e., Ψ̄(F )

t (F ) and Ψ̄(v)
t (v), in an alternating way. While other optimization ap-

proaches are possible—for example, performing block coordinate maximization of a single joint approximate
majorizer—our novel approach of alternating between the two separate approximate minorizers reduces mem-
ory usage and computational overhead in our setting. Given a sequence of non-increasing positive weights
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{wt}t≥0 ∈ (0, 1) and positive scalars cv and cF , we first update v (with F fixed at Ft−1) with one SMM
iteration, then update F (with v fixed at vt) with another. Namely, we have the noise variance update:

Ψ̄(v)
t (v) = (1 − wt)Ψ̄(v)

t−1(v) + wtΨt(Ft−1, v; Ft−1, vt−1), (11)

vt = (1 − cv)vt−1 + cv arg max
v

Ψ̄(v)
t (v), (12)

followed by the factor update:

Ψ̄(F )
t (F ) = (1 − wt)Ψ̄(F )

t−1(F ) + wtΨt(F , vt; Ft−1, vt) (13)

Ft = (1 − cF )Ft−1 + cF arg max
F

Ψ̄(F )
t (F ). (14)

The iterate averaging updates in (12) and (14) are important to control the distance between iterates and
have both practical and theoretical significance in SMM algorithms (Strohmeier et al., 2020; Lyu, 2024).
Empirically, we found that using constant cF and cv worked well, but other iterate averaging techniques are
also possible, such as those discussed in Mairal (2013). Other ways to control the iterates include optimizing
over a trust region, as done in Strohmeier et al. (2020).

Since the iterate and the time index are the same in the streaming setting, i.e., t = i, we now denote both
the sample and the SMM iteration by t in the remainder of this section. We now derive efficient recursive
updates and compare the memory and computational costs to the batch algorithm.

6.1 Optimizing v for fixed F

Now note that the minorizer in (7) for i = t and (F̃ , ṽ) = (Ft−1, vt−1) can be re-written as

Ψt(Ft−1, v; Ft−1, vt−1) = Ct − |Ωt| ln vgt
− ρt

vgt

,

where Ct does not depend on v and

ρt ≜ ∥yΩt − Ft−1,Ωt žt(Ft−1, vt−1)∥2
2 + vt−1,gt tr(F ′

t−1,Ωt
Ft−1,ΩtMt(Ft−1, vt−1)).

Recall that gt ∈ [L] is the group index of the tth data vector. Thus, it follows from Equation (11) that

Ψ̄(v)
t (v) = C ′

t +
L∑

ℓ=1
−θ̄t,ℓ ln vℓ − ρ̄t,ℓ

vℓ
,

where C ′
t is a constant that does not depend on v,

θ̄t,gt ≜ (1 − wt)θ̄t−1,gt + wt|Ωt|, (15)
ρ̄t,gt ≜ (1 − wt)ρ̄t−1,gt + wtρt, (16)

and for ℓ ̸= gt

θ̄t,ℓ ≜ (1 − wt)θ̄t−1,ℓ, ρ̄t,ℓ ≜ (1 − wt)ρ̄t−1,ℓ. (17)

The ℓth term in the sum is optimized by vℓ = ρ̄t,ℓ/θ̄t,ℓ, so

vt,ℓ = (1 − cv)vt−1,ℓ + cv
ρ̄t,ℓ

θ̄t,ℓ

. (18)

Here the vectors θ̄t ∈ RL and ρ̄t ∈ RL aggregate past information to parameterize the approximate minorizer
in v. Since there is no past information at t = 0, we chose to initialize them with zero vectors. However,
in the initial iterations where no data vectors have been observed for the ℓth group, (18) is undefined, so a
valid argument maximizing (12) is simply v0,ℓ, i.e., the initialized value.

8
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6.2 Optimizing F for fixed v

Maximizing the approximate minorizer Ψ̄(F )
t (F ) with respect to F reduces to maximizing d quadratics in

the rows of F for j ∈ [d]:

Ψ̄(F )
t (F ) =

d∑
j=1

f ′
j s̄t,j − f ′

jRt,jfj , (19)

where for j ∈ Ωt

Rt,j = (1 − wt)Rt−1,j + wtRt,j , (20)
s̄t,j = (1 − wt)s̄t−1,j + wtst,j , (21)

where

Rt,j ≜
1
2

(
1

vt,gt

žt(Ft−1, vt)žt(Ft−1, vt)′ + Mt(Ft−1, vt)
)

, st,j ≜
1

vt,gt

ytj žt(Ft−1, vt), (22)

and for j /∈ Ωt

Rt,j = (1 − wt)Rt−1,j , s̄t,j = (1 − wt)s̄t−1,j . (23)

The parameters (Rt,j , s̄t,j) for j ∈ [d] of the approximate minorizer Ψ̄(F )
t (F ) aggregate past information

from previously observed samples, permitting our algorithm to stream over an arbitrary amount of data
while using a constant amount of memory.

Maximizing the approximate minorizer Ψ̄(F )
t (F ) with respect to each row of F yields

f̂j = R−1
t,j s̄t,j , i = 1, . . . , d. (24)

Since the problem separates in each row of F , this form permits efficient parallel computations. Further,
because f̂j = R−1

t,j s̄t,j = R−1
t−1,j s̄t−1,j for j /∈ Ωt, we solve the k × k linear systems in (24) only for the rows

indexed by j ∈ Ωt. After obtaining the candidate iterate F̂ above, the final step updates Ft by averaging in
(14).

6.3 Algorithm and Memory/Computational Complexity

Together, these alternating updates form the Streaming HeteroscedASTic Algorithm for PCA (SHASTA-
PCA), detailed in Algorithm 1.

The primary memory requirement of SHASTA-PCA is storing d + 1 many k × k matrices and k-length
vectors for the F surrogate parameters and two additional L-length vectors for the v parameters. Thus, the
dominant memory requirement of SHASTA-PCA is O(d(k2 + k)) memory elements throughout the runtime,
which is independent of the number of data samples.

The primary sources of computational complexity arise from: i) forming Mt(·, ·) at a cost of O(|Ωt|k2 + k3)
flops, ii) computing žt(·, ·) at a cost of O(|Ωt|k2) flops, iii) forming 1

vt,gt
žt(·, ·)žt(·, ·)′ + Mt(·, ·) at a cost of

O(k2) flops, iv) computing ρt,ℓ at a cost of O(|Ωt|k2 + k3) flops when using an efficient implementation with
matrix-vector multiplications, and v) updating Ft at a cost of O(|Ωt|(k3 + k2)) for the multiplications and
inverses. In total, each iteration of SHASTA-PCA incurs O(|Ωt|(k3 + k2)) flops.

As discussed below, PETRELS (Chi et al., 2013) uses rank-one updates to the pseudo-inverses of the matrices
in (26) to avoid computing a new pseudo-inverse each iteration, but that approach does not apply in our case
since the updates to Rt,j in (20) are not rank-one. Still, updating F only requires inverting |Ωt| many k × k
matrices each iteration, which remains relatively inexpensive since k ≪ d and is often small in practice. Note
that the complexity appears to be the worst for |Ωt| = d with the implementation described above, but in this
setting, since all the surrogate parameters are the same, one can verify that only a single surrogate parameter
Rt (and its inverse) is necessary. In reality, the worst-case complexity happens when |Ωt| = d − 1, i.e., when
a single entry per column is missing. Identifying an approach with improved computational complexity in
the highly-sampled setting remains an interesting future research direction.

9
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Algorithm 1: SHASTA-PCA
Input: Rank k, weights (wt) ∈ (0, 1], parameters cF , cv > 0, initialization parameter δ > 0.
Data: [y1, . . . , yT ], yt ∈ Rd, group memberships gt ∈ {1, 2, . . . , L} for all t, and sets of observed

indices (Ω1, . . . , ΩT ), where Ωt ⊆ {1, . . . , d}.
Output: F ∈ Rd×k, v ∈ RL

+.
1 Initialize F0 and v0 via random initialization;
2 Initialize surrogate parameters Rt,j = δIk for δ > 0 and s̄t,j = 0k for j ∈ [d], θ̄0 = ρ̄0 = 0L ;
3 for t = 1, . . . , T do
4 Fixing F at Ft−1,

1. Compute θ̄t and ρ̄t via (15)-(17).

2. Compute vt from (18).

Fixing v at vt,

1. Update Rt,j and s̄t,j via (20)-(23).

2. Compute F̂ via (24) in parallel.

3. Ft = (1 − cF )Ft−1 + cF F̂ .

6.3.1 Convergence

Empirically, we observe that SHASTA-PCA converges to a stationary point as the number of samples grows.
Several factors influence how fast the algorithm converges in practice. Similar to stochastic gradient descent,
the choices of weights (wt) and iterate averaging parameters cF and cv affect both how fast the algorithm
converges and what level of accuracy it achieves. Using larger weights tends to lead to faster convergence
but only to within a larger, suboptimal local region of an optimum. Conversely, using smaller weights tends
to lead to slower progress but to a tighter region around an optimum. The amount of missing data also
plays a major role. A higher percentage of missing entries generally requires more samples or more passes
over the data to converge to an optimum.

Our setting differs in several key ways from the prior works discussed in §2 that establish convergence for
SMM algorithms. First, our minorizers are neither Lipschitz smooth nor strongly concave (in fact, the
minorizer for vℓ is nonconcave), so the theory in Mairal (2013) and Mensch et al. (2017) does not directly
apply. Second, our algorithm maximizes the log-likelihood in two blocks of variables, and does so in an
alternating fashion with two separate approximate minorizers Ψ̄(F )

t (F ) and Ψ̄(v)
t (v), which is distinct from

the work in Strohmeier et al. (2020) that alternates updates over the blocks of a single joint approximate
minorizer. Notably, such as in the case of v, we update an aggregation Ψ̄(v)

t (v) of the restricted minorizers
Ψi(Fi−1, v; Fi−1, vi−1):

Ψ̄(v)
t (v) = (1 − wt)Ψ̄(v)

t−1(v) + wtΨt(Ft−1, v; Ft−1, vt−1)

=
t∑

i=0

wi

t∏
j=i+1

(1 − wj)

 Ψi(Fi−1, v; Fi−1, vi−1). (25)

The dependence of Ψ̄(v)
t (v) on all past iterates {Fi}t

i=0 in the first argument of each Ψi in (25) precludes
using the analysis of Strohmeier et al. (2020) for BCD of a single approximate minorizer each iteration.
Likewise, the use of this restricted minorizer in Ψ̄(v)

t (v) precludes using the analysis of Mairal (2013) since
it only minorizes the objective with respect to v with F fixed at Fi−1, which breaks, e.g., the induction
argument used in Mairal (2013, Proposition 3.3). To our knowledge, no existing work establishes convergence
for this setting.

10
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However, we conjecture that similar convergence guarantees are possible for SHASTA-PCA since both
Ψ̄(F )

t (v) and Ψ̄(v)
t (v) retain many of the same MM properties used to analyze SMM algorithms. It is

likely that a theory of convergence to a stationary point would require adjustments to our algorithm, such
as the addition of constraints on F and v to provide some control over the curvature of the objective. Since
the convergence results possible for non-convex problems using stochastic optimization are typically weak,
we leave the proof of convergence to future work.

6.4 Connection to recursive least squares and HePPCAT

The SHASTA-PCA update for the factors in (24) resembles recursive least squares (RLS) algorithms like PE-
TRELS (Chi et al., 2013). The objective function considered in Chi et al. (2013) is, in fact, the maximization
of our complete log-likelihood in the homoscedastic setting with respect to the factors F and latent variables
zt without the ℓ2 penalty on zt in (4). PETRELS first estimates the minimizer to zt via the pseudo-inverse
solution and then updates each row fj by computing (24) using similar updates to the minorizer parameters:

for j ∈ Ωt : Rt,j = λRt−1,j + ẑtẑ
′
t, s̄t,j = λs̄t−1,j + yt,j ẑt,

for j ̸∈ Ωt : Rt,j = λRt−1,j , s̄t,j = λs̄t−1,j ,

where ẑt = F †
t−1,Ωt

yΩt
and λ ∈ (0, 1) is a forgetting factor that exponentially downweights the importance of

past data. In the stochastic MM framework, wt plays an analogous role to λ by exponentially down-weighting
surrogates constructed from historical data.

However, there are some important differences. Here, the complete data log-likelihood effectively introduces
Tikhonov regularization on zt, where the Tikhonov regularization parameter is learned by estimating the
noise variances. The PETRELS objective function can similarly incorporate regularization on the weights,
but with a user-specified hyperparameter. It is well known that the appropriate hyperparameter in Tikhonov
regularization depends on the noise variance of the data (O’Leary, 2001; Cao et al., 2020). Here, SHASTA-
PCA implicitly learns this hyperparameter as part of the maximum-likelihood estimation problem for the
unknown heterogeneous noise variances.

PETRELS can also be thought of as a stochastic second-order method that quadratically majorizes the
function in F at each time t using the pseudo-inverse solution of the weights given some estimate Ft−1.
Our algorithm optimizes a similar quadratic majorizer in F for each t. While the pseudo-inverse solution
for maximizing the complete data log-likehood in (4) with respect to zt, or equivalently the conditional
mean of zt, appears in the update of F through žt, the update additionally leverages the covariance of the
latent variable’s conditional distribution and, perhaps most importantly, an inverse weighting according to
the learned noise variances that downweights noisier data samples.

SHASTA-PCA also has connections to the HePPCAT algorithm (Hong et al., 2021). Indeed, the SHASTA-
PCA updates of F and v closely resemble—and can be interpreted as stochastic approximations to—
HePPCAT’s EM updates of F and v in Hong et al. (2021, eqn. (8)) and Hong et al. (2021, eqn. (15)),
respectively. More precisely, each s̄t,j approximates each column of

L∑
ℓ=1

Žt,ℓY
′

ℓ

vt,ℓ

of Hong et al. (2021, eqn. (8)), where Žt,ℓ ≜ Mt,ℓF
′
t Yℓ and Mt,ℓ ≜ (F ′

t Ft + vt,ℓIk)−1, and each Rt,j

approximates the matrix

L∑
ℓ=1

Žt,ℓŽ
′
t,ℓ

vt,ℓ
+ nℓMt,ℓ .

However, each of these terms in SHASTA-PCA depends on the observed data coordinate in the update of
the corresponding row of F . Since each row of F depends on a different Rt,j for each j ∈ [d] due to missing
data, we cannot use the SVD factorization of Ft to expedite the inverse computation as in HePPCAT (Hong

11
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et al., 2021, eqn. (9)). Other minorizers for the v update that were considered in Hong et al. (2021), such as
the difference of concave, quadratic solvable, and cubic solvable minorizers, may also have possible stochastic
implementations. We leave these possible approaches to future work since they did not appear to result in
more efficient updates.

7 Experimental Results

7.1 Incremental computation with static subspace

This section considers the task of estimating a static planted subspace from low-rank data corrupted by
heterogeneous noise. We generate data according to the model in (1) with ambient dimension d = 100
from a rank-3 subspace with squared singular values [4, 2, 1], drawing 500 samples with noise variance 10−2,
and 2,000 samples with noise variance 10−1. We draw an orthonormal subspace basis matrix U ∈ R100×3

uniformly at random from the Stiefel manifold, and set the planted factor matrix to be F = U
√

λ.

After randomly permuting the order of the data vectors, we compared SHASTA-PCA to PETRELS and the
streaming PCA algorithm GROUSE (Balzano et al., 2010) (which has recently been shown to be equivalent
to Oja’s method (Oja, 1982) in Balzano (2022)) that estimates a subspace from rank-one gradient steps on
the Grassmann manifold, with a tuned step size of 0.01.1 SHASTA-PCA jointly learns both the factors F
and noise variances v from each streaming observation. For SHASTA-PCA, we used wt = 1/t (where t is the
time index), cF = cv = 0.1 and initialize the parameters Rt(i) = δI with δ = 0.1 for both SHASTA-PCA
and PETRELS. We initialized each streaming algorithm with the same random F0, and each entry of v0
for SHASTA-PCA uniformly at random between 0 and 1. We set the forgetting parameter in PETRELS to
λ = 1, corresponding to the algorithm’s batch mode. As a baseline, we compared to batch algorithms for
fully-observed data: HePPCAT (Hong et al., 2021) with 100 iterations, which we found to be sufficient for
convergence, and homoscedastic probabilistic PCA (PPCA) (Tipping & Bishop, 1999b) on the full data. In
addition, we computed PPCA over each data group individually, denoted by “G1” (“G2”) in the legend of
Fig. 1a corresponding to group 1 (2) with 500 (2,000) samples with noise variances 10−2 (10−1) respectively.

The first experiment in Fig. 1a compares each algorithm in the fully observed data setting, where the
streaming algorithms compute F and v incrementally using a single vector in each iteration. Given the
planted model parameters F ∗ and v∗ and their log-likelihood value L∗ := L(F ∗, v∗), the left plot in Fig. 1a
shows the normalized log-likelihood L(Ft, vt) − L∗ with respect to the full dataset in (2) for each iteration
of SHASTA-PCA compared to the batch algorithm baselines. Because GROUSE and PETRELS do not
estimate the noise variances, we omit them from this plot. The right plot in Fig. 1a shows convergence of
the F iterates with respect to the normalized subspace error 1

k ∥ÛtÛ
′
t − UU ′∥2

F for the estimate Ût ∈ Rd×k

of the planted subspace U ; for SHASTA-PCA and PETRELS, we compute Ût by taking the k left singular
vectors of F . Each figure plots the mean of 50 random initializations in bold dashed traces, where their
standard deviations are displayed as ribbons. The experiment in Fig. 1b then subsamples 50% of the data
entries uniformly at random, inserting zeros for the missing entries for methods that require fully sampled
data, and compares the same statistics across the algorithms.

As expected, when the samples were fully observed, PETRELS converged to the same log-likelihood and
subspace error for each set of training data as the batch algorithms that assume homoscedastic noise, and
SHASTA-PCA converged to the same log-likelihood value and subspace error as HePPCAT. Here we see the
advantage of using heteroscedastic data analysis. Instead of discarding the samples from either data group or
combining them in a single PPCA, the heteroscedastc PPCA algorithms leverage both the “clean” samples,
the additional “noisy” samples, and the noise variance estimates to produce better subspace estimates. With
many missing entries (imputed with zeros), the batch algorithms’ subspace estimates quickly deteriorated, as
seen on the right-hand side of Fig. 1b. Out of the streaming PCA algorithms for missing data, SHASTA-PCA
again attained the best subspace estimate compared to GROUSE and PETRELS.

1All experiments were performed in Julia on a 2021 Macbook Pro with the Apple M1 Pro processor and 16 GB of memory.
We reproduced and implemented all algorithms ourselves from their original source works.
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(a) Fully observed data.

(b) Data with 50% entries observed uniformly at random.

Figure 1: Incremental computation (with one pass) over batch data generated from a static subspace for
d = 100, n1 = 500, n2 = 2,000, v1 = 10−2, and v2 = 10−1. Horizontal dashed lines show the terminal values
for the batch algorithms, and the horizontal axis shows the iteration index for the online algorithms.

7.2 Dynamic subspace

This section studies how well SHASTA-PCA can track a time-varying subspace. We generate 20,000 stream-
ing data samples according to the model in (1) for L = 2 groups with noise variances v1 = 10−4 and
v2 = 10−2. We use a randomly drawn F = U

√
λ, where d = 100 and λ = [4, 2, 1]. The data samples are

drawn from the two groups with 20% and 80% probability, respectively. We then observe 50% of the entries
selected uniformly at random. To simulate dynamic jumps of the model, we set the planted subspace U to a
new random draw every 5000 samples and compare the subspace errors of the various methods with respect
to the current U over time. Here, we use the parameters wt = 0.01, cF = 0.01, and cv = 0.1 for SHASTA-
PCA. After hyperparameter tuning, we set the step size of GROUSE to be 0.02, and we set λ = 0.998
for PETRELS. Each algorithm is initialized with the same random factors F0, and SHASTA-PCA’s noise
variances are initialized uniformly at random between 0 and 1. Fig. 2 shows SHASTA-PCA outperforms
the streaming PCA algorithms that assume homoscedastic noise by half an order of magnitude. The re-
sults highlight how the largest noise variance dominates the streaming PCA algorithms’ subspace tracking
performance while SHASTA-PCA obtains more faithful estimates by accounting for the heterogeneity.

7.3 Dynamic noise variances

In some applications, due to temperature, age, or change in calibration, the quality of the sensor measure-
ments may also change with time (Jun-hua et al., 2003), thereby affecting the levels of noise in the data.
To study the performance of SHASTA-PCA in these settings, we generate samples from the planted model
described above where we change the noise variances over time while keeping the subspace stationary. As
before, SHASTA-PCA is initialized at a random (F0, v0). Figs. 3a and 3c show the estimated noise variances
and the subspace error as we double the noise variance of the first group every 5,000 samples. Figs. 3b
and 3d repeat the experiment but double the noise variance of the second group instead. As v1 increases
and the cleaner group becomes noisier, the data becomes noisier overall and also closer to homoscedastic.

13



Under review as submission to TMLR

Figure 2: Dynamic tracking of rapidly shifting subspace with 50% of the entries observed uniformly at random
using SHASTA-PCA versus streaming PCA algorithms that assume homoscedastic noise. Here, d = 100 and
20% of the data has noise variance 10−4 and 80% of the data has noise variance 10−2. Iterations refers to
the number of streamed data vectors.

(a) Estimated variances for varying v1. (b) Estimated variances for varying v2

(c) Subspace error with varying v1. (d) Subspace error with varying v2.

Figure 3: Experiments with changing variances across time (iterations) for a single F ∈ R100×3 starting
with planted noise variances v = [10−4, 10−2] with 50% of the entries observed uniformly at random. The
vertical dashed lines indicate points at which we double one of the planted variances. The top plots show
the estimated variances from SHASTA-PCA, and the bottom plots show the subspace error.

SHASTA-PCA’s estimate of the subspace degrades and approaches the estimates obtained by PETRELS and
GROUSE. On the other hand, as the noisier group gets even noisier, the quality of the PETRELS subspace
estimate deteriorates in time whereas SHASTA-PCA remains robust to the added noise by leveraging the
cleaner data group. In both instances, GROUSE appears to oscillate about an optimum in a region whose
size depends on the two noise variances. The variance estimates demonstrate how SHASTA-PCA can quickly
adapt to changes in the noise variances; SHASTA-PCA adapted here within less than 1,000 samples.

7.4 Comparison to streaming robust PCA
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This section experimentally compares heteroscedastic PCA and robust PCA methods. A variety of robust
subspace tracking techniques exist in the literature, including for problems with missing data; see He et al.
(2011); Bouwmans & Zahzah (2014); Zhan et al. (2016); Vaswani et al. (2018); Liu et al. (2020); Dung et al.
(2021); Thanh et al. (2021). Many of these works model the data as a true signal lying in a low-dimensional
subspace, plus Gaussian noise, plus a sparse outlier vector. Given mild conditions on the incoherence and
dimension of the subspace as well as the sparsity and distribution of outliers’ support, robust PCA provably
decomposes low-rank plus sparse data (Chandrasekaran et al., 2011).

Here, we compare SHASTA-PCA with PETRELS-ADMM (Thanh et al., 2021), a streaming robust PCA
algorithm2. We considered subsets of data with increasingly larger differences in noise variances and varying
ratios of “clean” to “noisy” samples. In one scenario, a minority of samples with a very large noise variance
can be interpreted as outliers. We repeated the experiments in Section 7.1 for one random data draw with
varying choices of v and missing data rates. For each experiment, we varied the sparsity hyperparameter
of PETRELS-ADMM in increments of 0.1 between 0.1 and 2, choosing the hyperparameter that gave the
lowest subspace error. We used the same learning rate λ = 1 for both PETRELS and PETRELS-ADMM,
and we used the same SHASTA-PCA hyperparameters as the experiments in Section 7.1.

Although PETRELS-ADMM models for sparse entry-wise outliers, our experiments in Fig. 4 show that it
achieved lower subspace estimation error than PETRELS when the two noise variances differed significantly.
This suggests that the low-rank-plus-sparse PCA model improves subspace estimation even under model
mismatch and when entire groups of samples are heavily contaminated with noise. Notably, Fig. 4 shows that
SHASTA-PCA matched or outperformed PETRELS-ADMM in low-SNR scenarios and consistently achieved
a lower subspace error when the data contained missing entries. However, SHASTA-PCA assumes and
requires knowledge of the data group memberships. When this assumption is met, streaming heteroscedastic
PCA offers a robust solution for data with outlier groups.

7.5 Computational timing experiments

Computational and/or storage considerations can inhibit the use of batch algorithms for large datasets,
especially on resource constrained devices. To demonstrate the benefit of SHASTA-PCA in such settings,
we generated a 2GB dataset according to our model, where d = 1,000, λ = [4, 2, 1], n = [50,000, 200,000],
v = [0.1, 1], and we observed only 20% of the entries uniformly at random. For this experiment, we set
wt = 0.01/

√
t, cF = 0.01, and cv = 0.1 for SHASTA’s hyperparameters, and passed over the entire data

once. Fig. 5 compares the convergence in log-likelihood values and subspace errors by elapsed wallclock time
for SHASTA and the batch algorithm in §5, where both algorithms are randomly initialized from the same
random starting iterate (F0, v0). SHASTA-PCA rapidly obtained a good estimate of the model, using only
roughly 60% of the time that it took the batch method, all while using only 0.0048% of the memory per
iteration.

7.6 Real data from astronomy

We illustrate SHASTA-PCA on real astronomy data from the Sloan Digital Sky Survey (SDSS) Data Release
16 (Ahumada et al., 2020) using the associated DR16Q quasar catalog (Lyke et al., 2020). In particular,
we considered the subset that was considered in Hong et al. (2023, Section 8); see Hong et al. (2023,
Supplementary Material SM5) for details about the subset selected and the preprocessing performed. The
dataset contains n = 10,459 quasar spectra, where each spectrum is a vector of d = 281 flux measurements
across wavelengths and the data come with associated noise variances.

Ordering the samples from smallest to largest noise variance estimates, we obtained a “ground-truth” signal
subspace by taking the left k = 5 singular vectors of the data matrix for the first 2,000 samples with the
smallest noise variance estimates. We then formed a training dataset with two groups: first, we collected
samples starting from sample index 6,500 to the last index where the noise variance estimate is less than or
equal to 1 (7,347); second, we collected training data beginning at the first index where the noise variance

2We used ChatGPT to convert the authors’ original MATLAB code (https://github.com/thanhtbt/RST) to Julia, and we
validated its outputs.
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(a) n = [500, 2000], v =
[10−2, 10−1]

(b) n = [500, 2000], v = [1, 10−1] (c) n = [500, 2000], v = [10−1, 1]

(d) n = [500, 2000], v =
[10−2, 10−1]

(e) n = [500, 2000], v = [1, 10−1] (f) n = [500, 2000], v = [10−1, 1]

Figure 4: Experiments comparing SHASTA-PCA (this work), PETRELS (Chi et al., 2013), and PETRELS-
ADMM (Thanh et al., 2021) for synthetic data.

(a) (b)

Figure 5: Log-likelihood values and subspace errors versus elapsed wall clock time for one run of SHASTA-
PCA versus the batch method in §5 on 2GB of synthetic data: d = 1,000, k = 3, n = [50,000, 200,000], and
v = [0.1, 1]. Both algorithms used the same random initialization. Markers for SHASTA-PCA are for every
10,000 vector samples, and markers for the batch method are for each algorithm iteration.
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(a) (b)

Figure 6: (a) Visualization of quasar data with true associated variances of each sample plotted by quasar.
The estimated variances from a SHASTA-PCA L = n model streaming over the samples (fully sampled,
in randomized order) closely matched the true variances. (b) For fully sampled data, the subspace error of
SHASTA-PCA converged to the error of HePPCAT’s estimated subspace for a L = n model. We repeated
the experiment 50 times, each with a different random initialization and order of the samples.

estimate is greater than or equal to 2 (8,839) up to the sample index 10,449, excluding the last 10 samples
that are grossly corrupted. The resulting training dataset had n1 = 848 and n2 = 1,611 samples for the two
groups, respectively, and had strong noise heteroscedasticity across the samples, where the second group was
much noisier than the first. Fig. 6a shows the training dataset and the associated noise variance estimates
for each sample.

Although we formed the data by combining two groups of consecutive samples, the data actually contained
L = n groups since each spectrum has its own noise variance. This setting allows for a heuristic computational
simplification in SHASTA-PCA. Namely, we adapt the L = 1 model for a single variance v and use separate
weights for the SMM updates of F and v, where w

(F )
t = 0.001, cF = 0.1, and w

(v)
t = cv = 1 ∀t. The

variance update is then equivalent to maximizing Ψt(Ft−1, v; Ft−1, vt−1), i.e., the minorizer centered at the
previous variance estimate with no memory of previous minorizers. The number of variance EM updates
per data vector may be increased beyond just a single update, but in practice, we observed little additional
benefit. Fig. 6 shows how SHASTA-PCA adaptively learned the unknown variances for each new sample
and converged to the same level of subspace error as the batch HePPCAT L = n model.

In many modern large datasets, entries may be missing in significant quantities due to sensor failure or time
and memory constraints that preclude acquiring complete measurements. Indeed, the experiment designer
may only wish to measure a “sketch” of the full data to save time and resources and learn the underlying signal
subspace from limited observations using an algorithm like SHASTA-PCA. To study this case, we randomly
obscured 60% of the entries uniformly at random and performed 10 passes over the data, randomizing the
order of the samples each time. We used the same choice of weights described above to estimate a single
variance for every new sample. We initialized with a random F0 and v0 using the zero-padded data. As Fig. 7
shows, SHASTA-PCA had better subspace estimates in this limited sampling setting than the state-of-the-
art baseline methods with zero-filled missing entries and/or homoscedastic noise assumptions. Interestingly,
the SHASTA-PCA subspace estimate was even better than the batch method in §5 for the L = n model.

8 Conclusion & Future Work

This paper proposes a new streaming PCA algorithm (SHASTA-PCA) that is robust to both missing data
and heteroscedastic noise across samples. SHASTA-PCA only requires a modest amount of memory that is
independent of the number of samples and has efficient updates that can scale to large datasets. The results
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Figure 7: Subspace error for quasar data with 40% of the entries observed uniformly at random. SHASTA-
PCA streams over the full dataset 10 times, with the sample entries missing, where the order of the samples
was randomized on each pass. Each experiment was initialized with factors chosen uniformly at random.

showed significant improvements over state-of-the-art streaming PCA algorithms in tracking nonstationary
subspaces under heteroscedastic noise and significant improvement over a batch algorithm in speed.

There are many future directions building on this work. An interesting line of future work is to establish
convergence guarantees for SHASTA-PCA, particularly since our optimization approach is unique among
other works using stochastic MM. Second, while each update of a row in F is relatively cheap, it still requires
inverting |Ωt| many k × k matrices per data vector, which is particularly wasteful when |Ωt| = d since this is
equivalent to the fully-sampled log-likelihood, which only requires inverting a single k×k matrix to update F .
It may be possible to find other surrogate functions that would avoid this large number of small inverses in
each iteration. Finally, although SHASTA-PCA enjoys lightweight computations in each iteration, achieving
rapid convergence can depend on carefully tuning the weights wt and the parameters cF and cv. Adaptively
selecting these parameters with stochastic MM techniques and developing theory to guide the selection of
these parameters remain open problems.
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Table 1: Summary of notation.
Notation Description
yi ∈ Rd ith data vector

F ∈ Rd×k factor matrix (k ≪ d)
zi ∈ Rk ith coefficients distributed N (0, I)

ϵi ith noise vector distributed N (0, vgiI)
v1, . . . , vL noise variances of the L data groups
v ∈ RL vector of noise variances

gi ∈ {1, . . . , L} group index of the ith data vector
Ωi ⊆ {1, . . . , d} set of entries observed for the ith sample

Ω observed indices over the batch data
yΩi

∈ R|Ωi| restriction of yi to the rows defined by Ωi

FΩi ∈ R|Ωi|×k restriction of F to the rows defined by Ωi

YΩ partially observed dataset
L(YΩ; F , v) log-likelihood over YΩ with respect to F and v

Li(yΩi
; F , v) log-likelihood of the ith sample

Lc
i (F , v) complete log-likelihood of the ith sample

ži(F , v) function defined in (5) for intermediate calculations
Mi(F , v) function defined in (6) for intermediate calculations

Ψi(F , v; F̃ , ṽ) minorizer of the ith log-likelihood at point (F̃ , ṽ)
Ψ(F , v; F̃ , ṽ) minorizer over the batch data

Ψ̄(v)
t (v) tth approximate minorizer with respect to v in the streaming algorithm

Ψ̄(F )
t (F ) tth approximate minorizer with respect to F in the streaming algorithm
θbatch

t,ℓ total count of observed entries in the ℓth group
θ̄t term computed from the count of observed entries in the streaming algorithm

ρbatch
t,ℓ data-dependent term computed in the batch algorithm’s v update
ρ̄t data-dependent term computed in the streaming algorithm’s v update

Rbatch
t,j data-dependent k × k matrix computed in the batch algorithm’s F update

Rt,j data-dependent k × k matrix computed in the streaming algorithm’s F update
sbatch

t,j data-dependent k-length vector computed in the batch algorithm’s F update
s̄t,j data-dependent k-length vector computed in the streaming algorithm’s F update

{wt}t≥0 ∈ (0, 1) sequence of weights in the streaming algorithm
cF and cv positive scalars in the streaming algorithm for updating F and v.

B Minorizer derivation

We give a short proof for the expectation step to derive the ith minorizer in (7). For notational simplicity,
we drop the indexing on i and give the proof for the case with fully-sampled data, without loss of generality.
Let

x ≜

[
z
y

]
=

[
I
F

]
z +

[
0
n

]
, (26)

where z ∼ N (0, I) and n ∼ N (0, vI). Then x ∼ N
(

0,

[
I F ′

F vI + F F ′

])
. Using conditional expectations

of multivariate Gaussian random variables,

{z|y = a} ∼ N (µ̄, Σ̄), (27)
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where

µ̄ = F ′(vI + F F ′)−1a = (vI + F ′F )−1F ′a ≜ M(F , v)F ′a (28)
Σ̄ = I − F ′(vI + F F ′)F = v(vI + F ′F )−1 ≜ vM(F , v) (29)

The two righthand equalities follow from applying the Sherman-Woodbury-Morrison formula, i.e., the matrix
inversion lemma (Boyd, 2004, Section C.4.3). Finally, expanding the square quadratic terms of the complete
log-likelihood in (4), taking the expectation with respect to z|y, plugging in the expressions for µ̄ and Σ̄
above, and dropping terms constant with respect to F and v yields the minorizer in (7).

C Hyperparameter sensitivity tests

Figures 8 and 9 summarize the hyperparameter sweep experiments. For the experiments in Section 7.1, we
varied the constant cw in the numerator for decaying weights wt = cw/t, where t is the algorithm iteration.
We plotted the log-likelihoods and subspace errors in Fig. 8, showing the algorithm’s performance is largely
stable across many choices of hyperparameters. Similarly, for the dynamic subspace tracking experiments
in Section 7.2, we plotted the subspace error of the final estimate for F across varying values of a constant
weight w = wt for all t and the constants cF = cv.

(a) (b)

(c) (d)

Figure 8: Hyperparameter sweep for experiments in Section 7.1.
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Figure 9: Hyperparameter sweep for experiments in Section 7.2.
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