
Revisiting SMoE Language Models by Evaluating
Inefficiencies with Task Specific Expert Pruning

Soumajyoti Sarkar∗ Leonard Lausen† Volkan Cevher‡ Sheng Zha∗

Thomas Brox§ George Karypis†

Abstract

Sparse Mixture of Expert (SMoE) models have emerged as a scalable alterna-
tive to dense models in language modeling. These models use conditionally ac-
tivated feedforward subnetworks in transformer blocks, allowing for a separation
between total model parameters and per-example computation. However, large
token-routed SMoE models face a significant challenge: during inference, the en-
tire model must be used for a sequence or a batch, resulting in high latencies
in a distributed setting that offsets the advantages of per-token sparse activation.
Our research explores task-specific model pruning to inform decisions about de-
signing SMoE architectures, mainly modulating the choice of expert counts in
pretraining. We investigate whether such pruned models offer advantages over
smaller SMoE models trained from scratch, when evaluating and comparing them
individually on tasks. To that end, we introduce an adaptive task-aware pruning
technique UNCURL to reduce the number of experts per MoE layer in an offline
manner post-training. Our findings reveal a threshold pruning factor for the re-
duction that depends on the number of experts used in pretraining, above which,
the reduction starts to degrade model performance. These insights contribute to
our understanding of model design choices when pretraining with SMoE architec-
tures, particularly useful when considering task-specific inference optimization
for later stages.

1 Introduction

Conditional computation in language models, where parts of the network are active on a per-example
basis, has been proposed in theory as a way to dramatically increase model capacity without a
proportional increase in computation needed per token. In most of these schemes, large parts of the
network are inactive on a per-token basis [1, 2]. Formally, an SMoE model MSMoE, comprises a
sequence of MoE layers where each such layer contains M experts {E1, E2, . . . , EM}. The decision
to select the experts in the MoE layer on a per-token basis is made through a routing/gating function
local to each MoE layer, that uses the previous layer as input. The dense model MDense which is
often called the base model or the backbone model is the equivalent MoE model when the number
of experts in each MoE layer is one, which makes the routing redundant.

∗Amazon AGI, work performed while at Amazon Web Services {soumajs@amazon.com,
zhasheng@amazon.com}

†Amazon Web Services {lausen@amazon.com, gkarypis@amazon.com}
‡Amazon AGI {volkcevh@amazon.de} and LIONS, EPFL. Volkan holds joint appointment at Amazon and

EPFL. This paper represents the work performed at Amazon.
§Department of Computer Science, University of Freiburg, Germany. This paper represents the work per-

formed at Amazon.

Understanding how to scale sparse language models to trillions of parameters using SMoEs have
been studied in models like Switch-MoE [3] and GLAM [4] where the authors scale a 5B param-
eter T5 model with 2048 experts and a 64B decoder model with 64 experts respectively and more
recently, in similar architecture models with less than 100B parameters [5, 6, 7]. In this paper, we
follow the GLAM style GPT2 language model decoder architecture where we replace every alter-
nate feedforward (FFN) layer with an MoE layer starting with the first FFN layer. Despite the larger
parameter space,MSMoE aims to maintain an inference computational time comparable toMDense.
This is often quantified in terms of FLOPs (Floating Point Operations) per token in a forward pass.
The goal is to achieve per token FLOPs(MSMoE) ≈ FLOPs(MDense), despite the overall larger
parameter size ofMSMoE.

Scaling laws have been studied to understand the tradeoffs between the number of experts and the
base model size when studying the loss optimal configuration [8]. What has evaded such studies is
the observation that the inference constraints of SMoE models are not always characterized by the
model FLOPs per token [9, 10], especially in the setting where a large number of experts are used
to scale the model size as studied in the Switch transformer. Unlike pretraining, LLM inference
is memory-intensive and with more experts, this memory is constrained, reducing batch size and
throughput, thereby increasing the cost per query. In the current regime of SMoE model architec-
tures, the tradeoffs that come with varying the number of experts per MoE layer has not been studied
in depth in the literature.

Deploying SMoEs with hundreds of experts per layer in production with distributed GPU clusters
require newer forms of parallelism. Techniques like expert parallelism [11, 10] are necessary dur-
ing inference with batched requests to overcome the per-GPU memory constraints as well as to
increase throughput. In a distributed setting, this however leads to extra inter-GPU communication
costs leading to slower decoding in inference and recent studies have dealt with them through MoE
specific pruning techniques [12, 13] and quantization [14]. This begets a key question: if we keep
the inference latencies in context and want to distill or prune a pretrained SMoE model to one with
fewer task specific experts during inference, are there any inherent advantages of pretraining an
overall larger SMoE with more experts. This motivates the following:

How do we decide among the choices of having fewer or more experts in SMoE pretraining if
we are later restricted to a memory budget with task specific inference?

We study this question of the choice of experts from a task-aware post-training pruning perspective,
since SMoEs inherently have one advantage over dense models when it comes pruning for infer-
ence: routing information, that can inform decisions to remove entire expert modules in an attempt
to reduce memory consumption. It exhibits forms of structured sparsity implicitly, which unlike
dense model pruning, does not need any additional sparse operator kernel specific optimization
post-training for deployment when compared to pre-training.

This question is also more fitting since as we describe later, there is a tradeoff and a Pareto fron-
tier between three factors, when there is choice of varying the number experts (where more experts
will increase overall parameter count and increase memory): (1) the model performance, (2) the la-
tency incurred by the SMoE models during inference in distributed settings and, (3) the pretraining
compute costs. Training a single SMoE model that is flexible to all these three and simultaneously
optimal is difficult to achieve. While training costs are often borne by large entities, the end con-
sumer has to bear the inference costs, and therefore understanding these tradeoffs become necessary
from a pretraining standpoint. To that end and to our knowledge, we develop the first controlled
study to answer and conclude the following:

1. When is it advantageous to pretrain SMoEs with fewer experts from a task perfor-
mance perspective? Our results suggest that it is beneficial to train models with larger
number of experts when we have downstream inference budgets that can handle smaller
reduction ratio in expert counts, in our study, by a factor of 2 or less. On the contrary,
when one is heavily memory budget constrained during inference more than at training, it
is beneficial to have fewer experts in pretraining even if one decides to reduce the number
of experts by a factor of 4 through task specific expert pruning later.

2. Can task specific expert pruning (with the intent of model compression) of larger
SMoE models retain the performance benefits over similar models trained from
scratch? We find that the pruning strategy is crucial in these cases and a naive expert acti-

2

vation based pruning strategy hurts performance significantly. We propose a new technique
UNCURL that overcomes issues of information loss with expert pruning through expert
merging and that retains the benefits of larger SMoEs.

The focus of our work is not solely to provide new pruning algorithms. When trying to decide the
architectural elements of SMoEs in pretraining, we aim to understand what implications does “less
costly” expert pruning with the advantage of the routing information in expert layers in SMoEs have.
In the quest for that, as an example, we study whether one should pretrain from scratch a dense 354
million parameter GPT2 model upscaled with 8 experts per MoE layer (1.3 billion parameters in
total) over the dense model but upscaled with 64 experts per MoE layer (13B in total), when in
both situations, the forward FLOPs per token remain the same, due to the nature of routing. We
answer this question from the lens of token-expert activation patterns and clustering to then show
how having more experts leads to better generalization for downstream tasks in certain cases but at
the cost of worse results with pruning. Additionally, with large SMoEs, overfitting to downstream
tasks with invdividual task finetuning has been a know problem [3, 15, 16] and this also motivates
the need to reduce the SMoE model parameters during downstream task finetuning.

2 Technical Preliminaries on SMoE

We start with the conventional transformer based GPT2 architecture which is the basis of all our
experiments in the paper. Such a model has Nl transformer layers, a hidden dimension of d and
context length L. An MoE layer takes an input representation x and the sparsity arises from the
setting where the input is routed to k experts out of M experts in a layer. Here, we consider that
MoE(x) =

∑k
i=1 gi(x) · FFN(x), where gi(x) is a learnable routing function that weights how

much importance x gives to expert i. In standard SMoEs, k is usually set to 1 or 2 and the manner
in which the set of experts are chosen for each x determines whether the routing is learnt [17, 2] or
whether it is static [18, 19]. In this paper, we restrict ourselves to the case where k = 1, so for each
MoE layer in our model, we activate one expert per input per MoE layer.

We follow the Switch transformer [3] style greedy routing/gating function where the router is param-
eterized by a variable W ∈ Rd×M and it produces logits h(x) = WTx which are then normalized
via a softmax distribution over the available M experts at that layer. The gate-value for expert
i ∈ {|M |} is given by gi(x) =

eh(x)i∑M
j=1 eh(x)j

. In a top-K style routing or expert selection in an MoE

layer, we sort the probabilities gi(x) and pick the top K values. So it goes without saying that when
K = 1, the SMoE based model has virtually the same number of parameters as a dense model such
that the FFN layers in the dense model are a replica of each expert in the SMoE layer. It is worth
noting that even when we use one expert per MoE layer, the output of the layer is weighted by g(x)
as it ensures that the router weights are updated during backpropagation. It is worth noting that
when keeping K fixed, increasing M does not increase the per token FLOPs needed for a forward
pass. Throughout the paper we use the notation 354M+Xe as an SMoE model where the alternate
FFN layers of a 354 million parameter dense GPT2 model have been upscaled to MoE layers, each
having X copies of the FFN module.

An auxiliary differentiable load balancing loss is introduced for load balancing among the experts
following the Switch transformer [3]. This balancing loss on a batch of tokens is formulated as:
loss = α

∑M
i=1 fi · Pi. Here, fi represents the fraction of tokens dispatched to expert i, defined as:

fi =
1

|B|
∑

x∈B 11{argmax gi(x) = i}. And Pi is the fraction of the router probability allocated for
expert i, given by: Pi =

1
|B|

∑
x∈B gi(x). In these equations, B represents the batch of inputs, and

α is a scaling factor, 11{·} denotes the indicator function. Also, worth noting is that this nature of
routing is known as “learnt” routing [20] rather than routing that depends on pre-determined domain
specification [21].

3 Tradeoffs in Performance, Training and Inference Costs

As mentioned in [22], the nature of memory increase with more experts per MoE
layer necessitates the use of expert parallelism that distributes the experts over multi-
ple GPUs, both in training and inference. An example transformer block in a dis-

3

tributed setup is shown in Figure 1, where we consider 8 experts of an MoE layer
to be distributed over 4 GPUs and the non-MoE layers are replicated across all GPUs.
An expert parallel degree of 4 would mean that we place 8/4=2 experts on each GPU.

Figure 1: MoE models over a distributed setup
with Expert Parallelism.

In batched training and inference, where in-
put tokens are distributed over these GPUs, the
learnt routing necessitates data movement (to-
kens) across GPUs since experts selected for to-
kens may not reside on the same device as the
token. This leads to All2all communication 5

and what follows is that the latency cost is now
a function of two factors: the time it takes for
expert computation and the time for token to
expert data movement based All2all commu-
nication.

To understand the tradeoffs between perfor-
mance and inference costs, we start by pretraining from scratch 354M+Xe SMoE models. We
train 4 different models on the same data, setting X to 8, 32, 64 and 128 experts in each MoE layer
and using one expert per layer for a token. As we increase the number of experts in each MoE
layer, the total parameter count of the model increases but the number of activated parameters per
token remains the same as the dense 354M in each configuration, since we use top-1 routing. The
details of the datasets are described in Section A2 of the Appendix. We use the deepspeed library6

for the implementation of top-K routing in MoE layers [10], and the details of the training setup
where each model is trained to 40B tokens is described in Section A3 the Appendix. We plot this
tradeoff between validation loss as the proxy for model performance vs the latency profiles in Fig-
ure 2a. Inference times for a forward pass to compute logits is profiled with eight A10 24GB GPUs
placed within one node and with a batch size of 2 per GPU and 256 tokens per example, expert
parallelism factor of 2 (does not matter for dense models). The inference latencies are averaged over
an additional 10 forward passes for each model after discarding the first 5 runs.

(a) Loss vs Inference costs

(b) (Performance Equivalent) Dense
Model Size when increasing # experts

Figure 2: Tradeoffs between model performance
and inference latencies

Observing Figure 2a, as we increase the num-
ber of experts with the 354M backbone model,
the inference latencies also increase monotoni-
cally. Observing Figure 2b, the appeal of train-
ing larger SMoEs with more experts per layer
primarily stems from the empirical observation
in the scaling laws proposed by [8]. As we in-
crease X in the 354M+Xe SMoE models, the
estimated performance equivalent dense model
size increases. But we do not proportionally in-
crease the FLOPs per token, with X. So, while
training a 354M+32e (3B) model allows us to
achieve better performance than a 354M+8e
(1B) model, the disadvantage lies in the rel-
ative higher inference costs of 354M+32e.
The higher inference is mostly attributed to in-
creased All2All communications with expert
and data parallelism across GPUs. This makes
it infeasible for consumers to pretrain multiple
of these SMoE models, which they can then use
flexibly depending on whether they choose in-
ference constraints strictly or the performance.
A more detailed description of the inference la-
tency issue can be found in Section A1 of Ap-
pendix.

We aim to determine whether entire experts in larger SMoE models can be flexibly pruned specific to
each task. For instance, a 354M+8e model is clearly faster at inference than a 354M+64e model,

5https://pytorch.org/docs/stable/distributed.html
6https://www.deepspeed.ai/tutorials/mixture-of-experts-nlg/

4

Model Total
Params

RTE BoolQ COPA CB ReCORD WSC

354M 354M 64.21 65.33 56.61 51.32 63.14 65.35

354M+8e 1.05B 66.03 67.35 58.4 50.87 65.17 68.16

354M+32e 3.4B 66.86 68.27 59.13 51.86 67.75 70.87
354M+(32e →8e)† 1.05B 64.86 66.71 58.12 49.53 64.77 67.59

354M+64e 6.7B 67.64 69.09 60.05 52.17 68.85 71.68
354M+(64e →32e)† 3.4B 66.36 68.21 58.74 50.09 66.86 69.43

354M+128e 13B 68.58 70.13 61.3 52.04 69.83 72.18
354M+(128e →64e)† 6.7B 66.91 68.22 58.31 50.98 67.22 70.09

Table 1: †The notation 354M+(32e->8e) means that the pretrained 354M+32e model was
pruned to a 354M+8e SMoE in the manner shown in Figure 3. Bold values denote the best perfor-
mance across all.

even though both have the same activated parameter count. This leads us to investigate whether
it is preferable to pretrain a 354M+8e model and finetune it for each task without the need for
later distillation or pruning, or if we can pretrain a 354M+64e model and effectively prune it to
a 354M+8e model in a task-dependent manner. Moreover, we examine if the final task-pruned
354M+8e model performs better than the one trained from scratch.

Thus, our study proposes a new algorithm focused on two aspects: (1) whether expert pruning in
SMoEs can retain the performance benefits (without costly optimization based methods for struc-
tured pruning) and (2) what implications does that have when trying to understand the size of models
to pretrain based on desired downstream task performances.

4 Can expert pruning retain the performance benefits?

4.1 Experiment Setup

As a first test, we conduct an ablation to assess whether expert pruning can retain the benefits of the
larger SMoEs. We use the same set of pretrained models described in Section 3 and for down-
stream task evaluations of the pretrained models, we utilize the list of tasks from SuperGLUE
as used in ST-MoE [23]. However, unlike that study, we adopt a two-stage approach for task-
specific evaluation as shown in the figure. In the first stage, we perform a one-shot task-dependent
expert pruning and then finetune the pruned model on instruction-output pairs (separate from the
task in context). This prefinetuning stage helps in evaluation since our models have not been pre-
trained on enough tokens to adapt easily to downstream instruction-based tasks. In the second
stage, we further finetune the pruned and prefinetuned model on the training splits of the tasks in-
dividually. For non-pruned SMoE models, the first stage is similar, but without the pruning step.

Figure 3: Pruning and Evaluation

For the prefinetuning in the first stage, we use the FLAN
dataset, introduced in [24] for the supervised instruction-
output pairs. We exclude the tasks from SuperGLUE
that we use for evaluation that were also present in
FLAN namely, COPA, BOOLQ, RTE, Commitment-
Bank, RECORD and WSC from the original FLAN mix-
ture since we define our own train and validation splits for
these tasks in the second stage for task specific finetuning.
Additionally, we add a portion of the pretraining dataset
to the FLAN dataset for the first stage to mitigate catas-
trophic forgetting known to affect multi-stage finetuning.

4.2 Observations

For the one-shot pruning strategy, we use an expert activation frequency method to prune an
354M+Xe model to an 354M+Ye model, where X > Y . For each layer, we calculate the fre-
quency of each expert’s selection for the tokens in the training split of the task. We then retain the

5

top Y experts in each layer based on these frequencies. Table 1 shows the results of the pruned
models compared to their equivalent SMoEs trained from scratch. The direct observation is that all
pruned models—354M+(32e→8e), 354M+(64e→32e), and 354M+(128e→64e)—fail to
recover the performance gains after pruning when compared to the equivalent SMoE models trained
from scratch. This occurs despite additional finetuning after pruning, indicating that the loss of
token-expert routing information in the pruned experts makes effective model compression through
expert pruning challenging. This phenomenon is consistent across all the SuperGLUE tasks we
used, demonstrating its generality regardless of the specific task (noting that the pruning in the first
stage is task-data dependent).

5 Pruning with Clustering and Merging

We hypothesize that the one-shot pruning strategy discussed previously leads to an irrecoverable
loss of capacity and knowledge, even with additional two-stage finetuning. With recent advances in
model merging techniques [25, 26, 27], we propose that merging in the expert weight subspace may
mitigate the degradations caused by pruning. Note that this method is a substitute to the one-shot
pruning technique mentioned above. ModuleFormer [28] introduces a mutual information-based
loss during pretraining to uniformly distribute tokens across experts and a load concentration loss
during task finetuning to achieve the opposite effect, allowing for expert pruning post-finetuning.
Rather than relying on regularization for implicit load concentration of experts, we use clustering
per MoE layer for the one-shot pruning stage. While there have been attempts at expert merging
as an extension of model merging techniques during training [29], we instead use an offline non-
parametric clustering technique as k-means to obtain the reduction in the expert space. The expert
clustering is conceptualized as an offline step, performed on the pretrained checkpoints. We do not
use any additional supervised training in this stage, and instead use the finetuning data mixture for
the clustering. We then do a weighted average of the expert parameters in each cluster to form
one expert per cluster, a techniques we term cluster-merging. Post the cluster-merging stage that
produces a reduced set of experts, we finetune the models with the task data as shown in Figure 3.

In what follows, we apply the clustering algorithm for each layer separately. The study in [12]
demonstrated a way to merge redundant experts by comparing the cosine distances between router
logits. One of the nuances of the expert grouping technique in that study is that, since the method
relies on identifying groups based on all global experts in the model, it does not guarantee a reduction
to D experts per layer starting from Z, but only ensures an average D groups per layer. This makes
it inconvenient to compare the resulting pruned SMoE to an equivalent model trained from scratch.
Note that unlike distillation as done in [3], which does not explicitly control how the knowledge of
experts are grouped, our method controls the expert grouping based on information flow and has
the flexibility to be adaptive to different task data during finetuning which is crucial since the expert
activations depend on the task data. Next, we describe the algorithm for this pruning process.

5.1 UnCuRL: Unified Clustering Based on Router Logits (Laywerise)

We consider an SMoE model comprising Z experts. Let T represent the task data that we use for
determining the logits from the router of layer i. We perform the following process individually
for each layer of the SMoE model and at the risk of generalizing, we remove any layer specific
identifiers in the notations where possible. The router in layer i parameterized by Wi generates a
logits vector g of dimension Z, where each element gz corresponds to the router’s output for expert
m ∈ {|M |}. To get an SMoE model with reduced expert count of D experts per layer, the goal is to
cluster the Z experts into D clusters based on expert similarity, as inferred from the logit responses
across the |T | data. The algorithm for UNCURL for each MoE layer l is outlined in Algorithm 1. We
now describe the algorithm briefly.

For a layer with Z experts, we construct an expert similarity matrix S ∈ RZ×Z (Lines 2-4)
where each element Sij measures the similarity between experts i and j, calculated based on their
logits across all data points. We apply spectral clustering on S that transforms it into a lower-
dimensional space using the eigenvalues and eigenvectors of the Laplacian matrix L [30]. We
then apply K-means clustering to these eigenvectors to partition the experts into D clusters. In-
spired by the model merging process used in [25], we perform weighted averaging of the experts
(WeightedAverage()) in each cluster to form one expert per cluster post aligning them per

6

cluster (Lines 12-16). The weights in the averaging are the activation frequencies of the experts on
task T . When finetuning this cluster-merged model further, we randomly reinitialize the weights of
the router accordingly with appropriate dimensions reflecting D experts per layer. It is important to
note that more sophisticated weight merging strategies cited in [27, 26] are not in competition with
our method but are complementary; our technique of activation frequency weighted merging could
be substituted with these approaches.

Algorithm 1 UNCURL for MoE
Input: Z, Multi-head attention output X ∈ Rb×t×dmodel ,
Router weights Wl ∈ Rdmodel×Z , target D experts, T
Output: Reduced set of experts {E1, . . . , ED}

1: Compute router logits Hl = Wl@X ∈ Rb×t×Z for a
batch of b samples, t tokens per sample with dataset T

2: for each expert pair (i, j) where 1 ≤ i, j ≤ Z do
3: Compute S[i, j] = S[j, i] = H[:,:,i]⊤H[:,:,j]

∥H[:,:,i]∥∥H[:,:,j]∥
4: S := (1.0 + S) / 2.0
5: end for
6: Apply spectral clustering to obtain eigenvectors F ∈

RZ×D of the graph laplacian of S
7: C← K-means(F, num clusters=D) // cluster labels ∈

RZ×1

8: for each cluster d in {1, . . . , D} do
9: Gd ← {Ey|C[y] == d} // expert set

10: G′d ← []
11: Identify expert J ∈ Gd as the most frequently se-

lected expert on T , add EJ to G′d
12: for each expert y ∈ Gd, y ̸= J do
13: E′

y ← Permutation Align(Ej , Ey)
14: Add E′

y to G′d
15: end for
16: E′

d ← WeightedAverage(G′d)
17: end for

return {E′
1, . . . , E

′
D}

Prior to cluster-merging the experts within a
layer, we align expert weight permutations to
prevent suboptimal fusion of mismatched neu-
rons following the work done in [26] and
adopted in [12]. In our case, since we consider
experts in the same layer, the input and out-
put spaces are similar. Let Win and Wout rep-
resent input and output layer weight matrices
(two layer feedforward network of the experts),
and x be the input vector. Denoting the acti-
vation function as act(·), the network mapping
F : x → Wout(act(Winx)) expresses expert
operations. To align experts without altering
their functionality, we utilize the weight match-
ing optimization technique from [12]. An op-
timal permutation matrix P is identified identi-
fied for experts Ei and Ej with weight matrices
Wi and Wj . We note that, since we align all
the experts in one MoE layer to the most acti-
vated expert Ej in that layer (Line 11), we do
not need to align the rest of the weights of the
model, as the weights of Ej is unchanged and
that is our reference weight for that layer. The
optimization minimizes ℓ2 distance between corresponding permuted weights W′

i and Wj , facilitat-
ing effective merging. This leads to the following optimization which constitutes a linear assignment
problem: argmaxP

〈
W
(Ei)
in , PW

(Ej)
in

〉
F
+
〈
W
(Ei)
out , W

(Ej)
out PT

〉
F

which can be solved using the Hungarian

Algorithm 7. This procedure is captured by Permutation Align() in Line 13 of the algorithm.

5.2 Time Complexity

The time complexity of the UnCuRL algorithm is primarily dominated by the similarity computa-
tion, which has a time complexity of O(Z2 · |T)|. Spectral clustering and the linear assignment
problem both have a time complexity ofO(Z3). K-means clustering contributesO(I ·Z ·D), where
I is the number of iterations, D is the number of clusters. For large-scale data where |T | ≫ Z, the
similarity computation dominates the overall time complexity.

6 Results

In this section, we evaluate the results of the cluster-merging technique introduced in Section 5.
Following the workflow depicted in Figure 3 for task-specific pruning and evaluation, we replace
the greedy pruning in Stage 1, as described in Section 4.1, with the new cluster-merging method.

6.1 Performance of SMoE models on downstream tasks

We first discuss the results of applying the expert clustering and merging on downstream tasks in this
section. Recall that our goal is to understand whether experts in larger SMoE models can be flexibly
pruned to a reduced set while retaining benefits over equivalent smaller SMoEs trained from scratch.
We first compare the results of the SMoE models as we scale them with more experts per MoE layer
in the 354M model. From the results in Table 2, we see that for all tasks except Commitment Bank

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear sum assignment.html

7

Model Total
Params

RTE BoolQ COPA CB ReCORD WSC

354M+8e 1.05B 66.03 67.35 58.4 50.87 65.17 68.16

354M+32e 3.4B 66.86 68.27 59.13 51.86 67.75 70.87
354M+(32e→8e)† 1.05B 66.48 (+) 69.13 (+) 58.96 (+) 50.65 (-) 66.34 (+) 69.86 (+)

354M+64e 6.7B 67.64 69.09 60.05 52.17 68.85 71.68
354M+(64e→8e)† 1.05B 66.17 (+) 67.27 (-) 58.11 (-) 50.16 (-) 65.01 (-) 68.11 (-)
354M+(64e→32e)† 3.4B 67.14 (+) 68.86 (+) 59.96 (+) 51.94 (+) 67.96 (+) 69.94 (-)

354M+128e 13B 68.58 70.13 61.3 52.04 69.83 72.18
354M+(128e→8e)† 1.05B 62.91 (-) 66.93 (-) 56.56 (-) 49.31 (-) 64.32 (-) 64.98 (-)
354M+(128e→32e)† 3.4B 65.17 (-) 67.17 (-) 59.04 (-) 50.17 (-) 67.02 (-) 71.04 (+)
354M+(128e→64e)† 6.7B 67.73 (+) 69.28 (+) 60.82 (+) 51.81 (-) 68.91 (+) 71.73 (+)

Table 2: Accuracy on the validation sets of the SuperGLUE tasks after applying the UNCURL al-
gorithm. †The notation 354M+(32e->8e) means that the UNCURL algorithm was applied on the
pretrained 354M+32e model and cluster-merged to 8 experts per MoE layer prior to the finetuning
stage. Bold values denote the best performance across all models. (+) denotes that the reduced
model performs better than the equivalent smaller SMoE with equal experts and (-) denotes worse
performance. For example, for the 354M+(32e->8e) on RTE task, 66.48 (+) means the results
for this model is better than 354M+8e for that task.

(CB), the performance of the SMoE models improves on the tasks as we scale the models with more
experts. This is probably due to the fact that CB has roughly 300 examples for training and even
with multi-task finetuning, the larger 354M+128e model overfits. When comparing the largest
SMoE model we trained 354M+128e with the base dense model of 354M, we observe that we get
performance improvements of +7.3% on the BoolQ task and 6.8% on RTE which are among the
highest improvements we observe throughout.

6.2 Impact of Cluster-Merging experts

In the following discussion, we explore the principal results of the UNCURL algorithm detailed
in Section 5. Initially, we compare the 354M+(32e->8e) model with the 354M+8e model,
both maintaining identical parameter counts. The findings indicate that except for the CB task, the
reduced 354M+(32e->8e) model consistently outperforms the 354M+8e model, thus suggest-
ing that performance enhancements can be achieved despite a reduction in the number of experts,
compared to smaller SMoE models. Moreover, in the RTE task, the 354M+(64e->32e) model
slightly surpasses the 354M+32e model. Interestingly, the 354M+(64e->8e) model shows un-
derperformance on most tasks relative to the 354M+8e model.

When we compare the merged models of 354M+128e variants, we find that both the
354M+(128e->8e) and 354M+(128e->32e) perform worse than the 354M+32e mod-
els on all tasks. This suggests that there is an impact of over-reduction of the experts and that the
pruning ratio plays an important role. A further understanding of a hybrid way to select top experts
greedily by expert activation across some layers along with our cluster-merging technique for other
layers would be an interesting direction to explore.

When comparing the results with the variants subjected to the greedy one-shot pruning strategy in
Table 1, we observe that our proposed method can effectively prune the SMoEs by a factor of 2 for
most tasks in the 354M+64e and 354M+128e variants, and by a factor of 4 for the 354M+32e
variant. This indicates that advanced cluster-merging techniques are essential for task-specific prun-
ing and it allows flexibility of larger models to be later pruned to smaller models, yet be able to
retain the performance benefits for tasks.

6.3 Cluster Visualization

We next analyze the results of applying the offline expert clustering algorithm UNCURL and we
show the clustering outputs in the below figure. We apply the t-sne visualization of the eigenvector
matrix F for each MoE layer in the 354M+64e model. Note that the results of the clustering is
obtained prior to any further finetuning of the resulting reduced model after expert cluster-merging.

8

The top two images in the plot shows the cluster-
ing results from the first two MoE layers in the
model and the bottom two images show the clus-
tering results on the last two MoE layers. We ob-
serve that there are no visible distinct clusters for
the first MoE layer which also suggests that we can
skip pruning the first MoE layer for further gains.
But what is noticeable is the presence of one or
few distinct clusters in the rest of the layers which
also emphasizes on the nature of expert specializa-
tion and possible redundancies in the expert space.
Based on this, we hypothesize that specifically, for
the first MoE layer, selecting the top D experts
greedily based on activation frequency instead of
cluster-merging will yield better results and we leave this as future work.

6.4 Comparing Baselines

6.4.1 Frequency Based Merging

As a simple baseline, we reduce N experts to a target count K per layer in the following manner,
where this is applied per MoE layer: we select the top K experts based on frequency of usage.

Model RTE BoolQ COPA

354M+8e 66.03 67.35 58.4

354M+(32e→8e) † 66.48 69.13 58.96
354M+(32e→8e)* 64.54 65.12 56.19

Table 3: * denotes reduction following the fre-
quency based merging and † denotes UNCURL.

We then label the rest of the N − K experts
in the same layer to either of these K ex-
perts based on the similarity metric described
in Lines 2-4 of Algorithm 1. Note that there is
no clustering per se in this situation. After the
labeling, we follow the same procedure as Al-
gorithm 1 to align the N − K experts to their
respective matched expert and then perform a
weighted average of each group. From the re-
sults in Table 3, we can observe, the performance degrades, showing the nuances of using frequency
based pruning in the top-1 case where merging based on grouping is not superior to our method.

6.4.2 MC-SMOE

Model RTE BoolQ COPA

354M+8e 66.03 67.35 58.4

354M+(32e→8e) † 66.48 69.13 58.96
354M+(32e→8e)* 66.91 67.83 59.01

354M+(64e→32e)† 67.14 68.86 59.96
354M+(64e→32e)* 67.07 67.96 58.62

354M+(128e→64e)† 67.73 69.28 60.82
354M+(128e→64e)* 67.41 68.47 59.14

Table 4: * denotes merging following the method
of MCSMOE [12] whereas † denotes UNCURL.
Green denotes better performance compared to
UNCURL and red otherwise.

One goal derived from our problem statement is
to avoid costly retraining methods like distilling
larger SMoE models into dense or smaller mod-
els from scratch, and favoring pruning instead
to measure the comparisons between pruned
larger SMoEs and equivalent smaller SMoEs.
This preference is due to the goal of minimiz-
ing the significant computational demands of
training models from the ground up as would be
more common in practical settings. The study
most related to our work is the merging tech-
nique MC-SMOE presented in [12]. There are
two main differences between their algorithm
for pruning (Algorithm 1 in [12] and UNCURL:
(1) their approach first identifies globally dom-
inant experts across layers based on frequency
of activation, to which other experts are then merged into. Instead, we focus on local expert clusters
within each layer without any notion of activation to identify clusters instead focusing on router log-
its, and (2) their algorithm does not “cluster” experts but uses similarity based grouping to reduce
the expert space, which contrasts our method.

We have adapted their algorithm to better suit our pipeline. Specifically, we incorporate their global
expert identification and permutation alignment strategies without adopting their additional post-
merging compression or the use of knowledge distillation auxiliary loss. Note that as mentioned

9

earlier, the method of [12] does not guarantee the same number of experts per layer. In their case,
354M+(128e->64e) means that we set the number of dominant experts to 64 and their method
ensures an average of 64 experts per layer. When we compare their results in Table 4, we find that for
the 354M+(32e->8e) case, their method performs comparably to ours, even surpassing us on
RTE. But when the models have more experts, their methods perform substantially worse than our
proposed approach. One of the reasons we hypothesize is that globally identifying dominant experts
based on activation frequency may be suboptimal in the presence of larger number of experts.

7 Related Work

SMoE models have witnessed research highlights from many directions including better routing
techniques [31, 32, 33, 34], better infrastructure development for reducing communications with
expert parallelism [35], scaling laws for sparse models [8] and the nature of expert specialization [19,
36]. Our study relates to task-specific distillation as discussed in [37] and SMoE model reduction
through expert merging as explored in [12], but our controlled study focuses on comparisons that
inform better pretraining decisions, instead of mere compression techniques. [8] studies the choice
of # experts from a loss optimal scaling perspective, whereas we study them from an inference
perspective. In our paper, we focus on sparsity that comes along with gating which is contrary to
other forms of sparse model training [38]. Instead of starting with a large model and pruning, sparsity
is enforced from the beginning through the gating. When it comes to understanding how experts
could be further utilized for multi-task finetuning, there have been studies [39] which have shown the
importance of multi-task MoEs with multiple experts. The recent studies on instruction finetuning
[16] have also provided a way to mitigate the issues of SMoEs showing overfitting patterns for some
downstream tasks [3]. In the area of language modeling, most studies do not attempt at forcing expert
specialization explicitly in the pretraining stage. The Demix studies [19] groups inputs by discrete
domains during pretraining, but with real world internet scale web data, it is almost impossible to
map inputs to the nature of continuously changing domains during pretraining. Instead, the nature of
learning to route allows such SMoE models to implicitly learn the structure of the data. The recent
study (Theroem 2, [20]) shows that when you consider a setting with mixture of k Gaussians gc
and the mixture distribution defined by

∑K
c=1 wcgc, K denoting the clusters, wc =

1
K denoting the

mixture weights, the router will learn to route examples according to the cluster they belong to.

8 Conclusion and Future Work

We attempt at understanding whether the inference overheads that SMoEs with larger number of
experts come along with, can be mitigated with pruning techniques that does not require retrain-
ing from scratch. Alongside, we discuss what implications such comparisons, not existing in the
literature before, can have implications on deciding what models to pretrain. We observe how hav-
ing more experts can be an advantage in terms of pretraining performance but more costly when it
comes to inference. We then attempt to answer the question of targeted expert count reduction as
we develop an algorithm that would allow us to prune the SMoE models while still retaining per-
formance improvements. Our algorithm is flexible and could be adapted to any set of task mixtures
and opens up new avenues of understanding how large SMoEs can be adapted towards downstream
task specific reduction without additional latency overheads.

In this work, we did not study the nature of expert specializations to determine redundancy in the
expert space which is major limitation of our work. A future direction then is to use parametric
clustering techniques that decides the clusters based on domain specialization like code [40], tables
[41], math [42] and multilingual aspects [43] among others. A second future work is to be able to
understand quantization as a means to further competitively reduce the size of the models beneficial
to inference and compare that to our method. Regarding pruning, we need to theoretically understand
what is the maximum compression rate to retain the better performance compared to an SMoE model
with X experts trained from scratch. Our results show that at larger number of experts (128), getting
to more than a pruning factor of 2 results in worse performance whereas for models with fewer
experts (32), we are able to prune to 8 per layer without degradation, suggesting higher pruning
ratio. This suggests that the ratio of non-MoE to MoE layer parameters, as well as the size of each
expert would play as factors in determining the pruning factor and this opens up further studies along
this direction.

10

References
[1] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mix-

tures of local experts. Neural computation, 3(1):79–87, 1991.

[2] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[3] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion pa-
rameter models with simple and efficient sparsity. The Journal of Machine Learning Research,
23(1):5232–5270, 2022.

[4] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pages 5547–5569. PMLR, 2022.

[5] Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

[6] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[7] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

[8] Aidan Clark, Diego De Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan
Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified
scaling laws for routed language models. In International Conference on Machine Learning,
pages 4057–4086. PMLR, 2022.

[9] Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Hsien-Hsin S Lee, Anjali Sridhar, Shruti
Bhosale, Carole-Jean Wu, and Benjamin Lee. Towards moe deployment: Mitigating inefficien-
cies in mixture-of-expert (moe) inference. arXiv preprint arXiv:2303.06182, 2023.

[10] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-
experts inference and training to power next-generation ai scale. In International Conference
on Machine Learning, pages 18332–18346. PMLR, 2022.

[11] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li,
Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-
inference: enabling efficient inference of transformer models at unprecedented scale. In SC22:
International Conference for High Performance Computing, Networking, Storage and Analy-
sis, pages 1–15. IEEE, 2022.

[12] Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tian-
long Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy.
arXiv preprint arXiv:2310.01334, 2023.

[13] Artyom Eliseev and Denis Mazur. Fast inference of mixture-of-experts language models with
offloading. arXiv preprint arXiv:2312.17238, 2023.

[14] Young Jin Kim, Raffy Fahim, and Hany Hassan Awadalla. Mixture of quantized ex-
perts (moqe): Complementary effect of low-bit quantization and robustness. arXiv preprint
arXiv:2310.02410, 2023.

[15] Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung,
Barret Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning:
A winning combination for large language models. arXiv preprint arXiv:2305.14705, 2023.

[16] Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker.
Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction
tuning. arXiv preprint arXiv:2309.05444, 2023.

11

[17] Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base lay-
ers: Simplifying training of large, sparse models. In International Conference on Machine
Learning, pages 6265–6274. PMLR, 2021.

[18] Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

[19] Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer.
Demix layers: Disentangling domains for modular language modeling. arXiv preprint
arXiv:2108.05036, 2021.

[20] Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina Panigrahy, Nikhil Vyas, and Xin Wang.
On the benefits of learning to route in mixture-of-experts models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 9376–9396, 2023.

[21] Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste
Rozière, Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing
expert llms into a mixture-of-experts llm. arXiv preprint arXiv:2403.07816, 2024.

[22] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with
conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[23] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer,
and William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv
preprint arXiv:2202.08906, 2022.

[24] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

[25] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al.
Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. In International Conference on Machine Learning, pages 23965–
23998. PMLR, 2022.

[26] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging mod-
els modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

[27] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing
Systems, 36, 2024.

[28] Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan.
Moduleformer: Learning modular large language models from uncurated data. arXiv preprint
arXiv:2306.04640, 2023.

[29] Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive
routing. arXiv preprint arXiv:2306.03745, 2023.

[30] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algo-
rithm. Advances in neural information processing systems, 14, 2001.

[31] Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Sing-
hal, Payal Bajaj, Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse
mixture of experts. Advances in Neural Information Processing Systems, 35:34600–34613,
2022.

[32] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai,
Quoc V Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in
Neural Information Processing Systems, 35:7103–7114, 2022.

[33] Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei.
Stablemoe: Stable routing strategy for mixture of experts. arXiv preprint arXiv:2204.08396,
2022.

[34] William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
arXiv preprint arXiv:2209.01667, 2022.

12

[35] Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5, 2023.

[36] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and
Luke Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language
models. arXiv preprint arXiv:2208.03306, 2022.

[37] Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-
Thang Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient
inference. arXiv preprint arXiv:2110.03742, 2021.

[38] Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech
Gajewski, Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers.
Advances in Neural Information Processing Systems, 34:9895–9907, 2021.

[39] Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang
Lu, Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and
efficient moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465,
2021.

[40] Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and
Xi Victoria Lin. Lever: Learning to verify language-to-code generation with execution. In
International Conference on Machine Learning, pages 26106–26128. PMLR, 2023.

[41] Soumajyoti Sarkar and Leonard Lausen. Testing the limits of unified sequence to sequence llm
pretraining on diverse table data tasks. arXiv preprint arXiv:2310.00789, 2023.

[42] Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large
language models for mathematical reasoning: Progresses and challenges. arXiv preprint
arXiv:2402.00157, 2024.

[43] Soumajyoti Sarkar, Kaixiang Lin, Sailik Sengupta, Leonard Lausen, Sheng Zha, and Saab
Mansour. Parameter and data efficient continual pre-training for robustness to dialectal vari-
ance in arabic. arXiv preprint arXiv:2211.03966, 2022.

[44] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael
Salas, Jithin Jose, Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts at scale. Proceedings
of Machine Learning and Systems, 5, 2023.

[45] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov.
Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116,
2019.

[46] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934, 2020.

13

Appendix: Revisiting SMoE Language Models by Evaluating Inefficiencies
with Task Specific Expert Pruning

Figure 4: Wall clock latencies comparing the
time spent in All2All and the expert compu-
tation in one SMoE layer of a transformer
block as we increase the number of experts.
Expert computation time denotes the time
spent in the expert FFN operations of one
SMoE layer. Here, we consider a GPT2
SMoE model with backbone size of 124M
parameters. Latencies are for computing the
output logits of a single sequence of 512 to-
kens, batch size of 1 per GPU (we do not do
any token generation here). Setup used with
Deepspeed Zero 2 data parallelism with rank
8 and expert parallelism with rank 2.

Figure 5: Wall clock latencies comparing the
inference time spent for a 124M+32e SMoE
model with top-1 routing as we increase the
number of GPUs. Setup used with Deep-
speed Zero 2 data parallelism with rank 8 and
expert parallelism with rank 2, batch size of
1 per GPU and a sequence length of 256 to-
kens.

A1: Inference Issues with Expert Parallelism in SMoE models

We start with the conventional transformer based GPT2 architecture which is the basis of all our
experiments in the paper. Such a model has Nl transformer layers, a hidden dimension of d and
context length L. In atransformer block, we can split the FLOPs into three groups: the dense
layers in the feedforward layer (FFN), the query, key, value, and output projections (QKVO), and
calculating the query-key scores and the weighted sum over the value embeddings (Attention). The
FLOPs per token for the layers are calculated as follow: FLOPs(FFN) = Nl(24d

2), multi-head
FLOPs(QKVO) = Nl(48d

2) and FLOPs(Attention) = Nl(6d(L + 1)). When the context length
L and d are similar, the FLOPs of the FFN layer and Attention are proportionally of the same
magnitude. Despite that, the FFN layer involves dense matrix multiplications, which are highly
memory-intensive operations and accessing and moving data in and out of GPU memory can be a
bottleneck leading to higher I/O latencies for the FFN layer. Due to this, SMoEs have focused on
FFN layers to reduce inference time latencies and numerous studies in the recent past [22, 3, 4] try
scalable alternatives to the dense models by reducing the computations needed for FFN. Most of the
efforts in SMoE models have been to expand the FFN in a way such that a subset of the neurons in
the feedforward network are activated per input through a gating mechanism.

SMoE models, while requiring less computation over a batch of tokens compared to dense models
of equivalent capacity, demand significantly more memory. To mitigate this, GShard [22] proposes
expert parallelism, distributing MoE layers across multiple devices. Each device holds a subset
of expert FFNs and a full copy of other parameters. Along with data parallelism where tokens
are distributed across devices, for token processing by experts on different devices, an all-to-all
communication collective is used to transfer tokens to the appropriate devices and back after expert
processing [44].

As mentioned in [9], although theoretically SMoE models with top-1 routing execute the same
number of FLOPs compared to the baseline dense models, in practice they are significantly slower.
The wall clock latency difference can be attributed to four main factors: size of batched requests

14

Table 5: Terminologies used for MoE layers adopted from [23]
Terminology Definition
Expert An independently-learned neural network with unique weights.
Router A network that computes the probability of each token getting sent to

each expert.
Top-n Routing Routing algorithm where each token is routed to n experts.
Load Balancing Loss An auxiliary (aux) loss to encourage each group of tokens to evenly

distribute across experts.
Capacity Factor (CF) Each expert can only process up to a fixed number of tokens, which is

often set by evenly dividing across experts, tokens
experts . The capacity factor

can expand or contract this amount to CF · tokens
experts .

FFN Acronym of Feed Forward Network (FFN) layer of Transformer con-
sisting of linear, activation, linear.

in terms of number of tokens, number of GPUs needed to host the model, number of experts per
MoE layer and the computation costs of the expert (each FFN) itself. To understand why there
is a tradeoff among these factors, we first show the costs of expert computation and the All2all
communication without considering any expert parallelism. In the case of top-K routing, the costs
of the softmax operation from the routing operation has the least latency. What follows is that the
latency cost is now a function of two factors: the time it takes for expert computation and the time
for token to expert All2all communication. From Figure 4, we observe that All2All dominates the
expert computation in the overall inference time profile with 8 GPUs for a 124M GPT2 model as
we increase the number of experts. Figure 5 show that for a 124M model with 32 experts per MoE
layer, where each alternate FFN layer in the dense 124M model is replaced by an MoE layer of 32
experts (we denote this configuration as 124M+32e), the latency increases almost linearly as we
scale the number of GPUs in an effort to increase throughput. This raises the question we address
in our paper: what is the advantage of having more experts in an SMoE model when the latencies
grow linearly with more GPUs and experts? Is there any scope and mechanism to take advantage
of the larger SMoE models with task specific pruning that can also outperform SMoE models with
fewer experts, while mitigating latency overheads?

A2: Pretraining data

We consider the following datasets for our study. We randomly shuffle the data between the two
datasets and train them based on the hyper-parameters described next. Since we use linear scheduler
for the learning rate decay, we do not consider the total number of tokens/steps to decide the decay
and instead take the checkpoints after training a certain number of tokens.

• CC100: It is a large-scale, multilingual corpus designed for training language models and
other NLP tasks [45]. It is sourced from the Common Crawl, a web archive that captures
vast amounts of text data from the internet. We utilize the English portion of this dataset.

• mC4: It is an extensive multilingual dataset also derived from the Common Crawl, covering
108 languages [46]. It is a subset of the Colossal Clean Crawled Corpus (C4), which itself
is a cleaned version of the Common Crawl. As before, we utilize the English portion of
this dataset.

A3: Pretraining Models and Hyper-parameters

The model architectures of the starting dense models in our work are shown in Table 6. We use
the same byte pair encoding (BPE) tokenizer used in GPT2 in our training pipeline. For the SMoE
implementation, we used the top-K layer class used in Deepspeed-MoE 8 in our implementations.
We use an input sequence length of 1024 tokens for all our pretraining runs. Note that we pack
multiple sequences into the same input by using padding tokens when the inputs sequences do not
fill 1024 tokens. For all the training runs, we set the peak learning rate to 5e−5 and Table 7 lists

8https://www.deepspeed.ai/tutorials/mixture-of-experts-nlg/

15

Model dmodel dff #
heads

layers

124M 1024 4096 12 12

354M 1024 4096 16 24

Table 6: Model architectures of the dense backbone GPT2 models.

Table 7: Hyper-parameters used in pretraining the SMoE models.
Hyper-parameter Value
Train Capacity factor 1.2

Evaluation Capacity factor 1

Minimum Expert Capacity 4

Drop Tokens True

Load Balancing loss coeff. α 0.01

Batch size (combined across GPUs) 512

Learning Rate Scheduler Linear

Input Sequence Length 1024

Peak Learning Rate 5e-5

gradient clip val 1.0

Warmup steps 1000

Weight decay 0.1

Optimizer AdamW

ϵ, β1, β2 1e-8, 0.9, 0.95

the hyper-parameters used in the pretraining stage of the SMoE models. We reiterate that for all our
pre-training runs, we start with randomized initialization of the model families without changing the
architectures. We train all the checkpoints for a total of 40B tokens on the mix of CC100 and mC4
English data described above. For pretraining each of the models 354M, 354M+8e, 354M+32e,
354M+64e, 354M+128e to 40B tokens, we utilize 4 p4de nodes9, each having 8 A100 GPUs with
80 GB memory.

We refer the reader to [23] on more details of the hyper-parameters used for the top-k routing based
implementation of MoE layers.

We plot the training loss curves in Figure 6 and we observe that even in the overtrained regime for the
354M+8e (1.3B) model, for the 30B tokens (against the Chinchilla [2] optimal of 20B tokens), the
validation loss is higher than the 354M+128e (13B) trained for 50B tokens (which is undertrained
as per Chinchilla). This shows that the smaller models need to be trained for a lot more tokens than
optimal as compared to the larger number of experts and in the finite data regime (same pretraining
FLOPs irrespective of total number of experts), SMoEs with more experts have an advantage.

A4: Finetuning Data and Hyper-parameters

We list the hyper-parameters for the single-task finetuning case in Table 8. We use an input sequence
length of 256 for the finetuning and use the same top-1 routing with the same load balancing loss
and the balancing coefficients as used in pretraining. We do not use example packing during this
stage of the training and evaluation. For the subset of the SuperGLUE tasks 10 on which we evaluate

9https://aws.amazon.com/ec2/instance-types/p4/
10https://super.gluebenchmark.com/tasks

16

Figure 6: Training Loss curves.

the models, we use promptsource https://github.com/bigscience-workshop/promptsource to create
the inputs and the outputs.

For finetuning the models with baselines mentioned in Section 6.4, we use the same hyper-
parameters as those used on our models.

Table 8: Hyper-parameters used in finetuning the SMoE models.
Hyper-parameter Value
Train Capacity factor 1.2

Evaluation Capacity factor 1

Minimum Expert Capacity 4

Drop Tokens True

Load Balancing loss coeff. α 0.01

Batch size (combined across GPUs) 64

Input Sequence Length 128

Peak Learning Rate 1e-6

Learning Rate Scheduler Linear

gradient clip val 1.0

Warmup steps 500

Number of Epochs 50

Weight decay 0.001

Optimizer AdamW

ϵ, β1, β2 1e-8, 0.9, 0.95

17

https://github.com/bigscience-workshop/promptsource

A5. Examples of Inputs and Outputs in the Finetuning and Evaluation data

Task Example
COPA Input: The woman tolerated her friend’s difficult behavior.\n \n Select the most plau-

sible cause: \n- The woman knew her friend was going through a hard time.\n- The
woman felt that her friend took advantage of her kindness.
Output: The woman knew her friend was going through a hard time.

RTE Input: Given that Dana Reeve, the widow of the actor Christopher Reeve, has died of
lung cancer at age 44, according to the Christopher Reeve Foundation. Does it follow
that Christopher Reeve had an accident. Yes or no?
Output: No.

COPA Input: The man turned on the faucet.\n \n Select the most plausible effect: \n- The
toilet filled with water.\n- Water flowed from the spout.
Output: The woman knew her friend was going through a hard time.

WSC Input: Bernard , who had not told the government official that he was less than 21
when he filed for a homestead claim, did not consider that he had done anything
dishonest. Still, anyone who knew that he was 19 years old could take his claim away
from him . Is the coreference between anyone and him : True OR False?
Output: False.

CB Input: Given that Valence the void-brain, Valence the virtuous valet. Why couldn’t
the figger choose his own portion of titanic anatomy to shaft? Did he think he was
helping? Does it follow that Valence was helping Yes, no, or maybe?
Output: No.

FLAN Input: Generate a correctly punctuated version of the following text: MeetAl-
pakkaTweed from Du StoreAlpakka a new and exciting yarn from the Norwegian
yarn manufacturer.
Output: MeetAlpakkaTweed from Du StoreAlpakka- a new and exciting yarn from
the Norwegian yarn manufacturer!

18

	Introduction
	Technical Preliminaries on SMoE
	Tradeoffs in Performance, Training and Inference Costs
	Can expert pruning retain the performance benefits?
	Experiment Setup
	Observations

	Pruning with Clustering and Merging
	UnCuRL: Unified Clustering Based on Router Logits (Laywerise)
	Time Complexity

	Results
	Performance of SMoE models on downstream tasks
	Impact of Cluster-Merging experts
	Cluster Visualization
	Comparing Baselines
	Frequency Based Merging
	MC-SMOE

	Related Work
	Conclusion and Future Work
	Appendix: Optimizing SMoE Pretraining by Evaluating Inefficiencies with Task-Specific Expert Pruning

